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Geodetic versus geophysical perspectives of the ‘gravity anomaly’
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S U M M A R Y
A ‘gravity anomaly’ is essentially the difference between the gravitational acceleration caused
by the Earth’s masses and that generated by some reference mass distribution. However, there
are numerous subtleties to the definition and, moreover, to the practical realization of a ‘gravity
anomaly’. An attempt is made here to clarify the definition of a ‘gravity anomaly’ from the
geodetic and geophysical perspectives, point out some of the key differences in terminology
and philosophy and to identify some of the problems remaining in its practical realization
from a variety of observation types. It is argued that if the ‘gravity anomaly’ is defined and
realized in a rigorous and consistent manner, this may lead to the improvement of its use in
both geodesy and geophysics.
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1 I N T RO D U C T I O N

Anomalies in the Earth’s gravitational field play important roles in
both geodesy and geophysics. In geodesy, gravity anomalies are used
to define the figure of the Earth, notably the geoid (the equipotential
surface of the Earth’s gravity field that corresponds most closely to
mean sea level). In geophysics, gravity anomalies are used to deduce
variations in mass-density and hence subsurface geological structure
for a wide variety of applications. To these ends, the geophysicist’s
aim is to remove gravity effects that mask the local anomalies that
are of interest, whereas the geodesist is interested in using a gravity
anomaly that preserves the mass of the Earth.

In both disciplines, however, it appears that the definition and
practical realization of a ‘gravity anomaly’ remains open to ques-
tion, despite it being subject to ongoing investigation (see the ma-
jority of the reference list). Of some concern is that investigators
in these disciplines seem to be unaware of the other’s work, which
is demonstrated by even a cursory inspection of the literature cited
in each. This is unsatisfactory since (often parallel) advances being
made in each discipline are not being used, or even acknowledged,
in the other.

This paper, though not exhaustive in its own literature survey,
will attempt to identify some of the main differences between the
geodetic and geophysical perspectives of a ‘gravity anomaly’. It will
briefly review the definitions of the gravity anomaly and gravity dis-
turbance, and relate these to new observation types, such as airborne
gravimetry, airborne gravity gradiometry and satellite gravity gra-
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diometry. Throughout the paper, several questions are posed that
should be answered to unambiguously define and realize a ‘gravity
anomaly’ in both disciplines.

2 B A C KG RO U N D A N D D E F I N I T I O N S

At the broadest conceptual level, a gravity anomaly is the difference
between the Earth’s gravitational acceleration (i.e. gravitation and
rotation) observed, or estimated, at some reference level, and the
gravitational acceleration generated by a simple mass distribution,
such as a biaxial ellipsoid of revolution, at the same or some other
reference level. In geodesy, the reference level is normally the geoid,
but in geophysics, where relative differences in gravity are often all
that is important, the reference level can be chosen at an arbitrary
height, such as the mean elevation of the area of interest. From a
geophysical perspective, a gravity anomaly is better thought of as
the difference between a measured value and a predicted value for
the same point derived from some theoretical reference model (cf.
Chapin 1996). In the remainder of this paper, the reference gravity
field (i.e. normal gravity) is assumed to be generated by the Geodetic
Reference System 1980 (GRS80; Moritz 1980).

2.1 The vector and scalar gravity anomaly

The geodetic gravity anomaly is classically defined (e.g. Heiskanen
& Moritz 1967) as the difference between gravity on the geoid and
normal gravity on the surface of the reference ellipsoid for the ap-
propriate observation latitude.

Since gravitational acceleration is a vector quantity, this definition
needs further clarification, especially as an airborne gravimetry (e.g.
Glennie et al. 2000) or the use of auxiliary geoid information (e.g.
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Figure 1. Parameters used to define gravity anomalies and gravity distur-
bances. g is the gravity vector at the geoid, γ is the normal gravity vector at
the surface of the ellipsoid. gP is the gravity vector and γP is the magnitude
of normal gravity, both at point P (in this case, the Earth’s topographic sur-
face). H is the orthometric height along the curved plumbline, h is ellipsoidal
height along the ellipsoidal surface normal and N is the geoid–ellipsoid sep-
aration.

Featherstone et al. 2000) provide information on the Earth’s gravity
vector. Therefore, the vector gravity anomaly is

�g = g − γ, (1)

where g is the Earth’s gravity vector at the geoid, which, if required,
has been appropriately up/downward-continued from the measure-
ment level and γ is the normal gravity vector at the surface of the
ellipsoid at the same geocentric geodetic latitude as the gravity ob-
servation (Featherstone & Dentith 1997) summarize the differences
between geodetic and geocentric latitude and exemplify their effect
on the computation of normal gravity.

