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Abstract 

The experiments made with a paraconical pendulum at  Suceava Planetarium 
(Romania) during annular solar eclipse from 22 September 2006 confirm once again the 
existence of the Allais effect (change of  speed of  rotation of  plane of oscillation of a 
pendulum during an eclipse ) and Jeverdan-Rusu-Antonescu effect ( change of period of 
oscillation of a pendulum  during an eclipse)  

Also is take in evidence the existence of  the quantization of the azimuth of plane 
of oscillation of a pendulum which can be treated as a quantum oscillator. 

A large number of the excited states for a quantum Foucault pendulum are doubly 
degenerate in a similar way as the time dependence of the azimuths for a paraconical  
pendulum with a high sensitivity.  

The quantum eigenstates for a large energy of a Foucault pendulum predict that 
the probability density of finding the particle is largest near the classical trajectories. 
 Although the annular solar eclipse from 22 September 2006 was not optical 
visible from Romania, a gravitational perturbation was detected with a sensitive 
paraconical pendulum and leds to ideia that gravitational perturbations who occur during 
an eclipse are similarly with tide when the Moon are at antimeridian .  
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1. Introduction  
 
 The Foucault effect 
 It is well known that in the year 1851 J.B.L. Foucault has showed that the Earth 
rotation around his axis can be demonstrated by the rotation of the plane of 
oscillation of a long pendulum. This rotation is made constant after the law               
F = 15º sinφ/h, where F is the rate at which the azimutal angle change in time, φ is 
the latitude of the place of observation and  h is the time in hours, and is named  the 
Foucault effect. 
  The Allais effect  
 During solar eclipses from 30 June 1954 and 22 October 1959 Maurice Allais 
( 1968 Nobel Prize in Economics )  utilized a short pendulum suspended on a ball 
(named paraconical pendulum) have discovered that during a solar eclipse, the 
speed of rotation of plane of oscillation of pendulum there are not constant as in the 
case of Foucault experiments, this is the eclipse effect or, the Allais effect[1]. 
 The Jeverdan-Rusu-Antonescu effect 
 During solar eclipse from 15 February 1961, Gheroghe Jeverdan, Gheorghe I. 
Rusu and Virgil Antonescu, have discovered that during a solar eclipse the period of 
oscillation of a Foucault pendulum is changed. In the same time this means that also 
the value of the gravitational acceleration g is changed, this is The Jeverdan-Rusu-
Antonescu effect [2].  

 The pioneering effect  
 In the years 1980 and 1989 the NASA's specialists have discovered that between 
the position of Pioneer 10, Pioneer 11 and Ulysses made by Doppler determinations and 
the positions calculated theoretical were a difference of around 400000 km. This 
anomaly is named now the Pioneering effect [3]. 
  A similar gravity anomaly was measured during the line-up of Earth-Sun-Jupiter-
Saturn in May 2001 [4]. During the total solar eclipse in 1977, the measurements with a 
high-precision gravimeter have detected a decrease in the earth’s gravity and the effect 
occurred immediately before and after eclipse but not at its height [5].  
 These anomalies have determined us to do  pendulum experiments in distinct 
mode such: solare eclipses, lunar eclipses, planetary alignments etc. 
One of these results  is presented in this papier. 
 
 2.The confirmation of the Allais effect during solar eclipse 
    from 22 September 2006 
 
 In order to measure the azimuth of the plane of oscillation, the second author used 
a  pendulum of 3.05m length and 8kg mass suspended with a ball (paraconical 
pendulum) with shaped like a horizontal biconvex lens and with distinctively rounded 
edges so as to reduce wind drag.  
 For measure the azimuth is utilized a vernier  with 0.1º precision. 
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 Figs.1-3 show the experimental azimuth as a function of time for 6 series 
(successive chained observations each of  9 minutes) and the expected exact azimuth for 
Foucault effect  (line named F), during an annular solar eclipse of 22 September 2006. 
Its maximum occurred at 14h 40.2 min Romanian Summer Time at Suceava, or 11h 
40.2 min UT. 
 From these graphs we see that in the days before and after eclipse on 21 and 23 
September the curves have the tendency to have negative values whereas in the day of 
eclipse the tendency is to have positive values. This fact confirms the existence of the 
Allais effect. 
 Another very interesting fact is that the position of plane of oscillation of 
pendulum has quantized values! The series 1, 2, 3 and 4, 5, 6 from 21 September 2006 
(Fig.1) can be considered together because of similarities for the time dependence of the 
azimuth, analog with the degenerate states of quantum levels from atomic physics. Also, 
the series 3 and 4 from 22 September 2006 (Fig.2) can be grouped together. This leads 
us to attempt to give a quantum treates of behaviour of pendulum. 
  
