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Abstract

In recent years, the interest in using solar energy as a major contributor to renewable energy applications has increased, and the focus
to optimize the use of electrical energy based on demand and resources from different locations has strengthened. This article includes a
procedure for implementing an algorithm to calculate the Moon’s zenith angle with uncertainty of ±0.001� and azimuth angle with
uncertainty of ±0.003�. In conjunction with Solar Position Algorithm, the angular distance between the Sun and the Moon is used
to develop a method to instantaneously monitor the partial or total solar eclipse occurrence for solar energy applications. This method
can be used in many other applications for observers of the Sun and the Moon positions for applications limited to the stated
uncertainty.
� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The interest in using solar energy as a major contributor
to renewable energy applications has increased, and the
focus to optimize the use of electrical energy based on
demand and resources from different locations has
strengthened. We thus need to understand the Moon’s
position with respect to the Sun. For example, during a
solar eclipse, the Sun might be totally or partially shaded
by the Moon at the site of interest, which can affect the
irradiance level from the Sun’s disk. Instantaneously pre-
dicting and monitoring a solar eclipse can provide solar
energy users with instantaneous information about poten-
tial total or partial solar eclipse at different locations At
least five solar eclipses occur yearly, and can last three
hours or more, depending on the location. This rare
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occurrence might have an effect on estimating the solar
energy as a resource.

This article includes a procedure for implementing an
algorithm (described by Meeus (1998)) to calculate the
Moon’s zenith angle with uncertainty of ±0.001� and azi-
muth angle with uncertainty of ±0.003�. The step-by-step
format presented here simplifies the complicated steps
Meeus describes to calculate the Moon’s position, and
focuses on the Moon instead of the planets and stars. It
also introduces some changes to accommodate for solar
radiation applications. These include changing the direc-
tion of measuring azimuth angle to start from north and
eastward instead of from south and eastward, and the
direction of measuring the observer’s geographical longi-
tude to be measured as positive eastward from Greenwich
meridian instead of negative. In conjunction with the Solar
Position Algorithm (SPA) that Reda and Andreas devel-
oped in 2004 (Reda and Andreas, 2004), the angular dis-
tance between the Sun and the Moon is used to develop
a method to instantaneously monitor the partial or total
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solar eclipse occurrence for solar energy and smart grid
applications. This method can be used in many other appli-
cations for observers of the Sun and the Moon positions
for applications limited to the stated uncertainty.

SPA has the details of calculating the solar position, so
only the Moon position algorithm (MPA) is included in
this report. When the solar position calculation is included
in this report, the SPA report will be the source for the SPA
calculation.

This article is used to calculate the Moon’s position for
solar radiation applications only. It is purely mathematical
and not meant to teach astronomy or to describe the
complex Moon rotation around the Earth. For more
information about the astronomical nomenclature that is
used throughout the report, review the definitions in the
Astronomical Almanac (AA) or other astronomy
references.

2. Moon position algorithm

2.1. Calculate the Julian and Julian Ephemeris Day,

Century, and Millennium

The Julian date starts on January 1, in the year �4712 at
12:00:00 UT. The Julian Day (JD) is calculated using the
Universal Time (UT) and the Julian Ephemeris Day
(JDE) is calculated using the Terrestrial Time (TT). In
the following steps, there is a 10-day gap between the
Julian and Gregorian calendars where the Julian calendar
ends on October 4, 1582 (JD = 2,299,160), and on the fol-
lowing day the Gregorian calendar starts on October 15,
1582.

2.1.1. Calculate the Julian Day

JD ¼ INTð365:25 � ðY þ 4716ÞÞ
þ INTð30:6001 � ðM þ 1ÞÞ þ Dþ B� 1524:5; ð1Þ

where INT is the integer of the calculated terms (8.7 = 8,
8.2 = 8, and �8.7 = �8, etc.). Y is the year (2001, 2002,
etc.). M is the month of the year (1 for January, etc.). If
M > 2, then Y and M are not changed, but if M = 1 or
2, then Y = Y � 1 and M = M + 12. D is the day of the
month with decimal time (e.g., for the second day of the
month at 12:30:30 UT, D = 2.521180556). B is equal to 0,
for the Julian calendar {i.e. by using B = 0 in Eq. (1),
JD < 2,299,160}, and equal to (2 � A + INT (A/4)) for
the Gregorian calendar {i.e. by using B = 0 in Eq. (1),
and if JD > 2,299,160}; A = INT(Y/100).