Since the Earth’s gravity vector is not always observed in practice,
the scalar gravity anomaly is defined here as

�g = g − γ, (2)

where g is the magnitude of the gravity vector (g = |g|) at the geoid
(appropriately up/downward-continued) and γ is the magnitude of
the normal gravity vector (γ = |γ|) at the surface of the ellipsoid
at the same geocentric geodetic latitude as the gravity observation.
The scalar gravity anomaly is a much simpler quantity to realize in
practice.

Importantly, the vector and scalar gravity anomalies are defined
only at the geoid. To evaluate them from gravity observations made
on or above the Earth’s surface, elevations with respect to the geoid
(i.e. orthometric heights, H), measured along the curved plumbline
of the Earth’s gravity field, are required (Fig. 1). This information is
used to reduce or downward-continue the observed value of gravity
to the geoid for use in eqs (1) and (2).

2.2 The vector and scalar gravity disturbance

The gravity disturbance is a very well-known quantity in geodesy,
but appears to be less well known in geophysics, or at least ac-
knowledged (based on the authors’ literature reviews). However,

the gravity disturbance may be more useful and conceptually more
logical for geophysical investigations. As with the gravity anomaly,
the gravity disturbance can be either a vector or a scalar quantity.
The vector gravity disturbance at point P is

δgP = gP − γ P , (3)

where gP is the Earth’s gravity vector at the point P and γ P is the
normal gravity vector at the same point (Fig. 1). The value of γ P

is determined from that computed on the surface of the ellipsoid
by subtracting a correction determined from the vertical gradient
of normal gravity over the ellipsoidal height (Section 3). In this ap-
proach, however, care must be exercised to account for the curvature
of the normal gravity plumbline from the ellipsoidal surface normal
(e.g. Jekeli 1999). This is to ensure the proper orientation of the
normal gravity vector, which does not point along the ellipsoidal
normal outside the reference ellipsoid.

Again, assuming that observations of the Earth’s gravity vector
are not available, the scalar gravity disturbance is

δgP = gP − γP , (4)

where gP is the magnitude of the vector gravity at the point P and
γ P is the magnitude of the normal gravity vector at the same point.
The latter value is computed by correcting the magnitude of normal
gravity from the surface of the ellipsoid to the point of interest. This
is simply the upward application of the free-air correction over the
ellipsoidal height (see Section 3).

Choosing P to be the gravity observation point avoids the need to
apply (numerically unstable) downward continuation of the gravity
observation through the topography. Although Fig. 1 shows point P
to be at the Earth’s topographic surface, the gravity disturbance can
be defined at any point. However, the vector and scalar gravity dis-
turbances can only be computed if the ellipsoidal height (h) of point
P, measured from the surface of the ellipsoid along the ellipsoidal
surface normal, is known.

2.3 Coordinate systems used in gravimetry

The 3-D position of a gravity observation is required to compute the
gravity anomaly and the gravity disturbance. As stated, the orthome-
tric height (H) is required to compute the gravity anomaly and the
ellipsoidal height (h) is required to compute the gravity disturbance.
However, ellipsoidal heights were not readily available in the past.
Instead, orthometric heights were readily available at benchmarks
already established on the local (mean sea level-based) vertical da-
tum. This probably explains why gravity anomalies have been more
widely adopted as the realizable quantity.

However, algebraically adding a geoid model to orthometric
heights yields ellipsoidal heights (i.e. h = H + N ; see Fig. 1),
thus permitting the practical realization of gravity disturbances. Im-
portantly, this can be achieved for existing and new gravity obser-
vations. The EGM96 global geoid model (Lemoine et al. 1998) can
be used for this purpose, for example, but if available, a regional
geoid model should be used in preference. Alternatively, ellipsoidal
heights compatible with GRS80 are provided directly from GPS-
coordinated gravity surveys. Gravity disturbances can then be com-
puted directly using the GPS-derived or geoid-derived ellipsoidal
heights.

In addition to choosing the correct height system, there are numer-
ous different realizations of vertical and horizontal geodetic datums
to contend with. The vertical datums are problematic (e.g. Heck
1990) because they are based on mean sea level, and due to the
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effects of sea surface topography (cf. land topography) may dif-
fer from one another by as much as 2 m (e.g. Rapp 1994). This
causes long-wavelength errors in the computed gravity anomalies
and gravity disturbances. While these may not appear problematic in
regional and local geophysical studies (because regional trends are
normally removed before localized interpretations), they are much
more problematic in geodesy.

