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PREFACE TO THE ENGLISH TRANSLATION 

THERE does not exist to-day in the English language a 
general advanced text upon Optics which embodies the im
portant advances in both theory and experiment which have 
been made within the last decade. 

Preston's " Theory of Light " is at present the only gen
eral text upon Optics in English. Satisfactory as this work 
is for the purposes of the general student, it approaches the 
subject from the historical standpoint and contains no funda
mental development of some of the important theories which 
are fast becoming the basis of modern optics. Thus it touches 
but slightly upon the theory of optical instruments-a branch 
of optics which has received at the hands of Abbe and his fol
lowers a most extensive and beautiful development ; it gives 
a most meagre presentation of the electromagnetic theory
a theory which has recently been brought into particular 
prominence by the work of Lorentz, Zeeman, and others ; and 
it contains no discussion whatever of the application of the 
laws of thermodynamics to the study of radiation. 

The book by Heath, the last edition of which appeared in 
1895, well supplies the lack in the field of Geometrical Optics, 
and Basset's " Treatise on Physical Optics" ( I 892) is a valua
ble and advanced presentation of many aspects of the wave 
theory. But no complete development of the electromagnetic 
theory in all its bearings, and no comprehensive discussion of 
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the relation between the laws of radiation and the principles of 
thermQdynamics, have yet been attempted in any general text 
in English. , 

It is in precisely these two respects that the" Lehrbuch der 
Optik" by Professor Paul Drude (Leipzig, 1900) particularly 
excels. Therefore in making this book, written by one who 
has contributed so largely to the progress which has been 
made in Optics within the last ten years, accessible to the 
English-speaking public, the translators have rendered a very 
important service to English and American students of 
Physics. 

No one who desires to gain an insight into the most mod
ern aspects of optical research can afford to be unfamiliar with 
this remarkably original and consecutive presentation of the 
subject of Optics. 

UNIVBB.SITY OF CHICAGO, 
February, 1902. 

A. A. MICHELSON. 



AUTHOR'S PREFACE 

THE purpose of the present book is to introduce the reader 
who is already familiar with the fundamental concepts of the 
differential and integral calculus into the domain of optics 
in such a way that he may be able both to understand the 
aims and results of the most recent investigation and, in addi
tion, to follow the original works in detail. 

The book was written at the request of the pubiisher-a 
request to which I gladly responded, not only because I 
shared his view that a modern text embracing the entire 
domain was wanting, but also because I hoped to obtain for 
myself some new ideas from the deeper insight into the sub
ject which writing in book form necessitates. In the second 
and third sections of the Physical Optics I have advanced some 
new theories. In the rest of the book I have merely endeav
ored to present in the simplest possible way results already 
published. 

Since I had a text-book in mind rather than a compen
dium, I have avoided the citation of such references as bear 
only upon the historical development of optics. The few refer
ences which I have included are merely intended to serve the 
reader for more complete information upon those points 
which can find only brief presentation in the text, especially 
in the case of the more recent investigations which have not 
yet found place in the text-books. 

V 
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In order to keep in touch with experiment and attain the 
simplest possible presentation of the subject I have chosen a 
synthetic method. The simplest experiments lead into the 
domain of geometrical optics, in which but few assumptions 
need to be made as to the nature of light. Hence I have 
begun with geometrical optics, following closely the excellent 
treatment given by Czapski in " Winkelmann's Handbuch der 
Physik " and by Lommer in the ninth edition of the " Miiller
Pouillet " text. 

The first section of the Physical Optics, which follows the 
Geometrical, treats of those general properties of light from 
which the conclusion is drawn that light consists in a periodic 
change of condition which is propagated with finite velocity in 
the form of transverse waves. In this section I have included, 
as an important advance upon most previous texts, Sommer' 
feld's rigorous solution of the simplest case of diffraction, 
Cornu's geometric representation of Fresnel's integrals, and, 
on the experimental side, Michelson's echelon spectroscope. 

In the second section, for the sake of the treatment of the 
optical properties of different bodies, an extension of the 
hypotheses as to the nature of light became for the first time 
necessary. In accordance with the purpose of the book I have 
merely mentioned the mechanical theories of light ; but the 
electromagnetic theory, which permits the simplest and most 
consistent treatment of optical relations, I have presented in 
the following form : 

Let X, Y, Z, and a, /J, y represent respectively the com
ponents of the electric and magnetic forces (the first measured 
in electrostatic units); also letJ~ ,J~ ,J~, and s,., s,, s. represent 
the components of the electric and magnetic current densities, 

I 
i.e. - times the number of electric or magnetic lines of force 

4,r 
which pass in unit time through a unit surface at rest with 
reference to the ether ; then, if c represent the ratio of the 
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electromagnetic to the electrostatic unit, the following funda
mental eqtttiti'ons always hold : 

41rs.,. oY oZ 
-c- = oz - oy' etc. 

The number of lines of force is defined in the usual way. 
The particular optical properties of bodies first make their 
appearance in the equations which connect the electric and 
magnetic current densities with the electric and magnetic 
forces. Let these equations be called the sttbstance equations 
in order to distinguish them from the above fundamental 
equations. Since these substance equations are developed 
for non-homogeneous bodies, i.e. for bodies whose properties 
vary from point to point, and since the fundamental equa
tions hold in all cases, both the differential equations of the 
electric and magnetic forces and the equations of condition 
which must be fulfilled at the surface of a body are imme
diately obtained. 

In the process of setting up " substance and fundamental 
equations " I have again proceeded synthetically in that I 
have deduced them from the simplest electric and magnetic 
experiments. Since the book is to treat mainly of optics this 
process can here be but briefly sketched. For a more com
plete development the reader is referred to my book "Physik 
des Aethers auf elektromagnetische Grundlage" (Enke, 1894). 

In this way however, no explanation of the phenomena of 
dispersion is obtained because pure electromagnetic experi
ments lead to conclusions in what may be called the domain 
of macrophysical properties only. For the explanation of 
optical dispersion a hypothesis as to the mi'crophysical proper
ties of bodies must be made. As such I have made use of 
the ion-hypothesis introduced by Helmholtz because it seemed 
to me the simplest, most intelligible, and most consistent way 
of presenting not only dispersion, absorption, and rotary 
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polarization, but also magneto-optical phenomena and the 
optical properties of bodies in motion. These two last-named 
subjects I have thought it especially necessary to consider 
because the first has acquired new interest from Zeeman's dis
covery, and the second has received at the hands of H. A. 
Lorentz a development as comprehensive as it is elegant. 
This theory of Lorentz I have attempted to simplify by the 
elimination of all quantities which are not necessary to optics. 
With respect to magneto-optical phenomena I have pointed 
out that it is, in general, impossible to explain them by the 
mere supposition that ions set in motion in a magnetic field 
are subject to a deflecting force, but that in the case of the 
strongly magnetic metals the ions must be in such a continuous 
motion as to produce Ampere's molecular currents. This 
supposition also disposes at once of the hitherto unanswered 
question as to why the permeability of iron and, in fact, of all 
other substances must be assumed equal to that of the free 
ether for those vibrations which produce light. 

The application of the ion-hypothesis leads also to some 
new dispersion formulre for the natural and magnetic rotation 
of the plane of polarization, formulre which are experimentally 
verified. Furthermore, in the case of the metals, the ion
hypothesis leads to dispersion formulre which make the con
tinuity of the optical and electrical properties of the metals 
depend essentially upon the inertia of the ions, and which have 
also been experimentally verified within the narrow limits thus 
far accessible to observation. 

The third section of the book is concerned with the rela
tion of optics to thermodynamics and (in the third chapter) to 
the kinetic theory of gases. The pioneer theoretical work in 
these subjects was done by Kirchhoff, Clausius, Boltzmann, 
and W. Wien, and the many fruitful experimental investiga
tions in radiation which have been more recently undertaken 
show clearly that theory and experiment reach most perfect 
development through their mutual support. 
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Imbued with this conviction, I have written this book in the 
endeavor to make the theory accessible to that wider circle of 
readers who have not the time to undertake the study of the 
original works. I can make no claim to such completeness as 
is aimed at in Mascart's excellent treatise, or in Winkelmann's 
Handbuch. For the sake of brevity I have passed over many 
interesting and important fields of optical investigation. My 
purpose is attained if these pages strengthen the reader in 
the view that optics is not an old and worn-out branch of 
Physics, but that in it also there pulses a new life whose further 
nourishing must be inviting to every one. 

Mr. F. Kiebitz has given me efficient assistance in the 
reading of the proof. 

LEIPZIG, January, lg<>o. 



INTRODUCTION 

MANY optical phenomena, among them those which have 
found the most extensive practical application, take place in 
accordance with the following fundamental laws: 

1. The law of the rectilinear propagation of light; 
2. The law of the independence of the different portions of 

a beam of light; 
3. The law of reflection; 
4. The law of refraction. 
Since these four fundamental laws relate only to the 

geometrical determination of the propagation of light, conclu
sions concerning certain geometrical relations in optics may 
be reached by making them the starting-point of the analysis 
without taking account of other properties of light. Hence 
these fundamental laws constitute a sufficient foundation for 
so-called geometrical optics, and no especial hypothesis which 
enters more closely into the nature of light is needed to make 
the superstructure complete. 

In contrast with geometrical optics stands physical optics, 
which deals with other than the purely geometrical properties, 
and which enters more closely into the relation of the physical 
properties of different bodies to light phenomena. The best 
success in making a convenient classification of the great 
multitude of these phenomena has been attained by devising 
particular hypotheses as to the nature of light. 

From the standpoint of physical optics the four above-men
tioned fundamental laws appear only as very close approxima

x1 



xii INTRODUCTION 

tions. However, it is possible to state within what limits the 
Jaws of geometrical optics are accurate, i.e. under what cir
cumstances their consequences deviate from the actual facts. 

This circumstance must be borne in mind if geometrical 
optics is to be treated as a field for real discipline in physics 
rather than one for the practice of pure mathematics. The 
truly complete theory of optical ins.truments can only be 
developed from the standpoint of physical optics; but since, 
as has been already remarked, the laws of geometrical optics 
furnish in most cases very close approximations to the actual 
facts, it seems justifiable to follow out the consequences of 
these laws even in such complicated cases as arise in the 
theory of optical instruments. 
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PART I 

GEOMETRICAL OPTICS 

CHAPTER I 

THE FUNDAMENTAL LAWS 

1. Direct Experiment.-The four fundamental laws stated 
above are obtained by direct experiment. 

The rectilinear propagation of light is shown by the shadow 
of an opaque body which a point source of light P casts upon 
a screen S. If the opaque body contains an aperture L, then 
the edge of the shadow cast upon the screen is found to be the 
intersection of S with a cone whose vertex lies in the source P 
and whose surface passes through the periphery of the aper
ture L. 

If the aperture is made smaller, the boundary of the shadow 
upon the screen S contracts. Moreover it becomes indefinite 
when L is made very small (e.g. less than I mm.), for 
points upon the screen which lie within the geometrical shadow 
now receive light from P. However, it is to be observed 
that a true point source can never be realized, and, on account 
of the finite extent of the source, the edge of the shadow could 
never. be perfectly sharp even if light were propagated in 
straight lines (umbra and penumbra). Nevertheless, in the 
case of a very small opening L (say of about one tenth mm. 
diameter) the light is spread out behind L upon the screen so 
far that in this case the propagation cannot possibly /Je recti
linear. 
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The same result is obtained if the shadow which an opaque 
body S' casts upon the screen S is studied, instead of the 
spreading out of the light which has passed through a hole in 
an opaque object. If S' is sufficiently small, rectilinear 
propagation of light from P does not take place. It is there
fore necessary to bear in mind that the law of the rectilinear 
propagation of light holds only when the free opening through 
which the light passes, or the screens which prevent its passage, 
are not too small. 

In order to conveniently describf the propagation of light 
from a source P to a screen S, it is customary to say that P 
sends rays to S. The path of a ray of light is then defined 
by the fact that its effect upon 5 can be cut off only by an 
obstacle that lies in the path of the ray itself. When the 
propagation of light is rectilinear the rays are straight lines, 
as when light from P passes through a sufficiently large open
ing in an opaque body. In this case it is customary to say 
that P sends a beam of light through L. 

Since by diminishing L the result upon the screen S is the 
same as though the influence of certain of the rays proceeding 
from P were simply removed while that of the other rays 
remained unchanged, it follows that the different parts of a 
beam of light are independent of one another. 

This law too breaks down if the diminution of the open
ing L is carried too far. But in that case the conception of 
light rays propagated in straight lines is altogether untenable. 

The concept of light rays is then merely introduced for 
convenience. It is altogether impossible to isolate a single 
ray and prove its physical existence. For the more one tries 
to attain this end by narrowing the beam, the less does light 
proceed in straight lines, and the more does the con~ept of 
light rays lose its physical significance. 

If the homogeneity of the space in which the light rays exist 
is disturbed by the introduction of some substance, the rays 
undergo a sudden change of direction at its surface: each ray 
splits up into two, a reflected and a refracted ray. If the sur-



THE FUNDAMENTAL LAWS 3 

face of the body upon which the light falls is plane, then the 
plane of incidence is that plane which is defined by the incident 
ray and the normal N to the surface, and the angle of 
z'nddence ¢ is the angle included between these two direc
tions. 

The following laws hold: The re.fleeted and refracted rays 
both lie in the plane of incidence. The angle of reflection (the 
angle included between N and the reflected ray) is equal to the 
angle of incidence. The angle of refraction¢' (angle included 
between N and the refracted ray) bears to the angle of incidence 
the relation 

sin <j> 
---n 
sin q/ - ' (I) 

in which n is a constant for any given color, and is called the 
index of refraction of the body with reference to the surround
ing medium.-Unless otherwise specified the index ofrefraction 
with respect to air will be understood.-For all transparent 
liquids and solids n is greater than I. 

If a body A is separated from air by a thin plane parallel 
plate of some other body B, the light is refracted at both sur
faces of the plate in accordance with equation (I); i.e. 

sin <j> 
sin <jl = nh, 

sin q/ 
---n sin <p11 - ab• 

in which ¢ represents the angle of incidence in air, ¢' the 
angle of refraction in the body B, ¢'' the angle of refraction in 
the body A, n0 the index of refraction of B with respect to air, 
n® the index of refraction of A with respect to B; therefore 

If the plate Bis infinitely thin, the formula still holds. The 
case does not then differ from that at first considered, viz. 
that of simple refraction between the body A and air. The 
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last equation in combination with (1) then gives, n,. denoting 
the index of refraction of A with respect to air, 

or 

i.e. the index of refraction of A with respect to B is equal to 
the ratio of the i'ndict·s of A and B with respect to air. 

If the case considered had been that of an infinitely thin 
plate A placed upon the body B, the same process of reason
ing would have given 

Hence 

i.e. the index of A with respect to B i's the reciprocal of the 
index of B with respect to A. 

The law of refraction stated in (1) permits, then, the con
clusion that q,' may also be regarded as the angle of incidence 
in the body, and q, as the angle of refraction in the surround
ing medium; i.e. that the direction of propagation may be 
reversed without changing the path of the rays. For the case 
of reflection it is at once evident that this principle of reversi
bility also holds. 

Therefore equation (1), which corresponds to the passage 
of light from a body A to a body B or the reverse, may be 
put in the symmetrical form 

(3) 

in which q,,. and q,6 denote the angles included between the 
normal N and the directions of the ray in A and B respec
tively, and n,. and n6 the respective indices with respect to 
some medium like air or the free ether. 

The difference between the index n of a body with respect 
to air and its index n0 with respect to a vacuum is very small. 
From (2) 

(4) 
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in which n' denotes the index of a vacuum with respect to air. 
Its value at atmospheric pressure and 0° C. is 

n' = I : I . 00029, , (5) 

According to equation (3) there exists a refracted ray (¢6) 
to correspond to every possible incident ray </J,. only when 
n,. < n6 ; for if n,. > n6 , and if 

(6) 

then sin <Po> I; i.e. there is no real angle of refraction <fJ6• 

In that case no refraction occurs at the surface, but reflection 
only. The whole intensity of the incident ray must then be 
contained in the reflected ray; i.e. there is total reflection. 

In all other cases (partial reflection) the intensity of the 
incident light is divided between the reflected and the re
fracted rays according to a law which will be more fully 
considered later (Section 2, Chapter II). Here the observa
tion must suffice that, in general, for transparent bodies the 
refracted ray contains much more light than the reflected. 
Only in the case of the metals does the latter contain almost 
the entire intensity of the incident light. It is also to be 
observed that the law of reflection holds for very opaque bodies, 
like the metals, but the law of refraction is no longer correct 
in the form given in (1) or (3). This point will be more fully 
discussed later (Section 2, Chapter IV). 

The different qualities perceptible in light are called colors. 
The refractive index depends on the color, and, when referred 
to air, increases, for transparent bodies, as the color changes 
from red through yellow to blue. The spreading out of white 
light into a spectrum by passage through a prism is due to this 
change of index with the color, and is called dispersion. 

If the surface of the body upon which the light falls is not 
plane hut curved, it may still be looked upon as made up of 
very small elementary planes (the tangent planes), and the 
paths of the light rays may be constructed according to the 
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above laws. However, this process is reliable only when the 
curvature of the surface does not exceed a certain limit, i.e. 
when the surface may be considered smooth. 

Rough surfaces exhibit irregular (diffuse) reflection and 
refraction and act as though they themselves emitted light. 
The surface of a body is visible only because of diffuse reflec
tion and refraction. The surface of a perfect mirror is invisi
ble. Only objects which lie outside of the mirror, and whose 
rays are reflected by it, are seen. 

2. Law of the Extreme Path.*-All of these experi
mental facts as to the direction of light rays are comprehended 
in the law of the extreme path. If a ray of light in passing 
from a point P to a point P' experiences any number of reflec
tions and refractions, then the sum of the products of the 
index of refraction of each medium by the distance traversed 
in it, i.e. ~nl, has a maximum or minimum value; i.e. it 
differs from a like sum for all other paths which are infinitely 
close to the actual path by terms of the second or higher order. 
Thus if ,S denotes the variation of the first order, 

o-:Znl = o. (7) 

The product, index of refraction times distance traversed, 
is known as the optical length of the ray. 

In order to prove the proposition for a single refraction let 
POP' be the actual path of the light (Fig. 1), OE the inter
section of the plane of incidence PON with the surface (tan
gent plane) of the refracting body, 0' a point on the surface 
of the refracting body infinitely near to 0, so that 00' 
makes any angle (} with the plane of incidence, i.e. with the 
line OE. Then it is to be proved that, to terms of the second 
or higher order, 

n-PO+ n'-OP' = n-PO' + n'.O'P', (8) 

*•Extreme' is here used to denote either greatest or least (maximum or 
minimum).-Ta.. 
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in which n and n' represent the indices of refraction of the 
adjoining media. 

If a perpendicular OR be dropped from O upon PO' and a 
perpendicular OR' upon P'O', then, to terms of the second 
order, 

PO'= PO+ RO', O'P' = OP' - O'R'. . . (9) 

Also, to the same degree of approximation, 

RO'= 00'.cos POO', O'R' = OO'•cos P'OO'. (ro) 

FIG. I. 

In order to calculate cos POO' imagine an axis OD perpen
dicular to ON and OE, and introduce the direction cosines of 
the lines PO and 00' referred to a rectangular system of 
coordinates whose axes are ON, OE, and OD. If </J represent 
the angle of incidence PON. then, disregarding the sign, the 
direction cosines of PO are 

cos ¢, sin ¢, o, 

those of 00 are 

o, cos 8, sin fJ. 

According to a principle of analytical geometry the cosine 
of the angle between any two lines is equal to the sum of the 
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products of the corresponding direction cosines of the lines with 
reference to a system of rectangular coordinates, i.e. 

cos POO' = sin </J•cos -8, 
and similarly 

cos P'OO' = sin </J' •cos -8, 

in which </J' represents the angle of refraction. 
Then, from (9) and (10), 

n-PO' + n' -O'P' = n-PO + n-00' -sin </J •cos -8 
+ n'.OP' - n'-00'-sin <1/•co5 -8. 

Since now from the law of refraction the relation exists 

n-sin <P = n' •sin </J', 

it follows that equation (8) holds for any position whatever 
of the point O' which is infinitely close to 0. 

For the case of a single reflection equation (7) may be 
more simply proved. It then takes the form 

o(PO + OP') = o, . (11) 

in which (Fig. 2) PO and OP' denote the actual path of the 
ray. If P 1 be that point which is symmetrical to P with 

p' 

FIG. 2. 

respect to the tangent plane OE of the refracting body, then 
for every point O' in the tangent plane, PO'= P 10'. The 
length of the path of the light from P to P' for a single reflec-
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tion at the tangent plane OE is, then, for every position of the 
point 0', equal to P 10' + O'P'. Now this length is a mini
mum if P 1 , O', and P' lie in a straight line. But in that case 
the point O' actually coincides with the point O which is 
determined by the law of reflection. But since the property 
of a minimum (as well as of a maximum) is expressed by the 
vanishing of the first derivative, i.e. by equation (11), there
fore equation (7) is proved for a single reflection. 

It is to be observed that the vanishing of the first derivative 
i3 the condition of a maximum as well as of a minimum. In 
the case in which the refracting body is actually bounded by a 
plane, it follows at once from the construction given that the 
path of the light in reflection is a minimum. It may also be 
proved, as will be more fully shown later on, that in the case 
of refraction the actual path is a minimum if the refracting 
body is bounded by a plane. Hence this principle has often 
been called the law of least path. 

When, however, the surface of the refracting or reflecting 
body is curved, then the path o.f the light is a minimum or a 
maximum according to the nature o.f the curvature. The 
vanishing of the first derivative is the only property which is 
common to all cases, and this also is entirely sufficient for the 
determination of the path of the ray. 

A clear comprehension of the subject is facilitated by the 
introduction of the so-called aplanatic surface, which is a sur
face such that from every point upon it the sum of the optical 
paths to two points P and P' is constant. For such a surface 
the derivative, not only of the first order, but also of any 
other order, of the sum of the optical paths vanishes. 

In the case of reflection the aplanatic surface, defined by 

PA + P' A = constant C, . (12) 

is an ellipsoid of revolution having the points P and P' as foci. 
If SOS' represents a section of a mirror (Fig. 3) and 0 

a point upon it such that PO and P'O are incident and 
reflected rays, then the aplanatic surface A OA ', which 
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passes tlirough the point O and corresponds to the points P 
and P', must evidently be tangent to the mirror SOS' at 0, 
since at this point the first derivative of the optical paths 
vanishes for both surfaces. If now, as in the figure, the mirror 
SOS' is more concave than the aplanatic surface, then the 
optical path PO+ OP' is a maximum, otherwise a minimum. 

FIG. 3. 

The proof of this appears at once from the figure, since for all 
points (J within the ellipsoid A OA' whose equation is given 
in (12), the sum PO+ OP' is smaller than the constant C, 
while for all points outside, this sum is larger than C, and for 
the actual point of reflection 0, it is equal to C. 

In the case of refraction the aplanatic surface, defined by 

n-PA +n'•P'A = constant C, 

is a so-called Cartesian oval which must be convex towards 
the less refractive medium (in Fig. 4 n < n'), and indeed more 
convex than a sphere described about P' as a centre. 

This aplanatic surface also separates the regions for whose 
points 0' the sum of the optical paths n-PO' + 11' -PO'> C 
from those for which that sum < C. The former regions lie 
on the side of the aplanatic surface toward the less refractive 
medium (left in the figure), the latter on the side toward the 
more refractive medium (right in the figure). 

If now SOS' represents a section of the surface between the 
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two media, and PO, P' 0 the actual path which the light takes 
in accordance with the law of refraction, then the length of the 
path through O is a maximum or a minimum according as 
SOS' is more or less convex toward the less refracting medium 

.lt 

Fm.4. 

than the aplanatic surface AOA'. The proof appears at once 
from the figure. 

If, for example, SOS' is a plane, the length of the path is 
a minimum. In the case shown in the figure the length of the 
path is a maximum. 

Since, as will be shown later, the index of refraction is 
inversely proportional to the velocity, the optical path nl is 
proportional to the time which the light requires to travel the 
distance l. The principle of least path is then identical with 
Fermat's principle of least time, but it is evident from the 
above that, under certain circumstances, the time may also be 
a maximum. 

Since o~nl = o holds for each single reflection or refrac
tion, the equation o~nl = o may at once be applied to the 
case of any number of reflections and refractions. 

3. The Law of Malus.-Geometrically considered there 
are two different kinds of ray systems: those which may be 
cut at right angles by a properly constru;:ted surface F (ortho-
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tomic system), and those for which no such surface F can be 
found (anorthotomic system). With the help of the preceding 
principle the law of Malus can now be proved. This law is 
stated thus: An ortlzotomic system of rays remains orthotomz'c 
after any number of reflections and refractions. From the 
standpoint of the wave theory, which makes the rays the 
normals to the wave front, the law is self-evident. But it can 
also be deduced from the fundamental geometrical laws already 
used. 

Let (Fig. S) ABCDE and A'B'C'D'E' be two rays infinitely 
close together and let their initial direction be normal to a 

surface F. If L represents the total 
f-.........,,...- f optical distance from A to E, then 

it may be proved that every ray 
rt. whose total path, measured from its 

origin A, A', etc., has the same 
optical lc::ngth L, is normal to a sur
face F' which is the locus of the ends 
E, E', etc., of those paths. For 
the purpose of the proof let A' B and 
E 'D be drawn. 

According to the law of extreme 
FIG. 5. 

path stated above, the length of 
the path A'B'C'D'E' must be equal to that of the infinitely 
near path A'BCDE', i.e. equal to L, which is also the length 
of the path ABCDE. If now from the two optical distances 
A'BCDE' and ABCDE the common portion BCD be sub-
tracted, it follows that 

n-AB+n'.DE= n-A'B+ n'-DE', 

in which n represents the .index of the medium between the 
surfaces F and B, and n' that of the medium between D 
and F'. But since AB= A' B, because AB is by hypothesis 
normal to F, it follows that 

DE= DE', 
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i.e. DE is perpendicular to the surface F'. In like manner 
it may be proved that any other ray D'E' is normal to F'. 

Rays which are emitted by a luminous point are normal to 
a surface F, which is the surface of any sphere described about 
the luminous point as a centre. Since every source of light 
may be looked upon as a complex of luminous points, it 
follows that light rays always form an orthotomic systmi. 



CHAPTER II 

G~OMETRICAL THEORY OF OPTICAL IMAGES 

1. The Concept of Optical Images.-If in the neighbor
hood of a luminous point P there are refracting and reflecting 
bodies having any arbitrary arrangement, then, in general, 
there passes through any point P' in space one and only one 
ray of light, i.e. the direction which light takes from P to P' 
is completely determined. Nevertheless certain points P' may 
be found at which two or more of the rays emitted by Pinter
sect. If a large number of the rays emitted by P intersect in 
a point P', then P' is called the optical image of P. The 
intensity of the light at P' will clearly be a maximum. If the 
actual intersection of the rays is at P', the image is called real,· 
if P' is merely the intersection of the backward prolongation 
of the rays, the image is called vi'rtual. The simplest exam
ple of a virtual image is found in the reflection of a luminous 
point P in a plane mirror. The image P' lies at that point 
which is placed symmetrically to P with respect to the mirror. 
Real images may be distinguished from virtual by the direct 
illumination which they produce upon a suitably placed rough 
surface such as a piece of white paper. In the case of plane 
mirrors, for instance, no light whatever reaches the point P'. 
Nevertheless virtual images may be transformed into real by 
certain optical means. Thus a virtual image can be seen be
cause it is transformed by the eye into a real image which 
illumines a certain spot on the retina. 

The cross-section of the bundle of rays which is brought 
together in the image may have finite length and breadth or 
may be infinitely narrow so as in the limit to have but one 



GEOMETRICAL THEORY OF OPTICAL IMAGES 15 

dimension. Consider, for example, the case of a single refrac
tion. If the surface of the refracting body is the aplanatic 
surface for the two points P and P', then a beam of any size 
which has its origin in P will be brought together in P'; for 
all rays which start from P and strike the aplanatic surface 
must intersect in P', since for all of them the total optical dis
tance from P to P' is the same. 

If the surface of the refracting body has not the form of the 
aplanatic surface, then the number of rays which intersect in 
P is smaller the greater the difference in the form of the two 
surfaces (which are necessarily tangent to each other, see 
page 10). In order that an infinitely narrow, i.e. a plane, 
beam may come to intersection in P', the curvature of the sur
faces at the point of tangency must be the same at least in one 
plane. If the curvature of the two surfaces is the same at 0 
for two and therefore for all planes, then a solid elementary 
beam will come to intersection in P'; and if, finally, a finite 
section of the surface of the refracting body coincides with the 
aplanatic surface, then a beam of finite cross-section will come 
to intersection in P'. 

Since the direction of light may be reversed, it is possible 
to interchange the source P and its image P', i.e. a source at 
P' has its image at P. On account of this reciprocal relation
ship P and P' are called co1yi1gate po£nts. 

2. General Formulm for Images.-Assume that by means 
of reflection or refraction all the points P of a given space are 
imaged in points P' of a second space. The former space will 
be called the ob.feet space; the latter, the £1nage space. From 
the definition of an optical image it follows that for every ray 
which passes through P there is a conjugate ray passing 
through P'. Two rays in the object space which intersect at 
P must correspond to two conjugate rays which intersect in 
the image space, the intersection being at the point P' which 
is conjugate to P. For every point P there is then but one 
conjugate point P'. If four points P1P .j' /'4 of the object space 
lie in a plane, then the rays which connect any two pairs of 
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these points intersect, e.g. the ray P1P2 cuts the ray PaP, in 
the point A. Therefore the conjugate rays P'1P'2 and P'8P'4 

also intersect in a point, namely in A' the image of A. Hence 
the four images P/ P 2

1 Pa' P/ also lie in a plane. In other 
words, to every point, ray, or plane in the one space there 
corresponds one, and but one, point, ray, or plane in the 
other. Such a relation of two spaces is called in geometry a 
collz"near relations/tip. 

The analytical expression of the collinear relationship can 
be easily obtained. Let x, y, z be the coordinates of a point 
P of the object space referred to one rectangular system, and 
x', y', z' the coordinates of the point P' referred to another 
rectangular system chosen for the image space; then to every 
x, y, z there corresponds one and only one x', y', z', and vt"ce 
versa, This is only possible if 

, a1x + b1y + c1z + d1 x------~-
- ax+ by + cz + d ' 

, a~+ b2y+ c~+ d2 () 

y = ax+ by+ cz + d ' • 1 

, aaX + bay+ c8z + d3 z ------~-~ 
- ax+ by+ cz + d ' 

in which a, b, c, d are constants. That is, for any given 
x', y', z', the values of x, y, z may be calculated from the 
three linear equations ( 1); and inversely, given values of x, y, 
z determine x', y', z'. If the right-hand side of equations (1) 
were not the quotient of two linear functions of x, y, z, then 
for every x', y', z' there would be several values of x, y, z. 
Furthermore the denominator of this quotient must be one and 
the same linear function (ax+ by+ cz + d), since otherwise 
a plane in the image space 

A'x' + B'y' + C'z' +I)'= o 

would not again correspond to a plane 

Ax+By+cz+D= o 
in the object space. 
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If the equations (1) be solved for x, y, and z, forms analo
gous to (I) are obtained; thus 

a/x' + b/y' + c/z' + d1' 

x = a'x' + b'y' + c'z' + d' ' etc. 

From (1) it follows that for 

ax+ by + cz + d = o: x' = y' = z' = oo • 

Similarly from (2) for 

a' x' + b'y' + c' z' + d' = o: x = y = z = oo • 

The plane ax + by + cz + d = o is called the focal plane 
~ of the object space. The images P' of its points P lie at 
infinity. Two rays which originate in a point P of this focal 
plane correspond to two parallel rays in the image space. 

The plane a'x' + b'y' + c'z' + d' = o is called the focal 
plane g:' of the £mage space. Parallel rays in the object space 
correspond to conjugate rays in the image space which inter
sect in some point of this focal plane g:'. 

In case a= b = c = o, equations (1) show that to finite 
values of x, y, z correspond finite values of x', y', z'; and, in
versely, since, when a, b, and c are zero, a', b', c' are also 
zero, to finite values of x', y', z' correspond finite values of 
x, y, z. In this case, which is realized in telescopes, there 
are no focal planes at finite distances. 

3. Images Formed by Coaxial Surfaces.-In optical in
struments it is often the case that the formation of the image 
takes place symmetrically with respect to an axis; e.g. this 
is true if the surfaces of the refracting or reflecting bodies are 
surfaces of revolution having a common axis, in particular, sur
faces of spheres whose centres lie in a straight line. 

From symmetry the image P' of a point P must lie in the 
plane which passes through the point P and the axis of the 
system, and it is entirely sufficient, for the study of the image 
formation, if the relations between the object and image in 
such a meridian plane are known. 
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If the xy plane of the object space and the x'y' plane of the 
image space be made to coincide with this meridian plane, and 
if the axis of symmetry be taken as both the x and the x' axis, 
then the z and z' coordinates no longer appear in equations (r ). 
They then reduce to 

x' _ a1x+b1y+d1 

- ar+by + d, (3) 

The coordinate axes of the xy and the x'y' systems are 
then parallel and the .x and .x' axes lie in the same line. The 
origin O' for the image space is in general distinct from the 
origin O for the object space. The positive direction of .x will 
be taken as the direction of the incident light (from left to 

Y' 

0 .:iC, O' 

FIG. 6. 

right); the positive direction of x', the opposite, i.e. from 
right to left. The positive direction of y and y' will be taken 
upward (see Fig. 6). 

From symmetry it is evident that x' does not change its 
value when y changes sign. Therefore in equations (3) 
b1 = b = o. It also follows from symmetry that a change in 
sign of y produces merely a change in sign of y'. Hence 
a2 = d2 = o and equations (3) reduce to 

, a1x+d1 b~ ... - ~-----,_ y'-
A, - ax+ d-' - ax+-tf (4) 

Five constants thus remain, but their ratios alone are 
sufficient to determine the formation of the image. Hence 
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there are in general four characteristic constants which deter
mine the formation of z"mages by coaxial surfaces. 

The solution of equations (4) for x and y gives 

_ dx' - d1 a1d - ad1 y' 
x - a1 - ax'' y = -b-2 - • a1 - ax'" (S) 

The equation of the focal plane of the object space is 
ax + d = o, that of the focal plane of the image space 
ax' - a1 = o. The intersections F and F' of these planes 
with the axis of the system are called the principal foe£. 

If the principal focus F of the object space be taken as the 
origin of x, and likewise the principal focus F' of the image 
space as the origin of x', then, if x0 , x0 ' represent the coordi
nates measured from the focal planes, ax0 will replace ax + d 
and - ax0', a1 - ax'. Then from equations (4) 

(6) 

Hence only two characteristic constants remain in the 
equations. The other two were taken up in fixing the posi
tions of the focal planes. For these two complex constants 
simpler expressions will be introduced by writing ( dropping 
subscripts) 

xx'=ff', (7) 

In this equation x and x' are the distances of the object and 
the z"mage from the principal focal planes g: and g:1 respectively. 

The ratio y' : y is called the magnification. It is I for 
x = f, i.e. x' = f'. This relation defines two planes .p and 
.p' which are at right angles to the axis of the system. These 
planes are called the unit planes. Their points of intersection 
Hand H' with the axis of the system are called unit poz"nts. 

The unz"t planes are characterized by the fact that the dis
tance from the axz"s of any poz"nt P i'n one unz"t plane i's equal to 
that of the conjugate poz"nt P' i'n the other unz"t plane. The two 
remaining constants/ andf' of equation (7) denote, in accord-
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ance with the above, the distance of the unit planes op, op' from 
the focal planes ~. ~'. The constant f is called the focal 
length of the object space; f', the focal length of the z"mage 
space. The direction off is positive when the ray falls first 
upon the focal plane ~. then upon the unit plane .\); for f' the 
case is the reverse. In Fig. 7 both focal lengths are positive. 

The significance of the focal lengths can be made clear in 
the following way: Parallel rays in the object space must have 
conjugate rays in the image space which intersect in some 
point in the focal plane ~' distant, say, y' from the axis. The 
value of y' evidently depends on the angle of inclination u of 
the incident ray with respect to the axis. If u = o, it follows 
from symmetry that y' = o, i.e. rays parallel to the axis have 
conjugate rays which intersect in the principal focus F'. But 

f 

FIG. 7. 

if u is not equal to zero, consider a ray PF A which passes 
through the first principal focus F, and cuts the unit plane .p 
in A (Fig. 7). The ray which is conjugate to it, A'P', must 
evidently be parallel to the axis since the first ray passes 
through F. Furthermore, from the property of the unit planes, 
A and A' are equally distant from the axis. Consequently 
the distance from the axis y' of the image which is formed by 
a parallel beam incident at an angle u is, as appears at once 
from Fig. 7, 

y' =f-tan u. (8) 

Hence the following law: Tlte focal length of the obj'ecl 
space i's equal to the ratz"o of the linear magnz"tude of an z"mage 
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formed t"n the focal plane of the t'mage space to the apparent 
(angular) magnitude of its in.finitely distant object. A similar 
definition holds of course for the focal length f' of the image 
space, as is seen by conceiving the incident beam of parallel 
rays to pass first through the image space and then to come 
to a focus in the focal plane ~-

If in Fig. 7 A'P' be conceived as the incident ray, so that 
the functions of the image and object spaces are interchanged, 
then the following may be given as the definition of the focal 
Jength f, which will then mean the focal length of the image 
space: 

The focal length of the image space is equal to the distance 
between the axis and any ray of the object space which t"s 
parallel to the axis divided by the tangent of the inclinatz"on of 
its conjugate ray. 

Equation (8) may be obtained directly from (7) by making 
tan u = y: x and tan u' = y' : x'. Since x and x' are taken 
positive in opposite directions and y and y' in the same direc
tion, it follows that u and u' are positive in different directions. 
The angle of i'ncli'nation u of a ray t"n the object space i's posi'#ve 
if the ray goes upward from left to right; the angle of inclina
tion u' of a ray in the image space is positive if tlze ray goes 
downwardfrom left to right. 

The magnification depends, as equation. (7) shows, upon 
x, the distance of the object from the principal focus F, and 
upon f, the focal length. It is, however, independent of y, 
i.e. the image of a plane object which is perpendicular to the 
axis of the system is similar to the object. On the other hand 
the image of a solid object is not similar to the object, as is 
evident at once from the dependence of the magnification 
upon x. Furthermore it is easily shown from (7) that the 
magnification t"n depth, i.e. the ratio of the increment dx' of 
.i:-' to an increment dx of x, is proportional to the square of the 
lateral magnification. 

Let a ray in the object space intersect the unit plane .p in 
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A and the axis in P (Fig. 8). Its angle of inclination u with 
respect to the axis is given by 

AH AH 
tan u = PH = f _ .i-' 

if .i- taken with the proper sign represents the distance of P 
from F. 

96' 

FIG, 8. 

The angle of inclination u' of the conjugate ray with respect 
to the axis is given by 

A'H' A'H' 
tan u' = P' H' = f' _ .i-" 

if .i-' represent the distance of P' from F', and P 1 and A' are 
the points conjugate to P and A. On account of the property 
of the unit planes AH= A'H'; then by combination of the 
last two equations with (7), 

tan u' f- .i- .i- f 
tan u = f' - .i-' = - f' = - ?· (9) 

The ratio of the tangents of inclination of conjugate rays is 
called the convergence ratio or the angular magnification. It 
is seen from equation (9) that it is independent of u and u'. 

The angular magnification = - I for .i- = f' or .i-' = f. 
The two conjugate points Kand K' thus determined are called 
the nodal points of the system. They are characterised by the 



GEOMETRICAL THEORY OF OPTICAL IMAGES 23 

fact that a ray tltrough one nodal point K is cot?fugate and 
parallel to a ray through the other nodal point K'. The posi
tion of the nodal points for positive focal lengths f and f' is 

fie 

FIG. 9. 

shown in Fig. 9. KA and K'A' are two conjugate rays. It 
follows from the figure that the distance between the two nodal 
points z"s the same as that between the two unit points. If 
f = f', the nodal points coincide with the unit points. 

Multiplication of the second of equations (7) by (9) gives 
y' tan u' f 
y tan u = - f'' (10) 

If e be the distance of an object P from the unit plane op, 
and e' the distance of its image from the unit plane op', e and 
e' being positive if P lies in front of (to the left of) op and P' 
behind (to the right of) .p', then 

e = f - x, e' = f' - x'. 

Hence the first of equations (7) gives 

f f' 
e+ e' = I. • • • • 

The same equation holds if e and e' are the distances of P 
and P' from any two conjugate planes which are perpendicular 
to the axis, and f and f' the distances of the principal foci from 
these planes. This result may be easily deduced from (7). 
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4. Construction of Conjugate Points.-A simple graphical 
interpretation may be given to equation 
(11). If ABCD (Fig. 10) is a rectangle 
with the sides / and /', then any 
straight line ECE' intersects the pro
longations of/ and/' at such distances 
from A that the conditions AE = e and 

E AE' = e' satisfy equation (r I). 
Fm. ro. It is also possible to use the unit 

plane and the principal focus to determine the point P' conju
gate to P. Draw (Fig. I I) from Pa ray PA parallel to the 
axis and a ray PF passing through the principal focus F. 

FIG. II. 

A'F' is conjugate to PA, A' being at the same distance from 
the axis as A; also P'B', parallel to the axis, is conjugate to 
PFB, B' being at the same distance from the axis as B. The 
intersection of these two rays is the conjugate point sought. 
The nodal points may also be conveniently used for this con
struction. 

The construction shown in Fig. I I cannot be used when P 
and P' lie upon the axis. Let a ray from P intersect the focal 
plane ~ at a distance g and the unit plane ~ at a distance h 
from the axis (Fig. 12). Let the conjugate ray intersect~' 
and ~ at the distances h'(= h) and g'. Then from the figure 

g PF - x g' P'F' - x' 
k=J--+- ,,~= < - r' 7i= f'+P'P= J'-x'; 
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and by addition, since from equation (7) xx'= ff', 

g + g' 2xx1 -fx' -f'x 
-,,-=ff' +xx -fx' -f'x = 1 ' (iz) 

P' may then be found by laying off in the focal plane ~, the 
distance g' = h - g, and in the unit plane op' the distance 

X JC' 

P' 
,..___,. 

-f 

FIG. 12. 

h' = h, and drawing a straight line through the two points thus 
determined. g and g' are to be taken negative if they lie 
below the axis. 

5. Classi:fication of the Different Kinds of Optical Sys
tems.-The different kinds of optical systems differ from one 
another only in the signs of the focal lengths f and /'. 

If the two focal lengths have the same sign, the system i's 
concurrent, i.e. if the object moves from left to right (x in
creases), the image likewise moves from left to right 
(.r' decreases). This follows at once from equation (7) by 
taking into account the directions in which x and x' are con
sidered positive (see above, p. I 8 ). It will be seen later that 
this kind of image formation occurs if the image is due to 
refraction alone or to an even number of reflections or to a 
combination of the two. Since this kind of image formation is 
most frequently produced by refraction alone, it is also called 
dioptric. 
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If the t.wo focal lengths have opposite signs the system is 
contracurrent, i.e. if the object moves from left to right, the 
image moves from right to left, as appears from the formula 
xx' = ff'. This case occurs if the image is produced by an odd 
number of reflections or by a combination of an odd number of 
such with refractions. This kind of image formation is called 
katoptric. When it occurs the direction of propagation of the 
light in the image space is opposite to that in the object space, 
so that both cases may be included under the law: In all cases 
of image formation if a point P be conceived to move along a ray 
in the direction in which the light travels, the image P' of that 
point moves along the co,ifugate ray in the direction in whiclt 
the ltglzt travels. 

Among dioptric systems a distinction is made between those 
having positive and those having negative focal lengths. The 
former systems are called convergent, the latter divergent, 
because a bundle of parallel rays, after passing the unit plane 
,O' of the image space, is rendered convergent by the former, 
di,vergent by the latter. No distinction between systems on 
the ground that their foci are real or virtual can be made, for 
it will be seen later that many divergent systems (e.g. the 
microscope) have real foci. 

By similar definition katoptric systems which have a nega
tive focal length in the image space are called convergent, -
for in reflection the direction of propagation of the light is 
reversed. 

There are therefore the four following kinds of optical 
systems: 

Dioptric ... { a. 
b. 

Katoptric .. { a. 
b. 

Convergent: + f, 
Divergent: - f, 

Convergent: + f, 
Divergent: - f, 

+f'. 
-f'. 
-f'. 
+f'. 

6. Telescopic Systems.-Thus far it has been assumed 
that the focal planes lie at finite distances. If they lie at 
infinity the case is that of a telescopic system, and the coeffi-
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cient a vanishes from equations (4), which then reduce by a 
suitable choice cf the origin of the x coordinates to 

x' = ax, y' = fly. . (13) 

Since x' = o when x = o, it is evident that any two conjugate 
points may serve as origins from which x and x' are measured. 
It follows from equation ( I 3) that the magnification in breadth 
and depth are constant. The angular magnification is also 
constant, for, given any two conjugate rays OP and O'P', their 
intersections with the axis of the system may serve as the 
ongms. If then a point P of the first ray has the coordinates 
x, y, and its conjugate point P' the coordinates x', y', the 
tangents of the angles of inclination are 

tan u = y : .r, tan u' = y' : x'. 

Hence by (13) 
tan u' : tan u = fl : a. 

a must be positive for katoptric (contracurrent) systems, nega
tive for dioptric (concurrent) systems. For the latter it is 
evident from (14) and a consideration of the way in which z, 

and u' are taken positive (see above, p. 21) that for positive fJ 
erect images of infinitely distant objects are formed, for nega
tive /J, inverted images. There are therefore four different 
kinds of telescopic systems depending upon the signs of a 

and fl. 
Equations (14) and (13) give 

y' tan u' 
y tan u 

fP 
a 

A comparison of this equation with (10) (p. 23) shows that 
for telescopic systems the two focal lengths, though both 
infinite, have a finite ratio. Thus 

f fJ2 
f'= - a· 

If f = f', as is the case in telescopes and in all instru
ments in which the index of refraction of the object space is-



THEORY OF OPTICS 

equal to that of the image space (cf. equation (9), Chapter III), 
then a= - fP. Hence from (14) 

tan tt' : tan u = - I : fl. 
This convergence ratio (angular magnification) is called in the 
case of telescopes merely the magnification r. From (13) 

y :y' = - r, (14') 

i.e. for telescopes the reciprocal of the lateral magnification is 
numerz''cally equal to the allgular magnijicatz"on. 

7. Combinations of Systems.-A series of several systems 
must be equivalent to a single system. Here again attention 
will be confined to coaxial systems. If f. and f.' are the focal 
lengths of the first system alone, and /4 and /4,' those of the 
second, and f and f' those of the combination, then both the 
focal lengths and the positions of the principal foci of the com
bination can be calculated or constructed if the distance 
F/ F 2 = L1 (Fig. I 3) is known. This distance will be called 
for brevity the separation of the two systems I and 2, and will 
be considered positive if F/ lies to the left of F2 , otherwise 
negative. 

A ray S (Fig. I 3), which is parallel to the axis and at a 

'!le; 

s 

s 

F, 

s l r '!I, 
FIG. 13. 

distance y from it, will be transformed by system I into the 
ray S1 , which passes through the principal focus F 1' of that 
system. S 1 will be transformed by system 2 into the ray S'. 
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The point of intersection of this ray with the axis is the prin
cipal focus of the image space of the combination. Its position 
can be calculated from the fact that F/ and F' are conjugate 
points of the second system, i.e. (cf. eq. 7) 

F/F' =f2·f/, (17) 

in which F/ F is positive if F' lies to the right of F 2'. F' may 
be determined graphically from the construction given above 
on page 2 5, since the intersection of S1 and S' with the focal 
planes F2 and F 2' are at such distances g and g' from the axis 
that g + g' = y 1• 

The intersection A' of S' with S must lie in the unit plane 
.p' of the image space of the combination. Thus .p' is deter
mined, and, in consequence, the focal length f' of the com
bination, which is the distance from .p' of the principal focus F' 
of the combination. From the construction and the figure it 
follows that f' is negative when L1 is positive. 

f' may be determined analytically from the angle of incli
nation u' of the ray S'. For S1 the relation holds: 

tan u1 = y :f/, 
in which u1 is to be taken with the opposite 
sidered the object ray of the second system. 

tan u' L1 

tan u1 = h' 
or since tan u1 = - y : f.', 

L1 
tan u' = - y ·f.'f./ 

sign if 5 1 is COn
N ow by (9), 

Further, since (cf. the law, p. 21) y : f' = tan u', it follows 
that 

f l - - [,.'.// - L1 • (18) 

A similar consideration of a ray parallel to the axis in the 
image space and its conjugate ray in the object space gives 

f= - f.f, · (19) 
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and for the distance of the principal focus F of the combination 
from the principal focus F 1 , 

FF1 = ff/, . 
in which FF1 is positive if Flies to the left of F 1. 

Equations (17), (18), (19), and (20) contain the character
istic constants of the combination calculated from those of the 
systems which unite to form it. 

Precisely the same process may be employed when the 
combination contains more than two systems. 

If the separation L1 of the two systems is zero, the focal 
lengths f and f' are infinitely great, i.e. the system is tele
scopit. The ratio of the focal lengths, which remains finite, 
is given by (18) and (19). Thus 

j,=f·i· (21) 

Fro!Il the consideration of an incident ray parallel to the axis 
the lateral magnification y' : y is seen to be 

y' :y = fJ = -/4 :J;_'. . (22) 

By means of (21), (22), and (16) the constant a, which repre
sents the magnification in depth (cf. equation (13)) is found. 
Thus 

x' fJ;' 
--;; = a = - f.f.'" . . . . . (23) 

Hence by (14) the angular magnification is 

tan u': tan u = fJ: a =f1 :/4'. (24) 

The above considerations as to the graphical or analytical 
determination of the constants of a combination must be 
somewhat modified if the combination contains one or more 
telescopic systems. The result can, however, be easily 
obtained by constructing or calculating the path through the 
successive systems of an incident ray whic.lt is parallel to 
the axis. 



CHAPTER III 

PHYSICAL CONDITIONS FOR IMAGE FORMATION 

ABBE'S geometrical theory of the formation of optical 
images, which overlooks entirely the question of their physical 
realization, has been presented in the previous chapter, because 
the general laws thus obtained must be used for every special 
case of image formation no matter by what particular physical 
means the images are produced. The concept of focal points 
and focal lengths, for instance, is inherent in the concept of 
an image no matter whether the latter is produced by lenses 
or by mirrors or by any other means. 

In this chapter it will appear that the formation of optical 
images as described ideally and without limitations in the 
previous chapter is physically impossible, e.g. the image of 
an object of finite size cannot be formed when the rays have 
too great a divergence. 

It has already been shown on page I 5 that, whatever the 
divergence of the beam, the image of one point may be pro
duced by reflection or refraction at an aplanatic surface. Images 
of other points are not produced by widely divergent rays, since 
the form of the aplanatic surface depends upon the position of 
the point. For this reason the more detailed treatment of 
special aplanatic surfaces has no particular physical interest. 
In what follows only the formation of images by refracting and 
reflecting spherical surfaces will be treated, since, on account 
of the ease of manufacture, these alone are used in optical 
instruments; and since, in any case, for the reason mentioned 
above, no other forms of reflecting or refracting surfaces furnish 
ideal optical images. 

31 
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It will appear that the formation of optical images can be 
practically accomplished by means of refracting or reflecting 
spherical surfaces if certain limitations are imposed, namely, 
limitations either upon the size of the object, or upon the 
divergence of the rays producing the image. 

1. Refraction at a Spherical Surface.-In a medium of 
index n, let a ray PA fall upon a sphere of a more strongly 
refractive substance of index n' (Fig. 14). Let the radius of 

the sphere be r, its centre C. In order to find the path of th~ 
refracted ray, construct about C two spheres I and 2 of radii 

n' n 
r 1 = -r and r 2 = ,r (method of Weierstrass). 

n n 
Let PA meet sphere I in B; draw BC intersecting sphere 

2 in D. Then AD is the refracted ray. This is at once 
evident from the fact that the triangles ADC and BA C 
are similar. For AC: CD = BC: CA = n' : n. Hence the 
1'.'. DAC = ~ABC= </>', the angle of refraction, and since 
1'.'. BA C = </>, the angle of incidence, it follows that 

sin </> : sin </>' = BC : AC = n' : n, 
which is the law of refraction. 

If in this way the paths of different rays from the point P 
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be constructed, it becomes evident from the figure that these 
rays will not all intersect in the same point P'. Hence no 
image is formed by widely divergent rays. Further it appears 
from the above construction that all rays which intersect the 
sphere at any point, and whose prolongations pass through 
B, are refracted to the point D. Inversely all rays which 
start from D have their virtual intersection in B. Hence upon 
every straight line passing through the centre C of a sphere 
of radius r, there are two points at distances from C of 

I 

r'!_ and r n, respectt"vely which, for all rays, stand z"n the relation 
n n 

of object and virtual (not real) image. These two points are 
called the aplanatic points of the sphere. 

If u and u' represent the angles of inclination with respect 
to the axis BD of two rays which start from the aplanatic 
points Band D, i.e. if 

1'.'.ABC= u, 1'.'.ADC= u', 
then, as was shown above, 1'.'. ABC= 1'.'. DA C = u. From 
a consideration of the triangle ADC it follows that 

sinu':sinu=AC:CD=n':n. (1) 

In this case then the ratio of the sines of the angles of inclina
tion of the conjugate rays is independent of u, not, as in equa
tion (9) on page 22, the ratio of the tangents. The difference 
between the two cases lies in this, that, before, the image of 
a portion of space was assumed to be formed, while now only 
the image of a surface formed by widely divergent rays is 
under consideration. The two concentric spherical surfaces I 

and 2 of Fig. 14 are the loci of all pairs of aplanatic points B 
and D. To be sure, the relation of these two surfaces is not 
collinear in the sense in which this term was used above, 
because the surfaces are not planes. If s and s' represent the 
areas of two conjugate elements of these surfaces, then, since 
their ratio must be the same as that of the entire spherical 
!;11rfaces I and 2, 
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Hence equation (I) may be written: 

sin2 u-s-n2 = sin2 u' ,s' ,n'2• • 

It will be seen later that this equation always holds for two 
surface elements s and s' which have the relation of object and 
image no matter by what particular arrangement the image is 
produced. 

In order to obtain the image of a portion of space by means 
of refraction at a spherical surface, the divergence of the rays 
which form the image must be taken very small. Let PA 
(Fig. 15) be an incident ray, AP' the refracted ray, and PCP' 

p 

Tl, n' 

FIG. IS, 

the line joining P with the centre of the sphere C. Then from 
the triangle PAC, 

sin ¢ : sin a = PH+ r : PA, 

and from the triangle P'AC, 

sin ¢' : sin a = P' H - r : P' A. 

Hence by division, 

sin </J n' PH+ r P' A 
sin ¢' = n = P' H - r. PA • (3) 

Now assume that A lies infinitely near to H, i.e. that the angle 
AP H is very small, so that PA may be considered equal to 
PH, and P'A to P'H. Also let 

PH= e, P'H= e'. 
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Then from (3) 

or 

e+r e' n' 
e'-r"e-n' 

n n' n'-n 
e+ e' = -r-. . (4) 

In which r is to be taken positive if the sphere is convex 
toward the incident light, i.e. if C lies to the right of H. e is 
positive if P lies to the left of H; e' is positive if P' lies to the 
right of H. To every e there corresponds a definite e' which 
is independent of the position of the ray PA, i.e. an image 
of a portion of space which lies close to the axis PC is formed 
by rays which lie close to PC. 

A comparison of equation (4) with equation (11) on page 
23 shows that the focal lengths of the system are 

n n' 
f = r-,--, f' = r-,--, . n-n n-n • (5) 

and that the two unit planes ~ and ~' coincide and are tan
gent to the sphere at the point H. Since f and f' have the 
same sign, it follows, from the criterion on page 2 5 above, 
that the system is dioptric or concurrent. If n' > n, a convex 
curvature (positive r) means a convergent system. Real 
images (e' > o) are formed so long as e > f. Such images 
are also inverted. 

Equation (10) on page 23 becomes 

y' tan u' n 
v tan u = - n1· • • • • • (6) 

By the former convention the angles of inclination u and u' of 
conjugate rays are taken positive in different ways. If they 
are taken positive in the same way the notation 'u will be used 
instead of u', i.e. 'u = - u'. Hence the last equation may 
be written: 

ny tan u = n'y' tan 'u. . . (7) 
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In this equation a quantity which is not changed by refrac
tion appears,-an optical invariant. This quantity remains 
constant when refraction takes place at any number of coaxial 
spherical surfaces. For such a case let n be the index of 
refraction of the first medium, n' that of the last; then equa
tion (7) holds. But since in general for every system, from 
equation (10), page 23, 

y' tan u' f 
ytan u - f" • (S) 

there results from a combination with (7) 
f:f' = n: n', (9) 

i.e. In the formation of i·mages by a system of coaxial refract
ing spherical surfaces the ratio of the focal lengths of the 
system is equal to the ra#o of the indices of refraction of the 
.irst and last media. If, for example, these two media are 
air, as is the case with lenses, mirrors, and most optical instru
ments, the two focal lengths are equal. 

2. Reflection at a Spherical Surface.-Let the radius r be 
considered positive for a convex, negative for a concave mirror. 

p 

FIG. 16. 

By the law of reflection (Fig. 16) ~ PAC = ~ P' AC. 
Hence from geometry 

PA :P'A = PC:P'C. (10) 

If the ray PA makes a large angle with the axis PC, then 
the position of the point of intersection P' of the conjugate ray 



PHYSICAL CONDITIONS FOR IMAGE FORMATION 37 

with the axis varies with the angle. In that case no image of 
the point P exists. But if the angle APC is so small that the 
angle itself may be used in place of its sine, then for every 
point P there exists a definite conjugate point P', i.e. an image 
is now formed. It is then permissible to set PA = PH, 
P' A = P' H, so that (IO) becomes 

PH:P'H= PC:P'C, 

or if PH= e, P'H = - e', then, since r in the figure is nega
tive, 

I I 2 --+,=-.. e e r 

A comparison of this with equation ( I I) on page 2 3 shows 
that the focal lengths of the system are 

I I 
f= --r, f'= +-r; 

2 2 
(13) 

that the two unit planes .p and .p' coincide with the plane 
tangent to the sphere at the vertex H; that the two principal 
foci coincide in the mid-point between C and H; and that the 
nodal points coincide at the centre C of the sphere. The 
signs of e and e' are determined by the definition on page 23. 

Since f and f' have opposite signs, it follows, from the 
criterion given on page 25, that the system is katoptric or con
tracurrent. By the conventions on page 26 a negative r, i.e. 
a concave mirror, corresponds to a convergent system; on the 
other hand a convex mirror corresponds to a divergent system. 

A comparison of equations (13) and (5) shows that the 
results here obtained for reflection at a spherical surface may 
be deduced from the former results for refraction at such a sur
face by writing n': n = - I. In fact when n': n = - I, the 
law of refraction passes into the law of reflection. Use may 
be made of this fact when a combination of several refracting 
or reflecting surfaces is under consideration. Equation (9) 
holds for all such cases and shows that a positive ratio f: f' 
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always results from a combination of an even number of reflec
tions from spherical surfaces or from a combination of any 
number of refractions, i.e. such systems are dioptric or concur
rent (cf. page 25). 

The relation between image and object may be clearly 
brought out from Fig. 17, which relates to a concave mirror. 
The numbers I, 2, 3, ... 8 represent points of the object at a 
constant height above the axis of the system. The numbers 
7 and 8 which lie behind the mirror correspond to virtual 

objects, i.e. the incident rays start toward these points, but fall 
upon the mirror and are reflected before coming to an intersec
tion at them. Real rays are represented in Fig. 17 by 

., 

,,. 
f 

continuous lines, virtual rays by dotted lines. The points 
I', 2', J', ... 8' are the images of the points I, 2, 3, ... 8. 

Since the latter lie in a straight line parallel to the axis, the 
former must also lie in a straight line which passes through the 
principal focus F and through point 6, the intersection of the 
object ray with the mirror, i.e. with the unit plane. The con
tinuous line denotes real images; the dotted line, virtual im
ages. Any image point 2' may be constructed (cf. page 24) 
by drawing through the object 2 and the principal focus F a 
straight line which intersects the mirror, i.e. the unit plane, in 
some point A 3• If now through A 2 a line be drawn parallel 
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to the axis, this line will intersect the previously constructed 
image line in the point sought, namely 2 1• From the figure it 
may be clearly seen that the images of distant objects are real 
and inverted, those of objects which lie in front of the mirror 
within the focal length are virtual and erect, and those of virtual 
objects behind the mirror are real, erect, and lie in front of the 
mirror. 

Fig. I 8 shows the relative positions of object and image 

t 2 + __ .s __ e _____ 7 _______ a 

FIG. 18. 

for a convex mirror. It is evident that the images of all real 
objects are virtual, erect, and reduced; that for virtual objects 
which lie within the focal length behind the mirror the images 
are real, erect, and enlarged; and that for more distant virtual 
objects the images are also virtual. 

p 

Equation (11) asserts that PCP'H are four harmonic points. 
The image of an object P may, with the aid of a proposition 
of synthetic geometry, be constructed in the following way: 
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From any point L (Fig. 19) draw two rays LC and LH, and 
then draw any other ray PDB. Let O be the intersection of 
DH with BC: then LO intersects the straight line PH in a 
point P' which is conjugate to P. For a convex mirror the 
construction is precisely the same, but the physical meaning of 
the points C and His interchanged. 

3. Lenses.-The optical characteristics of systems com
posed of two coaxial spherical surfaces (lenses) can be directly 
deduced from § 7 of Chapter II. The radii of curvature r 1 

and r 2 are taken positive in accordance with the conventions 
given above (§ 1); i.e. the radius of a spherical surface is 
considered positive if the surface is convex toward the inci
dent ray (convex toward the left). Consider the case of a lens 
of index n surrounded by air. Let the thickness of the lens, 
i.e. the distance between its vertices S1 and 5 2 (Fig. 20), be 

6 L1 6' ,: fe -F, s. F/ & s.. -&' 
n 

FIG. 20. 

denoted by d. If the focal lengths of the first refracting sur
face are denoted by f 1 andfi.', those of the second surface by 
/4 andfz', then the separation L1 of the two systems (cf. page 
28) is given by 

,::::J=d-f,_'-/4, 

and, by (5), 

1, n n, I ( .Ii= r1--• f,_ = r1--• .Is= rs--• /4 = r2--• 15) 
n-1 n-1 1-n 1-n 
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Hence by equations (19) and (18) of Chapter II (page 29) 
the focal lengths of the combination are 

' n r1r2 

f=f=n-1°d(n-I)-nr1 +nr/ (16) 

while the positions of the principal foci F and F' of the com~ 
bi nation are given by equations ( I 7) and ( 20) of Chapter II 
(page 29). By these equations the distance o of the principal 
focus F in front of the vertex S1 , and the distance a-' of the 
principal focus F' behind the vertex S2 are, since <Y = FF 1 + f, 
and a-'= F.'F' +f.', 

r 1 d(n - 1) + nr2 
<Y • ~~------c-~-~- (17) = n - 1 d(n - 1) - nr1 + nr/ • ' 

, r 2 -d(n - 1) +nr1 

<Y = n - l • d(n - 1) - nr1 + n~· (lS) 

If h represents the distance of the first unit plane .p in front 
of the vertex S1 , and !t' the distance of the second unit plane 
.p' behind the vertex S2 , then f + h = <Y and f' + h' = a-', 
and, from (16), (17), and (r8), it follows that 

/2 r 1d 
1 = d(n - 1) - nr1 + nr/ 

' - r2d 
h = di • ln - 1) - nr1 + nr2 

(20) 

Also, since the distance p between the two unit planes .p and 
.p' is p = d + h + h', it follows that 

(21) 

Sincef =f', the nodal and unit points coincide (cf. page 23). 
From these equations it appears that the character of the 

system is not determined by the radii r 1 and r2 alone, but that 
the thickness d of the lens is also an essential element. For 
example, a double convex lens (r1 positive, r 2 negative), of 
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not too great thickness d, acts as a convergent system, i.e. 
possesses a positive focal length; on the other hand it acts as 
a divergent system when dis very great. 

4, Thin Lenses. -In practice it often occurs that the thick
ness d of the lens is so small that d(n - I) is negligible in 
comparison with n(r1 - r 2). Excluding the case in which 
r 1 = r 2 , which occurs in concavo-convex lenses of equal radii, 
equation ( I 6) gives for the focal lengths of the lens 

(22) 

while equations (19), (20), and (21) show that the unit planes 
nearly coincide with the nearly coincident tangent planes at 
the two vertices sl and s2. 

More accurately these equations give, when d(n - 1) is 
neglected in comparison to n(r1 - r 2), 

d r 1 , d r 2 n - 1 
lz=--·--, lz=+-·--, P=d--· (23) n r1 - r1 n r1 - r2 n 

Thus the distance p between the two unit planes is indepen
dent of the radii of the lens. For n = I. 5, p = }d. For both 
double-convex and double-concave lenses, since h and h' are 
negative, the unit planes lie inside of the lens. For equal 
curvature r 1 = - r 2 , and for n = 1 .5, lz = h' = - }d, i.e. 
the distance of the unit planes from the surface is one third 
the thickness of the lens. When r 1 and r2 have the same sign 
the lens is concavo-convex and the unit planes may lie outside 
of it. 

Lenses of positive focal lengths (convergent lenses) include 

Double-convex lenses (r1 > o, r2 < o), 
Plano-convex lenses (r1 > o, r2 = oo ) 
Concavo-convex lenses (r1 > o, r2 > o, ,,2 > r 1), 

in short all lenses which are thicker in the middle than at the 
e.dges. 
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Lenses of negative focal length ( divergent lenses) include 

Double-concave lenses (r1 < o, r 2 > o), 
Plano-concave lenses (r1 = oo , r 2 > o ), 
Convexo-concave lenses (r1 > o, 1·2 > o, r2 < r1), 

i.e. all lenses which are thinner in the middle than at the 
edges.* 

The relation between image and object is shown diagram
matically in Figs. 2 I and 22, which are to be interpreted in 

Z 3 

F 
F'~ 

.J• 

FIG. 21. 

the same way as Figs. I 7 and I 8. From these it appears that 
whether convergent lenses produce real or virtual images of 

1 z 

F' 

FIG. 22. 

real objects depends upon the distance of the object from the 
lens; but divergent lenses produce only virtual images of real 

* The terms collective (dioptric), for systems of positive focal length, dispersive, 
for those of negative focal length, have been chogen on account of this property ol 
lenses. A lens of positive focal length renders an incident beam more convergent, 
one of negative focal length renders it more divergent. When images are formed 
by a system of lenses, or, in general, when the unit planes do not coincide, say, 
with the first refracting surface, the conclusion as to whether the system is con
vergent or divergent cannot be so immediately drawn. Then recourse must be 
had to the definition on page 26, 



44 THEORY OF OPTICS 

objects. However, divergent lenses produce real, upright, 
and enlarged image'> of virtual objects which lie behind the 
lens and inside of the principal focus. 

If two thin lenses of focal lengths ft and /4 are united to 
form a coaxial system, then the separation L1 (cf. page 40) is 
L1 = -(f1 + f,). Hence, from equation (19) of Chapter II 
(page 29), the focal length of the combination is 

or 

f .li.h f' = li+h= ' 

I I I 

f = f1+ h. 

It is customary to call the reciprocal of the focal length of 
a lens its power. Hence the law: The power of a combination 
of thin lenses is equal to the sum of the powers of the separate 
lenses. 

5. Experimental Determination of Focal Length.-For 
thin lenses, in which the two unit planes are to be considered 
as practically coincident, it is sufficient to determine the posi
tions of an object and its image in order to deduce the focal 
length. For example, equation (11) of Chapter II, page 23, 
reduces here, sincef=f, to 

Since the positions of real images are most conveniently 
determined by the aid of a screen. concave lenses, which 
furnish only virtual images of real objects, are often combined 
with a convex lens of known power so that the combination 
furnishes a real image. The focal length of the concave lens 
is then easily obtained from (24) when the focal length of the 
combination has been experimentally determined. This pro• 
cedure is not permissible for thick lenses nor for optical sy!'!tems 
generally. The positions of the principal foci are readily deter~ 
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mined by means of an incident beam of parallel ray'>. If then 
the positions of an object and its image with respect to the 
principal foci be determined, equations (7), on page 19, or (9), 
on page 22, give at once the focal length/ ( =/'). 

Upon the definition of the focal length given in Chapter II, 
page 20 (cf. equation (8)), viz., 

f=y': tan u, . 

it is easy to base a rigorous method for the determination of 
focal length. Thus it is only necessary to measure the angular 
magnitude u of an infinitely distant object, and the linear mag
nitude y' of its image. This method is particularly convenient 
to apply to the objectives of telescopes which are mounted 
upon a graduated circle so that it is at once possible to read 
off the visual angle u. 

If the object of linear magnitude y is not at infinity, but is 
at a distance e from the unit plane .p, while its image of linear 
magnitude y' is at a distance e' from the unit plane .p', then 

y':y=-e':e, 

because, when f = f', the nodes coincide with the unit points, 
i,e. object and image subtend equal angles at the unit points. 

By eliminating e and e' from (25) and (27) it follows that 

f= 
e 

y 
I -

y' 

e' ---,. 
I-~ 

y 

Now if either e or e' are chosen large, then without appreci
able error the one so chosen may be measured from the centre 
of the optical system (e.g. the lens), at least unless the unit 
planes are very far from it. Then either of equations (28) 
may be used for the determination of the focal length f when 
e or e' and the magnification y': y have been measured. 

The location of the positions of the object or image may 
be avoided by finding the magnification for two positions of 
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the object which are a measured distance l apart. For, from 
(7), page 19, 

hence 

in which (y : y')1 denotes the reciprocal of the magnification for 
the position x of the object, (y : y')2 the reciprocal of the mag
nification for a position x + l of the object. l is positive if, in 
passing to its second position, the object has moved the dis
tance / in the direction of the incident light (i.e. from left to 
right). 

Abbe's focometer, by means of which the focal lengths of 
microscope objectives can be determined, is based upon this 
principle. For the measurement of the size of the image y' a 
second microscope is used. Such a microscope, or even a 
simple magnifying-glass, may of course be used for the meas
urement of a real as well as of a virtual image, so that this 
method is also applicable to divergent lenses, in short to all 
cases.* 

6. Astigmatic Systems.-In the previous sections it has 
been shown that elementary beams whose rays have but a 
small inclination to the axis and which proceed from points 
either on the axis or in its immediate neighborhood may be 
brought to a focus by means of coaxial spherical surfaces. 
In this case all the rays of the beam intersect in a single point 
of the image space, or, in short, the beam is homocentrz'c in 
the image space. What occurs when one of the limitations 
imposed above is dropped will now be considered, i.e. an 

• A more detailed account of the focometer and of the determination of focal 
lengths is given by Czapski in Winkelmann, Handbuch der Physik, Optik, 
1'P· z85-2g6. 
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elementary beam having any tizclination to the axis will now 
be assumed to proceed from a point P. 