 
 3. Classical Foucault pendulum 
 
 For a pendulum small compared with the earth, the vertical motion can be 
neglected and at the same time the term in ω2 where ω is the angular velocity of the 
earth. Using the relations between the coordinates q1, q2, q3 and the length l of the 
pendulum  
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 Using the approximations (2a), the Lagrange L and Hamiltonian H functions for a 
Foucault pendulum are given by the relations  
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where m is the mass of the particle, l is the length of the pendulum, g is the earth 
acceleration, λ is the latitude, q1 and q2 are the Cartesian coordinates in the horizontal 
plane, 1q&  and 2q& are the velocities and 1p , 2p  are the momentum values 

211 sin qmqmp λω−= &                                                                                         (6) 

122 sin qmqmp λω+= &                                                                                         (7) 
 The corresponding  motion equations are a system of coupled second ordinary 
differential equations that are the mathematical model for the Foucault pendulum within 
the approximation of little amplitude displacements 
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Multiplying the equation (9) by i and adding it to the equation (8) gives the differential 
equation for motion in the horizontal plane 

0sin2 2
0 =++ ξωξλωξ &&& i                                                                                   (10) 

where ξ = q1 + i q2 is a complex variable and 2
0ω = g/l .The solution of the equation (10) 

is (ω2 has been neglected in comparison with 2
0ω ) 
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 The laws of conservation of energy E and angular momentum La are satisfied with 
these coordinates 
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we obtain  
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in a rotating system with the angular velocity )sin(λω . In this system, the Hamiltonian 
(5) is 
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The period on elliptical path is 
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and the time for a complete rotation of the ellipse plan is 
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 The experiment on the Foucault pendulum is accompanied by the Airy precession  
(small ellipses appear) with an angular velocity  
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in the relations (12) and (13). Thus in place of  the relations (14), (15), (16) and (21) we 
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 If we use the approximation (2b), then in place of the relation (20) we have 
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 For a classical Foucault pendulum with l = 3.05m, m = 8Kg, g = 9.81 m/s2, we 
obtain E = 0.68058884j, Ec = 0.68058885j, La = 0.0000228075Kgm2/s, La

c = 
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0.0000228076 Kgm2/s, τ = 3.5034448s and τc = 3.50523186s. For Suceava the 
astronomical latitude is λ = 47o39’ and )sin(3 λωω =  = 0.0000538929rad/s.  
 Fig. 4 shows a simulation of the path of the Foucault pendulum (a), of the Allais 
pendulum (b), the differences between their coordinates (c), the temporal derivative of 
the azimuth for a Foucault pendulum (d), the differences between temporal derivatives 
for both pendulums (e) and the elliptical trajectory (the major and minor axes of the 
elliptical trajectory of the pendulum are a = 0.23m and b = 6.9×10-6m, respectively) in 
the rotating reference system of the Foucault pendulum (f).  
 Fig. 5 shows the same graphs as in Fig.4 but for a longer pendulum (l =3.05×20m, 
τ = 15.66788s, a = 0.23m, b = 3×10-5m). θ&  is zero for t = τ,  2τ, 3τ, 4τ, etc. An increase 
in the length of the pendulum leads to a larger of the Foucault effect in comparison with 
the Allais effect and the differences are visible in a perpendicular direction to that of the 
swing direction (Figs.4-5, (c)).   
 
4. Quantum Foucault pendulum  
 
 The Hamiltonian operators for a quantum Foucault pendulum in a fixed system on 
the earth, without and with the Airy precession are, respectively  

( ) 2
3

2222
02

2

2

22

22
ˆ ωω mayxm

yxm
H −++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

−=
h                                           (31) 

( ) 2
2

2
2

3
2222

02

2

2

22

)
8
31(

22
ˆ

l
amayxm

yxm
H −−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

−= ωωh                           (32) 

