
T H E  F O U N D A T I O N  
O F  T H E  G E N E R A L  

T H E O R Y  O F  R E L A T I V I T Y

By A. Einstein

The theory which is presented in the following pages conceivably constitutes the far-
thest-reaching generalization of a theory which, today, is generally called the “theory of 
relativity”; I will call the latter one—in order to distinguish it from the first named—the 
“special theory of relativity,” which I assume to be known. The generalization of the the-
ory of relativity has been facilitated considerably by Minkowski, a mathematician who 
was the first one to recognize the formal equivalence of space coordinates and the time 
coordinate, and utilized this in the construction of the theory. The mathematical tools 
that are necessary for general relativity were readily available in the “absolute differen-
tial calculus,” which is based upon the research on non-Euclidean manifolds by Gauss, 
Riemann, and Christoffel, and which has been systematized by Ricci and Levi-Civita and 
has already been applied to problems of theoretical physics. In section B of the present 
paper I developed all the necessary mathematical tools—which cannot be assumed to 
be known to every physicist—and I tried to do it in as simple and transparent a manner 
as possible, so that a special study of the mathematical literature is not required for the 
understanding of the present paper. Finally, I want to acknowledge gratefully my friend, 
the mathematician Grossmann, whose help not only saved me the effort of studying the 
pertinent mathematical literature, but who also helped me in my search for the field equa-
tions of gravitation.

The following two translations are reproduced from the English edition of the Collected Papers of Albert 
Einstein (Doc. 30 and Doc. 41, vol. 6). The first paragraph of the first document and the entire second 
document have been translated by Alfred Engel; the remaining text of the first document is reprinted from 
H. A. Lorentz et al., The Principle of Relativity, trans. W. Perrett and G. B. Jeffery (Methuen, 1923; Dover 
rpt., 1952).
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A.  FUNDAMENTAL  CONS IDERAT IONS  ON THE  POSTULATE  OF  RELAT IV ITY

§ I. Observations on the Special Theory of Relativity

The special theory of relativity is based on the following postulate, which is 
also satisfied by the mechanics of Galileo and Newton.

If a system of co-ordinates K is chosen so that, in relation to it, physical laws hold good 
in their simplest form, the same laws also hold good in relation to any other system of 
co-ordinates K′ moving in uniform translation relatively to K. This postulate we call the 
“special principle of relativity.” The word “special” is meant to intimate that the principle 
is restricted to the case when K′ has a motion of uniform translation relatively to K, but 
that the equivalence of K′ and K does not extend to the case of non-uniform motion of K′ 
relatively to K.

Thus the special theory of relativity does not depart from classical mechanics through 
the postulate of relativity, but through the postulate of the constancy of the velocity of 
light in vacuo, from which, in combination with the special principle of relativity, there 
follow, in the well-known way, the relativity of simultaneity, the Lorentzian transforma-
tion, and the related laws for the behavior of moving bodies and clocks.

The modification to which the special theory of relativity has subjected the theory 
of space and time is indeed far-reaching, but one important point has remained unaf-
fected. For the laws of geometry, even according to the special theory of relativity, are to 
be interpreted directly as laws relating to the possible relative positions of solid bodies at 
rest; and, in a more general way, the laws of kinematics are to be interpreted as laws which 
describe the relations of measuring bodies and clocks. To two selected material points 
of a stationary rigid body there always corresponds a distance of quite definite length, 
which is independent of the locality and orientation of the body, and is also independent 
of the time. To two selected positions of the hands of a clock at rest relatively to the privi-
leged system of reference there always corresponds an interval of time of a definite length, 
which is independent of place and time. We shall soon see that the general theory of rela-
tivity cannot adhere to this simple physical interpretation of space and time.

§ 2. The Need for an Extension of the Postulate of Relativity

In classical mechanics, and no less in the special theory of relativity, there is an inherent 
epistemological defect which was, perhaps for the first time, clearly pointed out by Ernst 
Mach. We will elucidate it by the following example:—Two fluid bodies of the same size 
and nature hover freely in space at so great a distance from each other and from all other 
masses that only those gravitational forces need be taken into account which arise from 
the interaction of different parts of the same body. Let the distance between the two bod-
ies be invariable, and in neither of the bodies let there be any relative movements of the 
parts with respect to one another. But let either mass, as judged by an observer at rest rel-
atively to the other mass, rotate with constant angular velocity about the line joining the 
masses. This is a verifiable relative motion of the two bodies. Now let us imagine that each 
of the bodies has been surveyed by means of measuring instruments at rest relatively to 
itself, and let the surface of S1 prove to be a sphere, and that of S2 an ellipsoid of revolution. 
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Thereupon we put the question—What is the reason for this difference in the two bodies? 
No answer can be admitted as epistemologically satisfactory,1 unless the reason given is 
an observable fact of experience. The law of causality has not the significance of a state-
ment as to the world of experience, except when observable facts ultimately appear as 
causes and effects.

Newtonian mechanics does not give a satisfactory answer to this question. It pro-
nounces as follows:—The laws of mechanics apply to the space R1, in respect to which 
the body S1 is at rest, but not to the space R2, in respect to which the body S2 is at rest. But 
the privileged space R1 of Galileo, thus introduced, is a merely factitious cause, and not a 
thing that can be observed. It is therefore clear that Newton’s mechanics does not really 
satisfy the requirement of causality in the case under consideration, but only apparently 
does so, since it makes the factitious cause R1 responsible for the observable difference in 
the bodies S1 and S2.

The only satisfactory answer must be that the physical system consisting of S1 and S2 
reveals within itself no imaginable cause to which the differing behavior of S1 and S2 can 
be referred. The cause must therefore lie outside this system. We have to take it that the 
general laws of motion, which in particular determine the shapes of S1 and S2, must be 
such that the mechanical behavior of S1 and S2 is partly conditioned, in quite essential 
respects, by distant masses which we have not included in the system under consider-
ation. These distant masses and their motions relative to S1 and S2 must then be regarded 
as the seat of the causes (which must be susceptible to observation) of the different behav-
ior of our two bodies S1 and S2. They take over the rô1e of the factitious cause R1. Of all 
imaginable spaces R1, R2, etc., in any kind of motion relatively to one another, there is 
none which we may look upon as privileged a priori without reviving the above-men-
tioned epistemological objection. The laws of physics must be of such a nature that they 
apply to systems of reference in any kind of motion. Along this road we arrive at an exten-
sion of the postulate of relativity.

In addition to this weighty argument from the theory of knowledge, there is a well-
known physical fact which favors an extension of the theory of relativity. Let K be a Gali-
lean system of reference, i.e. a system relatively to which (at least in the four-dimensional 
region under consideration) a mass, sufficiently distant from other masses, is moving 
with uniform motion in a straight line. Let K′ be a second system of reference which is 
moving relatively to K in uniformly accelerated translation. Then, relatively to K′, a mass 
sufficiently distant from other masses would have an accelerated motion such that its 
acceleration and direction of acceleration are independent of the material composition 
and physical state of the mass.

Does this permit an observer at rest relatively to K′ to infer that he is on a “really” 
accelerated system of reference? The answer is in the negative; for the above-mentioned 
relation of freely movable masses to K′ may be interpreted equally well in the following 
way. The system of reference K′ is unaccelerated, but the space-time territory in question 

1 Of course an answer may be satisfactory from the point of view of epistemology, and yet be unsound 
physically, if it is in conflict with other experiences.
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is under the sway of a gravitational field, which generates the accelerated motion of the 
bodies relatively to K′.

This view is made possible for us by the teaching of experience as to the existence of a 
field of force, namely, the gravitational field, which possesses the remarkable property of 
imparting the same acceleration to all bodies.2 The mechanical behavior of bodies rela-
tively to K′ is the same as presents itself to experience in the case of systems which we are 
wont to regard as “stationary” or as “privileged.” Therefore, from the physical standpoint, 
the assumption readily suggests itself that the systems K and K′ may both with equal right 
be looked upon as “stationary,” that is to say, they have an equal title as systems of refer-
ence for the physical description of phenomena.

It will be seen from these reflections that in pursuing the general theory of relativity we 
shall be led to a theory of gravitation, since we are able to “produce” a gravitational field 
merely by changing the system of co-ordinates. It will also be obvious that the principle 
of the constancy of the velocity of light in vacuo must be modified, since we easily recog-
nize that the path of a ray of light with respect to K′ must in general be curvilinear, if with 
respect to K light is propagated in a straight line with a definite constant velocity.

§ 3. The Space-Time Continuum. Requirement of General Co-Variance  
for the Equations Expressing General Laws of Nature

In classical mechanics, as well as in the special theory of relativity, the co-ordinates of 
space and time have a direct physical meaning. To say that a point-event has the X1 coor-
dinate x1 means that the projection of the point-event on the axis of X1, determined by 
rigid rods and in accordance with the. rules of Euclidean geometry, is obtained by mea-
suring off a given rod (the unit of length) x1 times from the origin of coordinates along the 
axis of X1. To say that a point-event has the X4 co-ordinate x4 = t, means that a standard 
clock, made to measure time in a definite unit period, and which is stationary relatively to 
the system of co-ordinates and practically coincident in space with the point-event,3 will 
have measured off x4 = t periods at the occurrence of the event.

This view of space and time has always been in the minds of physicists, even if, as a 
rule, they have been unconscious of it. This is clear from the part which these concepts 
play in physical measurements; it must also have underlain the reader’s reflections on 
the preceding paragraph (§ 2) for him to connect any meaning with what he there read. 
But we shall now show that we must put it aside and replace it by a more general view, in 
order to be able to carry through the postulate of general relativity, if the special theory of 
relativity applies to the special case of the absence of a gravitational field.

In a space which is free of gravitational fields we introduce a Galilean system of ref-
erence K (x, y, z, t), and also a system of co-ordinates K′ (x′, y′, z′, t′) in uniform rotation 
relatively to K. Let the origins of both systems, as well as their axes of Z, permanently 

2 Eötvös has proved experimentally that the gravitational field has this property in great accuracy.
3 We assume the possibility of verifying “simultaneity” for events immediately proximate in space, or—to 
speak more precisely—for immediate proximity or coincidence in space-time, without giving a definition of 
this fundamental concept.
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coincide. We shall show that for a space-time measurement in the system K′ the above 
definition of the physical meaning of lengths and times cannot be maintained. For rea-
sons of symmetry it is clear that a circle around the origin in the X, Y plane of K may 
at the same time be regarded as a circle in the X′, Y′ plane of K′. We suppose that the 
circumference and diameter of this circle have been measured with a unit measure 
infinitely small compared with the radius, and that we have the quotient of the two 
results. If this experiment were performed with a measuring-rod at rest relatively to the 
Galilean system K, the quotient would be r. With a measuring-rod at rest relatively to K′, 
the quotient would be greater than r. This is readily understood if we envisage the whole 
process of measuring from the “stationary” system K, and take into consideration that 
the measuring-rod applied to the periphery undergoes a Lorentzian contraction, while 
the one applied along the radius does not. Hence Euclidean geometry does not apply to 
K′. The notion of co-ordinates defined above, which presupposes the validity of Euclid-
ean geometry, therefore breaks down in relation to the system K′. So, too, we are unable 
to introduce a time corresponding to physical requirements in K′, indicated by clocks at 
rest relatively to K′. To convince ourselves of this impossibility, let us imagine two clocks 
of identical constitution placed, one at the origin of co-ordinates, and the other at the 
circumference of the circle, and both envisaged from the “stationary” system K. By a 
familiar result of the special theory of relativity, the clock at the circumference—judged 
from K—goes more slowly than the other, because the former is in motion and the lat-
ter at rest. An observer at the common origin of co-ordinates, capable of observing the 
clock at the circumference by means of light, would therefore see it lagging behind the 
clock beside him. As he will not make up his mind to let the velocity of light along 
the path in question depend explicitly on the time, he will interpret his observations 
as showing that the clock at the circumference “really” goes more slowly than the clock 
at the origin. So he will be obliged to define time in such a way that the rate of a clock 
depends upon where the clock may be.

