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D I D  E I N S T E I N  S T U M B L E ?  T H E  D E B A T E  

O V E R  G E N E R A L  C O V A R I A N C E  

ABSTRACT.  The objection that Einstein's principle of general covariance is not a relativity 
principle and has no physical content is reviewed• The principal escapes offered for Einstein's 
viewpoint are evaluated. 

l .  I N T R O D U C T I O N  

• . .  the general theory of relativity. The name is repellent. Relativity? I have never been 
able to understand what that word means in this connection. I used to think that this was 
my fault, some flaw in my intelligence, but it is now apparent that nobody ever understood 
it, probably not even Einstein himself. So let it go. What is before us is Einstein's theory of 
gravitation. (Synge 1966, p. 7) 

The magnitude of Einstein's success with his theories of relativity 
brought its own peculiar problem. His success attracted legions of cranks 
to his work, all determined to show where Einstein had blundered and 
anxious to accuse him of the most fundamental of misconceptions. On 
first glance, you might well imagine that the sentiments quoted above 
were drawn from this tiresome crank literature. However you would be 
mistaken. These remarks were made by J. L. Synge, one of this century's 
most important and influential relativists. They reflect the growth of a 
tradition of criticism of Einstein's views on the foundations of general 
relativity. The tradition began with the theory's birth in the 1910s as a 
minority opinion. Over the decades following, it refused to die out, instead 
growing until it is now one of the major schools of thought, if not the 
majority view amongst relativists. 

The deep reservations of this tradition do not apply to the theory itself. 
The general theory of relativity is nearly universally hailed as our best 
theory of space, time and gravitation and a magnificent intellectual 
achievement - although followers of Synge might prefer a different name 
for the theory. What is questioned is the account that Einstein gave of its 
fundamental postulates• His account has been criticized in many of its 
aspects. The one that has attracted the most criticism is the prominence 
he accorded the requirement of general covariance, which Einstein saw 
as the crowning achievement of his theory. Through it, Einstein pro- 
claimed, the theory had extended the principle of relativity to accelerated 
motion. Einstein's critics responded that general covariance had nothing 
to do with a generalization of the principle of relativity• Worse, general 
covariance was physically vacuous, a purely mathematical property. 

My purpose in this paper is to review some of the principal positions 
advanced in this debate. 1 I will pursue two themes: whether covariance 
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principles have physical content and whether they express a relativity 
principle. First, in Sections 2 and 3, I will review the role Einstein claimed 
for covariance principles in the foundations of relativity theory and the 
ensuing objection, originating with Kretschmann in 1917, that the principle 
of general covariance is physically vacuous. Then, in Section 4, I will 
outline the stratagems that have been proposed to restore physical content 
to the principle. I will conclude that they succeed only in the degree to 
which they deviate from a simple reading of the original principle. In 
Section 5, I will review the development of the modern view that covari- 
ance principles are not relativity principle and that relativity principles 
express a symmetry of a spacetime. Finally, in Section 6, I will review 
Anderson's notion of absolute object. This notion provides our best at- 
tempt to reconcile Einstein's view of the connection between covariance 
and relativity principle and the modern view of relativity principles as 
symmetry principles. 

2. C O V A R I A N C E  IN E I N S T E I N ' S  A C C O U N T  OF T H E  F O U N D A T I O N S  

OF R E L A T I V I T Y  T H E O R Y  

For Einstein, covariance principles were the essence of his theories of 
relativity. For a theory to satisfy a principle of relativity, the equations 
expressing its laws needed to have a particular formal property. They 
needed to remain unchanged in form - covariant - under a group of 
coordinate transformations characterizing the principle of relativity at 
issue. This was the clear moral of his famous 1905 special relativity paper 
(Einstein 1905). The emphasis in that paper was to discover the correct 
form of the group of coordinate transformations associated with the rela- 
tivity of inertial motion. These, he argued, were the Lorentz transforma- 
tion equations. It then followed that Maxwell's electrodynamics satisfied 
the principle of relativity of inertial motion since the basic equations of 
Maxwell's theory remained unchanged in form under Lorentz transforma- 
tion. Einstein (1940, p. 329) later summarized his approach: 

The content of the restricted relativity theory can accordingly be summarized in one sentence: 
all natural laws must be so conditioned that they are covariant with respect to Lorentz 
transformations. 

That the laws of a theory have the appropriate covariance is something 
that must be demonstrated by calculation, often by quite arduous manipu- 
lation. The mechanical exercise of establishing the Lorentz covariance of 
Maxwell's theory occupies a significant part (§§6, 9) of Einstein's 1905 
paper. 

Einstein's algebraic approach to the principle of relativity was quite 
different from that soon introduced by Minkowski (1908, 1909). He formu- 
lated the special theory of relativity in terms of the geometry of what we 
now know as a Minkowski spacetime. Satisfaction of the principle of 
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relativity of inertial motion followed automatically provided one used only 
the natural geometric structures of the Minkowski spacetime to formulate 
one's theory. Sommerfeld's (1910, p. 749) capsule formulation of what it 
took to satisfy the principle of relativity was quite unlike Einstein's: 

According to Minkowski, as is well known, one can formulate the content of the principle 
of relativity as: Only spacetime vectors may appear in physical equations . . . .  

Instead of tedious calculation to verify preservation of form of equations 
under transformation, one could verify that a theory formulated in a 
Minkowski spacetime satisfied the principle of relativity by inspection. 

In 1907, Einstein began the long series of investigations that would 
ultimately lead to his general theory of relativity. Einstein's goal was to 
construct a relativistically acceptable gravitation theory by extending the 
principle of relativity to acceleration. 2 Throughout the entire project Ein- 
stein's emphasis remained on covariance principles and the associated 
algebraic viewpoint. His first step was to unveil (Einstein 1907, Part V) 
what he hoped would be the key to the extension, the hypothesis of the 
complete physical equivalence of uniform acceleration in a gravitation free 
space and rest in a homogenous gravitational field. The significance of 
this hypothesis - soon to be called the "principle of equivalence" - lay in 
the fact that it allowed Einstein to include transformations to accelerating 
coordinate systems in the covariance group of his theory. That is, it took 
the first step in extending the covariance of his special theory. 3 

This is the gist of the principle of equivalence: In order to account for the equality of inert 
and gravitational mass within the theory it is necessary to admit non-linear transformations 
of the four coordinates. That is, the group of Lorcntz transformations and hence the set of 
"permissible" coordinate systems has to be extended. Einstein (1950, p. 347) 

The completion of the project lay in the further extension of the covariance 
of his gravitation theory. 