Local horizontal geodetic datums, used for regional surveying and
mapping, are not normally geocentric and these latitudes must not
be used to compute normal gravity (see Section 3.1). Since different
horizontal datums have been chosen in different parts of the world,
a single point can have more than one set of coordinates by virtue
of the datum used. For example, coordinates in some countries can
differ from geocentric coordinates by up to 1 km (Defense Mapping
Agency 1997). This can be significant when computing the normal
gravity, where a ±100 m error in latitude generates a ±80 µGal
error in normal gravity at 45◦ latitude.

In addition, co-registration errors occur when combining grav-
ity data coordinated and reduced with respect to different geode-
tic datums and ellipsoids. Featherstone & Dentith (1997) and
Featherstone (1997) describe the more common procedures to trans-
form local horizontal geodetic coordinates to a geocentric datum.
The user must also ensure that the correct datum and ellipsoid pa-
rameters are used, since there are several different options. The key
is to be consistent and to carefully document the techniques used.

2.4 The indirect effect

The term indirect effect requires clarification. In geodesy, it is the
correction applied to the co-geoid computed from gravity anoma-
lies that have first been reduced (i.e. up/downward continued) to the
geoid. These reductions effectively change the Earth’s gravity po-
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Figure 2. Global map showing the magnitude of the geophysical indirect effect. The free-air indirect effect is computed offshore and the Bouguer indirect
effect onshore, hence the discontinuities at some coasts. Calculations are based on geoid heights from the EGM96 global geopotential model (Lemoine et al.
1998).

tential, which is accounted for by applying the indirect effect to the
computed co-geoid to give the geoid. Several models are available
for this process (e.g. Wichiencharoen 1982; Martinec & Vanı́ček
1994a; Sjöberg & Nahavandchi 1999). Importantly, the geodetic in-
direct effect computed must be consistent with the technique used
to reduce the gravity data.

In geophysics, the indirect effect is (rarely) used as a ‘correction’
for the separation between the geoid and the reference ellipsoid (cf.
Chapman & Bodine 1979). The source of this geophysical indirect
effect is clear in the context of the gravity disturbance—a gravity
measurement is made at some point, and the anomalous component
of that measurement is estimated by determining a theoretical grav-
ity value at that same point. This theoretical value is determined by
applying the free-air (and sometimes Bouguer) corrections to nor-
mal gravity at the ellipsoid. Therefore, it is not appropriate to use
the orthometric height (H), as is commonly the case. Failure to use
the ellipsoidal height (h) leads to either an undercorrection or over-
correction of normal gravity, depending on the algebraic sign of the
geoid–ellipsoid separation, N .

The gravity anomaly (as strictly defined in Section 2.1) can be
converted to the gravity disturbance by application of the free-air
(and usually the Bouguer) correction over the geoid–ellipsoid sep-
aration (e.g. Jung & Rabinowitz 1988; Talwani 1998). Gravity dis-
turbances erroneously computed using orthometric heights can be
corrected in an identical manner.

The geophysical indirect effect can be computed using the geoid
heights available from global geopotential models, such as EGM96
(Lemoine et al. 1998), or regional geoid models, such as AUS-
Geoid98 (Featherstone et al. 2001). Globally, the (undulating) geoid
and the ellipsoid are separated by up to ∼100 m. This difference
is equivalent to a maximum indirect effect of ∼30 mGal when
computing the free-air disturbance from the free-air anomaly or
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∼20 mGal when computing the Bouguer disturbance from the
Bouguer anomaly (Fig. 2).

Since the geophysical indirect effect can be applied using the free-
air or Bouguer gravity corrections over the geoid height (Talwani
1998), this raises some question as to what quantity should be com-
puted and interpreted in geophysical studies (cf. Jung & Rabinowitz
1988). Therefore, some further work is required to clarify the role
of the geophysical indirect effect and how it affects the subsequent
interpretation.

3 ‘ C O R R E C T I O N S ’ T O G R AV I T Y
O B S E RVAT I O N S

Much of the geodetic and geophysical literature describes the pro-
cess of computing gravity anomalies as a reduction process (e.g.
Bullard 1936), where observed gravity is reduced to some datum
surface, usually the geoid (using the orthometric height). However,
as pointed out by many authors (e.g. Hipkin 1988; LaFehr 1991b;
Chapin 1996; Li & Götze 2001; Vanicek et al. 2001), the gravity
value is not simply reduced to a different level. Determining grav-
ity at the geoid from surface data strictly requires up/downward
continuation, a process that is generally a necessity in geodesy.