We therefore reach this result:—In the general theory of relativity, space and time cannot 
be defined in such a way that differences of the spatial co-ordinates can be directly mea-
sured by the unit measuring-rod, or differences in the time co-ordinate by a standard clock.

The method hitherto employed for laying co-ordinates into the space-time contin-
uum in a definite manner thus breaks down, and there seems to be no other way which 
would allow us to adapt systems of co-ordinates to the four-dimensional universe so that 
we might expect from their application a particularly simple formulation of the laws of 
nature. So there is nothing for it but to regard all imaginable systems of co-ordinates, on 
principle, as equally suitable for the description of nature. This comes to requiring that:—

The general laws of nature are to be expressed by equations which hold good for all sys-
tems of co-ordinates, that is, are co-variant with respect to any substitutions whatever (gen-
erally co-variant).

It is clear that a physical theory which satisfies this postulate will also be suitable for 
the general postulate of relativity. For the sum of all substitutions in any case includes 
those which correspond to all relative motions of three-dimensional systems of co-or-
dinates. That this requirement of general co-variance, which takes away from space and 
time the last remnant of physical objectivity, is a natural one, will be seen from the follow-
ing reflection. All our space-time verifications invariably amount to a determination of 
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space-time coincidences. If, for example, events consisted merely in the motion of mate-
rial points, then ultimately nothing would be observable but the meetings of two or more 
of these points. Moreover, the results of our measurings are nothing but verifications 
of such meetings of the material points of our measuring instruments with other mate-
rial points, coincidences between the hands of a clock and points on the clock dial, and 
observed point-events happening at the same place at the same time.

The introduction of a system of reference serves no other purpose than to facilitate the 
description of the totality of such coincidences. We allot to the universe four space-time 
variables x1, x2, x3, x4 in such a way that for every point-event there is a corresponding sys-
tem of values of the variables x1 . . . x4. To two coincident point-events there corresponds 
one system of values of the variables x1 . . . x4, i.e. coincidence is characterized by the iden-
tity of the co-ordinates. If, in place of the variables x1 . . . x4, we introduce functions of 
them, x′1, x′2, x′3, x′4, as a new system of co-ordinates, so that the systems of values are 
made to correspond to one another without ambiguity, the equality of all four co-ordi-
nates in the new system will also serve as an expression for the space-time coincidence 
of the two point-events. As all our physical experience can be ultimately reduced to such 
coincidences, there is no immediate reason for preferring certain systems of co-ordinates 
to others, that is to say, we arrive at the requirement of general co-variance.

§ 4. The Relation of the Four Co-ordinates to Measurement in Space and Time

It is not my purpose in this discussion to represent the general theory of relativity as a 
system that is as simple and logical as possible, and with the minimum number of axioms; 
but my main object is to develop this theory in such a way that the reader will feel that 
the path we have entered upon is psychologically the natural one, and that the underlying 
assumptions will seem to have the highest possible degree of security. With this aim in 
view let it now be granted that:—

For infinitely small four-dimensional regions the theory of relativity in the restricted 
sense is appropriate, if the coordinates are suitably chosen.

For this purpose we must choose the acceleration of the infinitely small (“local”) sys-
tem of co-ordinates so that no gravitational field occurs; this is possible for an infinitely 
small region. Let X1, X2, X3, be the co-ordinates of space, and X4 the appertaining co- 
ordinate of time measured in the appropriate unit.4 If a rigid rod is imagined to be given 
as the unit measure, the co-ordinates, with a given orientation of the system of co-ordi-
nates, have a direct physical meaning in the sense of the special theory of relativity. By the 
special theory of relativity the expression

 X X X Xds d d d d2
1
2

2
2

3
2

4
2=− − − +  (1)

then has a value which is independent of the orientation of the local system of co-ordi-
nates, and is ascertainable by measurements of space and time. The magnitude of the 

4 The unit of time is to be chosen so that the velocity of light in vacuo as measured in the “local” system of 
co-ordinates is to be equal to unity.
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linear element pertaining to points of the four-dimensional continuum in infinite prox-
imity, we call ds. If the ds belonging to the element dX1 . . . dX4 is positive, we follow Min-
kowski in calling it time-like; if it is negative, we call it space-like.

To the “linear element” in question, or to the two infinitely .proximate point-events, 
there will also correspond definite differentials dx1 . . . dx4 of the four-dimensional co-or-
dinates of any chosen system of reference. If this system, as well as the “local” system, is 
given for the region under consideration, the dXo will allow themselves to be represented 
here by definite linear homogeneous expressions of the dxv:—

 d a dxX =o ov v
v
/  (2)

Inserting these expressions in (1), we obtain

 ds g dx dxr
2= v v x

xv
/  (3)

where the gvx will be functions of the xv. These can no longer be dependent on the orien-
tation and the state of motion of the “local” system of co-ordinates, for ds2 is a quantity 
ascertainable by rod-clock measurement of point-events infinitely proximate in space-
time, and defined independently of any particular choice of co-ordinates. The gvx are to 
be chosen here so that gvx = gxv; the summation is to extend over all values of v and x, so 
that the sum consists of 4 × 4 terms, of which twelve are equal in pairs.

The case of the ordinary theory of relativity arises out of the case here considered, if it is 
possible, by reason of the particular relations of the gvx in a finite region, to choose the sys-
tem of reference in the finite region in such a way that the gvx assume the constant values

 

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

−
−

−
+

4 (4)

We shall find hereafter that the choice of such co-ordinates is, in general, not possible for 
a finite region.

From the considerations of § 2 and § 3 it follows that the quantities gxv are to be 
regarded from the physical standpoint as the quantities which describe the gravitational 
field in relation to the chosen system of reference. For, if we now assume the special the-
ory of relativity to apply to a certain four-dimensional region with the co-ordinates prop-
erly chosen, then the gvx have the values given in (4). A free material point then moves, 
relatively to this system, with uniform motion in a straight line. Then if we introduce new 
space-time co-ordinates xl, x2, x3, x4, by means of any substitution we choose, the gvx in 
this new system will no longer be constants, but functions of space and time. At the same 
time the motion of the free material point will present itself in the new co-ordinates as a 
curvilinear non-uniform motion, and the law of this motion will be independent of the 
nature of the moving particle. We shall therefore interpret this motion as a motion under 
the influence of a gravitational field. We thus find the occurrence of a gravitational field 
connected with a space-time variability of the gv. So, too, in the general case, when we are 
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no longer able by a suitable choice of co-ordinates to apply the special theory of relativity 
to a finite region, we shall hold fast to the view that the gvx describe the gravitational field.

Thus, according to the general theory of relativity, gravitation occupies an exceptional 
position with regard to other forces, particularly the electromagnetic forces, since the ten 
functions representing the gravitational field at the same time define the metrical proper-
ties of the space measured.

B.  MATHEMATICAL  A IDS  TO  THE  FORMULAT ION  
OF  GENERALLY  COVARIANT  EQUATIONS

Having seen in the foregoing that the general postulate of relativity leads to the require-
ment that the equations of physics shall be covariant in the face of any substitution of the 
co-ordinates x1 . . . x4, we have to consider how such generally covariant equations can be 
found. We now turn to this purely mathematical task, and we shall find that in its solution 
a fundamental rôle is played by the invariant ds given in equation (3), which, borrowing 
from Gauss’s theory of surfaces, we have called the “linear element.”

The fundamental idea of this general theory of covariants is the following:—Let cer-
tain things (“tensors”) be defined with respect to any system of co-ordinates by a number 
of functions of the co-ordinates, called the “components” of the tensor. There are then 
certain rules by which these components can be calculated for a new system of co-ordi-
nates, if they are known for the original system of co-ordinates, and if the transforma-
tion connecting the two systems is known. The things hereafter called tensors are further 
characterized by the fact that the equations of transformation for their components are 
linear and homogeneous. Accordingly, all the components in the new system vanish, if 
they all vanish in the original system. If, therefore, a law of nature is expressed by equating 
all the components of a tensor to zero, it is generally covariant. By examining the laws of 
the formation of tensors, we acquire the means of formulating generally covariant laws.

§ 5. Contravariant and Covariant Four-vectors

Contravariant Four-vectors.—The linear element is defined by the four “components” dxo, 
for which the law of transformation is expressed by the equation 

 dx x
x

dx
2

2
=v

o

v
o

o

l
l/  (5)

The dx′v are expressed as linear and homogeneous functions of the dxo. Hence we may 
look upon these co-ordinate differentials as the components of a “tensor” of the particular 
kind which we call a contravariant four-vector. Any thing which is defined relatively to the 
system of co-ordinates by four quantities Ao, and which is transformed by the same law

 ,x
x

A A
2

2
=v

o

v o

o

l
l/  (5a)

we also call a contravariant four-vector. From (5a) it follows at once that the sums Av ± Bv are 
also components of a four-vector, if Av and Bv are such. Corresponding relations hold for all 
“tensors” subsequently to be introduced. (Rule for the addition and subtraction of tensors.)
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Covariant Four-vectors.—We call four quantities Ao the components of a covariant 
four-vector, if for any arbitrary choice of the contravariant four-vector Bo 

 A B Invariant=o
o

o
/  (6)

The law of transformation of a covariant four-vector follows from this definition. For if 
we replace Bo on the right-hand side of the equation

 A B A B=v
v

v
o

o

o

l l/ /

by the expression resulting from the inversion of (5a),

 ,x
x

B
2

2

v

o

v

v

l
l/

we obtain

 .x
x

B A B A
2

2
=v

v v

o

o
o

v

v
vl

l
l l/ / /

Since this equation is true for arbitrary values of the B′v, it follows that the law of trans-
formation is

 x
x

A A
2

2
=v

v

o

o
ol

l
/  (7)

Note on a Simplified Way of Writing the Expressions.—A glance at the equations of 
this paragraph shows that there is always a summation with respect to the indices which 
occur twice under a sign of summation (e.g. the index o in (5)), and only with respect to 
indices which occur twice. It is therefore possible, without loss of clearness, to omit the 
sign of summation. In its place we introduce the convention:— If an index occurs twice 
in one term of an expression, it is always to be summed unless the contrary is expressly 
stated.