In this case the beam is, in general, no longer homocentric 
in the image space. An elementary beam which has started 
from a luminous point P and has suffered reflections and re
fractions upon surfaces of any arbitrary form is so constituted 
that, by the law of Malus (cf. page 12), it must be classed 
as an orthotomic beam, i.e. it may be conceived as made up 
of the normals N to a certain elementary surface ~- These 
normals, however, do not in general intersect in a point. 
Nevertheless geometry shows that upon every surface ~ there 
are two systems of curves which intersect at right angles (the 
so-called lines of curvature) whose normals, which are also at 
right angles to the surface ~. intersect. 

If a plane elementary beam whose rays in the image space 
are normal to an element /1 of a line of curvature be alone 
considered, it is evident that an image will be formed. The 
image is located at the centre of curvature of this element /1 , 

since its normals intersect at that point. Since every element 
/ 1 of a line of curvature is intersected at right angles by some 
other element /2 of another line of curvature, a second elemen
tary beam always exists which also produces an image, but 
the positions of these two images do not coincide, since in 
general the curvature of /1 is different from that of /2• 

What sort of an image of an object P will then in general 
be formed by any elementary beam of three dimensions ? Let 
I, 2, 3, 4 (Fig. 23) represent the four intersections of the four 
lines of curvature which bound the element d~ of the -sur
face ~- Let the curves I-2 and 3-4 be horizontal, 2-3 and 
r-4 vertical. Let the normals at the points r and 2 intersect 
at r2, those at 3 and 4 at 34. Since the curvature of the line 
I-2 differs by an infinitely small amount from that of the line 
3-4, the points of intersection z2 and 34 lie at almost the same 
distance from the surface ~- Hence the line p1 which connects 
the points r2 and 34 is also nearly perpendicular to the ray S 
which passes through the middle of d~ and is normal to it. 
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This ray is called the principal ray of that elementary beam 
which is composed of the normals to d~. From the symmetry 
of the figure it is also evident that the line p 1 must be parallel 
to the lines 2-3 and r--4, i.e. it is vertical. The normals to 
any horizontal line of curvature intersect at some point of the 
line p1. 

FIG. 23. 

Likewise the normals to any vertical line of curvature 
intersect at some point of the line p2 which connects I 4 and 23. 
Also, p2 must be horizontal and at right angles to S. These 
two lines p 1 and p 2 , which are perpendicular both to one another 
and to the principal ray, are called the two focal lz"nes of the 
elementary beam. The planes determined by the principal 
ray Sand the two focal lines p 1 andp2 are called the focal planes 
of the beam. It can then be said that in general the image of a 
luminous point P, formed by any elementary beam, consists of 
two focal lines which are at right angles to each other and to 
the principal ray, and lie a certain distance apart. This dis
tance is called the astigmatic difference. Only in special cases, 
as when the curvatures of the two systems of lines of curvature 
are the same, does a homocentric crossing of the rays and a true 
image formation take place. This present more general kind 
of image formation will be called astigma#c in order to dis
tinguish it from that considered above.* 

A sharp, recognizable image of a collection of object points 
P is not formed by an astigmatic system. Only when the 

• Stigma means focus, hence an astigmatic beam is one which has no focus. 
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object is a straight line can a straight-line image be formed; 
and only then when the line object is so placed that all the 
focal lines which are the images of all the points P of the line 
object coincide. Since the image of every point consists of 
two focal lines p1 and p2 which are at right angles to each 
other, there are also two positions of the line object 90° apart 
which give rise to a line image. These two images lie at 
different distances from the surface ~. 

Similarly there are two orientations of a system of parallel 
straight lines which give rise to an image consisting of parallel 
straight lines. 

If the object is a right-angled cross or a network of lines 
at right angles, there is one definite orientation for which an 
image of one line of the cross or of one system of parallel lines 
of the network is formed in a certain plane ~ 1 of the image 
space; while in another plane ~ 2 of the image space an image 
of the other line of the cross or of the other system of lines of 
the network is formed. This phenomenon is a good test for 
astigmatism. 

Astigmatic images must in general be formed when the 
elementary refracting or reflecting surface has two different 
curvatures. Thus cylindrical lenses, for example, show marked 
astigmatism. Reflection or refraction at a spherical surface 
also renders a homocentric elementary beam astigmatic when 
the incidence is oblique. 

In order to enter more fully into the consideration of this 
case. let the point object P, the centre C of the sphere, and 
the point A in which the principal ray of the elementary beam 
emitted by P strikes the spherical surface, lie in the plane of 
the figure (Fig. 24). Let the line PA be represented by s, 
the line AP2 by s2• Now since 

it follows that 

ss2 sin { </J - </J') = sr sin </J + s2r sin </J', 
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in which cp and cp' denote the angles of incidence and refrac
tion respectively, and r the radius of the sphere. Since now 
by the law of refraction sin ¢ = n sin cp', it follows from the 
last equation that 

ssin cos cp' - cos <P) = srn + s,r, or 

I n n cos ¢' - cos cp -+-=----- (~ s ~2 ,r 

It is evident that all rays emitted by P which have the same 
angle of inclination u with the axis must, after refraction, cross 

Pz 
p 

Tl, 

FIG. 24. 

the axis at the same point P 2• The beam made up of such 
rays is called a sagittal beam. It has a focal point at P 2• 

On the other hand a meridional beam, i.e. one whose rays 
all lie in the plane PAC, has a different focal point Pr Let 
E'B be a ray infinitely near to PA, and let its angle of inclina
tion to the axis be u + dtt and its direction after refraction 
BP1. Then :?f.BP1A is to be considered as the increment du' 
of u', and :?f_BCA as the increment dtr. of a. It is at once 
evident that 

s. du= AB cos</>, s!. du'= AB. cos</>', r. da = AB. (31) 

But since 

¢ = ff -f- 11.- cl>' :.-= ff - tt', 
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it follows that 

( I cos c/J) 
dcp = da + du = AB r + -s- , 

I I (I cos <P') d</> = da - du = AB - - -- . r s1 
(32) 

But a differentiation of the equation of refraction sin <P = 
n sin cp' gives 

cos cp . dcp = n cos cp' . dcp'. 

Substituting in this the values of dcp and dcp' taken from (32), 
there results 

cos2 <P n cos2 cp' n cos <P' - cos cp 
--+--=--- · · (33) s s1 r 

From (33) and (30) different values s1 and s2 corresponding to 
the sames are obtained, i.e. Pis imaged astigmatically. The 
astigmatic difference is greater the greater the obliquity of the 
incident beam, i.e. the greater the value of cp. It appears 
from (30) and (33) that this astigmatic difference vanishes, i.e. 
s1 = s2 = s', only when s = - ns'. This condition determines 
the two aplanatic points of the sphere mentioned on page 33. 

The equations for a reflecting spherical surface may be 
deduced from equations (30) and (33) by substituting in them 
n = - I, i.e. <P' = - <P (cf. page 37). Thus for this case* 

I I COS c/J 
---=-2--, 
s s2 r 

I 

s 

2 

r cos </>. • 

Or by subtraction, 

or 

!_ - ~ = -=-(-1- - cos cp), 
s1 s2 r cos cp 

s - s 2 
- 2--1 = - sin cp tan ¢, . 

s1s2 r 

*Fora convex mirror r is positive; for a concave, negative. 

(34) 

(35) 
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an equation which shows clearly how the astigmatism increases 
with the angle of incidence. This increase is so rapid that the 
astigmatism caused by the curvature of the earth may, by 
suitable means, be detected in a beam reflected from the sur
face of a free liquid such as a mercury horizon. Thus if the 
reflected image of a distant rectangular network be observed in 
a telescope of 7. 5 m. focal length and ½ m. aperture, the 
astigmatic difference amounts to -lo mm., i.e. the positions in 
which the one or the other system of lines of the network is 
in sharp focus are lo mm. apart. In the giant telescope of 
the Lick Observatory in California this astigmatic difference 
amounts to j\, mm. Thus the phenomena of astigmatism may 
be made use of in testing the accuracy of the surface of a plane 
mirror. Instead of using the difference in the positions of the 
images of the two systems of lines of the network, the angle 
of incidence being as large as possible, the difference in the 
sharpness of the images of the two systems may be taken as 
the criterion. For this purpose a network of dotted lines may 
be used to advantage. 

7. Means of Widening the Limits of Image Formation. 
-It has been shown above that an image can be formed by 
refraction or reflection at coaxial spherical surfaces only when 
the object consists of points lying close to the axis and the 
indination to the axis of the rays forming the image is small. 
If the elementary beam has too large an inclination to the 
axis, then, as was shown in the last paragraph, no image can 
be formed unless all the rays of the beam lie in one plane. 

Now such arrangements as have been thus far considered 
for the formation of images would in practice be utterly use
less. For not only would the images be extremely faint if 
they were produced by single elementary beams, but also, as 
will be shown in the physical theory ( cf. Section I, Chapter 
IV), single elementary beams can never produce sharp images, 
but only diffraction patterns. 

Hence it is necessary to look about for means of widening 
the limits hitherto set upon image formation. In the first place 
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the limited sensitiveness of the eye comes to our assistance: 
we are unable to distinguish two luminous points as separate 
unless they subtend at the eye an angle of at least one minute. 
Hence a mathematically exact point image is not necessary, 
and for this reason alone the beam which produces the image 
does not need to be elementary in the mathematical sense, i.e. 
one of infinitely small divergence. 

By a certain compromise between the requirements it is 
possible to attain a still further widening of the limits. Thus 
it is possible to form an image with a broadly divergent beam 
if the object is an element upon the axis, or to form an image 
of an extended object if only beams of small divergence are 
used. The realization of the first case precludes the possibility 
of the realization of the second at the same time, and vz'ce 
versa. 

That the image of a point upon the axis can be formed by 
a widely divergent beam has been shown on page 33 in con
nection with the consideration of aplanatic surfaces. But this 
result can also be approximately attained by the use of a suit
able arrangement of coaxial spherical surfaces. This may be 
shown from a theoretical consideration of so-called spherical 
aberration. To be sure the images of adjacent points would 
not in general be formed by beams of wide divergence. In 
fact the image of a surface element perpendicular to the axis 
can be formed by beams of wide divergence only if the so
called sine law is fulfilled. The objectives of microscopes and 
telescopes must be so constructed as to satisfy this law. 

The problem of forming an image of a large object by a 
relatively narrow beam must be solved in the construction of 
the eyepieces of optical instruments and of photographic 
systems. In the latter the beam may be quite divergent, since, 
under some circumstances (portrait photography), only fairly 
sharp images are required. These different problems in image 
formation will be more carefully considered later. The forma
tion of images in the ideal sense first considered, i.e. when the 
objects have any size and the beams any divergence, is, to be 
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sure, impossible, if for no other reason, simply because, as 
will be seen later, the sine law cannot be simultaneously ful
filled for more than one position of the object. 

8. Spherical Aberration.-If from a point Pon the axis 
two rays S1 and S2 are emitted of which S1 makes a very small 
angle with the axis, while S2 makes a finite angle u, then, 
after refraction at coaxial spherical surfaces, the image rays S/ 
and S2' in general intersect the axis in two different points P 1' 

and Pt The distance between these two points is known as 
the spherical aberration (longitudinal aberration). In case the 
angle tt which the ray S2 makes with the axis is not too great, 
this aberration may be calculated with the aid of a series of 
ascending powers of tt. If, however, u is large, a direct 
trigonometrical determination of the path of each ray is to be 
preferred. This calculation wiil not be given here in detail.* 
For relatively thin convergent lenses, when the object is 
distant, the image P 1 formed by rays lying close to the axis 
is farther from the lt!ns than the image Pi formed by the more 
oblique rays. Such a lens, i.e. one for which P 2 lies nearer 
to the object than P 1 , is said to be undercorrectt·d. Inversely, 
a lens for which P 2 is more remote from the object than P 1 is 
said to be overcorrected. Neglecting all terms of the power 
series in tt save the first, which contains u2 as a factor, there 
results for this so-called aberration of the first order, if the 
object P is very distant, 

in which h represents the radius of the aperture of the lens, 
fits focal length, n its index of refraction, and <T the ratio of 
its radii of curvature, i.e. 

(37) 

* For a more complete discussion cf. Winkelmann's Handbuch der Physik, 
Optik, p. 99 sq. ;Moller-Pouillet's Lehrbucb d. Physik, 9th Ed. p. 4,87 ; or Heath. 
Geometrical Optics. 
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The signs of r 1 and r 2 are determined by the conventions 
adopted on page 40; for example, for a double-convex lens 
r 1 is positive, r 2 negative. P/P/ is negative for an undercor
rected lens, positive for an overcorrected one. Further, the 
ratio h :f is called the relative aperture of the lens. It 
appears then from (36) that if <T remains constant, the ratio 
of the aberration P/ P 2' to the focal length f is directly pro
portional to the square of the relative aperture of the lens. 

For given values off and h the aberration reaches a mini
mum for a particular value u' of the ratio of the radii.* By 
(36) this value is 

<T' = 4+ n - 2n2 

n(I + 2nJ • 

For n = 1.5, <T = - l : 6. This condition may be realized 
either with a double-convex or a double-concave lens. The 
surface of greater curvature must be turned toward the incident 
beam. But if the object lies near the principal focus of the 
lens, the best image is formed if the surface of lesser curvature 
is turned toward the object; for this case can be deduced from 
that above considered, i.e. that of a distant object, by simply 
interchanging the roles of object and image.t For n = 2, 

(38) gives u' = + !- This condition is realized in a con
vexo-concave lens whose convex side is turned toward a dis
tant object P. 

The following table shows the magnitude of the longi
tudinal aberration E for two different indices of refraction and 
for different values of the ratio <T of the radii. f has been 
assumed equal to I m. and h :f = io, i.e. h = IO cm. The 
so-called lateral aberration C, i.e. the radius of the circle 
which the rays passing through the edge of a lens form upon 

* This minimum is never zero. A complete disappearance of the aberration 
of the first order can only be attained by properly choosing the thickness of the 
lens as well as the ratio of the radii. 

t It follows at once that the form of the lens which gives minimum aberration 
depends upon the position of the object. 
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a screen placed at the focal point P/, is obtained, as appears 
at once from a construction of the paths of the rays, by multi
plication of the longitudinal aberration by the relative aperture 
h :f, i.e. in this case by T10 . Thus the lateral aberration 
determines the radius of the illuminated disc which the outside 
rays from a luminous point P form upon a screen placed in the 
plane in which Pis sharply imaged by the axial rays. 

f = I m. h = 10 cm. 

II= 1.5 •=2 

Form of lens ............. .... CT -l' C CT -l' C 

Front face plane .............. 00 4.5 cm 4.5 mm 00 2 cm2 mm 

Both sides alike ............... -I 1.67 .. 1.67 .. -I I 
.. 

I 
.. 

Rear face plane ............... 0 1.17 .. 1.17 .. 0 0.5 .. 0.5 .. 
Most advantageous form ..... -¼ 1.07 .. 1.07 .. +¼ 0.44 

.. 
0.44" 

That a plano-convex lens produces less aberration when its 
convex side is turned toward _a distant object than when the 
sides are reversed seems probable from the fact that in the first 
case the rays are refracted at both surfaces of the lens, in the 
second only at one; and it is at least plausible that the dis
tribution of the refraction between two surfaces is unfavorable 
to aberration. The table further shows that the most favor
able form of lens has but little advantage over a suitably placed 
plano-convex lens. Hence, on account of the greater ease of 
construction, the latter is generally used. 

Finally the table shows that the aberration is very much 
less if, for a given focal length, the index of refraction is made 
large. This conclusion also holds when the aberration of a 
higher order than the first is considered, i.e. when the remain
ing terms of the power series in u are no longer neglected. 
Likewise the aberration is appreciably diminished when a 
single lens is replaced by an equivalent system of several 
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lenses.* By selecting for the compound system lenses of 
different form, it is possible to cause the aberration not only 
of the first but also of still higher orders to vanish. t One 
system can be made to accomplish this for more than one 
position of the object on the axis, but never for a finite length 
of the ax'is. 

When the angle of inclination u is large, as in microscope 
objectives in which tt sometimes reaches a value of 90°, the 
power series in tt cannot be used for the determination of the 
aberration. It is then more practicable to determine the paths 
of several rays by trigonometrical calculation, and to find by 
trial the best form and arrangement of lenses. There is, how~ 
ever, a way, depending upon the use of the aplanatic points of 
a sphere mentioned on page 33, of diminishing the divergence 
of rays proceeding from near objects without introducing aber
ration, i.e. it is possible to produce virtual images of any size, 
which are free from aberration. 

Let lens I (Fig. 25) be piano-convex, for example, a hemi-

FIG. 25. 

spherical lens of radius r 1 , and let its plane surface be turned 
toward the object P. If the medium between P and this lens 
has the same index n1 as the lens, then refraction of the rays 

* In this case, to be sure, the brightness of the image suffers somewhat on 
account of the increased loss of light by reflection. 

f Thus the aberration of the first order can be corrected by a suitable com
bination of a amvergent and a divergent lens. 
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proceeding from the object first takes place at the rear surface 
of the lens; and if the distance of P from the centre of curva
ture C1 of the back surface is r1 : n1 , then the emergent rays 
produce at a distance n1r 1 from C1 a virtual image P 1 free from 
aberration. If now behind lens I there be placed a second 
concavo-convex lens 2 whose front surface has its centre of 
curvature in P 1 and whose rear surface has such a radius r 2 that 
P 1 lies in the aplanatic point of this sphere r 2 (the index of 
lens 2 being n2), then the rays are refracted only at this rear 
surface, and indeed in such a way that they form a virtual 
image P 2 which lies at a distance n2r 2 from the centre of curva
ture C2 of the rear surface of lens 2, and which again is entirely 
free from aberration. By addition of a third, fourth, etc., 
concavo-convex lens it is possible to produce successive virtual 
images P8 , P4 , etc., lying farther and farther to the left, i.e. 
it is possible to diminish successively the divergence of the 
rays without introducing aberration. 

This principle, due to Amici, is often actually employed in 
the construction of microscope objectives. Nevertheless no 
more than the first two lenses are constructed according to this 
principle, since otherwise the chromatic errors which are intro
duced are too large to be compensated (cf. below). 

9. The Law of Sines.-In general it does not follow that 
if a widely divergent beam from a point P upon the axis gives 
rise to an image P' which is free from aberration, a surface 
element du perpendicular to the axis at P will be imaged in 
a surface element d<T' at P'. In order that this may be the 
case the so-called sine law must also be fulfilled. This law 
requires that if u and u' are the angles of inclination of any two 
conjugate rays passing through P and P', sin u: sin u' = const. 

According to Abbe systems which are free from aberra
tion for two points P and P' on the axis and which fulfil the 
sine law for these points are called aplanatic systems. The 
points P and P' are called the aplanatic points of the system. 
The aplanatic points of a sphere mentioned on page 33 fulfil 
these conditions, since by equation (2), page u. the ratio of the 
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sines is constant. The two foci of a concave mirror whose 
surface is an ellipsoid of revolution are not aplanatic points 
although they are free from aberration. 

It was shown above (page 22, equation (9), Chapter II) 
that when the image of an object of any size is formed by a 
collinear system, tan tt : tan u' = const. Unless u and 11 1 are 
very small, this condition is incompatible with the sine law, 
and, since the latter must always be fulfilled in the formation 
of the image of a surface element, it follows that a point-for
poi1tt imaging of objects of any size by widely di'l'ergent beams 
is pltysz'cally z'mpossible. 

Only when 11 and u' are very small can both conditions be 
simultaneously fulfilled. In this case, whenever an image P' 
is formed of P, an image du' will be formed at P' of the surface 
element dcr at P. But if Y is large, even though the spherical 
aberration be entirely eliminated for points on the axis, unless 
the sine condition is fulfilled the images of points which lie to 
one side of the axis become discs of the same order of magni
tude as the distances of the points from the axis. According 
to Abbe this blurring of the images of points lying off the axis is 
due to the fact that the different zones of a spherically corrected 
system produce images of a surface element of different linear 
magnifications. 

The mathematical condition for the constancy of this linear 
magnification is, according to Abbe, the sine law.* The same 
conclusion was reached in different ways by Clausius t and v. 
Helmholtz t. Their proofs, which rest upon considerations of 
energy and photometry, will be presented in the third division 
of the book. Here a simple proof due to Hockin § will be 
given which depends only on the law that the optical lengths 
of all rays between two conjugate points must be equal (cf. 

* Carl's Repert. f. Physik, 1881, 16, p. 303. 
t R. Clausius, Mechanische W!irrnetheorie, 1887, 3d Ed. 1, p. 315. 
t v. Helmholtz, Pogg. Ann. Jubelbd. 1874, p. 557. 
§ Hockin, Jour. Roy. Microsc. Soc. 1884, (2), 4. p. 337• 
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page 9).* Let the image of P (Fig. 26) formed by an axial 
ray PA and a ray PS of inclination tt lie at the axial point P'. 
Also let the image of the infinitely near point P 1 formed by a 
ray P 1A 1 parallel to the axis, and a ray P 1S 1 parallel to PS, 
lie at the point P/. The ray F' P/ conjugate to P 1A1 must 
evidently pass through the principal focus F' of the image 
space. If now the optical distance between the points P and 
P' along the path through A be represented by (PAP'), that 

Fm. 26. 

along the path through SS' by (PSS'P'), and if a similar 
notation be used for the optical lengths of the rays proceeding 
from P 1 , then the principle of extreme path gives 

(PAP')= (PSS'P'); (P1A 1F'P/) = (P1S1S/P/), 

and hence 

(PAP') - (P1A 1F'P/) = (PSS'P') - (P1S1S/P/). (39) 

Now since F' is conjugate to an infinitely distant object Ton 
the axis, ( TPAF') = ( TP1A 1F'). But evidently TP = TP1 , 

since PP1 is perpendicular to the axis. Hence by subtraction 

* According to Bruns (Abh. d. sachs. Ges. d. Wiss. Bd. 21, p. 325) the sine 
law can be based upon still more general considerations, namely, upon the law of 
Malus (cf. p, 12) and the existence of conjugate rays. 
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Further, since P'P/ is perpendicular to the axis, it follows 
that when P'P/ is small F'P' = F'Pi', Hence by addition 

(PAPP')= (P1A 1PP/), 

i.e. the left side of equation (39) vanishes. Thus 

(PSS'P') = (P1S1S/P/) .. 

Now if Fi' is the intersection of the rays P'S' and P/ S/, then 
F/ is conjugate to an infinitely distant object T1 , the rays from 
which make an angle u with the axis. Hence if a perpendic
ular PN be dropped from P upon P 1S1 , an equation similar to 
(40) is obtained; thus 

(PSS' F/) = (NS1S/ F/). (42) 

By subtraction of this equation from (41), 

(43) 

If now n is the index of the object space, n' that of the image 
space, then, if the unbracketed letters signify geometrical 
lengths, 

(44) 

Further, if P'N' be drawn perpendicular to F/P', then, since 
P'P/ is infinitely small, 

(F/P/) - (1'/P') = n' .N'P/ = n' -P'P/ • sin u'. (45) 

Equation (43) in connection with (44) and (45) then gives 

n,PP1 -sin u = n' ,P'Pi' • sin u'. 

If y denote the linear magnitude P P 1 of the object, and y' the 
linear magnitude P' P/ of the image, then 

sin u n'y' 
sin u' = ny • • 

Thus it is proved that if the linear magnification is con
stant the ratio of the sines is constant, and, in addition, the 
value of this constant is determined. This value agrees with 
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that obtained in equation (2), page 34, for the aplanatic points 
of a sphere. 

The sine law cannot be fulfilled for two different points on 
the axis. For if P' and P/ (Fig. 27) are the images of P and 
P 1 , then, by the principle of equal optical lengths, 

(PAP')= (PSS'P'), (P1AP/) = (P1S1S/P/), . (47) 

in which PS and P/).1 are any two parallel rays of inclina

tion u. 

P' 
n: 

Subtraction of the two equations (47) and a process d 
reasoning exactly like the above gives 

or 

i.e. 
n-P1P(1 - cos u) = n' -P/P' (1 - cos u'), 

sin2 tu n' -P'P/ 
sin2 ½it'= n .PP1- • 

This equation is then the condition for the formation, by a 
beam of large divergence, of the image of two neighboring 
points upon the axis, i.e. an image of an element of the axis. 

However this condition and the sine law cannot be fulfilled 
at the same time. Thus an op#cal system can be made 
aplanatic for but one position of the object 
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The fulfilment of the sine law is especially important in the 
case of microscope objectives. Although this was not known 
from theory when the earlier microscopes were made, it can be 
experimentally proved, as Abbe has shown, that these old 
microscope objectives which furnish good images actually 
satisfy the sine law although they were constructed from 
purely empirical principles. 

10. Images of Large Surfaces by Narrow Beams.-lt 
is necessary in the first place to eliminate astigmatism ( cf. 
page 46). But no law can be deduced theoretically for accom
plishing this, at least when the angle of inclination of the rays 
with respect to the axis is large. Recourse must then be had 
to practical experience and to trigonometric calculation. It is 
to be remarked that the astigmatism is dependent not only 
upon the form of the lenses, but also upon the position of the 
stop. 

Two further requirements, which are indeed not absolutely 
essential but are nevertheless very desirable, are usually im-

FIG. 28. 

posed upon the image. First it must be plane, i.e. free from 
bulging, and second its separate parts must have the same 
magnification, i.e. it must be free from distortion. The first 
requirement is especially important for photographic objectives. 
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For a complete treatment of the analytical conditions for this 
requirement cf. Czapski, in Winkelmann's Handbuch der 
Physik, Optik, page 124. 

The analytical condition for freedom from distortion may 
be readily determined. Let PP1P 2 (Fig. 28) be an object 
plane, P'P/P/ the conjugate image plane. The beams from 
the object are always limited by a stop of definite size 
which may be either the rim of a lens or some specially intro
duced diaphragm. This stop determines the position of a 
virtual aperture B, the so-called entrance-pupil, which is so 
situated that the principal rays of the beams from the objects 
P

1 

, P
2

, etc., pass through its centre. Likewise the beams in 
the image space are limited by a similar aperture B', the 
so-called exit-pupil, which is the image of the entrance-pupil.* 
If l and l' are the distances of the entrance-pupil and the exit
pupil from the object and image planes respectively, then, from 
the figure, 

tan u
1 

= P P
1 

: l, tan u
2 

= P P
2 

: I, 
tan u/ = P'P/ : l', tan u2' = P'P/ : /'. 

If the magnification is to be constant, then the following rela
tion must exist: 

hence 
tan u/ tan u2' 
--- = --- = const. 
tan u

1 

tan u
2 

(49) 

Hence for constant magnification the ratio of the tangents of the 
angles of inclination of the principal rays must be constant. In 
this case it is customary to call the intersections of the prin
cipal rays with the axis, i.e. the centres of the pupils, ortlto
scopic points. Hence it may be said that, if the image i's to 
be free from distortion, the centres of perspective of object and 
image must be orthoscopi'c points. Hence the positions of the 
pupils are of great importance. 

* For further treatment see Chapter IV. 
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An example taken from photographic optics shows how the 
condition of orthoscopy may be most simply fulfilled for the 
case of a projecting lens. Let R (Fig. 29) be a stop on either 
side of which two similar lens systems I and 2 are symmetrically 
placed. The whole system is then called a symmetrical double 
objective. Let S and S' represent two conjugate principal 
rays. The optical image of the stop R with respect to the 
system I is evidently the entrance-pupil, for, since all principal 
rays must actually pass through the centre of the stop R, the 
prolongations of the incident principal rays S must pass through 
the centre of B, the optical image of R with respect to I. 

Likewise B', the optical image of R with respect to 2, is the 
exit-pupil. It follows at once from the symmetry of arrange
ment that tt is always equal to tt', i.e. the condition of orthos
copy is fulfilled. 

FIG. 29. 

Such symmetrical double objectives possess, by virtue of 
their symmetry, two other advantages: On the one hand, the 
meridional beams are brought to a sharper focus,* and, on the 
other, chromatic errors, which will be more fully treated in the 
next paragraph, are more easily avoided, The result u = u', 
which means that conjugate principal rays are parallel, is 
altogether independent of the index of refraction of the system, 

* The elimination of the error of coma is here meant. {;f. Mtlller-Pouillet, 
Optik, p. 774-
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and hence also of the color of the light. If now each of the 
two systems r and 2 is achromatic with respect to the position 
of the image which it forms of the stop R, i.e. if the posi
tions of the entrance- and exit-pupils are independent of the 
color,* then the principal rays of one color coincide with those 
of every other color. But this means that the images formed 
in the image plane are the same size for all colors. To be 
sure, the position of sharpest focus is, strictly speaking, some
what different for the different colors, but if a screen be placed 
in sharp focus for yellow, for instance, then the images of 
other colors, which lie at the intersections of the principal 
rays, are only slightly out of focus. If then the principal rays 
coincide for all colors, the image will be nearly free from 
chromatic error. 

The astigmatism and the bulging of the image depend upon 
the distance of the lenses r and 2 from the stop R. In 
general, as the distance apart of the two lenses increases the 
image becomes flatter, i.e. the bulging decreases, while the 
astigmatism increases. Only by the use of the new kinds of 
glass made by Schott in Jena, one of which combines large 
dispersion with small index and another small dispersion with 
'1arge index, have astigmatic flat images become possible. 
This will be more fully considered in Chapter V under the head 
of Optical Instruments. 

u. Chromatic Aberration of Dioptric Systems.-Thus 
far the index of refraction of a substance has been treated as 
though it were a constant, but it is to be remembered that for 
a given substance it is different for each of the different colors 
contained in white light. For all transparent bodies the index 
continuously increases as the color changes from the red to 
the blue end of the spectrum. The following table contains 
the indices for three colors and for two different kinds of glass. 
nc is the index for the red light corresponding to the Fraun-

* As will be seen later, this achromatizing can be attained with sufficient accu
racy; on the other hand it is not possible at the same time to make the sizes oftbe 
uift"erent images of R independent of the color. 
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hofer line C of the solar spectrum (identical with the red 
hydrogen line), nD that for the yellow sodium light, and n.F that 
for the blue hydrogen line. 

Glass. 
nF- •c 

•c nD nF v=---
•»- J. 

Calcium-silicate-crown ...... 1.5153 1.5179 1.5239 0.0166 

Ordinary silicate-flint ....... 1.6143 1.6202 1.6314 0.0276 

The last column contains the so-called dispersive power v, 
of the substance. It is defined by the relation 

y =· nF - nc (50) 
nD- l 

It is practically immaterial whether nD or the index for any 
other color be taken for the denominator, for such a change 
can never affect the value of v by more than 2 per cent. 

Since now the constants of a lens system depend upon the 
index, an image of a white object must in general show colors, 
i.e. the differently colored images of a white object differ from 
one another in position and size. 

In order to make the red and blue images coincide, i.e. in 
order to make the system achromatic for red and blue, it is 
necessary not only that the focal lengths, but also that the 
unit planes, he identical for both colors. In many cases a 
partial correction of the chromatic aberration is sufficient. 
Thus a system may he achromatized either by making the focal 
length, and hence the magnification, the same for all colors; 
or by making the rays of all colors come to a focus in the same 
plane. In the former case, though the magnification is the 
same, the images of all colors do not lie in one plane; in the 
latter, though these images lie in one plane, they differ in size. 
A system may be achromatized one way or the other according 
to the purpose for which it is intended, the choice depending 
upon whether the magnification or the position of the image is 
most important. 



68 THEORY OF OPTICS 

A system which has been achromatized for two colors, 
e.g. red and blue, is not in general achromatic for all other 
colors, because the ratio of the dispersions of different sub
stances in different parts of the spectrum is not constant. 
The chromatic errors which remain because of this and which 
give rise to the so-called secondary spectra are for the most 
part unimportant for practical purposes. Their influence can 
be still farther reduced either by choosing refracting bodies for 
which the lack of proportionality between the dispersions is as 
small as possible, or by achromatizing for three colors. The 
chromatic errors which remain after this correction are called 
spectra of the third order. 

The choice of the colors which are to be used in practice 
in the correction of the chromatic aberration depends upon the 
use for which the optical instrument is designed. For a system 
which is to be used for photography, in which the blue rays 
are most effective, the two colors chosen will be nearer the 
blue end of the spectrum than in the case of an instrument 
which is to be used in connection with the human eye, for 
which the yellow-green light is most effective. In the latter 
case it is easy to decide experimentally what two colors can be 
brought together with the best result. Thus two prisms of 
different kinds of glass are so arranged upon the table of a 
spectrometer that they furnish an almost achromatic image 
of the slit; for instance, for a given position of the table 
of the spectrometer, let them bring together the rays C 
and F. If now the table be turned, the image of the slit will 
in general appear colored; but there will be one position in 
which the image has least color. From this position of the 
prism it is easy to calculate what two colors emerge from the 
prism exactly parallel. These, then, are the two colors which 
can be used with the best effect for achromatizing instruments 
intended for eye observations. 

Even a single thick lens may be achromatized either with 
reference to the focal length or with reference to the position 
"lr the focus. But in practice the cases in which thin lenses 
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are used are more important. When such lenses are com
bined, the chromatic differences of the unit planes may be 
neglected without appreciable error, since, in this case, these 
planes always lie within the lens (cf. page 42). If then the 
focal lengths be achromatized, the system is almost perfectly 
achromatic, i.e. both for the position and magnitude of the 
image. 

Now the focal length fi of a thin lens whose index for a 
given color is n1 is given by the equation (cf. eq. (22), page 42) 

(5 I) 

in which k1 is an abbreviation for the difference of the curva
tures of the faces of the lens. 

Also, by (24) on page 44, the focal length f of a combina
tion of two thin lenses whose separate focal lengths are J;. and 
/2 is given by 

For an increment dn1 of the index n1 corresponding to a 
change of color, the increment of the reciprocal of the focal 
length is, from (5 I), 

(53) 

in which Y 1 represents the dispersive power of the material of 
lens I between the two colors which are used. If the focal 
ength f of the combination is to be the same for both colors, 
it follows from (5 2) and (5 3) that 

(54) 

This equation contains the condition for achromatism. It 
also shows, since Y1 and Y2 always have the same sign no 
matter what materials are used for I and 2, that the separate 
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focal lengths of a thin double achromatic lens always lzaric 
opposi'te signs. 

From (54) and (52) it follows that the expressions for the 
separate focal lengths are 

___ ~ I I Y1 

f1-fv2-v/ .1z=-fv2-v1· (55) 

Hence in a combination of positive focal length the lens with 
the smaller dispersive power has the positive, that with the 
larger dispersive power the negative, focal length. 

Iff is given and the two kinds of glass have been chosen, 
then there are four radii of curvature at our disposal to make 
.Ii and.I; correspond to (55). Hence two of these still remain 
arbitrary. If the two lenses are to fit together, r/ must be 
equal to r 2• Hence one radius of curvature remains at our 
disposal. This may be so chosen as to make the spherical 
aberration as small as possible. 

In microscopic objectives achromatic pairs of this kind are 
very generally used. Each pair consists of a piano-concave 
lens of flint glass which is cemented to a double-convex lens 
of crown glass. The plane surface is turned toward the 
incident light. 

Sometimes it is desirable to use two thin lenses at a greater 
distance apart; then their optical separation is ( cf. page 28) 

L1 = a - (.t;_ +J;). 
Hence, from (19) on page 29, the focal length of the combina
tion is given by 

If the focal length is to be achromatic, then, from (56) and (5 3), 

o - Y1 + r2 - a( Y1 + v2) 

- .t.. /2 .li/2 ' 
or 

• (57) 



PHYSICAL CONDITIONS FOR IMAGE FORMATION i 1 

If the two lenses are of the same material (v1 = ,,2), then, when 
they are at the distance 

.Ii+ fz 
a= 2 ' • 

they form a system which i's achromatic with respect to the focal 
lcngtlt. Since v1 = v2 , this achromatism holds for all colors. 

If it is desired to achromatize the system not only with 
reference to the focal length. but completely, i.e. in respect to 
both position and magnification of the image, then it follows 
from Fig. 30 that 

i.e. the ratio of the magnifications is 

(59) 

11' 

Frn. 30. 

If, therefore, the image is to be achromatic both with 
respect to magnitude and position, then, since e1 is constant 
for all colors, 

'e'e') 
d \-1- 2- = o, dez' = o. 

e2 
(60) 

But since e/ + e2 = a (distance between the lenses) is also 
constant for all colors, it follows that de/= - de2 , while, from 
(6o), d(e//e2) = o. Hence de/ = o and de2 = o, i.e. each of 
the two separate lenses must be for itself achromatized, i.e. 
must consist of an achromatic pair. 

Hence the following general conclusion may be drawn: 
A combiizatz"on which consists of several separated systems is 
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only perfectly aclwomatic (i.e. with respect to both position anti 
magnification of the image) when each system for itself is 
achromatic. 

When the divergence of the pencils which form the image 
becomes greater, complete achromatism is not the only con
dition for a good image even with monochromatic light. The 
spherical aberration for two colors must also be corrected as 
far as possible; and, when the image of a surface element is 
to be formed, the aplanatic condition (the sine law) must be 
fuifilled for the two colors. Abbe calls systems which are free 
from secondary spectra and are also aplanatic for several 
colors "apoclwomatic" systems. Even such systems have a 
chromatic error with respect to magnification which may, 
however, be rendered harmless by other means (cf. below 
under the head Microscopes). 



CHAPTER IV 

APERTURES AND THE EFFECTS DEPENDING UPON THEM. 

I. Entrance- and Exit-pupils.-The beam which passes 
through an optical system is of course limited either by the 
dimensions of the lenses or mirrors or by specially introduced 
diaphragms. Let P be a particular point of the object (Fig. 
31); then, of the stops or lens rims which are present, that 
one which most limits the divergence of the beam is found in 
the following way: Construct for every stop B the optical 
image B1 formed by that part S1 of the optical system which 
lies between B and the object P. That one of these images 
B1 which subtends the smallest angle at the object point P is 
evidently the one which limits the divergence of the beam. 
This image is called the entrance-pupil of the whole system. 
The stop Bis itself called the aperture or iris.* The angle 
2U which the entrance-pupil subtends at the object, i.e. the 
angle included between the two limiting rays in a meridian 
plane, is called the angular aperture of the system. 

The optical image B/ which is formed of the entrance
pupil by the entire system is called the exit-pupil. This 
evidently limits the size of the emergent beam which comes to 
a focus in P', the point conjugate to P. The angle 2U' which 
the exit-pupil subtends at P' is called the angle of projection 
of the system. Since object and image are interchangeable, 
it follows at once that the exit-pupil Bi' is the image of the 

* If th,. iris lies in front of the front lens of the system, it is identical with the 
entrance-pu pi 1. 

73 
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stop B formed by that part 5 2 of the optical system which lies 
between B and the image space. In telescopes the rim of the 
objective is often the stop, hence the image formed of this rim 
by the eyepiece is the exit-pupil. The exit-pupil may be 
seen, whether it be a real or a virtual image, by holding the 

FIG. 31. 

instrument at a distance from the eye and looking through it 
at a bright background. 

Under certain circumstances the iris of the eye of the 
observer can be the stop. The so-called pupil of the eye is 
merely the image of the iris formed by the lens system of the 
eye. It is for this reason that the general terms entrance
pupil and iris have been chosen. 

As was seen on page 52, the position of the pupils is of 
importance in the formation of images of extended objects by 
beams of small divergence. If the image is to be similar to 
the object, the entrance- and exit-pupils must be orthoscopic 
points. Furthermore the position of the pupils is essential to 
the determination of the przitcipal rays, i.e. the central rays of 
the pencils which form the image. If, as will be assumed, the 
pupils are circles whose centres lie upon the axis of the 
system, then the rays which proceed from any object point P 
toward the centre of the entrance-pupil, or from the centre of 
the exit-pupil toward the image point P', are the principal 
rays of the object and image pencils respectively. When the 
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paths of the rays in any system are mentioned it will be 
understood that the paths of the principal rays are meant. 

2. Telecentric Systems.-Certain positions of the iris can 
be chosen for which the entrance- or the exit-pupils lie at 
infinity (in telescopic systems both lie at infinity). To attain 
this it is only necessary to place the iris behind S1 at its 
principal focus or in front of S2 at its principal focus (Fig. 3 I). 
The system is then called tclecentri'c,-in the first case, tcle
centri'c on the side of the object; in the second, telecentri'c on the 
side of the image. In the former all the principal rays in the 
object space are parallel to the axis, in the latter all those 
of the image space. Fig. 32 represents a system which is 
telecentric on the side of the image. The iris B lies in front 
of and at the principal focus of the lens S which forms the 
real image P/P/ of the object P 1 and P 2• The principal rays 

P,' 

FIG. 32. 

from the points P 1 and P 2 are drawn heavier than the limiting 
rays. This position of the stop is especially advantageous when 
the image P/Pz' is to be measured by any sort of a micrometer. 
Thus the image P/ Pz' always has the same size whether it 
coincides with the plane of the cross-hairs or not. For even 
with imperfect focussing it is the intersection of the principal 
rays with the plane of the cross-hairs which determines for the 
observer the position of the (blurred) image. If then the prin
cipal rays of the image space are parallel to the axis, even 
with improper focussing the image must have the same size as 
if it lay exactly in the plane of the cross-hairs. But when the 
principal rays are not parallel in the image space, the apparent 
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size of the image changes rapidly with a change in the position 
of the image with respect to the plane of the cross-hairs. 

If the system be made telecentric on the side of the object, 
then, for a similar reason, the size of the image is not depen
dent upon an exact focussing upon the object. This arrange
ment is therefore advantageous for micrometer microscopes, 
while the former is to be used for telescopes, in which the 
distance of the object is always given (infinitely great) and the 
adjustment must be made with the eyepiece. 

3. Field of View.-In addition to the stop B (the iris), the 
images of which form the entrance- and exit-pupils, there are 
always present other stops or lens rims which limit the size of 
the object whose image can be formed, i.e. which limit the field 
of view. That stop which determines the size of the field of view 
may be found by constructing, as before, for all the stops the 
optical images which are formed of them by that part S 1 of the 
entire lens system which lies between the object and each stop. 
Of these images, that one G1 which subtends the smallest angle 
2w at the centre of the entrance-pupil is the one which deter
mines the size of the field of view. 2w is called the angular 
field of view. The correctness of this assertion is evident at 
once from a drawing like Fig. 31. In this figure the iris B, the 
rims of the lenses S 1 and S2 , and the diaphragm G are all 
pictured as actual stops. The image of G formed by 5 1 is 
G1 ; and since it will be assumed that GI subtends at the centre 
of the entrance-pupil a smaller angle than the rim of 5 1 or the 
image which S 1 forms of the rim of the lens S 2 , it is evident that 
G acts as the field-of-view stop. The optical image G/ which 
the entire system S 1 + 5 2 forms of G1 bounds the field of view 
in the image space. The angle 2w' which G/ subtends at the 
centre of the exit-pupil is called the angle of the image. 

In Fig. 3 I it is assumed that the image G1 of the field-of
view stop lies in the plane of the object. This case is charac
terized by the fact that the limits of the field of view are 
perfectly sharp, for the reason that every object point P can 
either completely fill the entrance-pupil with rays or el~e can. 



APERTURES AND THEIR EFFECTS 77 

send none to it because of the presence of the stop G1. If the 
plane of the object does not coincide with the image G1 , the 
boundary of the field of view is not sharp, but is a zone of con
tinuously diminishing brightness. For in this case it is evident 
that there are object points about the edge of the field whose 
rays only partially fill the entrance-pupil. 

In instruments which are intended for eye observation it is 
of advantage to have the pupil of the eye coincide with the 
exit-pupil of the instrument, because then the field of view is 
wholly utilized. For if the pupil of the eye is at some distance 
from the exit-pupil, it itself acts as the field-of-view stop, and 
the size of the field is thus sometimes greatly diminished. For 
this reason the exit-pupil is often called the eye-ring, and its 
centre is called the position of tlze eye. 

Thus far the stops have been discussed only with reference 
to their influence upon the geometrical configuration of the 
rays, but in addition they have a very large effect upon the 
brightness of the image. The consideration of this subject is 
beyond the domain of geometrical optics; nevertheless it will be 
introduced here, since without it the description of the action 
of the different· optical instruments would be too imperfect. 

4. The Fundamental Laws of Photometry.-By the total 
quantity of light M which is emitted by a source Q is meant 
the quantity which falls from Q upon any closed surface S com
pletely surrounding Q. Smay have any form whatever, since 
the assumption, or better the definition, is made that the total 
quantity of light is neither diminished nor increased by propa
gation through a perfectly transparent medium.* 

It is likewise assumed that the quantity of light remains 
constant for every cross-section of a tube whose sides are 
made up of light rays (tube of light). t If Q be assumed 

* In what follows perfect transparency of the medium is always assumed. 
t The definitions here prc$ented appear as necessary as soon as light quantity 

is conceived as the energy which passes through a cross-section of a tube in unit 
time. Such essentially physical concepts will here be avoided in order not to for
sake entirely the doD"ain of geometrical optics. 
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to be a point source, then the light-rays are straight lines 
radiating from the point Q. A tube of light is then a cone 
whose vertex lies at Q. By angle of aperture ( or solid angle) 
.a of the cone is meant the area of the surface which the cone 
cuts out upon a sphere of radius I ( I cm.) described about its 
apex as centre. 

If an elementary cone of small solid at1.gle dD, be consid
ered, the quantity of light contained in it is 

dL = K d.a. . 

The quantity K is called the candle-power of the source Q in 
the direction of the axis of the cone. It signifies physically 
that quantity of light which falls from Q upon unit surface at 
unit distance when this surface is normal to the rays, for in 
this case d[l = 1. 

The candle-power will in general depend upon the direction 
of the rays. Hence the expression for the total quantity of 
light is, by (61), 

M=JK-d.a, 

in which the integral is to be taken over the entire solid angle 
about Q. If K were independent of the direction of the rays, 
it would follow that 

M= 41tK, 

since the integral of d .a taken over the entire solid angle about 
Q is equal to the surface of the unit sphere described about Q 
as a centre, i.e. is equal to 41r. The mean candle-power K,,. 
is defined by the equation 

,[ Kd.a M 
K,,,= • = -. j d.a 41r 

If now the elementary cone dll cuts from an arbitrary sur
face S an element dS, whose normal makes an angle S with 
the axis of the cone, and whose distance from the apex Q of 
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the cone, i.e. from the source of light, is r, then a simple 
geometrical consideration gives the relation 

dll•r2 = dS.cos e . . 
Then, by (61), the quantity of light which falls upon dS is 

dS-cos e 
dL = K ~-- (65) 

The quantity which falls 
intensity of illumination B. 

upon unit surface 1s called the 
From (65) this intensity is 

cos e 
B=K~,. (66) 

i.e. the intensity of illumination is inversely proportional to the 
square of the distance from the point source and directly pro
portional to the cosine of the angle which the normal to the 
illuminated surface makes with the direction of the incident rays. 

If the definitions here set up are to be of any practical 
value, it is necessary that all parts of a screen appear to the eye 
equally bright when they are illuminated with equal intensities. 
Experiment shows that this is actually the case. Thus it is 
found that one candle placed at a distance of I m. from a screen 
produces the same intensity of illumination as four similar 
candles placed close together at a distance of 2 m. 

Hence a simple method is at hand for comparing light 
intensities. Let two sources Q1 and Q2 illuminate a screen 
from such distances r 1 and r 2 (@ being the same for both) that 
the intensity of the two illuminations is the same. Then the 
candle-powers K 1 and K 2 of the two sources are to each other 
as the squares of the distances r 1 and r 2. A photometer is used 
for making such comparisons accurately. The most perfect 
form of this instrument is that constructed by Lammer and 
Brodhun.* 

* A complete treatment of this instrument, as well as of all the laws of pho
tometry, is given by Brod.hon in Winkelmann's Handbuch der Physik, Optik, p. 
450 sq. 
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The most essential part of this instrument is a glass cube 
which consists of two right-angled prisms A and B (Fig. 
33) whose hypothenuses are polished so as to fit accurately 
together. After the hypothenuse of prism A has been ground 
upon a concave spherical surface until its polished surface has 
been reduced to a sharply defined circle, the two prisms are 
pressed so tightly together that no air-film remains between 
them. An eye at 0, which with the help of a lens w looks 
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FIG. 33. 

perpendicularly upon one of the other surfaces of the prism B, 
receives transmitted and totally reflected light from immedi
ately adjoining portions of the field of view. Between the two 
sources Q1 and Q2 which are to be compared is placed a screen 
S of white plaster of Paris, whose opposite sides are exactly 
alike. The light diffused by S is reflected by the two mirrors 
sl and s2 to the glass cube AB. If the intensities of illumina
tion of the two sides of Sare exactly equal, the eye at O sees 
the glass cube uniformly illuminated, i.e. the figure which dis
tinguishes the transmitted from the reflected light vanishes. 
The sources Q1 and Q2 are then brought to such distances r 1 

and r 2 from the screen S that this vanishing of the figure takes 
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place. In order to eliminate any error which might arise from 
a possible inequality in the two sides of S, it is desirable to 
make a second measurement with the positions of the two 
sources Q1 and Q2 interchanged. The screen S, together with 
the mirrors sl and s2 and the glass cube, are rigidly held in 
place in the case KK. 

As unit of candle-power it is customary to use the flame of a 
standard paraffine candle burning 50 mrh. high, or, better still, 
because reproducible with greater accuracy, the Hefner light. 
This light was introduced by v. Hefner-Alteneck and is pro
duced by a lamp which burns amyl-acetate and is regulated 
to give a flame 40 mm. high. 

When the candle-power of any source has been measured, 
the intensity at any distance can be calculated by (66). The 
unit of intensity is called the candle-meter. It is the in
tensity of illumination produced by a unit candle upon a 
screen standing I m. distant and at right angles to the direc
tion of the rays. Thus, for example, an intensity of 50 candle
meters, such as is desirable for reading purposes, is the 
intensity of illumination produced by 50 candles upon a book 
held at right angles to the rays at a distance of I m., or tha!: 
produced by 12½ candles at a distance of½ m., or that pro
duced by one candle at a distance of -½ m. 

Photometric measurements upon lights of different colors 
are attended with great difficulties. According to Purkinje 
the difference in brightness of differently colored surfaces varies 
with the intensity of the illumination.* 

If the source Q must be looked upon as a surface rather 
than as a point, the amount of light emitted depends not only 
upon the size of the surface, but also upon the inclination of the 
rays. 

A glowing metal ball appears to the eye uniformly bright. 
Hence the same quantity of light must be contained in all ele-

* Even when the two sources appear ,colorless, if they are composed of different 
colors physiological effects render the measurement uncertain. Cf. A. Tschermak, 
Arch. f. ges. Physiologie, 70, p. 297, 1898. 
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mentary cones of equal solid angle dw whose vertices lie at the 
eye and which intersect the sphere. But since these cones 
cut out upon the metal sphere (cf. eq. (64)) surface elements 
ds such that 

dw•r 
ds=--_l\, 

cos 17 
(67) 

in which t) is the angle of inclination of ds with the axis of the 
cone, it follows that the surface elements which send a given 
quantity of light to the eye increase in size as the angle 
included between the normal and the direction of the rays to 
the eye increases, i.e. the surfaces are proportional to 1 : cos fJ. 

Hence (cf. eq. (65)) the quantity of light dL which a sur
face element ds sends to another surface element dS is 

i · ds. dS, cos t) • cos e 
dL = r2 ,* (68) 

in which r represents the distance between the surface elements, 
and () and e represent the inclinations of the normals at ds 
and dS to the line joining the elements. i is called the inten
sity of radiatt'on of the surface ds. It is the quantity which unit 
surface radiates to another unit surface at unit distance when 
both surfaces are at right angles to the line joining them. 

The symmetry of eq. ( 68) with respect to the surface 
element which sends forth the radiations and that upon which 
they fall is to be noted. This symmetry can be expressed in 
the following words: The quantity of light which a surface 
clement radiating with an intensity i sends to another surface 
element is tlze same as the former would receive fro111,, the latter 
if £t were radiating with the intensity i. 

Equation (68) can be brought into a simpler form by intro
ducing the solid angle d[), which dS subtends at ds. The 

* This equation, which is often called the cosine law of radiation, is only approxi
mately correct. Strictly speaking, i always varies with 6, and this variation is 
different for different substa.nces. The subject will be treated more fully when 
considering Kirchhoft's law (Part III, Chapter 11). This approximate equation will, 
however, be used here, i.e. i will be regarded as constant. 
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relation existing bewteen dD and dS is expressed in equation 
(64). Hence (68) may be written 

dL = i-ds,cos f),d.Cl. (69) 

On the other hand it is possible to introduce the solid angle 
dw which ds subtends at dS. A substitution in (68) of its 
value taken from (67) gives 

dL = i-dS-cos @.dw. (70) 
The relation which the intensity of radiation i bears to the 

total quantity M which is emitted by ds is easily obtained. 
Thus a comparison of equations (61) and (69) shows that 

the candle-power K of the surface ds in a direction which 
makes an angle -& with its normal has the value 

K = ids cos f), (JI) 

Let now the quantity of light be calculated which is con
tained between two cones whose generating lines make the 
angles 8 and -& + d-& respectively with the normal to the sur
face ds. The volume enclosed between the two cones is a 
conical shell whose aperture is 

dD = 27l' sin f) d8, (72) 

for it cuts from a sphere of radius I a zone whose width is dfJ 
and whose radius is sin i':). Hence, from equations (69) and 
(72 ), the quantity of light contained in the shell is 

dL = 2 7l'ids sin f) cos f) d-&. 

Hence the quantity contained in a cone of finite size whose 
generating line makes the angle U with the normal to ds is 

L = 27l'ids J usin f) cos f) d,9 = 1rids sin2 U. (73) 

In order to obtain the total quantity 11£, U must be set 
7l' 

equal to - and the result multiplied by 2 in case the surface 
2 

element ds radiates with intensity i on both sides. Hence 

M = 21rz'ds. . (74) 
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5. The Intensity of Radiation and the Intensity of Illu
mination of Optical Images.-Upon the axis of a coaxial 
optical system let there be placed perpendicular to the axis a 
surface element which radiates with intensity i. Let U be 
the angle between the axis of the system and the limiting rays, 
i.e. those which proceed from ds to the rim of the entrance
pupil; then, by (73), the quantity of light which enters the 
system is 

L = 1Cids sin2 U. (75) 
Thus this quantity increases as U increases, i.e. as the 

entrance-pupil of the system increases. If now ds' is the 
optical image of ds, and U' the angle between the axis and the 
limiting rays of the image, i.e. the rays proceeding from the 
exit-pupil to the image, then the problem is to determine the 
intensity of radiation i' of the optical image. According to 
(73) the quantity of light which radiates from the image would 
be 

L' = 1Ci'ds' sin2 U'. . 

Now L' cannot be greater than L, and can be equal to it only 
when there are no losses by reflection and absorption; for then, 
by the definitions on page 7 7, the quantity within a tube of 
light remains constant. If this most favorable case be assumed, 
it follows from (7 5) and (76) that 

., . ds sin2 U 
z = z ds' sin2 U'" (77) 

But if ds' is the optical image of ds, it follows from the sine 
law (equation (46), page 61) that 

ds sin2 U n'2 

ds' sin2 U' = n2 ' 
(78) 

in which n is the index of the object space, and -.z' that of the 
image space. Hence, from (77), 

(79) 
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Hence if the indz"ces of the object and £mage spaces are the 
same, tlte £ntens£ty of radiation of tlte £mage £s at best equal to 
tlte £ntensity of radiation of tlte ol!Ject. 

For example, the intensity of radiation of the real image 
of the sun produced by a burning-glass cannot ht! greater than 
that of the sun. Nevertheless the intensity of illumination of 
a screen placed in the plane of the image is greatly intensified 
by the presence of the glass, and is proportional directly to the 
area of the lens and inversely to its focal length. This intensity 
of illumination B is obtained by dividing the value of L' as 
given in (76) by ds'. If n = n', it follows that B = 1r£' sin2 U'. 
The fact that an optical system produces an increase in the 
intensity of illumination is made obvious by the consideration 
that all the tubes of light which pass through the image ds' 
must also pass through the exit-pupil. Hence the total quantity 
of light which is brought together in the image ds' is, by the 
proposition of page 82, the same as though the whole exit
pupil radiated with the intensity i of the sun upon the element 
ds'. The effect of the lens is then exactly the same as though 
the element ds' were brought without a lens so near to the 
sun that the angle subtended by the sun at ds' became the 
same as the angle subtended by the exit-pupil of the lens at its 
focus. 

The same consideration holds for every sort of optical 
instrument. Therefore no arrangement for concentrat£ng l£ght 
can accompl£sh more titan to produce, wz"th the ltelp of a given 
source of light which £s small or d£stant, an effect wh£ch would 
be produced w£tltottt the arrangement by a larger or nearer 
source of equal intensity of radt"ation. 

In case 1t and n' have different values, an increase of the 
intensity of radiation of the image can be produced provided 
n < n'. For example, this is done in the immersion systems 
used with microscopes in which the light from a source Q in a 
medium of index unity is brought together by a condenser in 
front of the objective in a medium (immersion fluid) of greater 
index n'. The quantity of light which therefore enters the 
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microscope is proportional to n2 sin2 U, in which U represents 
the angle between the limiting rays which enter the entrance
pupil. The product 

n sin U = a (80) 

is called by Abbe the numerical aperture of the instrument. 
Then the quantity of light received is proportional to the 
square of the numerical aperture. The intensity of radiation in 
the image, which again lies in air, is, of course, never more 
than the intensity of the source Q. 

6. Subjective Brightness of Optical Images.-It is neces
sary to distinguish between the (objective) £ntensity of illum£
nation which is produced at a point Oby a luminous surface s 
and the (subjective) brightness of such a surface as it appears to 
an observer. The sensation of light is produced by the action 
of radiation upon little elements of the retina which are sensitive 
to light. If the object is a luminous surface s, then the image 
upon the retina covers a surface s' within which these sensitive 
elements are excited. The brightness of the surface s is now 
defined as the quantity of light which falls upon unit surface of 
the retina, i.e. it is the intensity of illumination of the retina. 

If no optical system is introduced between the source of 
light and the eye, then the eye itself is to be looked upon as 
an optical system to which the former considerations are 
applicable. The illumination upon the retina may be obtained 
from equations (76) and (79) ; but in this case it is to be 
remembered that n, the index of the object space, and n', that 
of the image space, have in general different values. Hence 
the brightness H 0 which is produced when no optical instru
ments are present and when the source lies in a medium of 
index n = I is called the natural brightness and has the value 

i here is the intensity of radiation of the source (losses due 
to the passage of the rays through the eye are neglected). 
Wa' is the angle included between the axis of the eye and lines 
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drawn to the middle point of the image upon the retina from 
the rim of the pupil. Therefore 2 W0' is the angle o.f pr~fectt"on 
z"n the eye ( cf.1 page 7 3). If the size of the pupil remains 
constant, Wo' is also constant. Hence the brightness H 0 

depends only upon the intensity o.f radz'atz'on i o.f the source and 
is altogether independent o.f the distance of the source from the 
eye. 

This result actually corresponds within certain limits with 
physiological experience. To be sure when the source of 
light is very close to the eye, so that the image upon the 
retina is very much larger, a blinding sensation which may 
be interpreted as an increase in brightness is experienced. As 
the pupil is diminished in size Wo' becomes smaller and hence 
H0 decreases. 

If now an optical instrument is introduced before the eye, 
the two together may be looked upon as a single system 
for which the former deductions hold. Let the eye be made 
to coincide with the exit-pupil, a position which (cf. page 77) 
gives the largest possible field of view. Then two cases are 
to be distinguished : 

I. The exz"t-pupil z"s equal to or greater than the pupil of 
the eye. Then the angle of projection 2 W' of the image in 
the eye is determined by the pupil of the eye, i.e. W' = Wa'· 
The brightness is given by equation (81), in which i is the 
intensity of radiation of the source (all losses in the instrument 
and in the eye are neglected and the source is assumed to be 
in a medium of index n = 1 ). If this index differs from 
unity, H must be divided by n2. This case is, however, 
never realized in actual instruments. The source always lies 
in air or (as the sun) in space. This is also the case with the 
immersion systems used in microscopes, for the source is not 
the object immersed in the fluid, as this is merely iliuminated 
from without. The real source is the bright sky, the sun, a 
lnmp, etc. In what follows it will always be assumed that the 
source lies in a medium of index n = I. Hence the result: 
'Provided no losses take place by reflection and absorption in 
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the instrument, the brightness of the optz"cal image produced by 
an instrument is equal to tht· natural brightness of the source. 

2. The exit-pupil is smaller titan the pupil o.f the eye. Then 
the brightness is given by an equation analogous to (81), 
namely, 

H = 1dn'2 sin2 W', • . 

in which i is the intensity of radiation of the source, and 2 W' 
is the angle of projection of the image in the eye. But now 
W' < Wi,', i.e. the brightness of the £mage is less than the 
natural brightness of the source. The ratio of these two 
brightnesses as obtained from (81) and (82) is 

H: ~ = sin2 W' : sin2 J¥.i' .. 

Since now J¥.i' is a small angle and fV' even smaller (in the 
human eye W0' is about 5°), the sine may be replaced by the 
tangent, so that the right-hand side of (83), i.e. the ratio of 
the brightness of the image to the natural brightness of the 
source, is equal to the ratio of the size of the exit-pupil of the 
z"nstrument to the size of the pupil of the eye (or, better, to the 
size of the image of the iris formrd by the crystalline lens and 
the front chamber of the eye). In short: In the case of 
extended of!j'ects an optical instrument can do no more than 
increase the visual angle under wltz"clt the of!ject appears wz'tlz
out increasing its brightness. 

This result could have been obtained as follows: By the 
principle on page 8 5, the intensity of radiation of the image is 
equal to that of the source (when n = n' = 1 and reflection 
and absorption losses are neglected). An optical instrument 
then produces merely an apparent change of position of the 
source. But since, by the principle of page 87, the brightness 
of the source is entirely independent of its position provided 
the whole pupil of the eye is filled with rays, it follows that 
the brightness of the image is equal to the natural brightness 
of the source. But if the exit-pupil is smaller than the pupil 
of the eye, the latter is not entirely filled with rays, i.e. the 
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brightness of the image must be smaller than the natural 
brightness. The ratio H: H0 comes out the same in this case 
as before, since the inclination to the axis of the image rays is 
small when the image lies at a sufficient distance from the eye 
to be clearly visible. 

If the image ds' of a luminous surface ds lies at the distance 
o from the exit-pupil (i.e. from the eye, since the latter is to 
be placed at the position of the exit-pupil), then o tan U' is 
the radius of the exit-pupil, 2 U' being the angle of projection 
of the image (in air). Hence, replacing sin U' by tan U', the 
ratio of the brightness Hof the image to the natural brightness 
H 0 of the source when the radius of the exit-pupil is smaller 
than the radius p of the pupil of the eye is 

H 02 sin2 U' 
n~= p2 

Now by the law of sines (equation (78)), the index n' of the 
image space being equal to unity, 

H o2n2 sin2 U ds 
H 0 - p2 'ds'' 

in which ds is the element conjugate to ds' and whose limiting 
rays make an angle U with the axis of the instrument. Let n 
be the index of refraction of the medium ab;ut ds, then 
(cf. (80)) n sin U = a is equal to the numerical aperture of 
the system. ds' : ds is the square of the lateral magnification 
of the instrument. Representing this by V, (84) becomes 

H o2tr 
Ho - p2v2· • (85) 

This equation holds only when H < H0• It shows clearly the 
influence of the numerical aperture upon the brightness of the 
image, and is of great importance in the theory of the micro
:lcope. 

The magnification which is produced by an optical instru
ment when its exit-pupil is equal to the pupil of the eye, i.e. 
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when the image has the natural brightness of the source, is 
called the normal magnification. If the radius p of the pupil 
be taken as 2 mm. and the distance o of the image from the 
eye as 2 5 cm. ( distance of most distinct vision), then, from 
(85), the normal magnifications V~ corresponding to different 
numerical apertures are 

when a= 0.5 V,. = 62; 

" 
" 

a= 1.0 

a= 1.5 

V,. = 125; 

V,. = 187. 

When the magnification Vis equal to 2 V,. the brightness 
H is a quarter of the natural brightness H0• 2 V,. may be 
looked upon as about the limit to which the magnification can 
be carried without diminishing the clearness of the image. 
For a = I. 5 this would be, then, a magnification of about 380. 
For a magnification of 1000 and a= I. 5 the brightness H is 
-.J-r of the natural brightness H0• 

For telescopes equation (85) is somewhat modified in prac
tice. Thus if lz is the radius of the objective of the telescope, 
then, by equation (14') on page 28, the radius of its exit-pupil 
is equal to k : r, in which r is the angular magnification of the 
telescope. Hence the ratio of the area of the exit-pupil to 
that of the pupil of the eye is ( cf. p. 87, eq. (8 3 et seq.) 

H h2 
(86) 

For a normal magnification I',. the radius of the objective 
of a telescope must be p-r,., i.e. it must be 2, 4, 6, 8, etc., 
mm. if the normal magnification has the value I, 2, 3, 4, etc., 
and p is taken as 2 mm. Thus, for example, if the normal 
magnification is JOO, the radius of the objective must be 
20 cm. 

7. The Brightness of Point Sources.-The laws for the 
brilliancy of the optical images of surfaces do not hold for the 
images of point sources such as the fixed stars. On account 
of diffraction at the edges of the pupil, the size of the image 
upon the retina depends only on the diameter of the pupil, 
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being altogether independent of the magnification. (Cf. Chapter 
IV, Section I of Physical Optics.) As long as the visual 
angle of an object does not exceed one rninute the source is to 
be regarded as a point. 

The brightness of a point source P is determined by the 
quantity of light which reaches the eye from P. The natural 
brightness H 0 is therefore proportional directly to the size of 
the pupil and inversely to the square of the distance of P from 
the eye. By the help of an optical instrument all the light 
from P which passes through the entrance-pupil of the in
strument is brought to the eye provided the exit-pupil is 
smaller than the pupil of the eye, i.e. provided the normal 
magnification of the instrument is not exceeded. If the rim of 
the objective is the entrance-pupil of the instrument, then the 
brightness of a distant source such as a star exceeds the 
natural brightness in the ratio of the size of the objective to 
the size of the pupil of the eye.* 

But if the natural magnification of the telescope has not 
yet been reached, i.e. if its exit-pupil is larger than the pupil 
of the eye, then in the use of the instrument the latter consti
tutes the exit-pupil and its image formed by the telescope the 
entrance-pupil. According to equation (14') on page 28 this 
entrance-pupil is I'2 times as great as the pupil of the eye, I' 
representing the magnification of the telescope. Hence the 
brightness of the star is I' 2 times the natural brightness. 

Since, then, the brightness of stars may be increased by the 
use of a telescope, while the brightness of the background is 
not increased but even diminished (in case the normal mag
nification is exceeded), stars stand out from the background 
more clearly when seen through a telescope than otherwise 
and, with a large instrument, may even be seen by day. 

8. The Effect of the Aperture upon the Resolving Power 
of Optical lnstruments.-Thus far the effect of the aperture 
upon the geometrical construction of the rays and the bright-

* The length of the telescope must be negligible in comparison with the di!;. 
tance of the source. 
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ness of the image has been treated. But the aperture also 
determines the resolving power of the instrument, i.e. its ability 
to optically separate two objects which the unaided eye is 
unable to distinguish as separate. It has already been 
remarked on page 5 2 that, on account of diffraction phenomena, 
very narrow pencils produce poor images. These diffraction 
phenomena also set a limit to the resolving power of optical 
instruments, and it is at once clear that this limit can be pushed 
farther and farther on by increasing the width of the beam 
which forms the image, i.e. by increasing the aperture of the 
instrument. The development of the numerical relations 
which exist in this case will be reserved for the chapter on tlte 
diffraction of light. But here it may simply be remarked that 
two objects a distance d apart may be separated by a micro
scope if 

(87) 

in which A is the wave-length (to be defined later) of light in 
air, and a the numerical aperture of the microscope. A tele
scope can separate two objects if the visual angle ¢ which they 
subtend is 

> A. 
¢= o.6 h' 

in which h is the radius of the aperture of the telescope. 

(88) 



CHAPTER V 

OPTICAL INSTRUMENTS* 

I. Photographic Systems.-In landscape photography 
the optical system must throw a real image of a very extended 
object upon the sensitive plate. The divergence of the pencils 
which form the image is relatively small. The principal 
sources of error which are here to be avoided have already been 
mentioned on page 63. Attention was there called to the 
advantage of the symmetrical double objective as well as to the 
influence of suitably placed stops upon the formation of a cor 
rect image. But the position of the stop has a further influence 
upon the flatness of the image. 

For the case of a combination of two thin lenses of focal 
length J;_ and J; and of indices n1 and n2 the greatest flatness of 
image can be obtained t when 

nJ"i = - n2J;. (.I) 

The condition for achromatism for two thin lenses is, by 
equation (54) on page 69, 

The two conditions (1) and (2) can be simultaneously ful
filled only when the lens of larger index n has the smaller 
dispersive power v. 

* For a more complete treatment cf. Winkelmann's Handbuch der Physik 
Optik, p. 203 sq. Muller-Pouillet, 9th Ed. Optik, p. 721 sq. 

t For a deduction of this condition, first stated by Petzval in the year 1843, cf. 
Lummer, Ztschr. f. Instrk., 1897, p, 231, where will be found in three articles 
(pps. 2o8, 225, 264) an excellent review of photographic optics. 

93 
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Formerly no kinds of glass were known which fulfilled this 
condition, namely, that the one with larger index have the 
smaller dispersion. For crown glass both the refraction and 
the dispersion were small; for flint glass they were both large. 
Only recently has Schott in Jena produced glasses which show 
in some degree the reverse relation,* and hence it has become 
possible to obtain at the same time achromatism and flatness 
of the image. Such systems of lenses are called the new 
achromats to distinguish them from the old achromats. 

For another reason the use of these new kinds of glass, 
which combine a large n with a small r, is advantageous for 
photographic optics. Astigmatism may be corrected by com
bining an old achromat with a new, because the former, .>n 
account of the dispersive effect at the junction between the 
lenses, produces an astigmatic difference of opposite sign from 
that produced by the latter, which has a convergent effect at 
the junction. Such symmetrical double objectives which have 
on both sides a combination of old and new achromats are 
called anastigmatic aplanats. 

