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ABSTRACT

Findings show that the rays of star light are lensed primarily in the plasma rim of the sun and
hardly in the vacuum space just slightly above the rim. Since the lower boundary of this vacuum
space is only a fraction of a solar radius above the solar plasma rim, it is exposed to virtually the
same gravitational field. The thin plasma atmosphere of the sun appears to represent an indirect
interaction involving an interfering plasma medium between the gravitational field of the sun and
the rays of star light. The very same light bending equation obtained by General Relativity was
derived from classical assumptions of a minimum energy path of a light ray in the plasma rim,
exposed to the gravitational gradient field of the sun. The resulting calculation was found to be
independent of frequency. An intense search of the star filled skies reveals a clear lack of lensing
among the countless numbers of stars, where there are many candidates for gravitational lensing
according to the assumptions of General Relativity. Assuming the validity of the light bending
rule of General Relativity, the sky should be filled with images of Einstein rings. Moreover, a
lack of evidence for gravitational lensing is clearly revealed in the time resolved images of the
rapidly moving stellar objects orbiting about Sagittarius A*.

Subject headings: black hole – gravitational lensing – galaxy center – plasma atmosphere – Gauss’s law

1. Introduction

We shall examine the evidence for gravitational
lensing in our region of space near to us, starting
with the nearest star to us, our sun. The light
bending rule of General Relativity suggests that
a direct interaction should take place between the
gravitational field of the lensing mass and the rays
of light from the stars, whether in a vacuum space
or in a plasma atmosphere. If the gravitational
lensing is observed only at the plasma rim of the
sun, it is evident that the past century of observed
solar light bending events were due to an indirect
interaction between the gravitational field of the
sun and the rays of star light. This argument is
supported by a calculation which derives the very
same light bending equation obtained by General
Relativity. The equation was derived from the
assumptions of a minimum energy path of light
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in a plasma atmosphere exposed to the gravita-
tional gradient field of the sun. Appendix A gives
a detail calculation and a derivation of the famous
light bending equation. We shall take a closer look
at the lower boundary of the vacuum space just
above the plasma rim of the sun, the nearest star
to us, just 8 light-minutes away. We shall exam-
ine the nearby stars in our own region of space,
less than hundreds of light-years away. There are
many cases in the star filled skies where the lenses
and the light sources are by chance co-linearly
aligned with the earth based observer, presenting
vast opportunities for the observation of Einstein
rings. We shall examine the collected images and
the astrophysical data of the stars orbiting about
Sagittarius A*, a region thought to contain a su-
per massive black hole located at the center of
our galaxy, the Milky Way, right in our own back
yard, just 26,000 light-years away. Research con-
vincingly reveal:
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• a lack of evidence for gravitational lensing in
the vacuum space, just a fraction of a solar
radius above the solar plasma rim; straight-
forwardly revealed by applying the Gauss’s
law of gravity to the solar mass

• a lack of evidence for Einstein rings in a
sky of countless numbers of stars, where the
candidates for gravitational lenses and the
light sources are by good chance co-linearly
aligned with the earth based observer

• a lack of evidence for gravitational lensing in
the time resolved images of the stars orbiting
about presumably a black hole at the site of
Sagittarius A*

For nearly a century now, gravitational light bend-
ing events have been observed primarily at the rim
of the sun during events of solar eclipses. New
findings clearly show that with a straightforward
application of Gauss’s law of gravity, an important
fundamental of Mathematical Physics, the light
bending rule of General Relativity apparently does
not apply to the empty vacuum space above the
rim of the sun.

2. Some Misapplied Fundamentals on
Gravitational Lensing Concepts

An application of Gauss’s law, applied to grav-
itation as well as to electromagnetism along with
the principle of optical reciprocity clearly show
that a co-linear alignment of the observer, the lens
and the source is unnecessary for an observation of
a gravitational light bending effect, as predicted by
the light bending rule of General Relativity. The
gravitational effect at the surface of an analytical
Gaussian sphere due to the presence of a point-
like gravitating mass that is enclosed inside of the
sphere depends only on the quantity of mass en-
closed. The size or density of the enclosed mass
particle is not important. [12], [13] Gauss’s law of
gravity [1], [4] is a Mathematical Physics tool that
encloses a gravitating mass particle inside of an
analytical Gaussian surface which applies directly
to the gravitational field of the enclosed mass. An
analogy to this principle encloses an electrically
charged particle inside of a Gaussian surface in
application to the electric field of the charged par-
ticle in the discipline of Electromagnetism [4]. The
principle of optical reciprocity [2], [3] simply states

that the light must take the very same minimum
energy path or least time path, in either direction
between the source and the observer. This funda-
mental principle is an essential tool for the under-
standing of complex lensing systems in Astronomy
and Astrophysics [6]. We shall now correctly apply
all of these well founded and proven fundamentals
to these gravitational lensing problems.