The difference between covariant and contravariant four-vectors lies in the law of 
transformation ((7) or (5) respectively). Both forms are tensors in the sense of the gen-
eral remark above. Therein lies their importance. Following Ricci and Levi-Civita, we 
denote the contravariant character by placing the index above, the covariant by placing 
it below.

§ 6. Tensors of the Second and Higher Ranks

Contravariant Tensors.—If we form all the sixteen products Ano of the components An 
and Bo of two contravariant four-vectors

 A A B=no n o (8)

then by (8) and (5a) Ano satisfies the law of transformation
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 x
x

x
x

A A
2

2

2

2
=vx

n

v

o

x nol
l l

 (9)

We call a thing which is described relatively to any system of reference by sixteen 
quantities, satisfying the law of transformation (9), a contravariant tensor of the second 
rank. Not every such tensor allows itself to be formed in accordance with (8) from two 
four-vectors, but it is easily shown that any given sixteen Ano can be represented as the 
sums of the Ano of four appropriately selected pairs of four-vectors. Hence we can prove 
nearly all the laws which apply to the tensor of the second rank defined by (9) in the sim-
plest manner by demonstrating them for the special tensors of the type (8).

Contravariant Tensors of Any Rank.—It is clear that, on the lines of (8) and (9), con-
travariant tensors of the third and higher ranks may also be defined with 43 components, 
and so on. In the same way it follows from (8) and (9) that the contravariant four-vector 
may be taken in this sense as a contravariant tensor of the first rank.

Covariant Tensors.—On the other hand, if we take the sixteen products Ano of two 
covariant four-vectors An and Bo

 ,A A B=no n o  (10)

the law of transformation for these is

 x
x

x
x

A A
2

2

2

2
=vx

v

n

x

o
nol

l l
 (11)

This law of transformation defines the covariant tensor of the second rank. All our 
previous remarks on contravariant tensors apply equally to covariant tensors.

Note.—It is convenient to treat the scalar (or invariant) both as a contravariant and a 
covariant tensor of zero rank.

Mixed Tensors.—We may also define a tensor of the second rank of the type

 A A B=n
o

n
o (12)

which is covariant with respect to the index n, and contravariant with respect to the index 
o. Its law of transformation is

 x
x

x
x

A A
2

2

2

2
=v

x

o

x

v

n

n
ol

l

l
 (13)

Naturally there are mixed tensors with any number of indices of covariant character, 
and any number of indices of contravariant character. Covariant and contravariant ten-
sors may be looked upon as special cases of mixed tensors.

Symmetrical Tensors.—A contravariant, or a covariant tensor, of the second or higher 
rank is said to be symmetrical if two components, which are obtained the one from the 
other by the interchange of two indices, are equal. The tensor Ano, or the tensor Ano, is 
thus symmetrical if for any combination of the indices n, o
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 ,A A=no on  (14)

or respectively,

 A A=no on (14a)

It has to be proved that the symmetry thus defined is a property which is independent 
of the system of reference. It follows in fact from (9), when (14) is taken into consider-
ation, that

 .x
x

x
x

x
x

x
x

x
x

x
x

A A A A A
2

2

2

2

2

2

2

2

2

2

2

2
= = = =vx

n

v

o

x no

n

v

o

x on

o

v

n

x no xvl
l l l l l l

l

The last equation but one depends upon the interchange of the summation indices n and 
o, i.e. merely on a change of notation.

Antisymmetrical Tensors.—A contravariant or a covariant tensor of the second, third, 
or fourth rank is said to be anti-symmetrical if two components, which are obtained the 
one from the other by the interchange of two indices, are equal and of opposite sign The 
tensor Ano, or the tensor Ano, is therefore antisymmetrical, if always

 ,A A=−no on  (15)

or respectively,

 A A=−no on (15a)

Of the sixteen components Ano, the four components Ann vanish; the rest are equal 
and of opposite sign in pairs, so that there are only six components numerically different 
(a six-vector). Similarly we see that the antisymmetrical tensor of the third rank Anov has 
only four numerically different components, while the antisymmetrical tensor Anovx has 
only one. There are no antisymmetrical tensors of higher rank than the fourth in a con-
tinuum of four dimensions.

§ 7. Multiplication of Tensors

Outer Multiplication of Tensors.—We obtain from the components of a tensor of rank n 
and of a tensor of rank m the components of a tensor of rank n + m by multiplying each 
component of the one tensor by each component of the other. Thus, for example, the ten-
sors T arise out of the tensors A and B of different kinds,

 
,
,
.

T A B
T A B

T A B

=

=

=

nov no v

novx no vx

no
vx

no vo
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The proof of the tensor character of T is given directly by the representations (8), (10), 
(12), or by the laws of transformation (9), (11), (13). The equations (8), (10), (12) are 
themselves examples of outer multiplication of tensors of the first rank.

“Contraction” of a Mixed Tensor.—From any mixed tensor we may form a tensor whose 
rank is less by two, by equating an index of covariant with one of contravariant charac-
ter, and summing with respect to this index (“contraction”). Thus, for example, from the 
mixed tensor of the fourth rank Ano

vx, we obtain the mixed tensor of the second rank,

 ,AA A= =o
x

no
nx

no
nx

n
b l/

and from this, by a second contraction, the tensor of zero rank,

 ,A A A= =o
o

no
nx

The proof that the result of contraction really possesses the tensor character is given 
either by the representation of a tensor according to the generalization of (12) in combi-
nation with (6), or by the generalization of (13).

Inner and Mixed Multiplication of Tensors.—These consist in a combination of outer 
multiplication with contraction.

Examples.—From the covariant tensor of the second rank Ano and the contravariant 
tensor of the first rank Bv we form by outer multiplication the mixed tensor

 .D A B=no
v

no
v

On contraction with respect to the indices o and v, we obtain the covariant four-vector

 .D D A B= =n no
o

no
o

This we call the inner product of the tensors Ano and Bv. Analogously we form from the 
tensors Ano and Bvx, by outer multiplication and double contraction, the inner product 
AnoB

no. By outer multiplication and one contraction, we obtain from Ano and Bvx the 
mixed tensor of the second rank D A B=n

x
no

ox. This operation may be aptly characterized 
as a mixed one, being “outer” with respect to the indices n and x, and “inner” with respect 
to the indices o and v.

We now prove a proposition which is often useful as evidence of tensor character. 
From what has just been explained, AnoB

no is a scalar if Ano and Bvx are tensors. But we 
may also make the following assertion: If AnoB

no is a scalar for any choice of the tensor Bno, 
then Ano has tensor character. For, by hypothesis, for any substitution,

 .A B A B=vx
vx

no
nol l

But by an inversion of (9)

 .x
x

x
x

B B
2

2

2

2
=no

v

n

x

o vx

l l
l
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This, inserted in the above equation, gives

 .x
x

x
x

0A A B
2

2

2

2
− =vx

v

n

x

o
no

vxl
l l

lf p

This can only be satisfied for arbitrary values of B′vx if the bracket vanishes. The result 
then follows by equation (11). This rule applies correspondingly to tensors of any rank 
and character, and the proof is analogous in all cases.

The rule may also be demonstrated in this form: If Bn and Co are any vectors, and if, 
for all values of these, the inner product AnoB

nCo is a scalar, then Ano is a covariant tensor. 
This latter proposition also holds good even if only the more special assertion is correct, 
that with any choice of the four-vector Bn the inner product AnoB

nBo is a scalar, if in 
addition it is known that Ano satisfies the condition of symmetry Ano = Aon. For by the 
method given above we prove the tensor character of (Ano + Aon), and from this the ten-
sor character of Ano follows on account of symmetry. This also can be easily generalized 
to the case of covariant and contravariant tensors of any rank.

Finally, there follows from what has been proved, this law, which may also be gener-
alized for any tensors: If for any choice of the four-vector Bo the quantities AnoB

o form a 
tensor of the first rank, then Ano is a tensor of the second rank. For, if Cn is any four- vector, 
then on account of the tensor character of AnoB

o, the inner product AnoB
oCn is a scalar for 

any choice of the two four-vectors Bo and Cn. From which the proposition follows.

§ 8. Some Aspects of the Fundamental Tensor

The Covariant Fundamental Tensor.—In the invariant expression for the square of the 
linear element,

 ,ds g dx dx2 = no n o

the part played by the dxn is that of a contravariant vector which may be chosen at will. 
Since further, gno = gon, it follows from the considerations of the preceding paragraph that 
gno is a covariant tensor of the second rank. We call it the “fundamental tensor.” In what 
follows we deduce some properties of this tensor which, it is true, apply to any tensor of 
the second rank. But as the fundamental tensor plays a special part in our theory, which 
has its physical basis in the peculiar effects of gravitation, it so happens that the relations 
to be developed are of importance to us only in the case of the fundamental tensor.

The Contravariant Fundamental Tensor.—If in the determinant formed by the ele-
ments gno, we take the co-factor of each of the gno and divide it by the determinant g = | 
gno |, we obtain certain quantities gno( = gon) which, as we shall demonstrate, form a con-
travariant tensor.

By a known property of determinants

 g g d=nv
ov

n
o (16)

where the symbol dn
o denotes 1 or 0, according as n = o or n ≠ o.
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Instead of the above expression for ds2 we may thus write

 g dx dxdnv o
v

n o

or, by (16)

 .g g g dx dxnv ox
vx

n o

But, by the multiplication rules of the preceding paragraphs, the quantities

 d g dxp =v nv n

form a covariant four-vector, and in fact an arbitrary vector, since the dxn are arbitrary. By 
introducing this into our expression we obtain

 .ds g d d2 p p= vx
v x

Since this, with the arbitrary choice of the vector dξv, is a scalar, and gvx by its definition is 
symmetrical in the indices v and x, it follows from the results of the preceding paragraph 
that gvx is a contravariant tensor.

It further follows from (16) that dn is also a tensor, which we may call the mixed fun-
damental tensor.

The Determinant of the Fundamental Tensor.—By the rule for the multiplication of 
determinants

 | | | | | |.g g g g#=na
ao

na
ao

On the other hand

 | | | | .g g 1d= =na
ao

n
o

It therefore follows that

 | | | |g g 1# =no
no  (17)

The Volume Scalar.—We seek first the law of transformation of the determinant 
g = |gno|. In accordance with (11)

 .g x
x

x
x g

2

2

2
2=

v

n

x
nol

l l

Hence, by a double application of the rule for the multiplication of determinants, it fol-
lows that

 . . | | ,g x
x

x
x

g x
x

g

2

2

2

2

2

2

2
= =

v

n

x

o
no

v

n
l

l l l
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or

 .g x
x

g
2

2
=

v

n
l

l

On the other hand, the law of transformation of the element of volume

 d dx dx dx dx1 2 3 4x = #

is, in accordance with the theorem of Jacobi,

 .d x
x

d
2

2
x x=

n

vl
l

By multiplication of the last two equations, we obtain

 g d g dx x=l l  (18).