Even though Minkowski's spacetime approach would provide the formal 
basis for the final theory, Einstein was very slow to adopt Minkowski's 
methods. He did not use Minkowski's spacetime methods in developing 
his static theory of gravitation in the 1911 and 1912 (Einstein 1911, 1912a, 
b, c). The spacetime approach entered his analysis only with the publi- 
cation of Einstein and Grossmann (1913), the first sketch of the general 
theory of relativity. This paper was distinctive in using the absolute differ- 
ential calculus of Ricci and Levi-Civita (1901), later known as the tensor 
calculus. Yet Einstein's emphasis remained on the covariance properties 
of the laws of his theory, rather than its intrinsic geometric properties. 
Here Einstein and Grossmann were actually following the approach of 
Ricci and Levi-Civita. The latter preferred to think of their methods as 
providing an abstract calculus for manipulating systems of variables; the 
natural application in the geometry of curved surfaces was just one of 
many applications and was not to be allowed to dominate the method. 

With the writing of Einstein and Grossmann (1913), Einstein's quest 
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for his general theory of relativity should have been completed, for he 
had virtually the entire theory in hand. Their theory differed only from 
the final theory in its gravitational field equations. For reasons that have 
been dissected extensively elsewhere (Norton 1984), Einstein and 
Grossmann considered generally covariant field equations but rejected 
them in favor of a set of equations of restricted covariance. This disastrous 
decision dominated the next three years of Einstein's work on gravitation 
as he struggled to reconcile himself with his misshapen theory. These 
efforts led Einstein to his ingenious "hole argument" which purported to 
show that generally covariant field equations would be physically uninter- 
esting. To show this, Einstein assumed that the gravitational field equa- 
tions were generally covariant and considered a matter free region of 
spacetime, the "hole". He then showed that general covariance allowed 
him to construct two solutions of the gravitational field equations gi~ and 
g'ik in the s a m e  coordinate system such that g~k and g'ik agreed outside 
the hole but came smoothly to disagree within the hole. This, Einstein 
felt, was a violation of the requirement of determinism, for the fullest 
specification of both gravitational field and matter distribution outside the 
hole must fail to fix the field gi~ within the hole. This violation was 
deemed fatal by Einstein to generally covariant gravitational field equa- 
tions. 4 

In November 1915, Einstein finally emerged victorious from his struggle. 
He had returned to the quest for generally covariant gravitational field 
equations and had found the equations now routinely associated with his 
theory. Early the following year he celebrated his achievement with the 
well-known review of his new theory, Einstein (1916). Its early sections 
laid out the motivation and physical basis of the new theory, culminating 
in the association of the generalized principle of relativity with the general 
covariance of the theory (§3): 

The general laws of nature are to be expressed by equations which hold good for all systems 
of co-ordinates, that is, are co-variant with respect to any substitutions whatever (generally 
covariant). 

It is clear that a physical theory which satisfies this postulate will also be suitable for the 
general postulate of relativity. For the sum of all substitutions in any case includes those which 
correspond to all relative motions of three-dimensional systems of co-ordinates. (Einstein's 
emphasis) 

The passage continued to state what John Stachel has labelled the "point- 
coincidence argument". 

That this requirement of general co-variance, which takes away from space and time the last 
remnant of physical objectivity, is a natural one, will be seen from the following reflexion. 
All our space-time verifications invariably amount to a determination of space-time coinci- 
dences. If, for example, events consisted merely in the motion of material points, then 
ultimately nothing would be observable but the meetings of two or more of these points. 
Moreover, the results of our measurings are nothing but verifications of such meetings of 
the material points of our measuring instruments with other material points, coincidences 

106 



T H E  D E B A T E  O V E R  G E N E R A L  C O V A R I A N C E  227 

between the hands of a clock and points on the clock dial, and observed point-events 
happening at the same place and the same time. 

The introduction of a system of reference serves no other purpose than to facilitate the 
description of the totality of such coincidences. We allot to the universe four space-time 
variables xl, x2, x3, x4, in such a way that for every point-event there is a corresponding 
system of values of the variables xl. • • x4. To two coincident point-events there corresponds 
one system of values of the variables xl . .  • x4, i.e. coincidence is characterized by the identity 
of the co-ordinates. If, in the place of the variables xl • • • x4, we introduce functions of them, 
x'~, x'2, x'3, x'4, as a new system of co-ordinates, so that the system of values are made to 
correspond to one another without ambiguity, the equality of all four co-ordinates in the 
new system will also serve as an expression for the space-time coincidence of the two point- 
events. As all our physical experience can be ultimately reduced to such coincidences, there 
is no immediate reason for preferring certain systems of co-ordinates to others, that is to 
say, we arrive at the requirement of general co-variance. 

The  purpose  of  this a rgument  at this point  in Einstein 's  exposit ion had 
b e c o m e  comple te ly  obscured  until rediscovered by Stachel (1980). The  
point  coincidence a rgument  was Einste in 's  answer to the hole  a rgument  
- a l though Einstein only explained this in private cor respondence .  Read-  
ers of  Einstein (1916) would  have to figure this out  for  themselves and fill 
in the details alone. In brief, the a rgument ' s  basic assumpt ion was that  
the physical c i rcumstance descr ibed by any field g~-~ was exhausted by the 
catalog of  spacet ime coincidences that  it allowed. It  turned out  that,  by 
construct ion,  the two fields gik and g'ik of the hole a rgument  agreed on 
all such coincidences.  There fo re  any difference be tween  them could not  
be physical.  I t  was a pure ly  mathemat ica l  effect, one  we would now 
describe as a gauge f reedom.  Thus the indeterminism of  the hole  a rgument  
provided  no physical g round  for  rejecting general ly covariant  field equa- 
tions. Finally, to forgo general  covar iance and the use of  arbi t rary coordin-  
ate systems is to restrict the theory  in a way that  goes beyond  its physical 
content ,  for that  content  is exhausted by the catalog of  spacet ime coinci- 
dences,  which cannot  pick be tween  different  coordina te  systems. 

