
VOL. 80, NO. 2 JOURNAL OF GEOPHYSICAL RESEARCH JANUARY 10, 1975 

A Necessary Condition for the Geodynamo 
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A necessary condition for the generation of magnetic fields by fluid motions in a sphere is derived in 
terms of the magnetic Reynolds number on the basis of the radial component of the velocity field. A sec- 
ond parameter entering the criterion is the ratio between the energy of the poloidal component of the 
magnetic field and the total magnetic energy. Since bounds on this ratio can be obtained from energetic 
considerations, the criterion can be used as a restriction on possible dynamo mechanisms. Several' recent 
suggestions for the origin of the geodynamo in a stratified outer core are critically reviewed. 

It is generally accepted that the earth's magnetic field is 
generated by motions within the liquid outer core of the earth. 
Yet in spite of a considerable research effort in the past 
decades, it has not been possible to find an unambiguous solu- 
tion for the source of the energy dissipated by ohmic heating 
and viscous friction. The difficulty of this problem has been 
compounded recently by the suggestion of Higgins and 
Kennedy [1971] that the outer core is stably stratified. This 
proposal would eliminate or severely inhibit the traditional 
contenders for the energy source of the geodynamo, namely, 
convection and precession of the earth [Bullard, 1949; Malkus, 
1968]. Stimulated by Kennedy and Higgins' [1973] 'core 
paradox,' a number of workers have proposed alternative 
sources for the earth's magnetic field [Bullard and Gubbins, 
1971; Won and Kuo, 1973; Mullan, 1973]. In general, however, 
these proposals fail to take into account the rather stringent 
dynamic requirements for the geodynamo. This note will 
derive a simple necessary condition for the geodynamo that 
may help to restrict the class of feasible hypotheses. 

In view of the complexities of actual solutions of the 
dynamo problem, necessary conditions for the generation of 
the earth's magnetic field have long been regarded as highly 
desirable. The only known quantitative condition of this kind 
is a lower bound on the magnetic Reynolds number Re,,. The 
existence of a lower bound was suggested originally by Bullard 
and Gellman [1954], and an explicit value applicable to the 
earth has been derived by Backus [1958]. According to this 
criterion, any magnetic field must decay unless 

Rein -= Uro/• • •r (1) 

where ro is the radius of the earth's core, which has been 
assumed as a homogeneous fluid sphere inside an insulating 
mantle, U is the maximum velocity with respect to an arbitrary 
system of coordinates rotating with a constant angular veloci- 
ty, and n is the magnetic diffusivity. Condition (1) was derived 
by Backus with the maximum deformation rate in place of 
U•r/ro, which is advantageous in that it becomes obvious that a 
rigid rotation does not contribute to U. The form (1) of the 
criterion was given by Childtess [1969]. We also refer to the 
discussion by Roberts [1971]. Neither the presence of the rigid 
inner core nor the inhomogeneities of the outer core and the 
finite conductivity of the mantle have been taken into account 
in (1) since their effects are of minor importance. 

A disadvantage of (1) is that it does not distinguish between 
different components of the velocity field. Most theories of 
the geomagnetic field assume a large differential rotation in the 
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earth's core and a smaller meridional circulation. Similarly, 
Kahle et al. [1967] found different orders of magnitude for the 
toroidal and poloidal components of the velocity field in their 
attempt to infer motions of the core from the observed secular 
variation. The poloidal component is generally smaller yet of 
particular importance since it can be shown that a purely 
toroidal velocity field cannot generate a magnetic field [Bullard 
and Gellman, 1954]. Only the poloidal part of the velocity field 
has a radial component, and it is desirable for this reason to 
find a condition similar to (1) involving the radial component 
of the velocity field. This will be the goal of the analysis 
described below. The importance of such a condition is 
emphasized in the case of a stably stratified core as proposed 
by Higgins and Kennedy [1971]. Although toroidal motions 
would remain unaffected in this case, any flow with a radial 
velocity component would be inhibited, with the possible ex- 
ception of internal gravity waves. 

MATHEMATICAL ANALYSIS 

In order to derive our criterion, we consider an incom. 
pressible homogeneous fluid contained in the finite volume V. 
Since the first part of our derivation does not depend on the 
particular shape of V, we shall assume only later that V is a 
sphere. The magnetic flux density B is governed by the 
dynamo equation 

(3/Ot + v. V)ll + n V X (V X B) = B. V v (2) 

which can be derived easily from Maxwell's equation and 
Ohm's law in the magnetohydrodynamic approximation. The 
magnetic diffusivity • is equal to (a•) -x, where a is the 
electrical conductivity in V and • is the magnetic permeability. 
We assume that the space outside V is insulating. Hence V X 
B = 0 holds outside V, and r ß Blrl' remains finite as the 
position vector r tends to infinity. 