In order to produce as large images as possible of a distant 
object, the focal length of the system must be as great as 
possible. This would necessitate, if the lenses of the system 
lie close together, an inconvenient lengthening of the camera, 
since its length b must be approximately equal to the focal 
length f. This difficulty can be avoided by the use of a 
so-called teleobjective, which consists of a combination of a 
convergent and a divergent system placed at a distance a 
apart. The latter forms (cf. Fig. 22, page 43) erect, enlarged 
images of virtual objects which lie behind it but in front of its 
second principal focus F2• The principal focus J,~'of the con
vergent lens must also lie in front of F 2. As is shown in Fig. 
34, the focal length f of the whole system is greater than the 
distance of the convergent system from the position of the 

* The barium-silicate glasses produce larger refraction but smaller dispersion 
than crown glass. 
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image, i.e. than the camera length. For example, in order 
to be able to use a focal lengthf of 37 cm. in a camera whose 
length is about 20 cm., a convergent lens of focal length 
10 cm. must be combined with a divergent lens of focal length 
S cm. so that the optical separation L1 is 1.35 cm., i.e. the dis-

oc· 

- - ----

FIG. 34. 

tance between the lenses must be 6. 35 cm. 
obtained from the equations (17) and (19) 
system given on page 29. 

F' 

These values art· 
for a compound 

In a portrait lens the size of the aperture is of the greatest 
importance because it is desirable to obtain as much light as 
possible. Hence the first consideration is to eliminate spheri
cal aberration and to fulfil the sine law. 

2. Simple Magnifying-glasses.-The apparent size of an 
object depends upon the size of the angle which it subtends at 
the eye. This visual angle may be increased by bringing the 
object nearer to the eye, but only up to a certain limit, since 
the object cannot lie closer to the eye than the limit of distinct 
vision (2 5 cm.). But the visual angle may be still further in
creased by the use of a magnifying-glass. 

The simplest form of magnifying-glass is a single convergent 
lens. This produces (cf. Fig. 2 I, page 43) an erect enlarged 
virtual image of an object which lies between the lens and its 
principal focus. If this image is at a distance of ofJ from the 
eye, then, by equation (7) on page 19, the magnification V of 
the lens is 

(3) 
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in which x' denotes the distance of the image from the second 
principal focus, and a that of the eye. Generally a may be 
neglected in comparison with o, in which case the magnifi
cation produced by the lens is 

(4) 

Thus it is inversely proportional to the focal length of the 
lens. 

If the diameter of the magnifying-glass is greater than that 
of the image which it forms of the pupil of the eye, then the 
latter is the aperture stop, the former the field-of-view stop. 
In order to obtain the largest possible field of view it is neces
sary to bring the eye as near as possible to the lens. As the 
distance of the lens from the eye is increased, not only does 
the field of view become smaller, but also the configuration of 
the rays changes in that the images of points off the axis are 
formed by portions of the lens which lie to one side of the axis. 
This is evident at once from a graphical construction of the 
entrance-pupil of the system, i.e. a construction of the image 
of the pupil of the eye formed by the lens. The orthoscopy 
is in this way generally spoiled, i.e. the image appears blurred 
at the edges. 

A simple piano-convex lens gives good images for mag
nifications of less than eight diameters, i.e. for focal lengths 
greater than 3 cm. The plane side of the lens must be turned 
toward the eye. Although this position gives a relatively 
large spherical aberration on the axis (cf. page 55), because 
the object lies near its principal focus of the lens, nevertheless 
it is more satisfactory than the inverse position on account of 
the smaller aberration off the axis. 

The image may be decidedly improved by the use of two 
simple lenses because the distribution of the refraction over 
several lenses greatly diminishes the spherical aberration on 
the axis. Figs. 3 5 and 36 show the well-known Fraunhofer 
and Wilson magnifying-glasses. In the latter the distance 
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between the lenses is much greater than in the former. In 
this way the advantage is gained that the differences in the 
magnifications for the different colors is diminished, although 
at the cost of the distance of the object from the lens.* 

Achromatization is attained in Steinheil' s so-called apla
natic magnifying-glass by a choice of different kinds of glass 
(Fig. 37). In this a double-convex lens of crown glass is 
cemented between two convexo-concave lenses of flint glass. 

FIG. 35. FIG. 37. 

The Briicke magnifying-glass, which consists of a conver
gent achromatic front lens and at some distance from it a 
simple divergent lens, is characterized by the fact that the 
object lies at a considerable distance. The divergent lens 
produces inverted, enlarged, virtual images of virtual objects 
which lie behind its second principal focus (cf. Fig. 22, page 
43). The arrangement of the lenses may be the same as in 
the teleobjcctive (Fig. 34), i e. the optical separation of the 
convergent and the divergent lenses may be positive. Never
theless, if the object is sufficiently close, the image formed by 
the convergent lens may lie behind the second focus of the 
divergent lens. Like the simple magnifying-glass this com
bination furnishes erect images, for the image formed by the 
convergent lens alone would be inverted were another inver
sion not produced by the divergent lens. The objectionable 
feature of this instrument is the smallness of the field of view. 

3. The Microscope.-a. General Consi'derations.-ln order 
to obtain greater magnification it is advantageous to replace 

* The effect of the distance between the lenses upon achromatism has been 
treated above, p. 71. The subject will come up again when the eyepieces of 
telescopes and microscopes are under consideration. 
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the magnifying-glass of short focal length by a microscope. 
This consists of two convergent systems relatively far apart. 
The first system (the objective) produces a real, inverted, en
larged image of an object which lies just beyond its first 
principal focus. This image is again enlarged by the second 
system (the eyepiece) which acts as a magnifying-glass. Apart 
from the fact that, on account of the greater distance apart of 
the two systems of the microscope, a greater magnification 
can be produced than with a single system used as a simple 
magnifier, the chief advantage of the instrument lies in this, 
that the problem of forming the image is divided into two 
parts which can be solved separately by the objective and the 
eyepiece. This division of labor is made as follows: the 
objective, which has the greatest possible numerical aperture,* 
forms an image of a surface element, while the eyepiece, like 
any magnifying-glass, forms the image of a large field of view 
by meam, of pencils which must be of small divergence, since 
they are limited by the pupil of the eye. It has been shown 
above (Chapter III, §§ 8, 9, 10) that these two problems may 
be separately solved. 

b. The Obfective.-The principal requirements which an 
objective must fulfil are as follows: 

I. That with a large numerical aperture the spherical 
aberration upon the axis be eliminated and the aplanatic 
condition, i.e. the sine law, be fulfilled. 

2. That chromatic errors be corrected. This requires that 
the aplanatic condition be fulfilled for at least two colors, and 
that a real achromatic image of the object be formed by the 
objective. If only partial achromatism is required it is suf
ficient to make the objective achromatic with respect to the 
first principal focus; for the position of the image of an object 
which lies near this focal point F would vary rapidly with the 
color if the position of F depended upon the color. If a system 
has been achromatized thus with respect to the focus F, i.e. 

* This requirement is introduced not only for the sake of increased brightness 
but also of increased resolving power. Cf. above, pp. C)O, 92, 



OPTICAL INSTRUMENTS 99 

with respect to the position of the image, it is not achromatic 
with respect to the focal length. The different colors, there
fore, produce images of different sizes, i.e. chromatic differences 
in magnification still remain. These must be corrected by 
means of the eyepiece. 

It is customary to distinguish between dry and t"mmersion 
systems. In the latter the space between the front lens of the 
objective and the cover-glass under which the object lies is 
filled with a liquid. The advantages of this method of increas
ing the numerical aperture are evident. Furthermore, by the 
use of the so-called homogeneous immersions, in which the 
liquid has the same index and dispersion as the cover-glass 
and the front lens, the formation of aplanatic images by a 
hemispherical front lens may be attained in accordance with 
the principle of Amici ( cf. page 
58). Fig. 38 shows, in double the 
natural size, an objective designed 
by Abbe, called an aprochromat, in 
which the above conditions are ful
filled by a combination of ten 
different lenses used with a homo
geneous immersion. The apro
chromat, being achromatic for three 

-----==~~ colors, is free from secondary spec- .._ _________ __. 
tra, and the aplanatic conditions Fm. 38-

are fulfilled for two colors. The focal length of the system is 
2 mm. and its numerical aperture a= 1.40. The light
collecting and dioptric excellence of this objective is such that 
the limit of resolving power of a microscope ( equation (87), 
page 92) may be considered as actually attained by it. 

c. The Eyepiece.-The chief requirements for the eyepiece 
are those for the formation of the image of an extended object 
by means of narrow pencils, namely: 

1. The elimination of astigmatism in the oblique pencils. 
2. The formation of orthoscopic images. 
3. The formation of achromatic images. 
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The first two points have been discussed in Chapter III, 
§ IO, page 63 ; as to the last, partial achromatization is 
sufficient. Consider the case in which the image formed by 
an objective is free from chromatic errors. On account of the 
length of the microscope tube, i.e. on account of the relatively 
large distance between the real image formed by the objective 
and the exit-pupil of the objective, the principal rays which 
fall upon the eyepiece have but a small inclination to the axis 
of the instrument. If now the eyepiece is made achromatic 
with respect to its focal length, then it is evident from the 
construction of conjugate rays given on page 24, as well as 
from the property of the focal length given on page 20, that a 
ray of white light which falls upon the eyepiece is split up into 
colored rays all of which emerge from the eyepiece with the 
same inclination to the axis. Hence an eye focussed for 
parallel rays sees a colorless image. Even when the image 
lies at the distance of most distinct vision (25 cm.) an eyepiece 
which has been made achromatic with respect to its focal 
length nearly fulfils the conditions 71 for a colorless image. 

Now it was shown on page 71 that two simple lenses of 
focal lengths J;_ and /2, made of the same kind of glass, when 

placed at a distance apart a = J;_ + /2, have a resultant focal 
2 

lengthfwhich is the same for all colors. Since, in addition, 
the construction of an eyepiece from two lenses produces an 
improvement of the image in the matter of astigmatism, eye
pieces are usually made according to this principle. The lens 
which is nearer the objective is called the field-lens, that next 
the eye the eye-lens. 

The two most familiar forms of achromatic eyepiece are the 
following: 

1. The Ramsden eyepiece (cf. Fig. 40, page 109). Th;s 
consists of two equal piano-convex lenses which have their 
curved sides turned toward each other. Since J;_ = /2, the 
distance a between the lenses is a = J;_ = J;. But this arrange
ment has the disadvantage that the field-lens lies at the prin-
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cipal focus of the eye-lens, and hence any dust-particles or 
scratches upon the former are seen magnified by the latter. 
Hence the field-lens is placed somewhat nearer to the eye
lens, for instance, a = !Ii- In this way a further advantage 
is obtained. When a = i.fi, the optical separation of the 
two lenses (cf. page 28) L1 = - -j-_fi. Hence, by equation (20) 
on page 30, the focal length F of the combination lies 
at a distance Vi before the field-lens; while, when a = fi, 
i.e. L1 = -.Ii, it would fall in the objective lens itself. Since 
the real image formed by the objective of the microscope lies 
near the principal focus F of the eyepiece, if a= i.fi, it is 
still in front of the field-lens; hence the image in the micro
scope may be measured by introducing in front of the field
lens, at the position of the real image formed by the objective, 
a micrometer consisting of fine graduations upon glass or a 
cross-hair movable by means of a screw. 

2. The Huygens eyepiece (Fig. 39). In this the focal 
length J;_ of the field-lens is larger than that J;, of the eye-

lens. Generally fi = 3_t;. Then from a =.Ii+ J;, it follows 
2 

that a = i.fi = 2J;,. The optical separation has the value 
L1 = --ifi, hence by (20) on page 30 the focal length F of the 
combination lies a distance ½.Ii behind the field-lens. The 
real image formed by the objective must, therefore, fall behind 
the field-lens as a virtual object, and a micrometrical measure
ment of it is not easily made since both the lenses in the eye
piece take part in the formation of the image of the object, 
while the image of the micrometer is formed by the eye-lens 
alone. This eyepiece also consists of two piano-convex lenses 
but their curved surfaces are both turned toward the object. The 
advantage of the combination of a weak field-lens with an eye
lens three times as powerful lies in the fact that the bending 
of the rays at the two lenses is uniformly distributed between 
them.* 

* For this calculation cf. Heath, Geometrical Optics, Cambr., 1895. 
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If chromatic errors exist in the image formed by the objec
tive, they may be eliminated by constructing the eyepiece to 
have chromatic errors of opposite sign. It was shown above 
(page 99) that the chromatic errors of magnification are not 
eliminated in the aprochromat objective, the blue image being 
larger than the red. Abbe then combines with such objectives 
the so-called compensating eyepieces which are not achrome
tized with respect to focal length, i.e. with respect to mag
nification, but which produce larger red images than blue. 

d. The Condenser.-ln order that full advantage may be 
taken of the large numerical aperture of the objective, the rays 
incident upon it must be given a large divergence. To obtain 
such divergence there is introduced under the stage of the 
microscope a condenser which consists of one or more conver
gent lenses of short focal length arranged as in an objective, 
but in the inverse order. From the discussion above on page 
8 5 it is evident that such a condensation of the light does not 
increase the intensity of the source but merely has the effect 
of bringing it very close to the objective. 

e. Geometrz"cal Configuration of the Rays.-If the normal 
magnification (cf. page 90) has not been reached, the pupil of 
the eye is the exit-pupil of the entire microscope, and the image 
of the pupil of the eye formed by the instrument is the 
entrance-pupil. If the normal magnification is exceeded, a 
stop or the rim of a lens in the microscope is the aperture stop. 
This stop always lies in the objective, not in the eyepiece. Fig. 
39 shows a case of very frequent occurrence in which the rim 
B1B2 of the hemispherical front lens of the objective is both 
aperture stop and entrance-pupil. The image B/ B/ of B 1B2 

formed by the whole microscope is the exit-pupil. If the 
length of the tube is not too small, this image lies almost at 
the principal focus of the eyepiece. The eyepiece shown im 
Fig. 39 is a Huygens eyepiece. The real image of the object 
P 1P 2 formed by the objective and the field-lens of the eyepiece 
is P/P2'. The field-of-view stop GG is placed at P/Pt In 
this way the edge of the field of view becomes sharply defined, 
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because the image of G formed by the field-lens and the objec
tive lies in the plane of the object P1P2 (cf. remark on page 
76). The points P/P2' must lie on the edge of the field-of
view stop. Then ,P1P 2 is the size of the field of view on the 
side of the object. The virtual image Pi"Pt formed by the 
eye-lens of the real image P/P2' is the image seen by the 
observer. If this image is at a distance o from the exit-pupil, 

then the observer, the pupil of whose eye ought to be coin
cident with the exit-pupil B/ B2' ( cf. page 77), must focus his 
eye for this distance o. By a slight raising or lowering of the 
whole microscope with respect to the object P 1P 2 the image 
P/' P 2" may easily be brought to any desired distance o. It 
is usually assumed that o is the distance of most distinct vision, 
namely, 25 cm. 

In Fig. 39 the principal and the limiting rays which proceed 
from P 1 are shown. From P 2 the principal ray only is drawn, 
the limiting rays being introduced behind the eye-lens. 
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f. The Magnificatz"on.-Let the object have the linear 
magnitude y. By equation (7) on page 19, the objective 

forms a real image of size y' =Y-;,, in which.I;_' is the second 

focal length of the objective,* and l the distance of the image 
from the second principal focus. Since, as was shown above, 
this image y' lies immediately in front of or behind the field
lens of the ocular, l may with sufficient accuracy be taken as the 
length of the microscope tube. Likewise, by equation (7), the 

virtual image formed by the eyepiece has the size y" = y' ·l, 
in which /2 represents the focal length of the eyepiece and o 
the distance of the virtual image from its second principal 
focus. Since, as was above remarked, this eyepiece lies close 
to the exit-pupil, i.e. to the pupil of the eye, o may be taken 
as the distance of the image from the eye. The magnification 
V produced by the whole microscope is then 

y" o•l 
V= y= .t;_' h . • (5) 

Since the second principal focal length f' of the entire 
microscope is, by equation ( I 8) on page 29, t 

f l _ _ .t;_ Jz 
- I ' (6) 

LI, the optical separation between the objective and the eye
piece being almost equal to l, it follows that, disregarding the 
sign, (5) may be written 

0 
V= f" (7) 

Thus the magnification depends upon three facton which 
are entirely arbitrary, namely, upon.I;_', h, and l. The length 

* A distinction between first and second principal foci is only necessary for 
immersion systems. 

t For the eyepiece /2 = fa'. 
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I of the tube cannot be increased beyond a certain limit with
out making the instrument cumbrous. It is more practicable to 
obtain the effect of a longer l by increasing the power of the 
eyepiece. Furthermore the focal length of the objective is 
always made smaller than that of the eyepiece. In this way 
not only may the lenses in the objective be made relatively 
small even for high numerical aperture, but also a certain 
quality of image (near the axis) may be more easily obtained 
for a given magnification the smaller the focal length of the 
objective. But since, with the diminution of the focal length 
of the objective, the errors in the final image formed by the 
eyepiece increase for points off the axis, the shortening of .fi' 
cannot be carried advantageously beyond a certain limit (I. 5-2 
mm. in immersion systems). 

g. The Resolving Power.-This is not to be confused with 
magnification, for, under certain circumstances, a microscope 
of smaller magnifying power may have the larger resolving 
power, i.e. it may reveal to the eye more detail in the object 
than a more powerfully magnifying instrument. The resolving 
power depends essentially upon the construction of the objec
tive: the detail of the image formed by it depends (c( page 
92) on the one hand upon the numerical aperture of the 
objective, on the other upon the size of the discs which arise 
because the focussing is not rigorously homocentric. If two 
points P 1 and P 2 of an object be considered such that the discs 
to which they give rise in the image formed by the objective 
do not overlap, they may be distinguished as two distinct 
points or round spots in case the eyepiece has magnified the 
image formed by the objective to such an extent that the vi<.ual 
angle is at least r '. But if these discs in the image formed by 
the objective overlap, then the most powerful eyepiece cannot 
separate the points P 1 and P 2 • For every objective there is 
then a particular ocular magnification, which will just suffice 
to bring out completely the detail in the image formed by the 
objective. A stronger magnification may indeed be con
veniently used in bringing out this detail, but it adds no new 
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element to the picture. From the focal length of the objective, 
the length of the tube, and the focal length of the eyepiece 
which is just sufficient to bring out the detail in the image, it 
is possible to calculate from (5) the smallest permissible mag
nification for complete resolution. This magnification is 
greater the greater the resolving power of the objective. 
Assuming a perfect objective, the necessary magnification of 
the whole instrument depends only upon the numerical aper
ture. This has not yet been pushed beyond the limit (for 
immersion systems) a = 1.6. Hence, by equation (87) on 
page 92, the smallest znterz1al d which can be optz"cally resolved 
i's 

l 0.00053 mm. 
d= -= --.c....c.-- = 0.00016 mm. 

2a 3.2 

if l be the wave-length of green light. Now at a distance 
<J = 25 cm. from the eye an interval d' = 0.145 mm. has a 
visual angle of 2', which is the smallest angle which can be 
easily distinguished. Since d': d = 905, the Hmit of resolution 
of the mzcroscope is attained when the total magnificatz"on z's 
about 900. Imperfections in the objective reduce this required 
magnification somewhat. By equation (85) ~n page 89 the 
ratio of the brightness of the image to the normal brightness 
is for this case 

H. H. _ a2-d' _ (250. 1.6)2 _ 2__ 
• 0 - p2 • v2 - 2. 900 - 20' 

the radius p of the pupil of the eye being assumed as 2 mm. 
h. Experimental Determination of the Magnification and the 

Numerical Aperture.-The magnification may be determined 
by using as an object a fine glass scale and drawing with the 
help of a camera lucida its image upon a piece of paper placed 
at a distance of 2 5 cm. from the eye. The simplest form of 
camera lucida consists of a little mirror mounted obliquely to 
the axis of the instrument, from the middle of which the silver
ing has been removed so as to leave a small hole of about 2 

mm. diameter. The image in the microscope is seen through the 
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hole, while the drawing-paper is at the same time visible in the 
mirror.* The ratio of the distances between the divisions in 
the drawing to those upon the glass scale is the magnification 
of the instrument. 

From the magnification and a measurement of the exit
pupil of the microscope its numerical aperture may be easily 
found. Since, according to the discussion on page 88, the 
ratio of the brightness of the image to the normal brightness is 
equal to the ratio of the exit-pupil to the pupil of the eye, it 
follows, from (85) on page 89, that 

H b2 o2a2 

Ho= p2 = p2v2• • (8) 

in which b represents the radius of the exit-pupil. Hence the 
numerical aperture is 

bV 
a= 6 . (9) 

A substitution of the value of V from (7) gives 

a= b :f', (10) 

i.e. tlze numerz'cal aperture z's equal to tlze ratz"o of the radz'us of 
the exz't-pupz'l to tlte second focal lengtlt of the whole mlcroscope. 

Abbe has constructed an apertometer which permits the 
determination of the numerical aperture of the objective 
directly. t 

4. The Astronomical Telescope.-This consists, like the 
microscope, of two convergent systems, the objective and the 
eyepiece. The former produces at its principal focus a real 
inverted image of a very distant object. This image is enlarged 
by the eyepiece, which acts as a simple magnifier. If the eye 
of the observer is focussed for parallel rays, the first focal plane 
of the eyepiece coincides with the second focal plane of the 

* Other forms of camera lucida are described in Muller-Pouillet, Optik, p. 839-
t A de3cription of it will be found in the texts referred to at the beginning of 

this chapter. 



108 THEORY OF OPTICS 

objective, and the image formation is telescopic in the sense 
used above (page 26), i.e. both the object and the image lie 
at infinity. The magnification I' means then the ratio of the 
convergence of the image rays to the convergence of the object 
rays. But, by (24) on page 30, 

r = tan u' : tan u = Ii : .I,.' . 

in which fi is the focal length of the objective and .I,. that of 
the eyepiece. Hence for a powerful magnification J;_ must be 
large and .I,. small. 

The magnification may be experimentally determined by 
measuring the ratio of the entrance-pupil to the exit-pupil of 
the instrument. For when the image formation is telescopic, 
the lateral magnification is constant (cf. page 26), i.e. it is 
independent of the position of the object and, by (14') on page 
28, is equal to the reciprocal of the angular magnification. 
Now (without reference to the eye of the observer, cf. below) 
the entrance-pupil is the rim of the objective, hence the exit
pupil is the real image (eye-ring) of this rim formed by the 
eyepiece. Hence if the diameter of this eye-ring be measured 
with a micrometer, the ratio between it and the diameter of 
the objective is the reciprocal of the angular magnification of 
the telescope. 

Fig. 40 shows the configuration of the rays when a Rams
den eyepiece is used (cf. page 100). B1B2 is the entrance
pupil (the rim of the objective), B/B2' the exit-pupil, and P 1 

is the real image formed by the objective of an infinitely dis
tant point P. The principal ray is drawn heavy, the limiting 
ray light. P 1 lies somewhat in front of the field-lens of the 
eyepiece. The field-of-view stop GG is placed at this point. 
Since its image on the side of the object lies at infinity, the 
limits of the field of view are sharp when distant objects are 
observed. P' is the infinitely distant image which the eyepiece 
forms of P 1. When the eye of the observer is taken into con
sideration, it is necessary to distinguish between the case in 
which the exit-pupil of the instrument is smaller than the 
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pupil of the eye and that in which it is greater. Only in the 
first case do the conclusions reached above hold, while in the 
second the pupil of the eye is the exit-pupil for the whole 
system of rays, and the image of the pupil of the eye formed 
by the telescope is the entrance-pupil. 

The objective is an achromatic lens which is corrected for 
spherical aberration. In making the eyepiece achromatic the 

p 

p 

p 

Fm. 40. 

same conditions must be fulfilled which were considered in the 
case of the micro-;cope. Since the principal rays which fall 
upon the eyepiece are almost parallel to the axis, it is sufficient 
if it be achromatized with respect to the focal length. Hence 
the same eyepiece may be used for both microscope and tele• 
scope, but the Ramsden eyepiece is more frequently employed 
in the latter because it lends itself more readily to micrometric 
measurements. 

Here, as in the microscope, in order to bring out all the 
detail, the magnification must reach a certain limit beyond 
which no advantage is obtained in the matter of resolving 
power. In telescopes the aperture of the objective corresponds 
to the numerical aperture in microscopes. 

5. The Opera-glass. --If the convergent eyepiece of the 
astronomical telescope be replaced by a divergent one, the 
instrument becomes an opera-glass. In order that the image 
formation may be telescopic, the second principal focus of the 
eyepiece must coincide with the second principal focus of the 
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objective. Thus the length of the telescope is not equal to 
the sum, as in the astronomical form, but rather to the differ
ence of the focal lengths of the eyepiece and the objective. 

Since equation (II) of this chapter ho) ds for all cases of 
telescopic image formation, the angular magnification I' of the 
opera-glass may be obtained from it. This instrument, how
ever, unlike the astronomical telescope, produces erect images, 
for the inverted image formed by the objective is again inverted 
by the dispersive eyepiece. 

Without reference to the eye of the observer, the rim of 
the objective is always the entrance-pupil of the instrument. 
The eyepiece forms directly in front of itself a virtual diminished 
image of this rim (the exit-pupil). The radius of this image is 

J; h ) 
b=h•J;_=r• (12 

in which h is the radius of the objective. 
Since this exit-pupil lies before rather than behind the eye

piece, the pupil of the eye of the observer cannot be brought 
into coincidence with it; consequently the pupil of the eye acts 
as a field-of-view stop in case the quantity b determined by 

FIG. 41. 

equation (12), i.e. the exit-pupil of the instrument, is smaller 
than the eye, which means that the normal magnification is 
exceeded. Hence for large magnifications the field of view is 
very limited. Fig. 41 shows the geometrical configuration of 
the rays for such a case. p, p represents the pupil of the eye, 
w' the angular field of view of the image. Since the image of 
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the field-of-view stop (the pupil of the eye), formed by the 
whole telescope lies at a finite distance, i.e. since it is not at 
infinity with the object, the edge of the field of view is not 
sharp l cf. page 76). 

But if the exit-pupil B/ B/ = 2b of the instrument is larger 
than the pupil of the eye, i.e. if the normal magnification has 
not been reached, then, taking into account the eye of the 
observer, the pupil of his eye is the exit-pupil for all the rays, 
and the rim of the objective acts as the field-of-view stop. 
The field of view on the side of the image is bounded by the 
image 2b of the rim of the objective (in Fig. 42 this is repre
sented by B/ B/). Hence in this case the field of view may 
be enlarged by the use of a large objective. But again, for 
the same reason as above, the limits of the field of view are 
not sharp. Fig. 42 shows this case, w' being the angular field 
of view on the side of the image. 

p 

p 

FIG. 42. 

If the radius of the pupil of the eye is assumed as 2 mm., 
then the paths of the rays will be those shown in 41 or 42, 
according as * 

h < 2I'mm· > ' 
* The difference between these cases may be experimentally recognized by 

shading part of the objective with an opaque screen and observing whether the 
brightness of the image or the si:te of the field is diminished. 
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for example, for a magnification of eight diameters, 2h = 32 
mm. is the critical size of the objective. 

6. The Terrestrial Telescope.-For observation of objects 
on the earth it is advantageous to hlve the telescope produce an 
erect image. If the magnification need not be large, an opera
glass may be used. But since for large magnifications this 
has a small field of view, the so-called terrestrial telescope is 
often better. This latter consists of an astronomical telescope 
with an inverting eyepiec.e. The image is then formed as fol
lows: the objective produces a real inverted image of the 
object; this image is then inverted without essential change in 
size by a convergent system consisting of two lenses. The 
erect image thus formed is magnified either by a Ramsden or 
a Huygens eyepiece. 

7. The Zeiss Binocular.-The terrestrial eyepiece has an 
inconvenient length. This difficulty may be avoided by invert
ing the image formed by the objective by means of four total 
reflections within two right-angled prisms placed as shown in 
Fig. 43. The emergent beam is parallel to the incident, but 

FIG. 43• 

has experienced a lateral displacement. Otherwise the con
struction is the same as that of the astronomical telescope. 

The telescope may be appreciably shortened by separating 
the two prisms I and II, since the ray of light traverses the 
distance between the prisms three times. By a suitable division 
and arrangement of the prisms the lateral displacement 
between the incident an<l the emergent rays may be made as 
large as desired. In this way a binocular may be constructed 
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in which the exit-pupils (the lenses of the objective) are much 
farther apart than the pupils of the eyes. Thus the stereo
scopic effect due to binocular vision is greatly increased. 

8. The Reflecting Telescope.-This differs from the refract
ing telescope in that a concave mirror instead of a lens is used 
to produce the real image of the object. For observing this 
image various arrangements of the eyepiece are used.* 
Reflecting telescopes were of great importance before achro
matic objectives were invented, for it is evident that concave 
mirrors are free from chromatic errors. 

To obtain the greatest possible magnification large mirrors 
with large radii of curvature must be used. Herschel built an 
enormous concave mirror of 16 m. radius of curvature. Since 
the visual angle of the sun is about 32', the image of the sun 
formed by it was 7 cm. in diameter. 

* For further details cf. Heath, Geometrical Optics, Cambr., 18g5. 



PART II 

PHYSICAL OPTICS 

SECTION I 

GEA'ERAL PROPERTIES OF LIGHT 

CHAPTER I 

THE VELOCITY OF LIGHT 

I. Romer's Method.-Whether light is propagated with 
finite velocity or not is a question of great theoretical impor
tance. On account of the enormous velocity with which light 
actually travels, a method depending on terrestrial distances 
which was first tried by Galileo, gave a negative result. For 
the small distances which must be used in terrestrial methods 
the instruments employed must be extremely delicate. 

Better success was attained by astronomical methods, which 
permit of the observation of the propagation of light over very 
great distances. The first determination of the velocity of 
light was made by Olaf Romer in 1675. He observed that 
the intervals of time between the eclipses of one of Jupiter's 
satellites increased as the earth receded from Jupiter and 
decreased as it approached that planet. This change in the 
interval between eclipses can be very accurately determined 
by observing a large number of consecutive eclipses. Romer 

114 
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found that the sum of these intervals taken over a period 
extending from the opposition to the conjunction of the earth 
and Jupiter differed by 996 seconds from the product of the 
number of eclipses and the mean interval between eclipses 
taken throughout the whole year. He ascribed this difference 
to the finite velocity oflight. At.cording to this view, then, light 
requires 996 seconds to traverse the earth's diameter. Glase
napp's more recent observations make the correct value of this 
interval 1002 seconds. The diameter of the earth's orbit may 
be obtained from the radius of the earth and the solar parallax, 
i.e. the angle which the radius of the earth subtends at the sun. 
According to the most recent observations the most probable 
value of the solar parallax is 8.85". The radius of the earth 
is 6378 km., so that the diameter, d, of its orbit is 

2-6378 180.6o.6o 
d = 8 8 • ---- = 2973• ws km . . 5 1C 

Hence the velocity of light Vis 

V = 296 700 km/sec.= 2.967. 1010 cm./sec. 

On account of errors in the determination of the solar parallax 
this value is uncertain by from ½ to I per cent. 

2. Bradley's Method.-Imagine that a ray of light from 
a distant source P reaches the eye of an observer after passing 
successively through two holes 5 1 and 5 2 which lie upon the 
axis of a tube R. If the tube R moves with a velocity v 
in a direction at right angles to its axis, while the source P 
remains at rest, then if the light requires a finite time to trav
erse the length of the tube R a ray of light ~hich has passed 
through the first hole 5 1 will no longer fall upon the hole 5 3 • 

Therefore the observer no longer sees the source P. In order 
to see it again he must turn the tube R through an angle a. 
Thus the line of sight to P appears inclined in the direction of 
the motion of the observer an angle , such that 

tan,=v:V,. . (1) 

in which V represents the velocity of light. 
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This consideration furnished the explanation of the aberra
tion of the fixed stars, a phenomenon discovered in I 7 27 by 
Bradley. He found that if the line of sight and the motion of 
the earth are at right angles, the line of sight is displaced a 
small angle in the direction of the earth's motion. According 
to the most recent observations the value of this angle is 20. 5". 
Since the velocity v of the earth in its orbit is known from the 
size ofthe orbit, equation (I) gives as the velocity of light 

This method, like Romer's or any astronomical method, 
is subject to the uncertainty which arises from the imperfect 
knowledge of the solar parallax and hence of the size of the 
earth's orbit. 

The result agrees well with that obtained by Romer, a fact 
which justifies the assumption made in both calculations, that 
the rays, in passing through the atmosphere which is moving 
with the earth, receive from it no lateral velocity. Never
theless aberration cannot be completely explained in this 
simple way. From the considerations here given it would be 
expected that when a fixed star is viewed through a telescope 
nlled with water the aberration would be greater, since, as will 
be shown later, the velocity of light in water is less than in 
ah-. As a matter of fact, however, the aberration is indepen
dent of the medium in the tube. In order to explain this a 
more complete investigation of the effect of the motion of a 
body upon the propagation of light within it is necessary. 
This will be given farther on. It is sufficient here to note 
that the phenomenon of aberration is capable of giving the 
velocity of light in space, i.e. in vacuo. 

3. Fizeau's Method.-The first successful determination 
of the velocity of light by a method employing terrestrial dis
tances was made by Fizeau in the year 1849. An image of a 
source of light P is formed at f by means of a convergent lens 
and a glass plate p inclined to the direction of the rays (Fig. 
44). The rays are then made parallel by a lens L1 and pass 
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to the second lens Lz distant from L1 8. 6 km. A real image 
is formed upon a concave mirror s whose centre of curvature 
lies in the middle of the lens L2• The mirror s returns the 
light back over the same path so that the reflected rays also 
form a real image at f. This image is observed through the 
obliquely inclined plate p by means of the eyepiece o. At f, 

Fm. 44. 

where the real image is formed, the rim of a toothed wheel is 
so placed that the light passes freely through an opening, but 
is cut off by a tooth. If the wheel is rotated with small 
velocity, the image alternately appears and disappears. When 
the velocity is increased, the image is seen continuously on 
account of the persistence of vision. As the velocity of the 
wheel is still further increased, a point is reached at which the 
image slowly disappears. This occurs when, in the time re
quired by the light to travel from f to sand back, the wheel has 
turned so that a tooth is in the position before occupied by an 
opening. When the velocity is twice as great the light again 
appears, when it is three times as great it disappears, etc. From 
the velocity of rotation of the wheel, the number of teeth, and 
the distance between f and s, the velocity of light can easily be 
calculated. Fizeau used a wheel having 720 teeth. The first 
disappearance occurred when the rate of rotation was 12.6 
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revolutions per second. Since the distance between L1 and L2 

was 8.633 km., the velocity of light was calculated as 

V= 3.13-1o•ocm/sec. 

The principal difficulty in the method lies in the productlon 
and measurement of a uniform velocity of rotation. By using 
more refined methods of measurement Cornu obtained the 
value 

V = 2.9995 -1o•ocm/sec.' 

Young and Forbes the value 

V= 3.013-1o•ocm/sec. 

4. Foucault's Method.-This method does not require so 
large distances as the above and is in several respects of great 

importance in optical work. 
Rays from a source P pass 
through an inclined plate p 
(Fig. 45) and fall upon the 
rotating mirror m. When this 
mirror 1n is in a certain position, 

s the rays are reflected through 
the lens L, * which is close to m 

FIG, 45• and so placed that a real image 
of the source P is formed at a distance D upon a concave mir
ror s whose centre of curvature is at m. The mirror s reflects 
the rays back over the same path provided the mirror m has 
not appreciably changed its position in the time required for 
the light to travel the distance 2D. An image P' of the source 
Pis then formed by the rays reflected from m, s, and p. But 
if, in the time required for the light to travel the distance 2D, 
the rotating mirror has turned through an angle a, then the 
ray returning from m top makes an angle 2a with the original 
ray and a displaced image P" is produced after reflection at p. 

* In Foucault's experiment the lens L was actually between the source P and 
the mirror m, instead of between m ands; but the discussion is essentially the 
same for either arrangement so long as L is close to m,-Tll, 



THE VELOCITY OF LIGHT 119 

From the displacement P'P'', the velocity of rotation of the 
mirror m, and the distances D and LI, the velocity of light may 
be easily obtained. 

If LI= I m., JJ = 4 m., and the mirror m makes woo 
revolutions a second, then the displacement P' P" is o. 34 mm. 
By reflecting the light back and forth between five mirrors 
slightly inclined to one another, Foucault made the distance 
D 20 m. instead of 4. 

Theoretically this method is not so good as Fizeau's, since 
it is necessary to measure not only the number of revolutions 
but also the small displacement P'P". However, by increas
ing the distanc_e D to 600 m. Michelson materially improved 
the method, since in this way he obtained a displacement P'P" 
of I 3 cm. without using a rate of revolution greater than 200 

a second. With Foucault's arrangement it was not possible 
to materially increase D, because the light returned would be 
too faint unless the concave mirrors were of enormous dimen
sions. Michelson avoided this difficulty by placing the lens L 
so that m lay at its principal focus. In this way the principal 
rays of all beams which are reflected by m to the lens L are 
made parallel after passage through L, so that D can be taken 
as large as desired and a plane mirror s perpendicular to the 
axis of L used for reflection. Thus the mirror need be no larger 
than the lens. From a large number of measurements Michel
son obtained 

V = 2 .999 • r orn cm. /sec. 

Newcomb also, by the method of the rotating mirror, 
obtained a result in close agreement with this. 

The mean of the values obtained by Cornu, Michelson, and 
Newcomb is 

V = 2 9989. I Orn cm./ • sec., 

the probable error being only 1 : IO,ooo. Because of the errors 
introduced into the astronomical methods by the uncertainty 
of the solar parallax the results of these methods which depend 
on terrestrial distances are much more reliable. 
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In spite of this extraordinary velocity with which light 
travels, a velocity goo,ooo times greater than that of sound in 
air, the time required for light to travel astronomical distances 
is sometimes considerable. This appears, for instance, from the 
observations of Romer, which show that it requires 8 minutes 
for light to travel from the sun to the earth. Since many 
years are required for the light of the nearest fixed stars to 
reach the earth (from a Centauri 3:f years, from Sirius 17 
years), these great interstellar distances are usually reckoned 
in light-years. 

5. Dependence of the Velocity of Light upon the Medium 
and the Color.-The velocity of light is ind~pendent of the 
intensity of the source. This has been proved by very delicate 
interference experiments made by Lippich and Ebert. On the 
other hand the velocity does depend upon the medium in which 
the light is propagated. Foucault compared by his method the 
velocities in air and in water by placing two mirrors s1 and s2 in 
front of the rotating mirror m and inserting between m and s2 

a tube of water 2 m. long. It was found that when the mirror 
m was rotated, the image reflected from the mirror s2 experi
enced a greater displacement than that reflected from s1 , a 
proof that light travels slower in water than in air. 

Quantitative measurements of the velocity of light in watek 
and in carbon bisulphide have been made by Michelson. For 
the ratio of the velocities in air and in water he obtained I. 33; 
in air and in carbon bisulphide, white light being used, 1.77. 
The first number agrees exactly, the last approximately, with 
the observed indices of refraction. It is assumed (and in fact 
the wave theory demands it) that this result holds for all bodies. 
Hence the velocity of light in air must be somewhat smaller 
than in vacuum, since the index of air n = I .00029. The 
number given above for the velocity of light which was obtained 
as a mean from the methods using terrestri3.l distances was 
reduced to vacuum by means of this factor. 

Since the index of all transparent media is smaller for the 
red rays than for the blue, it is to be expected that the veloci• 
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ties of the different colors in the same medium will be inversely 
proportional to the absolute index, provided the velocity in 
vacuum is independent of the color. This, too, was proved 
directly by Michelson, who found the velocity of the red ray in 
water I .4 per cent, in carbon bisulphide 2. 5 per cent greater 
than that of the blue. This agrees approximately with the 
results obtained by refraction. 

That the velocity in vacuum is independent of the color is 
very decisively proved by the fact that at the beginning or the 
end of an eclipse Jupiter's satellites show no color; also from 
the fact that temporary stars show no changes in color. 

Because of the small dispersion of air there is practically 
no difference in the velocity of propagation of the different 
colors in it. 

6. The Velocity of a Group of Waves.-In the investiga
tion of the velocity of light in a strongly dispersive medium, 
like carbon bisulphide, there is an important correction to be 
made, as was first pointed out by Rayleigh. As will be seen 
in the next chapter, interference phenomena necessitate the 
assumption that light consists in a periodic change of a certain 
quantity s, characteristic of the ether or the body considered, 
which, in view of the fact that the velocity of light is finite, 
may be written in the form 

27!( .r) s = A. sin T t - V .. 

This is the equation of a so-called plane wave which is propa
gated with a velocity V along the x-axis. T is the period, 
which determines the color of the light, and A is the amplitude, 
which determines the intensity. It is necessary to distinguish 
between the velocity V of a single wave and the velocity V 
of a group of waves. For example, in Fizeau's method, at a 
definite point g in the path of the rays the light is alternately 
cut off and let through because of the rotation of the toothed 
wheel. E\"en when the velocity of rotation of the wheel is 
great, 'the period T is so small that a large number of waves 
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pass g at each interval of transmission. It is the velocity of 
such a complex of waves which is measured by the experiment. 
The phenomenon can be approximately represented mathe
matically if it be assumed that two waves of equal amplitude 
but of slightly different periods T1 and T2 and different veloci
ties V1 and V2 are superimposed. Then the following relation 
exists: 

in which 

(4) 

Equation (3) now represents a light vibration of period T 
and periodically changing amplitude. The period T0 of this 
change of amplitude is 

• (5) 

Furthermore, if 
I I I 

T0U = T1 V1 - T2 V2 ' 
(6) 

it follows from (3) that at a point x =Ia maximum amplitude 
of the group of waves occurs / : U seconds after it has occurred 
at the point x = o. Hence U is the velocity of propagation 
of the group, the quantity which was measured in Fizeau's 
experiment. 

Setting now T2 = T1 + dT1 , V2 = Vi+ d~, and devel
oping to terms of the first order in dT1 and dV1 , there results 
from (5) and (6) 

(7) 
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In this equation T1 and V1 may, with the same degree 
of accuracy, be replaced by T and V, i.e. by the period and 
velocity of a single wave. 

Equation (7) shows that the velocity U of a group of waves 
such as is actually observed is somewhat smaller than the true 
velocity of light V, since in all transparent bodies V increases 
with T. This correction is negligible for air on account of the 
smallness of d V: d T, but for the strongly dispersive medium 
carbon bisulphide it amounts to 7. 5 per cent. Since a careful 
analysis shows that the method of the rotating mirror gives the 
value U, it is easily understood why Michelson obtained the 
velocity in carbon bisulphide 1.77 times as great as the velocity 
in air, although the relative index of the two media is only 
I .64. Increasing I .64 by 7. 5 per cent gives a value in close 
agreement with Michelson's observation, namely, I. 76. 

Romer's method also gives the velocity U of a group of 
waves, while the astronomical aberration gives V directly. In 
these cases, however, there is no difference between the two 
quantities' U and V, since there is no dispersion in space, i.e. 
no dependence of Vupon color. 



CHAPTER II 

INTERFERENCE OF LIGHT 

1. General Considerations.-Experiment shows that under 
certain circumstances two parallel or nearly parallel beams 
do not produce when superposed increased intensity, but rather 
disturb each other's effects in such a way that darkness re
sults. In such cases the light-waves are said to interfere. 

Interference phenomena are divided into two classes: the 
first, that in which the beams have experienced only regular 
reflections and refractions; the second, that in which they have 
been bent from their straight path by diffraction. The former 
will be considered in this chapter, the latter under Diffraction. 
Nevertheless some of the interference phenomena discussed in 
this chapter, namely, those which are treated in §§ 3 and 4, 
and happen to be most easily produced, are somewhat modified 
by diffraction, while §§ 5, 7, 8, and 9 treat only of pure inter
ference phenomena, i.e. such as are not connected with diffrac
tion. 

2. Hypotheses as to the Nature of Light.-Theories as 
to the nature of light and the mathematical deductions depend
ing upon them have in the course of time undergone many 
changes. So long as nothing was known of the conservation 
of energy, every active agent which had the power of propa
gating itself and of persisting under changed conditions was 
looked upon as a substance. The fact that light travels in 
straight lines supported the assumption of its material nature, 
for light may indeed be stopped in its progress, hut in general, 
when no obstacle is interposed, it moves on in straight lines. 
It was natural to look upon this as a consequence of the inertia 

124 
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of a material body. Hence Newton supported the emission 
theory of light, according to which light consists of material 
particles which are thrown off with enormous velocities from 
luminous bodies and move in straight lines through space. In 
order to explain refraction it was necessary to assume that the 
more refractive bodies exert a greater attraction upon the light 
corpuscles, so that, at the instant at which such a particle falls 
obliquely upon the surface of a denser medium, it experiences 
an attraction which gives to the component of its velocity per
pendicular to the surface a larger value, and hence causes its 
path to approach the perpendicular. According to this theory, 
then, the velocity of light must be greater within a strongly 
refracting body than in the surrounding medium. This fact 
alone suffices for the overthrow of the emission theory, for it 
was shown on page I 20 that the velocity of light is less in water 
than in air. Besides, the difficulties of explaining the phenom
ena of interference from the standpoint of the emission theory 
are enormous. But these very interference phenqmena furnish 
a direct confirmation of an essentially different theory as to the 
nature of light, namely, the undulatory theory developed by 
Huygens. 

According to this theory, light possesses properties similar 
to sound. It consists in a periodic change of a certain quantity 
s characteristic of the body (or of empty space) through which 
the light is passing. This change is propagated with finite 
velocity so that, if the values which s has at any instant along 
the path of the ray be plotted as ordinates, the ends of these 
ordinates form a wave-shaped curve. 

What is the nature of this quantity s whose periodic 
changes are the essence of light can be left for the present 
altogether undecided. In accordance with the mechanical 
theory of light, space is conceived to be filled with a subtle 
elastic medium, the ether, and s is the displacement of the 
ether particles from their position of equilibrium. But so 
specific an assumption is altogether unnecessary. It is suf
ficient if, in order to analytically represent the light disturb-
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ance produced by a source Q at any point P in space, the 
periodic variation of the quantity s at the point P be introduced 
by means of an equation of the form 

s = A sin(21r; + o), (1) 

in which tis the time, while A, T, and o are constants. A is 
the amplitude, T the period of the quantity s. T varies with 
the color of the light, while A determines the intensity of 
illumination J* of a screen placed at P. It may in fact be 
shown that 

(2) 

For it follows from all theories of light that the amplitude 
A of the light emitted from a point source is inversely propor
tional to the distance r from the source Q. Since now experi
ment shows that the intensity of illumination is inversely 
proportional tor (cf. page 79), it follows that J is represented 
by the square of the amplitude. 

If the light travels with a velocity V from a point P to a 
point P' at a distance r from P, the time required to traverse 
this distance r is t' = r: V. If (1) represents the condition 
at P, then the condition at P' is represented by 

, A' . ( t - r/ V ) s = sm 2 rt T -j- o , (3) 

for s' is always in a given condition of vibration r : V seconds 
after s has been in that same condition. The condition of the 
vibration, i.e. the argument of the periodic function, is called 
the phase. 

If from a point source Q light radiates uniformly in all 
directions, equation (3) evidently holds for every point P' which 
is at a distance r from Q. Any spherical surface described 
about Q as a centre contains, then, only points in the same 

41 This quantity J is called the intensity of light at the point P. It is impor
tant to distinguish between J and the intensity of radiation i of the source Q as de. 
fined on page 82. 
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phase. Such surfaces, which contain only points in the same 
phase, are called wave surfaces. The wave surfaces spreading 
out from a point source Q are then concentric spherical sur~ 
faces, and the rays emanating from Q are the radii of these 
surfaces and are therefore perpendicular to them. The greater 
the distance of the source, the less curved are the wave surfaces 
and the more nearly parallel the rays. The wave surfaces of 
a parallel beam are planes perpendicular to the rays and 
parallel to each other. Hence such waves are called plane 
waves. They exist when the source Q is infinitely distant or 
at the focus of a convergent lens which renders the emergent 
rays parallel. 

Introducing the term .:l defined by 

T-V= .:l, . (4) 
(3) becomes 

(5) 

i.e. at a given time, s' is periodic with respect to r and its 
period is A.. This period .:l, which is the distance at a given 
instant between any two points along r which are in the same 
phase, is called the wave length. 

The table on page 128 gives the wave lengths in air of 
various light, heat, and electrical waves. These values are 
determined from interference or diffraction phenomena. 

The wave theory furnishes the simplest possible explana
tion of interference phenomena. On the other hand it has 
considerable difficulty in explaining the rectilinear propagation 
of light. In this respect the analogy between sound and light 
seems to break down, for sound does not travel in straight 
lines. The explanation of these difficulties will be considered 
in detail in the next chapter. This analogy between sound 
and light presents still further contradictions when polarization 
phenomena are under consideration. It was these contradic
tions which prevented for a long time the general recognition 
of the wave theory in spite of the simple explanation which it 
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offers of interference. The difficulties were not removed until 
a too close analogy between sound and light was given up. 
This point, too, will be considered in a later chapter. Here 
the explanation of refraction as furnished by the wave theory 
will be briefly presented. 

If a plane wave is incident obliquely upon the surface of a 
refracting body, the normal to the wave front is bent toward 
the perpendicular to the surface if the velocity of light in the 
body is less than in the surrounding medium, which will in 
general be assumed to be air. Upon the incident wave front 
consider one point A which lies upon the surface, and another 

WA VE LENGTHS. 

Kind of Light. A in mm, 

Limit of the photographic rays in vacu•1m........................ 0.000100 

Limit of the photographic rays in air................ . . . . . . . . . . . . 0.000185 

Limit of visible light in the blue................................. 0.000330 
Blue hydrogen line...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.00048b 
Yellow sodium line............................................ 0.00058g 

Red hydrogen line...................... . . , . . . . . . . . . . . . . . . . . . 0.000656 

Limit ofvisible light in the red............... . . . . . . . . . . . . . . . . . . o.ooo8H 
Longest heat.waves as yet detected.............................. o.o6 
Shortest electric waves ................... , , , , . . . . . . . . . . . . . . . . . . 6 

point B which is still outside in the air. If now the wave from 
A travels more slowly than that from B, it is evident that the 
wave front, which is the locus of the points at which the light 
has arrived in a given time, must be bent upon entrance into 
the refracting medium in such a way that the normal to the 
wave front (the ray) is turned toward the perpendicular. 
Hence the wave theory requires the result given by experi
ment that the velocity of light is smaller in water than in air. 
The more exact determination of the position of the refracted 
wave front will be given in connection with the discussion of 
Huygens' principle, and again more rigorously in Chapter I of 
Section 2. Here but one important result will be mentioned, 
namely: When light passes from a medium A to a mediut:tZ B 
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the index of refraction is equal to tke ratio of tke velocities of 
li'gkt in A and B. 

It was shown on page 6 that the fundamental laws of 
geometrical optics are all included in the one principle of the 
extreme path. This principle gains a peculiar significance from 
the wave theory. Since the index of a body with respect to 
air is inversely proportional to the velocity of light in the body, 
the optical path nl is proportional to the time which the light 
requires to travel the distance l. The law of extreme path 
asserts, then, that light in travelling between any two points P 
and P' chooses that path which is so situated that all infinitely 
near paths would be traversed in the same time. Tkus tke 
law of least patk becomes tke law of least time. 

The nature of a ray of light may be looked upon from the 
standpoint of the wave theory in the following way: Elemen
tary disturbances travel from P to P' over all possible paths. 
But in general they arrive at P' at different times, so that the 
phases of fhe individual disturbances do not agree at P', and 
hence no appreciable effect is produced. Such an effect will, 
however, immediately appear as soon as the beam is made 
infinitely narrow, for then the time of propagation between P 
and P' is the same, so that the elementary disturbances all 
have the same phase at P'. Hence such an infinitely thin beam 
marks out the path of the light, i.e. the effect at P' is cut off 
by introducing an obstacle in the way of the beam. 

These considerations, however, are not so conclusive as to 
make it superfluous to place the fundamental laws of geomet
rical optics upon a more rigorous analytical basis. The first 
question to be answered is this: If light and sound are both 
wave motions why is there a difference in the laws of their 
propagation ? This question will be answered in the next 
chapter. 

The wave theory makes it possible to drop altogether the 
concept of rays and to calculate the optical effect of reflecting 
and refracting bodies from a consideration of the wave surface. 
In the case of a point source P, for example, the wave surfaces 
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in the medium surrounding P are spherical. If the rays are to 
be homocentrically focussed at P' by means of refraction by a 
lens, the wave surfaces must after passage through the lens be 
concentric spherical surfaces with their centre at P'. 

Since the rays are the normals to the wave surfaces, the law 
of Malus follows at once from the wave theory, because reflec
tions and refractions can have no other effect than to deform 
in some way the wave surfaces. 

3. Fresnel's :Mirrors.-From the standpoint of the wave 
theory interference phenomena are explained simply by the 
principle of the superposition of simultaneous values of the 
quantity s. Thus if a source Q1 produces at a point P a dis
turbance 

(6) 

while a source Q2 produces at the same point a disturbance 

(7) 

then, by the principle of superposition, which is applicable 
provided the rays passing from Q1 and Q2 to P have a small 
inclination to one another,* the resultant disturbance is • 

s = s1 + s2 • 

Now this sum may be put into the form 

s = A sin(21r ~ - ir), 

by setting 

r r I 
A cos 6 = Al cos 2,rt + A2 cos 21r,t, I 

[ 
J 

(8) 

(9) 

* That this limitation is necessary will be evident from a later discussion in 
which it will be proved thats is a directed quantity, i.e. a vector. 
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in which the quantity A represents the amplitude of the result
ing disturbance. 

Squaring and adding the two equations (Io) gives for the 
intensity of the resultant light at the point P 

J - A2 - A 2 + A 2 + A A (r1 - r2) - - I 2 2 1 2 COS 2 'IC ,\. • (11) 

r -r 
The quantity 2n: 1 A. 2 =~is, by (6) and (7), seen to be 

the phase difference of the separate disturbances, and the 
meaning of equation (11) may be stated as follows (Fig. 46): 
The resultant amplitude A i's equal to the third side of a trz'
angle whose otlter two sidGs are A 1 and A 2 and include between 
them the angle 1r - L1, in which L1 i's the difference of phase 
between the two disturbances. 

According to this proposition it is evident that maxima and 
minima of light intensity depend upon the difference of phase 
LI, the former occurring when L1 = o, + 21t, + 4n:, etc., the 
latter when L1 = + 1t, + 3n:, etc. Entire darkness must 
result at a minimum if A 1 = A2• 

These conditions are realized in the Fresnel-mirror experi
ment in which two virtual sources 
Q1 and Q2 (Fig. 47) are produced 
by reflecting light from a single 
source Q upon two mirrors S and 
S' which are slightly inclined to 
one another. In the space illumi
nated by both of the sources interference occurs.* From the 
calculation above there will be darkness at a point P if 

i\. 3i\. 
r1 - r 2 = ± 2, ± 2 , etc. . (12) 

Considering only such positions of the point P as lie on a line 
parallel to Q1Q2 (Fig. 47), then if d represent the distance 

* This space will he considerably diminished if the mirror S projects in front 
of the mirror S'. Hence care must be ta.ken that the common edge of the mirrors 
coincides with their line of intersection. 
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between Q1 and Q2 , a the distance of the line d from the line 
P0P, and p the distance of a point P from the point P 0 , which 
lies on the perpendicular erected at the middle of d, 

r 12 = a2 +-(½d + p)2, r/ = a2 + (½d - p)2, 
1.e. r/ - r/ = (r1 + r2)(r1 - r2) = zdp, 

or since r 1 + r 2 is approximately equal to 2a when p and d 
are small in comparison with a, it follows that 

r 1 - ri = dp : a, 

i.e. darkness occurs at the points 

a 3i\. 
±d·2· 

Hence, if the light be monochromatic, interference fringes 
will appear on a screen held at a distance a from the line d, 
and the constant distance between these fringes will be ai\. : d . 

.,,,a, 

Fm. 47. 

If white light is used, colored fringes will appear upon the 
screen since the different colors contained in white light, on 
account of their different wave lengths, produce points of maxi
mum and minimum brightness at different places upon the 
screen. But at the point P 0 there will be no color, since there 
all the colors have a maximum brightness (r1 - r 2 = o). 

The distance d between the virtual sources may be calcu
lated from the position of the actual source Q with respect to 
the mirrors and the angle between the mirrors. This angle 
must be very small (only a few minutes) in order that d may 
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be small enough to permit of the separation of the interference 
fringes. Since ( 1 3) contains only the ratio a : d, it is merely 
necessary to measure the angle subtended at P 0 by the two 
images Q1 and Q2• 

Instead of receiving the interference pattern upon a screen, 
it is possible to observe it by means of a lens or by the eye 
itself, if it be placed in the path of the rays coming from Q1 

and Q2 and focussed upon a point P at a distance a from those 
sources.* Fig. 48 slrows an arrangement for making quanti
tative measurements such as the determination of wave lengths. 
A cylindrical lens l brings to a line focus the rays from a lamp. 
This, acting as a source Q, sends rays' to both mirrors S and 

Fm. 48. 

S', whose line of intersection is made parallel to the axis of the 
cylindrical lens. The direct light from Q is cut off by a screen 
attached to the mirrors and at right angles to them. The 

*•lf the eye be focussed with or without a lens upon P, the two interfering 
beams reach the image of P upon the retina with the same difference of phase 
which they have at P itself, since the optical paths between P and the retinal 
image are the same for all the rays. Hence the intensity upon the retina is zero 
if it would be zero upon the corresponding point of a screen placed at P. 
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interference fringes are observed by means of a micrometer 
eyepiece L which is movable by the micrometer screw K. 

The question arises whether interference fringes might not 
be more simply produced by using as sources not the two 
virtual images of a real source, but two small adjacent open
ings in a screen placed before a luminous surface. 

In this case no interference phenomena are obtained even 
with monochromatic light such as a sodium flame. For if two 
<;ources are to produce interference, their phases must always 
be either exactly the same or else must have a constant dif
ference. Such sources are called coherent. They may always 
be obtained by dividing a single source into two by any sort of 
optical arrangement. With incoherent sources, however, like 
two different points of a flame, although the difference of phase 
is constant for a large number of periods, since, as will be 
shown later, a monochromatic source emits a large number 
of vibrations of constant period, yet irregularities in these 
vibrations occur within so short intervals of time that separate 
impressions are not produced in the eye. Thus incoherent 
sources change their difference of phase at intervals which are 
extremely short although they include many millions of vibra
tions. This prevents the appearance of interference. 

As was remarked on page I 24, diffraction is not entirely 
excluded from this simple interference experiment. All the 
boundaries of the mirrors can give rise to diffraction, but 
especially the edge in which the two touch. In order to avoid 
this effect it is desirable that the incident light have a consider
able inclination to the mirrors (say 45°), and that the point of 
observation be at a considerable distance from them. Also 
the angle between the mirrors must not be made too small. 
In this way it is possible to arrange the experiment so that the 
extreme rays which proceed from Q1 and Q2 to the common 
edge of the mirrors are removed as far as possible from the 
point of observation P. 

4. Modifications of the Fresnel Mirrors.-The considera
tions advanced in paragraph 3 are typical of all cases in which 



INTERFERENCE OF LIGHT 135 

interference is produced by the division of a si11gle source into 
two coherent sources Q1 and Q2 • This division may be brought 
about in several other ways. The Fresnel bi-prism, shown in 
cross-section in Fig. 49, is particularly convenient. The light 

FIG. 49• 

from a line source Q which is parallel to the edge B is refracted 
by the prism in such a way that two coherent line sources Q1 

and Q2 arc produced. 
If such a prism be placed upon the table of a spectrometer 

so that the edge B is vertical, and if the vertical slit of the 
collimator focussed for parallel rays be used for the source, then 
two separate images of the slit appear in the telescope of the 
spectrometer. The angle a between these images may be 
read off upon the graduated circle of the spectrometer when 
the cross-hairs have been set successively upon the two images. 
This angle a is the supplement of the angle A BC (Fig. 49) 
which the two refracted wave fronts AB and BC make with 
each other after passage through the prism. If the telescope 
be removed, dark fringes may be observed at any point P for 
which (cf. 12) r 1 - r 2 = ± •P, fl, etc., in which r 1 and r 2 are 
the distances of the point P from the wave fronts AB and BC. 
From the figure it is evident that 

r1 = b sin (ABP), r 2 = b sin (CBP), 

hence 

L ABC . A, 
r 1 - r2 = 2v cos --•sm .,,. 

2 
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The angle c/> is very small so that sin cf> = tan c/> = p : a. 
Furthermore ABC= 1r - a, and since b = a approximately, 
and sin a = a, it follows finally that 

r1-r2=«-p. 

Thus the relative distance between the fringes is i\. : a, i.e. 
it is independent of a. Since a has been measured by the 
telescope, the measurement of the distance between the fringes 
furnishes a convenient method of determining .l. 

Billet's half-lenses (Fig. 50), which produce two real or 
virtual images of a source Q, are similar in principle to the 

FIG. 50. 

Fresnel bi-prism. The space within which interference occurs 
is shaded in the figure. 

5. Newton's Rings and the Colors of Thin Plates.-Suf
ficiently thin films of all transparent bodies show brilliant colors. 
These may be most easily observed in soap-bubbles, or in thin 
films of oil upon water, or in the oxidation films formed upon 
the heated surfaces of polished metals. 

The explanation of these phenomena is at once evident as 
soon as they are attributed to interference taking place between 
the light reflected from the front and the rear surface of the 
film. 

Consider a ray AB of homogeneous light (Fig. 5 I) incident 
at an angle cf> upon a thin plane parallel plate of thickness d. 
At the front surface of the plate AB divides into a reflected 
ray BC and a refracted ray ED. At the rear surface the latter 
is partially reflected to B' and passes out of the plate as the 
ray B'C'. The essential elements of the phenomena can be 
presented by discussing the interference between the two rays 



INTERFERENCE OF LIGHT 137 

BC and B'C' only. If these two rays are brought together at 
a point on the retina, as is done when the eye is focussed for 
parallel rays, the impression produced is a minimum if the 
phase of the ray BC differs from that of B'C' by 'IC, 3;,r, 57!, 
etc. 

Of course for a complete calculation of the intensity of the 
reflected light all the successive reflections which take place 
between the two surfaces must be taken into account. This 

FIG. SI, 

rigorous discussion will be given in Section II. Chapter II, 
§ 1 1. It is at once apparent that the introduction of these 
repeated reflections will not essentially modify the result, since 
the intensity of these rays is much smaller than that of BC and 
B'C', which have experienced but one reflection. 

If a perpendicular B' E be dropped from B' upon BC, the, 
two rays BC and B' C I would have no difference of phase if the 
phase at B' were the same as that at E. The two rays would 
then come together at a point upon the retina in the same 
phase. The difference of phase between the points E and B' 
is identical with the difference of phase between the rays BC 
and B'C'. 
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But the difference of phase between B' and E is 

provided ,l' represents the wave length of the light within the 
plate, il its wave length in the surrounding medium. If now 
the angle of refraction be denoted by X, then 

BD = B'D = d: cos X, BE= BB' sin cf>= 2d tan x sin </>; 

further, i\.: il' = n (index of the plate with respect to the sur
rounding medium). Hence 

21r • 2d ( 1 sin cf> ) LI= --- --- - tan X--
i\.' cos X n ' 

or, since from the law of refraction sin cf>= 11 sin X, 

21r-2d 
LI=~ cosx. 

An important correction must be added to this expression. 
(14) gives the difference in phase produced between the rays 
BC and B' C' by the difference in the lengths of their optical 
paths. But there is another difference between the two rays. 
BC has undergone reflection as the light passed from air to the 
plate, B'C' as it passed from the plate to air. Now in 
general a change of phase is introduced by reflection; and 
since the reflection of the two rays occurs under different con
ditions, a quantity LI' must be added to the difference in phase 
as given in (14). This quantity LI' depends solely upon the 
reflection itself and not at all upon the difference in the lengths 
of the optical paths. Hence (14) becomes 

A definite assertion may be made with respect to this 
quantity LI' without entering any farther into the theory of 
light. Consider first the case in which the thickness d of the 
plate gradually approaches zero. According to (14) no differ-
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ence of phase would then occur between BC and B'C'; they 
should therefore reinforce each other. But this effect cannot 
take place, because a plate of thickness d = o is no plate at all 
and the homogeneity of the space would not be disturbed if, 
as will be assumed, the medium above and below the plate is 
the same, for instance air; and hence no reflection of light can 
take place. For reflection can only take place when there is 
a change in the homogeneity of the medium; otherwise light 
could never travel with undiminished intensity through a homo
geneous transparent medium like the ether. Hence ford= o 
complete interference of the two rays BC and B' C' must take 
place so that no reflected light whatever is obtained. Since 
in this case (d = o) L1 = ± 1t, it follows from (15) that 

LI'=± -n:. 

Whether L1 be taken as equal to + 1r, or - -n:, or+ 31r, 

etc., is immaterial for this discussion, since the addition of 21r 

to the phase of a ray produces no change whatever in its con
dition of vibration. 

In consideration of (16) and (15) it is evident that a mini
mum of intensity occurs when 

2d 
F cos X= o, I, 2,... (17) 

The light transmitted by the plate must likewise show 
interference effects. Since it is assumed that no absorption 
takes place within the plate, the transmitted light must be of 
the same intensity as the incident light if the intensity of the 
reflected light is zero. On the other hand, the transmitted 
light must have a minimum of intensity when the reflected light 
is a maximum. This occurs for plates whose thicknesses lie 
midway between the thicknesses determined by (17), for then 
the two reflected rays BC and B'C' are in the same phase. 
Nevertheless the minima in the transmitted light are never 
marked, since the reflected light is always but a small portion 
of the incident light. The quantitative relations between the 
reflected and the transmitted portions can only be deduced 
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after a more complete treatment of the theory (cf. Section II, 
Chapter II). 

If the plate be wedge-shaped instead of plane parallel, it 
must be crossed, when viewed by reflected light, by dark 
interference bands which are parallel to the edge of the wedge 
and lie at those places where the thickness d of the wedge 
corresponds to (17). In order that the fringes may appear 
separate it is evident that, because of the smallness of l', the 
angle of the wedge must be small. Nevertheless these fringes 
cannot be perceived unless a broad source be used, for light 
from a point source is reflected to an eye placed at a particular 
point and focussed for parallel rays only from a single point of 
the wedge. 

By proper focussing of the eye sharp interference fringes 
may be seen when the source is broad. In order to be able 
to form a judgment as to the visibility of the interference fringes 
in this case it is necessary to bear in mind the fundamental law 
stated above in accordance with which only those rays are 
capable of interfering which are emitted from one and the same 
point of the source, since only such rays are coherent. 

Now it is evident that every point P situated anywhere in 
front of the plate or the wedge will be the intersection of two 
coherent rays emitted from a point Q of the source, the one 
reflected from the front, the other from the rear, surface. In 
general these rays start from Q in slightly different directions, 
but they are brought together at a point P' upon the retina if 
the eye is focussed upon the point of intersection P. In this 
case an interference between these two waves might be 
detected. But there are many other pairs of coherent rays 
emitted from other points Q', Q'', etc., of the source, which 
intersect at the same point P. In general these rays pass 
through the wedge at different places and with different incli
nations, and hence have various differences of phase at P. 
Therefore when the eye is focussed upon P the interference 
phenomena are either indistinct or else disappear entirely. 
Interference is perceived with the greatest clearness only when 
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all the pairs of coherent rays which proceed from the different 
points of the source and intersect at P have the same differ
ence of phase. The locus of the points P for which this con
dition is fulfilled is the surface of best visibility of the inter
ference pattern. This locus is a continuous surface and has a 
complicated form if the incident light is very oblique. 

But, for nearly perpendicular incidence, the solution for a 
thin wedge is simple. In this case, with a broad source, the 
interference fringes appear most clearly when the eye is focussed 

Q 

FIG. 52. 

upon the wedge itself. If the eye is focussed upon a point P 
of the wedge (Fig. 52), QPC and QBDPC' are two coherent 
rays which are brought together upon a point of the retina. 
These rays have a certain difference of phase, which depends 
only upon the thickness d of the wedge (say of glass) at the 
point P, and which from (15) and (16) may be written, since 
¢ and therefore also (for a thin wedge) X differ but little from 
zero, 

2d 
A= 21ry + 1t. 

But every pair of coherent rays emitted by the other points 
Q', Q", etc., of the source, and intersecting in P, have the 
same difference in phase, since for all rays the angle of inci
dence <p and also X is to be taken so small that cos X = I.* 

* This is only permissible when the thickness d of the wedge is not too great. 
When dis very large, for example, several thousand wave lengths, the change in X 
for the different pairs of wave lengths must still be taken into consideration. The 
interference then becomes indistinct. 
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Thus with nearly perpendicular incidence and a broad 
source the interference figure lies within the wedge itself. 

In order to observe interference in a film of variable thick
ness, Newton pressed a slightly convex lens upon a plane glass 
surface. The thin layer of air between the lens and the plate 
gives rise to concentric interference circles whose diameters 
increase as the square roots of the even numbers. Fig. 53 is 

FIG. 53. 

a photograph of the effect produced by white light. With 
homogeneous light the rings extend to the very edge of the 
plate. 

Illuminated by white light, a thin plate appears colored; 
for all those colors whose wave lengths A satisfy ( r 7) are want 
ing. But when the thickn"'ss of the plate is considerable the 
colors which are cut out extend in close succession over the 
whole spectrum, hence the colors which remain produce a 
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mixture which cannot be distinguished from white light. Also 
the color of the plate is not brilliant when it is too thin, because 
in this case all the colors are present to a greater or less 
extent. The colors are most brilliant for certain mean thick
nesses, which for air films lie between 0.00016 mm. and 0.0008 

mm. Such colors are naturally not pure spectral colors, since 
they arise from cutting out certain regions of color from the 
whole spectrum. In Newton's arrangement the rings show in 
close succession all the colors of thin plates. 

If the incident light is made more oblique, the plate 
changes color. For the presence of the factor cos X in (17) 
shows that increasing the obliquity of incidence of the light 
has the same effect as diminishing din the case of perpendicular 
incidence. 

The color of the light transmitted by the plate is comple
mentary to that of the reflected light, since the sum of the two 
must be equal to the incident light. Nevertheless the color of 
the transmitted light is never so saturated as that of the reflected 
light, because in the transmitted light. a color is never com
pletely cut out, but only somewhat weakened. 

The color shown by a thin film in reflected light furnishes 
a very delicate means of determining its thickness, provided 
the index of refraction of the film be known. Only the knowl
edge of the thickness of a film of air which shows the same 
color i~ required. This knowledge may be obtained from 
Newton's rings or, as will be seen later, from the optical 
properties of crystals. 

Interference has also been applied to the determination of 
the thermal expansion of bodies in the Abbe-Fizeau dz"latomett·r. 
vVith this instrument* the change caused by thermal expan
sion in the distance between the surface 0 2 of a glass plate and 
a polished surface 0 1 of the body is measured by the change 
in the interference figure which is formed between the two 
surfaces 0 1 and 0 2• 

* Cf. Pulfrich, Ztschr. Instrk. 1893, or Muller.Pouillet, Optik, p. 924. 
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6. Achromatic Interference Bands.-In order that an 
interference band may be achromatic it is necessary that at the 
place at which it is formed the difference of phase Ll of the 
interfering rays be the same for all colors. Whether the band 
is bright or dark depends upon the value of LI. Thus in 
Newton's apparatus the central spot is black in reflected light, 
since there the interfering rays of all colors have the same 
difference of phase Ll = 1t. But if the interference pattern be 
observed through a prism~ the central spot no longer appears 
achromatic, but the position of achromatism is at the point 
at which L1 varies very little or not at all with the color, i.e. a't 
the point at which 

aL1 
al= o, (18) 

in which l is the wave length of the color in air.* With a 
strongly dispersive prism the achromatic position may be quite 
a distance from the central spot. 