There  was an ease in the writing of  o ther  parts  of  Einste in 's  accounts  
of  the foundat ions  of  this theory  that  p roved  deceptive to readers  who 
took  Einste in 's  discussion to represent  a register of  uncontrovers ia l  postu-  
lates or  consequences  of  the theory.  In  his Section 2, for  example,  Einstein 
had urged  that  the inertial proper t ies  of  a body  must  be fixed complete ly  
by the o ther  bodies  o f  the universe.  This was a result that  Einstein had 
so far only been  able to recover  in weak  field approximat ion.  There fo re  
its inclusion in the discussion was more  a s ta tement  of  what  Einstein 
hoped  to recover  f rom his theory  than a repor t  of  what  he had recovered.  
W h e n  he later tried to derive the full effect, he ran into very serious 
problems.  H e  initially sought  to contain these problems in his cosmological  
work  by augment ing  his field equat ions  with the notor ious  "cosmological  
t e rm" .  H e  later  a b a n d o n e d  as wrongheaded  these a t tempts  to recover  
what  had then become  known  as "Mach ' s  Principle".  
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3. IS G E N E R A L  C O V A R I A N C E  PHYSICALLY V A C U O U S ?  

A more immediate shock awaited Einstein. Erich Kretschmann (1917) 
had read and understood all too clearly the fragility of Einstein's account 
of the foundations of his theory. He began his paper with the remarks 
(pp. 575-576): 

The forms in which different authors have expressed the postulate of the Lorentz-Einstein 
theory of relativity - and especially the forms in which Einstein has recently expressed his 
postulate of general relativity - admit the following interpretation (in the case of Einstein, 
it is required explicitly): A system of physical laws satisfies a relativity postulate if the 
equations by means of which it is represented are covariant with respect to the group of 
spatio-temporal coordinate transformations associated with that postulate. If one accepts 
this interpretation and recalls that, in the final analysis, all physical observations consist in 
the determination of purely topological relations ("coincidences") between objects of spatio- 
temporal perception, from which it follows that no coordinate system is privileged by these 
observations, then one is forced to the following conclusion: By means of a purely mathema- 
tical reformulation of the equations representing the theory, and with, at most, mathematical 
complications connected with that reformulation, any physical theory can be brought into 
agreement with any, arbitrary relativity postulate, even the most general one, and this 
without modifying any of its content that can be tested by observation. 

Einstein had used the point-coincidence argument to establish the require- 
ment of general covariance. If coincidences are all that matters physically, 
then we ought to be able to use any coordinate system, since all coordinate 
systems will agree on spacetime coincidences. Kretschmann now objects 
that this argument works too well. If we accept the point-coincidence 
argument, then we ought to be able to use arbitrary coordinates in any 
theory, for the physical content of any theory ought to remain unchanged 
with the adoption of new coordinate systems. The challenge is merely a 
mathematical one: find a generally covariant formulation of the theory. 
Kretschmann later remarked (p. 579) that this task ought to be perfectly 
manageable for any physical theory given the power of such methods as 
Ricci and Levi-Civita's. 

Kretschmann's original objection was conditioned on acceptance of the 
point-coincidence argument. That condition was soon dropped when his 
remarks were cited. Kretschmann's objection is now routinely recalled as 
the observation that general covariance is a purely mathematical property 
of the formulation of a theory. Any spacetime theory can be given gen- 
erally covariant formulation; general covariance has no physical content. 
In this form, Kretschmann's objection has become one of the most cited 
and endorsed objections to Einstein's account of the foundations of the 
general theory of relativity. 

4. G E N E R A L  C O V A R I A N C E  HAS PHYSICAL CONTENT IF YOU . . . 

If the caution and awkwardness of Einstein's (1918) reply is any guide 
Einstein must have been quite seriously troubled by Kretschmann's as- 
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sault. He  began by carefully stating the three principles upon which his 
theory was based: the (a) principle of relativity, (b) the principle of 
equivalence and (c) Mach's principle. That  list already contained conces- 
sions to Kretschmann, for, in a footnote,  Einstein confessed that he had 
not previously distinguished (a) and (c) and that this had caused confusion. 
Further,  his statement of the principle of relativity had been reduced to 
its most circumspect core, far removed from the vivid thought experiments 
usually surrounding the principle: 

(a) Principle of Relativity: The laws of nature are only assertions 
of timespace coincidences; therefore they find their unique, 
natural expression in generally covariant equations. 

The principle was now merely a synopsis of the point-coincidence argu- 
ment itself. 

However  this cautious reorganization was an exercise in relabelling. It 
had still not escaped Kretschmann's objection that general covariance is 
physically vacuous. Einstein's options were extremely limited, for Kretsch- 
mann had come to his conclusion by using Einstein's own point-coinci- 
dence argument and that was an argument Einstein was unable to re- 
nounce. Einstein's response was the first of a series which conceded that 
general covariance simpliciter is physically vacuous after all. In this tra- 
dition it is urged that general covariance has physical content if it is 
supplemented by a further requirement.  The problem is to decide what 
that further requirement  should be. Einstein's choice is best known. 

4.1. Add the Requirement of Simplicity 

Einstein wrote 

I believe Herr Kretschmann's argument to be correct, but the innovation proposed by him 
not to be commendable. That is, if it is correct that one can bring any empirical law into 
generally covariant form, then principle (a) still possesses a significant heuristic force, which 
has already proved itself brilliantly in the problem of gravitation and rests on the following. 
Of two theoretical systems compatible with experience, the one is to be preferred that is the 
simpler and more transparent from the standpoint of the absolute differential calculus. Let 
one bring Newtonian gravitational mechanics into the form of absolutely covariant equations 
(four-dimensional) and one will certainly be convinced that principle (a) excludes this theory, 
not theoretically, but practically! 

That is, Einstein responds that the requirement of general covariance has 
physical content if we augment it with the additional constraint that gen- 
erally covariant formulations of theories must be simple. 

Einstein chose to illustrate his point by challenging readers to seek 
a generally covariant formulation of Newtonian theory,  which Einstein 
supposed would be unworkable in practice. The choice proved a poor  
one, for it was discovered shortly by Cartan (1923) and Friedrichs (1927) 
that it was quite easy to give Newtonian theory an entirely workable 
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generally covariant formulation using essentially the same techniques as 
Einstein. Nonetheless Einstein's escape became one of the most popular 
in later literature. Misner, Thorne and Wheeler (1973, pp. 302-303), for 
example, complete their discussion of generally covariant formulations of 
Newtonian theory with a recapitulation of Einstein's escape in character- 
istically colorful language: 

But another  viewpoint is cogent. It constructs a powerful sieve in the form of a slightly 
altered and slightly more nebulous principle: "Nature  likes theories that  are simple when 
stated in coordinate-free, geometric l a n g u a g e " . . . .  According to this principle, Nature must 
love general relativity, and it must  hate Newtonian theory. Of all theories ever conceived 
by physicists, general relativity has the simplest, most elegant geometric foundations . . . .  
By contrast,  what  diabolically clever physicist would ever foist on man a theory with such a 
complicated geometric foundation as Newtonian theory? 