2.1.2. Calculate the Julian Ephemeris Day

Determine DT, which is the difference between the
Earth’s rotation time and TT. It is derived from observa-
tion only and reported yearly in the AA (Astronomical
Almanac; US Naval Observatory).
JDE ¼ JDþ DT
86; 400

: ð2Þ
2.1.3. Calculate the Julian Century and the Julian Ephemeris

Century for the 2000 standard epoch

JC ¼ JD� 2; 451; 545

36; 525
; ð3Þ

JCE ¼ JDE� 2; 451; 545

36; 525
: ð4Þ
2.1.4. Calculate the Julian Ephemeris Millennium for the

2000 standard epoch

JME ¼ JCE

10
: ð5Þ
2.2. Calculate the Moon geocentric longitude, latitude, and

distance between the centers of Earth and Moon (k, b, and

D)

“Geocentric” means that the Moon position is calcu-
lated with respect to Earth’s center.

2.2.1. Calculate the Moon’s mean longitude, L0 (in degrees)

L0 ¼ 218:3164477þ 481267:88123421 � T

� 0:0015786 � T 2 þ T 3

538; 841
� T 4

65; 194; 000
; ð6Þ

where T is JCE from Eq. (4).

2.2.2. Calculate the mean elongation of the Moon, D (in

degrees)

D ¼ 297:8501921þ 445267:1114034 � T

� 0:0018819 � T 2 þ T 3

545; 868
� T 4

113; 065; 000
: ð7Þ
2.2.3. Calculate the Sun’s mean anomaly, M (in degrees)

M ¼ 357:5291092þ 35999:0502909 � T

� 0:0001536 � T 2 þ T 3

24; 490; 000
: ð8Þ
2.2.4. Calculate the Moon’s mean anomaly, M0 (in degrees)

M 0 ¼ 134:9633964þ 477198:8675055 � T

þ 0:0087414 � T 2 þ T 3

69699
� T 4

14; 712; 000
: ð9Þ
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2.2.5. Calculate the Moon’s argument of latitude, F (in

degrees)

F ¼ 93:2720950þ 483202:0175233 � T

� 0:0036539 � T 2 � T 3

3; 526; 000
þ T 4

863; 310; 000
: ð10Þ
2.2.6. Use Table A1 to calculate the term l (in 0.000001

degrees)

l ¼
Xn

i¼1

li � sinðdi � Dþ mi �M þ m0i �M 0 þ f i � F Þ; ð11Þ

where li, di, mi, m0i, and fi are the ith term in columns l, d, m,
m0, and f in the table.

The terms in column m depend on the decreasing eccen-
tricity of the Earth’s orbit around the Sun; therefore, when
the term in column m = (1 or �1) or (2 or �2), multiply li
in Eq. (11) by E or E2, respectively, where:

E ¼ 1� 0:002516 � T � 0:0000074 � T 2: ð12Þ
2.2.7. Use Table A1 to calculate the term r (in 0.001 km)

r ¼
Xn

i¼1

ri � cosðdi � Dþ mi �M þ m0i �M 0 þ f i � F Þ: ð13Þ

Similar to step 2.2.6, when m = (1 or �1) and (2 or �2),
multiply ri in Eq. (13) by E or E2.
2.2.8. Use Table A2 to calculate the term b (in 0.000001

degrees)

b ¼
Xn

i¼1

bi � sinðdi � Dþ mi �M þ m0i �M 0 þ f iF Þ: ð14Þ

Similar to step 2.2.6, when m = (1 or �1) and (2 or �2),
multiply bi in Eq. (14) by E or E2.
2.2.9. Calculate a1

a1 ¼ 119:75þ 131:849 � T : ð15Þ
2.2.10. Calculate a2

a2 ¼ 53:09þ 479264:29 � T : ð16Þ
2.2.11. Calculate a3

a3 ¼ 313:45þ 481266:484 � T : ð17Þ
2.2.12. Calculate Dl

Dl¼ 3958� sinða1Þþ1962� sinðL0 �F Þþ318� sinða2Þ: ð18Þ
2.2.13. Calculate Db

Db ¼ �2235 � sinðL0Þ þ 382 � sinða3Þ
þ 175 � ða1 � F Þ þ 175 � sinða1 þ F Þ
þ 127 � sinðL0 �M 0Þ � 115 � sinðL0 þM 0Þ: ð19Þ
2.2.14. Calculate the Moon’s longitude, k0 (in degrees)

k0 ¼ L0 þ lþ Dl
1; 000; 000

: ð20Þ
2.2.15. Calculate the Moon’s latitude, b (in degrees)

b ¼ bþ Db
1; 000; 000

: ð21Þ
2.2.16. Limit k0 and b to the range of 0–360�
Limit k0 and b to the range of 0–360�.