Likewise if a thin plate, for example mica, be introduced 
before one side of a Fresnel bi-prism, the interference pattern 
is changed. In this case, too, the achromatic fringe is not at 
the place for which Ll = o as it was before the introduction of 
the plate, but at the place for which ( I 8) is satisfied. The 
reason of this is that the thin plate, because of the dependence 
of its index upon the color, produces retardations of a different 
number of waves for the different colors. 

7. The Interferometer.-Interference fringes due to small 
differences of path may be produced not only with thin films 
but also with thick plates by using differential effects between 
two of them. Jamin's form of instrument consists in two 
equally thick plane parallel glass plates P 1 and P 2 (cf. Fig. 54) 
placed almost parallel to each other and at a large distance 
apart. A ray of light LA is split up into two rays ABCDE 

• More accurateJ,y this equiltion should be written o.dT = o, in which T is the . 0 
period. If the small dispersion of the air be neglected, this is identical with (18). 
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and AB'C'D'E', which are in condition to interfere if the two 
emergent rays DE and D'E' are again brought together at a 
point. Since these two rays are parallel, the eye or the tele
scope which receives them must be focussed for parallel rays. 
In order to obtain greatest intensity the source is placed in the 
focal plane of a convergent lens so that the beam LA which 

L 
FIG. 54· 

falls upon the plate P 1 is parallel. It is furthermore of advan
tage to silver the plates upon their rear surfaces. The differ
ence of phase between the rays C'D' and AB is, by (15), 

4:,d cos X1 + ii', in which X1 represents the angle of refraction 

in the plate Pr The rays D'E' and DE have, in addition, the 

difference of phase - (±;,d cos X2 + ii'), in which X2 , the 

angle of refraction of the plate P 2 , differs slightly from that of 
the plate P 1 , since P 1 and P 2 are not exactly parallel. The 
total difference of phase between D'E' and DE is therefore 

4?td 
.::1 = -y (cos X1 - cos X2); 
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and since cos X1 - cos X2 varies somewhat with the inclination 
of the beam LA, the field of view at EE' will be crossed by 
interference fringes. 

The chief advantage of this form of interferometer lies in 
the fact that the two interfering rays AB and C' D' are sep
arated considerably from one another provided thick plates are 
used and the incidence is oblique (50° is most advantageous). 
This instrument is capable of measuring very small variations 
in the index of refraction. If, for example, t\\·o tubes, closed 
at the ends with plates of glass, be introduced, the one in the 
path AB, the other in C'D', and if the index of refraction of 
the air in one tube be changed by varying either the tempera
ture or the pressure, or if the air in one tube be replaced by 
another gas, the interference fringes move across the field of 
view. The difference of the indices in the two tubes may be 
determined by counting the number of fringes which move 
across some mark in the field of view, or by introducing, by 
means of some sort of a compensator, a known difference of 
phase, so that the fringes return to their original position. 
Such a compensator may consist of two equally thick plates of 
glass, p1 and p2 , which are movable about a common axis and 
make a small angle with one another (Jamin's compensator). 
The ray AB passes through p 1 alone, the ray C'D' through p2 . 

The difference of phase which is thus introduced between the 
two rays depends upon the inclination of the plate p1 to AB.* 

With Jamin's instrument it is not possible to produce a 
separation between the two rays of more than 2 cm. A much 
larger separation may be obtained if, as in Zehnder's instru
ment, t four nearly parallel plates be used. According to 
Macht it is advantageous to replace two of these plates by 
metal mirrors 5 1 and S 2• Fig. 55 shows Mach's arrangement. 
He also introduced a device for increasing the intensity of the 

* For the more rigorous calculation cf. F. Neumann, Vories. ilber theor. 
Optik (Leipzig, 1885), p. 286. 

t Cf. Zehnder, Ztschr. lnstrkd. 1891, p. 275. 
t Mach, Wien. Ber. IOI (II.A.), p. 5, 1892. Ztschr. lnstrkd. 1892, p. 89. 
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light. In the arrangements shown in Figs. 54 and 5 5, the rays 
coming to the eye at E are of small intensity because they have 
undergone one reflection at a glass surface and have thus been 
materially weakened. In Fig. 55 the rays from S2 which 

L 

'J!J 
FIG, 55· Fm. 56, 

pass through PP2 are much more intense than those which are 
reflected from PP2 to E. This difficulty can be diminished 
by increasing the reflecting power of the glass surface. This 
is done by depositing a thin film of silver or gold upon the sur
face, the most favorable thickness of such a film being that for 
which the intensity of the reflected light is equal to that of the 
transmitted. But with the arrangement shown in Fig. 5 5 it is 
not necessary to use two plates P 1 and P2 of finite thickness in 
order to produce interference ; it is sufficient if, instead, the 
division of the ray into a reflected ray and a transmitted ray is 
accomplished by means of a thin film of metal. This may be 
done by pressing together the partially silvered hypothenuse sur
faces of two right-angled glass prisms. The reflections upon the 
mirrors S 1 and S2 may be replaced by total reflections upon the 
unsilvered surfaces of right-angled glass prisms. Finally these 
latter prisms may be united with the prisms which divide the 
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light so as to form single pieces of glass. Thus Fig. 56 shows 
Mach's construction of the interferometer, in which to the two 
equal glass rhombs K1 and K2 the two prisms K/ and K2' are 
cemented with linseed oil, the surfaces of contact P 1 and P 2 

being coated with a thin film of gold. The rays are totally 
reflected at the inclined surfaces S1 and S2• When the two 
rhombs K1 and K2 are set up so as to be nearly parallel to each 
other, an eye at E sees interference fringes. 

8. Interference with Large Difference of Path.-If the 
Newton ring apparatus be viewed in monochromatic light, such 
as is furnished by a sodium flame, the interference rings are 
seen- to extend over the whole surface of the glass. This is a 
proof that light retains its capacity for interference when the 
difference of path is as much as several hundred wave lengths. 

How far this difference of path can be increased before the 
interference disappears is a question of the greatest importance. 
This question cannot be answered by simply separating the 
two plates of the Newton ring apparatus farther and farther 
and focussing the eye or the lens upon the surface 0 1 of one of 
the plates, for, in accordance with the note on page 141, the 
interference fringes would soon become indistinct on account 
of the changing inclination of the coherent pairs of rays which 
intersect at a point of the surface 0 1• It is necessary, therefore, 
to provide that all coherent pairs of rays which are brought 
together in the same point upon the retina of the observer have 
the same difference of phase. 

This condition is fulfilled when the interference arises from 
reflections at two parallel surfaces 0 1 and 0 2 , and the eye or 
the observing telescope is focussed for parallel rays. All the 
interfering coherent pairs of rays which are brought together 
at a point of the retina then traverse the interval of thickness 
d between the two surfaces at the same inclination to the 
common normal N to these two surfaces and hence have the 
same difference of phase, provided the distance d is constant. 
This difference of phase changes with the angle of inclination 
to N, so that the interference figure consists of concentric 
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circles whose centres lie upon the perpendicular from the eye 
to the plates.* The interference rings thus produced are curves 
of equal inclination, rather than curves of equal thickness, such 
as are seen in a thin wedge or the Newton ring apparatus. 

Such curves of equal inclination may be observed in mono
chromatic light in plane parallel plates several millimeters 
thick, so that interference takes place when the difference of 
path amounts to several thousand wave lengths. In order to 
be able to vary continuously the difference in path Michelson 
devised the following arrangement: t 

The ray QA (Fig. 57) falls at an angle of 45° upon the 
half-silvered front face of a plane parallel glass plate, where it 
is divided into a transmitted ray, C 
which passes on to the plane -
mirror D, and a reflected ray, 
which passes to the mirror C. 
These two mirrors return the ray 
to the point A, where the first is 
reflected, the second transmitted JJD----___:,.J<c:------Q 

to E. 
A second plane parallel glass 

plate B, of the same thickness 
as A, makes the difference in the e 
paths of the two rays which come FIG- 57-

to interference at E equal to zero, provided the two mirrors D 
and Care symmetrically placed with respect to the plate A. 

It is evident that, as far as interference is concerned, this 
arrangement is equivalent to a film of air between two plane 
surfaces 0 1 and 0 2 , 0 1 being the mirror C, and 0 2 the image 

* Lummer uses this phenomenon (cf. Miiller-Pouillet, Optik, pp. 916-g24) to 
test glass plates for parallelism. The curves of equal inclination vary from their 
circular form as soon as the distance d between the two reflecting surfaces 0 1 and 
01 is not absolutely constant. 

t A. A. Michelson, Am. J. Sci. (3) 34, p. 427, 1887. Travaux et M~m. du 
Bureau International d. Poids et Mes. II, 1895, pp. 1-237. In this second work 
Michelson determined the value of the metre in wave lengths of light by the use of 
bis interferometer. 
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of D in the plate A. This image 0 2 must also be parallel to 
C if the interference curves of equal inclination are to be seen 
clearly when the difference of path is large. In order to vary 
the difference of path, one of the mirrors C is made movable 
in the direction AB by means of a micrometer-screw. With 
this apparatus, using as a source of light the red cadmium line 
from a Geissler tube, Michelson was able to obtain interference 
when the difference of path in air was 20 cm., a distance equal 
to about 300,000 wave lengths. Interference was obtained 
with the green mercury radiation when the difference of path 
was 540,000 wave lengths.* 

These experiments are particularly instructive because 
observations upon the change of visibility of the interference 
fringes with variations of the difference of path furnish data for 
more accurate conclusions as to the homogeneity of a source of 
light than can be drawn from spectroscopic experiments. 

Fizeau had already observed that a continuous change of 
the thickness d of the air film produced a periodic appearance 
and disappearance of the fringes produced by sodium light. 
The fringes first disappear when the thickness dis 0.1445 mm.; 
when d = 0.289 they are again clear; when d = 0.4335 they 
reach another minimum of clearness; etc. The conclusion 
may be drawn from this that the sodium line consists of two 
lines close together. The visibility of the fringes reaches a 
minimum when a bright fringe due to one line falls upon a dark 
fringe due to the other. Since the mean wave length of sodium 
light is 0.000589 mm., the thickness d = o. 289 mm. corre
sponds to 491 wave lengths. If the difference between the 
wave lengths of the two sodium lines be represented by 
A1 - A2 , it follows that 

i.e. 

A 
(A1 - \)-491 = - = o.000294mm., 

2 

11 -A2 = 0.0000006 mm. 

* A. Perot and Ch. Fabry (see C. R. 128, p. 12211 1899)1 using a Geissler 
tube fed by a high-voltage battery, obtained interference for a difference of path of 
790,000 wave lengths. 
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Michelson has given a more general solution of the 
problem.-1:-

According to equation ( l I) on page 131 the intensity of 
illumination produced by two equally bright coherent rays 
whose difference of path is 2/ is 

Instead of the wave length A of light in air, its reciprocal 

will be introduced. Then m denotes the number of waves in 
unit length. 

If now the light is not strictly homogeneous, i.e. if it con
tains several wave lengths i\, or wave numbers m, then if the 
wave numbers lie between m and 11Z + dm, the factor A2 in 
equation ( I 9) may be represented by 1f:(m). dm. The intensity 
J obtained when interference is produced by an air film of 
thickness / is 

J = 2 r;(m)[l + cos 4;,r lm]dm, . 
._},n1 

in which the limits of integration are those wave numbers 
between which ¢(m) differs appreciably from zero. 

Assuming first that the source consists of a single spectral 
line of small width, and setting 

(21) becomes 

i +a 
J = 2 ~/x)[I + cos 41T/(1n + x)]dz; 

* This development is found in Phil. Mag. 5th Set., Vol. 31, p. 338, 1891; 
Vol. 34, pp. 380 and 407 (Rayleigh), 1892. 
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or setting 

J ip(x)dx = P, l 
{ (22') J ¢(x) sin(411"/x)·dx=S,} 

½J= P+ C cos -8- S sin -8. 

If the thickness of the air-plate be slightly altered, J varies 
because -8 does. On the other hand, C and S may be con
sidered independent of small changes in l, provided the width 
of the spectral line, i.e. the quantity a, is small. 

Hence, by (23), maxima and minima of the intensity J 
occur when 

s 
tan -8 = - C' 

the maxima being given by 

the minima by 

, (24) 

Hence no interference is visible when C = S = o. But 
also when these two expressions are small there will be no 
perceptible interference. The visibility of the interference 
fringes is conveniently defined by 

V _ Jmax. - Jmin. 

- Jmax. + Jm10. • 

Hence, from (25) and (25'), 

c2+ 52 
V2- --=c--- p~ . 

This equation shows how the visibility of the fringes varies 
with the difference of path 2/ of the two interfering beams 
when l is changed by the micrometer-screw. 
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If the distribution of brightness of the spectral line is sym
metrical with respect to the middle, S = o and (27) becomes 

V=C:P. 

If it be assumed that rf:(x) = constant = c, then 

P= 2ac, 
2c sin 41rla 

C= 41rl ' 
V- sin 41rla 

- 41rla • 

Thus the interference fringes vanish when 4/a = I, 2, 3, 
etc., and the fringes are most distinct ( V = I) when l = o. 
As l increases, the fringes, even for the most favorable values 
of I, become less and less distinct, e.g. for 4/a = j-

V = 2: 37r=0.2I2. 

Likewise a periodic vanishing and continual diminution in 
the distinctness of the maxima occur if, instead of ,p(x) = con
stant, 

X 
¢(x) = coshr-. 

2a 

The smallest value of / for which the fringes vanish is given 

by 4/1a = ~ + I ; they vanish again when 4/2a = ~ + 2, 

p 
413a = - + 3, etc. Hence from the distances /1' /2 , / 3 , at 

2 

which the visibility curve becomes zero, the width a of the 
line, as well as the exponent p, which gives its distribution of 
brightness, may be determined. 

If ¢(.x) = e -px'* 

there is a gradual diminution of the visibility without periodic 
maxima and minima. 

In like manner, when the source consists of several narrow 
spectral lines, the visibility curve may be deduced from (2 I). 
Thus, for example, two equally intense lines produce periodic 

* This intensity law would follow from Maxwell's law of the distribution of 
velocities of the molecules as given in the kinetic theory of gases. 
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zero values of V. If the two lines are not equally intense, the 
visibility does not actually become zero, but passes through 
maxima and minima. This is the case of the double sodium 
line. 

This discussion shows how, from any assumed intensity 
law ¢(nz), the visibility V of the fringes may be deduced. 
The inverse problem of determining rf:(m) from V is much 
more difficult. Apart from the fact that the numerical values 
of V can only be obtained from the appearance of the fringes 
by a somewhat arbitrary process,* the problem is really not 
solvable, since, as follows from (27), only C 2 + 5 2 can be de
termined from V, and not C and S separately.t Under the 
assumption that the distribution of brightness in the several 
spectral lines is symmetical with respect to the middle, a solu
tion may indeed be obtained, since then, for a single line, 
S = o, and for several lines similar simplifications may be made. 
Michelson actually observed the visibility curves V of numer
ous spectral lines and found them to differ widely.+ He then 
found by trial what intensity law ,P(m) best satisfied the ob
served forms of V. It must be admitted, however, that the 
resulting ¢(m) is not necessarily the correct one, even though 
the distribution of intensity and the width of the several spectral 
lines are obtained from this valuable investigation of Michelson's 
with a greater degree of approximation than is possible with a 
spectroscope or a diffraction grating. In any case it is of great 
interest to have established the fact that lines exist which are 
so homogeneous that interference is possible when the differ
ence of path is as much as 500,000 wave lengths. 

9. Stationary Waves.-In the interference phenomena 
which have thus far been considered, the two interfering 

* V might be determined rigorously if Jmax. and Jmio. were measured with a 
photometer or a bolometer. 

t From Fourrier's theorem f/J(m) could be completely determined if C and S 
were separately known for all values of I. 

t Ebert bas shown in Wied. Ann. 43, p. 7'P, 1891, that these visibility curves 
vary greatly with varying conditions of the source. 
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beams have had the same direction of propagation. But inter
ference can also be detected when the two rays travel in 
opposite directions. If upon the train of plane waves 

A • ( t z\ s1 = sm 21r T - x_}, 

which is travelling in the positive direction of the z-axis, there 
be superposed the train of plane waves 

s2 = A sin 21r(~ + i), 
which is travelling in the negative direction of the z-axis, there 
results 

This equation represents a light vibration whose amplitude 
8 

2A cos 21tz/A is a periodic function of z. For i = ¼, !, ¼, etc., 

the amplitude is zero, and the corresponding points are called 

nodes. For X" = o, ½, J, etc., the amplitude is a maximum, 

and the corresponding points are called loops. The distance 
between successive nodes or successive loops is therefore fl. 
This kind of interference gives rise to waves called stationary, 
because the nodes and loops have fixed positions in space. 

Wiener* proved the existence of such stationary waves by 
letting light fall perpendicularly upon a metallic mirror of high 
reflecting power. In this way stationary waves are produced 
by the interference of the reflected with the incident light. 
In order to be able to prove the existence of the nodes and 
loops \Viener coated a plate of glass with an extremely thin 
film of sensitized collodion, whose thickness was only iu of a 
light-wave = 20 millionths of a mm., and placed it nearly 
parallel to the front of the mirror upon which a beam of light 
from an electric arc was allowed to fall. The sensitized film 

* O. Wiener, Wied. Ann. 40, p. 203, 18go. 
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then intersects the planes of the nodes and loops in a system 
of equidistant straight lines, whose distance apart is greater 
the smaller the angle between the mirror and the collodion 
film. Photographic development of the film actually shows 
this system of straight lines. This proves not only that photo
graphic action may be obtained upon such a thin film, but also 
that such action is different at the nodes and the loops. These 
interesting interference phenomena may also be conveniently 
demonstrated by means of the fluorescent effects which take 
place in thin gelatine films containing fluorescin. * Such a film 
shows a system of equidistant green bands. It is a fact of 
great theoretical importance, as will be seen later, that the 
mirror itself lies at a node. 

10. Photography in Natural Colors.-Lippmann has made 
use of these stationary light-waves in obtaining photographs in 
color. As a sensitive film he chose a transparent uniform 
layer of a mixture of collodion and albumen containing iodide 
and bromide of silver. This he laid upon mercury, which 
served as the mirror. When this plate has been exposed to 
the spectrum, developed, and fixed, it reproduces approxi
mately the spectrum colors. The simplest explanation is that 
iu that part of the film which, was exposed to light whose 
wave length within the film was A, thin layers of silver have 
been deposited at a distance apart of ½A. If now these parts 
of the film be observed in reflected white light, the light-waves 
are reflected from each layer of silver with a given intensity. 
But these reflected rays agree in phase, and hence give maxi
mum intensity only for those waves whose wave lengths are 
equal to either A, or ½A, or ½A, etc. Hence a spot which was 
exposed to green light, for instance, appears in white light 
essentially green, for the wave length -i-A lies outside the visible 
spectrum. But under some circumstances a part of the plate 
exposed to deep red appears violet, because in this case the 
wave length ½A falls within the visible spectrum. 

If such a photograph be breathed upon, the colors are dis-

* Drude and N~rnst, Wied. Ann. 45, p. 46o, 1892. 
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placed toward the red end of the spectrum, because the 
moisture thickens the collodion film, and the reflecting layers 
are a greater distance apart. If the plate be observed with 
light of more oblique incidence, the colors are displaced toward 
the violet end of the spectrum, for the same reason that the 
Newton's rings shift toward the lower orders as the incidence 
is more oblique. For, as is evident from (14) on page 138, 
the difference of phase LI between two rays reflected from two 
surfaces a distanced apart is proportional to cos X, in which X 
is the angle of inclination of the rays between the two surfaces 
to the normal to the surfaces. When the angle of incidence 
increases LI decreases; but in Newton's rings this effect is 
much more marked than in Lippmann's photographs, since, in 
the former, within the film of air which gives rise to the inter
ference, X varies much more rapidly with the incidence than it 
does in the collodion film, whose index is at least as much as 
1.5. 

Although the facts presented prove beyond a doubt that 
the colors are due to interference, yet the explanation of these 
colors by periodically arranged layers of silver is found, upon 
closer investigation, to be probably untenable. For Schutt* 
has made microscopic measurements upon the size of the par
ticles of silver deposited in such photographic films, and found 
them to have a diameter of from 0.0007 to 0.0009 mm., which 
is much larger than a half wave length. According to Schutt, 
the stationary waves and the fixing of the sensitive film pro
duce layers of periodically varying index of refraction, due to 
a periodic change in the arrangement of the silver molecules. 
This theory does not alter the principle underlying the expla
nation of the colors, for it also ascribes to the collodion film a 
variable reflecting power whose period is fl. 

This theory makes it possible to calculate the intensity of 
any color after reflection. The complete discussion will be 
omitted, especially as the calculation is complicated by the 
fact that it is not permissible to assume the number of periods 

* F. Schutt, Wied. Ann. 57, 533, 1896. 
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in the photographic film as large.* The best color photo
graphs are obtained when the thickness of the photographic 
film does not exceed 0.001 mm. This thickness corresponds to 
3-5 half wave lengths. But without calculation it may be seen 
at once that the reflected colors are a mixture and not pure 
spectral colors,-a fact which can be verified by an analysis of 
the reflected light by the spectroscope. t For even if that 
color whose wave length is the same as that of the light 
to which the plate was exposed must predominate in the 
reflected light, yet the neighboring colors, and, for that matter, 
all the colors, must be present in greater or less intensity. 

According to an experiment of Neuhauss,+ the gradual 
reduction of the thickness of the film by friction causes the 
reflected colors to undergo certain periodic changes. This 
effect follows from theory if the small number of periods in the 
photographic film be taken into consideration. 

A further peculiarity of these photographs is that, in 
reflected light, they do not show the same color when viewed 
from the front as from the back.§ Apart from the fact that 
the glass back gives rise to certain differences between the two 
sides, it is probable that the periodic variations in the optical 
character of the film are greater in amplitude on the side of 
the film which lay next to the metal mirror. On account of a 
slight absorption of the light, the stationary waves which, in 
the exposure of the plate, lie nearest the metal mirror are most 
sharply formed. 

If this assumption be introduced into the theory, both the 
result of Neuhauss and the difference in the colors shown by 
the opposite sides of the plate are accounted for. 

* The only calculations thus far made, namely those published by Meslin 
(Ann. de chim. et de phys. (6) 27, p. 369, 1892) and Lippmann (Jour. de phys. 
(3) 3, p. 97, 1894), not only make this untenable assumption, but they also lead to 
the impossible conclusion that under certain circumstances the reflected intensity 
can he greater than the incident. 

t Cf., for instance, the above-mentioned article by Schutt. 
i R. Neuhauss, Photogr. Rundsch. 8, p. 301, 1894. Cf. also the article by 

Schiltt. 
i C£ Wiener, Wied. Ann. 6g, p. 488, 18gg. 



CHAPTER III 

HUYGENS' PRINCIPLE 

1. Huygens' Principle as :first Conceived.-The fact has 
already been mentioned on page 127 that the explanation of 
the rectilinear propagation of light from the standpoint of the 
wave theory presents difficulties. To overcome these difficulties 
Huygens made the supposition that every point P which is 
reached by a light-wave may be conceived as the source of 
elementary light-waves, but that these elementary waves 
produce an appreciable effect only upon the surface of their 
envelope. If the spreading of the rays from a point source Q 
is hindered by a screen S1S2 containing an opening A 1A 2 , 

then the wave surface at which the disturbance has arrived 
after the lapse of the time t may be constructed in the follow
ing way: 

Consider all the points A 3 in the plane of the opening A 1A 2 

as new centres of disturbance which send out their elementary 
waves into the space on both sides of the screen. These 
elementary wave surfaces are spheres described about the 
points A. These spheres have radii of different lengths, if they 
are drawn so as to touch the points at which the light from Q 
has arrived in the time t. Since, for instance, the disturbance 
from Q has reached A 3 sooner than A 1 , the elementary wave 
about A 3 must be drawn larger than that about A 1 in proportion 
to the difference between these two times. It is evident that 
the radii of all the elementary waves, plus the distance from Q 
to their respective centres, have the same value. But in this 
way there is obtained, as the enveloping surface of these ele-

159 
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mentary waves, a spherical surface (drawn heavier in Fig. 58) 
whose centre is at Q, and which is limited by the points B1 , 

B2 , i.e. which lies altogether within the cone drawn from Q 
to the edge of the aperture S1S2• Inside this cone the light 
from Q is propagated as though the screen were not present, 
but outside of the cone no light disturbance exists. 

Though the rectilinear propagation of light is thus actually 
obtained from this principle, yet its application in this form is 
subject to serious objecti'on. First, it is evident from Fig. 58 

s, 

FIG. 58, 

that the elementary waves from the points A have also an 
envelope C1C2 in the space between the screen and the source. 
Hence some light must also travel backward; but, as a matter 
of fact, in a perfectly homogeneous space, no such reflection 
takes place. Furthermore, the construction here given for the 
rectilinear propagation of light ought always to hold how
ever small be the opening AjA 2 in the screen. But it was 
shown on page I that, with very small apertures, light no 
longer travels in straight lines, but suffers so-called diffraction. 
Again, why do not these considerations hold also for sound, 
which is always diffracted, or, at least, never produces sharp 
shadows? 
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Before considering Fresnel's improvements upon Huygens' 
work, the latter's explanation of reflection and refraction will 
be presented. Let A 1A 2 be the bounding surface between two 
media I and II in which the velocities of light are respectively 
V1 and Va, and let a wave whose wave front at any time to 

B 

Az 

FIG. 59• 

occupies the position A 1B fall obliquely upon the surface A 1A1• 

What then is the position of the wave surface in medium II at 
the time t0 + t ? Conceive the points A of the bounding sur
face as centres of elementary waves which, as above, have 
different radii, since the points A are reached at different times 
by the wave front AB. Since the disturbance at A 1 begins at 
the time t0 , the elementary wave about A 1 must have a radius 
represented by the line A I C = Vi, Let the position of the 
point A 1 be so chosen that the disturbance reaches it at the 
time t0 + t. This will be the case if the perpendicular dropped 
from A 2 upon the wave front has the length v;t, since, accord
ing to Huygens' construction, in a homogeneous medium such 
as I any element of a plane wave is propagated in a straight 
line in the direction of the wave normal. The elementary 
wave about A 2 has then the radius zero. For any point A 
between A 1 and A 2 the elementary wave has a radius which 
diminishes from Vi to zero proportionally to the distance 
A 1A. The envelope of the elementary waves in medium II 
is, therefore, the plane through A 2 tangent to the sphere 
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about A 1. The angle A 2CA 1 is then a right angle. Since 
now sin</>= BA2 : A 1A 2 = V/: A 1A 2 , sin X = CA 1 : A 1A 2 = 
V 2 t: A 1A2 , it follows that 

sin </> ~ 
sin X = Vz = const. 

But since </> ar.d X are the angles of incidence and refraction 
respectively, this is the well-known law of refraction. Hence, 
as was remarked though not deduced on page 129, the 
index of refraction n is equal to the ratio of the velocities of 
propagation of light in the two media. 

By constructing in the same way the elementary waves 
reflected back into medium I the law of reflection is at once 
obtained. 

2. Fresnel's Improvement of Huygens' Principle.-Fres
nel replaced Huygens' arbitrary assumption that only the 

Q envelope of the elementary waves 

p 

produces appreciable light effects 
by the principle that the elementary 
waves in their criss-crossing influ
ence one another in accordance with 
the principle of interference. Light 
ought then to appear not only upon 
the enveloping surface, but every
where where the elementary waves 
reinforce one another; on the other 
hand, there should be darkness 
wherever they destroy one another. 
Now as a matter of fact it is possi
ble to deduce from this Fresnel-

FIG. 6o. 
Huygens principle not only the 

laws of diffraction, but also those of straight-line propagation, 
reflection, and refraction. 

Consider the disturbance at a point P caused by light from 
a source Q, and at first assume that no screen is interposed 
between P and Q. A sphere of radius a described about Q 
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(Fig. 60) may be considered as the wave surface, and the dis
turbance which exists in the elements of this sphere may be 
expressed by (cf. page 127) 

in which A represents the amplitude of the light at a distance 
a = 1 from the source Q. Fresnel now conceives the spherical 
surface to be divided in the following way into circular zones 
whose centres lie upon the straight line QP: The central zone 
reaches to the point M., at which the distance 1vI;_P = r 1 is 
½"- greater than the distance MaP. Calling the latter b, 
M 1P = r 1 = b + ½"-- The second zone reaches from M. to 
,W.,,, where MzP = r 2 = r 1 + ½-il. The third zone reaches from 
~ to M3 , where ~p = r3 = r 2 + ½l, etc. Consider now in 
any zone, say the third, an elementary ring which lies 
between the points M and M'. Let the distances MP= r, 
M'P = r + dr, and~ MQP = u, ~ M'QP = u+ du. The 
area of this elementary zone is 

do = 21ca2 sin u du. 

Also, since 

r2 = a2 + (a+ b)2 - za(a + b) cos u, 

it follows by differentiation that 

Zr dr = za(a + b) sin u du, 

so that equation (2) may be written 

. . (3) 

The disturbance ds' which i-, produced at P by this ele
mentary zone must be proportional directly to do and inversely 
tor, since (cf. page 126) the amplitude of the disturbance due 
to an infinitely small source varies inversely as the distance 
from it. Hence, from (1), 

-'•' = kA cos 21C(.!_ - a+ r)do ( ) 
'
1 ar T A. ' • • • • 4 
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or, in consideration of (3), 

1 k-A (' a+r) ds = vr a+ b cos 2,r T- -i\.- dr. (4') 

In this equation k is a factor of proportionality which can 
depend only upon the inclination between the element do and 
the direction of r. Fresnel assumes that this factor k is smaller 
the greater the inclination between do and r. If this inclination 
be assumed to be constant over an entire Fresnel zone, i.e. 
between M,._, and M,., an assumption which is allowable if a 
and b are large in comparison with the wave length ;\, it follows 
from (41) that the effect of this nth zone is (k,. denoting the 
constant k under these circumstances) 

(5) 

or 

, k,.AA { • ( t a + r,. _ •) . ( t a +r ") } 
s,. = a+ b sm 2n T - A. - sm 21r T - -i\.- • 

But since 
n-I 

r,._, = b + - 2-1, 
n 

r,.= b+-1, 
2 

it follows that 

2kn;\A . ( I a + P) 
s '-(- 1)"+ 1 • -- sm 2,r - - --,. - a+b T A. • 

From this it is evident that the successive zones give alter
nately positive and negative values for s'. If the absolute 
value of s,.' be represented by s,., then by the principle of in
terfer-ence the whole effect s' at P due to the first n zones is 
given by the series 

s' =.s1 - s2 + s3 - s4 + ... + (- 1t+ 1s,.. (7) 
If k,. were assumed equal for all zones, s1 , s2 , s3 , etc., would 
all be equal, and the value of the series (7) would vary with the 
number of terms n. But k,. and hences,. diminish continuously 
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as n increases, since the greater the value of n the greater the 
inclination between r and do. In this case the value of the 
series may be obtained in the following way: * If n is odd, the 
series may be written in the form: 

s'= t+ (t- s,+~)+ (~-s4 + t) + · · · 

+ e"z- 2 - s,. - • +;) + s;' • • • (8) 

or in the form : 

---s -- --- s + (s,. _ 3 + s,. _ •)} s,._, + 
2 ,. - 2 2 2 ,.. . (9) 

If now every s, is greater than the arithmetical mean of the 
two adjacent quantities s,_, and s;+,, the conclusion may be 
drawn from (8) that 

s' <~+s,. 
2 2' 

while it follows from (9) that 

I S2 I s > s - -- -+- s 1 2 I n 

s,. - • 
2 

These two limits between which s' is in this way contained 
are, however, equal to one another when, as is here the case, 
every s, differs by an infinitely small amount both from s,_, 
and stt,· Hence 

I Sl S,. 
s = -+ -. 

2 2 
(10) 

A similar conclusion may be drawn when each s1 is smaller 
than the arithmetical mean between the two adjacent quantities 
s,_, and s,+,· In this latter case if at equal distances along an 
axis of abscissre the s,'s be erected as successive ordinates, 

* A. Schuster, Phil. Mag. (S), 31, p. 85, 18g1. 
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the line connecting the ends of these ordinates is a curve which 
is convex toward the axis of abscissa!. In the former case 
this curve is concave toward this axis. These same conclu
sions may be drawn, i.e. equation (IO) obtained, if the s, curve 
consists of a finite number of concave and convex elements. 
Only when this number becomes infinitely large does equation 
(10) cease to hold. On account of the presence of the factor 
k. this case can never occur. 

If n is even, a similar argument, with a somewhat different 
arrangement of the terms of series (7), gives 

s' = :.! - ~. . 
2 2 

. (10') 

According to Fresnel these zones are to be drawn until the 
radius vector r from P becomes tangent to the wave surface 
about Q. For the last zone r is perpendicular to QM and 
both k. ands. become zero. Hence the values of (10) and 
(10') are identical and the light disturbance at Pis 

. (11) 

Thus it may be looked upon as due solely to the effect of 
the elementary waves of half the central zone. 

The effect at P of introducing any sort of a screen will 
depend upon whether the central zone and those immediately 
adjacent to it are covered or not. It might be expected that 
the effect at P would be completely cut off by a circular screen 
whose centre lies at M0 and which covers half of the central 
zone. But this is not the case. For when a circular screen 
is introduced perpendicular to PQ with its centre at M0 , the 
construction of the Fresnel zones may begin at the edge of 
this screen. Then half of this first zone is still effective at P, 
i.e. equation (11) still holds, but b now represents the distance 
between P and the edge of the screen, and k1 refers to the first 
zone about the edge of the screen. Hence tlzere can be dark
ness at no point along tlze central line M0P. T/zis surprising 
&onclusion is actually 11rrijied by experiment. However, for 
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screens which are large in comparison with the wave length 
as well as in comparison with the distance b, the effect at P 
is small, because the factor kn in equation (S) is then small. 
Likewise the effect at P is small if the screen S is not exactly 
circular. For, consider that the screen S is bounded by 
infinitely small circular arcs of varying radii drawn about Mi, 
as a centre. Let the angle subtended at the centre by the 
first arc be d</\, the distance of this arc from the point P be b1 , 

and from Q, a 1. Then, by (11) and the above considerations, 
the effect of the entire opening which lies between the two 
radii vectores drawn from M0 through the ends of.this first arc is 

, _ klA . d</>1 • ( t a 1 + b1\ 
ds1 _ + b ?- sm 2,r T - )" a1 1 _,r A 

Similarly the effect of that part of the next angular opening 
dq,2 which is not covered by the screen is 

ds '= ki-,A . '!_<P2 sin z,r(!__ - a2 + b2) 
2 a 2 + b2 2,r T i\. ' 

etc. All these effects must be summed in order to obtain the 
value of s' at P after the introduction of the irregular screen 
at M0. If the screen is not too large, it is possible to set 
k1 = k2 = k3 , etc. Likewise the differences between the various 
a's and b's in the denominator may be neglected so that 

, k1;\.A { • ( t a 1 + b1) 
s = (a+ b)z,r d</>1 sm z,r T - -i\.-

. ( t a2 + b2 ) t , + d</>2 sm 2,r T - i\. + ... f. (II ) 

In the argument of the sin it is not permissible to set 
a1 + b1 = a2 + b2 , etc., since these quantities are divided by 
the small quantity l. For if the screen S is many wave 
lengths in diameter (it need be but a few mm.), the differences 
between the quantities a + b amount to many wave lengths. 
Hence with an irregular screen the different terms of equation 
(I 1) are irregularly positive and negative so that in general 
the whole sum is small. Only when the screen has a regular 
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form, for instance when all the a's and b's are exactly equal, 
is the sum s' finite. Hence it is possible to speak of rectilinear 
propagation of light, since the result of interposing a screen of 
sufficient size and irregular form upon the line QP is darkness 
atP. 

If between Q and Pa screen with a circular opening whose 
centre is at M0 be introduced, then the effect at P varies greatly 
with the size of this opening. If the opening has the same size 
as half of the central zone, the effect at P is the same as though 
no screen were present, i.e. the light at P has the natural 
brightness. If the opening corresponds to the whole central 
zone, s' at Pis twice as great ~s before, i.e. the intensity at 
P is four times the natural brightness. If the size of the open
ing be doubled, so that the first two central zones are free, 
then, according to (7), s' = s1 - s2 , an expression whose 
value is nearly zero; etc. This conclusion also has been veri
fied by experiment. Instead of using screens or apertures of 
various sizes, it is only necessary to move the point of observa
tion along the line QM0• 

Although Fresnel's modification of Huygens' principle not 
only accounts for the straight-line propagation of light, show
ing this law to be but a limiting case,* but also explains the 
departures from this law shown in diffraction phenomena in a 
way which is in agreement with experiment, nevertheless his 
considerations are deficient in two respects. For, in the first 
place, according to his theory, light ought to spread out from 
any wave surface not only forward, but backward toward the 
source. This difficulty was contained in the original concep
tion of the Huygens' principle (cf. page 161). In the second 
place, Fresnel's calculation gives the wrong phase to the light 
disturbances' at P. For, according to equation (1) on page 
163, in the case of direct propagation s' ought to be 

, A (' a+b) s = a+b cos 2,r T- -A.-, 

• That this is not true for sound is due to the fact that the sound-waves are so 
long that the obstacles interposed are not large in comparison. 
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while by (11) on page 166, s', as determined by the considera
tion of the elementary waves upon a wave surface, 1s 

In order to obtain agreement between the amplitudes in 

the two expressions for s', k1 may be assumed equal to i, but 

the phases in the two expressions cannot be made to agree. 
These difficulties disappear as soon as Huygens' principle is 
placed upon a more rigorous analytical basis. This was first 
done by Kirchhoff'.* The simpler deduction which follows is 
due to Voigt. t 

3. The Differential Equation of the Light Disturbance.
It would have been possible to find the analytical expression for 
the light disturbances at any point Pin space if all waves were 
either spherical or plane. But when light strikes an obstacle 
the wave surfaces often assume complicated forms. In order 
to obtain the analytical expression for s in such cases, it is 
necessary to base the argument upon more general considera
tions, i.e. to start with the differential equation which s 
satisfies. 

Every theory of light, and, for that matter, every theory of 
the propagation of wave-like disturbances, leads to the differ
ential equation 

a2s 2(a2s a2s a2s) 
at= V or+ ar + az2 = v24s, 

in which t represents the time, x, y, z the coordinates of a 
rectangular system, and V the velocity of propagation of the 
waves. This result of theory may for the present be assumed; 
a deduction of the equation from the standpoint of the electro
magnetic theory will be given later (Section II, Chapter I). 

• G. Kirchhoff, Ges. Abh. or Vories. ttber math Optik. 
t W. Voi1rt, Kompendium d. theor. Physik, II, p. 776. Leipzig. 1896. 



THEORY OF OPTICS 

It will first be shown how the analytical forms of s given 
above for plane and spherical waves arc obtained from ( 12 ). 

For plane waves let the x-axis be taken in the direction of 
the normal to the wave front, i.e. in the direction of propaga
tion; then s can depend only upon x and t, since in every 
plane x = const. which is a wave-front, the condition of vibra
tion for a given value of t is everywhere the same. Equation 
(12) then reduces to 

o2s a2s 
a12 = v2ax2· 

The general integral of this equation is 

X 
in which J;, is any function whatever of the argument t - -p-, 

• X 
and /2. any function of the argument t + v· For if the first 

derivatives of the functions/",. and /2. with respect to their argu
ments be denoted by J;,' and /2.', the second derivatives by 
J;,'', /2.", respectively, then 

0S f,' + E' 02S f," + E" 
Q/ = l J 2 ' ZJ{'I = l J 2 • 

as If,' I _El a2s I /," I _F// ax = - v l + v:t 2 • ax2 = + v2 l + "j12-f 2 , 

i.e. equation ( 1 3) is satisfied. If now the variation of s with the 
time is of the simple harmonic form, i.e. if it is proportional to 

cos 2,r~, as is the case for homogeneous light, then, by (14), 

s = A1 cos 21t( ~ - ;r+o1)+A2 cos 2,r(~ + ;T + 02), (Is) 

in which A1 , A 2 , 01 , 02 are constants. This corresponds to 
our former equation for a plane wave of wave length l = VT. 
A1 is the amplitude of the waves propagated in the positive 
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direction of the x-axis, A 2 the amplitude of those propagated 
in the negative direction of the x-axis. 

For sphert'cal waves whose centre is at the origin, s can 
depend only upon t and the distance r from the origin. Hence 

QS oS or QS X 

ox - or ox - or • r' 

as as or as J' 
oy - or oy - or r' 

as as ar as z 
oz = or oz - or • r. 

For since r2 = x2 + y2 + z2, partial differentiation gives 

. or X 
r•or = X•OX, 1.e. ;-- = - = cos (rx), 

vX r 

and similarly 

Also, 

or y ~=-, 
OJ' r 

or z 
oz=;· 

o2S I c)S X2 o (I c)S) X2 o 2S cJS (I X2) 
ox2 = 1' • or + -;: • a; -; • or = r 2 • or2 + or ;. - r8 ' 

and similarly 

02s )'2 o2s oslI y2) 
oy= ,:,,· or+ or11r - r8' 

02s z1 02s oS (I z\ 
oz2 = r' • or+ or ;:- r3) • 

Equation (12) becomes, therefore, for this case 

a2s (o2s 2 as) 
ot2 = v2 ar2+ ror 1 

which may also be written in the form 

o2(rs) v202(rs) ar= or. 

(16) 
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This equation has the same form as ( 13) save that rs 
replaces s, and r replaces x. The integral of (17) is therefore, 
by (14), 

(18) 

If, again, homogeneous light of period T be used, it follows that 

A1 ( t r ) A 2 ( t r ) 
s = 7 cos 21r T- vr+o1 +r cos 21r T + vr+o2 • (19) 

This is our former equation for spherical waves. One train of 
waves moves from the origin, the other moves toward i1:. The 

amplitudes, for example A1, are inversely proportional to r. 
r 

This result, which was used above on page 126 in defining the 
measure of intensity, follows from equation ( 12). 

Before deducing Huygens' principle from equation (12) the 
following principle must be presented. 

4. A Mathematical Theorem.-Let dr be an element of 
volume and Fa function which is everywhere finite, continuous, 
and single-valued within a closed surface S. Consider the 
following integral, which is to be taken over the entire volume 
contained within 5: 

JoFdr = j?F d.r dy dz. ox ax 
First perform a partial integration with respect to x, i.e. make 

a summation of all the elements ~;dr which lie upon any 

straight line @ parallel to the axis of x. The result is 

dy, dz j~flx = dy dz( - F1 + F2 - J,~ + F._ etc.), 

in which F 1 , F 2 , etc., represent the values of the function F 
at those points upon the. surface 5 where the straight line @ 

intersects it. For the sake of generality it will be assumed 
that this line intersects the surface several times; since, how-
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ever, Sis a closed surface, the number of such intersections 
will always be even. In moving along the line @ in the direc
tion of increasing x, F 1 , F 3 , etc., which have odd indices, 
represent the values of F at the points of entrance into the 
space enclosed by S; while F 2 , F4 , etc., which have even 
indices, represent the values of Fat the points of exit. Con
struct now upon the rectangular base dy dz a column whose 
axis is parallel to the x-axis. This column will then cut from 
the surface S, at the points of entrance and exit, the elements 
dS1 , dS2 , etc., whose area is given by 

dy dz= ± dS-cos(nx), 

in which (nx) represents the .angle between the x-axis and the 
normal to the surface Sat each particular point of intersection. 
The sign must be taken so that the right-hand side is positive, 
since the elements of surface dS are necessarily positive. n 
will be taken positive toward the interior of the space enclosed 
by S. Then, at the points of entrance, 

dydz= +dS1 -cos (n1x) = +dS3 ·cos (n~), etc., 

and at the points of exit 

dydz = - dS2 -cos (nzX) = - dS4 -cos (n4x), etc. 

Hence 

dy dzf 0Fdr = - F 1 cos (nr't")•dS1 - F 2 cos (nzX)·dS2 - etc. ax . 

If now the integration be performed with respect to y and 
z in order to obtain the total space integral, i.e. if the summa
tion of the products F cos (nx)dS over the whole surface be 
made, there results 

J:;dr = -.! Fcos (nx)-dS, • (20) 

in which on the right-hand side F represents the value of the 
function at the surface element dS. 

Thus by means of this theorem the original integral, which 
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was to be extended over the whole volume, is transformed into 
one which is taken over the surface which encloses the volume. 
From the method of proof it is evident that F must be finite, 
continuous, and single-valued within the space considered, 
since otherwise in the partial integration not only would there 
appear values FI' F 2 , etc., of F corresponding to points on 
the surface, but also values for points inside. 

5. Two General Equations.-Let U be a function which 
contains explicitly x, y, z, and r. Let r represent the dis

au 
tance from the origin, i.e. r2 = x2 + y2 + z2. Let - repre

ax 
sent a differentiation with respect to the variable x as it 
explicitly appears, so that y, z, and r are in this differentiation 

dU 
considered constants. On the other hand let dx represent 

the differential coefficient of U, which arises from a motion dx 
along the x-axis; in which it is to be remembered that in this 
case r varies with x. Then 

dU oU au ar oU oU 
dx - ax+ ar ·ax - ox+ or cos (rx). " (2I) 

ar X 
But (cf. page IJI) ~ = - = cos (rx). Hence ux r 

d~au) a(1au) a(1ou) --- =--- +--- •cos(rx) dx OX ox r ax or r OX ' 

or, since in the differentiation ~ the radius r is constant, 
ox 

d (1 au.) 1 a2u 1 au 1 a2u 
dx ;. OX = -;.··ax2 - ~ ax cos (rx) + rarox cos (rx), 

d (1 au) 1 a2u I au I a2u 
dy ; oy =; • oy~ - ;i oy cos (ry) +;aroy cos (ry), 

d f I au) 1 ci2 u I au I a2 u 
(U \, az =;.' oz2 - ? oz cos(rz) + ;aroz cos (rz). 

(22) 
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Now let ~~ represent the ratio of the total change in U to a 

change in r, which arises from a motion dr along the fixed 
direction r. This change in U is a combination of several 
partial changes: First, U varirs with r as it explicitly occurs, 

the amount of this variation being ~~- Second, it varies 

because x, y, z, which occur explicitly in U, are functions 
of r. Further a simple geometrical consideration shows that 
d.~ = dr cos (rx), dy = dr cos (ry), dz = dr cos (rz), hence 

dU au au aU au 
dr = o/ + OX cos (rx) + oy cos (ry) + oz cos (rz). (23) 

If in this equation Ube replaced by ~~. the result is 

Addition of the three equations (22) gives, in consideration of 
(23) and (24), 

d (l oU) d(I aU) d(l au) 
dx r ox + dy r oy + dz r oz = 

l(ciU o2U o2U o2U) I d(aU) I (dU oU) 
r ox2 + oy~ + o.i'1 or + r dr or r dr or • 

But 

I d(aU) I oU l d( au) 
r dr or + r or - r dr r or • . (26) 

If equation (25) be multiplied by the volume element dr = 
dxdydz and integrated over a space within which! ~u, ~ oU, 

rvX ray 

~ ~ U are finite, continuous, and single-valued, and if theorem 
r vZ 
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(20) on page 173 be applied three times,* there results, in 
consideration of ( 26), 

-J!_ { oU cos (nx) + oU cos (ny) + ~U cos (nz)} dS = 
r OX oy oz 

j "'1(a2u 02u 02u 02U\ /1 d( au 1 
r ax2+ay2 + oz2- o7JdT+ rdr r or -UlT· <21) 

The space over which the integration is extended evidently 
I 

cannot contain the origin, since there - becomes infinite. 
r 

Now two cases are to be distinguished: I. The space over 
which the integration is extended is bounded by a surface S 
which does not include the origin; II. The outer surface S of 
that space does include the origin. 

CASE II. In this case, which will be first considered, con
ceive the origin to be excluded from the space over which the 
integration is extended by means of a sphere K of small radius 
p about the origin as a centre. The region of integrz.tion has 
then two boundaries, the outer one the surface S, the inner 
one the surface K of the sphere. The surface integral of 
equation (27) is therefore to be extended over both these sur• 
faces. The value of the integral over the surface K is, how• 
ever, not finite when P is infinitely small, since this surface is 
an infinitesimal of the second order with respect to p, and r 
appears in the denominator of the left-hand side of (27) in the 
first power only. Further, 

au oU au au 
~ cos (nx) + ~ cos (ny) + -d. cos (nz) = -:::,, (28) 
uX ~ z un 

in which au: an is the differential coefficient which arises from 
a motion on in the positive direction along the normal n to S 

* The symbol tx which appears in equation (20) has the same meaning as ! 
here. That equation is also to be applied in this case when the differentiation is 
taken with respect toy and •· 
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when r i's treated as a constant. Hence the left-hand side of 
equation (27) becomes 

-J~ auds 
ran ' 

and this integral is to be taken over the outer surface only, 
not over the small spherical surface K. 

The last term on the right-hand side of (27) will now be 
transformed by writing 

dz = rd</> dr, . (29) 

i.e. the volume element is now conceived as the section cut 
by an elementary cone of solid angle d<P from a spherical 
shell whose inner and outer radii are r and r + dr respec
tively. Then 

J~t(r~~ - u)dr = Jd<P 1~r-1(r~~ - u) = 

J d<P I (rau - u) _ -(rau - u) l. (30) 1 ar r = ,, ar . r = p f 
r denotes the value of r upon the outer surface S of the region 

oi integration. If now pis infinitely small, the quantity r~~ 
has no finite value· for r = p. Furthermore, in the limit 
(P = o) 

f d<P·(U)r=p = 41tUo, (31) 

in which U0 represents the value of U at the origin. Again, 
since 

r2d<P = - dS cos (nr), 

if the positive direction of r be away from the origin, then 

f di,rau - u) = -fds-cos (nr)(~ au - u) 
ar r=r r ar r 

= - f dS,cos (nr) :)~). (33) 
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which integral is to be extended over the outer surface S. It 
follows therefote from (27), in consideration of (30), (31), and 
(33), that 

f { 1 au o (u } - -- - cos (nr) - -) dS = r on , or r 

f l (o2U o2U o2U o2U) 
; o.r + o.r + oz2 - or d-r +411Uo· (34) 

In this equation the volume integral may be extended over the 
whole space included within the surface S, since the infinitely 
small sphere K whose volume is proportional to P3 adds when 
p = o an infinitely small amount to the integral, because r 
appears in the denominator in the first power only. 

CASE I. If the surface does not enclose the origin, the dis
cussion is exactly the same, save that it is unnecessary to 
construct the sphere K. In order to integrate the last term 
of the right-hand side of (27), assume as before 

dr = r2d<f,dr; 

but now the limits of integration are not p and r, but r 1 and 
r 2 , which represent the two distances from the origin at which 
the axis of the elementary cone of solid angle dq, intercepts 
the surface S. Hence 

! !_ _1 (r oU - u)d-r = 
rdr or 

j d</> { (r ~u - u) - (r0 u - u) } . (30') 
or r= r, or r=r, 

If now dS represent a surface element which the elementary 
cone cuts from the surface S, then, at the point of entrance of 
the elementary cone into the enclosed space, since n, the 
normal to S, is drawn inward, 

r?d</J = + dS ,cos (nr), 

while at the point of exit 

rld</> = - dS-cos (nr). 
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Hence the volume integral (30') may be written as the surface 
integral 

= - J dS.cos(nr>(; 00:-~-)=-J dS-cos (nr)!r(~)-(30') 

Hence for this case ( 2 7) becomes 

-j{~au -cos(nr)~tu)}dS= 
r on or\ r 

JI (a2u o2U o2U ?J2U,) 
r o.r + oy2 + oz2 - or dr. • (34') 

6. Rigorous Formulation of Huygens' Principle.-The 
following application will be made of (34) and (34'): Let s be 
the light disturbance at any point, s0 the value of s at the 
ongm. s satisfies the differential equation (12) on page 169. 
U will now be understood to be that function which is obtained 
by replacing in s the argument t (time) by t - r/v. This 
will be expressed by 

U = s(t - r/v). 
It is then evident that U0 :---- s0 , since at the origin r = o. 
Furthermore, from ( 1 2 ), 

o2U (o2U ?iU c2U\ 
at = v2 o.r + or + ozi"I• 

but since U is a function oft - r/v, (cf. equations (17) and 
(18), page 171) the following relation also holds: 

?J2U -a2u 
oP - V2or2 • 

Hence, from the last two equations, 

o2U a2U 02U o3U 
?J.r + oy+ oz2 = or· 

Hence (34) gives, for the case in which the origin lies within 
the surf ace S, 

los(t- riv) } J r I os(t - r IV) 
4"So = or cos (nr) - ;. - on dS. (3S) 
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This equation may be interpreted in the following way: 
The light disturbance s0 at any point P 0 (which has been taken 
as origin) may be looked upon as the superposition of distu,·b
ances which are propagated with a vclocit_.11 V toward P 0 from 
the surface ekments dS of any closed surf ace whick inclztdes the 
point P 0• For, since the elements of the surface integral (35) 
art: functions of the argument t - r / v, any given phase of the 
elementary disturbance will exist at P0 , r / v seconds after it 
has existed at dS. 

In this interpretation of (35) it is easy to recognize the 
foundation of the original Huygens' principle, but the condition 
of vibration of the separate sources dS is much more compli
cated than was required by the earlier conceptions, according 
to which the elements of the integration were simply propor
tional to s(t - ,., / v) (cf. (4) on page 163). 

Further, it is possible to calculate from equation (35) the 

disturbance s0 at the point P0 if the disturbances s and os are 
on 

known over any closed surface S. In certain cases these are 
known, as, for instance, when the source is a point and the 
spreading of the light is not disturbed by screens or changes 
in the homogeneity of the space. In this case, to be sure, s0 

can be determined directly; nevertheless, for the sake of what 
fo!lows, it will be useful to calculate it from (35). 

Let the source Q lie outside of the closed surface S. Let 
the disturbance at any point P which lies upon S and is 
distant r 1 from the source Q be represented by 

A ( t r1) s = - cos 21r T - T . 
rl 

Then 
OS OS 
.::;;-- = ~ cos (nr1), 
un ur1 

or 

as { A ( t r1) - = cos (nr ) - - cos 21r - - -on l ,.12 T A 
21rA • ( t r1)} + Ari Sin 27r T - "I • 

(36) 

(31) 
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Now r 1 must be large in comparison with l, hence the first 
term is negligible in comparison with the second, so that 

os(t- riv) 21rA. (t r+r1) 
on = cos (m·.)· Ari sm 27T T - --A- . 

Further, from (36), 

s(t - riv)=!!_ cos 21r(!__ - r + r1). 
r rr1 T A. 

If this expression be differentiated with respect to r, a term 
may again be neglected as in (37), since r also is large in 
comparison with it; hence 

os(t - riv) 
r 27rA . (t r+r1) __ -::. ___ = y- sm 21r T- ---.-. 

ur rr1 A 
(39) 

Substitution of the values (38) and (39) in (35) gives 

Al 1 • (t r+r\ s0 = 2 ;t rr
1 

sm 21r T ---x--11[cos (nr) - cos (nr1)]dS. 

This equation contains the principle of Fresnel stated above 
on page 163, but with the foJiowing improvements: 

1. Fresnel's factor k is here determined directly from the 
differential equation for s, which constitutes the basis of the 
theory. Consider, for example, an element dS which lies at 
the point 1l10 (Fig. 61) along the line QP0 ; then for this ele-

S 

FIG. 61. 

ment cos (nr) = - cos (nr1), since the positive directions of r 
and r 1 are opposite. Hence Fresnel's radiation factor k is 

,. _ cos (nr) 
&- 1. • 
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If dS is perpendicular to QP0 , then cos (nr) = - 1, and, 
save for the sign, the factor k1 ( cf. page I 69) of the central zone 
has been deduced in an indirect way. 

2. For an element dS, which lies at Mo' (Fig. 61), the 
positive directions of r and r 1 are the same, i.e. 

cos (nr) - cos (nr1) = o. 

Hence the influence of this element upon the value of s0 dis
appears, i.e. the elementary waves are not propagated back
ward as they should be according to Huygens' and Fresnel's 
conceptions of the principle. It is at once evident that this 
disappearance of the waves which travel backward is a conse
quence of the fact that in (35) every elementary effect appears 
as the difference of two quantities. 

3. The phase at P O is determined correctly, being the same 
as that due to the direct propagation from Q to P0. For 
surface elements dS which lie at M0 perpendicular to QP0 are 
multiplied in (40) by the factor 

. ( t r + r 1) - sm 211 T - --1- , 

and hence the effect is the same as though these surface ele• 

ments vibrated in a phase which is !!. ahead·* of that of the di~ 
2 

rect wave from Q to dS, which, in accordance with (36), woulo 

lead to the expression cos z,r-( ~ - r 1 r 1 ). When the inte

gration is performed over the surface S there is again obtained 

for the point P 0 : + cos 211(; - at 6)T not, as in Fresnel's 

* If the light disturbance be assumed to exist not as a convex, but as a con. 
cave, spherical wave, which travels toward a point Q outside of S, the considcra. 
tions are somewhat modified, as may be seen from (35). (In Mascart, Traitc! d'Op. 
tique, I, p. 26o, Paris, 1889, this case is worked out.) Under some circumstan. 
ces this case is of great importance for interference phenomena. Cf. Gouy, C. R. 
110, p. 1251; 111, p. 33, 1890. Also Wied, Beibl, 14, p. 96g. 
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calculation, sin 21r( ~ - a 1,=--?) (cf. page 169). Thus this 

contradiction in Fresnel's theory is also removed. 
Now if any screen be introduced, the problem of rigorously 

determining s0 is extremely complicated, since, on account of 
the presence of the screen, the light disturbance s at a given 
point P is different from the disturbance s which would be 
produced by the sources alone if the screen were absent. In 
order to obtain an approximate solution of the problem, the 
assumption may be made that, if the screen is perfectly opaque 

and does not reflect light, both s and !s vanish at points which 
ult 

lie close to that side of the screen which is turned away from 
the source; while, for points which are not protected from the 
sources by the screen, the disturbances has the values which 
it would have in free space. 

In fact this was the method of procedure in the above 
presentation of Fresnel's theory. Then, starting from equa
tion (40), by constructing the surface S so that as much as 
possible lies on the side of the screen remote from the source, 
a very approximate calculation of the disturbance s0 at any 
point P 0 may be made. Only the unprotected elements 
appear in (40). It is immaterial what particular form be given 
to this unprotected surface, provided only that it be bounded 
by the openings in the screen. This result can be deduced 
from equation (34') on page I 79, which shows that the right
hand side of (40) becomes zero for this case, if the closed 
surface S excludes the point P 0 (and also the source Q), for 
which s0 is to be calculated. Hence if the integral s0 of equa
tion (40) be taken over an unclosed surface S which is bounded 
by a curve C, and if another surface S' be constructed which 
is likewise bounded by C, then S + S' may be looked upon as 
one single closed surface which does not include the origin P 0. 
(34') shows that the sum s0 + s0' of the two integrals extended 
over S and S' vanishes. But in this n is always drawn toward 
the interior of the closed surface formed by 5 and S', so that, 
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if the positive direction of the normal to S points toward the 
side upon which P

0 
lies, then the positive direction of the 

normal to S' points away from this side. If then the positive 
direction of the normal to S' be taken toward the side upon 
which P0 lies, the sign of the integral s

0
' becomes reversed. 

Hence it follows that s0 - s0 ' = o, or s
0 
= s0 ', or, expressed 

in words: Tke infrgral s0 , defined by equation (40), ha., the 
same value for all unclosed surfaces S of any form which are 
bounded by a curve C, provided the normal be always reckoned 
positive in the same direction (from the side upon which the 
source lies to that 11pon which P 0 lies), and provided these 
different surfaces S do not enclose ei"ther the source Q or the 
point P 0 for which s

0 
is to be calculated. 

How, now, from equation (40) the rectilinear propagation 
of light, and certain departures from the same, may be 
deduced has already been shown in§ 2 with the aid of Fres
nel's zones. In the following chapter these departures from 
the law of rectilinear propagation, the so-called diffraction 
phenomena, will be more completely treated. 



CHAPTER IV 

DIFFRACTION OF LIGHT 

As is evident from the discussion in § 2 of the preceding 
chapter, diffraction phenomena always appear when the screens 
or the apertures are not too large in comparison with the 
wave length. Rut, as will be seen later, diffraction phe
nomena may appear under certain circumstances even if the 
screen is large, for example at the edge of the geometrical 
shadow cast by a large object. If now, starting with equation 
(40), the diffraction phenomena be calculated in accordance 
with the considerations on page I 82, it must not be forgotten 
that the theoretical results thus obtained are only approximate; 
since, on the one hand, when screens are present, the value of 
s is not exactly the same at unprotected points as it would be 
with undisturbed propagation, and, on the other hand, at pro-

tected points s and els do not entirely vanish. The appro~i-on 
mation is more and more close ~ 

as tlte size of the apertures in the 
screens is increased ; in fact the 
approximate results obtained 
from theory agree well with ex
periment if the apertures are not 
unusually small. The rigorous 
theory of diffraction will be pre
sented in § 7 of this chapter. 

1. General Treatment of Dif
fraction Phenomena.-Assume 
that between the source Q and 
the point P0 there is introduced a plane 

ig:XO!JoZo 
FIG, 62, 

r 

screen S which is of 
185 
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infinite extent and contains an opening <T of any form. Let 
this opening be small in comparison with its distance r1 from 
the source Q, and also in comparison with its distance ,- from 
the point P 0 at which the disturbance s0 is to be calculated by 
equation (40) of the preceding chapter. In performing the 
integration over <T the angles (nr) and (nr1) are, on account of 
the smallness of <T, to be considered constant; likewise the 
quantities r and r 1 whenever they are not divided by ;\ ; hence 

A cos (nr) - cos (nr1)J. ( t r + r 1\ J (·) 
s0 = -.. . sm 21r T - -~-Ja<r. , 

211, rr1 "' 

Assume now a rectangular coordinate system x, y, z. 
Let the xy-plane coincide with the screen S, and let some 
point P in the opening <T have the coordinates x and y. Let 
x1 , Yi, z1 be the coordinates of the source, z1 being positive; 
and x 0, y 0, z0 those of P 0. z0 is then negative. Then 

r 12=(x1-x)2+(Yi-y)2+z12, r= (x0-x)2+(y0 -y)2+z02• (2) 

Let the distances of Q and P 0 from the origin be P1 and p0 
respectively; then 

P/ = x 12 + Y12 + z/, Po2 = Xo2 + Yo2 + zl. (3) 

Then the following relations hold: 

r = p~✓ I + .r + Y2 - ,:)XXo + yy0)_ j 
(4) 

The dimensions of the opening <T and its distance from the 
origin are to be small with respect to p1 and p0. Hence, in 
the integration over <r, x and y are small with respect to p. 
If now the expression ( 4) be expanded in a series with increas
ing powers of x/p1 , y/P1 and x/p0 , y/P0 , and if powers 
higher than the second be neglected, there results, since 

(1 + e)l = 1 + j-e - ¼e2 provided e is small in comparison 
with 1, 
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(S) 

(6) 

Denoting the direction cosines of P 1 and p0 by c.r1 , P1 , y 1 

and c.r0 , Po, y0 , respectively, in which the positive directions 
of p1 and p0 point away from the origin, then 

x. Y1 Xo Yo 
«. = -, P1 = -; c.ro = -, Po=-. 

P1 P1 Po Po 
Hence the addition of (S) and (6) gives 

r1+ r = P1+P0 -x(a1 +ao)-y(P.+ .80)+ .r+2 J\¾+!_) 
r-1 Po 

(x«1 + Yfl1)2 (.x-l.ro + YPo)2 
2P1 2P0 

Substituting this value in (1) and writing for brevity 

(1) becomes 

i\.' 
r 1 + r = P1 + P0 + f(x, y) • 2 " 

t P1 + P0 t'* 
T--i\.-=T' 

A cos (nr) - cos (nr1) _ A' 
2i\. rr1 - ' 

So= A' sin 2'1t rf cos [.Ax, y)Jd<T { 
t' 

(7) 

(8) 

(9) 

r l 
- cos 2"r/sin [f(x,y)]du f. (10) 

s0 may therefore be conceived as due to the superposition 
of two waves whose amplitudes are proportional to 

C = J cos [fix, y)]d<T, 

S = J sin [fix, y)]du, . . (11)) 

* This change displaces the origin of time. 
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7r 
and whose difference of phase is - . Hence, from the law on 

2 

page I 3 I [cf. equation ( 1 I)], the intensity of illumination of 
the light at the point P 0 is 

J = A' 2(C2 + .52). (12) 

Now two cases are to be distinguished: I. That in which 
both the source and the point P 0 lie at finite distances (Fresnel's 
diffraction phenomena); and 2. That in which the source and 
P0 are infinitely far apart (Fraunkofer' s diffraction phenomena). 

2. Fresnel's Diffraction Phenomena.-Let the origin lie 
upon the line QP O and in the plane of the screen. Then p1 

and p0 lie in the same straight line, but have opposite signs, 
hence 

a,= -ao, 

A comparison of equations 
define/{x,y), gives 

fl1 = - flo• 
(8) with equations (9), which 

f(x, .r) = x( _!__ + _!-)[.r + .r2 - (xa1 + y/J1)2]. 
Pi Po 

This equation may be still further simplified by choosing as 
the x-axis the projection of QP0 upon the screen. Then 
/J1 = o. Also if the angle which P1 makes with the z-axis be 
represented by </J, then 

"( I I ) f(x, y) =- -+ - [x2,cos2 </) + y]. 
;t P1 P0 

In order to avoid the necessity of interrupting the discussion 
later by lengthy calculations, a few mathematical considera
tions will be introduced here. 

3. Fresnel's lntegrals.-The characteristics of the func
tions which are known as Fresnel'!> integrals will here be dis
cussed geometrically.* There are two of these integrals, 
namely, 

f 'IJ 1tv2 f'IJ 1tv2 
I; = cos 2 dv, 1/ = sin 2 -dv . . 

I 0 

• This method was proposed by Cornu in Jour. de Phys. 3, 1874-
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The ~ and 1/ which correspond to each particular value of 
the parameter v may be thought of as the rectangular coordi
nates of a point E. Then, as v changes continuously, E 
describes a curve whose form will be here determined. 

Since, when v = o, ~ = 1/ = o, the curve passes through 
the origin. When v changes to - v, the expression under the 
integral is not altered, but the upper limit of the integral, and 
hence also ~ and 1/, change sign. Hence the origin is a centre 
of symcietry for the curve, for to every point + ~. + 1/, there 
corresponds a point - ~. - 7/. The projections of an element 
of arc ds of the curve upon the axes are, by (15), 

'lttr 1t1r 
dE = dv-cos - , dT/ = dv-sin -. (16) 

2 2 

Hence 
ds = i/'d/;2 + drf = dv, 

or, if the length s be measured from the origin, 

s = 'll. (17) 

The angle -r which is included between the tangent to the 
curve at any point E and the ~-axis is given by 

dTJ 'l(tr . 1t 
tan -r = de= tan 2 , 1.e. -r = 2 v2 (18) 

Hence at the origin the curve is parallel to the e-axis; when 
v = 1, i.e. when the arc s = I, it is parallel to the 11-axis; 
-when s2 = 2 it is parallel to the ~-axis; when s2 = 3 it is 
paral1el to the 11-axis; etc. 

The radius of curvature p of the curve at any point E 1s 

given by [cf. (17) and (18)] 
• ds I 

P = d-r = 1tv 

I 

1ts 

Hence at the origin, where v = o, there is a point of inflec
tion. .A3 v i.Dcreases, i.e. as the arc increases, p continually 
diminishes. Hence the curve is a double spiral, without 
double points, which winds itself about the two asymptotic 
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points F and F', whose position is determined by v = + oo 
and v = - oo . The coordinates of these points will now be 
calculated. For F, 

~F = cos ,r2 dv, 1"' v 
. (20) 

To obtain the value of this definite integral set 

1;-x'dx = M. t21) 

If y is the variable, then also 

;:;-,'dy = M. 

The product of these two definite integrals is 

1"°1;-<x•+,•>dxdy = M2. . (22) 

If now x and y be conceived as the rectangular coordinates 
of a point P, then ..r + y = r, in which r is the distance of P 
from the origin. Furthermore dx dy may be looked upon as a 
surface element in the xy-plane. But if a surface element be 
bounded by two infinitely small arcs which have the origin as 
centre, subtend the angle d</> at the centre, and are at a dis
tance dr apart, then its area do is 

do= rdrd</>. . . (23) 

Hence, since the integration is to be taken over one quad
rant of the coordinate plane, (22) may be written 

But now 

Hence 

1 ... ;.f"° 
M 2 = d</> e - ... ,,. dr. . 

0 

l e - ... ,,. dr = - ~e - ,., 
2 , 

,r 
Jf3 = -, 

4 
I -lif=-v1r. 
2 

. (25) 
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Writing in (21) for x 

1rv2 . ~ 
x2 = - i 2 , i.e. x = vy ~• 

m which i represents the imaginary, there results from (2 I) 
and (25) 

or, because 

But since 

Hr ;'"'' I -
e 3 dv = - y',r 

2 ' 
0 

1"';".:'.? 1+i 
e • dv= --. 