Instead of g, we introduce in what follows the quantity g- , which is always real on 
account of the hyperbolic character of the space-time continuum. The invariant g dx-  is 
equal to the magnitude of the four-dimensional element of volume in the “local” system 
of reference, as measured with rigid rods and clocks in the sense of the special theory of 
relativity.

Note on the Character of the Space-time Continuum.—Our assumption that the special 
theory of relativity can always be applied to an infinitely small region, implies that ds2 can 
always be expressed in accordance with (1) by means of real quantities dX1 . . . dX4. If we 
denote by dτ0 the “natural” element of volume dX1, dX2, dX3, dX4, then

 d g d0x x= −  (18a)

If g-  were to vanish at a point of the four-dimensional continuum, it would mean that at 
this point an infinitely small “natural” volume would correspond to a finite volume in the 
co-ordinates. Let us assume that this is never the case. Then g cannot change sign. We will 
assume that, in the sense of the special theory of relativity, g always has a finite negative 
value. This is a hypothesis as to the physical nature of the continuum under consider-
ation, and at the same time a convention as to the choice of co-ordinates.

But if –g is always finite and positive, it is natural to settle the choice of co-ordinates a 
posteriori in such a way that this quantity is always equal to unity. We shall see later that 
by such a restriction of the choice of co-ordinates it is possible to achieve an important 
simplification of the laws of nature.

In place of (18), we then have simply dτ′ = dτ, from which, in view of Jacobi’s theorem, 
it follows that

 x
x

1
2

2
=

n

vl  (19)
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Thus, with this choice of co-ordinates, only substitutions for which the determinant is 
unity are permissible.

But it would be erroneous to believe that this step indicates a partial abandonment 
of the general postulate of relativity. We do not ask “What are the laws of nature which 
are co-variant in face of all substitutions for which the determinant is unity?” but our 
question is “What are the generally co-variant laws of nature?” It is not until we have 
formulated these that we simplify their expression by a particular choice of the system of 
reference.

The Formation of New Tensors by Means of the Fundamental Tensor.—Inner, outer, 
and mixed multiplication of a tensor by the fundamental tensor give tensors of different 
character and rank. For example,

 
,
.

g
g

A A
A A

u=

=

n v
v

no
no

The following forms may be specially noted:—

 
,g g

g g
A A
A A

=

=

no na ob
ab

no
na ob

ab

(the “complements” of covariant and contravariant tensors respectively), and

 .g gB A=no no
ab

ab

We call Bno the reduced tensor associated with Ano. Similarly,

 .g gB A=no no
ab

ab

It may be noted that gno is nothing more than the complement of gno, since

 .g g g g gd= =na ob
ab

na
a
o no

§ 9. The Equation of the Geodetic Line. The Motion of a Particle

As the linear element ds is defined independently of the system of co-ordinates, the line 
drawn between two points P and P′ of the four-dimensional continuum in such a way that 
∫ds is stationary—a geodetic line—has a meaning which also is independent of the choice 
of co-ordinates. Its equation is

 ds 0
P

P
d =

l#  (20)

Carrying out the variation in the usual way, we obtain from this equation four differential 
equations which define the geodetic line; this operation will be inserted here for the sake 
of completeness. Let m be a function of the co-ordinates xo, and let this define a family of 
surfaces which intersect the required geodetic line as well as all the lines in immediate 
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proximity to it which are drawn through the points P and P′. Any such line may then be 
supposed to be given by expressing its co-ordinates xo as functions of m. Let the symbol d 
indicate the transition from a point of the required geodetic to the point corresponding to 
the same m on a neighboring line. Then for (20) we may substitute 

 
wd

w g d
dx

d
dx

0

2

1

2

d m

m m

=

=

m

m

no

n o
4#
 (20a)

But since

 ,w w x
g

d
dx

d
dx

x g d
dx

d
dx1

2
1
2

2
d

m m
d

m
d

m
= +

v

no n o
v no

n oe o* 4

and

 ( ),d
dx

d
d xd

m m
d=o

oe o

we obtain from (20a), after a partial integration,

 ,k x d 0
1

2

d m =vm

m

v#

where

 k d
d

w
g

d
dx

w x
g

d
dx

d
dx

2
1
2

2

m m m m
= −v

no n

v

no n o) 3  (20b)

Since the values of δxv are arbitrary, it follows from this that

 k 0=v  (20c)

are the equations of the geodetic line.
If ds does not vanish along the geodetic line we may choose the “length of the arc” s, 

measured along the geodetic line, for the parameter m. Then w = 1, and in place of (20c) 
we obtain

 g
ds

d x
x
g

ds
dx

ds
dx

x
g

ds
dx

ds
dx

2
1 02

2

2

2

2

2
+ − =no

n

v

no v n

v

no n o

or, by a mere change of notation,

 [ , ]g
ds

d x
ds

dx
ds

dx
02

2

no v+ =av
a n o  (20d)
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where, following Christoffel, we have written

 [ , ] x
g

x
g

x
g

2
1
2

2

2

2

2

2
no v = + −

o

nv

n

ov

v

nof p (21)

Finally, if we multiply (20d) by gvx (outer multiplication with respect to x, inner with 
respect to v), we obtain the equations of the geodetic line in the form

 { , }
ds

d x
ds

dx
ds

dx
02

2

no x+ =n ox  (22)

where, following Christoffel, we have set

 { , } [ , ]gno x no a= xa  (23)

§ 10. The Formation of Tensors by Differentiation

With the help of the equation of the geodetic line we can now easily deduce the laws by 
which new tensors can be formed from old by differentiation. By this means we are able 
for the first time to formulate generally covariant differential equations. We reach this 
goal by repeated application of the following simple law:—

If in our continuum a curve is given, the points of which are specified by the arcual 
distance s measured from a fixed point on the curve, and if, further, z is an invariant func-
tion of space, then dz/ds is also an invariant. The proof lies in this, that ds is an invariant 
as well as dz.

As

 ds
d

x ds
dx

2

2z z
=

n

n

therefore

 dx ds
dx2

}
z

=
n

n

is also an invariant, and an invariant for all curves starting from a point of the continuum, 
that is, for any choice of the vector dxn. Hence it immediately follows that

 xA
2

2z
=n

n

 (24)

is a covariant four-vector—the “gradient” of z.
According to our rule, the differential quotient 
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 ds
d

|
}

=

taken on a curve, is similarly an invariant. Inserting the value of ψ, we obtain in the first place

 .x x ds
dx

ds
dx

x ds
d x2

2

2

2 2

2

2

2
|

z z
= +

n o

n o

n

n

The existence of a tensor cannot be deduced from this forthwith. But if we may take the 
curve along which we have differentiated to be a geodetic, we obtain on substitution for 
d 2xo /ds2 from (22),

 { , } .x x x ds
dx

ds
dxv

2

2 2

2

2

2
|

z
no x

z
= −

n o x

nf p

Since we may interchange the order of the differentiations, and since by (23) and (21) {no, 
x} is symmetrical in n and o, it follows that the expression in brackets is symmetrical in n 
and o. Since a geodetic line can be drawn in any direction from a point of the continuum, 
and therefore dxn/ds is a four-vector with the ratio of its components arbitrary, it follows 
from the results of § 7 that

 { , }x x xA
2

2 2

2

2

2z
no x

z
= −no

n o x

 (25)

is a covariant tensor of the second rank. We have therefore come to this result: from the 
covariant tensor of the first rank

 xA
2

2z
=n

n

we can, by differentiation, form a covariant tensor of the second rank

 { , }xA
A

A
2

2
no x= −no

o

n

x (26)

We call the tensor Ano the “extension” (covariant derivative) of the tensor An. In the first 
place we can readily show that the operation leads to a tensor, even if the vector An cannot 
be represented as a gradient. To see this, we first observe that

 x2
2

}
z

n

is a covariant vector, if } and z are scalars. The sum of four such terms

 . . ,x xS ( )
( )

( )
( )

1
1

4
4

2

2

2

2
}

z
}

z
= + + +n

n n
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is also a covariant vector, if }(1), z(1) . . . }(4), z(4) are scalars. But it is clear that any covar-
iant vector can be represented in the form Sn. For, if An is a vector whose components 
are any given functions of the xo, we have only to put (in terms of the selected system of 
co-ordinates)

 

, ,
, ,
, ,
, ,

x
x
x
x

A
A
A
A

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
1

1
1

2

3

4

2
2

2

3
3

3

4
4

4

} z

} z

} z

} z

= =

= =

= =

= =

in order to ensure that Sn shall be equal to An.
Therefore, in order to demonstrate that Ano is a tensor if any covariant vector is 

inserted on the right-hand side for An, we only need show that this is so for the vector Sn. 
But for this latter purpose it is sufficient, as a glance at the right-hand side of (26) teaches 
us, to furnish the proof for the case

 .xA
2

2
}

z
=n

n

Now the right-hand side of (25) multiplied by },

 { , }x x x

2

2 2

2

2

2
}

z
no x }

z
-

n o x

is a tensor. Similarly

 x x2

2

2

2} z

n o

being the outer product of two vectors, is a tensor. By addition, there follows the tensor 
character of

 { , } .x x x2
2

2

2

2

2
}

z
no x }

z
-

o n x

f ep o

As a glance at (26) will show, this completes the demonstration for the vector

 x2
2

}
z

n

and consequently, from what has already been proved, for any vector An.
By means of the extension of the vector, we may easily define the “extension” of a 

covariant tensor of any rank. This operation is a generalization of the extension of a vec-
tor. We restrict ourselves to the case of a tensor of the second rank, since this suffices to 
give a clear idea of the law of formation.
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As has already been observed, any covariant tensor of the second rank can be repre-
sented 5 as the sum of tensors of the type AnBo. It will therefore be sufficient to deduce the 
expression for the extension of a tensor of this special type. By (26) the expressions

 
{ , } ,

{ , } ,

x

x

A
A

B
B

2

2

2

2

vn x

vo x

-

-

v

n

x

v

o
x

are tensors. On outer multiplication of the first by Bo and of the second by An, we obtain 
in each case a tensor of the third rank. By adding these, we have the tensor of the third 
rank

 { , } { , }xA
B

A A
2

2
vn x vo x= − −nov

v

no

xo nx (27)

where we have put Ano = AnBo As the right-hand side of (27) is linear and homogeneous 
in the Ano and their first derivatives, this law of formation leads to a tensor, not only in the 
case of a tensor of the type AnBo but also in the case of a sum of such tensors, i.e. in the case 
of any covariant tensor of the second rank. We call Anov the extension of the tensor Ano.

It is clear that (26) and (24) concern only special cases of extension (the extension of 
the tensors of rank one and zero respectively).

In general, all special laws of formation of tensors are included in (27) in combination 
with the multiplication of tensors.