2.2.17. Calculate the Moon’s distance from the center of

Earth, D (in kilometers)

D ¼ 385000:56þ r
1000

: ð22Þ
2.3. Calculate the Moon’s equatorial horizontal parallax, p

p ¼ 6378:14

D
: ð23Þ
2.4. Calculate the nutation in longitude and obliquity (Dw
and De)

2.4.1. Calculate the mean elongation of the Moon from the

Sun, X0 (in degrees)

X 0 ¼ 297:85036þ 445267:111480 � JCE

� 0:0019142 � JCE2 � JCE3

189; 474
: ð24Þ
2.4.2. Calculate the mean anomaly of the Sun (Earth), X1

(in degrees)

X 1 ¼ 357:52772þ 35999:050340 � JCE

� 0:0001603 � JCE2 þ JCE3

300; 000
: ð25Þ
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2.4.3. Calculate the mean anomaly of the Moon, X2 (in

degrees)

X 2 ¼ 134:96298þ 477198:867398 � JCE

þ 0:0086972 � JCE2 þ JCE3

56; 250
: ð26Þ
2.4.4. Calculate the Moon’s argument of latitude, X3 (in

degrees)

X 3 ¼ 93:27191þ 483202:017538 � JCE

� 0:0036825 � JCE2 þ JCE3

327; 270
: ð27Þ
2.4.5. Calculate the longitude of the ascending node of the

Moon’s mean orbit on the ecliptic, measured from the mean

equinox of the date, X4 (in degrees)

X 4 ¼ 125:04452� 1934:136261 � JCE

þ 0:0020708 � JCE2 þ JCE3

450; 000
: ð28Þ
2.4.6. For each row in Table A3, calculate the terms Dwi and

Dei (in 0.0001of arc seconds)

Dwi ¼ ðai þ bi � JCEÞ � sin
X4

j¼1

X j � Y i;j

 !
; ð29Þ

Dei ¼ ðci þ di � JCEÞ � cos
X4

j¼1

X j � Y i;j

 !
; ð30Þ

where ai, bi, ci, and di are the values listed in the ith row and
columns a, b, c, and d in Table A3. Xj is the jth X calculated
by using Eqs. (15)–(19). Yi,j is the value listed in ith row and
jth Y column in Table A3.
2.4.7. Calculate the nutation in longitude, Dw (in degrees)

Dw ¼
Pn

i¼1Dwi

36; 000; 000
; ð31Þ

where n is the number of rows in Table A3 (n equals 63
rows in the table).
2.4.8. Calculate the nutation in obliquity, De (in degrees)

De ¼
Pn

i¼1Dei

36; 000; 000
: ð32Þ
2.5. Calculate the true obliquity of the ecliptic, e (in degrees)

2.5.1. Calculate the mean obliquity of the ecliptic, e0 (in arc

seconds)

e0 ¼ 84381:448� 4680:93 � U � 1:55 � U 2

þ 1999:25 � U 3 � 51:38 � U 4 � 249:67 � U 5

� 39:05 � U 6 þ 7:12 � U 7 þ 27:87 � U 8

þ 5:79 � U 9 þ 2:45 � U 10; ð33Þ

where U is JME/10.

2.5.2. Calculate the true obliquity of the ecliptic, e (in

degrees)

e ¼ e0

3600
þ De: ð34Þ
2.6. Calculate the apparent Moon longitude, k (in degrees)

k ¼ k0 þ Dw: ð35Þ
2.7. Calculate the apparent sidereal time at Greenwich at any

given time, m (in degrees)

2.7.1. Calculate the mean sidereal time at Greenwich, m0 (in

degrees)

m0 ¼ 280:46061837þ 360:98564736629 � ðJD� 2; 451; 545Þ

þ 0:000387933 � JC2 � JC3

38; 710; 000
: ð36Þ
2.7.2. Calculate the apparent sidereal time at Greenwich, m
(in degrees)

v ¼ v0 þ Dw � cosðeÞ: ð37Þ
2.7.3. Limit m to the range of 0–360�
Limit m to the range of 0–360�.

2.8. Calculate the Moon’s geocentric right ascension, a (in

degrees)

2.8.1. Calculate the Moon’s right ascension, a (in radians)

a ¼ Arc tan 2
sin k � cos e� tan b � sin e

cos k

� �
; ð38Þ

where Arc tan 2 is an arctangent function that is applied to
the numerator and the denominator (instead of the actual
division) to maintain the correct quadrant of a, where a
is in the rage of �p to p.
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2.8.2. Calculate a in degrees, then limit it to the range of

0–360�
Calculate a in degrees, then limit it to the range of

0–360�.