Einstein's escape works in a straightforward but limited sense. The 
requirement of simplicity in generally covariant formulation induces an 
ordering on empirically equivalent theories. The physical content arises 
in the assumption that the simpler theory in the ranking is more likely to 
be true. However this success is limited by two qualifications. First, we 
have no objective scheme for comparing the simplicity of two formula- 
tions. 6 In practice in individual cases, judgments of relative simplicity can 
be made with wide agreement. However that judgment rests on the intui- 
tive sensibilities of the people evaluating the formulations and not on 
explicitly stated rules. This is hardly a comfortable basis for underwriting 
the physical content of a fundamental physical principle. Second, the 
requirement of simplicity can only direct us if we have empirically equiva- 
lent theories. In this regard, Einstein and Misner, Thorne and Wheeler's 
comparison of general relativity and Newtonian theory is somewhat mis- 
leading and inflates the significance of the requirement. The decision 
between these two theories is not based on the simplicity of the generally 
covariant formulations. Had the celebrated tests of general relativity failed 
and all experiments favored Newtonian theory, could we justify our cur- 
rent enthusiastic support for general relativity no matter how simple it 
may be? 

There is a deeper worry. It is possible to give an entirely innocent 
explanation of the empirical success of the requirement of simplicity of 
generally covariant formulations. We know from other grounds that gen- 
eral relativity is our preferred theory of space, time and gravitation. Since 
it happens to have an especially simple generally covariant formulation, 
we naturally prefer theories with such simple formulation just as a rather 
cumbersome way of expressing our preference for general relativity. Our 
preference for them, then, is merely an accidental by- product of our 
preference for general relativity. This innocent views seems not to be 
that of Einstein. He sought to elevate the requirement of simplicity to 
fundamental metaphysics. 7 Elsewhere he made the celebrated proclam- 
ation (Einstein 1933): 
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Our experience hitherto justifies us in believing that nature is the realization of the simplest 
conceivable mathematical ideas. I am convinced that we can discover by means of purely 
mathematical constructions the concepts and laws connecting them with each other, which 
furnish the key to the understanding of natural phenomena . . . .  the creative principle resides 
in mathematics. 

Thus Einstein's view reverses the innocent explanation of the success of 
a simple generally covariant theory. The success of general relativity de- 
rives from the fact of its simple generally covariant formulation. 

The difficulty with Einstein's proposal is that there is scant evidence 
to justify the move from the innocent explanation to Einstein's deeper 
metaphysics. Our experience does not justify what Einstein claims, that 
is, that the canon of mathematical simplicity provides the decisive heuristic 
guide in our search for physical theories. Our experience is that major 
changes in physical theory require new mathematical languages and only 
in that new mathematical language does the theory appear simple. In the 
earlier languages, the theory may be extraordinarily complicated or even 
inexpressible. An obvious example is Einstein's own general theory of 
relativity, which found simple expression only by reviving a mathematical 
method that had lain stagnant for over a decade. A second example is the 
advent of the modern quantum theory in the 1920s. The theory finally 
found its simplest general mathematical expression in the mathematics of 
operators on Hilbert spaces. Yet this new mathematics emerged quite 
painfully as a synthesis of many explorations: the matrix methods of Born, 
Heisenberg and Jordan, the wave mechanics of Schr6dinger, Dirac's c and 
q numbers as well as major contributions from group theory. 

The moral of experience is that our best theories find simple mathema- 
tical expression because of the special efforts of mathematicians and physi- 
cists to find simple mathematical expression of our best theories. There is 
no single, natural mathematical language in which to judge the simplicity 
of theories. Throughout the history of science, physicists have drawn on 
many different mathematical tools. Sometimes it is the then standard 
method; sometimes it is a revival of one that has languished; and some- 
times it is one that is developed hand-in-hand with the theory or even 
after the new theory is well established. Because of the wide range of 
choice of mathematical method, any successful theory choice can be cast 
as the choice of the mathematically simplest. In so far as mathematical 
simplicity has heuristic value, it is entirely dependent on the choice of the 
right mathematical tool. How to make that choice is only apparent after 
the success of the theory. As a heuristic guide, mathematical simplicity is 
entirely dependent on the fortuitous choice of the right mathematical 
language, that is, on being lucky by guessing correctly. 

Nature is not tuned into our mathematics. Our mathematics is adjusted 
painstakingly to fit nature as out understanding of nature deepens. Mathe- 
matics hardly seems to provide us with a fixed and elevated vantage 
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point from which to direct the development of new physical theories. The 
vantage point mathematics provides is as mutable as our physics. 

4.2. Restrict the Addition of  New Structures 

The difficulty with Einstein's escape from Kretschmann's objection is that 
it leads us towards a problematic metaphysics of simplicity. A more empiri- 
cally motivated escape originated with several authors. Kretschmann had 
urged that one can take any spacetime theory and find generally covariant 
formulation for it. Fock (1959, p. xvi) considers this transition. He points 
out that one can always find a generally covariant formulation of a theory 
if one is allowed to introduce new auxiliary quantities arbitrarily. This 
easy achievement of a generally covariant formulation can be blocked if 
we insist that any new quantity must have proper physical basis and not 
be a purely mathematical artifice. Trautman (1964, pp. 122-123) and Wald 
(1984, p. 57) use the same example to illustrate this escape. If Aa is a 
covector field, then the equation that merely requires the vanishing of its 
first component 

A1 = 0 

is clearly not generally covariant. We could, however, render this equation 
generally covariant by explicitly introducing the coordinate basis vector 
field u a associated with the x 1 coordinate, rewriting the equation as 

u~Aa = 0 

This transition is blocked by the requirement that any new quantity intro- 
duced must reflect some element of physical reality according to the 
theory. A coordinate basis vector field, however, just reflects some arbi- 
trary choice of coordinate system. 

Pauli (1921, p. 150) gives a more realistic example of this escape. 
In his transition to general relativity, Einstein took a Lorentz covariant 
formulation of special relativity and expanded the coordinate systems it 
used to include those associated with uniformly accelerated motion. In 
this expansion, new quantities appear, the coefficients gik of the metric 
tensor. What makes this transition acceptable is that these coefficients do 
have a physical meaning. Einstein's principle of equivalence enjoins us to 
interpret these coefficients as describing a gravitational field. 