§ 11. Some Cases of Special Importance

The Fundamental Tensor.—We will first prove some lemmas which will be useful here-
after. By the rule for the differentiation of determinants

 dg g gdg g gdg= =−no
no no

no (28)

The last member is obtained from the last but one, if we bear in mind that ,g g d=no
n o

n
nl l  so 

that gno g
no = 4, and consequently

 .g dg g dg 0+ =no
no no

no

5  By outer multiplication of the vector with arbitrary components A11, A12, A13, A14 by the vector with 
components 1, 0, 0, 0, we produce a tensor with components

 

.

0
0
0

0
0
0

0
0
0

0
0
0

A A A A11 12 13 14

By the addition of four tensors of this type, we obtain the tensor Ano with any assigned components.
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From (28), it follows that

 
( )

.
log

g x
g

x
g

g x
g

g x
g1

2
1

2
1

2
1

2

2

2

2

2

2

2

2

−

−
=

−
= =

v v

no

v

no

no
v

no

 (29)

Further, from g g d=nv
ov

n
o it follows on differentiation that

 
g dg g dg

g x
g

g x
g

2

2

2

2

=−

=−

nv
ov ov

nv

nv
m

ov
ov

m

nv4 (30)

From these, by mixed multiplication by gvx and gom respectively, and a change of notation 
for the indices, we have

 
dg g g dg

x
g

g g x
g

2

2 2

=−

=−

no na ob
ab

v

no
na ob

v

ab4 (31)

and

 
dg g g dg

x
g

g g x
g

2

2

2

2

=−

=−

no
na ob

ab

v

no

na ob
v

ab4 (32)

The relation (31) admits of a transformation, of which we also have frequently to make 
use: From (21)

 [ , ] [ , ]x
g
2

2
av b bv a= +

v

ab  (33)

Inserting this in the second formula of (31), we obtain, in view of (23)

 { , } { , }x
g

g g
2

2
xv o xv n=− −

v

no
nx ox  (34)

Substituting the right-hand side of (34) in (29), we have

 { , }
g x

g1
2

2
nv n

−

−
=

v

 (29a)

The “Divergence” of a Contravariant Vector.—If we take the inner product of (26) by 
the contravariant fundamental tensor gno, the right-hand side, after a transformation of 
the first term, assumes the form
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 .x g x
g

g x
g

x
g

x
g

g AA A 2
1

2
2

2

2

2

2

2

2

2

2
− − + −

o

no
n n

o

no
xa

o

na

n

oa

a

no no
x` fj p

In accordance with (31) and (29), the last term of this expression may be written

 .x
g

x
g

g x
g

g1A A A2
1

2
1

2

2

2

2

2

2
+ +

−

−

o

xo

x
n

xn

x
a

no
x

As the symbols of the indices of summation are immaterial, the first two terms of this 
expression cancel the second of the one above. If we then write gno An = A

o, so that Ao like 
An is an arbitrary vector, we finally obtain

 
g x g1 A
2
2

U =
−

−
o

o` j (35)

This scalar is the divergence of the contravariant, vector Ao.
The “Curl” of a Covariant Vector.—The second term in (26) is symmetrical in the indi-

ces n and o. Therefore Ano - Aon is a particularly simply constructed antisymmetrical 
tensor. We obtain

 x xB
A A
2

2

2

2
= −no

o

n

n

o (36)

Antisymmetrical Extension of a Six-vector.—Applying (27) to an antisymmetrical ten-
sor of the second rank Ano forming in addition the two equations which arise through 
cyclic permutations of the indices, and adding these three equations, we obtain the tensor 
of the third rank

 x x xB A A A
A A A
2

2

2

2

2

2
= + + + + +nov nov ovn vno

v

no

n

ov

o

vn (37)

which it is easy to prove is antisymmetrical.
The Divergence of a Six-vector.—Taking the mixed product of (27) by gnagob, we also 

obtain a tensor. The first term on the right-hand side of (27) may be written in the form

 .x g g g x
g

g x
g

A A A
2
2

2

2

2

2
- -

v

na ob
no

na

v

ob

no
ob

v

na

nob l

If we write Av
ab for gnagobAnov and Aab for gnagobAno, and in the transformed first term replace

 x
g

x
g

and
2

2

2

2

v

ob

v

na

by their values as given by (34), there results from the right-hand side of (27) an expres-
sion consisting of seven terms, of which four cancel, and there remains
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 { , } { , }xA A A A
2
2

vc a vc b= + +v
ab

v

ab
cb ac (38)

This is the expression for the extension of a contravariant tensor of the second rank, and 
corresponding expressions for the extension of contravariant tensors of higher and lower 
rank may also be formed.

We note that in an analogous way we may also form the extension of a mixed tensor:—

 { , } { , }xA
A

A A
2

2
vn x vx a= − +nv

a

v

n
a

x
a

n
x (39)

On contracting (38) with respect to the indices b and v (inner multiplication by db
v), 

we obtain the vector

 { , } { , } .xA A A A
2
2

bc b bc a= + +a

b

ab
ac cb

On account of the symmetry of {bc, a} with respect to the indices b and c, the third term 
on the right-hand side vanishes, if Aab is, as we will assume, an antisymmetrical tensor. 
The second term allows itself to be transformed in accordance with (29a). Thus we obtain

 
g x

g1A
A

2

2
=

−

−
a

b

ab` j
 (40)

This is the expression for the divergence of a contravariant six-vector.
The Divergence of a Mixed Tensor of the Second Rank.—Contracting (39) with respect 

to the indices a and v, and taking (29a) into consideration, we obtain

 { , }g x

g
gA

A
A

2

2
vn x− =

−
− −n

v

n
v

x
v

b l
 (41)

If we introduce the contravariant tensor gA A=tv tx
x
v in the last term, it assumes the form

 [ , ] .g Avn t- - tv

If, further, the tensor Atv is symmetrical, this reduces to

 .g x
g

A2
1

2

2
- -

n

tv tv

Had we introduced, instead of Atv, the covariant tensor Aρv = gta gvbAab, which is also 
symmetrical, the last term, by virtue of (31), would assume the form

 .g x
g

A2
1

2

2
-

n

tv

tv
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In the case of symmetry in question, (41) may therefore be replaced by the two forms

 g x

g

x
g

gA
A

A2
1

2

2

2

2
− =

−
− −n

v

n
v

n

tv tv
b l

 (41a)

 g x

g

x
g

gA
A

A2
1

2

2

2

2
− =

−
− −n

v

n
v

n

tv

tv

b l
 (41b)

which we have to employ later on.

§ 12. The Riemann-Christoffel Tensor

We now seek the tensor which can be obtained from the fundamental tensor alone, by dif-
ferentiation. At first sight the solution seems obvious. We place the fundamental tensor 
of the gno in (27) instead of any given tensor Ano, and thus have a new tensor, namely, the 
extension of the fundamental tensor. But we easily convince ourselves that this extension 
vanishes identically. We reach our goal, however, in the following way. In (27) place

 { , } ,xA
A

A
2

2
no t= −no

o

n

t

i.e. the extension of the four-vector An. Then (with a somewhat different naming of the 
indices) we get the tensor of the third rank

 
{ , } { , } { , }

{ , } { , }{ , } { , }{ , } .

x x x x

x

xA
A A A A

A

2

2 2

2

2

2

2

2

2

2

2
2

nv t nx t vx t

nv t nx a av t vx a an t

= − − −

+ − + +

nvx

n

x

t

x
t

v x

t

v t

n

= G

This expression suggests forming the tensor Anvx - Anxv. For, if we do so, the following 
terms of the expression for Anvx cancel those of Anxv, the first, the fourth, and the member 
corresponding to the last term in square brackets; because all these are symmetrical in v 
and x. The same holds good for the sum of the second and third terms. Thus we obtain

 A A B A− =nvx nxv nvx
t

t (42)

where

 { , } { , } { , }{ , } { , }{ , }x xB
2
2

2
2

nv t nx t nv a ax t nx a av t= + − +nvx
t

x v

 (43)

The essential feature of the result is that on the right side of (42) the Aρ occur alone, 
without their derivatives. From the tensor character of Anvx - Anxv in conjunction with 
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the fact that At is an arbitrary vector, it follows, by reason of § 7, that Bnvx
t  is a tensor (the 

Riemann-Christoffel tensor).
The mathematical importance of this tensor is as follows: If the continuum is of such 

a nature that there is a co-ordinate system with reference to which the gno constants, then 
all the Bnvx

t  vanish. If we choose any new system of co-ordinates in place of the origi-
nal ones, the gno referred thereto will not be constants, but in consequence of its tensor 
nature, the transformed components of Bnvx

t  will still vanish in the new system. Thus the 
vanishing of the Riemann tensor is a necessary condition that, by an appropriate choice 
of the system of reference, the gno may be constants. In our problem this corresponds to 
the case in which,6 with a suitable choice of the system of reference, the special theory of 
relativity holds good for a finite region of the continuum.

Contracting (43) with respect to the indices x and t we obtain the covariant tensor of 
second rank

where
 

log log
x

x x
g

x
g

G B R S

2

2
2

2 2

2

2

2

= = +

− −

no not
t

no no

no
a

no
n o a

{ , } { , }{ , }R no a na b ob a=− +

{ , }S no a= −

_

`

a

bbbbbbbbbb
bbbbbbbbbb

 (44)

Note on the Choice of Co-ordinates.—It has already been observed in § 8, in connection 
with equation (18a), that the choice of co-ordinates may with advantage be made so that 

g-  = 1. A glance at the equations obtained in the last two sections shows that by such a 
choice the laws of formation of tensors undergo an important simplification. This applies 
particularly to Gno, the tensor just developed, which plays a fundamental part in the the-
ory to be set forth. For this specialization of the choice of co-ordinates brings about the 
vanishing of Sno, so that the tensor Gno reduces to Rno.

On this account I shall hereafter give all relations in the simplified form which this 
specialization of the choice of coordinates brings with it. It will then be an easy matter to 
revert to the generally covariant equations, if this seems desirable in a special case.

C.  THEORY  OF  THE  GRAV ITAT IONAL  F I ELD

§ 13. Equations of Motion of a Material Point in the Gravitational 
Field. Expression for the Field-components of Gravitation

A freely movable body not subjected to external forces moves, according to the special 
theory of relativity, in a straight line and uniformly. This is also the case, according to 
the general theory of relativity, for a part of four-dimensional space in which the system 
of co-ordinates K0, may be, and is, so chosen that they have the special constant values 
given in (4).