By multiplying (2) by r and using the vector identity 
r ß (b ß Va) = b ß Vr ß a - a ß b, we obtain 

(O/Ot + v' V)r. B - nV:r. B = B. V v. r (3) 

in V. This equation appears in a slightly different form in 
Backus' [1968] paper, which also emphasizes the analogy to 
the heat equation, the right-hand side of (3) representing the 
heat source. Since diffusion ultimately balances the source 
term in the stationary case, (3) suggests an order of magnitude 
estimate for the radial velocity component. 
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In the following we shall derive a relation of similar form by a 
rigorous analysis. 

Multiplication' of (3) by r ß B and integration o.ver V yield 

l_ d f• (B.r).• dV = --n f• }•7B.r[ • dV 2 dt +v' 

-[' fv r. B B. • r.v dV (4) 
We have denoted the space outside V by V'. The surface 
sepa.rating V and V' is S with the outside normal n. The in- 
tegral over V + V' in (4) has been obtained by partial integra- 
ti•n and using the fact that V2r ß B vanishes in V': 

0 --- fv r.B X72r. B dV , 

In deriving (4), the fact that the term 

f,• v.• [r.B[ • dV= • n.v-• [r.B[ • dS $ 

-vanishes since n. v vanishes on S has also been used. By 
further partial integration and by using V: B = 0 and assum- 
ing that v ß r vanishes on S, we find 

frr. BB.•r.vdV-- --f•v,rB.•B.rdV 
The latter term can be bounded from above, 

--f•, v.r B-• B.r dV 
• max (v.r) lB[ • dV [Vr.B[ • dV (5) 

where Schwarz•s inequality has been used. Thus we obtain 
from (4) the inequality 

•d• (B.r) •dV • -n ß max(v.r) 

ß f,• [Vr, B[ • dV (6) 
Obviously, the radial component of B must decay when the 
quantity within 'the brackets [s negative. 

When V i s a sphere, we can derive a conditio n that permits a 
physical interpre,tation. Assuming the origin at the center of 
the sphere, we use a representation 0f.B in terms C•f poloidal 
and torOidal components: 

B = V X (V >< rh) + V •X rg (7) 

It is evident that only the poloidal field h contributes to the 
radial COmponent of B, 

r.B = r. [v x.(v x rh)] • L2h 

where -L • is the two-dimensional Laplacian on the surface of 
the unit sphere. Since we can assume without losing generality 
that the average of h over any spherical surface Ir[ -- const 
vanishes, we find L•h :> 2h, where the equality sign is assumed 
when the 0, •o dependence of h in a spherical system of cOOt- 

dinates corresponds to the lowest possible spherical harmonic 
l=l. 

f• [•.B•'r[• dF = -- f•, L•h•L•'h 
.dV •_ --2 f,• hr.• X (• X r•2h)dV 

The last term in (8) can be written in the form 

2 fvhr'V X {V X IV X (V Xrh)]} dV 
= 2 fv (• X rh)-• X [• X (• X rh)] dV 

(8) 

= X (V Xrh)l 
where the relation 

(9) 

IV x (v x r)l dF 
- f (• X rh) X [? X (• X rh)].n dS 

has been used. Apart from a factor 4/•, (9) gives the energy En 
of the poloida! part of the magnetic field. HenCe (6) can b e 
writ{•n 'in the case of a sphere as 

.. 

•d• (B.r) •dF• --n + max(v.r) E• 

' fv Ir' BI (10) +•' 

where E• denotes the tot• energy of the magnetic fidd. A•ord- 
ingly, W ½ find as a necessary cbndition for the amplification 
of fv(•. r) = dV 

max-(V' r) > n(2E•/E•) •/• (1 !) 

In the case of a n0nstationary cyclic dynamo, this condition 
must be satisfied throughout only part of the cYcle. In t• case 
of a statiobaty dynamo, (11) P•9vidcs a .necessary condition 
for the'existence of the dynamo. since a lower limit'•for th• 
•a!uc of E• is available from t•c observed geomagnetic field .. 

and since an upper estimate for E• can be 0bta{0e' d -frOm 
energy . c0n•ideiations, (1 •) p•ovides a usefultest in additioh to 
(1) for the feasibility :of hypothetical ge0dynam0 s. 