To compute the gravity anomaly (at the geoid), the up/downward
continuation requires knowledge of the vertical gradient (along
the plumb line) of the Earth’s gravity field (δg/δH ) interior and
sometimes exterior (e.g. for airborne data) to the Earth’s gravitat-
ing masses (cf. Hammer 1970; LaFehr & Chan 1986). In practice,
however, this vertical gravity gradient along the plumb line is dif-
ficult to estimate accurately, especially inside the topography (cf.
Vanicek et al. 1996; Wang 1997; Sun & Vanicek 1998). Instead, the
vertical gradient of normal gravity (δγ /δh), which is recognized as
the free-air correction, and the Bouguer gradient are usually used
as an approximation. This approximation is a poor one. In Britain,
for example, the difference between these vertical gradients leads
to corrections that differ by as much as 20 mGal (Hipkin 1988).

Because the vertical gradient of the Earth’s gravity field is ex-
tremely difficult to determine, a surface-referenced quantity (the
gravity disturbance) is a more logical quantity to use in geophysical
applications (Chapin 1996; Li & Götze 2001). Large-scale gravity
effects are removed by subtracting a theoretical value of gravity from
the measured value of gravity. This theoretical value is determined
by ‘correcting’ the value of normal gravity on the ellipsoid to the
measurement level. This only requires knowledge of the mathemat-
ically defined vertical gradient of the normal gravity field (δγ /δh).

3.1 Normal gravity (latitude correction)

The magnitude of the normal gravity field is the largest term in the
gravity anomaly and gravity disturbance (eqs 1–4). The Somigliana–
Pizetti closed formula (Moritz 1980), which is a standard in geodesy,
rather than the Chebyshev approximations often used in geophysics
(cf. Chapin 1996; Li & Götze 2001), should always be used to
compute the normal gravity (or latitude correction). This is be-
cause it is exact to 1 µGal, and arguments for computational conve-
nience in favour of the Chebyshev formulae are no longer justifiable
(e.g. Featherstone & Dentith 1997). The Somigliana–Pizetti formula
gives the magnitude of normal gravity on the surface of a geocentric
reference ellipsoid:

γ = γe
1 + k sin2 φ

√
1 − e2 sin2 φ

, (5)

where k is the normal gravity constant (not to be confused with
the universal gravitational constant, G), γ e is normal gravitational

Table 1. Parameters used to compute normal gravity using the Somigliana–
Pizetti formula (eq. 5) and the second-order free-air correction (eq. 6). Values
for the GRS80 ellipsoid are from Moritz (1980).

Parameter Definition GRS80 value

a Ellipsoid semi-major axis 6378 137 m
b Ellipsoid semi-minor axis 6356 752.3141 m
γ e Equatorial normal gravity 9.780 326 771 5 m s−2

γ p Polar normal gravity 9.832 186 3685 m s−2

k (bγ p /aγ e) − 1 0.001 931 851 353
e2 (a2 − b2)/a2 0.006 694 380 022 90
f (a − b)/a 0.003 352 810 681 18
m (ω2a2b)/GM 0.003 449 786 003 08
ω Angular velocity 7292 115 × 10−11 rad s−1

GM Geocentric gravitational constant 3986 005 × 108 m3 s−2

acceleration at the equator and e2 is the square of the first numerical
eccentricity of the ellipsoid (Table 1). Importantly, the geocentric
latitude (φ), which is compatible with GRS80, must be used in
eq. (5). Finally, since the normal gravity vector is orthogonal to
the surface of the normal ellipsoid (which is both an equipotential
surface and a geometrical figure), the normal gravity vector is simple
to orient given the dimensions of the ellipsoid and the geocentric
latitude.