2.1. Gauss’s Law applied to a Point-Like
Gravitating Mass

Any gravitational effect on a light ray due to
the presence of a gravitating point like mass at
the impact parameter R would theoretically de-
pend on the amount of Mass M that is enclosed
within the analytical Gaussian sphere of radius R
as illustrated in Figure 1. Any gravitational effect
that would be noted at the surface of the analyti-
cal Gaussian sphere should in principle be totally
independent of the radius of the mass particle or
the density of the mass that is enclosed within the
Gaussian sphere. From Gauss’s Law (Equation
2) equal masses of different radii will theoretically
have equal gravitational effects at the surface of
the Gaussian sphere. The light bending rule

δθ =
4GM

Rc2
(1)

of General Relativity is essentially a localized 1
R

ef-
fect. We are dealing with astronomical distances.
Thus, the bulk of the gravitational effect on the
path of particles of light would takes place along
a segment of the light ray that encloses the im-
pact parameter R. This segment may be only
several orders of magnitude greater than the im-
pact parameter R. Thus, the predominant effect of
the gravitational field on the bending of the light
ray would occur along this short segment of the
light path, maximizing at the point where the light
ray is tangent to our analytical Gaussian sphere,
namely, at the impact parameter R.

A very essential tool of Mathematical Physics
known as Gauss’s law [1] ,[4],

∫

S

~g · d ~A = 4πGM (2)

is applied directly to the gravitating masses where
the gravitational field ~g is a function only of the
mass M enclosed by the spherical Gaussian sur-
face S. The gravitational flux at the surface of
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the analytical Gaussian sphere is totally indepen-
dent of the radius R of the sphere. [2] The idea
here is that the gravitational field at this analyti-
cal Gaussian surface is only a function of the mass
that it encloses. [1], [4] Any mass M , regardless
of the radius of the mass particle that is enclosed
inside of the Gaussian spherical surface of radius
R will contribute exactly the same gravitational
potential at the Gaussian surface. In Figure 1,
the gravitational field points inward towards the
center of the mass. Its magnitude is g = GM

R2 .
In order to calculate the flux of the gravitational
field out of the sphere of area A = 4πR2, a mi-
nus sign is introduced. We then have the flux
Φg = −gA = −(GM

R2 )(4πR2) = −4πGM . Again,
we note that the flux does not depend on the size
of the sphere. It is straightforwardly seen that a
direct application of Gauss’s law to the light bend-
ing rule, Equation 1, coupled with the essential
principle of optical reciprocity (Potton 2004), re-
moves any requirement for a co-linear alignment
of the light source, the point-like gravitating mass
particle (the lens) and the observer for observa-
tion of a gravitational lensing effect as suggested
by General Relativity. [12]

From Equation 2, the flux of the gravitational po-
tential at the surface of the Gaussian spheres, as
illustrated in Figure 1, is the same for all enclosed
mass particles of the same mass M , regardless of
the size of the mass particle. As a result, each
mass particle will produce the very same gravita-
tional light bending effect δθ = δθ1 + δθ2, where
δθ1 and δθ2 are the bending effects on the ray of
light on approach and on receding the lens, respec-
tively. This of course assumes the validity of Equa-
tion 1. This symmetry requirement suggests that
δθ1 = δθ2 . From Equations 1 and 3 it follows that
δθ = 2δθ1 = 4GM

Rc2 and δθ1 = δθ2 = 2GM
Rc2 . This

says that the total contribution of the light bend-
ing effect due to the gravitating point-like mass
particle on any given infinitely long light ray is the-
oretically divided equally at the impact parameter
R, separating the approaching segment and the
receding segment of the optical path. A confirma-
tion of this will be clearly seen in the next section
with application of the principle of reciprocity and
a derivation of the equation of the Einstein ring,
illustrating the symmetry requirement of General
Relativity.