There is a difficulty with this proposal. The problem is that it is not so 
much a well articulated principle as a rule of thumb with a few suggestive 
examples. In particular, just how are we to distinguish between new 
quantities that properly reflect some element of reality and those that are 
merely mathematical artifices? Pauli and Weyl (1921, pp. 226-227) stress 
that the coefficients of the metric are distinguished by the fact that they 
are not given a priori. They are influenced and even determined by the 
metric field. But this cannot be the only criterion for identifying elements 

112 



THE DEBATE OVER G E N E R A L  C O V A R I A N C E  233 

of reality, s If we give just special relativity a generally covariant formula- 
tion, then the Minkowski metric of spacetime is represented in arbitrary 
coordinate systems by components gi~. What principle could deny that 
the Minkowski metric is properly an element of reality? But if we allow 
this, then we must also allow generally covariant formulation of special 
relativity. Similarly, we can give Newtonian spacetime theory generally 
covariant formulation if we are allowed to treat explicitly several familiar 
geometric structures in spacetime: the degenerate spacetime metric h ~b, 
the absolute time one form t~ and the affine structure 7~. Once again each 
of these structures seems to represent some proper element of physical 
reality. But if the augmented requirement of general covariance succeeds 
only in ruling out contrived examples but cannot rule out generally covari- 
ant formulations of both Newtonian theory and special relativity, then it 
is hard to see what interesting physical content lies in the principle. 9 

4.3. Require That There is Also No Formulation of Restricted Covariance 

The last escape attempted to make more precise the intuition that there 
is something unnatural in forcing generally covariant formulations onto 
theories that are more familiar in formulations of restricted covariance. 
Bergmann sought to give content to the principle of general covariance 
by building this intuition directly into its definition. The principle becomes 
the injunction to prefer spacetime theories that cannot be given formula- 
tions of restricted covariance. He wrote (1942, p. 159) 2° 

The hypothesis that the geometry of physical space is represented best by a formalism which 
is covariant with respect to general coordinate transformations, and that a restriction to a 
less general group of transformations would not simplify that formalism, is called the principle 
of general covariance. 

Thus neither special relativity nor standard Newtonian theory is admissible 
in generally covariant formulation. Each also admits formulations of re- 
stricted covariance, the former is Lorentz covariant, the latter Galilean 
covariant. 

This proposal comes closer to achieving the desired criterion for decid- 
ing between theories. However the division is not perfect. First, it is not 
clear that general relativity is irreducibly generally covariant. As Bondi 
(1959, p. 108) had pointed out, Fock (1959) has been prominent in calling 
for a restriction to the covariance of general relativity by augmenting it 
with the harmonic coordinate condition. Second, the theories that this 
proposal will select as generally covariant seem unrelated to those satisfy- 
ing a general principle of relativity. A simplified formulation of reduced 
covariance is available for a theory if that theory's spacetime structures 
admit symmetry transformations. Since the Lorentz boost is a symmetry 
of a Minkowski spacetime, special relativity can be written in simplified, 
Lorentz covariant formulation. Thus Bergmann's proposal directs us to 
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associate a smaller covariance group with a theory the larger the group of 
its spacetime symmetries. We shall see below that symmetry groups of a 
spacetime theory are those that are now associated with the relativity 
principle a theory may satisfy. Therefore, under Bergmann's proposal, 
the larger the group associated with a theory's relativity principle the 
smaller the theory's covariance group. That is, the more relative, the less 
covariant. For example, consider some spacetime theory that posits a 
completely inhomogeneous but otherwise fixed background spacetime 
structure. Such a theory satisfies no relativity principle at all. All events, 
let alone states of motion, are distinct. Yet it will be generally covariant. 
Special relativity and versions of Newtonian theory are more relativistic 
in the sense that they at least satisfy a principle of relativity of inertial 
motion. Yet they are less covariant. 

4.4. Contrive to Add the Result You Want 

In general, I think all these escapes contrived. What has failed is Einstein's 
original vision. The principle of general covariance was to have formed 
the core of general relativity in the way that the requirement of Lorentz 
covariance was central to special relativity. This hope has been dashed. 
The escapes discussed here all appear to be attempts to force an outcome 
that the unsupplemented principle could not deliver. Clearly, by suffi- 
ciently ingenious supplements, one can force the revised principle to de- 
liver any result we choose. However we delude ourselves if we think that 
general covariance delivered the result. It comes from the supplement. In 
some cases, the supplements carry a burden extraordinarily specific to 
general relativity, so that it becomes hardly surprising the principle points 
directly to Einstein's theory. For example, Weinberg's (1972, pp. 91-92) 
principle of general covariance has two parts, the second only resembling 
Einstein's original principle. His principle 

• . .  states that a physical equation holds in a general gravitational field, if two conditions are 
met: 

1. The equation holds in the absence of gravitation; that is, it agrees with the 
laws of special relativity when the metric field g~t3 equals the Minkowski tensor 
~cq3 and when the a n n e  connection F;~ vanishes. 

2. The equation is generally covariant; that is, it preserves its form under a general 
coordinate transformation x ---, x ' .  

One might well wonder if the second condition is needed at all. 

5 .  A R E  C O V A R I A N C E  P R I N C I P L E S  R E L A T I V I T Y  P R I N C I P L E S ?  

Whatever may the outcome of the attempts to restore physical content to 
the principle of general covariance, a second problem remains. Is the 
principle a relativity principle? A long tradition of criticism maintains that 
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covariance principles are not relativity principles. Its origins lay in a prob- 
lem apparent from the earliest moments of Einstein's general theory. On 
the level of simple observation, there was a significant gap between the 
relativity principles of the special and general theory. Under the relativity 
of inertial motion in the special theory, an observer in a closed chamber 
such as a railway car could do no experiment within the car to determine 
whether the car was in uniform motion or at rest. Were the car to acceler- 
ate, however, that motion would be entirely apparent to the occupants of 
the car through inertial effects. They would hardly need to carry out 
delicate experiments to detect even quite modest acceleration. Yet accord- 
ing to Einstein an extended principle of relativity was supposed to cover 
both uniform and accelerated motion of the car. It was supposedly equally 
admissible to imagine the accelerated car still at rest but temporarily under 
the influence of a gravitational field. ~1 Whatever may be the covariance 
of special and general relativity, their relativity principles seemed to be 
quite different and that of general relativity quite suspect. 