3.2 The corrections to normal gravity

3.2.1 Free-air correction

In geodesy, the free-air ‘reduction’ is used to partly downward-
or upward-continue observed gravity to the geoid using the ver-
tical gradient of normal gravity as an approximation (i.e. δγ /δh,
the first derivative of eq. (5) with respect to ellipsoidal height).
In geophysics, the same quantity is used to correct normal grav-
ity to the level of the measurement. In both cases, a second-order
free-air correction is more realistic than the linear approximation of
0.3086 mGal m−1 since it takes into account the oblate elliptical
shape of the Earth. From Featherstone & Dentith (1997), this second-
order free-air correction, which can be derived from eq. (5), is

δgF = δγ

δh
= 2γe

a
(1 + f + m − 2 f sin2 φ)h − 3γe

a2
h2, (6)

where f is the geometrical flattening of the ellipsoid, m is the geodetic
parameter, which is the ratio of gravitational and centrifugal forces
at the equator and a is the semi-major axis length (equatorial radius)
(Table 1). Note that because this equation is derived from eq. (5), the
ellipsoidal height (h) is the elevation that should strictly be used. The
difference between the linear and second-order free-air corrections
reaches −5.7 mGal at the summit of Mt Everest (φ ≈ 27◦58′, H ≈
8848 m). Though this difference may appear small, it is a systematic
effect and is very simple to compute.

3.2.2 Bouguer correction

In geodesy, the Bouguer correction is used as a means to smooth
the gravity field in order to reduce aliasing during gridding and
prediction of gravity data. In order to preserve the mass of the Earth,
the Bouguer reduction is subsequently restored before computation
of the co-geoid (cf. Featherstone & Kirby 2000).

In geophysics, the Bouguer reduction is used in an attempt to
remove the gravitational effect of topographic masses and hence the
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high degree of correlation between the free-air gravity anomaly and
elevation. The Bouguer gravity anomaly appears to be the standard
quantity that is interpreted in geophysics. However, based on the
series of short notes and correspondence in the journal Geophysics
(e.g. LaFehr 1991a,b, 1998; Chapin 1996; LaFehr & Chan 1986;
Talwani 1998), it is evident that the application of the Bouguer
correction is generally not applied according to a uniform standard.
This also applies to geodesy, albeit occurring more recently (e.g.
Vanicek et al. 2001).

The simple Bouguer correction (Bullard A correction) is com-
monly used as a standard model to attempt to remove the gravita-
tional attraction of topographic masses from gravity observations.
This must be applied in conjunction with the free-air correction to
compute the simple Bouguer gravity anomaly. However, there are
two models for this process—a planar model (i.e. the Bouguer plate)
and a spherical model (i.e. the Bouguer shell and cap).

The Bouguer plate correction is widely used, probably because it
is relatively straightforward to derive. Thus, it appears in many geo-
physical and geodetic textbooks. However, an infinitely extending
plate approximates the shape of the Earth very poorly (e.g. Qureshi
1976). Accordingly, several authors in both geodesy and geophysics
(e.g. Karl 1971; Hensel 1992; LaFehr 1992; Chapin 1996; Talwani
1998; Smith et al. 2001; Vanicek et al. 2001) advocate the use of a
spherical model for the simple Bouguer correction, which is obvi-
ously more realistic.

The role of the simple Bouguer correction is a notable example
of where geodesy and geophysics appear to have diverged. View-
ing the majority of references cited in the ‘geophysical’ papers (e.g.
Karl 1971; LaFehr 1991a,b, 1992, 1998; Hensel 1992; Chapin 1996;
Talwani 1998; Li & Götze 2001) and the ‘geodetic’ papers (e.g.
Smith 2000; Smith et al. 2001; Vanicek et al. 2001) provides evi-
dence of lack of ‘communication’ between these groups. An earlier
example is given in LaFehr (1991b) ‘Although it is somewhat puz-
zling that Bullard (1936) chose not to avail himself of the Lambert
(1930) formula. . . ’. Clearly, this needs redressing.

One particular ambiguity (or area of confusion) is the application
of the spherical Bouguer correction over a cap of 166.7 km (the outer
radius of the Hayford–Bowie system), which is approximately equal
to the Bouguer plate correction (2π Gρ h mGal m−1), depending
on elevation (cf. LaFehr 1998; Talwani 1998). This is compounded
by the role of the Bullard B (curvature) correction (LaFehr 1991a).
Therefore, further work is required to unambiguously define and
hence realize the simple (plate, shell and/or cap) Bouguer correction,
both in geodesy and geophysics. Meanwhile, recommendations for
standardization (e.g. LaFehr 1991b) are particularly relevant.

Irrespective of the use of the plate/shell/cap Bouguer models of
the topography (which must also be embedded in the terrain cor-
rection for consistency; described next), the overriding limitation in
this correction is the accurate estimation of the topographic mass-
density (e.g. LaFehr 1991b; Vanicek et al. 1999; Huang et al. 2001).
Incorrect estimation of the topographic mass-density causes distor-
tions in the Bouguer gravity anomalies. These are usually highly
correlated with geological structures, thus causing problems in geo-
physical interpretations, and causing aliasing in gravity gridding
and prediction in geodesy.