6  The mathematicians have proved that this is also a sufficient condition.
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If we consider precisely this movement from any chosen system of co-ordinates K1, the 
body, observed from K1, moves, according to the considerations in § 2, in a gravitational 
field. The law of motion with respect to K1 results without difficulty from the following 
consideration. With respect to K0 the law of motion corresponds to a four-dimensional 
straight line, i.e. to a geodetic line. Now since the geodetic line is defined independently 
of the system of reference, its equations will also be the equation of motion of the material 
point with respect to K1. If we set

 { , }no xC =−no
x  (45)

the equation of the motion of the point with respect to K1 becomes

 
ds

d x
ds

dx
ds

dx
2

2

C=x
no
x n o (46)

We now make the assumption, which readily suggests itself, that this covariant system of 
equations also defines the motion of the point in the gravitational field in the case when 
there is no system of reference K0, with respect to which the special theory of relativity 
holds good in a finite region. We have all the more justification for this assumption as (46) 
contains only first derivatives of the gno, between which even in the special case of the 
existence of K0, no relations subsist.7

If the Cno
x  vanish, then the point moves uniformly in a straight line. These quantities 

therefore condition the deviation of the motion from uniformity. They are the compo-
nents of the gravitational field.

§ 14. The Field Equations of Gravitation in the Absence of Matter

We make a distinction hereafter between “gravitational field” and “matter” in this way, that 
we denote everything but the gravitational field as “matter.” Our use of the word therefore 
includes not only matter in the ordinary sense, but the electromagnetic field as well.

Our next task is to find the field equations of gravitation in the absence of matter. 
Here we again apply the method employed in the preceding paragraph in formulating the 
equations of motion of the material point. A special case in which the required equations 
must in any case be satisfied is that of the special theory of relativity, in which the gno have 
certain constant values. Let this be the case in a certain finite space in relation to a definite 
system of co-ordinates K0. Relatively to this system all the components of the Riemann 
tensor Bnvx

t , defined in (43), vanish. For the space under consideration they then vanish, 
also in any other system of co-ordinates.

Thus the required equations of the matter-free gravitational field must in any case be 
satisfied if all Bnvx

t  vanish. But this condition goes too far. For it is clear that, e.g., the grav-
itational field generated by a material point in its environment certainly cannot be “trans-
formed away” by any choice of the system of co-ordinates, i.e. it cannot be transformed to 
the case of constant gno.

7  It is only between the second (and first) derivatives that, by § 12, the relations Bnvx
t  = 0 subsist.

Brought to you by | New York University Bobst Library Technical Services
Authenticated

Download Date | 9/30/15 10:37 AM



210 ENGL ISH  TR ANSL AT ION OF  E INSTE IN ’S  PAPER

This prompts us to require for the matter-free gravitational field that the symmetrical 
tensor Gno, derived from the tensor Bn x

t
o , shall vanish. Thus we obtain ten equations for 

the ten quantities gno, which are satisfied in the special case of the vanishing of all Bn x
t
o .  

With the choice which we have made of a system of co-ordinates, and taking (44) into 
consideration, the equations for the matter-free field are

 x
g

0

1
2

2C
C C+ =

− =
a

no
a

nb
a

oa
b 4 (47)

It must be pointed out that there is only a minimum of arbitrariness in the choice of 
these equations. For besides Gno there is no tensor of second rank which is formed from 
the gno and its derivatives, contains no derivations higher than second, and is linear in 
these derivatives.8

These equations, which proceed, by the method of pure mathematics, from the 
requirement of the general theory of relativity, give us, in combination with the equa-
tions of motion (46), to a first approximation Newton’s law of attraction, and to a second 
approximation the explanation of the motion of the perihelion of the planet Mercury dis-
covered by Leverrier (as it remains after corrections for perturbation have been made). 
These facts must, in my opinion, be taken as a convincing proof of the correctness of the 
theory.

§ 15. The Hamiltonian Function for the Gravitational Field. Laws of Momentum and Energy

To show that the field equations correspond to the laws of momentum and energy, it is 
most convenient to write them in the following Hamiltonian form:—

    
Hd

H g
g

0

1

d x

C C

=

=

− =

no
nb
a

oa
b 4

#
 (47a)

where, on the boundary of the finite four-dimensional region of integration which we 
have in view, the variations vanish.

We first have to show that the form (47a) is equivalent to the equations (47). For this 
purpose we regard H as a function of the gno and the ( / )g g x2 2=v

no no
v .

Then in the first place

8  Properly speaking, this can be affirmed only of the tensor

 ,g gG Gm+no no
ab

ab

where m is a constant. If, however, we set this tensor = 0, we come back again to the equations Gno = 0.
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.

g g
g g

2
2

Hd d d

d d

C C C C

C C C C

= +

=− +
nb
a

oa
b no no

nb
a

oa
b

nb
a

oa
b no

nb
a no

oa
b` j

But

 .g g g x
g

x
g

x
g

2
1

2

2

2

2

2

2
d dC =− + −no

oa
b no bm

a

om

o

am

m

ao` fj p> H

The terms arising from the last two terms in round brackets are of different sign, and 
result from each other (since the denomination of the summation indices is immaterial) 
through interchange of the indices n and b. They cancel each other in the expression for 
dH, because they are multiplied by the quantity Cnb

a , which is symmetrical with respect to 
the indices n and b. Thus there remains only the first term in round brackets to be consid-
ered, so that, taking (31) into account, we obtain 

 .g gHd d dC C C=− +nb
a

oa
b no

nb
a

a
nb

Thus

 
g

g

H

H
2

2

2

2

C C

C

=−

=

no nb
a

oa
b

v
no no

v
4 (48)

Carrying out the variation in (47a), we get in the first place

 ,x g g
0H H

2
2

2

2

2

2− =
a a

no noe o  (47b)

which, on account of (48), agrees with (47), as was to be proved.
If we multiply (47b) by gv

no, then because

 x
g

x
g

2

2

2

2
=

a

v
no

v

a
no

and, consequently,

 ,g x g x g
g g x

gH H H
2
2

2

2
2
2

2

2

2

2
2

2
= −v

no

a a
no

a
v
no

a
no

a
no

v

a
no

e eo o

we obtain the equation

 x g
g x 0H H

2
2

2

2
2
2− =

a
v
no

a
no

v
e o
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or9 

 
x
t

t g
g

0

2 H H

2

2

2

2
l d

=

− = −

a

v
a

v
a

v
no

a
no v

a

_

`

a

bbbbbbb
bbbbbbb

 (49)

where, on account of (48), the second equation of (47), and (34)

 t g g2
1l d C C C C= −v

a
v
a no

nb
m

om
b no

nb
a

ov
b  (50)

It is to be noticed that tv
a is not a tensor; on the other hand (49) applies to all systems 

of co-ordinates for which g-  = 1. This equation expresses the law of conservation of 
momentum and of energy for the gravitational field. Actually the integration of this equa-
tion over a three-dimensional volume V yields the four equations

 dx
d t d lt mt nt dsV

4

4 1 2 3= + +v v v v` j# #  (49a)

where l, m, n denote the direction-cosines of direction of the inward drawn normal at the 
element dS of the bounding surface (in the sense of Euclidean geometry). We recognize 
in this the expression of the laws of conservation in their usual form. The quantities tv

a we 
call the “energy components” of the gravitational field.

I will now give equations (47) in a third form, which is particularly useful for a vivid 
grasp of our subject. By multiplication of the field equations (47) by gov these are obtained 
in the “mixed” form. Note that

 ,g x x g x
g

2

2

2
2

2

2C
C C= −ov

a

no
a

a

ov
no
a

a

ov

no
a` j

which quantity, by reason of (34), is equal to

 ,x g g g
2
2

C C C C C- -
a

ov
no
a ob

ab
v

no
a vb

ba
o

no
a` j

or (with different symbols for the summation indices)

 .x g g g
2
2

C C C C C- -
a

vb
nb
a cd

cb
v

dn
b ov

nb
a

oa
bb l

The third term of this expression cancels with the one arising from the second term of the 
field equations (47); using relation (50), the second term may be written

9 The reason for the introduction of the factor −2l will be apparent later.
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 ,t t2
1l d-n

v
n
v` j

where t t= a
a. Thus instead of equations (47) we obtain

 x g t t

g 1

2
1

2
2

l dC =− −

− =
a

ab
nb
a

n
v

n
vb `l j4 (51)

§ 16. The General Form of the Field Equations of Gravitation

The field equations for matter-free space formulated in § 15 are to be compared with the 
field equation

 02d z =

of Newton’s theory. We require the equation corresponding to Poisson’s equation

 ,42d z rlt=

where t denotes the density of matter.
The special theory of relativity has led to the conclusion that inert mass is nothing 

more or less than energy, which finds its complete mathematical expression in a symmet-
rical tensor of second rank, the energy-tensor. Thus in the general theory of relativity we 
must introduce a corresponding energy-tensor of matter Tv

a, which, like the energy-com-
ponents tv [equations (49) and (50)] of the gravitational field, will have mixed character, 
but will pertain to a symmetrical covariant tensor.10

The system of equation (51) shows how this energy-tensor (corresponding to the 
density t in Poisson’s equation) is to be introduced into the field equations of gravi-
tation. For if we consider a complete system (e.g. the solar system), the total mass of 
the system, and therefore its total gravitating action as well, will depend on the total 
energy of the system, and therefore on the ponderable energy together with the gravi-
tational energy. This will allow itself to be expressed by introducing into (51), in place 
of the energy-components of the gravitational field alone, the sums t T+n

v
n
v of the ener-

gy-components of matter and of gravitational field. Thus instead of (51) we obtain the 
tensor equation

 
( ) ,x g t t

g 1

T T T2
1

2
2

l d=− + − +

− =
a

vb
nb
a

n
v

n
v

n
vb `l j: D 4 (52)

10  g T T=ax v
a

vx and g T T=vb
v
a ab are to be symmetrical tensors.
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where we have set T T= n
n (Laue’s scalar). These are the required general field equations of 

gravitation in mixed form. Working back from these, we have in place of (47)

 
,x g

g 1

T T2
1

2
2

lC C C+ =− −

− =
a

no
a

nb
a

oa
b

no no` j 4 (53)

It must be admitted that this introduction of the energy-tensor of matter is not jus-
tified by the relativity postulate alone. For this reason we have here deduced it from the 
requirement that the energy of the gravitational field shall act gravitatively in the same 
way as any other kind of energy. But the strongest reason for the choice of these equations 
lies in their consequence, that the equations of conservation of momentum and energy, 
corresponding exactly to equations (49) and (49a), hold good for the components of the 
total energy. This will be shown in § 17.