2 
0 

;•v• 7CV2 • • 1Cv2 
e a = cos - + z sm -

2 2 ' 

it follows, by equating th~ real and the imaginary parts of (27), 
that 

l oo 7Cv2 l 
cos -dv = -, 

2 2 
0 

l oo. 1CV2 I 
sm -dv=-· 

2 2 
0 

Hence, in accordance with (20), the asymptotic point F has the 
coordinates tF = 17F = ½- The form of the curve is therefore 
that given in Fig. 63. The curve may be constructed in the 
following way: Move from o along the t-axis a distance 

s = o. l. Construct a circle of radiua p = ~ = 1.0 which 
7CS 7C 

passes through the point o and whose centre lies upon a line 
which passes through the point s = o. I and makes with the 

1CS2 7C 
17-axis the angle -r = - = o. o I - [ cf. ( 18)]. On the circle 

2 2 

thus constructed lay off from o the arcs = o. I. Through its end 
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point draw another circular arc of radius p = !- = - 1- = J. 
7CS 7C•O.2 1t: 

whose centre lies upon a line which passes through the point 

') ,., 

u 

',O 

0,1 

FIG. 63. 

s = o. I on the curve and which makes with the 11-axis an 
1Cs2 -n: 

angle -r = - = 0.04-. Proceeding in this way, the entire 
2 2 

curve may be constructed. 
4. Diffraction by a Straight Edge.-Resume the notation 

of § 2. Let the y-axis be parallel to the edge of the screen, 
and let the screen extend from x = + oo to x = x' (the edge 
of the screen, cf. Fig. 64). In the figure x' is positive, i.e. 
P 0 lies outside of the geometrical shadow of the screen. Con
sider the intensity of the light in a plane which passes through 
the source Q and is perpendicular to the edge of the screen. 
QP0 then lies in the xz-plane. Equation (14) is here appli-
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cable, and gives, in combination with (11), the following ex
pressions to be evaluated: 

C = j.r'j}x
00

dy cos[;(;+ !.-){.r cos2 <f, + r)],} 
m - m 1 Po ( ) . 30 

S = 1~1:x00

dy sin[x(~+ _!_-)<.r cos2 <fJ+ya)J. 
_ m _ m Pi Po 

It is necessary first to justify the extension in this case of the 
integration over the whole portion of the xy-plane not covered 
by the screen, for it will be remembered that in the preceding 
discussion ( cf. page I 86) the integral was extended only over 
an opening all of whose points lay at distances from the origin 
which were small in comparison with Pi and p0• As a matter 

I 

FIG. 64. 

of fact such a limited region of integration is in itself determina, 
tive of the intensity J of the light at the point P 0 , since it 
includes the central zones, and indeed a large number of them. 
An extension of the integration over a larger region adds 
nothing to J, since, as was previously shown, the edge of the 
screen exerts no further influence upon the intensity at the 
point P 0 when it is many zones distant from the line connect-
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ing P 0 and Q. Hence in (30) the result is not altered when 
the integration is taken over the entire portion of the ..!,)'-plane 
not covered by the screen. 

Substitution in (30) of 

~(~ + !..)x2 cos2 ¢, = 1t,zr' 
A. P1 P0 2 

gives 

I jv'j+oo 'Ir 
C = ------ . dv du cos -(v2 + 112) 

2(1 I) 2 ' cos <P • - - + - - °' - OO 

i\. P1 Po 

I ;•,/;•+oo 
S = ------- · dv du sin ~(v2 + u2) 

21 I I) 2 ' cos¢>•-\-+- - 00 _., 

i\. P1 P0 

in which 

1 1 ✓2( I I) fJ = X cos </> X - + - • 
Pi Po 

(33) 

If in (32) the following substitution be made, 

7t 7CV2 1tU2 7CV2 1tU2 
cos -(v2 + u2) = cos --cos - - sin - sin -

2 2 2 2 2' 

7C 
and for sin 2-(v2 + u2) the analogous expression, the integration 

with respect to u may be immediately performed and there re
sults, in consideration of (29), 

(34) 

f= (I I) 
2 cos </J -+ --

Pi Po 

, (35) 
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Hence it follows from (12) that 

J= 2A'2 .p. ~ (i~os 7r:dv)2+ (J;n 7r;2dvYf • 

1 95 

(36) 

The value of A' is given in (9 ), page 187. Since, according to 
the observations on the preceding page, only those portions of 
the .xy-plane which lie near the origin are in the integration 
determinative of the intensity J at the point P 0 , it is possible 
to set in the expression for A' 

r = p
0

, r
1 

= pl' cos {nr) = - cos (nr
1

) =cos</>. 

Hence 

A'·f = ( A ). 
2 Po+ P1 

(37) 

The two Fresnel integrals which occur in (36) will be inter
preted geometrically as in § 3. If the coordinates of a point 
E of the curve of Fig. 63 be represented by the above 
equations (15), i.e. by 

1" 7rv2 
t= cos -dv 

2 ' 
0 

and the coo,:_dinates of another point E' on the curve, corre
sponding to the parameter v', by 

' 

i
v' 1CV2 I iv'. 7rv2 t' = cos 2 dv, 11 = 

0 
sm 2 dv, 

then evidently 

f v' v2 
cos ~dv = t' - & , i v'• 'ICV I 

sm 2 dv = 11 - 7/. 

The sum of the squares of these two integrals zs then equal to 
the square of the distance between the two points E and E' of 
the curve in Fig. 63. The point E = F' corresponds to the 
parameter v = - oo . Hence if the distance of the point F' 
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from a point E', which corresponds to a parameter v', be 
represented by (- oo, v'), then, by (36) and (37), 

A2 ( I 2 

J = 2(Po + P1)2 • - 00 ' 1-' ) • (38) 

From the form of the. curve in Fig. 63 it is evident that J has 
maxima and minima for positive values of v', z".e. for cases in 
wltz"ch P0 lies outside the geometrz"cal shadow of the screen. But 
when P 0 lies z"nsz"de the shad<rdJ, tlze intensity of tlze light 
decreases continuously as P 0 moves back into the shadow; for 
in this case v' is negative and the point E' continuously 
approaches the point F'. 

If v' = + oo, then (- oo, + oo )2 = 2, since each of the 
points F and F' has the coordinates t = 17 = ½- In this case 
P 0 lies far outside of the geometrical shadow, and by (38) the 
;ntensity is the same as though no screen were present. For 
v' = o, P 0 lies at the edge of the geometrical shadow, in which 
c:ise (- oo, 0)2 = i, and, by (38), the intensity is one fourth 
the natural intensity. 

The rigorous calculation of the maxima and minima of 
intensity when P 0 lies outside the shadow will not be given 
here.* It is evident from Fig. 63 that these maxima and 
minima lie approximately at the intersections of the line FF' 
with the curve. Since this line cuts the curve nearly at right 
angles, it is evident that at the maxima the angle of inclination 
-r of the curve with the t-axis is (¾ + 2h)1r, at the minima 
-r = (¼ + 2h)1C, in which h = o, 1, 2, etc. Hence at the 

maxima, cf. equation (18) on page 189, v' = v'f + 4h, at the 

mm1ma, v' = t't + 4h. Now in order to determine the 
position of the diffraction fringes, conceive the screen so 

* Cf. Fresnel, <Euvr. comp). I, p. 322. For a development in series of 
Fresnel's integrals, cf. F. Neumann, Vories, ii. theor. Optik. herausgeg. von 
Dorn, Leipzig, 1885, p. 62. Lommel in the Abhandl. d. bayr. Akad., Vol. 15, 
p. 229, 529, treats very fully, both theoretically and experimentally, the diffraction 
produced by circles and straight edges. 
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rotated * about its edge that it stands perpendicular to the 
shortest line a which can be drawn from Q to the edge 
(cf. Fig. 64). Then P, =a: cos </>. Further, draw through 
P 0 a line parallel to the x-axis, and let the distance of P 0 from 
the geometrical shadow of the screen measured along this line 
be represented by d. Then x': d =a: a+ b. Hence d 
denotes the distance of the point P 0 from the geometrical 
shadow, in a plane which lies a distance b behind the screen. 
Introducing now in (33) the quantity din place of x', and set
ting p1 = a, Po = b, which is allowable since cos </> does not 
differ appreciably from I provided P 0 be taken in the neigh
borhood of the shadow, there results 

v'=d~=d:p, (39) 

in which f is an abbreviation for 

-~b(a+b) P- . 
2a 

There are therefore maxima of intensity when d = p v'J- + 4h, 
i.e. when 

d,=p-1.225; d2 =P•2.345; d3 =P·3.082, etc., 

minima when d = p q. + 4h, i.e. when 

d/ = P· 1.871; d/ = p-2.739; d3' = P· 3.391, etc. 

The exact values differ only slightly from the approximate ones, 
which are also in agreement with observation. t 

According to (38) the intensity of the light at these max
ima and minima may be determined by measuring the suc
cessive sections which the line FF' cuts from the curve. 
Thus, if the free intensity be 1, the maxima are 

J,=1.34; J2=I.20; J3=I.16; 

* Such a rotation of the screen and corresponding rotation of the free surface 
oYer which the integration is extended produces no change in the result (cf. propo
sition on page 184). 

t The diffraction fringes may be observed either by means of a suitably place4 
screen or a lens with a micrometer (cf. p. 133, note). 
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the minima, 

Ji'= 0.78; J 2' = 0.84; J 3' = 0.87. 

From a more exact evaluation of his integrals Fresnel 
obtained values differing but little from these. 

5. Diffraction through a Narrow Slit.-Using the same 
coordinate system and the same notation as in the preceding 
paragraph, the intensity of the light will be investigated in a 
plane which passes through the source Q and is perpendicular 

Q to the edges of the slit. This 
% • plane is the ..rz-plane (cf. Fig. 

65). Let the x coordinates of 
the edges of the slit he x 1 and x 2• 

If the point P 0 , at which the in

----,,----1.;:_-t--::-=-._-::.,-------x tensity is to be calculated, lies 
x, in the geometrical shadow of 

b 

P,, d 
FIG. 65. 

one of the screens which bound 
the slit on either side, then x 1 

and x 2 are either both positive 
or both negative. But if the 
line connecting Q with P 0 passes 
through the open slit, then the 
signs of x 1 and x 2 are opposite. 

This case is shown in Fig. 65. It will be assumed that the 
source Q lies directly above the middle of the slit, as shown in 
the figure. Let o be the width of the slit. Then 

x, - Xz = o, xl - lo : d = a : a+ b. . (41) 

a and b may without appreciable error be replaced by p1 and 
p0 , since when o is small the inclination of P1 to a is also small. 

Introducing again the quantity v which is defined by (31) 
on page 194, and calling v1 and v2 the values of v which 
correspond to the limits of integration x 1 and x2 , the intensity 
of light at P 0 is, as in (38), 

J=2(Po~P,)2(vl' v2)2, • (42) 
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in which (v1 , v2) represents the distance between the two 
points of the curve in Fig. 63 which correspond to the param
eters t'i and v2• But now, by (4 I) und (3 I), 

(43) 

in which p has the same meaning as in (40). If now it is 
desired to investigate the distribution of light in a plane which 
lies a distance b behind the screen, the dependence of equation 
(42) upon d must be discussed. According to (43) the differ
ence between the parameters is constant. Hence the question 
is, how does the distance vary between the two points v1 and v2 

whose distance apart, when measured along the arc of the 
curve in Fig. 63, has the constant values= v1 - v/ Assume 
first a slit so small that the length of the constant arc s is about 
o. I,* then the curve shows that the intensity remains constant 
from d = o up to a large value of v1 , i.e. of d, and then 
gradually decreases when v1 and v2 both attain very large posi
tive or negative values, i.e. when P 0 lies very far within the 
geometrical shadow. Hence when the slit is narrow the 
geometrical shadow cannot be even approximately located, for 
the light is distributed almost evenly (diffused t) over a large 
region, and there is nowhere a sharp shadow formed. 

If the width of the slit is somewhat larger (though still but 
a small fraction of a mm.), so that the constant arc length s 
amounts to 0.5, then the curve of Fig. 63 shows 
that here too the light extends far into the © 
geometrical shadow, and that maxima and 
minima of intensity occur only when v1 and v2 ' .., 

have like signs, i.e. diffraction fringes are formed • "> 
only within the geometrical shadow. Sharp 
minima exist ( cf. Fig. 66) when the tangents to FIG. 66. 

the two points v1 and v2 of the curve are parallel so that their 

* For a = b = 20 cm., l5 must be about 30A. to attain this. 
t Diffusion of light must always occur, as can be shown from the construction 

of the Fresnel zones, if the width of the slit 8 < i"-· 
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angles ( cf. page I 89) differ from each other by a whole multiple 

of 21t. Since now, by (18) on page 189, -r = ~v2, the positions 
2 

of the diffraction fringes must be given by 

1!.(v
1

2 

- v
2

2

) = ± 2lt1t, i.e. ('Z'
1 

- v
2
)(11i + v

2
) = ± 4k, 

2 

or, in consideration of (43), by 

d· o = ± klb, k = 1, 2, 3 . . . . (44) 
These fringes are then equidistant and independent of a, i.e. 
of the distance of the source from the screen. 

If the slit is made broader, or if a and b are reduced, the 
width of the slit remaining unchanged, so that the difference 
v1 - v2 is essentially increased, then diffraction fringes may 
also appear, as is shown by Fig. 63, when v1 and v2 have 
opposite signs, i.e. outside of the geometrical shadow. For a 
given value of v1 - v2 the numerical value of J corresponding 
to any particular .,alue of d may be determined from the curve 
with a close degree of approximation. When the slit becomes 
very broad, i.e. when v1 - v2 is very large, the case approaches 
that treated in§ 4 above. 

At the mid-point where d = o, J never vanishes. But for 
given values of a and o, the value of b determines whether J is 
a maximum or a mm1mum. Since when d = o, v1 and v2 are 
equal and of opposite sign, the line connecting them passes 
through the origin (cf. Fig. 63). Hence the points of inter
section of the curve with the line FF' determine approxi
mately the maxima and minima, i.e. (cf. page 196) there are 

Maxima when v1 = ¥¾ + 4k, 

Minima when v1 = t't + 4k, 
or, according to (43), since v2 = - v1 , 

Maxima when :~ (; + i) = ¾ + 4k, } . 

Minima when °2 (!. + ~) = !.. + 4k 
2A. a b 2 ' 

k = o, I, 2, 3 ... 

(45) 
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6. Diffraction by a Narrow Screen.*-Let the screen have 
the width o, and let the source Q lie at a distance a directly 
over its mid-point. Consider the intensity of the light in a 
plane (the xz-plane) which passes through Q and is perpendic
ular to the parallel edges of the screen. Use the preceding 
notation (cf. Fig. 65), and let x 1 and x 2 be the x-coordinates 
of the edges of the screen, v1 and v2 the corresponding values 
of the parameter v. v1 and v2 then satisfy equation (43). The 
intensity of the light J is proportional to the sum of the square 
of the integrals (cf. page 195) 

J"• 1t'lr 1+ .. 1tV2 
M = cos2 dv + cos 2 dv, .. "• J"• 1t'lr 1 + .. 1tv2 
N = sin 2 dv + sin 2 dv. 

co f't 

Now the first term of Mis equal (cf. the analogous develop
ment on page 195) to the <';°-component of the line which con
nects F' and the point £ 1 which corresponds to the parameter 
v1 (cf. Fig. 67). The second term of kI is equal to the ~-

FIG. 67. 

component of the line (E2F) in which the point E2 corresponds 
to the parameter v2• The two terms in N have similar signifi-

• A straight wire may be conveniently used as such a screen. 
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cations. If the e and r, components of the lines (F'E1) and 
(E~) he denoted by e., e 2, r,., 'f/2, then 

11-12 ---t N2 = ce. + e2)2 + ('f/1 + 'f/2)2. 

If at the end of the line (F' E 1) the line (E1F"), having the 
same length and direction as the line (E2F), be drawn, then 
the line (F'F") has the components e 1 + e 2 , 171 + r,2• The 
intensity J at the point P 0 is then proportional to the square 
of the line (F'F"), which is the geometrical sum of the two 
lines (F' E 1) and (E2F), i.e. 

Ai 
J = ( + )2·(F'F'')2. (46) 

2 Po P1 

From this it appears that the central line (d = o) is always 
bright, although it lies farthest inside the geometrical shadow; 
for along it the values of i'i and v2 are equal and of opposite 
sign, so that the two points E 1 and E 2 in Fig. 67 are sym
metrically placed with respect to the origin, and hence the 
lines F' E 1 and E 2F are equal and have the same direction, so 
that their sum can never be zero. The broader the screen, the 
smaller is the intensity along the middle line. 

If the screen is sufficiently broad so that ,,1 and v2 are large, 
th€ points E 1 and E 2 lie close to F' and F. The lines (F'E1) 

and (E~) are then approximately equal, and complete dark
ness results, provided (F' E 1) and (E2F) are parallel and oppo
site in direction. 

Since, for large values of v1 and v2 , the lines (F' E 1) and 
(FEJ are almost perpendicular to the curve in Fig. 6;-, it.fol
lows that if these lines have the same direction, the tangents 
which are drawn to the curve at E 1 and E 2 are approximately 
parallel to each other; and their positive directions, which are 
taken in the direction of increasing arc, are opposite. Hence 
the difference between the angles which the tangents make 
with thee-axis, i.e. r 1 - r 2 , is an odd multiple of 1t, or since, 

by(18), r = ~v2, dark fringes occur when 
2 



DIFFRACTION OF LIGHT 203 

This becomes, in consideration of (43), 

2do = ± kAb, It= l, 3, 5, etc. 

fhese fringes be ... ome less 01ack as //, mcreases. They are 
equidistant and independent of the distance a of the source 
from the screen. These results hold only inside the geometri-

. a+b 
cal shadow, 1.c. only so long as d < ½o--, and only then 

a 
with close approximation provided the values of <'1 and <'2 which 
correspond to the edges of the screen are sufficiently large, 
i.e. provided the screen is broad enough and the point P0 is 
sufficiently near to it and to the middle line of the shadow. 

As P0 moves toward the edge of the geometrical shadow 
or passes outside of it, maxima and minima occur at different 
positions of P0 which can be determined for every special case 
by the construction given in Fig. 67. The law determining 
the positions of these fringes is, however, not a simple one. 

These examples will suffice to show the utility of the 
geometrical method used by Cornu.* Observation verifies all 
the consequences here deduced. 

7. Rigorous Treatment of Diffraction by a Straight Edge. 
-As was remarked at the beginning of this chapter (page 185 ), 
the foregoing treatment of diffraction phenomena, based upon 
Huygens' principle, is only approximately correct. Now it 
is important to notice that in at least one case, namely, that 
of diffraction by a straight edge, the problem can be solved 
rigorously, as has been shown by Sommerfeld. t This solution 
both furnishes a test of the accuracy of the approximate solu
tion, and also makes it possible to discuss theoretically the 
phenomena when the angle of diffraction is large, i.e. when P0 
lies far within the limits of the geometrical shadow,-a discus
sion which was not possible with the other method, at least 
without making important extensions. 

* Complicated cases are treated by this method hy Mascart, Traite d'Optique, 
Paris, 188g, Vol. I, p. 283. 

t A. Sommerfeld, Math. Annalen, Vol. XLVII, p. 317, 1895. 



204 THEORY OF OPTICS 

In the rigorous treatment of the diffraction phenomena the 
differential equation (12) on page 159, 

o2s (o2s o2s o2s) 
ot2 = v2 a.x-2 + or + az2 ' 

for the light disturbance must be integrated so as to satisfy 
certain boundary conditions which must be fulfilled at tr.e sur
face of the diffraction screen. The form of these conditions 
will be deduced in Section II, Chapters, I, II, and IV; here 
the results of that deduction will be assumed. In the first 
place, to simplify the discussion, assume that the source is an 
infinitely long line parallel to the y-axis. Also let the edge 
of the screen be chosen as the y-axis, and let the x-axis be 
positive on the side of the screen, and the z-axis positive 
toward the source (cf. Fig. 68). In this case it is evident that 

Ill 
Incident light 

F1G. 68. 

s cannot depend upon the coordinate J', so that the above 
equation reduces to 

o2s ( o2s 7l2s\ 
ot2 = v 2 ox2 + oz2)· 

Let the screen be infinitely thin and have an infinite absorp
tion coefficient. It can then transmit no light, but can reflect 
perfectly, as will be shown in Section II. A very thin, highly 
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polished film of silver may constitute such a screen. It is then 
not a '' perfectly black '' screen, but rather one '' perfectly 
white.'' * The boundary conditions at such a screen are: 

(49) s = o, if the incident light is polarized in a plane per
pendicular to the edge of the screen, 

OS 
(so) - = o, if the light is polarized in a plane parallel to the oz 

edge of the screen. t 

The meaning of these symbols and of the word polarized 
will not be explained until the next chapter. Here it is suffi
cient to know that the solution of the differential equation (48) 
must satisfy either (49) or (so). The boundary conditions 
hold upon the surface of the screen, i.e. for z = o, x > o; 
or if polar coordinates are introduced by means of the equa
tions 

x = r cos <I>, z = r sin </>, . 

for </> = o or <I> = 21t. 

If these polar coordinates be introduced into the differential 
equation (48), there results 

o2s (o2s I OS I a2s) 
012 = v 2 or +;or+ r2o</>2 • 

Now a solution of this differential equation, which satisfies 
the boundary condition (49) or (so), gives for the particular 

* A perfectly black screen, i.e. one which neither transmits nor reflects light, is 
realized when the index of refraction of the substance constituting it changes 
gradually at the surface to that of the surrounding medium, and the coefficient of 
absorption at the surface cl1anges gradually to the value zero. Every discontinuity 
in the properties of an optical medium produces necessarily reflection of lighL 
Hence an ideal black screen, consisting of a thin body, with sharp boundaries, at 
which definite boundary conditions can be set up, is inconceivable. 

t As will be seen later in the discussion of the electro-magnetic theory, s has 
not the same meaning in the two equations. In (49) s represents the electric force 
vibrating parallel to the edge of the screen, in (50) the magnetic force vibrating 
parallel to the edge of the screen. The intensity is calculated in both cases in the 
same v.-ay, at least fur the side of the screen which is turned away from the 
source. 
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case in which the source lies at infinity and the incident rays 
make an angle ql with the x-axis 

s=A. 1;i./21'½ { e - ;., 1;:;•:•dv =Fe-ir 1:-;'';•dv f, (53) 

in which 

21tr , 21tr ("' ,,., 
y = T" cos ( </J - c/J'), y = T cos 'f' + 'f' ), 

<F=J8{ sin~(c/J-c/J'), IT'=-✓~sin;(c/J+</J'). 

(54) 

(55) 

In (53) the sign is minus or plus according as it is the con
dition (49) or (50) which must be fulfilled. The letter i denotes 

the imaginary -v'-=-i. Thus the solution of s appears as a 
complex quantity. In order to obtain its physical significance, 
it is only necessary to take into account the real part of this 
quantity. Thus setting 

. t 
s = (A+ Bi)e""T, . (56) 

the physical meaning of s is the real part, i.e. 

A t B . t 
s = cos 21tT - sm 21tT. (57) 

The intensity of the light would in this case be ( cf. similar 
conclusion on page 188) 

J= A2+e . . (58) 

This result could have been obtained from (56) directly by 
multiplying s by the conjugate complex quantity, i.e. by that 
quantity which differs from the right-hand side of (56) only in 

. t 
the sign of i, namely, by (A - Bi)e_'..,1'. For the sake of 
later use this result may be here stated in the following form: 
When the expression for tlte light disturbance s is a complex 
quantity (in which s signifies physically only the real part of 
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this complex quantity), the intensity of tlze light is obtained by 
multiplication by the conjugate complex quantity. 

That equations (53), (54), and (5 S) are a real solution of 
the differential equation (52) can be shown by taking the 
differential coefficients with respect to r and </J.* Also the 
boundary condition (49) is fulfilled when the minus sign is used 
in (53), since for <P = o and <P = 211', y = y', <r = <r'. The 
boundary condition (50) is fulfilled when the plus sign is used 
. . OS I OS . . . 
m (53), smce oz= r o</J for ,P = o, and smce the differential. 

coefficient with respect to <P of the two terms in the brackets 
of (53) take opposite signs for <P= o or <P = 211'. Further
more, that (53) is a solution corresponding to the assumed case 
of a plane wave from an infinitely distant source lying in the 
given direction will be seen from a more detailed discussion. 
But it is first necessary to consider a very important point. If 
the point P 0 , for which s is to be calculated, be made to 
execute a complete revolution in the xz-plane about the edge 
of the screen and at a fixed distance r from it, then <P increases 
an amount 271'. s does not regain its original value, because, 
on account of the factor sin ½(<P =F </J'), <rand <r', in the change 
from <P to <P + 211', have changed their signs. s is therefore 
not a single-valued function of the coordinates. But the 
physical meaning of s demands that it be single-valued. This 
demand can at once be satisfied if, in the change of ¢,, P 0 be 
never allowed to pass through the screen. This restriction 
will be made, so that <P is allowed to vary only between o (the 
shadow side of the screen) and 271' (its light side). 

Three regions are to be distinguished within which s must 
he treated differently: 

1. Tlte region of tlze shadtrdJ: o < <P < <P'. 
and <r' are negative. Hence, for an infinitely 
1·, s is zero. 

From (55), <T 

large value of 

* The way in which Sommerfeld reached this solution cannot here be presented, 
as it would require too long a mathematical deduction,. 
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2. Tlte region of no shadow: <P' < </> < 2:,r - <P'. <r is 
positive, <r' negative. Since, from (27) on page 191, 

J +.. . .. ,,. f"" _,.,,. 
e -•-2-dv = 2 e - •-•-dv = I - i, 

.. 0 

• (59) 

it follows that, for infinitely large values of r, 

The real part of this expression corresponds to plane waves 
which have amplitude A, and whose direction of propagation 
makes the angle <P' with the x-axis. The solution actually 
corresponds then, for large values of r, to the incident light 
from an infinitely distant source Q which lies in the direction <P'. 

3. Tlte region of reflection: 211' - </>' < </> < 211'. <T and <T' 
are positive. Hence, for infinitely large values of r, 

A iow-=Tt { - ; •~,. cos (,f> - ,f>') - i .,,.,. cos (,f> + ,f>') } 
s = •e e A =i= e >. • 

The real part of this expression corresponds to the super
position of the incident plane wave and the plane wave reflected 
at the screen in accordance with the laws of reflection. The 
reflected amplitude is in numerical value equal to the incident 
amplitude. 

Equation (53) may be made more intelligible by again 
making use of the curve of Fig. 63. For, from page 195, 

1,, ,.,,. 
e -i-•-dv = ~ - ir,, 
00 

(60) 

in which ~ and r, are the projections of the line (F' E) upon 
the e and r, axes respectively, and E represents the point of 
the curve corresponding to the parameter <r. Similarly 
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in which t' and r/ are the projections of the line (F' E'), and 
E' is a point of the curve which corresponds to the param
eter <T'. 

Now upon the side of tlze screen turned away from the 
source, o < <P < 1t, and it is to be noticed that, on account 
of the small denominator A (wave length), <r' is always very 
large and negative, provided r be not taken very small. 
Hence, for large values of r, it is possible by equation (61) 
to write approximately /;' = 17' = o, and there results from 
(53) and (60) 

I + i ,-,,,.!.. -iy . 
s = A--e Te• (~ - zr,), 

2 

and by theorem (5 8), for the intensity of the light, 

J= A2 ·(F'E)\ 
2 

Almost the same equation would have been obtained from 
the approximate method of§ 4 above. For, when the source 
is infinitely distant, equation (38) there given would lead to 

and by (39), 

J - A2 '2 -~(-oo, v), . 
2 

v'=d✓/b. 
The meaning of d may be obtained from Fig. 64. If the 

distance r of the point P 0 from the edge of the screen be intro
duced, then d = r sin (<P - </J'), if <P - </J' be the angle of 
diffraction, i.e. the angle between the incident and the 
diffracted rays. Since in the neighborhood of the edge of the 
shadow it is permissible to write b = r, it follows that 

v' = sin ( <P - <P') ✓ ~; but [ cf. ( 5 5)] this expression is also the 

value of <T when the angle of diffraction is small, i.e. the point E 
in equation (62) corresponds to the parameter v' of equation (63). 



210 THEORY OF OPTICS 

Hence both equations lead to the same value of J in the 
neighborhood of the edge of the shadow. At greater distances 
from it the more rigorous equation (62) differs from that 
obtained by the above approximate method. The previous 
conclusion that diffraction fringes occur only outside the region 
of shadow is confirmed by this more rigorous discussion. 

Upon the side of the screen turned t<r&ard the source 
( 1E' < </J < 21E') within the region of reflection ( </J > 21E' - </J') 
equation (6 I) assumes values of considerable size. 

Hence if it is desired to deduce a general rigorous equation 
for the intensity of the light, integral (61) cannot be neglected 
in comparison with (60). This is true, both for the region of 
reflection and for the other regions, when r is very small or 
when the angle of diffraction </J - ¢/ is large. 

This rigorous equation for the intensity J is obtained by 
multiplying the right-hand side of (53) by the conjugate com
plex expression. Using the notation of (60) and (61), the 
following is thus obtained: 

A2 { 
J = 2 t 2 + 1,2 + l' 2 + r/ 2 =F 2 cos (Y - y')-(et' + 1717') 

± 2 sin (Y - y'),(11e' - 11'e)}, 

or 

J-~2 
{ (F'E)2+(F' E')2=F2(F'E)(F'E')cos(r-r'+x)}, (64) 

in which X denotes the angle included between the lines (F'E) 
and (F' E'). x is taken positive when the rotation which leads 
most directly from F'E to F'E' takes place in the same direc
tion as a rotation from the 17- to the e-axis. By (54), 

' 41tr • . ' y - y = T sm </J sm </J . 

By (64) J is proportional to the square of the geometrical 
difference or sum of the two lines of length (F' E) and (F' E') 
which include the angle X + y - y'. The geometrical differ-
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ence is to be taken when the incident light is polarized in a 
plane perpendicular to the edge of the screen, the geometrical 
sum when it is polarized in the plane parallel to that edge. 

The expression (64) may still be much simplified when the 
intensity .f is reckoned for points which are not in the neigh
borhood of the edge of the shadow, i.e. when the difference 
between </> and </>' is large. 

For then in the region of the shadow er and <F' have large 
negative values, and hence, as is evident from the discussion 
of the form of the curve of Fig. 6 3 given in § 3, F' E becomes 
equal to the radius of curvature p of the curve at the point E, 
F' E 1 to its radius of curvature at the point E', and the angle 
X, which the two lines make with each other, equal to the 
angle included between the tangents drawn to the curve at the 
points E and E'. Hence, from equations (18) and (19) on 
page 189, 

F'E= -1-
1((1'' 

F'E' = -1--n:<F'' 

Now, from (55) and (65), y - y' + X = o, and hence, from 
(64), 

(66) 

If the values of <F and <F' given in (55) be introduced here, 
then, when the sign is negative, i.e. when the incident light is 
polarized in a plane perpendicular to the edge of the screen, 

A2 i\. sin2 ½<ti• cos2 1 </>' 
(1.) J = -n:2 ·;· (cos <p--cos <P''f' 

while when the sign is positive, i.e. when the incident light is 
polarized in a plane parallel to the edge of the screen, 

A~ ;\. cos2 ½¢-sin2 ½¢' 
(11) J = -n:2 •;;·(cos</> - cos <P')2' (68) 
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These equations for the region of the shadow hold only so 
;t 

long as - is very small and the difference between ¢ and ¢' is 
r 

large. Thus they do not hold at the edge of the shadow. 
The equations show that, at the screen itself ( ¢ = o), the 
light is completely polarized in a plane parallel to the edge 
of the screen; also that, as ¢ increases, the intensity J in both 
equations continually increases, and that the intensity (67) of 
the light polarized in the plane perpendicular to the edge of the 
screen is always smaller than the intensity (68) of the light 
polarized in the plane parallel to the edrre of the screen. 
The difference between the two intensities continually de
creases as the edge of the shadow is approached. 

Gouy * has made observations upon the diffraction of light 
by a straight edge when the angle of diffraction is very large. 
When the edge of the screen was rounded, colors were pro
duced which depended upon the nature of the screen. The 
theory here given requires that, independent of the nature of 
the screen, the colors of long wave-length predominate in 
light diffracted at a large angle. If there is to be a depend• 
ence of the color upon the nature of the screen, the boundary 
conditions (49) and (50) must contain the optical constants of 
the screen. Thus far no integration of the differential equation 
(48) which involves such complicated boundary conditions has 
been made. 

Outside of the region of the shadow, and also outside of 
the region of reflection, and at a sufficient distance from the 
limits of these two regions, <F has a large positive and u' 
a large negative value. Hence F' E' is very small and, 
disregarding t1:e sign, has the value I : n:u', while F' E 
is approximately eq_,id to ¥2. Further, since the angle 
included between F' E and the 5-axis is approximately ¼1t, 
X = - ¼;,r - t1ro-' 2, so that 

41tr 
X + Y - y' = - ¼;,r - T sin2 ½( </> - ¢'). 

•Gouy, Ann. d. Phys. et de Cbim. (6), 8, p. 145, 1886. 
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Hence, neglecting (F'E')2, there results from (64) 

213 

1 iJT cos[¼7Z' + 4:.!: sin2 ½(¢-¢')] ! 
J - A 2 I ± - -.----------- (69) 

- 7l' 4r sin ½( ¢ + ¢') • 

Thus, as </J varies, diffraction fringes appear which are, to be 
sure, very indistinct. The fringes become clearer the nearer 
¢ approaches 27t - ¢'. But then equation (69) no longer 
holds, and for points close to the boundary of the region of 
reflection the result must be obtained from (64) and the curve 
of Fig. 63, since in this case F'E' is larger. 

In tlte regio1z of reflection, at a sufficient distance from its 
boundary¢= 21t- ¢', both F'E and F'E' are approximately 
equal to t'2 and X = o. Hence, from (64) and (65), the in
tensity changes periodically from perfect darkness to four times 

-:!.r 
the intensity of the incident light according as T sin ¢ sin </J' 

is a whole number or half of an odd number. Hence the 
phenomenon of stationary waves, discussed above on page I 5 5, 
is again encountered. Such stationary waves always occur 
when the incident and the reflected light are superposed. But 
it is important to remark that the significance of s depends 
upon the condition of polarization of the incident light (cf. 
foot-note, p. 205). This matter will be discussed in a later 
chapter. 

8. Fraunhofer's Diffraction Phenomena.-As was re
marked on page 188, Fraunhofer's diffraction phenomena are 
those in which the source Q lies at an infinit'! distance from the 
point P0 of observation. These phenomena .r:ay be observed 
by placing a point source Q at the focus of a convergent lens, 
so as to render the emergent rays parnllcl, ~::1d observing by 
means of a telescope placed behind the diffraction screen and 
focussed for parallel rays. 

The discu:sion will be based, as in § I, on Huygens' 
principle; and hence the treatment will not be altogether 
rigorous. But, as has already been seen, this principle gives a 
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very close approximation when the angle of diffraction is not 
too large. In accordance with equations (8) and (9) on page 
187, when P1 = P0 = oo, 

./{x, y) = - 2; { x(«1 + a 0) -j- y(/11 + /10)} , (70) 

in which «1 , /J1 , a 0 , /10 denote the direction cosines with 
respect to the x- and y-axes of the lines drawn from the origin 
to the source Q and the point of observation P 0 respectively. 
(Cf. Fig. 62, page 185.) 

Hence, from equations (11) and (12) on pages 187 and 
1 88, using the abbreviations 

z,r 27t 
y(«1 + ao) = fl, ) .. -C/11 + /Jo) = r, • (71) 

there results for the intensity of the light at the point P 0 , 

in which 

C = J cos (µx + ry)d<r, S = J\in (µx + ry)d<r, (73) 

and the integration is to be extended over the opening in the 
screen. 

The meaning of the constant A' may be brought out by 
introducing the intensity J' which is observed behind the 
diffraction screen when the telescope is pointed in the direction 
of the incident light. For then, at all points of the screen 
which are not infinitely distant from the origin, µ = r = o, so 
that the relation holds 

J' = A'2,u2, 

where <T denotes the area of the entire opening. Hence for 
any direction of the telescope it follows that 

J = -;(C2 + S 2). (74) 

9. Diffraction through a Rectangular Opening. - The 
integral of (73) may be most easily obtained when the opening 



DIFFRACTION OF LIGHT 215 

is a rectangle. Take the middle of the rectangle as the origin, 
and let the axes be parallel to its sides and let the lengths of 
these sides be a (parallel to the x-axis) and b (parallel to the 
y-axis) respectively, then 

4 . µa . vb 
C = - sm - sm -, S = o. µr 2 2 

Hence, from (74), since <T = ab, 

J = J' -l-sin µ{-
2 

µa 

2 -

. vb-2 
sm-

2 

-;!J 
2 

(75) 

Therefore complete darkness occurs in directions for which µa 
or vb is an exact multiple of 2-a. 

If the light from Q falls perpendicularly upon the screen, 
,r1 = /J1 = o. Let the optical axis of the observing telescope 
be parallel to the incident light, i.e. perpendicular to the 
screen. The intensity J in the direction determined by 
« 0 , /J0 is then observed at a point P of the focal plane of the 
telescope objective which has the coordinates 

x' =f«o, y' =f/Jo · (76) 

in a coordinate system x'y' whose origin lies at the focus F of 
the objective, and whose axes are parallel to the sides of the 
rectangle. f represents the focal length of the objective. In 
(76) it is assumed that «0 , /J0 are small quantities, i.e. the 
angle of diffraction is small. 

Now, from (71), 
2-ax' 

µ = Aj, 
2-ay' 

r = Af. 

Hence complete darkness occurs when 

µa = ± 2h-a, i.e. x' = ± h~, h = l, 2, 3 ... 

and when 

Yb=± 2h-a, • I ,.'Jif 
I.e. J' = ± "7i• k = I, 2, 3 ... 

(77) 
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Hence in the focal plane of the objective there is produced, 
when monochromatic light is used, a pattern crossed by dark 
lines as shown in Fig. 69. The lines are a constant distance 

FIG. 6g. 

apart save in the middle of the pattern, where their distance is 
twice as great. The aperture which produced this pattern is 
shown in the upper left-hand corner of the figure. Hence the 
fringes are rectangles which are similar to the aperture but lie 
inversely to it. 

At the focus of the objective the intensity reaches its 
greatest value J = J'; for when µ = o, the limiting value of 

the quotient sin µa : f:.'! = I. J has other but weaker maxima 
2 2 

approximately in the middle points of the rectangles bounded 
by the diffraction fringes in Fig. 69. For these points 

µa=1t(2h+1), rb=1t(2k+1), h,k=i,2,3 ... 

But for the middle points of those rectangles upon the x' -axis 

µa = 1t(2h + I), r = o, h = I, 2, 3 ... 

Hence the intensities in the maxima upon the x'-axis (or the 
)'

1 -axis) are 



DIFFRACTION OF LIGHT 217 

while the intensities at the mi<lJle points of other rectangles 
for which neither x' nor y' vanish are 

16 : 7t4 

J 2 = J'(2h + 1)\2k + I'f 

Thus the intensities .h are much smaller than the intensi
ties J 1 ; so that the figure viewed as a whole gives the im
pression of a cross which grows brighter toward the centre and 
whose arms lie parallel to the sides of the rectangle. In Fig. 
69 the distribution of the light is indicated by the shading. 

10. Diffraction through a Rhomboid.-This case may be 
immediately deduced from the former by noting that in (7 3) 
the integrals C and S, and consequently the intensity J, 
remain unchanged if the coordinates x, y of the diffraction 
aperture are multiplied by the factors .P, q, while at the same 
time the µ, r, i.e. the cordinates x', y' of the diffraction 
pattern, are divided by the same factors .P, q. Thus a rectan
gular parallelogram whose sides are not parallel to the coordi
nate axes x, y may be reduced to a rhomboid by the use of 
two factors .P, q, and in this case the diffraction fringes will 
also be rhomboids whose sides are perpendicular to the sides 
of the diffracting opening. 

II. Diffraction through a Slit.-A slit may be looked 
upon as a rectangle one of whose sides b is very large. Hence 

the diffraction pattern reduces to a narrow strip of light along 
the x'-axis. This is crossed by dark spots corresponding to 
the equation 

. pa-,2 
sm -

2 
J=J' µa ' 

2 

in which, when the incident light is perpendicular to the plane 
of the slit, 

271' 
µ = T sin </J, (78') 
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where¢ denotes the angle of diffraction, i.e. the angle included 
between the diffracted and the incident rays. If Q is a line 
source which is parallel to the slit, the diffraction pattern 
becomes a broad band of light which is crossed by parallel 
fringes at the places determined by µa = 2h1t. Between the 
limits µa = ± 21t the intensity is much greater than elsewhere. 
The position of the dark fringes can also be determined directly 
from the following considerations: 

In order to find the intensity for a given angle of diffraction 

Q (cf. Fig. 70) conceive the slit 
AB divided into such portions 
AA

1

, A
1

A
2

, A 2A3 , etc., that the 
distances from A, A 1 , A 2 , •.• to 
the infinitely distant point P0 differ 
from each other successively by 
p.. The combined effect of any 
two neighboring zones is zero. 
Hence there is darkness if AB can 
be divided into an even number 

Fie. 7o. of such zones, i.e. if the side BC 
of the right-angled triangle A CB is equal to h. A, w.here 
h = l, 2, 3, etc. Since now BC= a sin ¢, in which a is the 
width of the slit, there is darkness when the angle of diffraction 
is such that 

A. 
sin ¢ = ± k•a· (79) 

But from (78') this is identical with the condition µa = 2k1t. 

Hence it follows that when a < A there is darkness for no angle 
of diffraction, i.e. diffusion takes place (cf. page 199). 

If the incident light is white, and if the intensity J' which 
corresponds to a given color, i.e. a given wave-length A, be 
denoted by J~, and if the abbreviation 1ta sin ¢ = a' be intro
duced, then for a given value of a' the whole intensity is 

J - ;er, sin2 o.'/1.. • (79) 
- 'JA" (o.'/J' • • • • • 
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If a' is not very small, e.g. if it is about 31t.l, then 

in (79') sin f varies much more rapidly with A. than does f. 
a' 

If T be considered approximately constant, (79') assumes the 

form given for the intensity of light reflected from a thin plate 
(cf. Section II, Chapter II,§ 1). Hence at some distance from 
the centre of the field of view colors appear which resemble 
closely those of Newton's rings. 

12. Diffraction Openings of any Form.-With any sort 
of unsymmetrical opening, the integrals C and S have in 
general a value different from zero. At positions of zero 
intensity in the diffraction pattern the two conditions C = o 
and S = o must be simultaneously fulfilled. Hence in general 
such positions are discrete points, not, as with a rectangular 
opening, continuous lines. For the theoretical discussion of 
special forms of diffraction apertures cf. Schwerd, '' Die 
Beugungserscheinungen, '' Mannheim, I 8 3 5. 

13. Several Diffraction Openings of like Form and Orien
tation.-Let the coordinates of any point of a diffraction open
ing referred to a point A lying within that opening be & and 
11, and let the point A in all the openings be similarly placed. 
Let the coordinates of the points A referred to any arbitrary 
coordinate system .ry lying in the diffraction screen be x 1Yi , 
X:J'2, x 3y 3, etc. Then for any point in any opening, for 
instance the third, 

X = X3 + &, y = Y3 + 11, 
and, from (73), 

C = ~}•cos [µ(x; + &) + r(y; + 11)]d&d11, l 
S c"C": ~)'sin [µ(.r; + &) + r(y; + 11)]d&d11. f (80) 

The /; and 17 vary in all the openings within the same limits. 
Hence denoting the integrals C and S when they are extended 
over a single opening by c anJ s, that is, setting 

c =}"cos(µ~+ r11Jd&d17, s = J sin(µ&+ Y1'/)d&d1'/, (81) 
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and, for the sake of brevity, writing 

c' = ~ cos (µxi+ ryi), s' = ~ sin (µxi+ ryi), (82) 
' ' 

then, from (80 ), 

C = c'•c - s'•s, S = s'•c + c'·s, 

and hence, from (72), 

J = A'2(c'2 + s'2)(c2 + s2). (83) 

From this equation it appears that those places in the 
diffraction pattern which in the case of a single opem'ng are 
dark remain dark in the case of several similar openings. 
The intensity at any point is c' 2 + s' 2 times that due to a 
single opening. This quantity c' 2 + s' 2 may have various 
values. It may be written in the form 

c'2+s'2= ~ cos2(µxi+ ry;)+ 2-?' cos (µxi+ry;)cos (µxk+ryk) 
l ,,k 

+ ~sin2 (µx;+ ry;) + 2~sin (µxi+ry,-)sin (µxk+ rYk), 
, ,,k 

(84) 

in which nz denotes the number of openings. In the case of a 
large number of openings z"rregularly arranged, the second 
term of the right-hand side of (84) may be neglected in com
parison with the first, because the values of the separate terms 
under the sign :E vary irregularly between - I and + I. 

Hence the intensity in the diffraction pattern is everywhere m 
times greater than when there is but one opening. This 
phenomenon may be studied by using as a diffraction screen a 
piece of tin-foil in which holes of equal size have been pierced 
at random by a needle. The diffraction pattern consists of a 
system of concentric rings which differ from those produced by 
a single hole only in that they are more intense. 

The result is entirely different when the boles are regularly 
arranged or are few in number. Consider, for example, the 
case of two openings, and set 

X1 = o, x2 = d, Y1 = Y2 = o, 
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c12 + s'2 = 4 cos2 µd. 
2 
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The diffraction pattern which is produced by a single open
ing is now crossed by dark fringes corresponding to the equa
tion µd =:, (2h + 1)1t, i.e. by fringes which are perpendicular 
to the line connecting two corresponding points of the openings 
and which are, in the focal plane of the objective, a distance 
lf:d apart. 

14. Babinet's Theorem.-Before passing to the discussion 
of the grating, which consists of a large number of regularly 
arranged diffraction openings, the case of two complementary 
dijfractz"on screens will be considered. If a diffraction screen 
<T1 has any openings whatever, while a second screen <T2 has 
exactly those places covered which are open in <T1 , while the 
places in <T2 are open which are covered in <T1 , then <T1 and <T2 

are called complementary screens. The intensity J 1 when the 
screen <Tl is used is proportional to Cl2 + s12, in which cl and 
S1 are integrals which are extended over the openings in <T1. 

The intensity J 2 when the screen <T2 is used is proportional to 
C22 + S22, in which C2 and S2 are extended over the openings 
in <T2. The intensity Jo when no screen is used is therefore 
proportional to (C1 + C2)2 + (S1 + S 2) 2. But, in this latter 
case, at a point in the field of observation which corresponds to 
a diffraction angle greater than zero, Jo= o, i.e. cl= - c2, 

S1 = - S2 , and hence J 1 = J 2• Or in other words: The 
dijf ractz"on patterns winch are produced by two complementary 
screens are identzcal excepting the central spot, which cor
responds to tlze diffraction angle zero. This is Babinet's 
theorem. 

Application of this theorem will be made to the diffraction 
pattern produced by irregularly placed circular screens of equal 
size. This pattern must be the same as that produced by 
irregularly arranged openings of the same size. Hence it 
consists of a system of concentric rings. The phenomenon 
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may be produced by scattering lycopodium powder upon a 
glass plate. Similarly the halos about the sun and moon may 
be explained as the diffraction effects of water drops of equal 
size.* 

15. The Diffraction Grating.-A diffraction grating con
sists of a large number of parallel slits a constant distance 
apart. As in§ 13, set 

x 1 = o, x 2 = d, x3 = 2d, x 4 = 3d, etc., 

Yi = Y2 = Y3 • • • = o, 
in which d denotes the distance between two corresponding 
points in adjacent slits, the so-called constant of the grating. 
Then, from (82), 

c' = I + cos µd + cos 2 µd + cos 3 µd + . . . 
s' = sin µd + sin 2 µd + sin 3 µd + . . . 

In order to obtain the value of c'2 + s'2, it is convenient to 
introduce imaginary quantities by writing, assuming that there 
are m openings, 

c' + z"s' = I + lf,,.d + e2i,,.d + e3i,,.d + • • • + ei(M - 1),,.d_ 

This summation gives at once 
. , eim,,_d _ I 

c' + ZS = ,!,,_d - I 

A multiplication of each side of this equation by its com
plementary complex expression gives 

, 1 - cos mµd 
c2 + s'2 = ------ = 1 - cosµd ~-, 

sm -

so that there follows, from (83) and (78), 

. µa . mµd 
sm2 - sm2 --

J , 2 2 

= Ji (µa)2 • . µd 
2 sm22 

2 

(85) 

* For a calculation of the size of the drops from the diameter of the halo 
c£. F. Neumann, Vorles. iiber theor. Optik, Leipzig, 1885, p. IOS, 
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In this Ji' denotes the intensity which would be produced 
by a single slit for the diffraction angle zero (µ = o ). From 
this equation it appears that the diffraction pattern is the same 
as that ofa single slit (which is represented by the first two fac
tors) save that it is crossed by a series of dark fringes which are 

very close together and correspond to the equation mµd = h1r. 
2 

These fringes are closer together the greater the number m 
of the slits. Between the fringes the intensity J reaches 
maxima which are, however, at most equal to the intensities 
produced at the same points by a single slit. But much 

• h • µd "h • h stronger maxima occur w en sm 2 vams es, 1.e. w en 

2h1r l 
µ = d' i.e. sin </J = hd, (86) 

in which </J denotes the angle of diffraction. (The light is 
assumed to fall perpendicularly upon the grating.) 

For the diffraction angles </J thus determined 

. 2 mµd 
sm --

2 

d = 11i', 
I-' sin2 -
2 

so that the intensity is m2 times as great as it is at the same 
point when there is but one slit. When m is very great, it 
is these maxima only which are perceptible.* One of these 
maxima may be wanting if a minimum of the diffraction pattern 
due to a single slit falls at the same place, i.e. if both (86) and 

2k1r 
µ= 

a 

are at the same time fulfilled. 

* If the constant of the grating is less than A, no maxima appear, since, by (86), 
sin,; > I. Hence transparent bodies may be conceived as made up ofponderable 
opaque particles embedded in transparent ether. If the distance between the 
particles is less than a wave length, only the unditrracted light passes through, 
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This is only possible if the width of the slit a is an exact 
multiple of the constant of the grating d. Close-line gratings 
are produced by scratching fine lines upon glass or metal by 
means of a diamond. The furrows made by the diamond act 
as opaque or non-reflecting places. According to Babinet's 
theorem the width of the furrow may also be looked upon as 
the width a of the slit. This latter then is much smaller than 
the constant d of the grating, so that, in any case, the first 
maxima, which in (86) correspond to small values of h, do not 
vanish. These maxima have a nearly constant intensity, since 
for small values of the width a of the slit the diffraction figure 
which is produced by a single slit illuminates the larger portion 
of the field with a nearly constant intensity. 

Hence, when the number m of the slits is sufficiently large, 
the diffraction pattern in monochromatic light, which proceeds 
from a line source Q, consists of a series of fine bright lines which 
appear at tre diffraction angles ¢ 0 , ¢ 1 , ¢ 2 , etc., determined by 

l 
<f,0 = o, sin ¢ 1 = ± d' 

. 3l 
sm </>3 = ± d' etc. 

If the grating is illuminated by white light from a line 
source Q, pure spectra must be produced, since the different 
colors appear at different angles. These gratz"ng spectra are 
called normal spectra, to distinguish them from the di'spersz"on 
spectra produced by prisms, because the deviation of each 
color from the direction of the incident light is proportional to 
its wave length, -at least so long as ¢ is so small that it is 
permissible to write sin <P = ¢. Since each color correspond
ing to the different values of h in (86) appears many times, 
many spectra are also produced. The spectrum corresponding 
to It = I is called that of the first order; that to h = 2, the 
spectrum of the second order, etc. In the first spectrum the 
violet is deviated least; the other colors follow in order to the 
red. After an interval of darkness the violet of the second 
order follows. But the red of the second spectrum and the 
blue of the third overlap, since 3;\" < 2A,., in which A" and A.,. 
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denote the wave lengths of the visible violet and red rays 
contained in white light. This overlapping of several colors 
increases rapidly with the angle of diffraction. 

That pure spectral colors are produced by a grating and 
not by a slit, which gives approximately the colors of Newton's 
rings ( cf. page 219 ), is due to the fact that in the case of the 
grating it is the positions of the maxima, while in the case of 
a slit it is the positions of the minima, which are sharply 
defined. 

The grating furnishes the best means of measuring wave 
lengths. The measurement consists in a determination of d 
and <f, and is more accurate the smaller d is, since then the 
diffraction angles are large. Rutherford made gratings upon 
glass which have as many as 700 lines to the millimetre. The 
quality of a grating depends primarily upon the ruling engine 
which makes the scratches. The lines must be exactly 
parallel and a constant distance apart. Rowland now pro
duces faultless gratings with a machine which is able to rule 
1700 lines to the millimetre. 

16. The Concave Grating.-A further advance was made 
by Rowland in that he ruled gratings upon concave spherical 
mirrors of speculum metal, the distance between the lines 
measured along a chord being P, 
equal. These gratings produce a 
real image P of a line source Q 
without the help of lenses; the 
diffraction maxima P 1 , P 2 , etc., 
are also real images. In order to C1=------"-~_,._-~B 
locate these images, construct a 
circle tangent to the grating (Fig. 
71) upon the radius of curvature 
of the grating as its diameter. If 
the line source Q lies upon the FIG. 71. 

circle, an undiffracted image is produced upon the same circle 
at P by direct reflection, in such a way that P and Q are sym
metrical to C, C being the centre of curvature of the grating 
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GG. For the line CB is the normal to the mirror at the point 
B, hence the angle of incidence QBC is equal to the angle of 
reflection P BC. But a ray reflected from any point B' of the 
mirror must also pass through P because CB' is the normal to 
the mirror at B', since C is the centre of curvature of the 
mirror and since approximately ~ QB' C = t PB' C, and 
therefore B' Pis the direction of the reflected ray. The angles 
QB'C and PB'C would be rigorously equal if B' lay upon the 
circle itself, since then they would be inscribed angles sub
tended by equal arcs. P is then the position of the undiffracted 
image which is formed by reflection by the mirror of the light 
from Q.* 

The position of the diffraction image P 1 is at the intersection 
of two rays BP1 and B' P 1 which make equal angles with BP 
and B'P. Hence it is evident that P 1 also lies upon the circle 
passing through PCQB, since the angles PB'P1 and PBP1 

would be rigorously equal if B' lay upon the circle. 
If the real diffraction spectrum at P 1 were to be received 

upon a screen S, it would be necessary to place the screen very 

N obliquely to the rays. Since it 
is better that the rays fall per
pendicularly upon the screen S; 
the latter is placed at the point 
C parallel to the grating. The 
source Q must also lie upon the 
circle whose diameter is CB, 

Q i.e. the angle CQB must always 
Fm. 72. be a right angle. In practice, 

in order to find the positions of Q which throw diffraction 
spectra upon S, the grating G and the screen S are mounted 
upon a beam of length r (radius of curvature of the grating) 
which slides along the right-angled ways QM, QN, as shown 

* This would follow from the second of equations (34), page 51, which apply 

to the formation of astigmatic images by reflection. For this case t CBQ = <P, 
CB = r, and hence QB = I = - r cos </J. Hence s1 = - s, i.e. the point P, 
symmetrical to Q with respect to C, must be the image of Q upon the circle. 



DIFFRACTION OF LIGHT Hf 

in Fig. 72. The source is placed at Q. As Sis moved away 
from Q the spectra of higher order fall successively upon the 
screen. 

17. Focal Properties of a Plane Grating.-If the distance 
d between the lines of a grating is not constant, then the 
diffraction angle </> which corresponds to a maximum, for 
instance the first which is given by sin q, = l : d, is different 
for different parts of the grating. d may be made to vary in 
such a way that these directions which correspond to a maxi
mum all intersect in a point F. This point is then a focal 
point of the grating, since it has the same properties as the 
focus of a lens.* 

18. Resolving Power of a Grating.-The power of a grat
ing to separate two adjacent spectral lines must be proportional 
to its number of lines m, since it has been already shown that 
the diffraction maxima which correspond to a given wave 
length l become narrower as m increases. By equation (86) 
on page 223, the maximum of the order It is determined by 

µ = 2h1( : d, i.e. sin </> = kl : d. 

Ifµ rises above or falls below this value, then, by (85), the 
first position of zero intensity occurs when µ has changed in 
such a way that mµd/2 has altered its value by 1(, i.e. when 
the change in µ amounts to 

dµ = 21r: md. 

Hence the corresponding change in the diffraction angle 
¢, whose dependence upon µ is given in equation (78'), is 

d</> = il: md cos q, . . 

Hence this quantity d</> is half the angular width of the diffrac• 
tion image. 

* For the law of distribution of the lines cf. Cornu, C. R. So, p. 645, 1875 ; 
Pogg. Ann. 156, p. II4, 1875; Sore!, Arch. d. Scienc. Phys. 52, p. 320, 1875 ; 
Pogg. Ann. 156, p. 99, 1875; Winkelmann's Handbuch, II, p. 622, 
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For an adjacent spectral line of wave length l + aA the 
position of the diffraction maximum of order h is given by 

sin (<P + d</J') = h(l + dl): d, 

i.e. the angle d</J' between the diffraction maxima correspond
ing to the lines l and l + dl is 

d</J' = h,dl: d cos¢. 

In order that the grating may separate these two lines, this 
angle d</l must be greater than half the breadth of the diffrac
tion image of one of the lines. i.e. 

h•dl > l: m, 
dl I 

1> hm· (88) 

Thus the resolvz'ng power of a gratz'ng i's proportz'onal to 
lite total number of lz'nes m and to tlze order h of the spectrum, 
but i's z'ndependent of the constant d of the gratz'ng. To be 
sure, if d is too large, it may be necessary to use a special 
magnifying device in order to separate the lines, but the sep
aration may always be effected if only the resolving power 
defined by (88) has not been exceeded. 

In order to separate the double D line of sodium for which 
dl : l = 0.001, a grating must have at least 500 lines if the 
observation is made in the second spectrum. 

19. Michelson's Echelon. *-From the above it is evident 
that the resolving power may be increased by using a spectrum 
of high order. With the gratings thus far considered it is not 
practicable to use an order of spectrum higher than the third, 
on account of the lack of intensity of the light in the higher 
orders. But even when the angle of diffraction is very small, 
if the light be made to pass through different thicknesses of 
glass, a large difference of phase may be introduced between 
the interfering rays, i.e. the same effect may be obtained as 
with an ordinary grating if the spectra of higher orders could 
be used. Consider, for instance, two parallel slits, and let a 

* A. A. Michelson, Astrophysical Journal, 18g8, Vol. 8, p. 37. 
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glass plate several millimetres thick be placed in front of one 
of the slits; then at very small angles of diffraction rays 
come to interference which have a difference of path of several 
thousand wave lengths. This is the fundamental idea in 
Michelson's echelon spectroscope. m plates of thickness o 
are arranged in steps as in Fig. 73. Let the width of the 

Fm. 73. 

steps be a, and let the light fall from above perpendicularly 
upon the plates. The difference in path between the two 
parallel rays AA' and CC', which make an angle <P with the 
incident light, is, if CD is J_ AA' and if n denote the index of 
refraction of the glass plates, 

n•BC - AD= no - 6 cos¢+ a sin <I>, 

since AD = DE - AE and DE = o cos ¢, AE = a sin </>. 
If this difference of path is an exact multiple of a wave length, 
i.e. if 

h -l = no - o cos </> + a sin ¢, . . (89) 

then a maximum effect must take place in the direction ¢, 
since all the rays emerging from AB are reinforced by the 
parallel rays emerging from CF. Hence equation (89) gives 
the directions </> of the diffraction maxima. 

The change d</> in the position of the djffrar.tion maxima 
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corresponding to a small change d'A. in 'A is large, since it fol
lows from (89) by differentiation that 

hd'A. = o-dn + (o sin</>+ a cos </>)d</>', 

i.e. if</> be taken small, 

d</>' 
h·d'A - o•dn 

a (90) 

Since, by (89), when </> is small h'A. = (n - I)o, (90) may be 
written 

o[ d'A. J d<P' = a (n - 1)r - dn ; . (90') 

Hence d</>' is large when o : a is large. It is to be observed 
that it is in reality a summation and not a difference which 
occurs in this equation, since in glass, and, for that matter, all 
transparent substances, n decreases as 'A increases. 

One difficulty of this arrangement arises from the fact that 
the maxima of different orders, which yet correspond to the 
same A, lie very close together. For, by (89), the following 
relation exists between the diffraction angle </> + d</>" of order 
It+ I and the wave-length it: 

A = ( o sin </> + a cos </>)d</>", 

i.e. when </> is small, 
d</>" = 'A. : a. . 

Thus, for example, with flint-glass plates 5 mm. thick the two 
sodium lines D1 and D2 are separated ten times farther than 
are the two adjacent spectra of order It and It + 1 of one of the 
sodium lines. In consequence of this the source must consist 
of very narrow, i.e. homogeneous, lines, if the spectra of differ
ent order are not to overlap, i.e. if d¢," > d</>'. Thus, for 
example, Michelson constructed an instrument of twenty plates, 
each I 8 mm. thick, with a = 1 mm., which requires a source 
the spectral line of which cannot be broader than -h the dis
tance between the two sodium lines. 

In order to determine the resolving power of the ecltelon it 
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is necessary to calculate the breadth of the diffraction maximum 
of order h, i.e. those angles of diffraction ( <P ± d<P) correspond
ing to those zero positions which are immediately adjacent to 
the maxima determined by (89). In order to find these posi
tions of zero intensity, consider the m plates of the echelon 
divided into two equal portions I and II. Darkness occurs for 
those angles of diffraction <P + d<P for which the difference of 
path of any two rays. one of which passes through any point 
of portion I, the other through the corresponding point of 
portion II, is an odd multiple of ½.il. Just as the right side of 
(89) gives the difference of path of two rays, one of which has 
passed through one more plate than the other, so the difference 

of path in this case, in which one wave has passed through ~ 
2 

more plates than the other, may be obtained by multiplying 

the right-hand side of (89) by m_ 
2 

Hence, at a position of zero intensity which corresponds to 
the angle of diffraction <P + d<P, 

(k ± ½).il = m [no - o cos ( <P ± d</>) + a sin ( </> ± d</>)]. 
2 

In order that d</> may be as small as possible, i.e. in order to 
obtain the two positions of zero intensity which are closest to 
the maxima determined by (89), it is necessary, as a compari-

son with (89) shows, to make in this equation k = k~. Hence 
2 

from these two equations 

± }.il = ~( o sin <P + a cos </>)d</>, 
2 

or, when <P is small, 

d</> = ± - .. 
ma 

Thus this angle d</> is half the angular width of the diffraction 
image of the spectral line of wave length A. That a double 
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line whose components have the wave lengths A and .il + dl 
may be resolved, the angle of dispersion d</>', corresponding to 
equation (90), must be greater than d,P., i.e. 

d.il I 
- > ---,-------,--
.il o(n - 1 _ dn ). 

m .il dil 

(93) 

Thus the resolving power of the echelon depends only upon £ts 
total length mo no matter whether £t consists of many th£n 
plates or of a smaller number of th£cker ones. But for the sake 
of a greater separation d<P" of the spectra of different orders, 
and for the sake of increa.,ing the angle d<P' of dispersion, it is 
advisable to use a large number of plates so that a may be 
made small [cf. equations (90) and (91)]. 

dn 
For flint glass - dl has about the value 100 if A is 

expressed in mm. For a thickness o of 18 mm. and a number 
of plates m = 20 the resolving power is, by (93), 

mo(n j\, I - ~~) = 0.46. l06, 

which, according to (88), can only be attained with a line 
grating of half a million lines. 

Although, as was seen above, the diffraction maxima of 
different orders lie close together, there are never more than 
two of them visible. For it is to be remembered that, in the 
expression for the intensity in the diffraction pattern produced 
by a grating, the intensity due to a single slit enters as a factor 
(cf. page 222). In the echelon the uncovered portion of width 
a of each plate corresponds to a single slit, so that ( cf. page 
218) the intensity differs appreciably from zero only between 

the angles </> = ± ~, which correspond to the first positions 
a 

of zero intensity in the diffraction pattern due to one slit. Thus 
the intensity is practically zero outside of the angular region 
2.il : a. Since, by (91), the angular distance between two sue-
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.il 
cessive maxima of different order has the value -, only two 

a 
such maxima can be visible. 

In order that the echelon may give good results, the 
separate plates must have exactly the same thickness o 
throughout. The plates are tested by means of the interfer
ence curves of equal inclination (cf. page 149, note 1) and 
polished until correct. 

20. The Resolving Power of a Prism.-ln connection 
with the above considerations it is of interest to ask whether 
the resolving power of a prism exceeds that of a grating 01 

not. The resolving power of a prism depends not only upon 
its dispersion, but also upon its width (measured perpendicular 
to the refracting edge). For if this width be small, each 
separate spectral line is broadened by diffraction. 

The joint effect of dispersion and cross-section of the beam 
upon the resolving power of a prism, or of a system of prisms, 
has been calculated by Rayleigh in the following way: * If, by 
means of refraction in the system P (Fig. 7 4 ), the plane wave 

FIG. 74. 

A 0B 0 of incident light of wave length .il is brought into the 
position AB, the optical paths from A 0 to A and B0 to B are 
equal (cf. page 6). A wave of other wave length .il + dil 
is brought in the same time into some other position A' B'. 
The difference between the optical paths A 0A' and A 0A, i.e. 
the distance AA', can be expressed as follows: 

(AoA') - (A 0A) = A'A = dn-e1 , 

* Rayleigh, Phil. Mag. (5), 9, p. 271, 1879; Winkelmann's Handb. Optik, 
p. 166. 
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in which dn denotes the difference between the indices of 
refraction of the prism for the two wave lengths it and it + d it,* 
and e1 the path traversed in the prism by the limiting rays 
(cf. Fig. 74). This path is assumed to be the same for the 
different colors, an assumption which is permissible since AA' 
contains the small factor dn. 

Likewise the difference between the optical paths B0B' and 
B/J, i.e. the line BB', is 

(Boll') - (B0B) = B'B = dn·e2 , 

in which e2 denotes the path traversed in the prism by the other 
limiting rays of the beam. Now the angle di which the plane 
wave A' B' makes with the wave AB, i.e. the dispersion of the 
prism, is evidently 

J' BB' - AA' J e2 - e1 
uz = b = un-b-, 

in which b denotes the width of the emergent beam, i.e. the 
line AB. If the limiting rays A 0A pass through the edge of 
the prism, e1 = o, and 

(94) 

in which e represents the thickness of the prism at its base, 
provided the prism is set for minimum deviation, i.e. the rays 
within it are parallel to the base, and the incident beam covers 
the entire face of the prism. The same considerations hold 
for a train of prisms ; if all the prisms are in the position of 
minimum deviation, e represents the sum of all the thicknesses 
of the prisms at their bases. 

In order that such a train of prisms may be able to resolve 
in the spectrum a doublet whose angular separation is di, the 
central images in the diffraction patterns, which are produced 
by each spectral line in consequence of the limited area b of 
the beam, must be sufficiently separattd. For an opening of 

* The dispersion of the air is neglected. 
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breadth b the first minimum in the diffraction image lies, by 
(79) on page 2 I 8, at the angle ¢ = il : b. * If then two spec
tral lines are to be separated, their dispersion di must at least 
be greater than this angle </>, which is half the angular width 
of the central band in the diffraction image of a spectral line; 
i.e. by (94) the following must hold: 

e i\. 
dn.b > b' 

i\. 
e > dn" (95) 

Hence the resolving power of a pr£sm depends only upon tke 
thickness of the prism at the base, and is ittdependent of the 
angle of the prism. Thus for the resolution of the two sodium 
lines a prism of flint glass (n = 1.650, dn = 0.000055, 
A= 0.000589 mm.) at least I cm. thick is required. But for 
the resolution of two lines for which di\.: il = 2 : I05, which 
may be accomplished with the Michelson echelon or with a 
grating of half a million lines, the thickness of the prism would 
need to be e = 5 • I02 cm.•. i.e. 5 m., a thickness which is evi
dently unattainable because of the great absorption of light by 
glass of such thickness. A gratillg device permits, therefore, 
of ltiglter resolving power titan a train of prisms. 

21. Limit of Resolution of a Telescope.-If a telescope is 
focussed upon a fixed star, then, on account of the diffraction 
at the rim of the objective, the image in the focal plane is a 
luminous disc which is larger the smaller the diameter of the 
objective. The diffraction caused by a circular screen of radius 
h gives rise to concentric dark rings. The first minimum 

A. 
occurs when the angle of diffraction is such that sin </> = 0.61 k. t 
Assume that a second star would be distinguished from the 
first if its central image fell upon the first minimum of the first 
star; then the limiting value of the angle which the two stars 

* Since I, is large in comparison to .:l., (/J is substituted for sin (/J. 
t For the deduction of this number cf. F. Neumann, Vories. tt. Optik, p. 89-



THEORY OF OPTICS 

must subtend at the objective if they are to be separated by the 
telescope, provided with a suitable eyepiece, is* 

.l 
<P > 0.61.h. 

If A. be assumed to be 0.00056 mm., and if</> be expressed in 
minutes of arc, then 

(96) 

in which k must be expressed in mm. A telescope whose 
objective is 20 cm. in diameter is then able to resolve two stars 
whose angular distance apart is</>= 0.0117' = 0.7". 

22. The Limit of Resolution of the Human Eye.-The 
above considerations may be applied to the human eye with 
the single difference that the wave length .l of the light in the 
lens of the eye, whose index is 1.4, is 1: 1.4 times smaller 
than in air. The radius of the pupil takes the place of h. If 
l_z be assumed to be 2 mm., then the smallest visual angle 
which two luminous points can subtend if they are to be 
resolved by the eye is 

</> = 0.42'. 

The actual limit is about </> = 1 '. 

23. The Limit of Resolution of the :Microscope.-Th~ 
images formed by microscopes are of illuminated, not of self
luminous, objects. t The importance of this distinction was first 
pointed out by Abbe. From the standpoint of pure geometri
cal optics, which deals with rays, the exact similarity of object 
and image follows from the principles laid down in the first 
part of this book. From the standpoint of physical optics, 
which does not deal with rays of light as independent geometri
cal directions, since this is not rigorously permissible, but which 
is based upon deformations of the wave front, the similarity of 

,. On account of the smallness of t/J, (/J may be written for sin (/J: 
t Objects which are visible by diffusely reflected light may be approximately 

treated as self-luminous objects. 
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object and image is not only not self-evident, but is, strictly 
speaking, unattainable. For the incident light, assumed in the 
first case to be parallel, will, after passing through the object 
which it illuminates, form a diffraction pattern in that focal plane 
ij' of the objective which is nearest the eyepiece. The question 
now is, what light effect will this diffraction figure produce in 
the plane ~' which is conjugate with respect to the objective 
to the object plane ~ ? The image formed in this plane is the 
one observed by the eyepiece. • The formation of the image of 
an illuminated object is therefore not direct (primary) but 
indirect (secondary), since it depends upon the effect of the 
diffraction pattern formed by the object. 

It is at once clear that a given diffraction pattern in the focal 
piane ij' gives rise always to the same image in the plane~' 
upon which the eyepiece is focussed. Now in general different 
objects produce different diffraction patterns in the plane ij'. * 
But if the aperture of the objective of the microscope is very 
small, so that only the small and nearly uniformly illuminated 
spot of the diffraction pattern produced by two different objects 
is operative, then these objects must give rise to the same light 
effects in the plane ~', i.e. they look alike when seen in the 
microscope. Now in this case there is seen in the microscope 
only a uniformly illuminated field, and no evidence of the 
structure of the object. In order to bring out the structure, 
the numerical aperture of the microscope must be so great that 
not only the effect of the central bright spot of the diffraction 
pattern appears, but also that of at least one of the other 
maxima. When this is so, the distribution of light in the plane 
~' is no longer uniform, i.e. some sort of an image appears 

* By the introduction of suitable stops in the plane ti'' the same diffraction 
pattern may be produced by different objects. In this case the same image is also 
seen at the eyepiece in the plane ~l', although the objects are quite different, 
Thus if the object is a grating whose constant is d, and if all the diffraction images 
of odd order be cut out by the stop, then the object seems in the image to have a 

grating constant~- Cf. MUller-Poui!let (Lummer), Optik, p. 713. The house of 

C. Zeiss in Jena constructs apparatus to verify these conclusions. 
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which has a rough similarity to the object. As more maxima 
of the diffraction pattern are admitted to the microscope tube, 
i.e. as more of the diffraction pattern is utilized, the image in 
the microscope becomes more and more similar to the object. 
But perfect similarity can only be attained when all the rays 
diffracted by the object, which are of sufficient intensity to be 
able to produce appreciable effects in the focal plane ~• of the 
objective, are received by the objective, i.e. are not cut off by 
stops. This shows the great importance of using an objective 
of large numerical aperture. The greater the aperture the 
sooner will an image be formed which approximately repro
duces the fine detail in the object. Perfect similarity is an 
impossibility even theoretically. A microscope reproduces the 
detail of an object up to a certain limit only. 