The former raises the question of whether the Bouguer correc-
tion should even be used for quantitative modelling in geophysics.
Given the numerous model- and data-based problems in practically
realizing the Bouguer gravity anomaly or disturbance, it may be
preferable to construct forward and inverse geological models that
include topography and generate free-air gravity anomalies or dis-
turbances at the observation points (cf. Fullargar et al. 2000). In

this way, the topographic mass variations that are the reason for the
Bouguer correction can be included directly in the interpretation.
However, when presented in map form, the high degree of correla-
tion between gravity and topography means that the free-air anomaly
is difficult to interpret. If gravity data are to be used purely in map
form for interpreting geology, then the complete Bouguer anomaly
incorporating variable topographic density does have demonstrable
advantages (e.g. Flis et al. 1998).

3.2.3 Terrain correction

In geophysics, the complete/refined Bouguer correction comprises
the simple Bouguer correction and the terrain correction. This cor-
rection is applied to the free-air gravity anomaly or disturbance to
yield the complete/refined Bouguer gravity anomaly or disturbance,
respectively. The terrain correction (Bullard C correction) is used to
model and remove the gravitational effects of the topography resid-
ual to the Bouguer plate/cap/shell. Of course, the terrain correction
used must be consistent with the spherical or planar Bouguer model
(cf. LaFehr 1991a; Takin & Talwani 1966; Vanicek et al. 2001).

In geodesy, the terrain correction is used as part of a ‘condensa-
tion’ reduction (normally according to Helmert’s second method) to
replace the gravitational effect of the in situ topographic masses with
an equivalent layer situated (condensed/compressed) at the geoid
(e.g. Martinec & Vanicek 1994b). Alternatively, the masses can be
moved mathematically inside the geoid. This condensation reduc-
tion is required to make the gravity anomaly field a harmonic func-
tion, thus permitting the solution of the geodetic boundary-value
problem by Stokes’ method. Essentially, the terrain correction is
applied to the free-air gravity anomaly to yield the Faye gravity
anomaly, which is an approximation of Helmert’s gravity anomaly.
The terrain correction is also used during the gridding and predic-
tion of gravity data to reduce aliasing prior to computation of the
geoid.

There appears to be much ambiguity, confusion and debate over
the application of the ‘terrain correction’ (cf. Hammer 1982), es-
pecially as each discipline appears to use the same terminology to
describe slightly different processes. Moreover, some of the terrain
correction models used in geodesy are equivalent to the geophysical
terrain correction under certain assumptions (e.g. Moritz 1968; Li
& Sideris 1994; Martinec et al. 1993).

Historically, terrain corrections were computed using Hammer
(1939) charts about each gravity computation point. This is an ex-
tremely time-consuming process, and was thus neglected for all but
the most rugged topography. For instance, terrain corrections that
reach 29 mGal have only been applied to the Australian gravity
database in Tasmania (e.g. Murray 1998). However, terrain cor-
rections can now be computed very efficiently from the regular
grid of elevations provided by digital elevation models (DEMs),
after some approximations, using the fast Fourier transform (e.g.
Forsberg 1985; Sideris 1985; Schwarz et al. 1990; Parker 1995,
1996; Kirby & Featherstone 1999). However, the use of DEMs,
which normally describe only the mean elevation in a geographical
cell, omit near-station effects that, depending on the resolution of
the DEM and the roughness of the topography, can reach several
mGal (cf. Leaman 1998; Nowell 1999).

Irrespective of the terrain correction method or discipline, there
are several common problems, which can be summarized as
follows:

(1) correct estimation of near-metre terrain effects, which may
reach several tens of mGal (e.g. Leaman 1998; Nowell 1999);
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(2) avoidance of numerical instabilities due to planar approxima-
tions (e.g. Moritz 1968; Martinec et al. 1996; Kirby & Featherstone
1999);

(3) avoidance of weak singularities in the terrain correction ker-
nel (e.g. Klose & Ilk 1993);

(4) the use of more realistic models of the topographic morphol-
ogy than the flat-topped prisms given in a DEM (e.g. Blais & Ferland
1984; Ma & Watts 1984; Cogbill 1990; Barrows & Fett 1991; Smith
2000);

(5) the effect of errors in DEMs on the computed terrain correc-
tions (Kirby & Featherstone 1999, 2001);

(6) the computation of terrain corrections over the whole globe
(e.g. Danes 1982; Smith 2002).