§ 17. The Laws of Conservation in the General Case

Equation (52) may readily be transformed so that the second term on the right-hand 
side vanishes. Contract (52) with respect to the indices n and v, and after multiplying the 
resulting equation by 2

1dn
v, subtract it from equation (52). This gives

 .x g g t T2
1

2
2

d lC C− =− +
a

vb
nb
a

n
v mb

mb
a

n
v

n
vb `l j  (52a)

On this equation we perform the operation ∂/∂xv. We have

 .x x g x x g g x
g

x
g

x
g2

2
1

2

2 2
2

2 2
2

2

2

2

2

2

2
C =− + −

a v

v
bn
a

a v

vb am

b

nm

n

bm

m

nb` fj p> H

The first and third terms of the round brackets yield contributions which cancel one 
another, as may be seen by interchanging, in the contribution of the third term, the sum-
mation indices a and v on the one hand, and b and m on the other. The second term may 
be re-modelled by (31), so that we have

 x x g x x x
g2

2
1

3

2 2
2

2 2 2

2
C =

a v

vb
nb
a

a b n

ab

b l  (54)

The second term on the left-hand side of (52a) yields in the first place

 x x g2
1

2

2 2
2

C-
a n

mb
mb
ab l

or
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 .x x g g x
g

x
g

x
g

4
1

2

2 2
2

2

2

2

2

2

2
+ −

a n

mb ad

b

dm

m

db

d

mbf p> H

With the choice of co-ordinates which we have made, the term deriving from the last 
term in round brackets disappears by reason of (29). The other two may be combined, 
and together, by (31), they give

 ,x x x
g1

3

2 2 2 2

2
-

a b n

ab

so that in consideration of (54), we have the identity

 x x g g 0
2

2
1

2 2
2

/dC C-
a v

tb
nb n

v mb
mb
ab l  (55)

From (55) and (52a), it follows that

 x
t

0
T

2

2 +
=

v

n
v

n
v` j

 (56)

Thus it results from our field equations of gravitation that the laws of conservation of 
momentum and energy are satisfied. This may be seen most easily from the consideration 
which leads to equation (49a); except that here, instead of the energy components t v of 
the gravitational field, we have to introduce the totality of the energy components of mat-
ter and gravitational field.

§ 18. The Laws of Momentum and Energy for Matter, as a Consequence of the Field Equations

Multiplying (53) by ∂gno/∂xv, we obtain, by the method adopted in § 15, in view of the 
vanishing of

 ,g x
g
2

2
no

v

no

the equation

 ,x
t

x
g

0T2
1

2

2

2

2
+ =

a

v
a

v

no

no

or, in view of (56),

 x x
g

0
T

T2
1

2

2

2

2
+ =

a

v
a

v

no

no  (57)
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Comparison with (41b) shows that with the choice of system of co-ordinates which 
we have made, this equation predicates nothing more or less than the vanishing of diver-
gence of the material energy-tensor. Physically, the occurrence of the second term on the 
left-hand side shows that laws of conservation of momentum and energy do not apply in 
the strict sense for matter alone, or else that they apply only when the gno are constant, 
i.e. when the field intensities of gravitation vanish. This second term is an expression for 
momentum, and for energy, as transferred per unit of volume and time from the gravita-
tional field to matter. This is brought out still more clearly by re-writing (57) in the sense 
of (41) as

 x
T

T
2

2
C=−

a

v
a

av
b

b
a (57a)

The right side expresses the energetic effect of the gravitational field on matter.
Thus the field equations of gravitation contain four conditions which govern the 

course of material phenomena. They give the equations of material phenomena com-
pletely, if the latter is capable of being characterized by four differential equations inde-
pendent of one another.11

D.  MATERIAL  PHENOMENA

The mathematical aids developed in part B enable us forthwith to generalize the physical 
laws of matter (hydrodynamics, Maxwell’s electrodynamics), as they are formulated in 
the special theory of relativity, so that they will fit in with the general theory of rela-
tivity. When this is done, the general principle of relativity does not indeed afford us a 
further limitation of possibilities; but it makes us acquainted with the influence of the 
gravitational field on all processes, without our having to introduce any new hypothesis 
whatever.

Hence it comes about that it is not necessary to introduce definite assumptions as 
to the physical nature of matter (in the narrower sense). In particular it may remain an 
open question whether the theory of the electromagnetic field in conjunction with that 
of the gravitational field furnishes a sufficient basis for the theory of matter or not. The 
general postulate of relativity is unable on principle to tell us anything about this. It must 
remain to be seen, during the working out of the theory, whether electromagnetics and 
the doctrine of gravitation are able in collaboration to perform what the former by itself 
is unable to do.

§ 19. Euler’s Equations for a Frictionless Adiabatic Fluid

Let p and t be two scalars, the former of which we call the “pressure,” the latter the “den-
sity” of a fluid; and let an equation subsist between them. Let the contravariant symmet-
rical tensor

11  On this question cf. H. Hilbert, Nachr. d. K. Gesellsch. d. Wiss. zu Göttingen, Math.-phys. Klasse, 1915, 
p. 3.
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 g p ds
dx

ds
dx

T t=− +ab ab a b

be the contravariant energy-tensor of the fluid. To it belongs the covariant tensor

 ,g p g g ds
dx

ds
dx

T t=− +no no na nb
a b  (58a)

as well as the mixed tensor 12

 p g ds
dx

ds
dx

T d t=− +v
a

v
a

vb

b a  (58b)

Inserting the right-hand side of (58b) in (57a), we obtain the Eulerian hydrodynamical 
equations of the general theory of relativity. They give, in theory, a complete solution of 
the problem of motion, since the four equations (57a), together with the given equation 
between p and t, and the equation

 ,g ds
dx

ds
dx

1=ab
a b

are sufficient, gab being given, to define the six unknowns

 , , , , , .p ds
dx

ds
dx

ds
dx

ds
dx1 2 3 4t

If the gno are also unknown, the equations (53) are brought in. These are eleven equations 
for defining the ten functions gno, so that these functions appear over-defined. We must 
remember, however, that the equations (57a) are already contained in the equations (53), 
so that the latter represent only seven independent equations. There is good reason for 
this lack of definition, in that the wide freedom of the choice of co-ordinates causes the 
problem to remain mathematically undefined to such a degree that three of the functions 
of space may be chosen at will.13

§ 20. Maxwell’s Electromagnetic Field Equations for Free Space

Let zo be the components of a covariant vector—the electromagnetic potential vec-
tor. From them we form, in accordance with (36), the components Ftv of the covariant 
six-vector of the electromagnetic field, in accordance with the system of equations

12  For an observer using a system of reference in the sense of the special theory of relativity for an infinitely 
small region, and moving with it, the density of energy T4

4 equals t - p. This gives the definition of t. Thus t 
is not constant for an incompressible fluid.
13  On the abandonment of the choice of co-ordinates with g = –1, there remain four functions of space with 
liberty of choice, corresponding to the four arbitrary functions at our disposal in the choice of co-ordinates.
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 x xF
2

2

2

2z z
= −tv

v

t

t

v (59)

It follows from (59) that the system of equations

 x x x 0
F F F
2

2

2

2

2

2
+ + =

x

tv

t

vx

v

xt  (60)

is satisfied, its left side being, by (37), an antisymmetrical tensor of the third rank. System 
(60) thus contains essentially four equations which are written out as follows:—

 

x x x

x x x

x x x

x x x

0

0

0

0

F F F

F F F

F F F

F F F

4

23

2

34

3

42

1

34

3

41

4

13

2

41

4

12

1

24

3

12

1

23

2

31

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

+ + =

+ + =

+ + =

+ + =

_

`

a

bbbbbbbbbbbbbb
bbbbbbbbbbbbbb

 (60a)

This system corresponds to the second of Maxwell’s systems of equations. We recog-
nize this at once by setting

 
,
,
,

F H F E
F H F E
F H F E

x x

y y

z z

23 14

31 24

12 34

= =

= =

= =
4 (61)

Then in place of (60a) we may set, in the usual notation of three-dimensional vector 
analysis,

 t
0

H curl E

div H
2
2− =

=
4 (60b)

We obtain Maxwell’s first system by generalizing the form given by Minkowski. We 
introduce the contravariant six-vector associated with Fab

 g gF F=no na ob
ab (62)

and also the contravariant vector Jn of the density of the electric current. Then, taking (40) 
into consideration, the following equations will be invariant for any substitution whose 
invariant is unity (in agreement with the chosen coordinates) :—

 x F J
2
2 =

o

no n (63)
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Let

 
,
,
,

F H F E
F H F E
F H F E

x x

y y

z z

23 14

31 24

12 34

= =−

= =−

= =−

l l

l l

l l
4 (64)

which quantities are equal to the quantities Hx . . . E
z in the special case of the restricted 

theory of relativity ; and in addition

 , , , ,j j jJ J J Jx y z
1 2 3 4 t= = = =

we obtain in place of (63)

 t jE curl H

div E
2
2

t

+ =

=

l
l

l
4 (63a)

The equations (60), (62), and (63) thus form the generalization of Maxwell’s field equa-
tions for free space, with the convention which we have established with respect to the 
choice of co-ordinates.

The Energy-components of the Electromagnetic Field.—We form the inner product

 F Jl =v vn
n (65)

By (61) its components, written in the three-dimensional manner, are

 

[ . ]
. . . .
. . . .

( )

j

j

E H

E

x
x

1

4

l t

l

= +

=−

_

`

a

bbbbbbb
bbbbbbb

 (65a)

kv is a covariant vector the components of which are equal to the negative momen-
tum, or, respectively, the energy, which is transferred from the electric masses to the 
electromagnetic field per unit of time and volume. If the electric masses are free, that 
is, under the sole influence of the electromagnetic field, the covariant vector kv will 
vanish.

To obtain the energy-components Tv
o  of the electromagnetic field, we need only give 

to equation kv = 0 the form of equation (57). From (63) and (65) we have in the first 
place

 ( ) .x x xF F F F F
F

2
2

2
2

2

2
l = = −v vn

o

no

o
vn

no nt

o

vn

The second term of the right-hand side, by reason of (60), permits the transformation
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 ,x x g g xF
F

F
F

F
F

2
1

2
1

2

2

2

2

2

2
=− =−no

o

vn no

v

no na ob
ab

v

no

which latter expression may, for reasons of symmetry, also be written in the form

 .g g x g g xF
F F

F4
1

2

2

2

2
− +na ob

ab
v

no na ob

v

ab

no> H

But for this we may set

 .x g g x g gF F F F4
1

4
1

2
2

2
2− +

v

na ob
ab no ab no

v

na obb `l j

The first of these terms is written more briefly

 ;x F F4
1

2
2-
v

no
no` j

the second, after the differentiation is carried out, and after some reduction, results in

 .g x
g

F F2
1

2

2
- nx

no
ot

v

vx

Taking all three terms together we obtain the relation

 x g x
gT

T2
1

2

2

2

2
l = −v

o

v
o

xn

v

no

x
o (66)

where

 .T F F F F4
1d=− +v

o
va

oa
v
o

ab
ab

Equation (66), if kv vanishes, is, on account of (30), equivalent to (57) or (57a) respec-
tively. Therefore the Tv

o  are the energy-components of the electromagnetic field. With the 
help of (61) and (64), it is easy to show that these energy-components of the electromag-
netic field in the case of the special theory of relativity give the well-known Maxwell-Poy-
nting expressions.

We have now deduced the general laws which are satisfied by the gravitational field 
and matter, by consistently using a system of co-ordinates for which g 1− = . We have 
thereby achieved a considerable simplification of formulae and calculations, without fail-
ing to comply with the requirement of general covariance; for we have drawn our equa-
tions from generally covariant equations by specializing the system of co-ordinates.