To illustrate this by an example, assume that the object P 
is a grating whose constant is d, and that the incident beam is 
parallel and falls perpendicularly upon the grating. The first 
maximum from the centre of the field lies in a direction deter
mined by sin </> = i\. : d. Let the real image of this maximum 
in the focal plane ~' of the objective be C1 , while C0 is that 
of the centre of the field (Fig. 75). Let the distance between 

,r 
fl 

C 
e 

0 

P' 

X' 

FIG. 75. 

these two images bee. Now the two images C0 and C1 have 
approximately the same intensity and send out coherent waves, 
i.e. waves capable of producing interference. Hence there is 
formed at a distance r' behind the focal plane ~• a system of 
fringes whose distance apart is d' = r'i\. : e. If now the objec
tive is aplanatic, i.e. fulfils the sine law (cf. page 58), then 

sin </> = E• sin </l, 
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in which e denotes a constant. Setting sin </>' = e: x', which 
is permissible since <!>' is always small (while </> may be large), 
and remembering that sin </> = A : d, it follows that 

;t e - = e-,, d X 

i.e. the distance d' between the fringes is 

d' = x';\. = ed, 
e 

or, the distance between the fringes is proportional to the con
stant of the grating and independent of the color of the light 
used. 

Hence in order that the grating lines may be perceptible 
in the image, the objective must receive rays whose inclination 
is at least as great as that determined by sin </> = A. : d. In 
the case of an immersion system A denotes the wave length in 
the immersion fluid, i.e. it is equal to A : n when .l denotes 
the wave length in air and n the index of the fluid with respect 
to air. Hence 

n sin </> = .l : d. 
Now n sin U = a is the numerical aperture of the microscope: 
(cf. equation (80) on page 86), provided U is the angle 
included between the limiting ray and the axis. Hence the 
smallest distance d which can be resolved by a microscope of 
aperture a is 

d = l: a. (97) 

This equation holds for perpendicular illumination of the object. 
With oblique illumination the resolving power may be in, 
creased, for, if the central spot of the diffraction pattern does 
not lie in the middle but is displaced to one side, the first 
diffraction maximum appears at a smaller angle of inclination 
to the axis. The conditions are most favorable when the inci
dent light has the same inclination to the axis as the diffracted 
light of the first maximum, and both just get in to the objec
tive. 
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If the incident and the diffracted light make the same angle 
U with the normal to the grating, then, by (71) on page 214, 

2'1t 
µ = x-·2 sin U. Since, further, by (86) on page 223, the 

first diffraction maximum appears when µ = 2;, it follows that 

in this case 
.l 

sin U= --. 
2d 

Hence the smallest distance d which the microscope objective 
is able to resolve with the most favorable illumination is 

.l 
d = -, (98) 

2a 

in which a is the numerical aperture of the microscope and .l 
the wave length of light in air. This is the equation given on 
page 92 for the limit of resolution of the microscope. 

In order to increase the amount of light in the microscope, 
the object is illuminated with strongly convergent light (with 
the aid of an Abbe condenser, cf. page 102). The above 
considerations hold in this case for each direction of the incident 
light; but in the resolution of the object only those directions 
are actually useful for which not only the central image but 
also at least the first maximum of the diffraction pattern falls 
within the field of view of the eyepiece. The diffraction 
maxima corresponding to the different directions of the inci
dent light lie at different places in the focal plane of the 
objective, but they exert no influence whatever upon one 
another, since they correspond to incoherent rays; for the light 
in each direction comes from a different point of the source, for 
example the sky. 

If, instead of a grating, a single slit of width d were used, 
no detail whatever would be recognizable unless the diffraction 
pattern were effective at least to the first minimum. Since, 
according to equation (79) on page 218, for perpendicularly 
incident light this first minimum lies at the diffractidh angle 
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determined by sin ¢ = A : d, * the result for one slit is the same 
as for a grating. Only in this case a real similarity between 
the image and the slit, i.e. a correct recognition of the width 
of the slit, is not obtained if the diffraction pattern is effective 
only up to the first minimum. 

If only an approximate similarity between object and image 
is sufficient, for example if it is only desired to detect the 
existence of a small opaque body, its dimensions may lie con
siderably within the limit of resolution d as here deduced; for 
so long as the diffraction pattern formed by the object causes 
an appreciable variation in the uniform illumination in the 
image plane which is conjugate to the object, its existence 
may be detected. 

From the above considerations it is evident that the limit 
of resolution dis smaller the shorter the wave length of the 
light used. Hence microphotography, in which ultraviolet 
light is used, is advantageous, although no very great increase 
in the resolving power is in this way obtained. But the 
advantages of an immersion system become in this case very 
marked, since by an immersion fluid of high index the wave 
length is considerably shortened. This result appears at once 
from equations (97) and (98), since the numerical aperture a 
is proportional to the index of refraction of the immersion fluid. 

* d here has the same signification as a there. 



CHAPTER V 

POLARIZATION 

1. Polarization by Double Refraction.-A ray of light is 
said to be polarized when its properties are not symmetrical 
with respect to its direction of propagation. This lack of 
symmetry is proved by the fact that a rotation of the ray about 
the direction of propagation as axis produces a change in the 
observed optical phenomena. This was first observed by 
Huygens* in the passage of light through Iceland spar. Polar
ization is always present when there is double refraction. 
Those crystals which do not belong to the regular system 
always show double refraction, i.e. an incident ray is divided 
within the crystal into two rays which have different directions. 

The phenomenon is especially easy to observe in calc-spar, 
which belongs to the hexagonal system and cleaves beautifully 
in planes corresponding to the three faces of a rhombohedron. 
In six of the corners of the rhombohedron the three intersect
ing edges include one obtuse and two acute angles, but in the 
two remaining corners A, A', which lie opposite one another 
(cf. Fig. 76), the three intersecting edges enclose three equal 
obtuse angles of l01° 53'. A line drawn through the obtuse 
corner A so as to make equal angles with the edges intersect
ing at A lies in the direction of the principal crystallographic 
a.xis. t If a rhombohedron be so split out that all of its edges 
are equal, this principal axis lies in the direction of the line 
connecting the two obtuse angles A, A'. Fig. 76 represent-. 
such a crystal. 

* Huygens, Trait~ de la Lumiere, Leyden, 1690. 
t The principal axis, like the normal to a surface, is merely a direction, not a 

definite line. 
242 
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If now a ray of light LL be incident perpendicularly upon 
the upper surface of the rhombohedron, it splits up into two 
rays LO and LE of equal intensity 
which emerge from the crystal 
as parallel rays OL' and EL" 
perpendicular to the lower face. 
Of these rays LO is the direct 
prolongation of the incident ray 
and hence follows the ordinary 
law of refraction in isotropic 
bodies, in accordance with which 
no change in direction occurs 
when the incidence is normal. 
This ray LO together with its 
prolongation L' 0 is therefore 
called the ordinary ray. But the 
second ray LE, with its prolonga

L 

11' L' 
FIG. 76. 

tion L" E, which follows a law of refraction altogther different 
from that of isotropic bodies, is called the extraordinary ray. 
Also the plane defined by the two rays is parallel to the direc
tion of the crystallographic axis. A section of the crystal by 
a plane which includes the normal to the surface and the axis 
is called a principal section. Hence the extraordinary ray lies 
in the principal section; it rotates about the ordinary ray as the 
crystal is turned about LL as an axis. 

The intensities of the ordinary and extraordinary rays are 
equal. But if one of these rays, for instance the extraordinary, 
is cut off, and the ordinary ray is allowed to fall upon a second 
crystal of calc-spar, it undergoes in general a second division 
into two rays, which ha'lle not, htr&ez1er, in general the same 
intensity. These intensities depend upon the orientation of the 
two rhombohedrons with respect to each other, i.e. upon the 
angle included between their principal sections. If this angle 
is o or 180°, there appears in the second crystal an ordinary 
but no extraordinary ray; but if it is 90", there appears only 
an extraordinary ray. Two rays of equal intensity are pro-
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duced if the angle between the principal sections is 45°. 
Hence the appearance continually changes when the second 
crystal is held statioi:iary and the first rotated, i.e. when the 
ordinary ray turns about its own direction as an axis. Hence 
the ray is said to be polarized. This experiment can also be 
performed with the extraordinary ray, i.e. it too is polarized. 
Also if the first rhombohedron is rotated through 90° about 
the normal as an axis, the extraordinary ray produces in the 
second crystal the same effects as were before produced by the 
ordinary ray. Hence the ordinary and extraordinary rays 
are said to be polarized in planes at right angles to each other. 

The two rays produced by all other doubly refracting 
crystals are polarized in planes at right angles to each other. 

The principal section is conveniently chosen as a plane of 
reference when it is desired to distinguish between the direc
tions of polarization of the two rays. Since these phenomena 
produced by two crystals of calc-spar depend only upon the 
absolute size of the angle included between their principal sec
tions and not upon its sign, the properties of the ordinary and 
extraordinary rays must be symmetrical with respect to the 
principal section. 

The principal section i's called the plane of polarzzatz'on of 
the ordinary ray,-an expression which asserts nothing save 
that this ray is not symmetrical with respect to the direction 
of propagation, but that the variations in symmetry in different 
directions are symmetrical with respect to this plane of polar
ization, the principal section. 

Since, as was observed above, the ordinary ray is polarized 
at right angles to the extraordinary ray, it is necessary to call 
the plane which is perpendicular to the principal section the 
plane of polarization of the extraordinary ray. These relations 
may also be expressed as follows: The ordinary ray i's polar
ized in the p,·incipal section, the extraordinary perpendicular 
to the princi'pal sectz'on. 

2. The Nicol Prism.-ln order to obtain light polarized in 
but one plane, it is necessary to cut off or remove one of the 
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two rays produced by double refraction. In the year 1828 
Nicol devised the following method of accomplishing this end: 
By suitable cleavage a crystal of calc-spar is obtained which is 
fully three times as long as broad. The end surfaces, which 
make an angle of 72° with the edges of the side, are ground 
off until this angle (ABA' in Fig. 7i) is 68°. The crystal is 

A' 

FIG. 77. 

then sawed in two along a plane AA', which passes through 
the corners AA' and is perpendicular both to the end faces and 
to a plane defined by the crystallographic axis and the long axis 
of the rhombohedron. These two cut faces of the two halves 
of the prism are then cemented together with Canada balsam. 
This balsam has an index of refraction which is smaller than 
that of the ordinary but larger than that of the extraordinary 
ray. If now a ray of light LL enters parallel to the long axis 
of the rhombohedron, the ordinary ray LO is totally reflected 
at the surface of the Canada balsam and absorbed by the 
blackened surface BA', while the extraordinary ray alone 
passes through the prism. The plane of polarization of the 
emergent light EL'' is then perpendicular to the principal 
section. i.e. parallel to the long diagonal of the surfaces AB 
or A'B'. 

The angle of aperture of the cone of rays which can enter 
the prism in such a way that the ordinary ray is totally reflected 
amounts to about 30°. Furthermore a convergent incident 
beam is not rigorously polarized in one plane, since the plane 
of polarization varies somewhat with the inclination of the 
incident ray; for the plane of polarization of the extraordinary 
ray is always perpendicular to the plane defined by the ray and 
the crystallographic axis (principal plane). The principal plane 
and the principal section are identical for normal incidence. 



THEORY OF OPTICS 

3. Other Means of Producing Polarized Light.-Apart 
from polarization prisms* constructed in other ways, tourmaline 
plates may be used for obtaining light polarized in one plane, 
provided they are cut parallel to the crystallographic axis and 
are from one to two millimetres thick. For under these con
ditions the ordinary ray is completely absorbed within the 
crystal. Also, polarizt'd light may be obtained by reflection at 
the surface of any tra11sparcnt body if the angle of reflection <P 
fulfils the condition (Brewster's law) tan </> = n, in which n is 
the index of refraction of the body. This angle </> is called 

FIG. 78. 

also at the polarizing 

the polariizitg angle. For crown 
glass it is 57°. The reflected 
light z"s polarized z"n the plane of 
iucii:ieuce, as may be shown by 
passing the reflected light through 
a crystal of cak-spar. 

If light reflected at the polar
izing angle from a glass plate 
be allowed to fall at the same 
angle upon a second glass plate, 
the final intensity depends upon 
the angle a included between the 
planes of incidence upon the two 
surfaces and is proportional to 
cos2 a. This case can be studied 
by means of the Norrenberg 
polariscope. The ray a is polar
ized by reflection upon the glass 
plate A and then falls perpendic
ularly upon a silvered mirror at c. 
This mirror reflects it to the black 
glass mirror S which turns upon a 
vertical axis. The ray cb falls 

angle upon S and, after reflection upon 

* Cf. W. Grosse, Die gebrlluchlichen Polarisationsprismen, etc., Klaustahl, 
1889 ; Winkelmann's Handbuch d. Physik, Optik, p. 629. 
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S, has an intensity which varies as 5 is turned about a vertical 
axis. Between A and 5 a movable glass stage is introduced 
in order to make it convenient to study transparent objects at 
different orientations in polarized light. But since the intensity 
of light after but one reflection is comparatively small, this 
means of producing polarized light is little used; the same 
difficulty is met with in the use of tourmaline plates (not to 
mention a color effect). 

A somewhat imperfect polarization is also produced by the 
oblique passage of light through a bundle of parallel glass 
plates. This case will be treated in Section II, Chapter II. 
That polarization is also produced by diffraction was mentioned 
on page 212. 

4. Interference of Polarized Light. -The interference 
phenomena described above may all be produced by light. 
polarized z"n one plane. But two rays which are polarz"zed at 
right angles never interfere. This can be proved by placing 
a tourmaline plate before each of the openings of a pair of slits. 
The diffraction fringes which are produced by the slits are seen 
when the axes of the plates are parallel, but they vanish com
pletely when one of the plates is turned through 90°. 

Fresnel and Arago investigated completely the conditions 
of interference of two rays polarized at right angles to each 
other after they had been brought back to the same plane of 
polarization by passing them through a crystal of calc-spar 
whose principal section made an angle of 45° with the planes 
of polarization of each of the two rays. They found the fol
lowing laws: 

I. Two rays polarized at right angles to each other, which 
have come from an unpolarized ray, do not interfere even when 
they are brought into the same plane of polarization. 

2. Two rays polarized at right angles, which have come 
from a polarized ray, interfere when they are brought back to 
the same plane of polarization. 

5. Mathematical Discussion of Polarized Light.-lt has 
been already shown that the phenomena of interference lead 
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to the wave theory of light, in accordance with which the light 
disturbance at a given point in space is represented by 

s = A sin(21t ~ + o). (1) 

It is now possible to make further assertions concerning 
the properties of this disturbance. For in polarized light these 
properties must be directed quantities, i.e. vectors, as are lines, 
velocities, forces, etc. Undirected quantities like density and 
temperature are called scalars to distinguish them from vectors. 
If the properties of polarized light were not vectors, they could 
not exhibit differences in different azimuths. For the same 
reason these vectors cannot be parallel to the direction of 
propagation of the light. Hence s will now be called a light 
vector. Now a vector may be resolved into three components 
along the rectangular axes x, y, z. These components of s 
will be denoted by u, v, w. Hence the most general repre
sentation of the light disturbance at a point P is 

u = A sin (21t~ + P), v = Bsin (21t; +q),} 

w = Csin (21t ~ + r). 
(2) 

The meaning of these equations can be brought out by 
representing by a straight line through the origin the magni
tude and direction of the light vector at any time. The end 
~ of this line can be located by considering u, v, w. as its 
rectangular coordinates. The path which this point ~ 
describes as the time changes is called the vibration form and 
is obtained from equations (2) by elimination oft. (2) may 
be written 

u t t . 
A = sin 21tr•cosp + cos 21t7 -smp, 

V . t t . 
B = sm 21tT • cos q + cos 21t7 • sm q, (3) 

w t t . C = sin 21t 7 -cos r + cos 21t-T •sm r. 
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Multiplying these equations by sin (q - r), sin (r - P), 
and sin (P - q) respectively, and adding them, there results 

u. v.() w. ) A sm (q - r) + B sm r - p + C sm (P - q = o, (4) 

i.e. since a linear equation connects the quantities u, v, w, the 
vibration form is always a plane curve. 

The equations of its projections upon the coordinate planes 
may be obtained by eliminating t from any two of equations (3). 
Thus, for instance, from the first two of these equations 

. I( , . ) U. V. 
sm 21tT cosp sm q - cos q smp = A sm q - B smp, 

/ ( , , ) U V cos21t T cosp sm q- cos q smp = - A cos q + B cosp. 

Squaring and adding these two equations gives 

u2 v2 2uv 
sin2 (P - q) = A 2 + B 2 - AB cos (P - q). (5) 

But this is the equation of an ellipse whose principal axes 

coincide with the coordinate axes when p - q = !!. Hence, 
2 

in the most general case, the vibratz'on form z's a plane ellip#cal 
curve. This corresponds to so-called elliptically polarized 
light. When the vibration form becomes a circle, the light 
is said to be circularly polarized. This occurs, for instance, 

7( 

when w = o, A = B, and p - q = ± -, so that either the 
2 

relation 

A . t 
u = sm 21tT' 

or the relation 

A . t 
tt = sm 27r T' 

t 
V = A cos 27r T' . 

t 
V = - A cos 27tT 

(6) 

(6') 

holds. These two cases are distinguished as right-handed and 
lift-handed cz'rcular polarization. The polarization is right
handed when, to an observer looking in a direction opposite 
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to that of propagation, the rotation corresponds to that of the 
hands of a watch. When the vibration ellipse becomes a 
straight line, the ligltt is said to be plane-polarized. This 
occurs when w = o, and p - q = o or 1t. The equation of 
the path is then, by (5), 

11 V 

A ± B = o. (7) 

The intensity of the disturbance has already been set equal 
to the square of the amplitude A of the light vector. This 
point of view must now be maintained, and it must be remem
bered that the square of the amplitude is equal to the sum of 
the squares of the amplitudes of the three components. The 
intensity J is then, in accordance with the notation in (2), 

J ~ A 2 + B 2 + C 2• (8) 

An investigation will now be made of the vibration form 
which corresponds to the light which in the previous paragraph 
was merely said to be polarized, i.e. the light which has suffered 
douLle refraction or reflection at the polarizing angle. The 
principal characteristic of this light is that two rays which are 
polarized at right angles never interfere, but give always an in
tensity equal to the sum of the intensities of the separate rays. 

If there be superposed upon ray (2), which is assumed to 
be travelling along the z-axis, a ray of equal intensity, which 
is polarized at right angles to it and whose components are u', 
v', w', and which differs from it in phase by any arbitrary 
amount o, then 

u'= B sin (2n ;+ q + a), v'= -A sin (21r: ;+ p + a), I 
( t ) (9) 

w' = C sin 2 1t T + r + o . 

For, save for the difference in phase o, these equations become 
equations (2) if the coordinate system be rotated through 90° 
about the z-axis. 

By superposition of the two rays (2) and (9), i.e. by taking 
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the sums u + u', v + v', w + w', there results, according to 
the rule given above [equation (II) page 131], for the squares 
of the amplitudes of the three components 

A' 2 = A 2 + B 2 + 2AB cos (&- + q - P), 
B' 2 = A 2 + B 2 - 2AB cos(&"+ p - q), 
C' 2 = 2C2 (1 + COS o"). 

Addition of these three equations gives, in consideration of (8), 

J' = 2J + 2C2 cos &- - 4AB sin &- sin (q - p}. 

Since now experiment shows that J' is equal simply to the 
sum of the intensities of the separate rays and is wholly inde
pendent of &-, it follows that C = o, i.e. the light vector is 
perpendicular to the direction of propagation, or the wave i's 
trans,,erse; it also follows that sin (p - q) = o, i.e., from (5) 
or (7), tlze vibration form is a straiglzt line. 

Hmce rays which lza'<)e suffered double refraction or rejlec
tiou at the polarizing angle are plane-polarized transverse 
wa1,es. 

Since, as was shown on page 244, the properties of a 
polarized ray must be symmetrical with respect to its plane of 
polarization, it follows that tlze light vector must lie either in 
tlze plane of polarization or in the plane perpendicular to it. 
Whether it lies in the first or the second of these planes is a 
question upon which light is thrown by the following experi
ment. 

6. Stationary Waves produced by Obliquely Incident 
Polarized Light.-Wiener investigated the formation of sta
tionary waves by polarized light which was incident at an 
angle of 45° (cf. page 155), and found that such waves were 
distinctly formed when the plane of polarization coincided with 
the plane of incidence, but that they vanished completely when 
the plane of polarization was at right angles to the plane of 
incidence. The conclusion is inevitable that the light vector 
wlziclt produces the photographic effect* is perpendi,:ular to the 

* The same holds for the fluorescent effect produced by stationary waves. 
Cf. foot-note, p. 156 above. 
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plane of polarization; for stationary waves can be formed only 
when the light vectors of the incident and reflected rays are 
parallel. When they are perpendicular to each other every 
trace of interference vanishes. 

It will be seen later that, from the standpoint of the elec
tromagnetic theory, the above ques#on has no meaning if merely 
the dz"rection of the vector be taken z"nto account. For in that 
theory, and in fact in any other, two vectors which are at 
right angles to each other (the electric and the magnetic force) 
are necessarily involved. However, the question may well be 
asked, which of these two vectors is determinative of the light 
phenomena, or whether, in fact, both are. If both were 
determinative of the photographic effect, then in Wiener's 
experiment no stationary waves could have been obtained even 
with perpendicular incidence, since the nodes of one vector 
coincide with the loops of the other, and inversely, as will be 
proved in the later development of the theory of light. But 
the fact that stationary waves are actually observed proves 
that, for the photo-chemical as well as for the fluorescent 
effects, only one light vector is determinative; and indeed that 
it is the one which is perpendicular to the plane of polarization 
is shown by the experiments in polarized light mentioned 
above. 

The phenomena shown by pleochroic crystals like tourma
line lead also to the same conclusions. 

7. Position of the Determinative Vector in Crystals.-In 
crystals the velocity depends upon the direction of the wave 
normal and upon the plane of polarization. Similarly in the 
pleochroic crystals the absorption of the light depends upon 
the same quantities. Now it appears* that these relations are 
most easily understood upon the assumptz"on that the light vector 
is perpendicular to tlte plane of polarz"zatz"on. For then the 
velocity and the absorption t of the wave depend only upon the 

* This is more fully treated in Section II, Chap. II, § 7. 
t The fluorescence phenomena in crystals lead also to the same conclusion. 

Cf. Lommel, Wied. Ann. 44, p. 311. 
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direction of the light vector with respect to the optical axis of 
the crystal. The following example will illustrate: A plate 
of tourmaline cut parallel to the principal axis does net change 
color or brightness when rotated about that axis, i.e. when the 
light is made to pass through obliquely, but its direction is kept 
perpendicular to the axis. But the brightness of the plate 
changes markedly if it be rotated about an axis perpendicular 
to the principal axis of the crystal. The plane of polarization 
of the emergent ray is in the first case perpendicular to the 
principal axis, i.e. to the axis of rotation of the plate; in the 
second case it is parallel to this axis. The vector which is 
perpendicular to the plane of polarization is, therefore, in the 
first case continually parallel to the principal axis of the plate, 
but in the second it changes its position with respect to this 
axis. 

Thus far no case has been observed in which a light vector 
which lies in the plane of polarization is alone determinative 
of the effects, i.e. furnishes the simplest explanation of the 
phenomena. Hence in view of what precedes it may be said: 
The light vector is perpendicular to the plane of polarization.* 

8. Natural and Partially Polarized Light.-It has been 
shown above that two plane-polarized beams may be obtained 
by double refraction from a single beam of natural light. 
Superposition of two plane-polarized rays which have the same 
direction but different phases and azimuths produces, as is 
shown by equation (5), elliptically polarized light. The vibra
tion in such a ray is, however, wholly transverse, since the 
plane of the ellipse is perpendicular to the direction of propa
gation. 

As will be fully shown later, elliptically polarized light is 
produced by the passage of a plane-polarized beam through a 
doubly refracting crystal whenever the two beams produced 
by the double refraction are not separated from each other. 

* At least this assumption gives a simpler presentation of optical phenomena 
than the other (which is also possible) which makes the light vector parallel to the 
plane of polarization. 
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Also the most general case, represented by equations (2), of 
elliptically polarized light which is not transverse can be 
realized by means of total reflection or absorption, as will be 
shown later. 

The question now arises, What is the nature of natural 
light ? Since it does not show different properties in different 
azimuths, and yet is not identical with circularly polarized light, 
because, unlike circularly polarized light, it shows no one-sided
ness after passing through a thin doubly refracting crystal, the 
only assumption which can be made is that natural light is 
plane or elliptically polarized for a small interval of time ot, 
but that, in the course of a longer interval, the vibration form 
changes in such a way that the mean effect is that of a ray 
which is perfectly symmetrical about the direction of propa
gation. 

Since Michelson has observed interference in natural light 
for a difference of path of 540,oool (cf. page 150), it is 
evident that in this case light must execute 540,000 vibrations 
at least before it changes its vibration form. But since a 
million vibrations are performed in a very short time, namely, 
in 20. 10-10 seconds, the human eye could never recognize a 
ray of natural light as polarized even though several mil1ion 
vibrations were performed before a change occurred in the 
vibration form. For, in the shorte~t interval which is neces
sary to give the impression of light, the vibration form would 
have changed several thousand times. 

As regards the two laws announced by Fresnel and Arago 
(cf. page 247), the second, namely, that two rays polarized at 
right angles interfere when they are brought into the same 
plane of polarization provided they originated in a polarized 
ray, is easily understood: for in this case the original ray has 
but one vibration form, hence the two reuniting rays must be 
in the same condition of polarization, i.e. must be capable of 
interfering. This is the case also when the original ray is 
natural light so long as the vibration form does not change, 
i.e. within the above-mentioned interval ot. But for another 
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interval rJt', although interference fringes must be produced, 
the position of these fringes is not the same as that of the 
fringes corresponding to the first interval rJt. For a change in 
the vibration form of the original ray is equivalent to a change 
of phase. Hence the mean intensity, taken over a large num
ber of elements rJt, is equivalent to a uniform intensity, i.e. 
two rays polarized at right angles to each other, which origi
nated in natural light, do not interfere even though they are 
brought together in the same azimuth. This is the first of the 
Fresnel-Arago laws. 

The term partially polarized light is used to denote the 
effect produced by a superposition of natural light and light 
polarized in some particular way. Partially polarized light has 
different properties in different directions, yet it can never be 
reduced to plane polarized light, as ca,1 be done with light 
which has a fixed vibration form (cf. below). 

9. Experimental Investigation of Elliptically Polarized 
Light. -In order to obtain the vibration form of an elliptically 
polarized ray, it is changed into a plane-polarized ray by mean<; 
of a doubly refracting crystalline plate. For, as was remarked 
upon page 242, the passage of plane-polarized light through 
a doubly refracting crystal decomposes it into two waves 
polarized at right angles to each other. The directions of the 
light vectors in the two waves are called the principal direc
tions of vibration. These have fixed positions within the 
crystal and are perpendicular to each other. Since now the 
two rays are propagated with different velocities within the 
crystal, they acquire a difference of phase which depends upon 
the nature and thickness of the plate. An incident light vector 
which is parallel to one of these two principal directions of 
vibration within the crystal is not decomposed into two waves. 

Two methods of procedure are now possible: first, the 
plate of crystal may be of such thickness that it introduces a 

'TC 
difference of phase of 2 ( difference of path ¼A) between the 

two waves prop,llgated through it. This is called a quarter-wave 
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plate (Senarmont's compensator). If the quarter-wave plate is 
rotated until its principal directions are parallel to the principal 
axes of the elliptical vibration form of the incident light, the 
emergent light must evidently be plane-polarized, and the 
position of its plane of polarization must depend upon the ratio 
of the principal axes of the incident ellipse. For the two light 
vectors which lie in the directions of the principal axes of this 
ellipse have, after passage through the plate, a difference of 
phase of o or n, and in this case there results ( cf. page 2 50) 
plane-polarized light in which the direction of the light vector 
is given by equation (7). Hence if the emergent light is 
observed through a nicol, entire darkness is obtained when the 
nicol is in the proper azimuth. Hence this method of investi
gation requires a rotation both of the crystalline plate about 
its normal and of the nicol about its axis until complete dark
ness is obtained. The position of the crystal then gives the 
position of the principal axes of the incident ellipse; that of 
the nicol, the ratio of these axes. 

Second, a fixed plate of variable thickness, such as a quartz 
wedge, may be used in order to give those two components of 
the incident light which are in the principal directions of vibra
tion of the plate such a difference of phase that, after passage 
through the crystal, they combine to form plane-polarized 
light. A nicol is used to test whether or not this has been 
accomplished. The position of the nicol gives the ratio of the 
components u, v, of the incident light, while their original 
difference of phase is calculated from the thickness of the plate 
which has been used to change the incident light into plane
polarized light. 

In order that the crystal may produce a difference of phase 
zero, it is convenient to so combine two quartz wedges, whose 
optical axes lie in different directions, that they produce differ

ences of phase of different sign. Thus, 
A ~£ B for example, in Fig. 79, A is a wedge 

Fm. 79. of quartz whose crystallographic axis 
is parallel to the edge of the wedge, while B is another plate 
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whose principal axis is perpendicular to the edge but parallel 
to the surface (Babinet'.; compensator). Only the difference 
in the thickness of the two wedges is effective. Hence, if the 
incident light is homogeneous and elliptically polarized, a suit
able setting of the analyzing nicol brings out dark bands which 
run parallel to the axis of the wedge. These bands move 
across the compensator if one wedge is displaced with reference 
to the other. A micrometer screw effects this displacement. 
After the instrument has been calibrated by means of plane
polarized light, it is easy from the reading on the micrometer 
when a given band has been brought into a definite position 
to calculate the difference of phase of those two components 
u, v, which are parallel to the two principal axes of the quartz 
wedges. 

The construction must be somewhat altered if it is desired 
to obtain a large uniform field of plane-polarized light. Then, 
in place of a quartz wedge, a plane parallel plate of quartz 
must be used as a compensator. 
Such a plate is produced by com
bining two adjustable quartz wedges 
whose axes lie in the same direc
tion (Fig. 80). In order to make 

.B 

A f£t< ;_;,tt;:::tt,& A' 
FIG. Bo. 

it possible to introduce a difference of phase zero, the two 
wedges are again combined with a plane parallel plate of 
quartz B whose principal axis is at right angles to the axes of 
A and A'; so that the effective thickness is the difference 
between the thickness of B and the sum of the thicknesses of 
the wedges A and A'. This construction, that of the Soleil
Babinet compensator, is shown in Fig. 80. In the wedges A, 
A' the principal axis is parallel to the edges of the wedges; in 
the plate B the principal axis is perpendicular to the edge and 
parallel to the surface. It is convenient to have one plate, for 
example A', cemented to B, while A is micrometrically adjust
able. For a suitable setting of the micrometer and the 
analyzing nicol the whole field is dark. 

This construction of the compensator is particularly con-
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venient for studying the modifications which plane-polarized 
light undergoes upon reflection or refraction. In a spectrom
eter (Fig. 81) the collimator K and the telescope F are fur
nished with nicol prisms whose orientations may be read off 
on the graduated circles p, p'. The Soleil-Babinet compen-

Fm. 81. 

sator C is attached to the telescope. Its principal directions 
of vibration (the principal axes) are parallel and perpendicular 
to the plane of incidence of the light. S is the reflecting or 
refracting body. Thus the light is parallel in passing through 
the nicols and the compensator.* 

* Since the telescope must be focussed for infinity, the simple Babinet compen
sator cannot be used. 
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OPTICAL PROPERTIES OF BODIES 

CHAPTER I 

THEORY OF LIGHT 

1. :Mechanical Theory.-The aim of a theory of light is to 
deduce mathematically from some particular hypothesis the 
differential equation which the light vector satisfies, and the 
boundary conditions which must be fulfilled when light crosses 
the boundary between two different media. Now the differen
tial equation (12) on page 169 of the light vector is also the 
general equation of motion in an elastic medium, and hence it 
was natural at first to base a theory of light upon the theory 
of elasticity. According to this mechanical conc-:!ption, a liglzt 
11ector must be a displacement of the ether particles from tlzEir 
positions of equilibrium, and the ether, i.e. the medium in 
which the Jight vibrations are able to be propagated, must be 
an elastic material of very small density. 

But a difficulty arises at once from the fact that light-waves 
are transverse. In general both transverse and longitudinal 
vibrations are propagated in an elastic medium; but fluids which 
have no rigidity are capable of transmitting longitudinal vibra
tions only, while solids which are perfectly incompressible can 
transmit transverse vibrations only. The fact that the heavenly 
bodies move without friction through free space would point 
strongly to the conclusion that the ether is a fluid, not an in-

259 
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compressible solid. Nevertheless this difficulty may be met 
by the consideration that, with respect to such slowly acting 
forces as are manifested in the motions of the heavenly bodies, 
the ether acts like a frictionless fluid; while, with respect to 
the rapidly changing forces such as are present in the vibra
tions of light, a slight trace of friction causes it to act like a 
rigid body. 

But a second difficulty arises in setting up the boundary 
conditions for the light vector. The theory of elasticity fur
nishes six conditions for the passage of a motion through the 
bounding surface between two elastic media, namely, the 
equality on both sides of the boundary of the components of 
the displacements of the particles, and the equality of the com
ponents of the elastic forces. But in order to satisfy these 
six conditions both transverse and longitudinal waves must be 
present. How the various mechanical theories attempt to 
meet this difficulty will not be considered here: * suffice it to 
say that most of these theories retain only four of the boundary 
conditions. 

In order to bring theory into agreement with the observa
tions upon the properties of reflected light, for instance to 
deduce Brewster's law as to the polarizing angle (cf. page 
246), it is necessary to assume either that the density or that 
the elasticity of the ether is the same in all bodies. The 
former standpoint was taken by F. Neumann, the latter by 
Fresnel. Neumann's assumption leads to the conclusion that 
the displacement of the ether particles in a plane-polarized ray 
lies in the plane of polarization, while Fresnel's makes it per
pendicular to this plane. 

2. Electromagnetic Theory .-The fundamental hypothe
sis of this theory, first announced by Faraday, and afterwards 
mathematically developed by Maxwell, is that the velocity of 
tight in a non-absorbing medium is identical with the velocity of 

* For complete presentation cf. Winkelmann's Handbucb, Optik, pp. 
641-674. 
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an electromagnetic wa7_1e in the same medium. Either the elec
tric or the magnetic force may be looked upon as the light 
vector; both are continually vibrating and, in a plane-polarized 
ray, are perpendicular to each other. This two-sidedness of 
the theory leaves open the question as to the position 0£ 
the light vector with respect to the plane of polarization ; 
nevertheless, for the reasons stated on page 252, it is simpler 
to interpret the electric force, which lies perpendicular to the 
plane of polarization, as the light vector. This leads to the 
results of Fresnel's mechanical theory, while Neumann's re
sults are obtained when the magnetic force is interpreted as the 
light vector. 

The following are the essential advantages of the electro
magnetic theory: 

I. That the waves are transverse follows at once from 
Maxwell's simple conception of electromagnetic action, 
according to which there exist only closed electrical circuits. 

2. The boundary conditions hold for every electromag
netic field. It is not necessary, as in the case of the mechan
ical theories, to make special assumptions for the light 
vibrations. 

3. The velocity of light in space, and in many cases in 
ponderable bodies also, can be determined from pure electromag
netz'c experiments. This latter is an especial advantage of this 
theory over the mechanical theory, and it was this point which 
immediately gained adherents for the electromagnetic concep
tion of the nature of light. In fact it is an epoch-making 
advance in natural science when in this way two originally 
distinct fields of investigation, like optics and electricity, are 
brought into relations which can be made the subject of quan
titative measurements. 

Henceforth the electromagnetic point of view will be main
tained. But it may be remarked that the conclusions reached 
in the preceding chapters are altogether independent of any 
particular theory, i.e. independent of what is understood by a 
light vector. 
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3. The Definition of the Electric and of the Magnetic 
Force.-Two very long thin magnets exert forces upon each 
other which appear to emanate from the ends or poles of the 
magnets. Tlze strengths of two magnet-poles m and m1 are 
defined by the fact that in a vacuum, at a distance apart 
r, they exert upon each other a mechanical force (which can be 
measured in C. G. S. units) 

v _ 111::,m1 
I\. - ;r • 

In accordance with this equation a ullit mag1tctic pole (111 = I) 
is defined as one which, placed at unit distance from a like 
pole, exerts upon it unit force. 

The strength ~ of a magnetic field in any medium* is the 
force which the field exerts upon unit magnetic pole. The 
components of ~ along the rectangular axes x, y, ::: will be 
denoted by a, /3, y. 

The direction of tlze magnetic lines of force determines the 
direction of the magnetic field; the density of the lines, the 
strength of the field, since in a vacuum the strength of field is 
represented by the number of lines of force which pass per
pendicularly through unit surface. A correct conception of the 
law of force (1) is obtained if a pole of strength m be conceived 
as the origin of 41tm lines of force. For then the density of 
the lines upon a sphere of radius r described about the pole as 
centre is equal to m : r, i.e. is equal to the strength of field 
~. according to law (I). 

Similar definitions hold in the dectrostatzc system for tht· 
e!ectn·c field. 

Tlte quantities (}f two electric cltarges c and t\ are defined 
by the fact that in a vacuum, at a distance apart r, they exert 
upon each other a measurable mechanical force 

K _ c•e1 

- ,:i· 

The definition of unit charge is then similar to that of unit pole 
above. 

* This mediqm c,Ul be filled with matter or be totally devoid of it .. 
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The strengtk g: of any electric field in any medium is the 
force which it exerts upon unit charge. The components of g: 
along the three rectangular axes will be denoted by X, Y, Z. 

The direction of tlte electric lines of force determines the 
direction of the electric field, and the number of lines which 
intersect perpendicularly unit surface in a vacuum determines 
the strength ~ of the field. Hence, since law (2) holds, 41re 
lines of force originate in a charge whose quantity is e. 

4. Definition of the Electric Current in the Electrostatic 
and in the Electromagnetic Systems.-In the electrostatic sys
tem tlte electric rnrrent i which is passing through any cross
section q is defined as the number of electrostatic units of quan
tity which pass through q in unit time. Thus if, in the element 
of time dt, the quantity de passes through q, the current is 

. de 
z = dt" (3) 

If the cross-section q is unity, i is equal to the current 
density j. The components of the current density, namely, 
;~, J,, ;~, are obtained by choosing q perpendicular to the 
x-, y-, or z-axis respectively. 

In the electromagnetic system, the ettrrent i' is defined by 
means of its magnetic effect. A continuous current is obtained 
in a wire when the ends of the wire are connected to the poles 
of a galvanic cell. In this case also definite quantities of elec
tricity are driven along the wire, for the isolated poles of the 
cell are actually electrically charged bodies. A magnetic pole 
placed in the neighborhood of an electric current is acted upon 
by a magnetic force. In the electromagnetic system the current 
i' is defined by the fact that it requires 41ri' = ~ units of work 
to carry unit magnetic pole once around the current.* 

Take, for example, a rectangle whose sides are dx, dy 
(Fig. 82), and through which a current i' = J; · dx dy flows in a 

* The work W is independent of both the path of the magnet pole and the 
nature of the medium surrounding the current. Cf. Drude, Physik des Aethers, 
PP· 77, 83. 
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direction perpendicular to its plane. J: is the z-component of 
the current density in the electromagnetic system. If the cur
rent jltrd!S t<rdlard the reader (Fig. 82), and the positive direc
tion of the coordinates i's that shtrdln in tlze figure, then, accord
ing to Ampere's rule, a positive magnetic pole is deflected in 
the direction of the arrow. The whole work~( done in mov
ing a magnet pole ,n = + I around the circuit from A through 
B, C, D, and back to A is 

~ = a-dx+/J'·dy- a'-dx - /J·dy, . (4) 

if a and fJ denote the components of the magnetic force which 
act along AB and AD, while a' and /i' denote the components 
which act along DC and BC. a' differs from a only in that it 
acts along a line whose y-coordinate is dJ, greater than the 
y-coordinate of the line AB along which a acts When dy is 
sufficiently small (a' - a): dy is the differential coefficient 
oa: oy, so that 

Similarly 

so that, from (4), 

a'= 

/J' = /J + o/J dx, 
OX 

~ = (~! - ~;)dxdy. 

Since now by the definition of the current 
equal to 41Ci' = 41t}:,dx dy, it follows that 

., of:J oa 
4 1tJ. = ax - oy' 

i' this work is 

and in the same way the two other differential equations may 
be deduced, namely, 

. . . . (S) 
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These are Maxwell's differential equations of the electro
magnetic field. In order to use them with the signs given in 
(5 ), the coordinate system must be chosen in accordance with 
Fig. 82. In these equations the current density j' defined 
electromagnetically may be replaced by the current density j 
defined electrostatically by introducing c, the ratio of the elec
tromagnetic to the electrostatic unit. Thus 

i: i' = c, J~ :j_:, = c, etc. (6) 
Hence, by (5), 

47T . oy o/J 47T . oa oy 411'. o/J oa 
7Jx = o.r oz' -;:h = oz - ax' c1z = OX - oY (7) 

These equations are independent of the nature of the 
meclium in which the electromagnetic phenomena occur (cf. 
note I, page 263), and hence they hold also in non-homogeneous 
and crystalline media. 

The value of the ratio c can be obtained by observing the 
magnetic effect which is produced by the discharge of a quan
tity e of electricity measured in electrostatic units. It may be 
shown that c has the dimensions of a velocity. Its value is 

c = 3 • 1010 cm./sec. 

5. Definition of the Magnetic Current.-Following the 
analogy of the electric current, the magnetic current which 
passes through any cross-section q is defined as the number of 
units of magnetism which pass through q in unit time. The 
magnetic current divided by the area of the surface q is called 
the density of the current, and its components are represented 
bysx, Sy, s •. 

Equations (7) express the fact that an electric current is 
always surrounded by circular lines of magnetic force. But on 
the other hand a magnetic Y 

current must always be sur- IJt:L z. 
rounded by circular lines of ~ 
electric force. This follows Y 
at once from an application A B r 1( 

of the principle of energy. FtG. s2• 

Imagine the rectangle ABCD of Fig. 82 traversed by an elec .. 
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tric current of intensity i (measured in electrostatic units) flow
ing in the direction of the arrows. Then a positive magnetic 
pole would be driven through the rectangle toward the reader, 
i.e. in the positive direction of the z-axis, and would continually 
revolve about one side of the rectangle. Tlte work tlzus per
formt·d must be done at the expense of the amottnt of energy which 
i's required to maintain the current at the constant intensity i 
while it is doing the work; or, in other words, the motion of 
the pole must create a certain counter-electromotive force which 
must be overcome if t!te current is to remain constant. The 
expression for the work done when a unit charge is carried 

, once about the rectangle in the direction of the arrows is 
analogous to that given in (4) and (41), i.e. 

(8) 

In order to maintain the current at intensity i during the time 
t, this work must be multiplied by the number of unit charges 
which traverse the circuit in the time t, i.e. by i·t. The prin
ciple of energy requires that this work ~(it be equal to the 
work which is done upon a magnet pole of strength m in 
carrying it once around a side of the rectangle in the time t. 
Since (cf. page 263) this work is equal to 41rmi 1 = 41Tmi: c, it 
follows that 

~-i·t = 41Cmi: c, i.e. W" = 41Cm : ct. (9) 

But m: t is the strength of the magnetic current which passes 
through the rectangle, and m/t-dx dy is equal to the z-com
ponent of the magnetic density. Hence from (8) and (9) it 
follows that 

41C aY oX 
cs.= ax - oy • (IO) 

And similarly two other equations for s.,, and s, are obtained. 
In (ro) X and Y represent the electric forces which must 

be called into play in order to keep the current constant. But 
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if X and Y denote the opposite forces produced by the mag
netic current by induction, they are of the same magnitude but 
opposite in sign. Hence 

4;,r av az 
-s ---·--c x- oz oy' 

4;,r oz ax 
--s ----c ,- ox oz. 

4;,r ax av 
-- s =- ---. (11) c• oy ox 

These equations are perfectly general and hold in all media, 
even in those which are non-homogeneous and crystalline. 

The general equations (7) and ( 1 I) may be called the 
fundamental equations of lllaxwell 's theory. In all extensions 
of the original theory of Maxwell to bodies possessing 
peculiar optical properties, such as dispersion, absorption, 
natural and magnetic rotation of the plane of polarization, 
these fundamental equations remain unchanged. But the 
equations which connect/T and s_T, etc., with the electric and 
magnetic forces have different forms for particular cases. 

6. The Ether.-Constant electric currents can only be 
produced in conductors like the metals, not in dielectrics. 
Nevertheless a change in an electric charge produces in the 
latter currents which are called displacement currmts to dis
tinguish them from the conduction currents, and the corner
stone of Maxwell's theory is the assumption that these dis
placement currents have the same magnetic effects as the 
conduction currents. This assumption gives to Maxwell's 
theory the greatest simplicity in comparison with the other 
electrical theories. Constant magnetic currents cannot be 
produced, since there are no magnetic conductors. 

It is first necessary to determine how the electric and 
magnetic current densities in the free ether depend upon the 
electric and magnetic forces. In the free ether there are no 
charges e or poles m concentrated at given points, but there 
are lines of force. Now, in accordance with the convention 
adopted on pages 262 and 263, namely, that every charge e or 
pole m sends out 4;,re or 4;,rm lines of force, it may be said 
that 4;,r multiplied by the current density is equal to the change 
in the density of the lines of force in unit time, i.e. 
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. oN" 
41r;., = at ' 

oM., 
41rs., = -a,' 

. oN, 
41r;, = at' 

_aM, 
41rs,- at ' 

in which N.,, N,, N., M.,, M,, M,, are the components of the 
densities of the electric and magnetic lines of force. But now, 
in accordance with the definitions on pages 262 and 263, in a 
vacuum the density of the electric or magnetic lines of force is 
numerically equal to the electric or magnetic force, so that, for 
a vacuum, equations (12) become 

ax oY oZ l 
47lJ~ = at' 4"1~ = ot' 4 7Y~ = ot • I 

oa o/J ~ (13) 
_ or I 

47TS.,= ot' 41rs.,=a1• 41rs. - ot· J 

Hence for the free ether the equations (7) 
electromagnetic field take the form 

and (11) of the 

1 ax or of:J I a Y oa or 
c ai = oy - oz ' c ot = as - ax' 
1 oa o Y oZ I o (:J oZ ax 

ox 

7. Isotropic Dielectrics.-For a space filled with insulat
ing matter laws (1) and (2) must be modified. For if the 
electric charges e and e1 are brought from empty space into a 
dielectric, for example a fluid, they exert a weaker influence 
upon each other than in empty space, so that it is necessary 
to write 

The const~nt E is called the dielectric constant. The definition 
holds also for solid bodies, only in them the attracting or 
repelling forces cannot be observed so conveniently as in fluids. 
But there are other methods of determining the dielectric con
stant of solid bodies for which the reader is referred to texts 
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upon electricity. The dielectric constant of all material bodies 
is greater than 1 . 

Similarly the forces between magnetic poles are altered 
somewhat when the poles are brought from a vacuum into a 
material substance, so that it is necessary to write 

K = -ii ";1. . (16) 

The constant µ is called tbe permeability of the substance. 
It is sometimes greater than 1 (paramagnetic bodies), some
times less than 1 (diamagnetic bodies). It differs appreciably 
from I only in the paramagnetic metals iron, nickel, and 
cobalt. At present dielectrics only are important since it is 
desired to consider first perfectly transparent substances, 
namely, those which transmit the energy of the electromagnetic 
waves without absorption, i.e. without becoming heated. In 
dielectrics µ differs so little from 1 (generally only a few 
thousandths of I per cent) that in what follows it will always 
be considered equal to I.* 

Because of the change of the law (2) into (IS) a change 
must also be made in equations ( 1 3), since with the same cur-

rents the electric force in the dielectric is ~ weaker than in the 
€ 

free ether. Hence (13) become 

ax oa 
4?TJ~ = e ot , etc., 41rs., = µat' etc. (17) 

For an isotropic dielectric, since equations (7) and (11) are 
applicable to this case also, the following equations hold when 
µ = 1: 
eoX or o/J 
C ot oy - oz' 

I oa oY az 
cot oz - oy' 

e oY oa oy eoZ o/J oa 1 
C at = oz ox' C ot = OX oy' 
1 o/J az ax I ar ax av (iB) 
--=~--, --=---
c Ct OX OZ C ot oy OX 0 

* In the discussion of the optical properties of magnetized bodies it will be 
shown why it is justifiable to assume for light vibrations µ = I for all bodies. 
The reason for thi~ is not that the magnetization of a body cannot follow the rapid 
changes of field which occur in light vibrations, but is far more complicated. 
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These equations completely determine all tht• properties oj 
the electromagnetic field in a dielectric. 

If equations (12) be considered general, i.e. if the number 
of lines of force which originate in a charge be considered 
independent of the nature of the medium, then a comparison 
of ( 17) with ( 12) shows that within the body 

N,.= eX, N, = eY, 

JJf:JC = µ«, ~ = µ/J, 

i.e. only in the ether (e = 1, µ = 1) is the density of the lines 
of force numerically equal to the electric, or the magnetic, force. 

41re lines of force must be sent out from the entire surface 
of an elementary cube which contains the charge e and has the 
dimensions dx dy dz. But the number of emitted lines can 
also be calculated from the surface of the cube; thus the two 
sides which lie perpendicular to the x-axis emit the number 
- (N,.)1dy dz+ (N,c)2dy dz, in which the indices I and 2 relate 
to the opposite faces which are dx apart. Now evidently, from 
the definition of a derivative, 

(N,.)2 = (N,.)1 + ~:.,. dx, 

so in this way the whole number of lines passing out of the 
surface is found to be 

(oN,. + oN, + ~N•)t1xd dz. 
ax oy oz [r 

If this expression be placed equal to 41re, then it follows, in 
consideration of (19), if e: dx dy dz= P be called the density 
of the charge (charge of unit volume), 

41rp = a,~:>+ 0~;) + a~)- . (20) 

It is evident from its derivation that this equation holds also 
for isotropic non-homogeneous bodies, i.e. for bodies in which e 
varies with x, y, z. An analogous equation may be deduced 
for the density of the magnetization. 
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8. The Boundary Conditions.-If two different media are 
in contact, there__are certain conditions which the electric and 
magnetic forces must fulfil in passing from one medium into 
the other. These conditions may be obtained from the equa
tions ( 18) by the following consideration: In the passage from 
a medium of dielectric constant e1 to one of dielectric constant 
e2 the change in the electric and magnetic forces is not 
abrupt, as would be the case if the surf ace of separation were 
a mathematical plane, but gradual, so that within the transi
tion layer the dielectric constant varies continuously from the 
value e1 to the value e2 . Also within this transition layer the 
equations (7), (11), and (17), and hence also (18), must hold, 
i.e. all the differential coefficients which appear in them must 
remain finite. Assume now, for example, that the plane of 
contact between the two media is the xy-plane. Since the 

. a y ax a fJ oa . . 
differential coefficients ~• ~• ;s-, -=:,- must remam fimte 

uz uff uz uz 

within the transition layer, it follows that, if the thickness of 
this layer, i.e. dz, is infinitely small, the changes in Y, X, 
/J, a in the transition layer are infinitely small. In other 
words, the components of the electric and magnetic forces parallel 
to the surface must vary continuously in passing through the 
transition layer, assumed to be infinitely thin. That is, 

X 1 = X 2 , Y1 = Y2 , « 1 = « 2 , /J1 = /J2 for z = O, (21) 

in which the subscripts refer to the two different media. 

Since in equations ( 18) the differential coefficients ~: and ;: 

do not appear, the same conclusions do not hold for Zand y 
which held for X, Y, /J, a. Nevertheless it is evident from the 

last of equations (18) that!~, and hence also y, has the same 

value on both sides of the transition layer, because, for all 
values of x and y, X and Y have the same values on both sides 
of that layer. Hence there i's no discontinuity i'n y z11 passing 
through the infini'tely thin boundary layer. In the same way 
the conclusion may be drawn from the third of equations (18) 
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that the product eZ i's continuous and hence that Z is discon
tinuous. To the boundary conditions (21) there are then also 
to be added 

e1Z1 = e-72 , y 1 = y 2 for z = o. (21') 
But on account of the existence of the principal equations 

( 18) only four of the six equations (2I) and (2I') are independent 
of one another. 

Equation (19) in connection with (21) shows that the lziies 
of force do not lzave free ends at the boundary between two media. 
(N. B in ( 2 1 ') µ is assumed equal to 1, otherwise it would be 
necessary to write µ 1y1 = µ 2y2 • 

9. The Energy of the Electromagnetic Field.-If equa
tions (18) be multiplied by the factors Xdr, Ydr, Zdr, adr, 
/Jdr, ydr, in which dr represents an element of volume, and 
then integrated over any region, there results, after adding and 
setting 

~ = 8:cx2 + Y2 + z2) + i-;;..a2 + /12 + r), . (22) 

4 1r ~1~dr = {(0r _ ~)Xdr+ • • • } c ot ., c.y uz 

( ~" + r o y - oZ)adr + . • 
., oz oy 

The application of theorem (20) on page 173 gives 

j~; Xdr= -J yXcos(ny)dS-J r~;dr, 

in which dS denotes an element of the surface which bounds 
the region over which the integration is taken, and n the inner 
normal to dS. When this transformation is applied to the first 
three integrals which appear on the right-hand side of (23) the 
volume integrals disappear, and there results 

~1(jdr =!..._JI (yY - /JZ) cos (nr) + (aZ - yX) cos (ny) 
at 4 1r L 

+ (/JX - aY) cos (nz) ]ds. (24) 
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If the region of integration be taken so large that at its 
limits the electric and magnetic forces are vanishingly small, 
then equation (24) asserts that the quantity ~ for this region 
does not vary with the time. ~ signifies the energy of the 
electromagnetic field in unit volume. This can be shown to 
be the meaning of ~ by a calculation of the work done in 
moving the electric or the magnetic charges. (Cf. Drude, 
Physik des Aethers, pages 127, 272.) 

10. The Rays of Light as the Lines of Energy Flow .-If 
at the boundary of the region of integration X, Y, Z, a, /J, y, 
do not vanish, equation (24) can be interpreted to mean that 
the change of electromagnetic energy in any region is due to 
an inflow or outflow of energy through the boundary. .Accord
ing to (24), the components of this energy flow, represented 
by f,,, /4, .fz , may be regarded as the following: 

C C C 
f,,= 41t(yY-fJZ), /4= 41t(aZ-yX), f.= 41t(fJX-aY). (25) 

From this it follows that 

a-f,, + fJ-/4 + Y·f. = o, 

X ·f,, + Y ·/4 + Z·.fz = o, 
and hence the direction of the flow of energy is always per
pendicular to the electric and magnetic forces. 

This theory, due to Poynting, of the flow of energy in the 
electromagnetic field, is of great importance in the theory of 
light in that the rays of light must be considered as the lines 
of energy flow. For on page 2 a light-ray which passes 
from a source Q to a point P was defined as the locus of those 
points at which an obstacle, i.e. an opaque body, must be 
placed in order to cut off the light effect at P. Now evidently 
the energy cannot be propagated from Q to P if the lines of 
energy flow from Q to P are intercepted by an obstacle. 

Hence, by (25), the direction of the rays of light must be 
perpendicular to the electric and magnetic forces. 



CHAPTER II 

TRANSPARENT ISOTROPIC MEDIA 

I. Velocity of Light.-From the standpoint of the electric 
theory a plane electromagnetic wave may be conceived to 
originate as follows: Imagine that at a certain instant an 
electric current parallel to the x-axis is excited in a thin layer 
which is parallel to the xy-plane. This current gives rise to 
magnetic forces at the surface of the layer, which are parallel 
to the y-axis. The growth of the magnetic field induces elec
tric forces which within the layer are parallel to the negative 
x-axis, without the layer parallel to the positive x-axis. 
Hence within the layer the electric current disappears, because 
the induced currents neutralize the original current; but in its 
place there arises outside the layer electric currents which run 
along the positive direction of the x-axis. In this way an 
electric impulse is propagated in the form of a wave along 
both the positive and negative directions of the z-axis. 

In order to find the velocity of propagation, it is necessary 
to return to equations ( I 8) of the previous chapter. 

If the first three of these equations be differentiated with 

d f l Of oa ofJ oy 
respect to the time, an i the va ues given at' at' ct 
in the last three of these equations be introduced, there 
results 

e o2X a oX oY) o (oz oX) 
t:2 ot2 - oy( oy ox oz ox oz ' 

274 
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and similarly two other equations are obtained. Now this 
equation may be written in the form 

Also differentiation of the first three of the equations ( I 8) 
with respect to x, y, z, and addition of them gives 

Since in what follows we are only concerned with periodic 
changes in the electric and magnetic forces, and since for 
these the differential coefficient with respect to the time is 
proportional to the changes themselves (when the phase 
7r 
- has been added), the conclusion may be drawn from the 
2 

last equation that 
-ax aY -az 
ax+ay+oz 

Hence equation (I) becomes 

= o. 

e o2X o2X ciX o2X 
<fa ot2 = oxi + oy2 + oil = L1X. 

Similar equations hold for Y and Z, so that the following 
system of equations is obtained : 

(3) 

For the components of the magnetic force similar equations 
hold, thus 

oa of:J oy 
ox + oy + oz = 0 • • 
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Now it has been shown on page 170 that difierential equa
tions of the form of (3) and (3') represent waves which are 
propagated with a vel9city 

C 

V = .Ye· • (4) 

This is then, according to the electromagnetic view of the 
nature of light, the velocity of light, and it is immaterial 
whether the electric or the magnetic force be interpreted as the 
light vector, for the two are inseparably connected and have 
the-same velocity. 

Applying equation (4) to the case- of the free ether, it fol
lows that the velocity of light in ether i's equal to the ratio of 
the electromagnetic to the electrostatic units. This conclusion 
has actually been strikingly verified, for (cf. page 119) the 
mean of the best determinations of the velocity of light was 
seen to be V = 2.9989- 1010 cm./sec., a number which agrees 
within the observational error with that given for the ratio of 
the units, namely, c = 3· ro10 cm./sec. 

This is the first b,.;_;aani :;uccesE of· :th, ekdromagnetic 
theory. 

According to (4) the velocity in ponderable bodies musf 

be 1 • -Ye smaller than in the free ether, or, since the index of 
refraction n0 of a body with respect to the ether is the ratio of 
the velocities in ether and in the body, 

(5) 

i.e. the square of the index of refraction is equal to the dielectric 
constant. 

Evidently this relation cannot be rigorously fulfilled, for 
the reason that the index depends for all bodies upon the color, 
i.e. upon the period of oscillation, while from its definition e is 
independent of the period of oscillation. 

But in case of the gases, in which the dependence of the 
index upon th~color is small, the relation (5) is well satisfied, 
as is shown by the following table, in which the values of tbe 
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dielectric constants are due to Boltzmann,* while the indices 
are those for yellow light: 

no v'~ 

Air ...................... 1.000294 1.coo295 
Hydrogen ................. 1.000 138 1.000 132 
Carbon dioxide ............ 1.000449 1.ooo473 
Carbon monoxide .... ...... 1.000346 1.ooo345 
Nitrous oxide 1.000503 1.ooo497 

Relation (S) also holds well for the liquid hydrocarbons; for 

example, for benzole no (yellow) = 1 .482, .Ye= 1 .49. 
On the other hand many of the solid bodies, such as the 

glasses, as well as some liquids, like water and alcohol, show 
a marked departure from equation (5 ). For these substances 
e is always larger than n02, as the following table shows: 

no -¥~ 

Water .................... 1.33 9.0 
Methyl alcohol. ............ 1.34 5.7 
Ethyl alcohol. ... ••••••••· 1.36 5.0 

In order to explain these departures, the fundamental 
equations of the electric theory must be extended. This 
extension will be made in Chapter V of this section. In this 
extension the quantity e which is here considered as constant 
wiil be found to depend upon the period of oscillation. 

But first an investigation will be made from the standpoint 
of the electric theory of those optical properties of bodies which 
do not depend upon dispersion. In what follows it will be 
assumed tlzat the light is monochromatic, and that the extension 
to be given in Chapter V has already been made, so that the 
constant e appearing zr the fundamental equations is equal to 
the square of the index of refraction for the given color. 

,. L. Boltzmann, Wien. Ber. 69, p. 795, 1874. Pogg. Ann, 155, p. 407, 18;:;, 



THEORY OF OPTICS 

2. The Transverse Nature of Plane Waves.-A plane 
wave is represented by the equations 

X _ A 21r r mx + ny + pz) 
- x•COS T \/ - V , 

y _ A 21r ( mx + ny + pz) 
- ,· cos T t - V , (6) 

z _ A 21r ( mx + ny + pz) - •• cos T t - V . 

For the phase is the same in the planes 
mx + ny + pz = const.. . (7) 

which is then the equation of the wave fronts. m, n, andp are 
the direction cosines of the normal to the wave front, provided 
the further condition be imposed that 

m2 + n2 + p2 = I. (8) 
A,., A,, A. are the components of the amplitude of the 

resultant electrical force. They are then proportional to the 
direction cosines of the amplitude A. In consequence of equa
tion (2) on page 275, 

Ax•m + Ay·ll + A.·P = o, . (9) 
an equation which expresses the fact that the resulting ampli
tude A is perpendicular to the normal to the wave front, i.e. 
to the direction of propagation; or in other words, that tlte 
wm1e is transi•erse. This conclusion holds for the magnetic 
force also. That plane waves are transverse follows from equa
tions (2) or (2'), i.e. from the form of the fundamental equa
tions of the theory. 

3. Re1lection and Refraction at the Boundary between 
two Transparent Isotropic Media.-Let two media r and 2 

having the dielectric constants e1 and e2 meet in a plane which 
will be taken as the xy-plane. Let the positive z-axis extend 
from medium I to medium 2 (Fig. 83). Let a plane wave fall 
from the former upon the latter at an angle of incidence ¢, and 
let the xz-plane be the plane of incidence. The direction 
cosines of the direction of propagation of the incident wave are 
then 

m = sin ¢, n = o, p = cos¢. . (ro) 
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Let the incident electric force be resolved into two com
ponents, one perpendicular to the plane of incidence and of 
amplitude E,, and one in the plane of incidence and of ampli
tude E,. The first component is parallel to the y-axis so that, 
in consideration of (6) and (w), they-component of the incident 
force may be written 

_ E 21r: ( x sin </J + z cos ¢) V.- ,•COST t - V ' 
1 

(II) 

in which V1 is the velocity of light in the first medium. 
By (4), 

Since the wave is transverse, the component Ep of the elec
trical force, which lies in the plane of incidence, is perpendic
ular to the ray, i.e. the components A.,, and A., along the 
x- and z-axes, of the amplitude Ep must have the values 

A.,,= Ep-cos </J, A.= - Ep-sin ¢, 

if, as shown in Fig. 83, the positive direction of Ep is taken 
downward, i.e. into the second medium. 

The x- and z-components of the electric force of the inci
dent wave are, therefore, 

X - E ·cos ¢-cos 21t (, - x sin <P + z cos¢) } 
• - I T VI , 

(13) 
21t ( x sin ¢ + z cos <1>) z, = - E1 -sin ¢-cos T t - V • . 

1 

Now a magnetic force is necessarily connected with the 
electric force in the incident wave, and from the fundamental 
equations (18) on page 269, and (12) above, the components 
of this force are found to be 

- 27t( xsin ¢+ zcos <I>\ 
a, =-E,-cos </J ,Ve1 cos T t - V

1 
-;, 

- 21t ( x sin ¢ + z cos ¢\ 
fJ. = +E1 • .Y El cos T t - ---v. J, 

I 

- 21r: ( x sin </J + z cos¢) r. =+E,-sin ¢ -t'e1 cos T t - v
1 

• 
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If E, = o, EP > o, then «, = r. = o, and /J, differs from 
zero, i.e. the amplitude EP of the 
electric force, which lies in the 
plane of incidence, gives rise to a 
component /J, of the magnetic force 

===n777777i:li77T=7777=~x which is perpendicular to the plane 
of incidence. Conversely, the 
component E, of the electric force, 

~ which is perpendicular to the plane 
,., of incidence, gives rise to a mag-

FIG. 83. netic force which lies in the plane 
of incidence. This conclusion that the electric and magnetic 
forces which are inseparably connected are always perpendic
ular to each other follows from the considerations already given 
on page 274. 

When the incident electromagnetic wave reaches the 
boundary it is divided into a reflected and a refracted wave. 
The electric forces in the reflected wave can be represented by 
expressions analogous to those in (11) and (13), namely, by 

X R , 2 7t( z sin <P' + z cos <P') 
r = ; · cos <P • cos T t - V. , 

1 

y _ R 2 '1t ( z sin ¢' + z cos <P') 
r _ •• cos y t - v. , 

1 

Z R . , 2 '1t ( z sin ¢' + z cos <P') 
r = - p. sm <P cos r t - v. . 

I 

The corresponding equations for the refracted wave are 

2 TC ( z sin X +- z cos X) 
X2= Dp•COS x-cos T t- V, , 

2 

_ D 2 '1t ( z sin x +- z cos x) 
Y2 _ •• cos T t - v. , 

2 

2 '1t ( z sin X + z cos X) Z - - D -sin x·cos- t- ----=-=----
2 - ; T V2 • 

In these equations R,, R,, DP, D, denote amplitudes, <P' 
the angle of reflection, i.e. the angle between the + z-axis 
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and the direction of propagation of the reflected wave, x the 
angle of refraction. 

The corresponding magnetic forces are, cf. (14), 

, - 2'1t ( .z- sin </>' + z co~</>') 
ar = - R,-cos <p • i/E1·COS T t - vl , 

/Jr= + R,· ,V~ ·cos 2; (t . ... ), 

Yr= + R,-sin </>' ,V~ -cos 2;(t . ... ). 
- 21r( z sin x + z cos !'\ 

a 2 = - D,·cos x. ¥~2 -cos -T t - v
2 

)' 

/l2 = + D,. ¥~-cos 2; (t .... ), 

y2 = + D,-sin X· ¥~-cos 2;(t .... ). 
On account of the boundary conditions ( 2 I) of the previous 

chapter, there must exist between the electric (or the magnetic) 
forces certain relations for all values of the time and of the 
coordinates .z- and y. Such conditions can only be fulfilled if, 
for z = o, all forces become proportional to the same function 
oft, z, y, i.e. the following relations must hold: 

sin </> sin </>' sin x -v.-- = -v:- = v.-· 
1 1 2 

From the first of these equations it follows immediately that 
sin </> = sin </>'; i.e., since the direction of the reflected ray 
cannot coincide with that of the incident ray, 

cos </> = - cos </>', i e. </>' = 1t - </>. (20) 

This is the law of reflection, in accordance with which the 
incident and reflected rays lie symmetrically with respect to 
the normal at the point of incidence. 

The second of equations ( I 9) contains the law of refrac
tion, since from this equation 

sin </J : sin X = vl : v2 = n, . (21) 
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in which n is the index of refraction of medium 2 with respect 
to medium 1. 

The laws of reflection and refraction follow, then, from the 
fact of the existence of boundary conditz'ons and are altogether 
independent of the particular form of tltese conditions. 

As to the form of these conditions it is to be noted that 
here xl = x. + xr' with similar expressions for the other 
components, since the electric force in medium I is due to a 
superposition of the incident and reflected forces. Hence the 
boundary conditions ( 21) on page 27 2 give, in connection with 
(20), 

(E; - Rp) cos </J = D; cos X, I 
E,+R, =D,, 

(E, - R,) .Y~ cos </J = D, t'~ cos x, 
(E; + R;) ,y El = D; ·V El. 

From this the reflected and refracted amplitudes 
calculated in terms of the incident amplitude. Thus: 

E _ D ( + .Y~ cos X) 2,- ,I-~--, 
.YE1 COS <p 

E:( .Y~ co~ _ 1) = R,( -ve: cos <p + i), 
.YE2 cos X t'E2 cos X 

2E = D. (cos X ¥~), 
p r COS </J + .y' El 

E (cos </J _ .y'~) = R (cos </J + t'~)-
; cos X ,YE2 p cos X 'VE2 

(22) 

can be 

If the ratio t'~ : .YE" which, according to (4), is the index 
of refraction n of medium 2 with respect to 1, be replaced by 
sin </J: sin X [cf. (21)], then (23) may be written in the form 

R __ E sin ( </J - X) R _ E tan ( </J - X) } 
• - s sin ( <p + x)' p - p tan ( </J + x)' 

D _ E 2 sin X cos </J 2 sin x cos <p (24) 
s - • sin ( </J + X) ' D, = E, sin ( </J + X) cos ( </J - x)" 
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These arc Fresnd's reflection equations, from which the 
phase and the intensity of the reflected light can be calculated 
in terins of the characteristics of the incident light. 

It is seen from (24) that R, never vanishes, but that R, 
becomes zero when 

tan(</>+ x) = oo, </> + X = 2, 

i.e. when the reflected ray is perpendicular to the refracted ray. 
In this case it follows from (25) that 

sin X = sin G: - <P) =cos</>, or, cf. (21), 

tan </> = n. (2 s') 

When, then, the angle of incidence has this value, the 
electric amplitude in the reflected wave has no component 
which lies in the plane of incidence, no matter what the nature 
of the incident light, i.e. no matter what ratio exists between E 
and Ef>. Thus if natural light is incident at an angle </> which 
corresponds to (2 5 '), the electric force in the reflected wave 
has but one component, namely, that perpendicular to the 
plane of incidence; in other words, it is plane-polarized. Now 
this angle </J actually corresponds to Brewster's law given 
above on page 246. At the same time it now appears, since 
the plane of incidence was called the plane of polarization, that 
in a plane-polarized wave the light vector is perpendic~.tlar to 
the plane of polarization, provided this 11ector be identified with 
the electric force. 

On the other hand the light vector would lie in the plane 
of polari:::ation if it were identified with the magnetic force, since, 
by equation (17) (cf. also page 280), Rf> signifies the amplitude 
of the component of the magnetic force which is perpendicular 
to the plane of incidence. Neumann's reflection equations 
would follow from the assumption that the magnetic force is 
the light vector. 