 In this case the corresponding Schrödinger equations take the form  
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 The Hamiltonian operator and the Schrödinger equation for a quantum Foucault 
pendulum in a rotating system are given by 
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 If we use the approximation (2b), then in place of the relation (36), we have 
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 The values of the energy can be obtained from the solution of the Schrödinger 
equations (33), (34), (36) and (37). A large number of the excited states for a quantum 
Foucault pendulum are pair of the doubly degenerate. 
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 We have solved the Schrödinger equations for the given boundary conditions (the 
Dirichlet boundary condition at the ends of the interval where the wave function can be 
approximated with 0) by using the Galerkin’s variant of the finite element method, with 
triangular grid and variable step [7].  
 Fig. 6 show the calculated probability density, with the Schrödinger equation (37), 
for the first pairs of excited doubly degenerate states of a quantum Foucault pendulum 
 (l = 3.05m, a = 0.23m, b = 0.023m, m = 8Kg,  g = 9.81 m/s2) with the energies           
(in h  = 1 units): e1 = e11  = 18.588058;    e2 = e22 = 31.521995; e3 = e33= 48.414085; 
e4 = e44 = 63.733378; e5 = e55 = 68.378136; e6 = e66 = 84.758123;                           e7 
= e77 = 91.269980; e8 = e88 = 112.904708; e9 = e99 = 117.030554;                                 
e10 = e1010 = 136.740011; e11 = e1111= 144.932609; e12 = e1212 = 145.616593;   
e13 = e1313 = 163.043895 (for two higher states e = ee = 291.502732;                         E 
= EE = 899.22807). 
  The quantum eigenstates for a large energy of a Foucault pendulum predict that 
the probability density of finding the particle is largest near the classical trajectories 
(compare the Figs.6 (E),(EE) with Fig.4 (a)). 
  A large number of the excited states for a quantum Foucault pendulum are doubly 
degenerate in a similar way as the time dependence of the azimuths for a paraconical 
Allais pendulum with a high sensitivity. 
 

5. The variation of the gravitational acceleration - the JRA effect 
 

 First we use the method of Jeverdan-Rusu-Antonescu (applied for the first time to 
the eclipse from 15 February 1961, developed and utilized by Olenici beginning with 
solar eclipse from 11 August 1999) and we have determined the experimental value of 
the period of oscillation of the pendulum before (Tb = 3.5060877s) and after  
(Ta = 3.5061041s) the maximum of the eclipse with the average (Tm = 3.5060959s) 
assumed to correspond to the local (Suceava) gravitational acceleration gs = 9.81m/s2.   
 The experimental value of the period of oscillation of the pendulum during the 
maximum of the eclipse is Te = 3.5060706s.  
 From the relations sm glT /2π=  and ee glT /2π=   we obtain 

2)/( emse TTgg =  = 9.8101412 m/s2. Thus, our measurements show that during the 
maximum of the sun eclipse from 22 September 2006, the gravitational acceleration ge 
is increased. This confirme the existence of  the Jeverdan-Rusu-Antonescu effect. 
 For measure of period of oscillation was utilized a cronometer with 0.01s 
precision, electrically ordered by point of pendulum, and where take in account 150 
oscillation at every determination. 
 Also, in order to estimate the variation of the gravitational acceleration with a new  
method, we put in the relation (14), the experimental azimuth value (in radians) in the 
place of θ and solve a transcendental equation in g (we take only a value which is very 
close to a given g). 
  Tables 1 – 3 and Fig. 7 show the calculated gravitational acceleration as a 
function of 6 series in the day (22 September 2006) of the annular solar eclipse. 
  Fig. 8 shows the calculated differences between the gravitational accelerations 
for successive series in the day (22 September 2006) of the annular solar eclipse. The 

toby
Highlight



8 

 

results are qualitatively similar with the measurements of Wang et al. [5] and the 
comments of Duif [8] (a decrease in the gravitational acceleration before and after 
eclipse and an increase in the time of eclipse). 
 