Still the question is not without a formal interest, whether with a correspondingly 
generalized definition of the energy-components of gravitational field and matter, even 
without specializing the system of co-ordinates, it is possible to formulate laws of conser-
vation in the form of equation (56), and field equations of gravitation of the same nature 
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as (52) or (52a), in such a manner that on the left we have a divergence (in the ordinary 
sense), and on the right the sum of the energy-components of matter and gravitation. I 
have found that in both cases this is actually so. But I do not think that the communica-
tion of my somewhat extensive reflections on this subject would be worth while, because 
after all they do not give us anything that is materially new.

E

§ 21. Newton’s Theory as a First Approximation

As has already been mentioned more than once, the special theory of relativity as a spe-
cial case of the general theory is characterized by the gno having the constant values (4). 
From what has already been said, this means complete neglect of the effects of gravita-
tion. We arrive at a closer approximation to reality by considering the case where the gno 
differ from the values of (4) by quantities which are small compared with 1, and neglect-
ing small quantities of second and higher order. (First point of view of approximation.)

It is further to be assumed that in the space-time territory under consideration the gno 
at spatial infinity, with a suitable choice of co-ordinates, tend toward the values (4) ; i.e. 
we are considering gravitational fields which may be regarded as generated exclusively by 
matter in the finite region.

It might be thought that these approximations must lead us to Newton’s theory. But 
to that end we still need to approximate the fundamental equations from a second point 
of view. We give our attention to the motion of a material point in accordance with the 
equations (16). In the case of the special theory of relativity the components

 , ,ds
dx

ds
dx

ds
dx1 2 3

may take on any values. This signifies that any velocity

 v dx
dx

dx
dx

dx
dx

4

1

2

4

2

4

3= + +
2 2

f f fp p p

may occur, which is less than the velocity of light in vacuo. If we restrict ourselves to the 
case which almost exclusively offers itself to our experience, of v being small as compared 
with the velocity of light, this denotes that the components

 , ,ds
dx

ds
dx

ds
dx1 2 3

are to be treated as small quantities, while dx4 /ds, to the second order of small quantities, 
is equal to one. (Second point of view of approximation.)

Now we remark that from the first point of view of approximation the magnitudes 
Cno

x  are all small magnitudes of at least the first order. A glance at (46) thus shows that in 
this equation, from the second point of view of approximation, we have to consider only 
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terms for which n = o = 4. Restricting ourselves to terms of lowest order we first obtain in 
place of (46) the equations

 
dt

d x
2

2

44C=x x

where we have set ds = dx4 = dt; or with restriction to terms which from the first point of 
view of approximation are of first order:—

 
[ , ] ( , , )

[ , ] .

dt
d x

dt
d x

44 1 2 3

44 4

2

2

2

2
4

x x= =

=−

x

If in addition we suppose the gravitational field to be a quasi-static field, by confining our-
selves to the case where the motion of the matter generating the gravitational field is but 
slow (in comparison with the velocity of the propagation of light), we may neglect on the 
right-hand side differentiations with respect to the time in comparison with those with 
respect to the space co-ordinates, so that we have

 ( , , )
dt

d x
x
g

1 2 32

2

2
1 44

2

2
x=− =x

x

 (67)

This is the equation of motion of the material point according to Newton’s theory, in 
which g2

1
44 plays the part of the gravitational potential. What is remarkable in this result is 

that the component g44 of the fundamental tensor alone defines, to a first approximation, 
the motion of the material point.

We now turn to the field equations (53). Here we have to take into consideration that 
the energy-tensor of “matter “is almost exclusively defined by the density of matter in the 
narrower sense, i.e. by the second term of the right-hand side of (58) [or, respectively, 
(58a) or (58b)]. If we form the approximation in question, all the components vanish with 
the one exception of T44 = t = T. On the left-hand side of (53) the second term is a small 
quantity of second order; the first yields, to the approximation in question,

 [ , ] [ , ] [ , ] [ , ] .x x x x1 2 3 4
1 2 3 42
2

2
2

2
2

2
2

no no no no+ + −

For n = o = 4, this gives, with the omission of terms differentiated with respect to time,

 .
x
g

x
g

x
g

g2
1

1
2

2
44

2
2

2
44

3
2

2
44

2
1 2

44
2

2

2

2

2

2
d− + + =−f p

The last of equations (53) thus yields

 g2
44d lt=  (68)
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The equations (67) and (68) together are equivalent to Newton’s law of gravitation.
By (67) and (68) the expression for the gravitational potential becomes 

 r
d

8r
l t x

- #  (68a)

while Newton’s theory, with the unit of time which we have chosen, gives

 
c r

dK
2

t x
- #

in which K denotes the constant 6.7 × 10–8, usually called the constant of gravitation. By 
comparison we obtain

 .
c

K8 1 87 102
27#l

r= = −  (69)

§ 22. Behaviour of Rods and Clocks in the Static Gravitational Field. 
Bending of Light-rays. Motion of the Perihelion of a Planetary Orbit

To arrive at Newton’s theory as a first approximation we had to calculate only one com-
ponent, g44, of the ten gno of the gravitational field, since this component alone enters into 
the first approximation, (67), of the equation for the motion of the material point in the 
gravitational field. From this, however, it is already apparent that other components of the 
gno must differ from the values given in (4) by small quantities of the first order. This is 
required by the condition g = –1.

For a field-producing point mass at the origin of co-ordinates, we obtain, to the first 
approximation, the radially symmetrical solution

 

( , , , )

( , , )

g a
r

x x

g g

g r
a

0

1

1 2 3

1 2 3
3

4 4

44

d
t v

t

=− −

= =

= −

=

=
tv tv

t v

t t

_

`

a

bbbbbbb
bbbbbbb

 (70)

where dtv is 1 or 0, respectively, accordingly as t = v or t  v, and r is the quantity 
x x x1

2
2
2

3
2+ ++ . On account of (68a)

 ,a 4
M
r

l=  (70a)

if M denotes the field-producing mass. It is easy to verify that the field equations (outside 
the mass) are satisfied to the first order of small quantities. 

We now examine the influence exerted by the field of the mass M upon the metrical 
properties of space. The relation
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 .ds g dx dx2 = no n o

always holds between the “locally” (§ 4) measured lengths and times ds on the one hand, 
and the differences of co-ordinates dxo on the other hand.

For a unit-measure of length laid “parallel” to the axis of x, for example, we should 
have to set ds2 = –1; dx2 = dx3 = dx4 = 0. Therefore –1 = g11dx1

2. If, in addition, the unit- 
measure lies on the axis of x, the first of equations (70) gives

 .g r
a111 =− +b l

From these two relations it follows that, correct to a first order of small quantities,

 dx r
a1 2= −  (71)

The unit measuring-rod thus appears a little shortened in relation to the system of co- 
ordinates by the presence of the gravitational field, if the rod is laid along a radius.

In an analogous manner we obtain the length of co-ordinates in tangential direction 
if, for example, we set

 ; ; , .ds dx dx dx x r x x1 0 02
1 3 4 1 2 3=− = = = = = =

The result is

 g dx dx1 22 2
2

2
2− = =−  (71a)

With the tangential position, therefore, the gravitational field of the point of mass has no 
influence on the length of a rod.

Thus Euclidean geometry does not hold even to a first approximation in the grav-
itational field, if we wish to take one and the same rod, independently of its place and 
orientation, as a realization of the same interval; although, to be sure, a glance at (70a) 
and (69) shows that the deviations to be expected are much too slight to be noticeable in 
measurements of the earth’s surface.

Further, let us examine the rate of a unit clock, which is arranged to be at rest in a static 
gravitational field. Here we have for a clock period ds = 1; dxl = dx2 = dx3 = 0
Therefore

 
;

( ( ))
( )

g dx

dx
g g

g

1
1

1 1
1 1 1

44 4
2

4
44 44

2
1

44

=

= =
+ −

= − −

or

 dx r
d1 84 r

l
t

x= + #  (72)
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Thus the clock goes more slowly if set up in the neighborhood of ponderable masses. 
From this it follows that the spectral lines of light reaching us from the surface of large 
stars must appear displaced towards the red end of the spectrum.14

We now examine the course of light-rays in the static gravitational field. By the special 
theory of relativity the velocity of light is given by the equation

 dx dx dx dx 01
2

2 3
2

4
2− − − + =

and therefore by the general theory of relativity by the equation

 ds g dx dx 02 = =no n o  (73)

If the direction, i.e. the ratio dx1: dx2: dx3 is given, equation (73) gives the quantities

 , ,dx
dx

dx
dx

dx
dx

4

1

4

2

4

3

and accordingly the velocity

 dx
dx

dx
dx

dx
dx

4

1
2

4

2
2

4

3
2

c+ + =f f fp p p

defined in the sense of Euclidean geometry. We easily recognize that the course of the 
light-rays must be bent with regard to the system of co-ordinates, if the gno are not con-
stant. If n is a direction perpendicular to the propagation of light, the Huyghens principle 
shows that the light-ray, envisaged in the plane (c, n), has the curvature -∂c/∂n.

We examine the curvature undergone by a ray of light passing by a mass M at the 
distance ∆. If we choose the system of co-ordinates in agreement with the accompanying 
diagram, the total bending of the ray (calculated positively if concave towards the origin) 
is given in sufficient approximation by

 
 

,x dxB
1

22

2c
=

3

3

−

+#

while (73) and (70) give

 .g
g

r
a

r
x

1 2 1
22

44
2
2
2

c = − = − +e fo p

Carrying out the calculation, this gives

14  According to E. Freundlich, spectroscopical observations on fixed stars of certain types indicate the 
existence of an effect of this kind, but a crucial test of this consequence has not yet been made.
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 a2
2B M
r
l

D D
= =  (74)

Fig. 8.

According to this, a ray of light going past the sun undergoes a deflection of 1.7″; and a ray 
going past the planet Jupiter a deflection of about .02″.

If we calculate the gravitational field to a higher degree of approximation, and likewise 
with corresponding accuracy the orbital motion of a material point of relatively infinitely 
small mass, we find a deviation of the following kind from the Kepler-Newton laws of 
planetary motion. The orbital ellipse of a planet undergoes a slow rotation, in the direc-
tion of motion, of amount 

 
( )c e
a24
1T

3
2 2 2

2

f r=
−

 (75)

per revolution. In this formula a denotes the major semi-axis, c the velocity of light in the 
usual measurement, e the eccentricity, T the time of revolution in seconds.15

Calculation gives for the planet Mercury a rotation of the orbit of 43″ per century, 
corresponding exactly to astronomical observation (Leverrier); for the astronomers have 
discovered in the motion of the perihelion of this planet, after allowing for disturbances 
by other planets, an inexplicable remainder of this magnitude.

15  For the calculation I refer to the original papers: A. Einstein, Sitzungsber. d. Preuss. Akad. d. Wiss., 1915, 
p. 831; K. Schwarzschild, ibid., 1916, p. 189.
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