2.9. Calculate the Moon’s geocentric declination, d (in

degrees)

d ¼ Arc sinðsin b � cos eþ cos b � sin e � sin kÞ; ð39Þ
where d is positive or negative if the Sun is north or south
of the celestial equator, respectively. Then change d to
degrees.

2.10. Calculate the observer local hour angle, H (in degrees)

H ¼ vþ r� a; ð40Þ
where r is the observer geographical longitude, positive or
negative for east or west of Greenwich, respectively.

Limit H to the range from 0� to 360� and note that it is
measured westward from south in this algorithm.

2.11. Calculate the Moon’s topocentric right ascension a0 (in

degrees)

“Topocentric” means that the Moon’s position is calcu-
lated with respect to the observer local position at the
Earth’s surface.

2.11.1. Calculate the term u (in radians)

u ¼ Arc tanð0:99664719 � tan uÞ; ð41Þ
where / is the observer’s geographical latitude, positive or
negative if north or south of the equator, respectively. The
0.99664719 number equals (1 � f), where f is the Earth’s
flattening.

2.11.2. Calculate the term x

x ¼ cos uþ E
6; 378; 140

� cos u; ð42Þ

where E is the observer’s elevation (in m). Note that x equals
q * cos /0 where q is the observer’s distance to the center of
the Earth, and /0 is the observer’s geocentric latitude.

2.11.3. Calculate the term y

y ¼ 0:99664719 � sin uþ E
6; 378; 140

� sin u; ð43Þ

note that y equals q * sin /0.

2.11.4. Calculate the parallax in the Moon’s right ascension,

Da (in degrees)

Da ¼ Arc tan 2
�x � sin p � sin H

cos d� x � sin p � cos H

� �
: ð44Þ
then change Da to degrees.
2.11.5. Calculate the Moon’s topocentric right ascension a0

(in degrees)

a0 ¼ aþ Da: ð45Þ
2.11.6. Calculate the topocentric Moon’s declination, d0 (in

degrees)

d0 ¼ Arc tan 2
ðsin d� y � sin pÞ � cos Da
cos d� y � sin p � cos H

� �
: ð46Þ
2.12. Calculate the topocentric local hour angle, H0 (in

degrees)

H 0 ¼ H � Da: ð47Þ
2.13. Calculate the Moon’s topocentric zenith angle, hm (in

degrees)
2.13.1. Calculate the topocentric elevation angle without

atmospheric refraction correction, e0 (in degrees)

e0 ¼ Arc sinðsin u � sin d0 þ cos u � cos d0 � cos H 0Þ: ð48Þ

then change e0 to degrees.
2.13.2. Calculate the atmospheric refraction correction, De

(in degrees)

De ¼ P
1010

� 283

273þ T
� 1:02

60 � tan e0 þ 10:3
e0þ5:11

� � ; ð49Þ

where P is the annual average local pressure (in millibars).
T is the annual average local temperature (in �C). e0 is in
degrees. Calculate the tangent argument in degrees, then
convert to radians.
2.13.3. Calculate the topocentric elevation angle, e (in

degrees)

e ¼ e0 þ De: ð50Þ
2.13.4. Calculate the topocentric zenith angle, h (in degrees)

hm ¼ 90� e: ð51Þ
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2.14. Calculate the Moon’s topocentric azimuth angle, Um

(in degrees)
2.14.1. Calculate the topocentric astronomers’ azimuth

angle, C (in degrees)

C ¼ Arc tan 2
sin H 0

cos H 0 � sin u� tan d0 � cos u

� �
; ð52Þ

Change C to degrees, then limit it to the range of 0–360�. C
is measured westward from south.

2.14.2. Calculate the topocentric azimuth angle, Um for

navigators and solar radiation users (in degrees)

Um ¼ Cþ 180; ð53Þ
Limit Um to the range from 0� to 360�. Um is measured east-

ward from north.

3. Moon position algorithm validation

To evaluate the uncertainty of the MPA, arbitrary dates,
January 17 and October 17, are chosen from each of the
years 2004 to 2010, and 1981, at 0-h TT. Fig. 1 shows that
the maximum difference between the AA and MPA is
0.00055� for the Moon’s declination, Fig. 2 shows that
the maximum difference is 0.00003� for the equatorial
Moon parallax, and Fig. 3 shows that the maximum differ-
ence in the calculated zenith or azimuth angles is 0.0003�
and 0.00075�, respectively. This implies that the MPA is
well within the stated uncertainty of ±0.001� and ±0.003�
in the zenith and azimuth angles, respectively.