In the 1920s it was possible to dismiss this type of skepticism about the 
generalized principle of relativity as shallow or even willfully obstructive - 
especially given its association with the politically motivated anti-relativity 
movement. But it became harder to dismiss the tradition of criticism that 
sought to give deeper expression to this worry. Kretschmann (1917) was 
again one of the earliest voices of this tradition of criticism. The major 
part of his paper had been devoted to understanding what were the 
relativity principles of special and general relativity. His analysis was based 
on a geometric characterization of a relativity principle. The relativity 
principle of a spacetime theory of the type of relativity was fixed by the 
group of transformations that mapped the lightlike and timelike worldlines 
of spacetime back into themselves. In the case of special relativity, this 
criterion gave the expected answer: the group identified was the Lorentz 
group. Since motions connected by a Lorentz transformation were gov- 
erned by a relativity principle, the analysis returned the relativity of iner- 
tial motion as advocated by Einstein. Kretschmann's analysis gave quite 
different results in the case of general relativity. Lightlike and timelike 
worldlines were, in general, mapped back into themselves by the identity 
map only. It followed that general relativity satisfied no relativity principle 
at all. It is a fully absolute theory. 

Where Kretschmann's analysis was geometric in spirit, another ap- 
proach was more algebraic and closer to Einstein's own methods. The 
basic worry was that the form invariance of laws required by general 
covariance was too weak to express a relativity principle. Sesmat (1937, 
pp. 382-383) for example pointed out that the Lorentz transformation 
stood in a quite different relation to the special theory than did general 
transformations to the general theory. Lorentz transformations left un- 
changed the basic quantities describing spacetime such as the components 
of the metric tensor. They remained the same functions of the coordinates. 
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The equations of general relativity, however, could only be preserved in 
form under general transformations since the components of the metric 
tensor were adjusted by the tensor transformation law. Under arbitrary 
coordinate transformation, the functional dependence of these compo- 
nents on the coordinates would change. 

Fock (1957) synthesized both geometric and algebraic approaches. A 
relativity principle expressed the geometrical notion of a uniformity of 
spacetime, such as the lack of privileged points, directions and states of 
motion. In a spacetime theory of the type of special and general relativity, 
the group associated with such uniformity is not the group under which 
the metric tensor transforms tensorially. It is the group under which 
the components of the metric tensor remain the same funct ions  of the 
coordinates. That is, if a transformation takes coordinates x~ to x" and 
the components of the metric tensor g,v to g~v, then the transformation 
is associated with a relativity principle if it satisfies 

v / X l  \ g,o~ ~) = g ~ ( x ~ )  

where the equality is read as holding for equal numerical values of x~ 
and x ' .  This is the algebraic condition that expresses the uniformity of a 
spacetime. It is satisfied by the Lorentz transformation in special relativity 
but not by the general transformations of general relativity. 

Fock's analysis is essentially the one now standard in both philosophical 
and physical literatures, although it is now expressed in the modern intrin- 
sic geometrical language. 12 In the case of a spacetime theory which em- 
ploys a semi-Riemannian spacetime, we represent a spacetime by the pair 
(M, gab) where M is a four-dimensional manifold and g,~b a Lorentz signa- 
ture metric. Fock's condition picks out a group of transformations that 
correspond with the symmetry group of (M,  gab). ~3 That symmetry group 
is the group of all diffeomorphisms {h} which map the metric tensor back 
onto itself according to 

gab = h'gab 

One quickly sees that this group is the one that is naturally associated 
with the relativity principle. Consider, for example, two frames of refer- 
ence, each represented by a congruence of timelike worldlines, in some 
spacetime (M, gab). If the two frames map into each other under members 
of the symmetry group, then any relation between the frame and back- 
ground spacetime will be preserved under the map. Thus any experiment 
done in each frame concerning the motion of the frame in spacetime must 
yield the same result. Informally, spacetime looks exactly the same from 
each frame. If the two frames of reference are associated with railroad 
cars in inertial motion in a Minkowski spacetime, then any experiment 
concerning the motion of one car must yield an identical result if carried 
out in the other. But if the frames of the two cars are not related by a 
symmetry transformation, then the experiments will yield different results. 
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This is the case in which one moves inertially and the other accelerates. 
The experiments reveal inertial effects which distinguish the frames. 

What it is for a theory to satisfy a relativity principle is understood 
most simply by the geometric approach to spacetime theories initiated by 
Minkowski, rather than the algebraic approach favored by Einstein in 
which one concentrates on formal properties of the equations defining the 
theory. If the spacetime admits a symmetry group then the theory satisfies 
a relativity principle for the transformations of that group. 

6. A B S O L U T E  A N D  D Y N A M I C A L  O B J E C T S  

The association of relativity principles with the symmetry group of a 
spacetime theory seems to leave little hope for recovering a generalized 
principle of relativity within Einstein's general theory whatever may be 
its covariance. However an avenue for doing this remains. The spacetimes 
of special relativity are the Minkowski spacetimes (M, ~7~b) where ~7~b is 
a Minkowski metric. If there are matter fields present in spacetime, their 
presence is encoded by adding further members to this tuple. For simpli- 
city, we can represent these further fields by their stress-energy tensor Tab 
A theory with models (M, ~%b, Tab) satisfies a relativity principle associated 
with the Lorentz group exactly because a Lorentz transformation is a 
symmetry of the pair (M, ~7~b) This is the crucial point. The Lorentz 
transformation need not be a symmetry of the matter fields represented 
by Tab. More generally, we divide the model (M, rl,,b, Tab) into two 
parts: (M, ~7~b) which represents the background spacetime and T,~b which 
represents the matter contained in the spacetime. Figuratively, we might 
write this as 

(M, nob[T b) 
where "1" represents the cut between the spacetime container and the 
matter contained. The group associated with the relativity principle of the 
theory is the symmetry group of everything to the left of this cut ]. 

In general relativity, the corresponding models are (M, g~b, Tab) It is 
natural to place the cut as (M, g~bl T~b). But that is disastrous for Einstein's 
approach, for the symmetry group of (M, gab) in general relativity is, in 
general, the identity group. The situation would be quite different if a 
reason could be found for relocating the cut as 

(Mlgob, L~) 

Then the background spacetime would merely be the bare manifold itself. 
If we set aside global topological issues and consider just R 4 neighborhoods 
of M, then the symmetry transformations are just the of C ~ diffeomor- 
phisms, in effect, the arbitrary transformations Einstein associated with 
general covariance. If the cut were moved in this way for general relativity 
but not special relativity, then the modern association of symmetry groups 
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with relativity principles would pick out the Lorentz group in special 
relativity and the general group in general relativity. 