Fig. 1.— Gauss’s Law applied to Equal Gravitat-
ing Masses of Different Radii Enclosed

Fig. 2.— Fundamental Principle of Optical Reci-
procity Illustrated on a Lensed Light Ray
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2.2. Principle of Optical Reciprocity ap-
plied to the Lensed Light Ray

In any space, the principle of reciprocity [2],[3],
a very fundamental principle of optics, must hold
as illustrated in Figure 2. The principle simply
states that light moving along a preferred op-
tical path, from a source to an experimenting
observer, must take the very same optical path
from the hypothetical light source of the observer
back to the distant real light source. As a con-
sequence of this fundamental principle, any addi-
tional source placed along a preferred optical path
will all appear to the observer as a point-like light
source sitting on top of the image of the real light
source. As a consequence of this principle, in the
case of an image of an Einstein ring of a single real
point-like light source, any additional light sources
placed on a preferred optical path of the real light
source would appear as point light sources sitting
on the image of the Einstein ring of the distant
real light source.

The total gravitational light bending effect acting
on the light ray upon approach and upon receding
a point-like gravitating mass is give by

δθ = δθ1| approaching

the lens

+ δθ2| receding

the lens

=
4GM

Rc2
(3)

In this example, for simplicity, the gravitating
mass M is chosen to be positioned at the mid-
point on the line joining the observer and the light
source for the simplified special case DL : DSL :
DS = 1 : 1 : 2. [5] This simplified special case is
illustrated in Figure 3.

The astronomical distance DL is the distance from
the observer to the lens, DSL is the distance from
the lens to the source and DS is the distance from
the observer to the source. This is a simplified
special case, where DL = DSL, presented in most
academic textbooks. It is readily seen that the
axis of symmetry for a given light ray is perpen-
dicular to the line joining the source and the ob-
server only for the special case where the lens is
positioned exactly at the midpoint between the
source and the observer. The vast astronomical
distances between the stars present much larger
impact parameters on a much grander scale to the
light passing by the stars. In the plasma free space
far above the rim of the stars, an indirect interac-
tion certainly could not take place. It is for this

reason, the star filled sky reveals a clear lack of
gravitational lensing among the countless numbers
of stars.

2.3. Symmetry Requirement Demonstrated
on derivation of Einstein Ring Equa-
tion

From symmetry we have

δθ1 = δθ2 =
2GM

Rc2
(4)

Again, the astronomical distance DL is the dis-
tance from the observer to the lens. Since we are
dealing with very small angles, from Figure 3, the
deflection of the light ray due to the gravitational
effect on approach to the gravitating mass is just
simply δθ1 = R

DL
= 2GM

Rc2 wherefrom
R2

DL
= 2GM

c2 and R2

DL
2 = 2GM

DLc2 = δθ1
2.

Solving this for the radius of the impact parameter
of the light ray and thus the radius of the Einstein
Ring expressed in units of radians we have

δθ1 =

√

2GM

DLc2
(5)

which is the radius of the Einstein ring in units of
radians for a lens place exactly midway between
the source and the observer. This is a special case,
where DL = DSL. (See Appendix B for the gen-
eral case (DL 6= DSL)) Note that the gravitational
bending effect on the light ray for the approach
segment alone is exactly equal to the radius of the
solved Einstein ring expressed in radians and is
given as

δθ1 =
2GM

Rc2
(6)

This effect is exactly one half of the total accumu-
lative gravitational effect acting on the light ray
for the approach and receding segments. [12] From
symmetry requirement, the integral gravitational
effect on a light ray upon approach to a gravi-
tating mass positioned exactly at the midpoint of
a line joining the source and the observer, must
equal that of the integral gravitational effect on
the light ray upon receding the gravitating mass

δθ1| approaching

the lens

= δθ2| receding

the lens

(7)
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as suggested by Equation 4 and the laws of con-
servation of energy and of momentum. [13] The
accumulative gravitational effect along the light
ray must sum the total effects of gravity acting on
the light ray for both the approach and receding
segments of any ray of light passing by a point-like
gravitating mass. [12], [13] The total light bending
effect is therefore

δθ =
4GM

Rc2
(8)

The principle of optical reciprocity simply states
that any light ray or a photon of light must take
the very same path, along the same minimum en-
ergy path, in either direction between the source
and the observer as depicted in Figure 2.