 6. Conclusions 
  
 Although the annular solar eclipse from 22 September 2006 was not optical 
visible from Romania, a gravitational perturbation was detected with a  sensitive 
paraconical  pendulum. This show us that gravitational perturbations who appear during 
an eclipse in a zone of antieclipse are similarly with tide produced by the Moon when 
are at antimeridian. 
 Thus we obtained a change in the velocity of the azimuth of plane of oscillation of 
a pendulum and a confirmation of the Allais effect for a measurement in a place where 
the eclipse is not optical visible. 
 The results obtained by using two methods show an increase of the gravitational 
acceleration at the maximum of the eclipse and a confirmation of the Jeverdan-Rusu-
Antonescu effect (eclipses from 15 February 1961 , July 1991 , August 1999 etc). 
 A large number of the excited states for a quantum Foucault pendulum are doubly 
degenerate in a similar way as the time dependence of the azimuths for a lenticular 
aerodynamic paraconical  pendulum with a high sensitivity in the time of the annular 
solar eclipse from 22 September 2006. 
 This result consolidate the ideia of quantization of gravity and the existence of  a 
quantum mecanics at cosmical level.  
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Fig. 1. The experimental azimuth as a function of time for 6 series (1 from 11h 40min to 
12h 40min, 2 from 12h 40min to 13h 40min, 3 from 13h 40min to 14h 40min, 4 from 
14h 40min to 15h 40min, 5 from 15h 40min to16h 40min, 6 from 16h 40min to 17h 
40min) and the expected exact azimuth for Foucault effect (line F) in a day (21 
September 2006) before a partial solar eclipse.  
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Fig. 2. The experimental azimuth as a function of time for 6 series (1 from 11h 40min to 
12h 40min, 2 from 12h 40min to 13h 40min, 3 from 13h 40min to 14h 40min, 4 from 
14h 40min to 15h 40min, 5 from 15h 40min to 16h 40min, 6 from 16h 40min to 17h 
40min) and the expected exact azimuth for Foucault effect (line F) in the day (22 
September 2006) of the annular solar eclipse (its maximum occurred at 14h 40.2min 
Romanian Summer Time or 11h 40.2 min UT at Suceava). 
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Fig. 3. The experimental azimuth as a function of time for 6 series (1 from 11h 40min to 
12h 40min, 2 from 12h 40min to 13h 40min, 3 from 13h 40min to 14h 40min, 4 from 
14h 40min to 15h 40min, 5 from 15h 40min to 16h 40min, 6 from 16h 40min to 17h 
40min) and the expected exact azimuth for Foucault effect (line F) in a day (23 
September 2006) after eclipse.  
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Fig. 4. Simulation of the path of the Foucault pendulum (a), of  the paraconical  
pendulum (b), the differences between them (c), the temporal derivative of the azimuth 
for a Foucault pendulum (d), the differences between derivatives for both pendulums (e) 
and the elliptical trajectory in the rotating reference system of the Foucault pendulum 
(f) for        l = 3.05m, τ = 3.5034448s, a = 0.23m, b = 6.9×10-6m, b/l = 2.3×10-6.  
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Fig. 5. Simulation of the path of the Foucault pendulum (a), of  the paraconical 
pendulum (b), the differences between them (c), the temporal derivative of the azimuth 
for a Foucault pendulum (d), the differences between derivatives for both pendulums (e) 
with the same precision as in Fig. 1, and the elliptical trajectory in the rotating reference 
system of the Foucault pendulum (f) for l =3.05×20m, τ = 15.66788s, a = 0.23m, b = 
3×10-5m,          b/l = 5.1×10-7.  
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Fig. 6. The calculated probability density (with a contour plot) with the Schrödinger 
equation (37) in h  = 1 units, for the first pairs of excited doubly degenerate states of a 
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quantum Foucault pendulum (l = 3.05m, a = 0.23m, b = 0.023m, m = 8Kg, g = 9.81 
m/s2). 
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Fig. 7. The calculated gravitational acceleration as a function of 6 series in the day (22 
September 2006) of a annular solar eclipse.  
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Fig. 8. The calculated differences between the gravitational accelerations for successive 
series (the differences between the successive columns in Tables 2-3) in the day (22 
September 2006) of the annular solar eclipse. 
 
Table 1. 
 The calculated gravitational acceleration as a function of 6 series in the day before (21 
September 2006) and after (23 September 2006) of a partial solar eclipse. For the 
grouped series we have used a mean value. 
 
t(min)     g (21 Sept.)                 g (21 Sept.)                g (23 Sept) 

 (11h40m -14h39m)        (14h40m -17h39m)        (11h40m – 17h39m) 
9    9.8246212                   9.8247403                   9.8247576 
18    9.8088554                   9.8086101                   9.8088481 
27    9.8035510                   9.8035535                   9.8035456 
36    9.8008999                   9.8009006                   9.8009027 
45    9.8120359                   9.8120358                   9.8120361 
54    9.8088538                   9.8088537                   9.8088549 
 
 
Table2. The calculated gravitational acceleration as a function of 6 series in the day (22 
September 2006) of the annular solar eclipse. 
 
t(min)     g (22 Sept.)                 g (22 Sept.)                g (22 Sept) 

(11h40m -12h39m)         (12h40m -13h39m)        (13h40m-14h39m) 
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9     9.8247375                  9.8247572                    9.8247626 
18     9.8088794                  9.8088480                    9.8088513 
27     9.8035533                  9.8035470                    9.8035495 
36     9.8009006                  9.8008955                    9.8008990 
45     9.8120361                  9.8120295                    9.8120352 
54     9.8088536                  9.8088569                    9.8088529 
 
 
Table3. The calculated gravitational acceleration as a function of 6 series in the day (22 
September 2006) of the annular solar eclipse. 
 
t(min)     g (22 Sept.)                 g (22 Sept.)                g (22 Sept) 

(14h40m -15h39m)         (15h40m -16h39m)        (16h40m-17h39m) 
9     9.8247628                  9.8247592                   9.8247592 
18     9.8088513                  9.8088504                   9.8088498 
27     9.8035495                  9.8035489                   9.8035483 
36     9.8008990                  9.8008986                   9.8008979 
45     9.8120352                  9.8120348                   9.8120343 
54     9.8088529                  9.8088525                   9.8088523 
  
  