One might seek to justify the different placing of the cut by observing 
that the metric tensor gab of general relativity now represents the gravi- 
tational field. Therefore it carries mass-energy and deserves to be con- 
sidered as belonging on the right side of the cut as a matter field within 
spacetime. As it turns out there is a related way of justifying the moving 
of the this cut that draws directly on Einstein's own pronouncements 
concerning the fundamental difference between special and general relativ- 
ity. Einstein insisted that a major achievement of the transition from 
special to general relativity was the elimination of a causal defect in the 
structure of special relativity• As he explained in his text Meaning o f  
Relativity (1922, pp. 55-56) 

• . .  from the standpoint of the special theory of relativity we must say, continuum spatii et 
temporis est absolutum. In this latter statement absolutum means not only "physically real," 
but also " independent  in its physical properties, having a physical effect, but not itself 
influenced by physical conditions." 

and these absolutes are objectionable since 

• . .  it is contrary to the mode of thinking in science to conceive of a thing (the space-time 
continuum) which acts itself, but which cannot be acted upon. 

This theme of a causal defect in earlier theories is a stable feature of 
Einstein's accounts of general relativity, from his earliest 14 to his latest. 15 
The theme was entangled with Einstein's fascination with what became 
Mach's principles. Yet it survived in his writings after Einstein had aban- 
doned this principle. 

Einstein's notion of the causal defect of earlier theories finds clear 
expression through the work of Anderson• Anderson (1967, pp. 83-87) 
divides the geometric object fields of a spacetime theory into the absolute 
A1, A 2 , . . .  and dynamical D1, D 2 , . . .  so that we might write the models 
as (M, A1, A2 . . . . .  D1, D2 . . . .  ) The absolute objects are, loosely speak- 
ing, those that affect other objects but are not in turn affected by other 
objects• In special relativity, the Minkowski metric would be an absolute 
object since it determines the inertial trajectories of matter fields, without 
itself being affected by the matter fields. In general relativity, the space- 
time metric is dynamical. It fixes the inertial trajectories of matter fields 
and at the same time its disposition is affected by the mass-energy of the 
matter field through the gravitational field equations. Because the mani- 
fold M together with the absolute objects A~, A 2 ,  • • • form an immutable 
arena, it seems natural to place the cut between spacetime container and 
matter contained between the absolute objects and the dynamical objects 
D1, D z , .  . . 

<M, A1,  A2 . . . .  [D1, D2 . . . .  > 

We now have a principled reason for placing the Minkowski metric yah 
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of special relativity to the left of the cut and the spacetime metric of 
general relativity to its right. Anderson's "principle of general invariance" 
identifies the symmetry group of a spacetime theory with the symmetry 
group of its absolute structure. This is the group associated with its relativ- 
ity principle. If the theory has no absolute objects, the symmetry group 
is the group of symmetries of the manifold itself. Under this principle, 
the symmetry group of special relativity is the Lorentz group; the symme- 
try group of general relativity is the general group. 

While this analysis offers the most promising explication of Einstein's 
claims concerning relativity principles, several problems remain. The first 
is a technical problem. Absolute objects are introduced informally as 
those objects which act but are not acted upon. Anderson gives a formal 
definition in which the absolute objects are picked out as those which are 
the same in all the models of the theory. Friedman (1973) identified the 
sense of sameness as diffeomorphic equivalence. ~6 The definition is too 
broad for, as pointed out by Geroch (in Friedman 1983, p. 59) all non- 
vanishing vector fields are diffeomorphically equivalent. Therefore any 
non-vanishing velocity field in a spacetime theory will be deemed an 
absolute object. Conversely, as Torretti (1984, p. 285) has pointed out, 
the definition is too narrow. One can conceive spacetime theories with 
absolute background structures that fail to be picked out by the criterion 
of diffeomorphic sameness in all models. For example, one might consider 
a theory which posits that the background space has some fixed curvature, 
however the theory does not know what that curvature might be. Its value 
is located within some range, circumscribed, perhaps, by the reach of 
observational test. Such a theory would admit models with the relevant 
curvature drawn anywhere from this range. However the different curva- 
tures of the different models would not be a dynamical response to the 
amount of matter present in spacetime, as it is in standard relativistic 
cosmologies. Rather it would merely reflect our ignorance of the correct 
value of the curvature. The true value of this curvature, whatever it may 
be, would not vary with a change in the matter content of the spacetirne. 
The background structure would be absolute in the intuitive sense that it 
acts without being acted upon. However it would not be picked out as 
absolute by the definition because it fails to be diffeomorphically the same 
in all the models. Curvature is an invariant property, so structures of 
different curvature cannot be mapped diffeomorphically onto oneanother. 
It would seem that the criterion of diffeomorphic sameness in all models 
falls well short of the intuitive notion of things that act without being 
acted upon. 

A deeper problem is that there remains good reasons for leaving the 
spacetime metric of general relativity on the left side of the cut. The 
background spacetime has traditionally been that structure that fixes 
lengths and times of processes as well as inertial motions. That this struc- 
ture now responds dynamically to matter does not deprive it of these 
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quintessentiaUy spatio-temporal properties that mark it as belonging to 
the spacetime container. More seriously, prior to the advent of general 
relativity and with Einstein's urging, the principle of relativity was under- 
stood as expressing an experimental result about the impossibility of distin- 
guishing certain states of motion through space. If we allow that the bare 
manifold M is the spacetime background, then the principle of relativity 
ceases to have any direct meaning in terms of experiment. The equivalence 
of all frames of reference is merely captured in the assertion of the 
equivalence of suitable congruences of curves with respect to the manifold. 
There is no direct experimental translation of this equivalence that is akin 
to special relativity's prediction of failure of all the 19th century aether 
drift experiments. The principle of relativity of the special theory links 
the theory directly to its empirical base in experiment. The corresponding 
principle in general relativity, as it arises in Anderson's analysis, plays no 
such role. Given all these disanalogies, it is hard to see what in Einstein's 
general theory ought to be labelled a "generalized principle of relativity", 
especially if we are interested maintaining some continuity of meaning for 
the term "principle of relativity". 17 

Finally, Einstein's discussion of the absolutes that act but are not acted 
upon contains a mysterious element. It was not just that the transition 
from special to general relativity happened to be accompanied by the 
elimination of the absolutes. Einstein depicted them as intrinsically defec- 
tive and demanded their elimination. Anderson (1967, p. 339) expresses 
this requirement quasi-formally as a "generalized law of action and reac- 
tion". The difficulty is to see what compels us to this law. At best one can 
see loose analogies, perhaps to Newton's third law of motion. However the 
case of Newton's third law is significantly different. Those who deny it 
find themselves violating the law of conservation of momentum with all 
its attendant difficulties. There seems to be no analogous compulsion in 
the case of Anderson's generalized principle. Newton's mechanics violates 
the principle without precipitating any obvious problems. Here I agree 
with Schlick (1920, p. 40) who observed that "Newton's dynamics is quite 
in order as regards the principle of causality". The problem with Newton's 
mechanics is that it happens to be false. Let us not try to erect a dubious 
metaphysics merely to convince ourselves that it has to be false.28 

7. CONCLUSION 

This modern analysis offers an all too easy diagnosis of Einstein's error 
concerning relativity and covariance principles. In the Lorentz covariant 
formulation of special relativity, groups associated with covariance and 
relativity principles happen to coincide. With the transition to general 
relativity, the covariance group grew to the general group. What Einstein 
missed was that the group associated with the principle of relativity did 
not grow with it. It shrank to the identity group. Had Einstein pursued 
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the geometrical approach of Minkowski rather than his own algebraic 
approach, he would have been far less likely to confuse covariance and 
relativity. 