Using the light bending rule of General Relativ-
ity, it is theoretically demonstrated and graphi-
cally illustrated in Figure 4 that all observers of
varying distances from a gravitating mass or lens
should see an Einstein ring. Only the mid-field
observer depicted in Figure 4 will derive Equa-
tion 6 which gives exactly the same value as that
given by Equation 5 for a simplified special case,
where DL = DSL, which is presented in most aca-
demic textbooks. Appendix B gives the general
case where DL is not necessarily equal to DSL.
In the general case, the lens may not be placed
exactly midway between the light source and the
observer. The near-field and the far-field observers
depicted in Figure 4 will also derive Einstein ring
equations with coefficients corresponding to their
unique geometries. Each observer has distinct sets
of lensed light rays, each of the lensed light rays
with their corresponding axis of symmetry. As
illustrated, the near-field observer would see the
largest, most lensed Einstein ring. The far-field
observer would see the smallest, least lensed Ein-
stein ring. From symmetry, the axis of symmetry
of the lensed curve would lean towards the near-
field observer and away from the far-field observer.
The axis of symmetry would be perpendicular to
the line joining the mid-field observer and the light
source only in the case where the lens is exactly
midway between the observer and the source.

The lensed light rays depicted in Figure 4 all be-
long to the very same family of equations derived
from the light bending rule (Equation 1) of Gen-
eral Relativity. Any light ray that is gravitation-
ally bent by a point-like gravitating mass, as pre-

dicted by General Relativity, will always have an
axis of symmetry which would be perpendicular to
the line joining the source and the observer only
when the lens is positioned exactly at the midpoint
on the line joining the observer and the source. All
observers should see, according to General Rela-
tivity, an Einstein ring. Figure 4 depicts the geom-
etry of the lens rays as a function of the position
of the observer relative to the lens and the source.
[12]

2.4. Condition for Observing of an Ein-
stein Ring using a Lens of 1 Solar
Mass and 1 Solar Radius

Table 1: Astrophysical Data of the Sun
Solar Mass M 1.99 · 1030Kg

Solar Radius R 6.96 · 108m
G Constant G 6.67 · 10−11m3s2/Kg

V elocity of Light c 2.99793 · 108ms−1

δθ (rad) 4GM
Rc2 8.4952 · 10−6 rad

δθ (deg) 4GM
Rc2 0.0004867 deg

Radius of Sun R(deg) 0.275deg

Focal Length R(deg)
δθ(deg)

565.0

We shall use the collected astrophysical data of the
sun in Table 1 for this task. Using this data we
find that for a stellar system of 1 solar mass and 1
solar radius, the light bending Equation (8) yields
an angles of 8.4952 · 10−6 radians. This angle is
0.0004867 degrees or 1.752 arcsec. The diameter
of the solar disk is observed to be 0.55 degrees, a
radius of 0.275 degrees. If the radius of the solar
disk were compared with the angle of solar light
bending of the plasma rim (in degrees), we would

have a factor of R(deg)
δθ(deg) = 565.0. This means that

in order to observe an Einstein ring of a distant
stellar light source due the plasma rim of the sun,
the observer would have to back away from the sun
for at least 565 astronomical units(AU’s). This is
the focal length of the plasma rim lensing
system of the sun. It is the distance required for
the parallel rays of star light to converge to a point
after being deflected by the solar plasma rim.

Note that if the observer were to back off to a dis-
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Fig. 3.— Symmetry Requirement of the Accumu-
lative Lensing Effect Illustrated

Fig. 4.— The near-field, mid-field and far-field
observers and illustration of their corresponding
axes of symmetry.

tance greater than 565 AU’s then the light rays
from the plasma lens would come to a focus be-
fore reaching the observer and the Einstein ring
would not be detected. Because of the vast dis-
tances between the stars in the night skies, any
light bending of the light rays, according to Gen-
eral Relativity, would have to have larger impact
parameters, extending out well above the plasma
rim of the lensing stars into the empty vacuum
space where there is apparently no gravitational
lensing effects taking place at all. Since there is
no evidence for Einstein rings among the star-filled
skies, this is apparently the case. Consequently, if
gravitational lensing in empty vacuum space did
not occur, then there can be no observations of
Einstein Rings due to a co-linearly alignment of
the widely separated stellar objects in the night
skies.