4. Predicting and monitoring the solar eclipse occurrence

The full astronomical nomenclature for eclipse monitor-
ing is beyond the scope of this report, so only the total and
partial solar eclipse nomenclatures are used. In this section,
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Fig. 1. Difference between the AA and
the zenith and azimuth angles of the Sun and the Moon are
calculated continuously using SPA described in Reda and
Andreas (2004), and the Moon Position Algorithm
described above. A copyrighted Solar and Moon Position
Algorithm (SAMPA) software and calculator were devel-
oped by Andreas and Reda (2012), and then used to mon-
itor the solar eclipse as follows:

4.1. Calculate the local observed, topocentric, angular

distance between the Sun and Moon centers, Esm (in

degrees)

Ems¼ cos�1½coshs � coshmþ sinhs � sinhm � cosð/s�/mÞ�; ð54Þ

where hs and /s are the zenith and azimuth angles of the
Sun, calculated using SPA, 2003.

4.2. Calculate the radius of the Sun’s disk, rs (in degrees)

rs ¼
959:63

3600 � Rs
; ð55Þ

where Rs is the Sun’s distance from the center of the Earth,
in astronomical units (AUs). This distance is calculated in
SPA (Reda and Andreas, 2004).

4.3. Calculate the radius of the Moon’s disk, rm (in degrees)

rm ¼
358; 473; 400 � ð1þ sin e � sin pÞ

3600 � D
; ð56Þ

where e, p, and D are calculated in Section 2.

4.4. Set the boundary conditions for the solar eclipse
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Fig. 2. Difference between the AA and MPA for the Moon’s horizontal parallax.
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Fig. 3. Difference in the calculated zenith or azimuth angles using the differences in Figs. 1 and 2.
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where rm and rs are the Sun and Moon radii.

4.4.2. Start and end of eclipse

Ems ¼ ðrm þ rsÞ:
4.4.3. Solar eclipse

Ems < ðrm þ rsÞ:
4.4.4. Sun disk area during eclipse
If Ems 6 abs(rm � rs), it is a total eclipse where the Sun

and Moon disks (circles) completely overlap; therefore, if
rs > rm, the unshaded Sun area by the Moon will equal
the area of the Sun disk minus the area of the Moon disk.
Moreover, if rs 6 rm, the unshaded area of the Sun equals
zero.

To monitor the solar eclipse, a criterion where Ems

equals (rm + rs) is set at the beginning of the eclipse. At this
moment the time is noted as Tstart and then Ems is recalcu-
lated every second for at least three hours. The distance Ems

can then be plotted against time to show the progress of the
eclipse. From the plotted data, one might predict the time
of a partial or total solar eclipse by calculating the time
when minimum Ems occurs, Tmin, then as the eclipse ends,
the time when Ems equals (rm + rs), the time Tend is noted.
The total duration for the eclipse occurrence will equal
Tend � Tstart. Fig. 4 shows Ems versus time for the central
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solar eclipse on July 22, 2009 (see Table 1 for coordinates).
Using this method, the minimum Ems = 0.0001�, which is
well within the uncertainty of calculating the Sun and
Moon positions. To verify this method, Ems is calculated
for some historical total solar eclipses at different locations.
Table 1 shows that Ems < 0.0011, which is within the stated
uncertainty of ±0.003�.
5. Estimating the solar irradiance during a solar eclipse

When a solar eclipse occurs, the Moon’s disk will start
shading the Sun’s disk; the shaded area will change as time
progresses; therefore, the unshaded area of the Sun disk is
called the Sun’s Unshaded Lune (SUL), which will also
change with time. The percentage of the SUL, from the
total Sun’s disk area, is then calculated. The percentage
area might then be multiplied by an estimated direct beam
irradiance to calculate the irradiance during the eclipse. A
spectacular phenomena occurs during the solar eclipse,
when the spectral distribution of the irradiance from the
Sun changes. The method described below illustrates how
the irradiance might be estimated during the solar eclipse.
Users might use other methods or models to achieve smal-
ler uncertainty for such estimates.

5.1. Calculate the area of SUL, ASUL

To calculate this area, draw two intersecting circles, with
two different radii of the Sun and the Moon, rs and rm. An
illustration is shown in Fig. 1.

ASUL ¼ p � r2
s � Ai; ð57Þ

where Ai is the area of the Sun’s disk that is shaded by the
Moon. A step-by-step method to calculate ASUL is
described in Appendix B.