As for the simple Bouguer correction, the role of topographic mass-
density variations in the terrain correction should also be considered.
Importantly, these must be consistent with the density model used
for the simple Bouguer correction. A related consideration is the
use of the gravitational constant (cf. LaFehr 1998; Talwani 1998),
the numerical value of which is not well known (e.g. Schwarzschild
2002).

Clearly, there is a need for a systematic study of the terrain cor-
rection in both geodesy and geophysics, including theoretical and
numerical comparisons of the terrain correction algorithms with
one another. Importantly, such a study should source all the liter-
ature from each discipline. This should help to further clarify the
differences and ambiguities between the geodetic terrain correction
and the geophysical terrain correction.

3.2.4 Atmospheric correction

An additional consideration is that the parameters that define the
normal gravity field are determined using satellite-derived geodetic
data. As such, normal gravity includes a component due to the mass
of the Earth’s atmosphere, whereas gravity observed on or above the
Earth’s surface does not. Therefore, the atmospheric gravity correc-
tion (e.g. Ecker & Mittermayer 1969; Sjöberg 1999) must be added
to the gravity anomaly and gravity disturbance. This correction term
is typically small (<1 mGal) and for geophysical surveys it is usu-
ally insignificant. In effect, the atmospheric correction term can be
considered to be a bias that is unimportant to geophysical explo-
ration, but is important in geodesy where the mass of the Earth must
be preserved.

4 I M P L I C AT I O N S F O R O T H E R
G R AV I T Y M E A S U R E M E N T T Y P E S

4.1 Global geopotential models

A global geopotential model is a representation of the Earth’s gravi-
tational field (geoid heights, gravity anomalies, gravity disturbances
and vertical deflections) in terms of spherical harmonic basis func-
tions. These are classified as satellite-only models, derived from
orbital analysis, combined models, derived from terrestrial gravime-
try, satellite altimetry and orbital perturbations, or tailored models,
where additional data are used to refine existing models (Kearsley &
Forsberg 1990; Wenzel 1998). Lambeck & Coleman (1983), Nerem
et al. (1995), Rapp (1997a) and Featherstone (2002) review global
geopotential models. These are likely to be improved significantly
with the advent of dedicated satellite gravity field missions.

When computing gravity anomalies (at the geoid) from a global
geopotential model, it is important to recognize that they are based

on the assumption that the gravity field is a harmonic function,
which only applies outside the gravitating masses. Therefore, addi-
tional corrections need to be applied if gravity anomalies or gravity
disturbances at the geoid are required. Some techniques to apply
these corrections are given in Rapp (1997b) and Sjöberg (1996).

4.2 Satellite radar altimetry

Satellite radar altimetry can be used to determine gravity anoma-
lies and gravity disturbances at the geoid in ocean areas. This
is often achieved by taking along-track gradients of stacked sea-
surface heights (measured by the altimeter) to yield vertical deflec-
tions, which are then converted to gravity anomalies. Alternatively,
the inverse Vening Meinesz integral can be used (Hwang 1998).
Knudsen & Andersen (1998), Hwang et al. (1998) and Sandwell
& Smith (1997) have computed grids of gravity anomalies in open
ocean areas from a combination of satellite radar altimetry missions.

Gravity disturbances can also be determined in ocean areas from
satellite altimetry. Interestingly, however, no such grids have been
computed (or at least documented as such). Since the satellite al-
timeter actually measures the instantaneous sea surface, these data
can be averaged (stacked) to estimate the mean sea surface shape.
After application of a sea surface topography model, this gives the
geoid. This can be used to determine normal gravity at the geoid
(and to apply the Bouguer correction for the density of seawater),
the geophysical indirect effect (Section 2.4) and subsequently the
gravity disturbances at the geoid.

4.3 Airborne gravimetry

Scalar and vector gravity measurements are now being made from
aircraft using a variety of techniques (e.g. Schwarz & Wei 1995;
Boedecker & Neumayer 1996; Hein 1996; Schwarz & Glennie 1998;
Childers et al. 1999; Glennie et al. 2000; Brozena & Childers 2001).
Essentially, the kinematic accelerations of the aircraft are measured
and, together with Eötvös effects, are removed from the accelera-
tion measured by a modified shipboard gravimeter or inertial mea-
surement unit, which sense both the gravitational field and aircraft
acceleration.