Historically, the effect of light bending has been
noted only at the solar rim, the thin plasma of the
sun’s atmosphere due to an indirect interaction be-
tween the rays of star light and the gravitational
field of the sun. Appendix A gives a detail calcu-
lation for the bending of light rays in a plasma at-
mosphere exposed to a gravitational gradient field.
It is easily demonstrated using the mathematical
Physics of the Gauss law of gravity that the light
bending effect of the sun varies as 1/R at various
radii R of analytical Gaussian surfaces, concentric
to the center of the sun as suggested by General
Relativity. The integrated effect of the solar lens-
ing effect is essentially a 1/R effect which is pre-
dominant along a segment of the light path that
encloses the impact parameter, R, where the light
ray is tangent to a spherical Gaussian surface at
the impact parameter R. Since the astronomical
distances are extremely large, for all practical pur-
poses, the integrated 1/R effect of the light bend-
ing occurs along a segment of the light ray that
is extremely short compared to astronomical dis-
tances.

Theoretically, the light bending along the segment
due to the gravity of a point-like mass on ap-
proach and on receding are virtually equal and
divided at the impact parameter R where the re-
lation δθ1| approaching

the lens

= δθ2| receding

the lens

still holds even

though the Earth based observer is relatively close
to the sun. [12] Remarkably, as it may seem, how-
ever, historically the solar light bending effect has
been observed only at the solar rim, namely, the
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light refracting plasma of the solar atmosphere.
It is too widely taught solar light bending is ob-
served at the rim to maximize the effect of detec-
tion. This has contributed obviously to misappli-
cation of the important fundamentals. We note
again, that the thickness of the thin plasma shell
of the sun, frequently referred to as the solar rim,
is very negligible in comparison to the solar radius
R. Table 2 briefly summarizes the observations
of gravitational light bending as a function of the
distance above the thin solar plasma rim. It is
important to note that the bulk of the observed
solar light bending events were recorded during
solar eclipses. The moon has provided a near per-
fect masking of the solar disk, allowing only the
thin plasma rim of the sun to be exposed for the
astrophysical observations.

Table 2: The Observed and Predicted Gravita-
tional Lensing at Distances h (in units of RSUN)
above the Solar Plasma Rim
Distance h Acceleration Observed Predicted by
above Rim 1/r2 Effect Lensing Relativity
(RSUN) (gSUN) (arcsec) (arcsec)

1.0 0.25 none 0.88
0.5 0.44 none 1.17
0.2 0.69 none 1.45
0.1 0.83 negligible 1.59
0 1.00 1.75 1.75

Assuming the validity of the light bending rule of
General Relativity, the current technical means of
the astronomical techniques should have easily al-
lowed observations of solar light bending of stellar
light rays at different solar radii, using the Gauss
law of gravity applied to analytical spherical sur-
faces, namely at the radius of 2R, 3R and even
beyond 4R, where R is one solar radius. For in-
stance, at the analytical Gaussian surface of radius
2R, the predicted light bending effect of General
Relativity would have been an easily detectable ef-
fect of one half the effect of 1.75 arcsec noted at
the solar rim; at the surface of radius 3R, an ef-
fect of one third the effect at the solar rim, etc.,
etc. The equatorial radius RSUN is approximately
695,000 km. The thickness of the solar rim is been
recorded to be less than 20,000 km; less than 3 per-
cent of the solar radius R. From this, we can easily
see that a gravitational lensing effect in vacuum
space several solar radii above the solar plasm rim

should be a very noticeable effect to the modern
astronomical means.