The intensities of the reflected electric and magnetic waves 
are equal. For, given incident light polarized in the plane of 
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incidence, in order to calculate the reflected intensity it is 
necessary to apply only the first of equations (24), no matter 
whether the electric or the magnetic force be interpreted as the 
light vector. For, by (14) on page 279, E, is in every case 
the amplitude of the incident light. 

On the other hand the signs of the reflected electric and 
magnetic amplitudes are opposite. This difference does not 
affect the intensity, which depends upon the square of the 
amplitude only, but it does affect the phase of the wave. This 
will be more fully discussed for a particular case. 

4. Perpendicular Incidence. Stationary Waves.-Equa• 
tions (24) become indeterminate when <P = o, because then X 

is also zero. However, in this case, since .Y\: v'~ = n and 
cos <P = cos X = 1, (23) gives 

n - I 
R,= -E,-+, n l 

(26) 

The first of these equations asserts that, if n > I, the 
re.fleeted electric amplitude is of opposite sign to the incident 
amplitude. But the second equation asserts the same thing, 
for, when <P = o, like signs of Rf> and Ef> actually denote oppo
site directions of these amplitudes, as appears from the way in 
which Rf> and E~ are taken positive in Fig. 83 on page 280. 
The stationary waves (cf. page 155) produced by the interfer
ence of the incident and reflected waves must have a node at 
the reflecting surface, which, to be sure, would be a point of 
complete rest only if R, were exactly as large as E., i.e. if 
n = oo. For finite n only a minimum occurs at the mirror, 
since the reflected amplitude only partially neutralizes the 
effect of the incident amplitude. 

For the magnetic forces, however, E1 and Rf> represent the 
components of the amplitude which are perpendicular to the 
plane of incidence, i.e. parallel to they-axis. Like signs of these 
amplitudes represent actually like directions, so that it follows 
from the second of equations (26) (also from the first, if the 
proper interpretation be put upon the direction of the amplitudes 
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in space) that the re.fleeted magnetic amplitude has the same 
directz'on as the incident magnetic amplz'tudt•. Hence stationary 
magnetic waves have a loop at the mirror itself if n > I. 

Wiener's photographic investigation showed that at the 
bounding surface between glass and metal a node was formed 
at the surface of the mirror. This indicates that the electric 
force is the determinative vector for photographic effects, as 
was even more convincingly proved by the investigation of 
stationary waves formed in polarized light at oblique incidence 
(cf. page 251). 

5. Polarization of Natural Light by Passage through a 
Pile of Plates.-From equation (24) it is seen that R,: E, 

7( 

continually increases as ¢ increases from zero to - . On the 
2 

other hand R1 : E1 first decreases, until it reaches a zero value 
at the polarizing angle, and then increases to the maximum 

7( 

value I when ¢ = 2 (grazing incidence). But for all angles 

of incidence if E, = Ef>, R, > Rf>' For, from (24), 

R1 E1 cos (r:/> + X) 
R, = - E, • cos ( </J - x)' • 

Hence at every angle of incidence natural light is partially (or 
completely) polarized in the plane of incidence. And since 
by assumption no light is lost, the refracted light must be 
partially polarized in a plane perpendicular to the plane of 
incidence. This explains the polarizing effect of a pile of 
plates. 

Also an application of the last two of equations ( 24) to the 
two surfaces of a glass plate gives directly, for the passage of 
the light through the plate, 

in which D',, D~ 
from the plate. 

D: E, .+. 
D._ = -E cos2 ("" - X), 

p p 
(28) 

denote the amplitudes of the ray emerging 
Hence when E, = E~ , it follows from ( 28) 



THEORY OF OPTICS 

that D; < D~, i.e. incident natural light becomes by passage 
through the plate partially polarized in a plane perpendicular 
to the plane of incidence. To be sure, there is no angle <P at 
which this polarization is complete, as is the case for reflection; 
it is more complete the larger the value of <P. If <P is equal 

to the polarizing angle* (tan <P = n, <P + X = ;), then, by 

( 28), when E, = E1 , 

D; •9 4n2 
D; _ sm- 2</J = (I + n2)2' 

Hence when n = 1.5, D;: IY1 = 0.85, and the ratio of the 
intensities D; 2 : D;2 = 0.73. After passage through five plates 
this ratio sinks to 0.735 = 0.20, i.e. the light would still differ 
considerably from plane-polarized light. 

6. Experimental Verification of the Theory.-Equations 
(24) may be experimentally verified either by comparing the 
intensities of the reflected and incident light, or more con
veniently by measuring the rotation which the plane of polarfra
ti'on of the incident light undergoes at reflection or refraction. 
The amount of this rotation may be calculated from equations 
(27) or (28). 

If the incident light is plane-polarized, the quantity a con
tained in the expression for the ratio of the components, 
namely, E 1 : E, =tan«, is the azimuth of the plane of polariza
tion of the incident light. The reflected and refracted light is 
likewise plane-polarized and the azimuth ¢ of its plane of polar
ization is determined by (27) and (28). Thus tan¢ = R1 : R,. 
For the measurement of this angle it is convenient to use the 
apparatus shown on page 258 without the Babinet compen
sator. The incident light is polarized by means of the Nicol 
p (the polarizer), and the Nicol p' (the analyzer) is then turned 
until the light is extinguished. The value of ¢ which corre
sponds to any particular a can thus be observed. 

• At this angle the transmitted light is by no means completely polarized. 



TRANSPARENT ISOTROPIC MEDIA 287 

Both methods furnish satisfactory verification of the laws of 
reflection; but Jamin found by very careful investigation that, 
in the neighborhood of the polarizing angle, there is always a 
departure from those laws, in that the polarization of the 
reflected light is not strictly plane but somewhat elliptical. 
Hence it cannot be entirely extinguished by the analyzer 
unless the compensator is used. The explanation of this 
phenomenon follows. 

7. Elliptic Polarization of the Reflected Light and the 
Surface or Transition Layer.-The above developments make 
application of the boundary conditions ( 2 I) on page 2 7I and 
rest upon the assumption that when light passes from medium 
I to medium 2 there is a discontinuity at the bounding sur
face. But strictly speaking there is no discontinuity in Nature. 
Between two media I and 2 there must always exist a tran
sition layer within which the dielectric constant varies continu- , 
ously from E1 to E2• This transition layer is indeed very thin, 
but whether its thickness may be neglected, as has hitherto 
been done, when so short electromagnetic waves as are the 
light-waves are under consideration, is very doubtful. Further
more the thickness of this transition layer between two media 
is generally increased by polishing the surface. 

In any case the actual relations can be better represented 
if a transition layer be taken into account. 

Nevertheless, in order not to unnecessarily complicate the 
calculation, it may be assumed that the thickness I of this 
transition layer is so small that all terms of higher order than 
the first in I may be neglected. 

First the boundary conditions which hold for the electric 
and magnetic forces at the two boundaries of the transition 
layer will be deduced. These boundaries are defined as the 
loci of those points at which the dielectric constant first attains 
the values Ei and 1;2 respectively. 

According to the remark of page 267 equations ( I 8) on 
page 269 hold within the transition layer also. 

If the fourth and fifth of these equations ( I 8) be multiplied 
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by an element dz of the thickness of the transition layer, and 
integrated between the two boundaries I and 2, there results, 
since the quantities involved do not depend upon y, provided y 
be taken perpendicular to the plane of incidence, 

I 
012 

} 

-~ a-dz= Y2 - Y1 , 
C ut I 

(29) 

1 012 Joz -- {Jdz = -dz-(X - X). 
C ot oX 2 1 

I I 

Now, by (21) and (21') on pages 271 and 272, a, fJ, and eZ 
are approximately constant within the transition layer, so that 
a, fl, and eZ may be placed before the sign of integration in 
the above equations and replaced by a 2 , {12 , e 2Z2 ( or by a 1 , 

{11 , e1Zi). Thus 

Introducing the abbreviation 

J~z = I, f dz = p, 12 dz= q,. 
e 

in which / denotes the thickness of the transition layer and e 
its dielectric constant at the point corresponding to the element 
d:; of the thickness, equations ( 29) become 

I of12 oZ2 I oa2 ) 

x1 = x2 + c ct - e2 ax·q, Y1 = Y2 - c at. (31 

Likewise the first two of equations (18) give, after multipli
cation by dz, integration, and treatment as above, 

I OY2 P oY2 P oX2 ( 
«1 = «2 - ox - c ?it' /31 = f12 + c Tt· . 32) 

Equations (31) and (3 2) take the place of the previous 
boundary conditions ( 2 1) on page 2 7 I. 

To determine the electric and magnetic forces in media 1 

and 2, equations (11), (13), (14), (15), (16), (17), (18) of this 
chapter may be used, but with the limitation that the forces in 
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the reflected and refracted wave must differ in phase from the 
incident wave by an amount which must be deduced from 
equations (31) and (32). Without such a difference of phase 
these equations cannot be satisfied. 

Now these differences of phase may be most simply taken 
into account in the following way: Write, for instance [cf. 
equations (15), page 280], 

y R [ 2 '1t ( x sin </>' + z cos </>') J 
r = , cos y t - v. + 6 , 

1 

then Y,. is the real part of the complex quantity 

·[~( _ ..-sin<ll'+•cos 111') a] 
R ./ T t v, + 

s • 

Writing now 

(33) 
then 

(34) 

in which the symbol ffi means that the real part of the complex 
quantity which follows it is to be taken. This complex 
quantity within the brackets contains the amplitude R 9 which 
is also complex, so that an advance in phase o which occurs in 
Yr may be represented by setting Yr equal to the real part of 
an exponential function contazizing a complex factor (complex 
amplitude). The other electric and magnetic forces may be 
treated in the same way. 

Instead of performing the calculations with the real parts 
only of the complex quantities, it is possible, when only linear 
equations (or linear differential equations) are involved, to first 
set the electric and magnetic forces equal to the complex 
quantities and, at the end of the calculation, to take the real 
parts only into consideration in determining the physical 
meaning. 

Thus in the previous equations (11), (13), (14), (15), (16), 
( 17), ( 18) for the electric and magnetic forces, the real ampli
tudes E,, E1 , R,, R1 , etc., will be replaced by the complex 
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amplitudes E 1 , EP, Rs, RP, etc., and the cosines by the 
exponential expression (cf. equation (34) ). Then the boundary 
conditions (31) and (32) give, since they are to hold for z = o, 
and since xl = X, + xr, (l'l =a,+ ar' etc., 

, , .21r( - l sin2 X )7 
(Ep- Rp) cos </J =DPLCOS x+i T .Y\c--v-;€2q J' 

[ 271' -'] E. + R8 =Ds I+ iy cos X .YE2c , 

(E1-R1)t'E1 cos </J=D.[ t'~cos x-i2; (si~ X -v'~t-1) ], 
(35) 

,1- r - .21r PJ 
(Ep + Rp) 'l' €1 = DP L ,Y €2 +z--y cos Xe , 

From these equations Rs, RP, Ds , DP may be calculated 
in terms of E 8 and EP. It is the reflected light only which is 
here of interest. If the product Tc be replaced by A, the wave 
length in vacuo of the light considered, and if V2 be replaced 

by c : t'°i2 , then, from (35), 

.r::- .,- 21t -
R COS"' 'f "'1-COS X't' E1+i T [P cos</) cos x-(l-qe. sin• x.W' €1€2] 

__p= ---------------------, 
Ep .;- - 21t [ - ] 

COS 4' T e1+cos X,V e1+i -.:f p COS</) COS X+(l-qe2 sin2 X,)V e1e2 

- - 21t --
Rs cos IP t'e.-cos xv' e.+i T [I cos (/J cos x-Ve1E2-P+le, sin• x] 
Es= - - 21t - 0 

cos IP t'e1+cos xv' e,+i T[' cos </) cos x-V E1E2+P-le, sin2 X,] 

Now it is to be remembered that the terms which contain 

h r. •2 ,r 11 • • h t e ,actor , T are very sma correction terms, smce t ey are 

proportional to the thickness / of the transition layer. Hence 
if the expressions (36) be developed to terms of the first power 
only of the ratio / : A, there results 

Rp COS1Pt'e.-cosx-v'ei"{ +•4n' .;-pcos•x-te,+qe,2 sin2 X,} l -=-~-----'- I ,,-cos</),ye, 2 2 , 

Ep cos 1Pt'Eo+cosxt' e, 11. e, cos <1>-e, cos x ) 

Rs cos<f>t'"i,-cosx.-v'Eo{ +•4it ,,,.,,- le,-p l 
- - ---'---'-~----''-'-e= I I- COS Y"T E1 -~--=---- ~ Ea - cos IP-v'e,+cosx_.y'e1 il e, cos• ¢-e, cos' x 1 • 

(37\ 
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The denominator of the correction term which appears in 
the second of these equations can never vanish, i.e. E1 cos2 </> 

can never be equal to E2 cos2 X, for if E2 > E1 , then always 
<P > X, and hence cos <p < cos X- But the denominator of the 
correction term of the first of equations (37) does vanish if 

A simple transformation of (38) shows, since ~ 2 : ~ = n, 
that this condition is fulfilled for the polarizing angle ifJ, which, 
according to Brewster's law, is determined by tan ¢ = n. 
Hence for this angle of incidence it follows from (37), or also 
directly from (36), that 

~P = i41r cos </J ~P cos2 X - IE2 + gEl sin2 x. (39) 
Ep A ( cos qJ ¥ E2 + cos X t' E1)2 

Equations (37) can be further simplified by consideration 
of the law of refraction, namely, 

sin </J : sin X = n = t'~ : .v;r . • , (40) 

For from this it follows that 

E1 cos2 <p - E2 cos2 x = E1 - E2 , } 

E2 cos2 </J - E1 cos2 X = E1 E E2 ( E1 sin2 <P - E2 cos2 <P) • (4 i) 
2 

Now the nature of the reflected light is completely deter
mined by the ratio RP : R.. Assume that the incident light is 
plane-polarized at an azimuth of 45° to the plane of incidence 
(cf. page 286). Then EP = E., and from (37) it follows, in 
consideration of (40) and (41), that 

RP __ cos(</J+x) f I i41r_E2 t'i1 _ cos <P sin2 <P } (42) 
R. - cos ( </J- X) l + A E1- E2 E1 sin2 </J-E2 cos2 <P 71 ' 

in which Y/ is an abbreviation for 

(43) 
At the polarizing angle (tan ¢J = n) (42) assumes the value 

• • • (44) 
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as is seen most easily from (39) by dividing it by the second 
of equations (37) and retaining terms of the first order only in 
T/: l. 

In order now to recognize the physical significance of (42) 
and (44) it must be borne in mind that, according to (33), 

R R ;s. R R ;s 
P = .·e r, - ·e • ~· s - .r ' (45) 

in which R, and R, are the components which are respectively 
parallel and perpendicular to the plane of incidence of the 
amplitude of the reflected electric force, and o, and o, are the 
advances in phase of these components with respect to the in
cident wave. Hence 

RP - R1 e ,ts1 - '•> - p ei11 (46) 
Rs - R, - • • 

in which p ts the ratio of the amplitudes and L1 the difference z"n 
phase of tlte two components. Hence, from (44), it follows that 
at the polarizing angle "if, 

- T( .YE\+€2 / p = l 7/ , LI = 1t 2, 
€1 - €2 

(47) 

i.e. the reflected light is not plane-polarized in the plane of 
incidence as it was above shown to be when the transition 
layer was not considered, but it is elliptically polarized. The 
principal axes of the ellipse are parallel and perpendicular to 
the plane of incidence ( cf. page 249) and their ratio is p. p will 
be called the coefficient of ellipticity. By (43), (47), and (30) 
this may be written 

- T( ,Y~2 J(E - €1)(€ - €2)d. 
p= T • Z, 

A €1 - €2 € 

in which the integration is to be extended through the transi
tion layer between the two media. 

According to (48) pis positive if the value of the dielectric 
constant € of the transition layer varies continuously between 
the limiting values €

1 

and €
2

, and if Es > e
1

• But if at any 
point within the transition layer € > e1 and also € > Es, then p 
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is negative when € 2 > € 1• The relations are inverted when 
€ 1 > € 2 , i.e. when the medium producing the reflection has the 
smaller refractive index. In consideration of the way in which 
the amplitude R1 is taken positive (cf. Fig. 83, page 28o), it is 
evident that, if the coefficient of ellipticity p is positive, the 
direction of rotation of the reflected light in its elliptical 
vibration form is counter-clockwise to an observer standing in 
the plane of incidence and looking toward the reflecting sur
face, provided the incident electrical force makes an angle of 
45 ° with the plane of incidence and is directed from upper left 
to lower right. But if p is negative, then when the same con
ditions exist for the incident electrical force, the direction of 
rotation of the reflected electrical force is clockwise. 

Also for any other angle of incidence the reflected light is 
always elliptically polarized, even though the incident light is 
plane-polarized, for there is always a difference of phase ,1 

between the p- and s-components, which, according to (42) 
and (46), has the value 

,r € .v;- cos </J sin2 <P 
tan LI = 4-71 - 2--1_ -------- (49) 

i\. €1 - €2 €1 sin2 <P - €2 cos2 </J' 

while the ratio p of the amplitudes does not depart appreciably 
from the normal value 

cos (</J + x) 
p = - cos ( </J - X )' (so) 

which is obtained without the consideration of a surface layer. 
In consideration of (47), (49) may be written 

_ n2 sin </J tan <P 
tan LI = 4P ,;-- t 2 ,f, _..2• 

,., 1 +n2 an-+'_,. 

On account of the smallness of p the difference of phase is 
appreciable only in the neighborhood of the polarizing angle, 
for which tan </J = n. 

These theoretical conclusions have been completely verified 
by experiment. For, in the first place, it is observed that 
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when the angle of incidence is thaf determined by Brewster's 
law, the reflected light is not completely (though very nearly) 
plane-polarized, since it is not possible to entirely extinguish it 
with an analyzing Nicol. The results of the investigation of 
the elliptic polarization of reflected light by means of the 
analyzer and compensator (cf. page 255) are in good agreement 
with equations (so) and (s I). 

It is further found that the coefficient of ellipticity is smaller 
the less the reflecting surface has been contaminated by con
tact with foreign substances. Thus, for example, it is very 
small at the fresh surfaces of cleavage of crystals, and at the 
surfaces of liquids which are continually renewed by allowing 
the liquid to overflow. For polished mirrors pis considerable. 
The change in the sign of p when the relations of the two 
media are interchanged is in accord with the theory. The 
theory is also confirmed by the fact that, in the case of reflec
tion from polished surfaces, p is in general positive. Only in 
the case of media which have relatively small indices of refrac
tion, like fluor-spar (n = 1.44) and hyalite (n = 1.42), has p 
been observed to be negative. This also might be expected 
from the theory, provided the index of refraction of the 
polished transition layer were greater than that of the 
medium. 

For well-cleaned polished glass surfaces, when the reflec
tion takes place in air, the value of p lies between 0.03 (for 
heavy flint glass of index n = 1.75) and 0.007. 

For liquids in contact with air the value of 75 does not 
exceed 0.01. Water has a negative coefficient of eUipticity 
which, when the surface is thoroughly cleaned, may be as 
small as 0.0003 5. There are also so-called neutral liquids 
like glycerine which produce no elliptic polarization by reflec
tion. According to the theoretical equation given above for 
the coefficient of ellipticity it is not necessary that these liquids 
have no transition layer, i.e. that an actual discontinuity occur 
in the dielectric constants in passing from the air to the liquid. 
Rather, layers which have intermediate values of the dielectric 



TRANSPARENT ISOTROPIC MEDIA 295 

constant may exist, provided only other layers whose dielectric 
constant is greater than that of the liquid are also present. 

When the coefficient of ellipticity is positive (for reflection 
in air) z"t z·s possible to determine a /()""<-Ver lz"mt"t for the thz"ckness 
of ilte transz'tion layer. For evidently, for a given positive 
value of p, the smallest thickness which the transition layer 
can have is attained when its dielectric constant is assumed to 
be a constant whose value is determined by making the factor 

(c - E1)(c - e-2) in equation (48) a maximum. This is the case 
€ 

when E = t' c1e-2 , i.e. when the dielectric constant of the transi
tion layer is a geometrical mean of the dielectric constants of 
the two media. Hence, from (48), the lower limit 7 for the 
thickness of the transition layer is given by 

[ p V~ + V~ p n + I -= :==---,;;c=• - = ---=--, . (52) 
A. 7t .Y € 1 + €2 t' E2 - t' € 1 1t t' I + n2 n - I 

in which n denotes the index of refraction of the medium 2 

with respect to the medium 1 (air). Thus for flint glass, for 
which n = 1.75, p = 0.03 (cf. page 294), T: l = 0.0175. 
Hence the assumption of a transz"tz"on layer of very small tht"ck
ness t"s suificz'ent to account for a very strong ellzptz"c polart"zatz''on 
in reflected light. 

8. Total Retlection.-Consider again the case in which the 
light incident in medium I is reflected from the surface of 
medium 2. If the index n of 2 with respect to I is less than 
1, the angle of refraction x which corresponds to the angle of 
incidence <P is not real if 

. sin <P 
Sill X = -- > I. n (53) 

At this angle of incidence <P there is then no refracted 
light, but all of the incident light is reflected (total reflection). 

In order to determine in this case the relation between the 
nature of the reflected light and that of the incident light, the 
method used in § 3 of this chapter must be followed. The 
discussion and the conclusions there given are applicable. In 
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order to avoid the use of the angle of refraction X in equations 
(22), (23), and (24), sin X may be regarded as an abbreviation 
for sin <P : n, so that cos X may be replaced by 

✓ ~n2 <P 
cos X = l - ~ • 

If sin <P > n, this quantity is imaginary. In order to bring 

this out clearly the imaginary unit t' - I = i will be introduced, 
thus: 

·✓sin2 <P cos X = - t ~ - l.* (54) 

Equations (23) must hold under all circumstances, t for they are 
deduced from the general boundary conditions for the passagt! 
of light through the surface between two isotropic media, and 
these conditions always hold, whether total reflection occurs 
or not. But when (54) is substituted in (23) the amplitudes in 
the reflected light become complex, even when those of the 
incident light are real. From the physical meaning of a com
plex amplitude which was brought out on page 289, it is 
evident that in total rejlectt"on the reflected Hg-ht has suffered a 
change of phase with respect to the ina"dent light. 

In order to calculate this change of phase, write, in accord
ance with (45), for the reflected amplitudes which appear in 
(23) the complex quantities R/;s,, R.,e;s,, so that from (23) and 

(54), since t'~ : t';; = n, 

E --( 
i cos </J 

• t' sin2 </J - n2 

E ( i cos <P•n 
1 t' sin2 <P - 1z2 

I) = R,•eiS ( -Vs_{~~0; <P n2 + I), } . 

(55) 
~) = R .es ( z cos </J:__1'l + !..)· 
n ; t'sin2 <P -_ n2 n 

* Cos x must be an imaginary with a negative sign. According to the condi, 
tions which are to be fulfilled, either a positive or a negative value of cos x would 
be possible. This could be physically realized only if the medium 2 were a plate 
upon both sides of which light were incident at the same angle </), which must also 
be greater than the critical angle. This appears from the considerations in § 9. 

t The transition layers will here be neglected. They have but a small influence 
U'(>On total reflection; cf. Drude, Wied. Ann. 43, p. 146, 18g1. 
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In order to obtain the intensities of the reflected light, i.e. 
the values of R: and R;, it is only necessary to multiply equa
tions (5 5) by the conjugate complex equations, i.e. by those 
equations which are obtained from (55) by substituting - t" 
for t". * The result is 

E,2 = R,2, E/ = R/, (56) 
i.e. the intensity of the reflected light is equal to that of the 
incident light (total reflection). This holds also for each of 
the components (the sand P) separately. 

The absolute differences of phase <i, and o, will not be dis
cussed, but the relative difference L1 = <\ - o, is of interest 
because, according to page 292, the vibration form of the 
reflected light is obtained from it. Division of the first of 
equations (S 5) by the second gives, when E, = E,, i.e. when 
the incident light is plane-polarized at an azimuth of 45 ° with 
respect to the plane of incidence, since then, according to 
(56), R, = R,, 

icos <f,- -tlsin2 </> - n2 ei(a,-a,> t"cos <t>+ ¥sin~</>- n2 } 

fros </>-n-!__-tlsin2 </>-n2 t"cos </>·n+~ .Ysin2 </>- n2 • (57) 
n n 

From this it follows that 

.. ·ca 3 sin2 </> + t" cos </> .Ysin2 ¢ - n2 
e'~ = e' ;- •> = -------~ -====· 

sin2 </> - z" cos </> 1- sin2 </> - n2 

Hence 

1 - ei,d _ - i cos ¢ t'sin2 </> - n2 
1 + ei,d - sin2 </> 

If this equation be multiplied by the conjugate complex 
expression, there results, since ei11 + e-i.). = 2 cos Lt, 

I - cos L1 = { cos </> t'sin2 </> - n2} 2 

I + cos L1 sin2 </> ' 

* Every equation between complex quantities can be replaced by the conjugate 
complex equation; for the real and the imaginary parts of both sides of such equa
tions are separately equal to each other. 
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i.e. 

J.LI cos ¢ .Ysiri2 ¢ - n2 

tan 2 = . 2 A> • 
SlD 'I' 

(58) 

From this it appears that the relative difference of phase LI 
is zero for grazing incidence </J = ¼7l', as well as for the critical 
angle sin </J = n; but for intermediate values of the angle of 
incidence it is not zero, i.e. the reflected light is elliptically 
polarized when the incident light is plane-polarized. A differ
entiation of (58) with respect to <P gives 

I oLI 2n2 - sin2 q,(I + n2) 
2 cos2 ½LI o<P = sins </J -t/ sin2 </J - n2 • 

Hence it follows that the relative difference of phase LI is a 
maximum for that angle of incidence </J' which satisfies the 
equation 

2n2 

sin2 </J' = 1 + ,r • • (59) 

Hence the maximum value LI' of the difference of phase is 
given, according to (58), by 

I - n2 

tan ½L1' = --. 
2n 

(60) 

For glass whose index is I. 5 I, i.e. for the case in which 
n = I : 1. 5 1 (since the reflection takes place in glass, not 
in air), it follows from (59) that </J' = 5 1 ° 20', and from (60) 
that LI'= 45° 36'. LI has exactly the value 45° both for 
</J = 48° 37' and for <P = 54° 37'. Two total reflections at 
either of these angles of incidence produce circularly polar
ized light, provided the incident light is plane-polarized in the 
azimuth 45° with respect to the plane of incidence, i.e. pro-

vided E, = E, and R, = Rr Such 
"'V ~ ~ a twofold double reflection can 
£.~/ A, be produced by Fresnel's rhomb, 

which consists of a parallelopiped 
F10. 84. of glass of the form shown in Fig. 

84. When the light falls normally upon one end of the rhomb 
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and is plane-polarized in the azimuth 45 ° with respect to the 
plane of incidence, the emergent light is circularly polarized. 

Circular polarization can also be obtained by a threefold, 
fourfold, etc., total reflection at other angles of incidence. 
The glass parallelopipeds which must be used in these cases 
have other angles, for example 69° 12', 74° 42', etc., when 
the index of the glass is I. 5 I . 

9. Penetration of the Light into the Second Medium in 
the Case of Total Reflection. -In the above discussion the 
reflected light oniy was considered. Nevertheless in the 
second medium the light vector is not zero, since equations 
(23) on page 282 give appreciable values for D, and D,. 
The amplitude decreases rapidly as z"increases, i.e. as the 
distance from the surface increases, for by (16) and (18) on 
pages 280 and 281 the electric and magnetic forces in the 
second medium are proportional to the real parts of the com
plex quantities 

.2"( "_.:....sin-'--';,c"---'-+-•---=co---=s...!>c;,c) 
1- t -

e T v, , (61) 

which, when Xis eliminated by means of equations (53) and 
(54), takes the form 

Thus for values of z which are not infinitely large with 
respect to the wave length TV2 = l 2 in the second medium, 
the amplitude is not strictly zero. 

This appears at first sight to be a contradiction of the con
clusion that the intensity of the reflected light is equal to the 
intensity of the incident light, for whence comes the energy of 
the refracted light? 

This contradiction vanishes when the flow of energy 
through the bounding surface is considered. According to 
equation (24) on page 272 this flow is, since in this case 
cos (nz) = cos (1v,) = o, cos (nz) = 1, 

4" a@ J· c • aidt = dt (P.,X2 - a2Y2)dS. 
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If now the electric and magnetic forces be taken as the 
real parts of the complex quantities which are obtained from 
the right-hand sides of equations (16) and (18) on page 280 

2'11: iy-(t .. . ) .• 
by replacing the factor cos T (t ... ) by e , It Is clear 

that, on account of the factor cos X, which by (54) is purely 
n: 

imaginary, «2 has a difference of phase - with respect to Y2 , 
2 

n: 
and /J2 a difference of phase 2 with respect to X2 , so that by 

writing 

Y2-= a cos( 2 ; 1 + o), 
in which a and o no longer contain the time, the magnetic 
force a 2 takes the form 

I • ( 2'11:/ ) 
a2 = a • sm T + o . 

Hence if a2 Y"zdt, contained in the expression (63) for the 
energy flow, be integrated between the limits t = o and t = T, 
there results 

Jra2Ypt = aa'frsin(2 7:) + o) · cos( 2;' + o)· dt 

= a:~ T[sin2( 2;' + o)J: = o. 

In the same way the integral of /J7pt vanishes. Thus, 
on the whole, during a complete period, no energy passes from 
medium I to medium 2. Hence the reflected light contains 
the entire energy of the incident light. 

That no energy passes through the rz-plane appears 
plausible from (62). For this equation represents waves which 
are propagated along the x-axis. But from equation (24) on 
page 2 72 there is an actual flow of energy into medium 2 when 
the direction of flow (i.e. the normal n) is parallel to the 
~-axis, There is then a passage of energy into medium 2 at 
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one end of the incident wave, i.e. when .r is negative, but this 
energy is carried back again into medium I by the waves of 
medium 2 at the other end of the wave, i.e. when .r is positive. 

These waves of variable amplitude possess still another 
peculiarity: they are not transverse waves. For it follows 
from (62) that they are propagated along the .r-axis; hence if 
they were transverse, X 2 would of necessity be equal to zero. 
But this is not the case. This is no contradiction of the 
Fresnel-Arago experiments given on page 247 which were 
used as proof of the transverse nature of light; for those experi
ments relate to waves of constant amplitude. Quincke's inves
tigation, showing that these waves of variable amplitude may 
be transformed into waves of constant amplitude when the 
thickness of medium 2 is small, i.e. when it is of the order of 
magnitude of the wave length of light, may be looked upon as 
proof that, in the case of total reflection, the light vector in 
the second medium is not zero. As a matter of fact, if medium 
2 is a very thin film between two portions of medium I, no 
total reflection takes place, for, in the limit, the thickness of 
this film is zero, so that the incident light must pass on undis
turbed, since the homogeneity of the medium is not disturbed. 
As soon as the medium 2 becomes so thin as to appear trans
parent, then it is evident that, even at angles larger than the 
critical angle, the reflected light must lose something of its 
intensity. All the characteristics of this case can be theoreti
cally deduced by simply applying upon both sides of film 2 the 
universally applicable boundary conditions (2 I) on page 2 7 I . * 

10. Application of Total Reflection to the Determination 
of Index of Refraction.-When the incident beam lies in the 
more strongly refracting mediu:n, if the angle of incidence be 
gradually increased, the occurrence of total reflection is made 
evident by a sudden increase in the intensity of the reflected 
light, and the complete disappearance of the refracted light. 
But it is to be remarked that the curves connecting the inten-

• Cf. Winkelmann's Handbuch, Optik, p. 78o. 
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sities of the reflected and refracted light with the angle of 
incidence ¢ have no discontinuity at the point at which ¢ 
reaches the critical angle. Nevertheless these curves vary so 
rapidly with ¢ in this neighborhood that there is an apparent 
discontinuity which makes it possible to determine accurately 
the critical angle ¢ and hence the index of refraction.* Thus, 
for instance, for glass of index n = I. 5 I the following relations 
exist between the intensity R; of the reflected light and the 
angle of incidence ¢ (E; is set equal to I, C is the angle in 
minutes of arc by which ¢ is smaller than the critical angle): 

o' 2' 4' 8' I 5, 30' 

I 0.74 0.64 0.53 0.43 0.25. 

n. The Intensity of Light in Newton's Rings.-The 
intensities of the reflected and transmitted light will be calcu
lated for the case of a plate of dielectric constant €2 and thick
ness d surrounded by a medium of dielectric constant € 1. Let 
the first surface of the plate upon which the light falls be the 
.ry-plane, the second surface the plane s = d. 

For the sake of simplicity the incidence will be assumed 
to be normal and the incident light to satisfy the equations 

X.= o, Y.= E·ei21tjT(1-z/v,), Z,=o. (64) 

Setting X, = o places no limitation upon the generality of 
the conclusions, since, at perpendicular incidence, all results 
which hold for they-component of the light vector hold with
out change for the .r-component also. 

According to equations (14) on page 279, if (64) represents 
the electric force, the incident magnetic force is represented 
by 

fJ. = o, r.= o .. 

* For the construction of total refractometers and reffectometers for this pur
pose, cf. Winkelmann's Handbuch, Optik, p. 312. 
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By equations (15) and (17) on pages 280 and 281, the 
reflected electric and magnetic forces in medium r are repre
sented by 

xr = o, yr = Rei 27! IT (t + z Iv)' Zr = o, l (66) 

«r=R¥~ei21t/T(t+z/v1), Pr=o, r,,.=o;) 

Now repeated reflections and refractions take place at the 
surfaces of the plate ( cf. above, page I 37); but it is not neces
sary to follow out each one of these separately, since their 
total effect can be easily brought into the calculation.* This 
effect consists in the propagation of waves within the plate 
along both the positive and the negative directions of the 
z-axis. For the former the following equations hold: 

X' = o, Y' = D'ei21tjr(1-z/v.J, z, = o; ( (67) 

a'= - D' fi,_ei21t/T(t-z/V.), /J' = o, y' = o; f 
while for the latter 

X" = o, Y'' = D"e;21tjr(1+=/17.), Z" = o; ( (68) 

a"= D"ile,Ei27t/T(t+ z/v;), fi" = o, y" = 0. f 
Let the total effect of all the waves which have passed 

t'.1rough the plate be 

Xd= o, Yd= Dei27t/T(t-z/v1), Zd= o, ~ 
f (69) 

ad=-D.!'"iei21tjr(t-z/v1) f:J o yo 
'Y l • d= • d= • 

It is now necessary to apply at both sides of the plate 
(z = o, z = d) the boundary conditions (2 r) on page 27 I, 
which here take the form 

Y+ Y = Y'+Y" e r • a,+a,,. =a' +a" 

Y' + Y"= Yd, a'+ a"= ad 

The conditions (70) give 

for z=o, . 

for z= d. 

E + R = D' + D", ( E - R) ¥ €1 = (D' - D") ¥ €2 1 

* Equations (66) are to represent the total effect of all the separate waves which 
are propagated in medium I along the negative z-axis. 
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and the conditions (71) 

D'e-il+D''e+il=De-i,,, } 
.,- .,- • • (711 (D'e-i/ _ D''e+ ii).., Ez =De-if/.., E1 , 

in which p and q are abbreviations for 

2n: d d 2n: d d 
p = y• vz = 2'11: A/ q = -r• vl = 2'11: ,ll • {72) 

From (71') follows at once 

(D'e-il + D''e+ ii) .YE1 = (D'e- if_ D"e+ ,jJ) .Y~, 

from which is deduced 

D'e-il( V~ - ¥~) = D''e+il( ~ + .Y~). . • (73) 

From (70'), 

i.e. 

E+R_D'+D" v;. 
E - R - D' - D'' • . ,-, 

'Y €2 

R IY( ~ - .Y~) + D"( ~ + .y~} 
E = D'( .Y~ + .Y~) + D"( .y~ - ve/ 

In consideration of (73) this last may be written 

R (e+;;_ e-il)(E1 - E2) 

E- e+;l(-VE1+.YE2)2-e-il(.Y~-.YE2t 

z" sin P·(E1 - E2) 

- z" sin p • ( E1 + E2) + 2 ~·cos p • 

In order to obtain the intensity Jr of the reflected light, 
this equation must be multiplied by the conjugate complex 
equation (cf. page 297). Thus, when J. denotes the intensity 
of the incident light, there results 

sin2 p ( E
1 

- E
2
)2 sin2 p ( 1 - n2'f' 

Jr =./,sin2 p( e
1

- eJ + 4e
1
e

2 
= J. sin2 p ( I - n2)2 + 4n2' (7 4) 

provided e
2

: E
1 

= n', so that n is the index of the plate 2 with 
respect to medium 1. • 
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From (70') and (71') it is easy to deduce the equation 

De-it/ 4 t'i"E 
1 2 

-r - eil( t'E1 + t'~i2 _ e - ii( t'€1 _ t'i"J2 

2 -V €1€2 

- z" sin p(€1 + €2) + 2¥€1€2·COS i 
So that the intensity h of the transmitted light is 

J. 4€1€2 

Jd = 'sin2 p (€1 - E;J + 4E1€2· 

Hence the relation holds 

as was to be expected, since the plate absorbs no light 

• (75) 

According to {74) the reflected light vanishes completely 
when p = o, -n:, 2-n:, etc., i.e. when the thickness of the plate 
d = o, ½l.2 , l.2 , JA 2 , etc. This is in agreement with the results 
deduced from equation (17) on page 139. A maximum of 

( I - n1)2 
intensity occurs when sin P = I. Then Jr = J. 1 + n' . 

[In the case of normal reflection at one surface only, equation 

(26) on page 284 gives J,. =J.(: + :)2.J 
If media I and 2 are air and glass, n = I. 5. In the case 

of Newton's rings these media are glass and air, so that 
n = 1 : 1 .5. In both cases equation (74) becomes 

sin2 P· 1.56 
J,. = J..sin2 P· 1.56 + 9· 

Hence, for an approximation, the term sin2 p( 1 - n2) 2 in the 
denominator of (74) may be neglected in comparison with 4n2, 

so that at a point in the Newton ring apparatus at which the 
thickness of the air film is d, 

J,. = J,(1 'l.ll '!)2 sin2 2-n:tl/A. • • , • (77) 
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l. denotes the wave length in air. If the incident light is 
white, and if J1,. denotes the intensity in the incident beam of 
light of wave length A, then the intensity of the reflected light 
is, provided dispersion or the dependence of n upon l. be 
neglected, 

( I - n2)2 
Jr= --- ~Ji>. sin2 2'/t"/1,. .. 

2n 

The colors of thin plates are then a mixture composed of 
pure colors in a manner easily evident from (78). 

12. Non-Homogeneous Media: Curved Rays.-The opti
cal properties of a non-homogeneous medium, in which the 
dielectric constant c is a function of the coordinates x, y, z, will 
be briefly considered. The most logical way of doing this 
would be to integrate the differential equations (r 8) on page 
269; for these hold for non-homogeneous media also. To do 
this e must be given as a function of x, y, and z. This method 
would give both the paths of the rays and the intensities of the 
reflections necessarily taking place inside of a non-homogene
ous medium. But even with the simplest possible assumption 
for e this method is complicated and has never yet been carried 
out. Investigation has been limited to the determination of 
the form of the rays from Snell's law or Huygens' principle
a process which succeeds at once if the medium be conceived 
to be composed of thin homogeneous layers having different 
indices. When the index varies continuously, the ray must of 
course be curved. Heath* has deduced for its radius of curva
ture p at a point P the equation 

1 dlog n 
p d-,,-, (79) 

in which v denotes the direction of most rapid change (decreas
ing) of the index n. 

This equation explains the phenomenon of mirage, which 
is obsen-ed when the distribution of the density of the air over 

* Heath, Geometrical Optics. Cambridge, 1897. 
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the earth's surface is abnormal, as is tlle case over heated 
deserts. At a certain height above the earth the index n of 
the air is then a maximum. But in this case, by (79), p = oo, 
i.e. at this height the ray has a point of inflection. Hence two 
different rays can come from an object to the eye of an ob
server, who then sees two images of the object, one erect, the 
other inverted.* 

An interesting application of the theory of curved rays has 
been made by A. Schmidt.t He explains the appearance of 
the sun by showing that a luminous sphere of gas of the dimen
sions of the sun, whose density increases continuously from 
without towards the interior, would have sharp limits, as the 
sun appears to have. For a ray of light which travels towards 
such a sphere of gas so as to make an angle less than a certain 
angle </> with the line drawn from the observer to the centre of 
the sphere is deflected toward the centre of the sphere and 
passes many times around that centre. It thus attains depths 
from which a continuous spectrum is emitted, for an incan
descent gas emits such a spectrum when the pressure is suffi
cient. But a ray which makes an angle greater than </> with 
a line drawn to the centre of the sphere must again leave the 
sphere without having traversed intensely luminous layers. 
Although there is no discontinuity in the sun's density yet it 
appears as a sharply bounded disc which subtends a visual 
angle 2</>. 

For the experimental presentation of curved rays cf. 
J. Mace de Lepinay and A. Perot (Ann. d. chim. et d. phys. 
(6) 27, page 94, I 892); also 0. Wiener (Wied. Ann. 49, page 
I05, 1893). The latter has made use of the curved rays in 
investigations upon diffusion and upon the conduction of heat. 

* A more complete discussion of these interesting phenomena with the refer. 
<:!nces is given in Winkelmann's Handb., Optik, pp. 344-384. 

t A. Schmidt, Die Strahlenbrechung auf der Sonne. Stuttgart, 1891. 



CHAPTER III 

OPTICAL PROPERTIES OF TRANSPARENT CRYSTALS 

1. Differential Equations and Boundary Conditions.-A 
crystal differs from an isotropic substance in that its properties 
are different in different directions. Now in the electromag
netic theory the specific properties of a substance depend solely 
upon its dielectric constant, provided the standpoint taken on 
page 269, that the permeability of all substances is equal to 
unity, be maintained. 

Now an inspection of the deduction of the differential 
equations for an isotropic body as given upon pages 269 sq. 
shows that equations ( 17) contain only the specific properties 
of the body, i.e. its dielectric constants. But equations (7) 
and (11) are also applicable to crystals, as has been already 
remarked. Hence only equations (17) need to be extended, 
since in a crystal the dielectric constant depends upon the 
direction of the electric lines of force. The most general 
equations for the extension of ( 17) are 

-ax -av oz 
41TJ~ = Ell 0/ + E12 at + E13 <Jt ' 

. -ax -av oz 
41!ly = €21 Tt + €22 ot + E23~• 

. -ax -av oz 
479. = ESI ot + E32 ot + E33 ct ' 

since the components of the current must always remain linear 
-ax av oz . . 

functions of ~, ot, ot. Equations (1) assert that m general 

in a crystal the direction of a line of current flow does not 
308 
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coincide with the direction of a line of force, since if, for 
example, Y and Z vanish while X remains finite, j and J. do 
not vanish. 

Equation (23) on page 272 for the flow of energy may be 
deduced by multiplying the general equations (9) and (11), 
namely, 

41l' oY -az 
-s - ----
c z - o.:;- cy' 

by Xdr, ... adr, and integrating with respect tor. (dr repre
sents element of volume.) The result is 

41l'[U,.X + j y + j.Z)dr 
C • :, 

in which @ represents the energy in the volume element d r. 
This equation may also be applied to crystals, since the specific 
properties of the medium do not appear in it. Hence the 
change in the electromagnetic energy in unit volume with 
respect to the time is 

~~ =J~X + J~Y +1:Z+ sza+s,/1 + s.y. 

Since the last three of equations (17) on page 269 hold in 
this case also (when µ = 1) the last three terms of this equation 
are a differential coefficient with respect to the time, i.e. 

I 0 
s,.a + s/J + s.r = 81l' a/«2 + /J2 + Y2). 

Consequently j,.X + J~Y + 1:Z must also be a differential 
coefficient with respect to the time. In order that this may be 
possible in consideration of (1), the following conditions must 
be fulfilled: 
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and in this case the part ~. of the energy which depends upon 
the electric forces is 

~. = 8171' ( EUX2 + E22Y2 + €~2 + 2E23YZ l . (3) 

+ 2E3lzx + 2e.7Y). f 
By means of a transformation of coordinates ~. may always 

be reduced to the canonical form 

When the coordinates have been thus chosen the factors e,. 
vanish and equations (1) take the simplified form 

. e1 ax . e2 av . e3 oz 
J,. = 471' &' Jy = 4i Tl' 1• = 471' at· (S) 

These coordinate axes are characterized by the fact that 
along their direction the electric current coincides with the 
direction of the electric force. These rectangular axes will be 
called axes of electric symmetry, since the crystal is symmetrical 
in its electrical properties with respect to them, or also with 
respect to the three coordinate planes which they define. 
E1 , E2 , E3 signify the dielectric constants corresponding to the 
three axes of symmetry. They will be called the pri'nczpal 
dielectric constants. 

As was remarked above, the assumption will be made that 
the permeability of the crystal is the same in all directions. 
Although this is not rigorously true, as is evident from the 
tendency shown by a sphere of crystal when hung in a power
ful magnetic field to set itself in a particular direction, yet 
experiment justifies the assumption in the case of light vibra
tions.* 

Hence in the differential equations ( 18) on page 26g, which 
apply to isotropic media, only such modifications are necessary 

• The theoretical reason for setting µ = I in the case of tl1e light vibrations wiU 
be given later, in Chapter VII. 
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as are due to the fact that the dielectric constant has different 
values in different directions. The dielectric constant appears 
in only the first three of equations ( 18). These equations assert 
that the components of the current are proportional to the quan-

• • oy 013 s· h f h • titles oy - 08 , etc. mce t e components o t e current m a 

crystal are given by equations (1) and (S), the general differ
ential equations (7) and (1 I) of the electromagnetic field on 
pages 265 and 267 become for a crystal, when its axes of 
electric symmetry have been chosen as coordinate axes, 

e, cX oy c/3 E2 oY _ oa oy E3 oZ o/3 oa 
7 Tt = oy - oz· c oi - oz - ox' c 7>t = ox - oz' (6) 

1 oa oY cZ I o/3 oz oX 1 or ox oY 
c 7Jt = oz - 7>y' ""cot = OX - oz' c--::si = oy - OX· (7) 

When referred to any arbitrary system of coordinates, 
equations (6) must be replaced by 

: ( e11 °: + e,2 ~F + E,3 ~f) = a; -¥}. etc. (6') 

The conditions which must be fulfilled at the hounding sur
face between two crystals, or between a crystal and an isotropic 
medium, for example air, may be obtained from the considera
tions which were presented in § 8 of Chapter· I, page 27 I. 

They demand that, in passing through tlze boundm:v. tlte com
ponents of the electric and magnetic forces parallel to the 
boundary be continuous. 

2. Light-vectors and Light-rays.-In the discussion of 
isotropic media on page 28 3 it was shown that different 
interpretations of optical phenomena are obtained accord
ing as the light-vector is identified with the electric or with 
the magnetic force. Both courses accord with the results of 
experiment if the phenomena of stationary waves be left out 
of account. The case is similar in the optics of crystals, save 
that there is here a third possibility, namely, that of choosing 
the electric current as the light-vector. Its components are 
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ax oY oz 
then proportional to E\ at, E27ii, c8~i' Thus in the optics 

of crystals there are three possible theories which differ from 
one another both as regards the position of the light-vector 
with respect to the plane of polarization, and also as regards 
its position with respect to the wave normal in the case of 
plane waves. As to the latter difference it appears from page 
278 that the light-vector is perpendicular to the wave normal 
in the case of plane waves (i.e. plane waves are transverse), if 
its components, which will here be represented by u, v, and w, 
satisfy the differential equation 

OU 011 OW 
ox+ ~i + ~-; = 0 • <8> 

Differentiation of equations (7) with respect to x, y, 
and addition of them gives, as above on page 2 7 5, 

a (oa c/J oy) 
at ex+ oy + oz = 0 • • 

and z 

(9) 

i.e. the waves are transverse if the magnetic force is taken as 
the light-vector. 

If the same operation be performed upon the three equations 
(6), there results 

a ( ox:) a ( av) a ( cz) 
OX c,~ + oy €2 751 +oz €8 ot = o, • (10) 

i.e. the waves are likewise transverse if the electric current be 
interpreted as the light-vector. 

But the waves are not transverse if the electric force is 
takt>n as the light-vector, since, in consequence of the last 
equation, because of the differences between E1 , F2 , and Es, 

the following inequality exists: 

ax oY oz> 
az+oY + oz < 0 • <11> 

The plane of polarization is defined by the direction of the 
wave normal and the magnetic force, as was shown on page 
283 to be the case for isotropic media. 
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Thus the characteristics of the three possible theories of 
the optics of crystals are the following: 

I. The magnetic force is tht· light-,:ector. Plane waves are 
transverse; the light-vector lies in the plane of polarization. 
(Mechanical theory of F. Neumann, G. Kirchhoff, W. Voigt, 
and others.) 

2. The dectri'c force is the lzglzt-vector. Plane waves are 
not strictly transverse; the light-vector is almost perpendicular 
to the plane of polarization. (Mechanical theory of Ketteler, 
Boussinesq, Lord Rayleigh, and others.) 

3. The electric current is the light-7.'cctor. Plane waves are 
transverse; the light-vector lies perpendicular to the plane of 
polarization. (Mechanical theory of Fresnel.) 

These differences in the theory cannot lead to observable 
differences in phenomena so long as the observations of the 
final light effect are made in an isotropic medium upon ad
vancing, not stationary, waves. No other kinds of observations 
are possible in the case of crystals. Hence nothing more can 
be done than to solve each particular problem rigorously, i.e. 
in consideration of its special boundary conditions. 

The system of differential equations and boundary condi
tions to be treated are then completely determined, and there 
results one definite value for the electric force in the outer 
isotropic medium no matter what is interpreted as the light
vector in the crystal. The results which can be tested by 
experiment are the same whether the magnetic force or the 
electric force is taken as the light-vector in the outer medium. 
For, according to the fundamental equations, the intensity of 
the advancing magnetic wave is always the same as the 
intensity of the advancing electric wave. 

The electromagnetic theory has then the advantage that it 
includes a number of analytically different theories and shows 
why they must lead to the same result. 

A ray of light was defined on page 273 as the path of the 
energy flow. According to the equation given on page 310 

for the electromagnetic energy in crystals, equation (23) on 
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page 2 72 for the flow of energy holds for crystals also. The 
direction cosines of the ray of light are then also in the crystal 
proportional to the quantities f.., J;, f., defined in equation 
(2 5) on page 273. 

The ray of light is then perpendicular both to the electric 
alld to the magnetic force. In general it docs not coincide 
with the normal to a plane wave, since from the inequality ( I I) 

this normal is not perpendicular to the electric force. 
3. Fresnel's Law for the Velocity of Light.-In order to 

find the velocity of light in crystals, it is necessary to deduce 
from equations (6) and l7) such differential equations as 
contain either the electric force alone or the magnetic force 
alone. The former are obtained by differentiating the three 

oa o/J c)v 
equations (6) with respect to t and substituting for at, at, at, 

which appear upon the right-hand sidf.!, their values taken 
from (7). Thus from the first of equations (6) 

€ 1 a2x _ a (ax aY) o (oz ax) 
& aP - ay ay ax oz ax oz , • 

The right-hand side of this equation can be written in the 
more symmetrical form 

(12) 

Similarly, from the two other equations of (6), 

E2 a2 v v a (ox av oz) } 
c2 aP - LI ay ox + ay + oz • 

€3 c2z a (ox aY oz) 
? aP = LIZ - oz ax + ay + oz • 

. (12) 

From the discussion of the preceding paragraph it appears 
that only analytical differences result from differences in the 
choice of the light-vector. In order to bring the discussion 
into accord with Fresnel's theory, the light-vector will be 
assumed to be proportional to the electric current. Let "• v, 
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w, be the components of the light-vector for plane waves, 
thus: 

21r I mx + ny --j- Pz) 
u = E1X = AWl cos T{ - --v-- , 

271'( mx + ny + Pz) 
V = E2Y = AW cos T / - V , (13) 

271'( mx + ny + Pz) 
w = E;iZ = A~ cos -7 t - V , 

in which it is assumed that 

9Jl2 + w2 + ~2 = m2 + tr + p2 = I. . • (14) 

A denotes then the amplitude of the light-vector, 9.R, W, ~ its 
direction cosines with respect to the axes of electric symmetry, 
m, n, p the direction cosines of the wave normal, V the 
velocity of light measured in the direction of the wave normal 
(the so-called velocity along the normal). On account of 
equation (IO) the relation holds 

IDl11z + Wn + ~p = o, (15) 
which signifies that the wave is transverse. 

Substitution of the values (13) in (12) gives (C is written 
for c above) 

m = 9Jl _ !!!._(Wlm + Wn + ~P), 
C2 El V2 V2 El E2 E3 

~ = E ~i _ ;(~m + ~n + ~P), 
2 1 2 3 

~ = E ~n - 0(~m + ~n + ~). 
3 1 2 3 

A multiplication of these equations by C 2 vi and a substi
tution, for brevity, of 

ci: E1 = a2, C2: E2 = b2, Cl: E3 = c2,* (16) 

a2IDlm + lrmn + c2~p = G2, (16') 

* The letter , bas two meanings in this book. In general , denotes the velocity 
of light in vacuo. In the section on optics of crystals C will be used to denote 

this velocity, and, will stand fur C: .Ye,. 
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gives 

Wl(a2-V2)=mG2, 91W-V2)= nG', ~(c2- V 2)=PG', (17) 

i.e. 
11l wz = G2 2 v2• a-

m 02 n 
;:/l = b2- v2• 

If these last three equations be multiplied by m, n, p, 
respectively, and added, the left-hand side reduces to zero, 
because of (15), so that, by dropping the factor Gl, there re
sults 

m2 n2 p2 
a2 - v2 + b2 - v2 + c2 - v2 = o. (18) 

This equation, which expresses the functional relationship 
between V 2 and m, n, and p, is of the second degree in V 2. 

Hence for every particular direction of tlte wave normal thert· 
a,,e two d{lferent values for the velocity. Equation (18) is 
called Fresnel's law. 

When m = 1, n = p = o, the two velocities are V/ = b2, 

V22 = c2. Thus when the wave normal coincides with one of 
the axes of electric symmetry of the crystal, two of the quan
tities a, b, and c represent velocities. Hence a, b, care called 
the principal velocities. 

The same law of velocity ( 18) results if either the electric 
or the magnetic force is taken as the light-vector. 

4. The Directions of the Vibrations.-Two waves travel
ling with different velocities correspond to every wave normal. 
The position in these waves of the characteristic quantity, for 
example the electric current, is perfectly definite and differ
ent in the two waves. Thus if the indices I and 2 refer to the 
two waves respectively, then, from (17'), the position of the 
light-vector is obtained from 

ID1·9'l·$- m • n • p J 
1 •, 1. I - a2 - vl2 • b2 - vl2. c2 - V1¥' . (19) 

m n P 
ID'lz : fila : $a = a2 _ v.2 : b2 _ v.2 : c2 _ V{ 

a z 
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Thus in the direction of a given wave normal but two plane
polarized waves are able to be propagated, and these waves 
are polarized at right angles to each other. For, from (19), 

m2 

m.m2 + 911912 + ~.~2 ~ (d' - V.2)(d' - Vl) + etc. (20) 

But now 
m2 m2 1 1 

(ti' - V/)(a2 - V/) - v.2 - vAa2 - V/ - ti' - v22)• 

so that the left-hand side of (20) is proportional to 

I { mi ,z2 Ji' 
V.2- v2 a2 _ v.2+ b2 _ v.2+ c2 _ v:2 

1 2 1 l l 

nr n2 p2 } 
- a2- v:2- b2- v2- cl- v2 • 

2 2 2 

Now since both V1 and V2 satisfy equation (18), this entire 
expression is equal to zero. Consequently the light-vector 

m. ' 91. ' ~l is perpendicular to 9.)12' 912 ' ~2-
The velocity is a single-valued function of the direction of 

vibration. For, in consideration of (19), Fresnel's law (18) 
may be written 

(a2 - V2)m2 + (b2 - V2)912 + (c' - v2)~2 = o, 

i.e., since 9.)12 + 91 2 + ~2 = 1, 

V2 = a2m2 + b2912 + ~2. . • ( I 8') 

5. The Normal Surface.-ln order to gain a conception 
of how the velocity varies with the direction of the wave 
normal, it is best to lay off from a given origin 0, in all possi
ble directions of the wave normals, the two velocities as radii 
vectores. In this way a surface consisting of two sheets is 
obtained,-the so-called normal surface. In a plane of electric 
symmetry, for example the yz-plane, the two values of the 
velocity are, by ( 1 8), 

V.2 = a2, v22 = b2j,2 + c2n2, 

i.e. the section of the wave surface by a 
symmetry consists of a circle and an oval. 

(21) 

plane of electric 
If a > b > c, the 
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sections of the wave surface by the planes of symmetry are 
shown in Fig. 8 5. In the xz-plane, for two directions of the 
wave normal, which are denoted by A 1 and A 2 , the two roots 
V1 and V2 of necessity coincide, since the two sheets of the 
normal surface intersect. It can be shown that this occurs for 

l'IG. 85. 

no other directions of the wa·ve normal; for the quadratic.equa
tion in V 2 is, by (18), 

v1 - V2lm2(b2 + c2) + n2(c2 + a2) + pi(tr + b2) I 
+ m2b2c2 + n2c2a2 + jra2b2 = o. (22) 

If the following abbreviations be introduced: 

Ms:. m2(b2 - c2), N = n2(c2 - a2), P = p2(a2 - b2), (23) 

the solution of (22) is 

2 v2 = 1n2(b2 + c2) + n2(c2 + a2) + p2(tr + b2) ) 

± i/M2 +N2 +P2- 2MN-2NP- 2MP. I <24l 
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Now since a > b > c, M and P are positive, N negative. 
Since the quantity under the radical may be put in the form 

(M + N - P)2 - 4MN, 

it is made up of two positive terms. Hence when the two 
roots in V 2 are equal, the two following conditions must be 
satisfied: 

M+N- P = o, MN= o. 

Now M cannot be zero, since in that case N = P, which is 
impossible, for N is negative and P positive. Consequently 
the expression under the radical vanishes only when 

N= o, l'rf = P, 
i.e. when 

n = o, m2(b2 - c2) = p2(a2 - b2), (25) 

or since m + n2 + p2 = 1, when 

✓b2-c2 
n = o, jJ = ± a2 - c2· 

These equations determine the two directions of the wave 
normals for which the two velocities are the same. These 
directions are called the optic axes. The axes of electric 
symmetry x and z which bisect the angles between the optic 
axes are called the median lines o.f the crystal. 

The value of the common velocity of the two waves when 
the wave normal coincides with an optic axis is V1 = V2 = b. 
This is evident from Fig. 85 as well as from equation (24) 
taken in connection with (26). Hence, from (19), the direction 
of vibration of these waves is indeterminate, since an indeter
minate expression, namely, n: b2 - V 2 = o : o, occurs in these 
equations. Hence along the optic axis any kind of light may 
be propagated, i.e. light polarized in any way, or even natural 
light. 

The velocity V can be calculated more conveniently by 
introducing the angles g 1 and g 2 which the • wave normal 
makes with the optic axes than by the use of (24). Let the 
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positive direction of one of the optic axes A 1 be so taken that 
it makes acute angles with the positive directions of the x- and 
S"-axes. The direction cosines of this axis are then, by (26), 

✓b2 - c2 
n1 = o, P1 = + a~_ c2· (26) 

Let the positive direction of the other optic axis A 2 be so taken 
that it makes an acute angle with the z-axis but an obtuse 
angle with the x-axis. Its direction cosines are then 

Hence the cosines of the angles g 1 and g 2 between the 
wave normal and the positive directions of A 1 and A 2 are 

cos g 1 = mm1 + nn1 + ppl' 
i.e. 

In consequence of the relation n2 = I - nr - fr it is easy to 
deduce the following: 

m2(b2 + c2) + n2(c2 + a2) + p2(a2 + b2) 
= a 2 +cl+ (a2 

- ~) cos g
1 

cos g
2

, (28) 

M2+ N2 + P 2 - 2MN - 2NP - 2MP 
= (a2 - c2)2 sin2 g 1 sin2 g 2. 

Hence, from (24), 

2 v.2 = a2 + c2 + (a2 - cl) cos (g. - g2), } 
2 V22 = a2 + C~ + (a2 - c) COS (g1 + g 2). • • ( 2 9) 

6. Geometrical Construction of the Wave Surface and of 
the Direction of Vibration.-Fresnel gives the following geo
metrical construction for finding, with the aid of a surface called 
an ovaloid, the velocity and the direction of vibratic-n: Let 
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the direction cosines of the radius vector of the ovaloid be 
81 , -82 , 83• The equation of the ovaloid is then 

a, b, and c being its principal axes. In order to obtain the 
velocity of propagation of a wave front, pass a plane through 
the centre of the ovaloid parallel to the wave front, and deter
mine the largest and the smallest radii vectores p1 and p2 of 
the oval section thus obtained. These are equal to the veloci
ties of the two waves, and the directions of P1 and p2 are the 
directions of vibration in the waves, the directions P1 and p 2 

corresponding to the velocities P1 and p 2 respectively. 
In order to prove that this construction is correct, account 

must be taken of the fact that 81, 82 , 83 must also satisfy both 
of the conditions 

I = 812 + ,0,2 + -832, • • 

o = mf\ + n82 + PfJ3 

The last equation is an expression of the fact that the oval 
section is perpendicular to the wave normal. In order to 
determine those directions 81 , 82 , ,93 for which p has a maxi
mum or a minimum value, 81' 8 2 , 83 may, in accordance 
with the rules of differential calculus, be regarded as indepen
dent variables provided equations (3 I) and (32) be multiplied 
by the indeterminate Lagrangian factors o-1 and 0-2 , and added 
to equation (30). By setting the separate differential coeffi
cients of ~ with respect to 81 , -82 , -83 equal to zero, there 
results 

0 = 2(a2 + 0'1)-81 + ,n0'2• l 
o = 2(b2 + a-1)82 + na-2, • 
o = 2(c2 + 0"1)83 + pa-2· 

(33) 

If these equations be multiplied by -81 , 82 , and 83 respec
tively and added, then, in consideration of (31) and (32), 
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Hence, from (30), u1 = - p2. If this value is substituted in 
(33), these three equations may be written in the form 

m n p 
81 _ -iu2a~-p2• -82 = -½u2b2-p2• 8a = -iu2c2-p2· (34) 

If these equations be multiplied by m, n, and p respec
tively and added, then it follows from (32) that 

m2 n2 p2 

a2 - p2 + b2 - p2 + c2 - p2 = o, 

i.e. p actually satisfies the same equation as the velocity V 
[cf. equation (18), page 316]. 

From (34) it follows that '9p 82 , 83 stand in the same 
ratio to one another as IDl, 91, and ~ in (19), i.e. the direction 
of the light-vector is that of the maximum or minimum radius 
vector of the oval section. 

Since, by § 5, the direction of vibration is indeterminate in 
the case in which the wave normal coincides with one of the 
optic axes, the oval section has in this case no maximum or 
minimum radius vector, i.e. the intersections with tke ovaloid 
of planes whi'di are perpendicular to the optic axes are circles. 
The radii of these two circles are the same and equal to b. 
Any arbitrary oval section of a plane wave whose normal is N 
cuts the two circular sections of the ovaloid in two radii 
vectores r 1 and r 2 which have the same length b. These radii 
r 1 and r2 are perpendicular to the planes which are defined by 
the wave normal N and the one or the other of the optic axes 
A 1 and A 2 ; since, e.g., r 1 is perpendicular to N as well as 
to A 1. Hence these planes (NA 1) or (NA 2) also cut the oval 
section of the ovaloid by the plane wave in two equal radii r.' 
and r/, since r.' is perpendicular to r 1 , and r/ to r2• Also, 
since r 1 = r 2 , it follows, from the symmetry of the oval section, 
that r/ = r 2', and that the principal axes (J1 and (J2 of this sec
tion bisect the angles between r 1 and r 2 , r/ and r2'. The 
directe"ons of vibration of tke light-vectors (which coincide with 
p1 and P2) lie ii, the two planes which bisect the angles formed 
by tke planes (NA1) and (NA2). Thus the directions of the 
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vibrations are determined, since they are also perpendicular to 
the wave normals 1V. The direction of vibration which corre
sponds to V2 [defined by (29)] lies in the plane which bisects 
the angle (A1 , N, A 2), in which A 1 and A 2 denote the positive 
directions of the optic axes defined by (26'); the direction of 
vibration corresponding to V1 is perpendicular to this plane, 
i.e. in the plane which bisects the angle ( A 1 , N, - A 2). 

7. Uniaxial Crystals.-When two of the principal veloci
ties a, b, c are equal, for example when a= b, the equations 
become much simpler. From (26) on page 319 it follows that 
both optic axes coincide with the z-axis. Hence these crystals 
are called uniaxial. From (29) it follows, since g 1 = g 2 , that 

V/ = er, V22 = a~ cos2 g + c2 sin2 g, . (35) 

in which g denotes the angle included between the wave 
normal and the optic axis. One wave has then a constant 
velocity; it is called the ordinary wave. The direction of 
vibration of the extraordinary wave lies, according to the con
struction of the preceding page, in the principal plane of the 
crystal, i.e. in the plane defined by the principal axis and the 
normal to the wave. The direction of vibration of the ordinary 
wave is therefore perpendicular to the principal plane of the 
wave. Since the principal plane of the wave was defined above 
(page 244) as the plane of polarization of the ordinary wave, 
the direction of vibration is perpendicular to the plane of polar
ization, as is the case from Fresnel's standpoint for isotropic 
media. When the angle g which the wave normal makes with 
the optic axis varies, N remaining always in the same principal 
section, the direction of vibration of the ordinary wave remains 
fixed, while that of the extraordinary wave changes. Hence, 
as was mentioned on page 2 52, § 7, Fresnel's standpoint has 
the advantage of simplicity in that the direction of vibration is 
alone determinative of the characteristics of the wave. If this 
is unchanged, the velocity of the wave is unchanged even 
tkough the direction of the wave normal varies. 

Uniaxial crystals belong to those crystallographic systems 
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which have one principal axis and perpendicular to it two or 
three secondary axes, i.e. to the tetragonal or hexagonal 
systems. The optic axis coincides with the principal crystal
lographic axis. The crystals of the regular system do not 
differ optically from isotropic substances, since from their 
crystallographic symmetry a = b = c. 

Rhombic, monoclinic, and triclinic crystals can be optically 
biaxial. In the first the axes of crystallographic symmetry 
coincide necessarily with the axes of electric symmetry, since 
in all its physical properties a crystal has at least that sym
metry which is peculiar to its crystalline form. In monoclinic 
crystals the crystalline form determines the position of but one 
of the axes of electric symmetry, since this latter is perpendic
ular to the one plane of crystallographic symmetry. In 
triclinic crystals the axes of electric symmetry have no fixed 
relation to the crystalline form. 

In the case of uniaxial crystals (a= b) the ovaloid becomes, 
according to (30), the surface of revolution 

According as this surface is flattened or elongated in the direc
tion of the axis, the crystal is said to be positively or negatively 
uniaxial. Thus in the former a> c, in the latter a < c. 
According to (35), in positive crystals the ordinary wave 
travels faster, i.e. is less refracted, while in negative crystals 
the ordinary wave is more strongly refracted than the extraor
dinary. Quartz is positively, calc-spar negatively, uniaxial. 

8. Determination of the Direction of the Ray from the 
Direction of the Wave Normal.-Let the direction cosines of 
the ray be m, n, .p. From the considerations presented on 
page 313 and equation (25) on page 273, 

m: n: .p = yY - {JZ: aZ - yX: PX - aY. (37) 

But from equations (13) and (16) on page 315, 

X : Y : Z = a2IDl : b2lll : c2,. . (~8) 
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Also, from equations (7), page 311, and ( 1 3), it is easy to 
deduce 

a : fl : y = b-ipW. - c2n~ : c2m~ - a2pIDl : a2nIDl - b2m9l. ( 39) 

Substitution of the values (38) and (39) in (37) gives 

m : u : .p = - m(a'9JF + b49l 2 + c4~2) 

+ en• 2- 2. m-. + b2 m + -, \U) :.,J(a ,a 111:.,J( n:.1~ rp-t> ....... . 

The terms denoted thus ... can be obtained from the 
written terms by a cyclical interchange of letters. 

If now the abbreviation (16') on page 315 be introduced, 
i.e. if 

it follows from (17) that 

a2IDl = "1Jl V 2 + mGl, b29l = 9l V 2 + nGl, c2~ =~vi+ pGl. 

If these three equations be squared and added, then, since 
(cf. page 315) 

"1Jl2 + m_2 + ~2 = 1112 + ,z2 + p2 = I, 

IDlm + W.n + ~p = o, 

it follows that 

a4IDl 2 + b49l2 + cf~l = v• + G•. . (42) 

Squaring and adding equations (17') gives. 

If now the value of IDla2 obtained from ( 17') be introduced, 
namely, 

ma2 

"1Jla2 = G2 2 v2• a-

then, in consideration of (41) and (42), (40) becomes 

a2 
m : n : .p = - m( V' + G•) + mG' 2 v2 : ••••••• , 

a -
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or 

(44) 

This equation gives the direction of the ray in terms of the 
direction of the wave normal, for V2 is expressed in terms of 
m, 11, and p in Fresnel's law (18), and G2 [cf. (43)] in terms 
of 111, n, p, and V2• 

In order to determine the absolute values of m, lt, V, not 
their ratios merely, it is possible to write 

in which u is a factor of proportionality which can be deter
mined by squaring and adding these three equations. This 
gives, in consideration of (18) and (43), 

1 = cr2( V 4 + G4). • (46) 

9. The Ray Surface.-If a wave front has travelled parallel 
to itself in unit time a distance V, then V is called the velocity 
along the normal. The ray is oblique to the normal, making 
with it an angle which is given by 

cos t; = mm + nn + pp. . (47) 

The ray has then in unit time travelled a distance ~ such 
that 

~cost;= V . . 

~ is called the velocity of tlte ray: it is larger than the 
velocity along the normal. 

If the three equations (45) be multiplied by m, n, p, respec
tively, and added, it follows that cos t; = er V2, or I in con
sideration of (48), 

(T = I : V>S . . (49) 
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Hence, from (46), 

G' = V2~ 2 - V', 

or, in consideration of (48), 

G2 = V 2 tan,. 

. (50) 

If the value of G4 from (50) be substituted in (45), then, in 
consideration of (49), there results, after a simple transforma
tion, 

m~ mV 

m2-a2 = v2-a2• 

nm nV 

m2-b2- v2-b2' (52) 

If these three equations be multiplied by ma2, nb2, pc2, 

respectively, and added, then, in consideration of (17'), 

( 
m2a2 n 2b2 p 2c2 ) V 

m m2_ a2 + m2 _ b2 + m2 _ c2 = - G2( a29Jlm + b29ln + c~p ). 