This analysis does provide, in my view, a perfectly satisfactory answer 
to the philosophical question of whether general relativity generalized the 
principle of relativity of the special theory. As an historical account of 
Einstein's work, however, it supplies at best a grossly oversimplified cari- 
cature. This is already suggested by Anderson's discussion of absolute and 
dynamical objects. His discussion provides the best modern explication of 
Einstein's account of the foundations of general relativity and shows how 
his ideas can be given more precise form. With care, as Stachel (1986, 
§§5, 6) has shown, Anderson's account can be extended to give precise 
meaning to Einstein's pronouncement that spacetime cannot exist without 
the gravitational field. 

However another puzzle remains. All this work is focused on taking 
what Einstein actually said and translating it into a form in which Einstein's 
original statements are barely discernible. If Einstein's viewpoint was 
sound, why does it need such dramatic transformation in order for us to 
see its soundness? I believe there is a better approach that solves this 
essentially historical puzzle. Einstein's own pronouncements are incoher- 
ent to us when read literally only if we fail to take into account the 
enormous developments in mathematical techniques since the time 
Einstein wrote. If we account for these changes properly, we find that 
Einstein can be read literally. His pronouncements on general covariance 
turn out to be directed at solving a problem peculiar to his simpler mathe- 
matical apparatus. This problem remains opaque to us in the modern 
context since, in part due to Einstein's own efforts, it has been solved 
automatically and almost completely by the newer mathematical methods. 
This story is told in Norton (1989, 1992a). 19 

NOTES 

i See Norton (1993a) for a more detailed survey of the many variant positions that emerged 
during this debate and how they developed over time as the debate unfolded. 
2 Einstein had decided that no Lorentz covariant gravitation theory could do justice to 
gravitation. As it turned out, his decision was too hasty. See Norton (1992, 1993b) for 
Einstein's reasons and the discovery of his error. 
3 Thus Einstein's version of the principle of equivalence is quite distinct in both statement 
and purpose from the later infinitesimal version of the principle of equivalence which is now 
universally but incorrectly attributed to Einstein. Einstein's version of the principle did not 
allow an arbitrary gravitational field to be transformed away infinitesimally. For discussion, 
see Norton (1985, 1993a, §4.1). 
4 For further discussion, see Norton (1984, §5; 1987) and Howard and Norton (1993). 
s Kretschmann's footnotes to related literature have been suppressed. The selection of 
literature cited suggests obliquely that Kretschmann's own earlier work may have been an 
unacknowledged source for Einstein's point-coincidence argument. See Howard and Norton 
(1993, §7). 
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6 Do we reduce the evaluation to a count of equations and quantities employed? How do 
we handle alternative formulations of the same theory? How do we count quantities? Is the 
metric tensor gab of general relativity one quantity or ten? Is its unique compatible derivative 
operator Va not to be counted since Va is a derivative quantity fixed once gab is fixed. Or 
are we to count gab and V a a s  tWO quantities and add their compatibility relation Vogbc = 0 
to the count of equations? 
7 Do Misner, Thorne and Wheeler intend the same when they say "Nature l i ke s . . . " ?  
8 Pauli and Weyl's criterion anticipates the later distinction of absolute and dynamical 
objects. I will remark below on the difficulty of finding a formal characterization of this 
distinction. 
9 We may even wonder about its success with contrived examples. In the example A1 = 0, 
the fact of its lack of general covariance means that the equation picks out preferred 
coordinate systems. Therefore, implicit in the equation is the selection of the relevant 
coordinate basis vector field u a. So if A1 = 0 is offered as a physical law, then the basis 
vector u a reflects an element of the physical reality depicted by the law and its explicit 
appearance cannot be ruled out. 
10 I pass over the vagueness of "simplify" in Bergmann's definition. Does it mean "reduce 
the number of mathematical structures present"? 
11 For this objection, see, for example, Lenard (1921, p. 15) and Einstein (1918a) for the 
reply. 
12 See for example Earman (1974), Friedman (1973, 1983, Chap. IV), Jones (1981) and 
Wald (1984, pp. 58, 60, 438). 
13 The correspondence is through the connection between passive coordinate transformations 
and active boosts. For further discussion, see Norton (1989). 
14 See for example Einstein (1913, pp. 1260-1261). Notice that here as in other places 
Einstein specifically identifies the inertial system of special relativity as causally objectionable. 
15 See for example Einstein's (1954, pp. 139-140) appendix to Einstein (1922). 
16 Definitions of absolute objects akin to Anderson's but with slight variations are given by 
Friedman (1973, 1983, pp. 58-60) and Earman (1974, p. 282). 
17 Friedman (1983, Chap. III) has pointed out that we can come close in Newtonian space- 
time theory in the following sense. Consider those versions of the theory which combine the 
gravitational field qb and the flat affine structure °Va into a single curved affine structure ~7 a. 

It is possible to decompose this curved Va into many distinct pairs of affine structure ~Va 
and associated field qb, all of which are empirically equivalent. Since the various *Va designate 
different motions as inertial, one arrives at the kind of extension of the relativity principle 
that Einstein associated with the principle of equivalence. 
18 I mention briefly the problem of the vagueness of the notion of "acting" in the context 
of these absolutes. Do universal constants such as Planck's constant h and the gravitational 
constant G act without being acted upon? One might be tempted to say they are not absolutes 
in this sense, for there is no physical process connecting h and G with systems in the world. 
There are no exchanges of energy and momentum, for example. We might wonder, however, 
whether Einstein would have categorized them as absolutes to be eliminated, for he did hold 
out the hope for a physics free of arbitrary constants like h and G. 
19 I am grateful to the Research Group: Semantical Aspects of Spacetime Theories (1992/93), 
Center for Interdisciplinary Research, University of Bielefeld, for helpful discussion. 
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