2.5. The Fundamentals applied to the Or-
bit of S2 about Sagittarius A*

The past decades of intense observations using
modern astronomical techniques in Astrophysics
alone reveal an obvious lack of evidence for lensing
effects on collected emissions from stellar sources
orbiting about Sagittarius A*, believed to be a su-
per massive black hole located at the galactic cen-
ter of our Milky Way. This is most obviously re-
vealed in the time resolved images collected since
1992 on the rapidly moving stars orbiting about
Sagittarius A*. [7], [8], [10], [11] The space in the
immediate vicinity of a black hole is by definition
an extremely good vacuum. The evidence for this
is clearly seen in the highly elliptical orbital paths
of the stars orbiting about the galactic core mass.
The presence of material media near the galactic
core mass would conceivably perturb the motion
of the stellar object s16 which has been observed
to move with a good fraction of the velocity of
light. The presence of any media other than a
good vacuum would have caused the fast moving
stellar object s16 to rapidly disintegrate. Astro-
physical observations reveal that s16 has a veloc-
ity approaching 3 percent of the velocity of light
when passing to within a periastron distance cor-
responding to 60 astronomical units from Sagittar-
ius A*, perceived to be a massive black hole. This
gives convincing evidence that the space in this
region has to be, without a doubt, an extremely
good vacuum, no chance of an indirect interaction
between the gravity of the super massive galactic
core mass and the light emitted by these rapidly
moving stars orbiting this mass.

Application of the light bending rule of Equation
4 together with considerations of Gauss’s Law and
the principle of optical reciprocity to the data
of the observed orbit the researchers in [11] has
shown, it is clear that some gravitational lensing
effects should have been detected in the time re-
solved images of the orbit of S2, owing to the cur-
rent level of todays observational means.

Selected points of the observed orbit of S2 and the
corresponding predicted lensing of the orbit, based
on the light bending rule of General Relativity,
were tabulated in Reference [12]. From these cal-
culations the predicted magnitude of the lensing
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effect was found to be orders of magnitude greater
than the observed radial separation between the
S2 source and the position of the galactic center
mass. With current technical mean, this predicted
lensing should have been a very noticeable effect.
To date, clear evidence of a gravitational lensing
effect based on the light bending rules of General
Relativity is yet to be revealed in the time resolved
images of the stellar objects orbiting about Sagit-
tarius A*, a region under intense astrophysical ob-
servations since 1992.

3. Discussion & Conclusions

Historically, the light bending effect has been
observed predominately at the thin plasma rim of
the sun. A direct interaction between the sun’s
gravity and the rays of star light in empty vac-
uum space just a fraction of a solar radius above
the solar plasma rim, where there is no plasma
atmosphere, is yet to be observed. The stellar
sky presents vast opportunities to modern Astron-
omy and Astrophysics to allow for the detection of
gravitational lensing events, as predicted by Gen-
eral Relativity, due to the large numbers of stellar
objects that just happen to be co-linearly aligned
with the earth based observers; again of course
assuming the validity of the light bending rule of
General Relativity. Because of the vast astronom-
ical distances between the stars, the gravitational
lensing effect would have to take place in deep
space, at impact parameters far above the plasma
rim of the lensing stars. If this were indeed the
case and the light bending rule of General Relativ-
ity involved a direct interaction between the grav-
itational field of the stars and the rays of light in
vacuum space, then the entire celestial sky should
be filled with images of Einstein rings.
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A. Appendix: Bending of Light Rays in the Solar Plasma Rim as function of Gravitational
Potential; a Minimum Energy Path Calculation

This calculation is based entirely on a conservation of energy concept considering the gradient of the gravi-
tational field of the sun acting directly on the rapidly moving ionized material particles of the thin plasma
atmosphere of the sun. The calculation considers a minimum energy path for rays of light. The resulting
calculation was found to be totally independent of frequency. The rapidly moving ionized particles of the
solar plasma is assumed to be bounded by the gravitational potential of the sun given by

φ(r=∞

r=R ) =

∫ r=∞

r=R

GM

r2
dr =

GM

R
. (A1)

It may be assumed that the plasma particles of the ionized solar rim move with random velocities such
that their kinetic energies are as dictated by 1

2mv2 = 3
2kT + φm, where m is the mean mass of the plasma

particles of temperature T (K◦) and v is the velocity of the plasma particle bounded by the gravitational
potential φ. The random velocity v of the moving ions may be assumed to have an upper bound velocity

of v =
√

2GM
R

, the escape velocity of the solar gravity at the surface of the sun. The solar plasma particles

bounded by gravity in the solar rim may be considered as a dynamic lens under the intense gravitational
gradient field of the sun. It is theoretically shown here, and in detail in Dowdye2 (2007), that a minimum
energy path for light rays propagating in the solar plasma rim, subjected to the gradient of the gravitational
field of the sun, yields the mathematical results of 4GM

Rc2 .