5.2. Calculate the percentage area of the SUL with respect to
the area of the Sun’s disk, %ASUL
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Fig. 4. Distance between the Sun and Moon centers and the percentage
%ASUL ¼
ASUL � 100

p � r2
s

: ð58Þ
5.3. Calculate the direct beam irradiance using the
appropriate model for the required uncertainty, in W/m2

The Bird and Hulstrom simple model (Bird and
Hulstrom, 1981) is used in this article as an illustration.

5.4. Calculate the irradiance (W/m2) during the eclipse, Ie

Ie ¼
I �%ASUL

100
; ð59Þ

where I is the direct beam irradiance calculated by the
model.

To evaluate the described method, the calculated irradi-
ance is compared against the irradiance measured at the
University of Oregon, Eugene, Solar Radiation Monitoring
Laboratory. The irradiance was measured during the June
10, 2002 partial eclipse, using a pyrheliometer model NIP,
manufactured by the Eppley Laboratory, Inc. Fig. 4 shows
the difference between the measured irradiance and the cal-
culated irradiance using the method described above. The
figure shows that the difference between the measured irra-
diance at the University of Oregon and the calculated irra-
diance by SAMPA is about 8% when the partial eclipse
starts, 4% at the maximum eclipse, and 6% as the eclipse
ends. These differences are expected, because the measuring
instruments (estimated U95 = ±3%) and the model used
above (estimated U95 = ±5%) do not account for the sig-
nificant change in the spectral distribution of the irradiance
during the solar eclipse occurrence. In the future, with the
advancement in pyrheliometer design and spectral mea-
surement technology, advanced models might be used to
improve the uncertainty in measuring such significant
change in the spectral distribution during the eclipse
occurrence.
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Table 1
Historical solar eclipses versus SAMPA eclipse monitor, Ems.

Historical eclipse dates UT Observer’s longitude � Observer’s latitude � SAMPA, E�ms

7/22/2009 2:33:00 143.3617 24.6117 0.0001
8/1/2008 9:47:18 34.7417 81.1133 0.0002
3/29/2006 10:33:18 22.8867 29.6200 0.0005
4/8/2005 20:15:36 �123.4817 �15.7883 0.0011
12/4/2002 7:38:42 62.8383 �40.5283 0.0005
6/21/2001 11:57:48 0.9867 �11.5950 0.0003
2/4/1981 21:57:36 �145.9033 �45.8883 0.0004
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Fig. 5. Measured irradiance versus calculated irradiance using SAMPA during the June 10, 2002 partial solar eclipse.
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6. Conclusions

The MPA achieves uncertainties of ±0.001� and
±0.003� in calculating the zenith and azimuth angles of
the Moon (see Figs. 1 and 2). Using MPA in conjunction
with the SPA (uncertainty of ±0.0003�) to monitor solar
eclipses, is consistent with the historical eclipses to within
the stated uncertainty of the MPA, see Table 1. Section 5
and Fig. 5 show that the direct beam irradiance from the
Sun during a solar eclipse is estimated within 4–8% from
measured irradiance that was collected during the eclipse
of June 10, 2002. This implies that solar energy users might
be able, with the current technology, to use this informa-
tion to manage the grid’s solar resources during eclipses
to within the model’s limitations. Improved uncertainties
might be achieved by developing advanced models that
include the change of the spectral distribution during the
spectacular solar eclipse. Fig. 4 also shows that the partial
solar eclipse of June 10, 2002 in Eugene, Oregon, lasted
longer than two hours, which might have an effect on esti-
mating the solar energy when used as a resource.
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Appendix A. Tables

Tables A1–A3.
Appendix B. Sun and Moon lunes

Note that some symbols used in this appendix are inde-
pendent from those used in the main report.



Table A1
Moon’s periodic terms for longitude and distance.