Since GPS is used routinely in airborne gravimetry, ellipsoidal
heights are directly available. Scalar and vector gravity disturbances
are, therefore, easy to compute at the aircraft altitude. The free-air
correction is applied over the ellipsoidal height to correct normal
gravity on the ellipsoid up to the level of the measurement point.
However, to compute gravity anomalies (to merge with terrestrial
gravimetry, for example) downward continuation is required (cf.
Tscherning et al. 1998). This is straightforward when applied down
to the topographic surface (ignoring atmospheric effects), but suf-
fers the same limitations as terrestrial gravimetry when downward-
continued through the topography.

Because gravity disturbances are easily determined from airborne
gravity measurements, it is proposed here that geophysical forward
models and interpretations of airborne gravity data use gravity dis-
turbances at the mean flight height or at the maximum height of the
topography over which the survey is flown. Forward models could
also be constructed that are consistent with both gravity disturbances
at the flight height and at the Earth’s surface, thereby providing im-
proved constraints on geophysical inversions of gravity data.

4.4 Airborne gravity gradiometry

Scalar and vector gravity measurements can also be derived from
airborne gravity gradiometry (e.g. Jekeli 1993; Swain 2001). The
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advantage of using a gravity gradiometer in an aircraft, over air-
borne gravimetry, is that the kinematic acceleration of the aircraft is
essentially removed when measuring the gravity gradient. Again,
GPS is often used to coordinate the observations, which allows
for the computation of gravity disturbances at the flight elevation.
If gravity anomalies or disturbances are required at a lower alti-
tude, the data must be downward-continued (Tziavos et al. 1988;
Forsberg & Kenyon 1996), which is subject to the same limitations
as for airborne gravimetry.

As proposed for airborne gravity, geophysical forward models
can be constructed that generate gravity gradients at the aircraft al-
titude (cf. Dransfield 1994). Again, this avoids problems with the
downward continuation of airborne gradiometry data. The forward
models can also be constructed to generate gravitational accelera-
tions so that other measurements can be used, such as land or marine
gravimetry.

4.5 Dedicated satellite gravimetry

Three satellite gravimetry missions (GRACE, CHAMP and GOCE)
will be in operation during the next 7 years (e.g. Ilk 2000;
Rummel et al. 2002; Featherstone 2002). Only the GOCE mis-
sion will use a dedicated space-borne gravity gradiometer, but
the GRACE and CHAMP missions deduce gravity gradients us-
ing satellite-to-satellite tracking. The gravity models derived from
these missions should provide an order of magnitude improvement
in our knowledge of the global gravity field to wavelengths greater
than ∼200 km. The new models are likely to be expressed in terms
of surface spherical harmonic basis functions and so gravity dis-
turbances can be computed for all points exterior to the gravitating
masses. If gravity anomalies are required, downward continuation
through the topography is required and the limitations are the same
as for other measurement techniques.

As a result of the spatial resolution of these models, they are likely
to be of more use in geodesy and global geophysics. However, the
improved precision will make them more useful for removing re-
gional trends from local gravity data prior to geophysical modelling
and interpretation. Another advantage is that the new satellite data
provide totally independent gravity field information, thus remov-
ing the problems associated with correlation between surface gravity
data used in existing global geopotential models.

5 S U M M A RY A N D
R E C O M M E N DAT I O N S

From this cursory review of the geodetic and geophysical literature,
it is suggested that there needs to be an integrated examination of the
‘gravity anomaly’ from both the geophysical and geodetic perspec-
tives, quantifying the key similarities and differences. Importantly,
this must include a complete review of both the geodetic and the
geophysical literature, which appears not to have been conducted
before. This should eliminate the ambiguities (confusion?) between
these disciplines, a notable example being the role of the ‘terrain
correction’.

From this review (and hopefully a generalization), answers to
questions in geophysics such as ‘should we be computing gravity
anomalies or gravity disturbances and at what point’, and ‘should we
be interpreting gravity disturbances on or above the Earth’s surface’
can be sought. The use of gravity disturbances outside the gravitating
masses avoids hypotheses concerning the topographic mass density

and the ambiguities in the mathematical models of the Bouguer
gravity anomaly. Instead, these can be embedded in a forward model.

In conclusion, the ‘gravity anomaly’ is an ambiguous quantity
for many reasons and the terminology needs to be re-examined us-
ing some unified geodetic and geophysical approach. It is therefore
proposed that a working party, or similar, be established comprising
both geophysicists and geodesists to resolve these differences and
to define uniform standards for dealing with gravity data.
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