It is shown that the moving ions acting as secondary sources within the plasma rim, move with random
velocities not to accede the escape velocity. The frequency and wavelength of a lensed light ray exposed to
the moving plasma are redshifted as:

ν ′ = ν0(1 −
v2

c2
) = ν0(1 −

2GM

Rc2
) (A2)

λ′ = λ0(1 −
v2

c2
)−1 = λ0(1 −

2GM

Rc2
)−1 (A3)

λ′ ≈ λ0(1 +
2GM

Rc2
). (A4)

From this, the number of wavelengths per unit length along the minimum energy path for any given light
ray propagating within the plasma rim may be given as

n =
1

λ′
=

1

λ0(1 − 2GM
Rc2 )−1

=
1

λ0
(1 −

2GM

Rc2
). (A5)

Thus, the photon energy density ε, joules per unit length of a light ray along the minimum energy path is
ε = ε0(1−

2GM
rc2 ). Consequently, the number of re-emitted waves per unit length along the photon path and

thus the energy per unit length increases as r increases. This translates to a downward, re-emitted path
of the bent light ray, along a minimum energy path for the approaching segment of the light ray. Theory
and details are published in [13]. If dε

dr
= +ε0

2GM
r2c2 or δε = +ε0

2GM
r2c2 δR, then the re-emission of the light ray

in the atmosphere of ions will occur such that the total energy along the minimum energy (conservation of
energy) path for a given light ray would not change. If ε is the energy per unit length along the light ray and
δε is the change in energy in the direction of the gradient potential φ(r), then the angle of change during
the approach segment of the light ray is

δθapp =
δεapp

ε
= +

∫ r=R

r=∞

2GM

r2c2
dr = −

2GM

Rc2
(A6)
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and the path change for the receding segment of the light ray is

δθrec =
δεrec

ε
= +

∫ r=∞

r=R

2GM

r2c2
dr = +

2GM

Rc2
. (A7)

The net change in the path of the light ray is

δθ = δθrec − δθapp =
4GM

Rc2
. (A8)

B. Appendix: The Einstein Ring Equation; the General Case (DL 6= DSL)

The general case for the Einstein ring equation involves all values for the distances, whereby DL is the
distance between the observer and the lens and DSL is the distance between the lens and the source. These
are cases where DL is not necessarily equal to DSL. The general case for the radius of the Einstein ring in
units of radians is

δθ(rad) =

√

DSL

DL + DSL

4GM

DLc2
(B1)

The radius of the Einstein ring at the image location the distance of (DL + DSL) expressed in meters is

R(meters) = (DL + DSL)δθ(rad) (B2)

where DL and DSL are also expressed in meters. The impact parameter (IP) corresponding to the Einstein
ring is the nearest point of approach of the light rays to the point-like lensing mass, when observed at a
distance of DL meters away from the observer, for the rays of light coming from the light source to the
observer. Since this is a 3 dimensional problem, the impact parameter of the light rays that would produce
an Einstein ring is also a ring itself. It is a virtual ring for purpose of the analysis of the problem. The
impact parameter in meters is

RIP (meters) = (DL)δθ(rad) (B3)

where RIP is the nearest point of approach of the gravitationally lensed light rays to the lensing star. It
is that distance the lensed light rays will pass over the plasma rim of the lensing star, moving through the
empty vacuum space well above the plasma rim of the lensing stars, moving along astronomical distances
from the source to the observer. The radius of the predicted Einstein ring, according Equation (B1) and
the light bending rule of General Relativity, will be nearly 15 times the radius of a sun-like lensing star,
the same mass and radius as the sun, when both are observed at the same distance DSL = 4 light years
away. Adjusting the parameter DSL would cause the radius of the Einstein ring to change. Increasing DSL

would cause the image of the Einstein ring to increase in radius (an increase in magnification), assuming the
validity of General Relativity. Setting DL = DSL, Equation (B1) becomes Equation (5), the special case.
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