d M m0 f l R

0 0 1 0 6,288,774 �20,905,355
2 0 �1 0 1,274,027 �3,699,111
2 0 0 0 658,314 �2,955,968
0 0 2 0 213,618 �569,925
0 1 0 0 �185,116 48,888
0 0 0 2 �114,332 �3149
2 0 �2 0 58,793 246,158
2 �1 �1 0 57,066 �152,138
2 0 1 0 53,322 �170,733
2 �1 0 0 45,758 �204,586
0 1 �1 0 �40,923 �129,620
1 0 0 0 �34,720 108,743
0 1 1 0 �30,383 104,755
2 0 0 �2 15,327 10,321
0 0 1 2 �12,528
0 0 1 �2 10,980 79,661
4 0 �1 0 10,675 �34,782
0 0 3 0 10,034 �23,210
4 0 �2 0 8548 �21,636
2 1 �1 0 �7888 24,208
2 1 0 0 �6766 30,824
1 0 �1 0 �5163 �8379
1 1 0 0 4987 �16,675
2 �1 1 0 4036 �12,831
2 0 2 0 3994 �10,445
4 0 0 0 3861 �11,650
2 0 �3 0 3665 14,403
0 1 �2 0 �2689 �7003
2 0 �1 2 �2602
2 �1 �2 0 2390 10,056
1 0 1 0 �2348 6322
2 �2 0 0 2236 �9884
0 1 2 0 �2120 5751
0 2 0 0 �2069
2 �2 �1 0 2048 �4950
2 0 1 �2 �1773 4130
2 0 0 2 �1595
4 �1 �1 0 1215 �3958
0 0 2 2 �1110
3 0 �1 0 �892 3258
2 1 1 0 �810 2616
4 �1 �2 0 759 �1897
0 2 �1 0 �713 �2117
2 2 �1 0 �700 2354
2 1 �2 0 691
2 �1 0 �2 596
4 0 1 0 549 �1423
0 0 4 0 537 �1117
4 �1 0 0 520 �1571
1 0 �2 0 �487 �1739
2 1 0 �2 �399
0 0 2 �2 �381 �4421
1 1 1 0 351
3 0 �2 0 �340
4 0 �3 0 330
2 �1 2 0 327
0 2 1 0 �323 1165
1 1 �1 0 299
2 0 3 0 294
2 0 �1 �2 8752

Table A2
Periodic terms for the Moon’s latitude.

D m m0 f b

0 0 0 1 5,128,122
0 0 1 1 280,602
0 0 1 �1 277,693
2 0 0 �1 173,237
2 0 �1 1 55,413
2 0 �1 �1 46,271
2 0 0 1 32,573
0 0 2 1 17,198
2 0 1 �1 9266
0 0 2 �1 8822
2 �1 0 �1 8216
2 0 �2 �1 4324
2 0 1 1 4200
2 1 0 �1 �3359
2 �1 �1 1 2463
2 �1 0 1 2211
2 �1 �1 �1 2065
0 1 �1 �1 �1870
4 0 �1 �1 1828
0 1 0 1 �1794
0 0 0 3 �1749
0 1 �1 1 �1565
1 0 0 1 �1491
0 1 1 1 �1475
0 1 1 �1 �1410
0 1 0 �1 �1344
1 0 0 �1 �1335
0 0 3 1 1107
4 0 0 �1 1021
4 0 �1 1 833
0 0 1 �3 777
4 0 �2 1 671
2 0 0 �3 607
2 0 2 �1 596
2 �1 1 �1 491
2 0 �2 1 �451
0 0 3 �1 439
2 0 2 1 422
2 0 �3 �1 421
2 1 �1 1 �366
2 1 0 1 �351
4 0 0 1 331
2 �1 1 1 315
2 �2 0 �1 302
0 0 1 3 �283
2 1 1 �1 �229
1 1 0 �1 223
1 1 0 1 223
0 1 �2 �1 �220
2 1 �1 �1 �220
1 0 1 1 �185
2 �1 �2 �1 181
0 1 2 1 �177
4 0 �2 �1 176
4 �1 �1 �1 166
1 0 1 �1 �164
4 0 1 �1 132
1 0 �1 �1 �119
4 �1 0 �1 115
2 �2 0 1 107
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Table A3
Periodic terms for the nutation in longitude and obliquity.

Y0 Coefficients for sin terms Coefficients for Dw Coefficients for De

Y1 Y2 Y3 Y4 a b c d

0 0 0 0 1 �171,996 �174.2 92,025 8.9
�2 0 0 2 2 �13,187 �1.6 5736 �3.1

0 0 0 2 2 �2274 �0.2 977 �0.5
0 0 0 0 2 2062 0.2 �895 0.5
0 1 0 0 0 1426 �3.4 54 �0.1
0 0 1 0 0 712 0.1 �7
�2 1 0 2 2 �517 1.2 224 �0.6

0 0 0 2 1 �386 �0.4 200
0 0 1 2 2 �301 129 �0.1
�2 �1 0 2 2 217 �0.5 �95 0.3
�2 0 1 0 0 �158
�2 0 0 2 1 129 0.1 �70

0 0 �1 2 2 123 �53
2 0 0 0 0 63
0 0 1 0 1 63 0.1 �33
2 0 �1 2 2 �59 26
0 0 �1 0 1 �58 �0.1 32
0 0 1 2 1 �51 27
�2 0 2 0 0 48