An an•ogous, though l•s u•f• •te•on can • de•v• by 
mu!tiplying(2 ) by'an arbitrary unit v•tbr k. Mu!tipii•agion of 
the resulting .equat}on by 'k ;B and integration over V•yield 

. ., 

.. 

k)dV -nmax(k'v) 

ß IB.kl dv (!2) 
after the same manipulations that led to (6) have been per- 
formed. Since the component of the velocity field in the direc- 
tion Of the axis of rotation is likely to be relatively small in:the 
earth's core because of the approximate va[!dity of the,Taylor- 
Proudman theorem, (12) may serve as a useful constraint wh,en 
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k is identified with the direction of the rotation axis of the 

earth. Yet at this point we shall not pursue (12) further. 

DISCUSSION 

We begin the discussion by relating (11) to the toroidal 
theorem mentioned in the introduc,tion, which statels that 
toroida! motions cannot generate magnetic fields. Although 
theorems of this kind are highly significant from a 
mathematical point of view, their value for physical 
applications may be questionable unless it can be shown that 
they are not limited to singular cases with special symmetries. 
Criterion (11) is helpful in this respect since it demonstrates 
that the toroidal theorem also holds for sufficiently small 
deviations from a purely toroidal state of motion. In 
particular, in the case of the geodynamo a sizable radial 
velocity component is required for the maintenance of {he 
geomagnetic field. 

It is unlikely that the recent proposals for the energy source 
of the geodynamo to which we referred in the introduction 
provide for sufficiently high radial velocities if a diffusivity of 
the order of 2 ß l0 t cm2/s is assumed, which corresponds to 
the frequently quoted value of 5 ß 10 * mhos m -• for the con- 
ductivity of the earth's core. It should be noted tha• only the 
time'average of the radial velocity component over periods of 
the order of the magnetic decay time ro2/,1 is relevant in (11), 
since the generation of magnetic flux cannot take place 
withot!t diffusion. 'Won and Kuo [1973] proposed large earth- 
quakes as a source of geomagnetism and point out the steady 
circulation induced by oscillations of the inner core of the 
earth. When Won and Kuo's values and the analysis by Riley 
[1966] to which they refer are used, an amplitude of the order 
of 10-* cm/s is found for the steady flow, which is much too 
small to be significant, according to (11). The error made by 
Won and Kuo in the application of Riley's work has also been 
pointed out by Smith [1974]. Although the generation of 
magnetic fields by short-period oscillating velocity fields as en- 
visioned by Bullard and Gubbins [1971] is feasible in principle, 
the required velocity amplitude increases with the parameter 
o•ro2/,h where o• is a typical frequency of the velocity field. Thus 
the energy requirement for the possible source of the os- 
ciliatory velocity field becomes amplified. On the other hand, 
the dynamo proposals for a stably stratified core may not be 
necessary since in their second paper Kennedy and Higgins 
[1973] allow for a region of nearly 800 km outward from the 
inner core where convection may occur. The value of 800 km is 
taken from a graph in that paper since the value of 200 or 300 
km quoted in the text appears to be in error. 

It is interesting to note that the region close to the equator of 
the inner core is also the place where the critical Rayleigh 
number for the onset of convection is first reached either 

if the core is heated homogeneously or if heating takes 
place just at the boundary between the inner and outer cores 
owing to crystallization. This fact can be inferred from the ap- 
proximate theory of Busse [1970], which we expect to hold 
even in the presence of a stratified outer part of the core in 
place of a rigid boundary. We conclude that convection 
remains the strongest contender as a source of the geodynamo 
if Higgins and Kennedy's proposal is accepted. Precession- 
induced turbulence would be less likely in this case since the 
shear layer from which the turbulence arises lies at a distance 
of about (3)toro/2 from the earth's center in the strongly 

stratified .region [Malkus, 1968; Busse, 1968]. On the other 
hand, the Griineisen parameter appropriate for the conditions 
of the outer core and the posSibilit. y of slurr•y convection 
proposed by Busse [1972] and Elsasser need further investiga- 
tion before the Higgins-Kennerly hypothesis can be accepted 
as a fact. • 

We close the discussion with a remark on a shortcoming of 
(10). Since the quantity within the brackets depends on the 
magnetic field, an asymptotic decay cannot be concluded when 
that quantity {s negative at a particular Point in time. This 
shortcoming is shared by (1) since the maximal velocity U in 
the COre depends on the magneti c field in general. More ap- 
propriate criteria would involve the forces driving the motion 
or /he heating rate in the case of convection, which can be 
assumed to be given independently of the magnetic field. TO 
derive such criteria, the Navier-Stokes equations of motion 
have to be considered, and methods similar to those employed 
by Payne [1967] in the purely hydrodynamic case would have 
to be used. This will be the subject of future work. 
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