0 0 �2 2 1 46 �24
2 0 0 2 2 �38 16
0 0 2 2 2 �31 13
0 0 2 0 0 29
�2 0 1 2 2 29 �12

0 0 0 2 0 26
�2 0 0 2 0 �22

0 0 �1 2 1 21 �10
0 2 0 0 0 17 �0.1
2 0 �1 0 1 16 �8
�2 2 0 2 2 �16 0.1 7

0 1 0 0 1 �15 9
�2 0 1 0 1 �13 7

0 �1 0 0 1 �12 6
0 0 2 �2 0 11
2 0 �1 2 1 �10 5
2 0 1 2 2 �8 3
0 1 0 2 2 7 �3
�2 1 1 0 0 �7

0 �1 0 2 2 �7 3
2 0 0 2 1 �7 3
2 0 1 0 0 6
�2 0 2 2 2 6 �3
�2 0 1 2 1 6 �3

2 0 �2 0 1 �6 3
2 0 0 0 1 �6 3
0 �1 1 0 0 5
�2 �1 0 2 1 �5 3
�2 0 0 0 1 �5 3

0 0 2 2 1 �5 3
�2 0 2 0 1 4
�2 1 0 2 1 4

0 0 1 �2 0 4
�1 0 1 0 0 �4
�2 1 0 0 0 �4

1 0 0 0 0 �4
0 0 1 2 0 3
0 0 �2 2 2 �3
�1 �1 1 0 0 �3

0 1 1 0 0 �3
0 �1 1 2 2 �3
2 �1 �1 2 2 �3
0 0 3 2 2 �3
2 �1 0 2 2 �3
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B.1. Calculating the areas of the lunes when two circles with

different diameters intersect

The following steps are intended for calculating the area
of the Sun Unshaded Lune, ASUL, during solar eclipses.
The Sun and Moon radii are not equal and change with
the day of the year. Also, during the solar eclipse, as the
Moon starts to shade the Sun disk, the intersection area
changes with time. In Fig. B1, the circles with centers Cs

and Cm represent the Sun and Moon disks, respectively.
Refer to the figure to calculate ASUL, bounded by sector
aebq.

B.2. Calculate the areas of triangles Ts (bounded by abCs)

and Tm (bounded by abCm), then calculate ASUL

1. Use the procedure described in this article to calculate
the distance between the Sun and Moon centers, Ems.

2. Write the following equation:

Ems ¼ mþ s; ðB1Þ

where m is the distance cCm, s is the distance cCs.
Note that m and s are the heights of the two triangles.

3. Using the Pythagorean theorem:

h2 ¼ r2
s � s2 ¼ r2

m þ m2; ðB2Þ

where rs and rm are the Sun and Moon radii, calculated
using the procedure described in this report. h is half the
base of the two triangles, Ts and Tm.

Therefore:

r2
s � s2 ¼ r2

m � m2: ðB3Þ

4. Solve Eqs. (B1) and (B3) with two unknowns to calcu-
late s and m:

s ¼ E2
ms þ r2

s � r2
m

2 � Ems
; ðB4Þ

and

m ¼ E2
ms � r2

s þ r2
m

2 � Ems
: ðB5Þ

5. Use Eqs. (B2) and (B4) to calculate h:

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � E2

ms � r2
s � ðE2

ms þ r2
s � r2

mÞ
2

q
2 � Ems

: ðB6Þ

6. Calculate the area of triangle abCs, Ts:

T s ¼ h � s: ðB7Þ



Fig. B1. Intersecting circles to calculate the areas of the Sun and Moon lunes.
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7. Calculate the area of triangle abCm, Tm:

T m ¼ h � m: ðB8Þ
8. Calculate the area of sector adbCs in the Sun’s circle, As:

As ¼ p � r2
s �

2 � xs

360
¼ r2

s � cos�1 s
rs
; ðB9Þ

where xs is half the central angle of sector adbCs in the
Sun’s circle.
9. Calculate the area of section abd in the Sun’s circle, A1:

A1 ¼ As � T s: ðB10Þ
10. Similar to Eq. (B9), calculate the area of sector

aebCm in the Moon’s circle, Am,

Am ¼ r2
m � cos�1 m

rm
: ðB11Þ

11. Calculate the area of section abe in the Moon’s circle,
A2:

A2 ¼ Am � T m: ðB12Þ
12. Calculate the area of the Sun’s circle shaded by the
Moon’s circle, Ai:

Ai ¼ A1 þ A2: ðB13Þ
13. Calculate the Sun’s Unshaded Lune, ASUL:

ASUL ¼ p � r2
s � Ai: ðB14Þ
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