But the light-ray is perpendicular to the electric force. 
Hence the right-hand side of the last equation vanishes, since 
the components of the electric force satisfy (38). Hence 

m2a2 n2b2 p2c2 

}82 _ a2 + m2 _ b2 + ~2 _ c2 = o, (5 3) 

which may also be written in the form 
m2 n2 p2 

I I + I I + I I = O. • (53') 

a2 m2 b2 m2 c ~2 

The addition to (53) of m 2 + n 2 + p2 = 1 gives 
m2}82 n2m2 p~2 

}82 _ a2 + ~2 _ b2 + ~2 --::.:...-c2 = I• • (53") 

This equation expresses the velocity m of the ray as a function 
of the direction of the ray. If in every direction m, n, p the 
corresponding m be laid off from a fixed point, the so-called 
ray surface is obtained. This surface, like the normal surface, 
consists of two sheets. These two surfaces are very similar to 
each other, since equation (53') of the former is obtained from 
( 18) of the latter by substituting for all lengths which appear 
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in (18) their reciprocal values. Each of the planes of symmetry 
intersects the ray surface in a circle and an ellipse. 

Hence, in order to apply the geometrical construction given 
in § 6 to this case, it is necessary to start from the surface 
[cf. (30)] 

i.e. from an ellipsoid whose axes are a, b, c. The velocities 
~ of the ray in a direction m, n, p are given by the principal 
axes p1 and P2 of that ellipse which is cut from the ellipsoid by 
a plane perpendicular to the ray. 

In this case also there must be two directions, ~ 1 and ~ 2 , for 
which the two roots m2 of the quadratic equation (53') are the 
same. These directions are obtained from the equations for 
the optic axes, name!y, (26') and (26"), by substituting in them 
for all lengths the reciprocal values. Thus 

or 

n=o, 

a✓b2 - c2 
n = o, l> = 7i a2 - c2· 

These two directions are called the ray axes. 

(54) 

The ray surface can be looked upon as that surface at which 
the light disturbance originating in a point P has arrived at the 
end of unit time. For this reason it is commonly called the 
wave surface. 

If, in accordance with Huygens' principle, the separate 
points P of a wave front are looked upon as centres of disturb
ance and if the wave surfaces are constructed about these points, 
the envelope of these surfaces represents the wave front at the 
end of unit time (cf. page 159). According to this construe-
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tion the wave front corresponding to a ray PS i's a plane tangent 
to the wave surf ace at tlze point S. 

This result can also be deduced from the equations. If 
the rectangular coordinates of a point S of the wave surface 
are denoted by x, y, and z, then mlB = x, etc., and 182 = 
.r + y 2 + z2, and, from (53''), 

z2 y2 z2 

>82 _ a2 + 182 -=-._~b2 + 182 _ c2 - 1 = o. (55) 

If this equation be written in the general form F(x, y, z) = o, 
the direction cosines of the normal to the tangent plane at the 

oF oF oF 
point x, y, z are proportional to ox' oy' oz. Hence it is 

necessary to prove that 

oF aF oF 
OX : oy : oz = m : n : p. 

Now, from (55), 

cF ( I r y2 z2 ) 
ox = 2.x ~2 - ai - \~2 - a2)2 - t>B2 - b2)2 - (182 - c2)2 • 

From (52), x: 182 - a= m V: V 2 - a2, etc. Hence, in con
sideration of (43) and (50), 

oF ( l V 2

) 2X V 2 a2 - V 2 

ox = 2x ,18 2 - a2 
- G4 = ~ 0 182 - a2

' 

i.e., in consideration of (52), 

oF V 3 

ox = - 2 m G'. (57) 

aF oF 
From this equation <:3y' oz may be written out by a simple 

interchange of letters. Hence equation (56) immediately 
results, i.e. the construction found from Huygens' principle is 
verified. 

From these considerations it is evident that the direction 
m, n, p of the ray can be determined from the direction m, n, 
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p of the normal in the following way: Suppose a light disturb
ance to start at any instant from a point P; the ray surface is 
then tangent to all the wav<;! fronts, i.e. it is the envelope of 
the wave fronts. Consider three elementary wave fronts the 
directions of whose normals are infinitely near to the direction 
of the line P N. Their intersection must then be infinitely near 
to the end point S of the ray PS which corresponds to the 
normal P N, since S is common to all three waves. The cor
rectness of this construction will now be analytically proved. 
The equation of a wave front is 

mx + ny + pz = V . . (58) 

If the point x, y, z is to lie upon an infinitely near wave front, 
the equation obtained by differentiating (58) with respect to 
m, n, and p will also hold. But these quantities are not inde
pendent of one another, since m2 + n2 + p2 = 1. According 
to the theorem of Lagrange (cf. above, page 321) there can 
be added to (5 8) the identity 

f(m2 + n2 + p2) = f, 
so that there results 

mx+ny+Pz+f(m2 +n2 +p2) = V+f. (59) 

f is an unknown constant. Since this constant has been intro
duced into the equation, vz, n, and p in (59) may be looked 
upon as independent variables, and the partial differential 
coefficients of (59) with respect tom, n, and p may be formed, 
namely, 

av av av 
x+2fm= om, y+2fn = on, z+2fP= op. (60) 

But, from (18) and (43), 

oV m G4 

om - V 2 - a2·v· 

av av 
Similar expressions hold for on , op . If the three equations 

(60) be multiplied by m, n, and p, respectively, and added, it 
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is evident from ( 1 8) and (6 1) that the right-hand side of the 
resulting equation reduces to zero, while the left-hand side is, 
by (58), V + 2f, so that the constant 2f is determined as 
2f = - V. Hence, in consideration of (61), the first of equa
tions (60) becomes 

( 1 G') 
X= m v+ Vl-a2·v· 

and similarly 

( 1 G') 
y = n V + v2 - b2·v ' 

Hence the radius vector drawn from the origin to the point of 
intersection x, y, z of the _three infinitely near wave fronts 
coincides in fact with the direction of the ray as calculated on 
page 326, since x :y ~ z = m: n: p. Further, the velocity of 

the ray t' .r + y2 + i' is found to have the same value as that 
given above in (45) and (49)-

For other geometrical relations between the ray, the wave 
normal, the optic axes, and the ray axes, cf. Winkelmann' s 
Handbuch der Physik, Optik, p. 699. 

10. Conical Refraction. - Corresponding to any given 
direction of a wave normal there are, in general, according 
to equation (44), two different rays, since for a given value 
of m, n, and p there are two different values of V 2• But it 
may happen that these equations assume the indeterminate 
form o : o. Thus this occurs when one of the quantities m, n, 
or pis equal to zero. If, for example, m = o, then, from (21) 
on page 317, V/ = a 2• In this case, by (43) and (44), 

G' = (~2 _ a2)2: ,ni, 

G' V 2 - a2 

m~mv2-a2=1n• lm2 • 
1 

The value of this expression, which 1s of the form o: o, is easily 
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determined, since, by Fresnel's equation (18) on page 316, the 
expression m2 : V/ - a2 has a finite, determinate value, namely, 

m2 n2 p2 

V 2=----2 = b2 -v l + -2 _ v2· (63) 
l a I l I 

The right-hand side of this equation can never be zero, since 
for a > b > c and V/ = a2 both terms of the right-hand side 
are negative. Hence, by (62), m = o when m = o, i.e. the 
light-ray is in the yz-plane when the wave normal is in the 
yz-plane. When p = o the conclusion is similar. But the 
case in which n = o requires special consideration. For then, 
when V = b, equations similar to (62) and (63) are obtained, 
namely, 

v2 - b2 
n ~ n n2 

n2 m2 p2 
v2 + c2 - vJ· 

The right-hand side of this equation which corresponds to the 
case V = b may become zero, namely, when 

m2(c2 - b2) + p2(a2 - b2) = o. 

Now this relation is actually fulfilled when the wave normal 
coincides with an optic axis [cf. (25), page 319]. In this case, 
by (64), It still retains the indeterminate form o : o, i.e. to this 
particular wave normal there correspond not two single deter
minate rays, but an infinite number of them, since 11 always 
remains indeterminate. The locus of the rays in this case can 
be most simply determined from the equation 

mm nn PP 
~2 _ ai + ~2 _ b2 + ~2 _ c2 = o, (65) 

which is deduced from (52) by multiplying by m, n, and p, 
respectively, adding, and taking account of (18). If the wave 
normal coincides with an optic axis, then n = o, but n is not 
necessarily zero and >B is therefore in this case different from b. 
Hence 

mm tJP 
~2 - a~+~~ - c' = o. 

Further, from (47) and (48), since V = b, 
~(mm + tJP) = b. 

(66) 
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Elimination of ~ from these two equations gives 

(mmc2 + ppa2)(mm + ~P) = b2• (68) 

If the coordinates of the end points of a ray are denoted by 

x, y, z, so that m = x: t' .r + y2 + z2, etc., it follows that 

(xmc2 + zpa2)(xm + zp) = b2(x2 + y2 + z2). • (69) 
This equation of the second degree represents a cone whose 
vertex lies at the origin. Hence when tlec wauc uormal coin
cides witlt the optic axis there are an infinite number of rays 
whick lie upon the cone de.fined by equation (69). This cone 
intersects the wave front 

xm + zp = const. (70) 
in a circle, since when (70) is substituted in (69) the latter 
becomes 

(xmc2 + zpa2) • const. = b2(.r + y2 + z2), 

which is the equation of a sphere. 
Hence from the discussion on page 328 it follows that the 

wave surface has two tangent planes which are perpendicular 
to the optic axis and tangent to the wave surface in a circle. 
The axis of the cone coincides with the optic axis; it is there
fore perpendicular to the plane of the circle. The aperture x 
of the cone is determined from (69) as 

.Y(a~ - b~ )(b2 - c2) 

tan X = b2 • (7 I) 

This phenomenon is known as internal conical refraction, for 
the following reason: If a ray of light is incident upon a crystal 
in such a direction that the refracted wave normal coincides 
with the optic axis of the crystal, then the light-rays within 
the crystal lie upon the surface of a cone. The rays which 
emerge from the plate lie therefore upon the surface of an 
ellip~cal cylinder whose axis is parallel to the incident light 
in case the plate of crystal is plane parallel.* Aragonite is 

* For the direction of the rays in the outer medium depends only upon the 
position of the wave front within the crystal, not upon the direction of the internal 
rays. The law of refraction will be more fully discussed in the next paragraph. 
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especially suited for observation of this phenomenon, since in it 
the angle of aperture of the cone is comparatively large 

s 

(X = 1 ° 5 2'). * The arrangement 
of the experiment is shown in 
Fig. 86. A parallel beam so is 
incident through a small opening 
o upon one side of a plane-parallel 

Fm. 86. plate of aragonite which is cut 
perpendicular to the line bisecting the acute angle between the 
optic axes. When the plate is turned into the proper position 
by rotating it about an axis perpendicular to the plane of the 
optic axes, an elliptical ring appears upon the screen SS. 

A microscope or a magnifying-glass focussed upon o may 
be used instead of a screen for observation. 

The equation representing the dependence of the direction 
of the wave normal upon the direction of the ray may be easily 
deduced from (52) taken in connection with (47) and (48). 
The .result shows that in general for each particular value of 
m, n, lJ there are two values of m, n, p. Only when n = o 
and ~a = b2, i.e. when the ray coincides with the ray axis, t 
does n become indeterminate, as can be shown by a method 
similar to that used above. Hence when the ray coincides witli 
the ray axis, then at the point of exit of the ray tlze ray surface 
does not have merely two definite tangent planes, but a cone of 
tangent planes. The corresponding wave normals lie upon a 
cone of aperture ¢ such that 

. /(a2 - h2)(b2 - r) 
tan ,p = V a,c . 

This equation is obtained from (7 I) by substituting in it 
for all the lengths their reciprocal values. 

* Sulphur is still better, since its angle of aperture is 7•; but its preparation is 
much more difficult. The use of a sphere of sulphur for demonstrating conical 
refraction is described by Schrauf, Wied. Ann. 37, p. 127. 

t The ray axis is the axis of the cone of rays to which a single ray SO(Fig. 86) 
gives rise when SO has the direction which corresponds to internal conical 
refraction.-TR. 
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This phenomenon is called external conical refraction, for 
the reason that a ray which inside the crystal coincides with 
the ray axis becomes, upon emergence from the crystal, a cone 
of rays. For the rays after refraction into the outer medium 
have different directions corresponding to the different posi
tions of the wave front in the crystal (cf. note, page 333). 

Fig. 87 represents an arrangement for demonstrating 
experimentally external conical refraction. A beam of light 
is concentrated by a lens L upon a small opening o in front of 

s 

an aragonite plate. A second screen with an opening o' is 
placed on the other side of the plate. If the line oo' c<1incides 
with the direction of a ray axis, a ring appears upon the 
screen SS. The diameter of this ring increases as the distance 
from o' to the screen increases. In this arrangement only 
those rays are effective which travel in the direction oo', the 
others are cut off by the second screen. The effective incident 
rays are parallel to the rays of the emergent cone. 

The phenomena of conical refraction were not observed 
until after Hamilton had proved theoretically that they must 
exist. 

II. Passage of Light through Plates and Prisms of 
Crystal.-The same analytical condition bolds for the passage 
of light from air into a crystal as was shown on page 280 to 
hold for the refraction of light by an isotropic medium. If the 
incident wave is proportional to 

cos!-" (t - mx + ny + ps) 
T V ' 
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while the refracted wave is proportional to 

2'TC ( m'x + n'y + p'z) 
cosy,' - V' , 

and if the boundary surface is the plane z = o, then the fact 
that boundary conditions exist requires, without reference to 
their form, the equations 

n n' 
V = 'V'' 

This is the common law of refraction, i.e. the refracted ray lies 
in the plane of incidence, and the relation between the angle of 
incidence ¢ and the angle of refraction ¢' is 

sin </J : sin </J' = V: V', (73) 

in which V and V' are the velocities in air and in the crystal 
respectively. But in the case of crystals this relation does not 
in general give the direct construction of the refracted wave 
normal, since in general V' depends upon the direction of this 
normal. 

But the application of Huygens' principle, in accordance 
with the same fundamental laws which were stated on page 
161 for isotropic bodies, does give directly not only the rela
tion (73), but also the construction of both the refracted wave 
normal and the refracted ray. For let A 1B (Fig. 88) be the 
intersection of an incident wave front with the plane of inci-

'lt 
dence (plane of the paper), and let the angle A 1BA2 = -, and 

2 

BA 2 = V, and construct about A1 the ray surface ::E within the 
crystal, this surface being the locus of the points to which the 
disturbance originating at A 1 has been propagated in unit time. 
Draw through A 2 a line perpendicular to the plane of incidence, 
and pass through it two planes A2 T1 and A2 T2 tangent respec
tively to the two sheets of the ray surface. According to 
Huygens' principle these tangent planes are the wave fronts of 
the refracted waves. The lines drawn from A1 to the two points 
of tangency cl and c2 of the planes with the ray surface give 
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the directions of the refracted rays. In general these do not 
lie in the plane of incidence. 

Hence for perpendicular incidence the wave normal is not 
doubly refracted, but there are two different rays whose direc
tions may be determined by finding the points C1 and C2 in 
which the two sheets of the wave surface constructed about a 
point A of the bounding surface are tangent to two planes 

FIG. 88. 

parallel to the bounding surface G. The directions of the rays 
are A cl and A c2 respectively. 

When the light passes from the crystal into air a similar 
construction is applicable. Hence in the passage of light 
through a plane-parallel plate of crystal there is never a 
double refraction of the wave normal, but only of the ray. In 
order to observe the phenomena of double refraction it is 
necessary to view a point on the remote side of the crystal. 
This point appears double, since its apparent position depends 
upon the paths of the rays.* But the introduction of a crystal
line plate between collimator and telescope produces no dis
placement of the image, since in this case the wave normal is 
determinative of the position of the image. In order to detect 
double refraction in this case, which occurs in all observations 

* The apparent position is displaced not only laterally but also vertically. Cf. 
Winkelmann's Handbuch d. Physik, Optik, p. 705. 
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with the spectrometer, it is necessary to introduce a prism of 
the crystal. 

With the help of such a prism it is possible to find the prin
cipal indices of refraction, i.e. the quantities 

If, for example, a prism of uniaxial crystal (a= b) be used 
whose edge is parallel to the optic axis, then the velocity V' 
of the waves whose normals are perpendicular to the edge of 
the prism has the two constant values a and c. n1 and n3 can 
therefore be found by the method of minimum deviation exactly 
as in the case of prisms of isotropic substances. The different 
directions of polarization of the emergent rays make it possible 
to recognize at once which index corresponds to n1 and which 
to n3. 

In the same way one of the principal indices of refraction 
of a prism of a biaxial crystal whose edge is parallel to one of 
the axes of optic symmetry may be found. In order to find 
the other two indices it is necessary to observe the deviation 
of a wave polarized parallel to the edge of the prism for at 
least two different angles of incidence. 

From the meaning which the electromagnetic theory gives 
to the principal velocities a, b, c, it is evident from equations 
( 1 6) on page 3 I 5 and (7 4) that 

• (7 S) 

at least if C, the velocity in vacuo, be identified with V, the 
velocity in air. The error involved in this assumption may be 
neglected in view of the uncertainty which attends measure
ment of the dielectric constant. 

The relation (7 5) cannot be rigorously fulfilled, if for no 
other reason, because the index depends upon the color, i.e. 
upon the period of the electric force, while the dielectric con
stant of a homogeneous dielectric is, at least within wide limits, 
independent of the period. It is, however, natural to test (75) 
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under the assumption that n2 is the index of infinitely long 
waves, i.e. the A of the Cauchy dispersion equation 

B 
n =A+ ,p·. 

Relation (7 5) is approximately verified in the case of ortho
rhombic sulphur, whose dielectric constants have been deter
mined by Boltzmann.* Its indices were measured by Schrauf. t 
In the following table n2 denotes the index for yellow light and 
A the constant of (76) : 

n/ = 3.80; A12 = 3.59; €1 = 3.81 
n/ = 4. 16; A} = 3.89; t:2 = 3.97 
n/ = 5.02; A 32 = 4.60; t:3 = 4.77 

Thus the dielectric constants have the same sequence as 
the principal indices of refraction when both are arranged in 
the order of their magnitudes, but are uniformly larger than 
the A's. With some other crystals this difference is even 
greater. The departure from the requirements of the electro
magnetic theory is of the same kind as that shown by isotropic 
bodies (cf. page 277). Its explanation will be given in the 
treatment of the phenomena of dispersion. 

Thus the electromagnetic theory is analytically in complete 
agreement with the phenomena, but the exact values of the 
optical constants cannot be obtained from electrical measure
ments. These constants depend in a way which cannot be 
foreseen upon the color of the light. In fact not only the 
principal velocities a, b, c, but also, in the case of monoclinic 
and triclinic crystals, the positions of the axes of optic sym
metry depend upon the color. 

12. Total Reflection at the Surface of Crystalline Plates. 
-The construction given on page 336 for the refracted wave 
front becomes impossible when the straight line @ which passes 
through A2 and is perpendicular to the plane of incidence inter-

• Boltzmann, Wien. Ber. 70 (2), p. 342, 1874- Pogg. Ann. 153, p. 531, 1874-
t Schrauf, Wien. Ber. 41, p. 8o5, 186o. 
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sects one or both of the curves cut from the wave surface :2 by 
the bounding surface G. In this case there is no refracted 
wave front, but total reflection takes place. The limiting case, 
in which partial reflection becomes total, is reached for either 
one of the two refracted waves when the line @ is tangent to 
that sheet of the ray surface :2 which corresponds to the wave 
in question, i.e. is tangent to the section of the wave surface 
by the bounding plane G. In this case, since the point of 
tangency T of @ with :2 lies in the bounding plane G, the 
refracted ray is parallel to the boundary (cf. Fig. 89). This 

FIG. 89. 

wave then can transfer no energy into the crystal, since the 
ray of light represents the path of energy flow ( cf. page 3 I 3), 
and hence no energy passes through a plane parallel to the 
ray. Thus it appears from this consideration also that in this 
limiting- .:.ise the reflected wave must contain the entire energy 
of the incident wave, i.e. total reflection must occur. 

Hence if a plate of crystal be immersed in a more strongly 
refracting medium, and illuminated with diffuse homogeneous 
light, two curves which separate the regions of less intensity 
from those of greater appear in the field of the reflected light. 
If the observation is made, not upon the reflected light, but upon 
light which, entering the crystal at one side and then falling 
at grazing incidence upon the surface, passes out into a more 
strongly refractive medium, these limiting curves are much 
sharper since they separate brightness from complete darkness. 
From these curves the critical angles r/>1 and r/>1 may be 
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determined. These curves are not in general perpendicular to 
the plane of reflection. Special instruments have been devised 
for their observation. Fig. 90 represents Abbe's crystal 
refractometer. The plate of crystal which is to be investigated 
is laid upon the flint-glass hemisphere K of index I. 89. 

V 

FIG. 90. 

Between the crystal and the sphere a liquid of greater index 
than the latter is introduced. K can be rotated along with the 
azimuth circle H about a vertical axis. The movable mirror 
S makes it possible to illuminate the crystal plate either from 
below through K or from the side. The limiting curves of 
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total reflection are observed through the telescope OGGO 
which turns with the vertical circle V. For convenience of 
observation, the telescope is so shaped that the rays, after three 
total reflections within it, always emerge horizontally. The 
objective of the telescope is so arranged that it compensates 
the refraction due to the spherical surface K of the rays reflected 
from the crystalline plate. It forms, therefore, sharp images 
of the curves. 

The method of total reflection is the simplest for the 
determination of the principal indices of refraction of a crys
talline plate. These indices are obtained at once from the 
maximum or minimum values of the angles of incidence which 
correspond to the two limiting curves. 

Thus if ¢ denotes the angle of incidence corresponding to 
a limiting curve for any azimuth f) of the plane of incidence 
(cf. Figs. 88 and 89), then the line A 1A2 = V: sin ¢; for 
B£1 2 = V (the velocity in the surrounding medium), and 
A 1A2 is the distance of the point A1 from a line which is tan
gent to the curve of intersection of the wave surface constructed 
about A I with the bounding surface G. Maximum and mini
mum values of the limiting angles ¢, i.e. of the line A 1A2 , 

coincide necessarily with maximum or minimum values of the 
length of the ray A 1 T (cf. Fig. 89), as can be easily shown by 
construction. In fact in this case A1A2 coincides with the ray 
A 1 T, since the tangents must be perpendicular to the radius 
vector A1 T when this has a maximum or minimum value. 
The length A 1 T of the ray has now in every plane section of 
the wave surface the absolute maximum a and the absolute 
mm1mum c. For it appears from the equation of the wave 
surface (cf. page 327) that )8 must always lie between a and c, 
since otherwise the three terms of equation (53) would have 
the same sign and their sum could not be zero. On the other 
hand it is also evident that in every plane section G of the 
wave surface )8 reaches the limiting values a and c, for, from 
Fig. 8 5, )8 attains the value a at least in the line of intersection 
of G with the yz-plane; since in the yz-plane one velocity has 
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the constant value ~ = a, while in the line of intersection of 
G with the xy-plane ~ must attain the value c. In the inter
section of G with the xz-plane ~ = b; but it is uncertain, as 
can be shown from the last of Figs. 85, whether b belongs to 
the minimum of the outer or the maximum of the inner limiting 
curve. This can be decided by investigating the maxima or 
minima of the angle of incidence corresponding to the limiting 
curves for two plates of different orientations.* Four such 
measurements can be made upon each plate, and three of these 
must be common to the two plates. These three correspond 
to the three principal velocities a, b, c. Their respective 
values may be determined from 

(77) 

where <P denotes the maximum or minimum value of the angle 
of incidence for the limiting curve which corresponds to the 
given azimuth -8 of the plane of incidence. If the inrlex of tht• 
medium ( V) with respect to that of air ( V0 ) be denoted by n, 
i.e. if V0 : V = n, then from (77) the principal indices of 
refraction of the crystal with respect to air are obtained from 
the equation, since ~ : a = n1 , etc., 

(78) 

For uniaxial crystals (a = b) <P = const. along one of the 
limiting curves. This angle determines the principal velocity a. 
For the other limiting curve the angle of incidence varies. 
If y denotes the angle which the optic axis makes with the 
bounding surface of the crystal, the ray velocity, when the 
plane of incidence passes through the optic axis, is 

a2c2 

~
2 = a 2 sin2 y + c cos2 y· (79) 

If the plane of incidence is perpendicular to the optic axis, 
then ~ 2 = i'. For positive uniaxial crystals (a > c) (79) gives 

* If tlie polarization effects be also taken into account, one section of the 
crystal is enough. Cf. C. Viola, Wied. Beibl. 18991 p. 641. 
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the maximum value of~. i.e. it determines the minimum value 
of </> along the limiting curve which arises from a total reflec
tion of the extraordinary ray. The maximum value of </> along 
this limiting curve determines, therefore, the value of c; from 
the minimum value of </> it is possible to calculate y, i.e. the 
inclination of the face of the crystal to the optic axis. In the 
case of negative uniaxial crystals (a < c) the minimum value of 
</> determines the principal velocity c. 

Likewise in the case of biaxial crystals the angle between 
the face and the axes of optic symmetry can be determined 
from observation of the limiting curves of total reflection. 
Nevertheless for the sake of greater accuracy it is advantageous 
to couple with this other methods, for example, the method 
which makes use of the interference phenomena in convergent 
polarized light (cf. below). 

Conical refraction gives rise to peculiar phenomena in the 
limiting curves of total reflection. These may be observed if 
the bounding surface G coincides with the plane of the optic 
axes. For more complete discussion cf. Kohlrausch, Wied. 
Ann., 6, p. 86, 1879; Liebisch, Physik. Kryst., p. 42 3; Mas
cart, Traite d'Optique, vol. 2, p. 102, Paris, 1891. 

13. Partial Reflection at the Surface of a Crystalline 
Plate. -In order to calculate the changes in amplitude which 
take place in partial reflection from a plate of crystal it is only 
necessary to apply equation (6') and (7) on page 311 together 
with the boundary conditions there mentioned. 

But since the calculation is complicated ( cf. Winkelmann' s 
Handbuch, Optik, p. 745) only the result will be here 
mentioned that there is an angle of complete polarization, 
i.e. an angle of incidence at which incident natural light is 
plane-polarized after reflection. But the plane of polarization 
does not in general coincide with the plane of incidence, as it 
does in the case of isotropic media. 

14. Interference Phenomena Produced by Crystalline 
Plates in Polarized Light when the Incidence is Normal.
Let plane-polarized monochromatic light pass normally through 
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a plate of crystal and then through a second polarizing 
arrangement. This case is realized when the crystalline plate 
is placed upon the stage of the Norrenberg polarizing apparatus 
described on page 246. The upper 
mirror can be conveniently replaced f4 
by a Nicol prism, the analyzer. Let 
the plane of vibration of the electric 
force within the analyzer be A (Fig. -A 
91), and that within the polarizer P. 
The incident polarized light, the ~--'--------JI, 
amplitude of which will be denoted 
by E, is resolved after entrance into FIG. 91 • 

the doubly refracting crystal into two waves of amplitude 
E cos </> and E sin </> respectively, </> being the angle which 
P makes with the directions H 1 and ~ of the vibrations of 
the two waves w;_ and ~ within the crystal. The decrease 
in amplitude by reflection is neglected. It is very nearly the 
same for both waves. These two waves after passing through 
the crystal are brought into the same plane of polarization, and 
hence after passing through the analyzer have the amplitudes 
E cos </> cos (</> - X), E sin </J sin (</> - x). Now a difference 
in phase o has been introduced between the two waves by their 
passage through the plate. This difference is 

o=d 27t(-1 -~)=21td(~-~) . . (80) 
T~ v2 A.V1 v; 

in which d denotes the thickness of the crystalline plate, v;_ , v; 
the respective velocities of the two waves within it, V the 
velocity of light in air, and A, the wave length in air of the light 
used. Hence, according to page I 3 l, the intensity of the light 
emerging from the analyzer is 

J = P{ cos2 c/> cos2

( </> - X) + sin2 </> sin 2 

( </> - X) 
+ 2 sin </> cos <j, sin (</> - X) cos (</> - X) cos o}. 

If cos o be replaced by I - 2 sin2 io, the equation becomes 

J= E2{cos 2 x - sin 2,P sin 2(</> - X) sin 2 ½6}. (81) 
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The first term E3 cos2 x represents the intensity of the light 
which would have emerged from the analyzer in case the 
crystal had not been introduced. This intensity J0 will be 
called the original intensity; thus 

J0 = P cos2 X, . (82) 

Two cases will be considered in greater detail: 
1 . Parallel Nicols : x = o. Then 

Ji = JoC1 - sin3 2,P sin2 io). . . . (83) 

If the crystal be rotated, the original intensity will be 

attained in the four positions </J = o, r/> = ?! , cp = 1r, cp = 31r, 
2 2 

i.e. whenever one of the planes of vibration within the crystal 
coincides with that of the Nicols. In the positions midway 

7r 
between the above, i.e. r/> = -, etc., 

4 

Ji = .fo(1 - sin3 io) = J0 cos2 lo, . . (84) 

i.e. with the proper values of o, i.e. of the thickness of the 
crystal, complete darkness may result. 

2. Crossed Nicols: X = ~- Here J0 = o and 
2 

Jx = E 2 sin2 2</J sin2 io (85) 

Thus, whatever its thickness, the plate appears dark when 
its planes of vibration coincide with those of the Nicols. If 
this is not the case, it is dark only when o = 2k1r. In the 

'It 
positions r/> = - , etc., 

4 

(86) 

Hence, unless it happens that o = 2k'lt, it is possible to find 
the direction of polarization or of vibration within the crystal 
by rotating it until the light is cut off. 

Hence a crystalline wedge between crossed Nicols is 
traversed by dark bands which run parallel to the edge of the 
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wedge, unless it is in the position in which the light is wholly 
cut off. These bands lie at those places at which the thickness 
of the wedge corresponds to the equation o = ± 2h1t. If the 
incident light is white, the bands must appear colored since 0 
varies with the color. 

A plane-parallel plate of crystal between crossed Nicols 
must in general appear colored when the incident light is 
white. Not only does the amplitude E and the difference of 
phase o depend upon the color, but also the angle </>, i.e. the 
position of the planes of vibratiGm. However, this latter varia
tion can in general be neglected on account of the small 
amount of the difference in the retardations for different colors. 
When the Nicols are crossed it appears from (86) that in white 

light for </> = ! 
4 

Jx = ~p sin2 io, 
in which ':E is to be extended over the values corresponding 
to the different colors. Thus 

~El = white light. . . 

Now from (80) its evident that the dependence of o upon ;\ 
is principally due to the appearance of l in the denominator. 
Hence if the approximately correct assumption be made that 

; - ~ is independent of the color, then 
1 I 

J, VL"2 • 2 d' 
x = ,,,:;,.c.- sin "T• . . . . . {87') 

in which 

d' = tt(~- V) v; V, 
is approximately independent of l. It appears from a com
parison of (87') with (78) on page 306 that tlte plate of crys
tal sltows approximately the same colors as tlwse produced by the 
t'nterference of the two waves reflected at the surfaces of a thi'n 

film of air of thickness d'. (Newton's ring colors.) But the 
2 
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Newton interference colors of thin plates differ widely from 
those produced by the crystal when the difference in the dis
persion of the two waves within the crystal is large. Then d' 
is no longer independent of;\. This is, for example, the case 
with the hyposulphate of strontium, apophyllite (from the Faroe 
Islands), brucite, and vesuvian. 

For a given angle </> the plate of crystal shows between 
parallel Nicols colors which are complementary to those which 
it shows between crossed Nicols. For from (83) and (85) the 
sum of the intensities in the two cases is always ~P, which 
by (87) means white light. 

In the case of Newton's interference colors there are certain 
values of rJ which give what are called sensitive tints which 
change rapirlly for a slight change in rJ. For example, the 
violet of the first order, which appears when rJ for the mean 
wave lengths has about the value 1t, is such a sensitive tint. 
For a slight increase in rJ the color passes into blue, for a 
slight decrease into red. A plate of crystal ~ which shows a 
sensitive tint-for example, a plate of quartz of suitable thick
ness cut parallel to the axis-may be- used to detect traces of 
double refraction in another plate ~•, since the latter produces 
at once a change in the color of ~ when placed upon it and 
viewed between crossed Nicols. The arrangement is even 
more sensitive if the plate ~ is cut in the direction of the line 
bisecting its planes of vibration, and the two parts cemented 
together along the plane of section after one of them has been 
rotated through 180° about the normal to that surface. A 
trace of double refraction in the plate ~, then produces in the 
two halves of ~ changes of color in opposite senses. This 
arrangement has been called a Bravais bi-plate after its 
inventor. With such a plate it is easy to show that the pres
sure of the finger, for example, is sufficient to produce double 
refraction in a glass cube. Also, the directions in which the 
light is completely cut off by $' can be accurately determined 
with the help of a Bravais biplate. 

The application of the optical properties of crystals to the 
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construction of Babinet's and Senarmont's compensators has 
been mentioned above on page 2 56. 

15. Interference Phenomena in Crystalline Plates in 
Convergent Polarized Light.-Co11sider first the case in which 
the polarized light is incident upon the plate at an angle t'. 
Let the angles of refraction be r 1 and r 2 (Fig. 92). It is evi-

dent from the figure that the difference in phase between the 
two waves after propagation through the crystal is 

in which DK is the projection of CD upon the direction 
of propagation of the wave ~- Now BD = d: cos r3 , 

BC= d: cosr11 DK= CD sin i= (BC sin r 1 - BDsinr2)sin i, 
hence 

o=21td{(sint'sinr1 _~)-1 __ (sinisinr2 1) 1 } 
T v v1 cos ,-1 v v2 cos ,-2 • 

But from the law of refraction 
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it follows that 

. (88) 

If now the angles g 1 and g 2 which the wave normal makes 
with the optic axes within the crystal be introduced, then, from 
equations (29) on page 320, V1 and Vz may be expressed as 
rational functions of a"+ c2 and a" - c2. Neglecting terms of 
higher order than the first in a" - c2, which is permissible on 
account of the smallness of the double refraction in all known 
minerals, there results 

1t d a2-c" 
6 = T ·-- ( 2 ..2 ._ sin g 1 sin g 2• 

cos r a ;" vt· 
. (89) 

In this equation g 1 and g 2 denote the angles which either 
one of the two refracted wave normals makes with the optic 
axes; r denotes the angle of refraction for one of the refracted 
wave normals. Hence d: cos r is the length of the path in 
the crystal. Since terms of the first order only in a" - c1 have 
been retained, BD may be considered equal to BC. 

If the principal indices n1 and n3 of the crystal be intro
duced, and if n denote their geometrical mean, then 

and hence 

If the plate of crystal be introduced between a polarizer 
and an analyzer, the resultant intensity is approximately 
expressed by (81 ), at least if the change in amplitude intro
duced by refraction at the surfaces of the crystal be 
neglected. 



PROPERTIES OF TRANSPARENT CRYSTALS 351 

The case becomes of especial interest if the effects upon the 
intensity J corresponding to different angles of incidence i can 
be brought into the field at the same time and compared. 
This can be done by means of the polarizing apparatus shown 
in Figs. 93 and 94. The mirror A reflects light from the sky 

K 

FIG. 93. FIG. 94-

into the apparatus. This light is concentrated by means of 
two lenses B and D upon the aperture E. It is polarized by 
passage through the Nicol C. E lies at the principal focus of 
oue or more convergent lenses F, which transform all the cones 
of rays whi"h have their vertices at E into beams of parallel rays 
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which pass through the crystal G in all possible directions. 
In the figure three such beams are shown. The rays ·then fa]l 

upon a convergent lens H which brings together in a point ]/,f 

at its principal focus, which lies in the aperture of the dia
phragm J, each beam of parallel rays. The image formed at 
M is magnified by the eyepiece K, and the rays pass finally 
through the analyzer L. As is evident from the figure, the 
middle of the image at J is formed by rays which pass normally 
through the plate; the side portions of this image, by rays 
which traverse the plate in directions which are more and more 
oblique the nearer the point M approaches the edge of J. 
With this arrangement the interference effects of rays which 
traverse the plate in different directions are brought simul
taneously into the field of view. 

At the different points M of the field of view the differ
ence of phase o between the two waves is different, as is also 
the angle ¢ which the plane of vibration of the polarizer makes 
with the direction of vibration of one of the waves in the 
crystal. The loci of those points of the field for which 6 is 
constant constitute a family of curves, the curves of equal 
dijference of patlt (i'sochromatic curves). The loci of those 
points of the field for which ¢ is constant are the curves of 
constant direction of polarisation (isogyric curves). It is with 
the help of these two families of curves that the distribution 
of intensity in the field of view is most easily described. 

If all the rays which traverse the crystal be conceived to 
pass through a single point O upon its first surface, then 
only one ray comes to each point M in the field of view. 
This ray intersects the second surface of the plate in some 
point M'. If in this way points M' upon the second face 
of the cry~tal, corresponding to all the points 1W of the focal 
plane, be found, then the figures formed by these two sets of 
points are similar. Hence only the points M' will be consid
ered. It appears from equation (89), in which d: cos r de
notes the length of the path of the ray within the crystal, that 
the curves of equal difference of path are obtained from the 
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intersection of the second surface of the crystal with the family 
of surfaces constructed about O whose equation is 

p sin g 1 sin g 2 -: const., 

in which p represents the radius vector 
of a point P with respect to the point 0, 
while g 1 and g 2 are the angles included 
between the radius vector and the optic 
axes. Such a surface has a form like 
that shown in Fig. 95. It must be 
asymptotic to the optic axes, since for 
g-1 = o or g 2 = o, p = oo [cf. (91)]. 

If the crystal. be cut perpendicular to FIG. 95. 

(91) 

an optical median line, i.e. to an axis of optic symmetry lying 
in the plane of the optic axes, the curves of equal difference of 
path are lemniscates whose poles A 1 and A 2 are the optic axes. 
If the plate be observed between crossed Nicols, equation (85) 
is applicable. In homogeneous light the curves of equal differ
ence of path for which 6 = 2h1r are black. In white light 
they are curves of like colors (hence called isochromatic), 
resembling closely the Newton interference colors. Neverthe
less, for the reasons given on page 348, departures from this 
form are shown by some crystals,* and the entire phenomenon 
is complicated on account of the dispersion of the optic axes, 
i.e. on account of the fact that the trace of the optic axes upon 
the second surface of the crystal varies with the color. t In 
some crystals (brookite) the plane of the optic axes swings 
about through 90° if the color be changed. The form of the 
isochromatic curves in white light is greatly changed by the 
dispersion of the optic axes. The whole field of view is now, 

* The rings shown by apophyllite from the Faroe Islands and from Peonah in 
the East Indies are especially remarkable. Each ring has the same color, and the 
alternate rings are dark violet and dull yellow. This apophyllite is positively 
doubly refracting for red light, negatively doubly refracting for blue light, and 
neutral for yellow light. 

t Cf. Mascart, Trait6 d'Optique, vol. ii. pp. 173-190, Paris, 1891, In Rochelle 
salt the angle between the optic axes is for red 76°, for violet 56'. 
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in accordance with (85), traversed by a black curve, the 
so-called principal i'sogyre, for which sin 2¢ = o. If the 
plane of the optic axes coincides with the plane of polarization 
of the analyzer, or the polarizer (the so-called principal posi
tion), the principal isogyre is a black cross one of whose arms 
passes through the optic axes, while the other, perpendicular 
to it, passes through the middle of the field. For, according 
to the construction given upon page 322, the directions of 
polarization H 1 and H2 corresponding to points on this cross 
are parallel and perpendicular to the line A1A2 joining the optic 
axes. Hence the interference figure is that shown in Fig. g6. 

FIG. g6, FIG. 97. 

In the second principal position of the crystal, i.e. when the 
plane of the optic axes A1 and A2 makes an angle of 45° with 
the plane of the analyzer, the principal isogyres are hyperbola! 
which pass through the optic axes. Hence the interference 
pattern is that shown in Fig. 97. The equation of the prin
cipal isogyre can be approximately obtained by taking the line 
PB, which bisects the angle A 1PA2 , as a direction of polariza
tion H within the crystal,* P being any point upon the plate 
( cf. Fig. 98). Let the directions of the coordinates x and y 

* From the rule given on page 322 it is evident that this is only approximately 
correct. The problem is more thoroughly discussed in Winkelmann's Handbuch 
der Phrsik, Optik, p. 726 sq. 
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lie in the planes of polarization of the analyzer and the polarizer 
respectively. Also, let PA 1 = IP PA 2 = /2 , A1A2 = I. Then 

i.e. 

(92) 

Also, from the triangle A 1BP, 

sin a : sin ~ A 1BP = BA1 : / 1• (93) 

But now for the principal isogyre ~ A 1BP = 45°, since the 
line A1A2 connecting the optic axes is to make an angle of 45° 

g 

FIG. 9S. 

with the coordinate axes, and since, for the principal isogyre, 
the line PB is to be parallel to the y-axis. Hence, from (92) 
and (93), 

sin a= (94) 

Further, from the triangle A 1PA2, 

/ 2 = /12 + //· - 2/1'1 cos </> = (/1 - /.i)'' + 4/1'1 sin2 a; 
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i.e., from (94), 

/ 2 (l 12 l/2 = l - 12)2 + 2 l + l )2' 
~ l 2 

or 

• (95) 

If the coordinates of the points A1 and As of the optic axes are 
called ± p, then 

I;'= (x - p)2+(y - p)2, lz2 = (x + p)2 + (y + p)2, /2 = 8/2, 

and (95) becomes 

xy = p2 .. (96) 

But this is the equation of an equilateral hyperbola which 
passes through the optic axes A1 and As and is asymptotic to 
the coordinate axes. 

These black principal isogyres which cross the interference 
pattern are especially convenient for measuring the apparent 
angle between the optic axes, i.e. the angle whicli two wave 
normals, which within the plate are parallel to the optic axes, 
make with each other upon emergence from the plate. With 
the aid of the law of refraction the angle between the optic 
axes themselves may be calculated from this, if the mean 
principal velocity b within the crystal be known. The apparent 
angle between the optic axes is measured by rotating the 
crystal about an axis perpendicular to the plane of the optic 
axes, and thus bringing the traces of the optic axes succes
sively into the middle of the field of view, i.e. under the cross
hairs. The angle through which the crystal is rotated is read 
off on a graduated circle. The apparatus constructed for 
measuring this angle is called a stauroscope. 

In uniaxial crystals a surface of equal difference of path 
(6 = const.) has the form shown in Fig. 99. When the plate 
is cut perpendicular to the optic axis, the isochromatic curves 
are concentric circles about the optic axis. With crossed 
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Nicols the isogyre is a black right-angled cross. Hence the 
interference pattern is that shown in Fig. 100. From a 
measurement of the diameters of the rings the difference in the 

FIG, 99• FIG, IOO, 

two principal indices of refraction of the crystal can be 
obtained. 

For a discussion of methods of distinguishing the character 
of double refraction by means of a plate of selenite for which 

o = ~, as well as for other special cases, cf. Liebisch, Physik. 
2 

Krystallogr., or Winkelmann's Handbuch der Physik, Optik. 



CHAPTER IV 

ABSORBING MEDIA 

1. Electromagnetic Theory.-Absorbing media will be 
defined as media in which the intensity of light diminishes as 
the length of the path of the light within the medium increases. 
The metals are characterized by i:ipecially strong absorbing 
powers. According to the electromagnetic theory absorption 
is to be expected in all media which are not perfect dielectrics. 
For the electric currents arising from conduction produce heat 
the energy of which must come from the radiant energy of the 
light. 

The electromagnetic theory given above on page 268 sq. 
will now be extended to include the case of imperfect insu
lators, i.e. to include media which possess both a dielectric 
constant e and an electric conductivity <,. 

The components of the electric current density will here, 
as above, be denoted by J~, J~, J~ (in electrostatic units), so 
that for an imperfect insulator 

.J• _ ~ oX+<rX 1· _ _:_ oY+ <rY 
" - 41r at ' :,- 4 1r at • 

€ oZ i = - --+<rZ. (1) 
• 41r at 

For the total current is composed of the displacement cur
rents which alone were considered in equation ( 17) on page 
269 above, and the conduction currents, which are represented 
in (I) by the terms <r X, <r Y, <r Z. If the current density and 
the electric force are measured in electrostatic units, then <r 
represents the absolute conductivity* in the electrostatic sys
tem. For mercury it has the value <r = 9. 56. I015• 

* The dimensions of this quantity are r- 1, the second being assumed as the 
llllitoftime. 

358 
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Equations (1) contain the only additions which need be 
made to the theory of perfect dielectrics previously given. 
For equations (7) and (11) on pages 265 and 267 will be 
retained as ·the fundamental equations of the Maxwel1 theory 
":>r every medium. If the permeability µ be set equal to 1, so 

oa 
that 41rs.,, = at, etc., then these equations are 

4~/.,, or o/J 
-c-=oy -oz' 

I oa oY oZ 
cat= oz -oy' 

4"1~ aa oy 41r_i. _ o/J oa 
-c-= oz - ax' -&- - ox -0)'; (2 ) 

10/J oz ax I or ax oY 
cat = ax - oz· c at == oy - ox· (3) 

It may apppear questionable whether it is permissible to 
set µ = I in this case, since the strongly magnetic metals iron, 
nickel, and cobalt are included under the head of absorbing 
media. Nevertheless it is shown, both by experiment and 
by the theory which will be given in Chapter VII, that the 
permeability of all metals is for light vibrations equal to 1. * 

In accordance with the general conclusion reached on page 
2 70, the boundary conditions for the passage of light through 
the surface separating two different absorbing media are 
expressed in the same form as above, namely, 

xl = X2, yl = Y2, al= a2, /Jl = /J'I,, • (4) 

provided the xy-plane is parallel to the boundary. 
Equations (1) to (4) constitute a complete basis for the 

electromagnetic theory for isotropic absorbing media. 
In order to integrate the differential equations write, as on 

page 289, 

f'1t(t -(µx + vy+ 'Its)), 
X = Ae T • (S) 

in which not only A but alsoµ, v, and ,r are complex quan
tities. The physical meaning of X is obtained from the real 

* In the Physik des Aethers, Stuttgart, 1894, Drude has developed the equa. 
tions which hold fur any value of tbe permeability, and shown that in respect to 
Qptical phenomena its value for iron must be unity. 
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parts of the complex quantities given in (5). It is, however, 
simpler to ignore the physical meaning of X until the conclu
sion, i.e. to carry the calculation through with the complex 
value of X given in (5). Thus, from (5), 

aX _ . 21r X 
at-'T' 

so that equations (1) become 

e - i•2<TT ax 
J~ = 4?r at' etc. (6) 

Thus the only difference between isotropic transparent and 
isotropic absorbing media consists in this, that the constant e, 
which is real for transparent media, becomes for absorbing 
media the complex constant 

e' = e - t2<TT. (7) 

All the preceding equations can be applied if e is simply 
replaced by e'. 

Thus, for example, according to equation (3) on page 275, 

e' o2X 
c2 o/2 = ,::JX. • • • (8) 

This gives, in connection with (5), 
e' 
c2 = µ2 + ,,2 + ,r2, 

Since e' is complex, µ, r, and 7t cannot all be real. But this 
presence of an imaginary always indicates an absorption, i.e. a 
diminution in the amplitude. If, for example, µ = r = o, 

I - iK 
1t = --V-' in which Kand Vare to be real, then, from (5), 

z . (' z) X= Ae-Z1t'K-X,e'2'11' r-x, (Io) 

in which A is set equal to T • V. But equation (10) asserts that 
the ratio of the amplitude at any instant to the amplitude after 
the wave has travelled a distance A is 1 : e - 2'11'K, Hence K is 
called the coeffecient of absorption. 
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Equation (10) represents the case in which light falls per
pendicularly from air upon the absorbing medium. V is the 
velocity and l the wave length of light in the medium. If the 
ratio c : V = n be called the z"nde.z of refraction of the medium, 
since it represents the ratio of the velocities of light in air 
(assumed to be the same as in vacuo) and in the medium, then, 
by (9), 

or 

Thus this equation furnishes the means of determining the 
index of refraction and the coefficient of absorption from the 
electric constants. It will be shown later that the relation 
( 1 1) cannot be numerically verified; nevertheless the important 
point here is to observe that a complex \.alue of €' actually 
means an absorption of light, and that the real and imaginary 
parts of E' can be replaced, in accordance with (11), by the more 
tangible concepts of refraction and absorption coefficients. 

2. Metallic Reflection. - Resume the notation on page 
279 sq. Let the incident light be plane-polarized at an 
azimuth of 45° to the plane of incidence. Then EP = Es. 
fhe entire development there given can be applied here if 
only the real constant € be replaced by a complex quantity e'. 
</> denotes the angle of incidence and X a complex quantity 
which may be determined in terms of </> by 

. sin </> 
sin x = --=-. . 

t' e' 

Then, from (27) on page 285, the ratio of the components 
of the complex amplitude of the reflected light is 

RP iLJ R =p•e 
s 

cos(</>+ x) 
= - cos(</> - xr 

p here denotes the ratio of the real amplitudes of the p- and s
components of the reflected light, LI the relative difference of 
phase of these components. This is at once evident by setting 
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RP= R_,/61, Rs= R,ei6,, in which Rp, Rs, op, os are real 
quantities. Then 

Since the right-hand side of (13) is a complex quantity, L1 
cannot be zero. lncz"dent plane-polarized light therefore 
becomes by reflection at the surface of a metal ellij,tz"cally polar
i'zed. 

From (13) it follows that 

1 + p-iLl sin ¢, sin X 
I - p-eiLl = cos </> cos X. 

If in this equation X be replaced by </> and e' in accordance 
with (12), then 

1 + p·/Ll sin </> tan </> 
I - p-eiLl - t' e' - sin2 ¢ 0 

Hence when </> = o, p-/Ll = - 1, or L1 = o and p = - 1. 

n: . 
When </> = -, pt!Ll = + 1, i.e. L1 = o, p = 1. Hence the 

2 

relative difference of phase L1 of the reflected light, i.e. its 
ellipticity, vanishes at perpendicular and grazing incidence. 
That angle of incidence ¢ for which the difference of phase L1 

amounts to ~ is called the principal angle of incz"dence ¢· At 
2 

this angle /Ll = i; hence, from (15), 

I+ i•p 

I - i •p 
sin¢. tan¢ 

t' e' - sin2 ¢. 

If this equation be multiplied by the conjugate complex 
equation 

1 - i . p sin ¢ • tan ¢ 

I + i· • p - t' e" - sin2 ¢ ' 

in which e.--' denotes the complex quantity which is conjugate 
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to e', the left-hand side reduces to I. Hence the principal 
angle of incidence is determined by 

sin4 ¢>•tan'¢= n4(1 + K2)2 - 2n2(1 - K2) sin2 '¢+ sin'¢. (17) 

For the numerical calculation it is generally sufficient to 
take account of the first term only on the right-hand side of 
this equation, since, for all the metals, n2( 1 + K2) has a value 
much greater than 1, somewhere between 8 and 30. With 
this approximation ( 17) becomes simply 

sin¢ tan¢ = n .YI + K2. (18) 

This approximation may be obtained directly from (15) by 
neglecting in the denominator of the right-hand side sin 2 </> in 
comparison withe'. For, from (11), 

-Ve'= n(I - iK), 
so that ( 1 5) becomes 

1 + p jLl sin </> tan </> 
I - p 0 eiLl - n(I - iK) • 

Writing 
P=tanff 

(20) 

. (21) 

it appears [cf. (13)] that ff represents the azimuth of the 
plane of polarization of the reflected light with respect to the 
plane of incidence, after it has been made plane-polarized by 
any means such as the Babinet compensator (cf. page 257). 
Hence ff is called the azz"muth of restored polarization. 

Now it is easy to deduce the relation 

1 - p/Ll cos 2ff - i sin L1 sin 2,f, 
1 + peiLl = 1 + cos L1 sin 2¢ 

so that the following may be obtained from (20): 

K = sin L1 tan 2ff, l 
. cos 21/J 

n=smcptancp + ,, .. ,.• 
I COS LI SID 2.,., 

1 - cos LI sin 2¢• 
n2(1 + K2) = sin2 </> tan2 </>· + LI • ,p· 1 cos sm 2 

(22) 
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From these equations the optical constants n and K of a 
metal can be determined with sufficient accuracy from obser
vations of ,P and L1. * 

The value of ,p which corresponds to the principal angle of 
incidence </> = ¢ is called the principal azimuth if,. From the 
first of equations (22) it follows that 

K = tan 2,p. 
Inversely, in order to obtain L1 and ,P from the optical con

stants, set 

P n t'1 + K2 
tan = . , tan Q = K. (24) 

sm </> tan </> 

Then from (20), since the right-hand side has the value 
cot P./Q, 

tan L1 = sin Q tan 2P, 
cos 2tp = cos Q sin 2P. 

The rejlectz"ng pou,er of a metal is defined as the ratio of 
the intensity of the reflected light to that of the incident light 
when the angle of incidence <P is zero. In this case, from 
equation (26) on page 2 84, since n is here to be replaced by 
n(I - iK) [cf. equation (19)], 

·o 
RP RP-e' p n(1 - iK) - 1 

EP =-E;-= n(1 -iK)+ 1· 

If this equation is multiplied by its conjugate complex 
equation, the value of the reflecting power R is found to be 

R _ R; _ n2(l + K2) + 1 - 2n 
- E; - n\1 + 1e) + 1 + 2n· • 

(27) 

Since for all metals 2n is small in comparison with 
n2(J + K2), R is almost equal to unity, i.e. the reflecting power 
is very large. A substance which shows this strong reflecting 
power characteristic of the metals (in the case of silver it 

* More rigorous equations, in which sin¥ t/J has not been neglected in comparison 
withe', are given in Winkelmann's Handbuch, Optik, p. 822 sq. 
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amounts to 95 per cent) is said to have metallic lustre.* This 
is more marked the greater the absorption coefficient of the 
substance. Since K is different for different colors, some 
metals, like gold and copper, have a very pronounced color. 
Thus a metal appears red if red light is reflected more strongly 
than the other colors. Hence the light reflected from the 
surface of a metal is approximately complementary to the color 
of the light transmitted by it. In order to observe this it is 
necessary to use sheets of the metal which are only a few 
thousandths of a millimetre thick. Gold-foil of such thickness 
actually appears green by transmitted light. 

The more often light is reflected between two mirrors of 
the same substance the more saturated does its color become, 
for the colors which are most strongly absorbed by the sub
stance are much less weakened by repeated reflection than the 
others. In this way Rubens and Nichols, t and Aschkinass t 
have succeeded in isolating heat-waves much longer than any 
previously observed. An Auer burner without a chimney was 
used as the source of the radiations. After five reflections upon 
sylvine an approximately homogeneous beam of wave length 
l = 0.061 mm. was obtained, this being the longest heat
wave yet observed. The reflecting power of sylvine for this 
radiation is R = 0.80, i.e. 80 per cent. Long heat-waves can 
also be isolated by multiple reflections upon rock salt, fluor
spar, and quartz. 

It is important to distinguish between the surface colors 
produced by metallic reflection and those which are shown by 
weakly absorbing substances with rough surfaces; for example, 
by colored paper, colored glass, etc. These substances appear 
colored in diffusely reflected light because the light is reflected 
in part from the interior particles of the substance, and hence 

* That this effect is actually due to a high reflecting power is proved by the 
fact that a bubble of air under water from which the light is totally reflected 
looks like a <irop of mercury. 

t Rubens and Nichols, Wied. Ann. 6o, p. 418, 1897. 
t Rubens and Aschkinass, Wied. Ann. 65, p. 241, 18g8. 
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selective absorption is the cause of the color. In such cases 
the colors in transmitted and reflected light are the same, not 
complementary as in the case of the metals. 

3. The Optical Constants of the Metals.-Equation (22) 
shows how the optical constants n and K of a metal can be 
conveniently determined, namely, by observing the vibration 
form of the elliptically polarized reflected light when the 
incident light is plane-polarized, i.e. by measuring L1 and ¢ 
by means of a Babinet compensator and analyzing Nicol in 
accordance with the method described on page 255 sq. But 
care must be taken that the surface of the metal be as clean as 
possible, since surface impurities tend to reduce the value of 
the principal angle of incidence.* The following table contains 
some of the values which Drude has obtained by the reflection 
of yellow light from surfaces which were as clean as possible: 

Metals. nK n "if, "iii R 

SilYer ................... 3.67 0.18 75° 42' 43"35' 95.3~ 
Gold .................... 2.82 o.37 72 18 41 39 85.1 
Platinum ................ 4.26 2.o6 78 30 32 35 70.1 
Copper .................. 2.62 0.64 71 35 38 57 73· 2 
Steel. ................... 3.40 2.41 77 3 27 49 58.5 
Sodium .................. 2.61 0.005 71 19 44 58 99.7 
Mercury ................. 4.g6 1.73 79 34 35 43 78.4 

The reflecting power R was not measured directly, but cal• 
culated from (27). 

The optical constants can also be determined by observa
tions upon the transmitted light. By measuring the absorption 
in a thin film of thickness d a value for K : A may be obtained, 
as is seen from (10), A denoting the wave length in the metal. 
Since now A= 10 : n, and since 10 , the wave length in air, is 
known, nK may also be obtained. But reflection at the bounding 
surfaces of thin sheets of metal is accompanied by a great loss 

•Cf. Drude, Wied. Ann. 36, p. 88~, 1889; 39, p. 481, dl90. 
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in intensity. In order to eliminate this difficulty it is necessary 
to compare the absorptions in films of different thickness. The 
losses due to reflection are then in both cases nearly the same, 
so that a conclusion may be drawn as to the value of nK from 
the difference in the absorptions. The difficulty in making 
these observations lies in obtaining metal films but a few 
thousandths of a millimetre in thickness, which are yet uniform 
and free from holes. For this reason the value of nK as deter
mined by this transmission method usually comes out smaller 
than by the reflection method.* But in some cases, t for 
example, silver-which can be easily deposited upon glass from 
a solution-the values of nK determined by the two methods 
are in good agreement. 

As in the case of transparent media, the index of refraction 
can be determined from the deviation produced by a prism,t 
but in the case of the metals the angle of the prism must be 
very small ( a fraction of a minute of arc) in order that the 
intensity of the light transmitted may be appreciable. Since 
Kundt succeeded in producing metal prisms suitable for this 
purpose§ (generally by electrolytic deposition upon platinized 
glass), the indices of refraction of the metals have been deter
mined many times by this method.II Not only is the produc
tion of these prisms troublesome, but also the.observations are 
very difficult, since the result is obtained as the quotient of two 
very small quantities. In general the results agree well with 
those obtained from observations of reflection; for example, 
the remarkable conclusion that for certain metals n < I has 
been confirmed. 

These small indices of silver, gold, copper, and especially 

* W. Rathenau, Die Absorption des Lichtes in Metallen. Dissert. Berlin, 1889. 
t W. Wernicke, Pogg. Ann. Ergzgbd. 8, p. 75, 1878. Also the observations of 

Wien (Wied. Ann. 35, p. 48, 1888) furnish an approximate verification. 
* For the equations cf. W. Voigt, Wien. Ann. 24, p. 144, 1885. P, Drude, 

Wied. Ann. 42, p. 666, 1891. 
§ A. Kundt, Wied. Ann. 34, p. 46g, 1888. 
I Cf., for instance, Du Bois and Rubens, Wied. Ann. 41, p. 507, 18go. 
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of sodium are particularly surprising; they mean that light 
travels faster in these metals than in air. 

If these optical constants be compared with the demands 
of the electromagnetic theory [ cf. ( 1 I)], a contradiction is at 
once apparent. For since e is to equal n2(1 - K2), the dielec
tric constant of all the metals would be negative, since 
K = tan 2¢, and since 2tp is for all metals larger than 45°, i.e. 
K > I. But a negative dielectric constant has no meaning. 
Also, the second of equations (11), namely, n2K = <TT, is not 
confirmed, since, for example, in the case of mercury, for 
yellow light <TT=20, while n2K=8.6. For silver <TT is 
much greater, while n2K is much smaller than for mercury. 

The same fact is met with here which was encountered 
above when the indices of refraction of transparent media were 
compared with the dielectric constants. The electromagnetic 
theory describes the phenomena well, but the numerical values 
of the optical constants cannot be determined from electrical 
relations. The extension of the theory, which removes this 
difficulty, will be given in the following chapter. 

4. Absorbing Crystals.-The extension of the eqqations 
for isotropic absorbing media to include the case of absorbing 
crystals consists simply in assuming different dielectric con
stants and different conductivities along the three rectangular 
axes of optical symmetry. If the coordinate axes coincide 
with these axes of symmetry, equations (12) on page 314 are 
obtained, with this difference, that e1 , e2 , e3 are complex 
quantities, if, in accordance with ( 5) on page 359, the electrical 
force is introduced as a complex quantity. To be sure the 
equations will not be perfectly general, since the axes of sym~ 
metry for the dielectric constant do not necessarily coincide 
with those for the conductivity. These axes must coincide 
only in crystals which possess at least as much symmetry as 
the rhombic system. Nevertheless the most general case will 
not be here discussed, since the essential elements may be 
obtained from the simplification here presented.* 

* This is treated more fully in Winkelmann's Handbuch, Optik, p. Su sq. 
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In order to integrate the differential equations given above, 
namely, 

e/ a2X (oX a Y oZ) --=L1X- -+-+- etc. c at2 ex oy az ' ' 
(28) 

let the components u, v, w of the light-vector be represented 
by the equations 

in which ,,r + n2 + p2 = 1, and M, N, II may be complex. 
These equations correspond to a plane wave whose direction 
cosines are m, n, p. Vis the velocity of the wave, and K the 
absorption coefficient (cf. page 36o). Let 

V 
--.- = °"· I - tK 

Then Fresnel's law (18) on page 316 may be written 

m2 n2 p2 
a 2 - w2 + b i - w + c 2 - w2 = o, 

0 0 0 

in which, however, a 02, b 02, c02 are complex. Hence this equa
tion splits up into two from which V and K may be calculated 
separately as functions of the direction m, n. p of the wave 
normal. According to equations (15), (19), and (20) on pages 
31 5 and 31 7, the following relations hold for the quantities 
M, N, II: 

Mm + Nn + IIp = o, 

M· N· II- m • n • p 
• • - ao2 - u,2. bo2 - w2. Co2 - w' 

~~ + NlN2 + IIlII2 = 0. 

(32) 

(33) 

(34) 

Since, by (33), M, N, II are complex, two elliptically 
polarized rays correspond to every direction ni, n, p. For if it 
be assumed that M =M-ei61, N = N-i6,, then 61 - 61 denotes 
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the difference of phase between the components 11, v of the 
light-vector. For plane-polarized light 81 - o2 = o. Equa
tion (32) expresses the fact that the plane of the vibration is per
pendicular to the wave normal, (34) the fact that the ellipses 
are similar to each other, while their positions are inverted.* 

The relation which can be deduced from (31) between the 
velocity and the direction m, n, p is very complicated. Hence 
Fresnel's law, in spite of its apparent identity with (31), is 
considerably modified. But the relations are much simpler in 
the case of weakly absorbing crystals such as are always used 
when observations are made with transmitted light. t For if~ 
can be neglected in comparison with 1, then ur = V2(1 + 2iK). 

Hence setting 

a 02 = tr + ia' 2, 

then 

b 2 _ b2 + ·•,2 
O - zo , (35) 

,n2 m2 m2 ( .2K V2- a'2) 
~2= -2 T72 "( v2 12)= ~2 T72 1+z 2 V2 .(36) a0 -w- u--r--z ZK -a a-r- a -

Hence (31) splits up into the two equations 

m2 n2 p2 
a2 - v2 + b2 - v2 + c- - v2 = o, (37) 

2K V 2 
{ (a2 :

2 
V2)2 + (b2 ~ V2)2 + (c2 ! V2)2} 

2 2 p2 
, 2 m + b' 2 n + , 2 

= a (a2 - V2)2 (b2 - V2)2 C ·-(c2~. --~v=2~)2" (38) 

Equation (37) is Fresnel's law. Hence when the absorp
tion is small this is not modified. Equation (38) presents K as 
a function of m, n, and p. According to (3 3), when the absorp
tion is small M, N, II are very nearly real, i.e. the two waves 
within the crystal have but a slight elliptic polarization. If 
fill, 9l, ~ denote the direction cosines of the principal axis of 

* For more complete proof of this, cf. Winkelmann's Handbuch, Optik, p. 813. 
t In reflected light the effects of strong absorption are easy to observe, for 

example, with magnesium- or barium-platinocyanide. Such crystals show 
metallic lustre a.nd produce polarization. 
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the vibration ellipse, then, from (33) and (36), since IDl is the 
real part of M, etc. , 

t'ln.m.m m . n . p 
~JL • ~L • 1" = a2 - v2 • b2 - v2 • c2 - v2· (39) 

Thus fill, 91, ~ are determined in the same way as the 
direction of vibration in transparent crystals. 

In view of (39) and the relation IDl2 + 912 + ~2 = 1, it is 
possible to write (38) in the form: 

2KV2 = a'2 9)12 + b' 2 fil2 + c'2 ~ 2 ; • • • (40) 

i.e., in accordance with (181) on page 317, which also holds 
here, 

a'2 9Jl2 + b'2 912 + c'2 ~2 

21< = a291i2 + b2912 + c2~2 • (41) 

Hence tke index of absorption K, like the velocity V, i's a 
single-valued function of tke direction of vibration. 

This law can be easily verified by observing in transmitted 
light a cube of colored crystal cut parallel to the planes of 
symmetry. This shows different colors as the direction of the 
ray is changed (trichroism for rhombic crystals, dichroism for 
hexagonal and tetragonal crystals). This phenomenon can be 
observed in tourmaline, beryl, smoky topaz, iolite, and espe
cially in pennine, which appears bluish green and brownish yel
low. If the light transmitted by such a crystal is analyzed with 
a Nicol, the color depends upon its plane of polarization, the 
extreme colors being obtained when the Nicol is parallel to an 
axis of symmetry of the crystal.* The six extreme colors 
which can be observed in a cube of tricroitic crystal by means 
of a Nicol reduce in reality to three, since each color appears 
twice, namely, in the positions for which the direction of vibra
tion in the Fresnel sense is the same (cf. page 253). 

Equations (40) and (41) become simpler if the wave normal 
lies near an optic axis; for example, near A 1• If the angle g 1 

* Both colors are seen at the same time if a double-image prism be used instead 
of a Nicol. Cf. Mttller-Pouillet, vol. II, Optics, by Lummer, p. 1005. 



372 THEORY OF OPTICS 

which the wave normal N makes with the optic axis A I is so 
small that its square can be neglected in comparison with 
1, then V2 = b2. If, further, the angle between the plane 
of the optic axes (xz-plane) and the plane (NA 1) defined by 
A, and N be denoted by 1/;, then the plane defined by N and 

the direction of vibration fill,, fil1 , , 1 makes an angle ! with 
2 

the xz-plane. For, from page 322, the plane of vibration 
bisects the angle included between the planes (NA1) and 
( N AJ; but since N is to lie very near to the optic axis, the 
plane (NA 2) may be identified with the plane (A 1A 2) of the 
optic axes, i.e. with the xz-plane. Hence the direction of 

vibration IDl1 , fil1 , , 1 must make an angle of 1!._ with that direc-
2 

tion S in the xz-plane which is perpendicular to the wave 
normal N, i.e. to the optic axis A 1• The direction cosines of 
Sare cos (J, o, - sin f/, where q denotes the angle between the 
optic axis A 1 and the z-axis, i.e. half of the angle included 
between the optic axes. Hence it follows that 

cos!_ = fill1 cos q - , 1 sin q. (42) 
2 

Since now the direction fill, , fil1 , , 1 is also perpendicular to 
the wave normal N, i.e. to the optic axis A 1 , whose direction 
cosines are sin q, o, cos q, it follows that 

o = IDl1 sin q + , 1 cos q. . (42') 

From these last two equations 

"' IDll = cos q cos - . 
2 

m • 'P 
;;,l1 =sin-, 

2 
"'. , 1 = ·- sin q cos -. (43) 
2 

From this the direction 9R2 , fil2 , , 2 may be determined, since 
it is perpendicular to fill1 , fil1 , ,, , and to m, n, p. Thus 

m. = - cos q sin : , fil, = cos : , ,. = sin f/ sin : • (44) 
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Hence, from (40), in the neighborhood of the optic axis 

2Ki2 = (a' 2 cos2 q + c' 2 sin2 q) cos2 : + b' 2 sin2 : , } 

'P 'P (45) 
2Ki2 = (a' 2 cos2 q + c' 2 sin2 q) si112 - + b' 2 cos2 -. 

2 2 

These equations show that for any angle ± ¢ the value of 
.-1 is the same as that of K 2 for an angle ,P' = 1r ± ,p. These 
equations are indeterminate for the optic axis itself, because 
then ¢ has no meaning. In accordance with the preceding 
discussion, the direction of vibration may be taken arbitrarily 
(cf. page 319). From (40) it follows that for a wave polarized 
in the plane of the optic axes, i.e. vibrating perpendicularly to 
these axes, since in this case ID1 = ~ = o, m = I' 

but for a wave polarized in a plane perpendicular to the plane 
of the optic axes, and therefore vibrating in that plane, since 
for this case fill = cos q, 91 = o, ~ = - sin q, 

(47) 

For intermediate positions of the plane of polarization values 
of K are obtained which lie between those of K, and KP. 

Hence the absorption of a wave travelling along an optic axis 
depends upon its plane of polarization. Upon introduction of 
the quantities Ks and KP (45) becomes 

K = K •COS/P.. + K -sin2'!. 
l p 2 s 2' 

For uniaxial crystals (a= b, a' = b'), if g represent the 
angle between the wave normal and the optic axis, it is easy 
to deduce from (40) for the ordinary wave 

2KoVo2 = a'2, 

for the extraordinary wave 

2K1 V1
1=a'2 COS2 g+c'2 sinlg, 
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5. Interference Phenomena in Absorbing Biaxial Crys
tals.-Let a plate of an absorbing crystal be introduced in 
convergent light between analyzer and polarizer. Resume the 
notation of §§ 14 and I 5 on pages 344 and 349, and consider 
Fig. 91. A wave U~, vibrating in a direction 8i_, which 
upon entering a crystal has an amplitude E cos ¢, upon emer-

21t K1 I 
gence from the crystal has the amplitude E cos </J e - T v;_ , in 
which l denotes the length of the path traversed in the crystal. 
If d denote the thickness of the plate of crystal, and r 1 the angle 
of refraction of the wave ~, then l = d: cos r 1• Similarly 
the amplitude of the wave ~ is, upon emergence from the 

27t K, 

crystal, E sin <fJ e - T -V. 1 (the length of the path within the 
crystal is assumed to be for both waves approximately the 
same). After passing through the analyzer the amplitudes or 
the two waves are 

O"l = ;;l CO: r' } 
27C d • 

O" - ~----
2 - TV2cos r· 

(50) 

The difference in phase o of the two waves in convergent light 
is determined by equation (88) on page 350. 

The case of crossed Nicols (x = ~ will be more carefully 

considered. Assume that the plate of crystal is cut perpendic
ular to the optic axis A 1 , and denote by¢ the angle which the 
plane A 1A 2 of the optic axes makes with the line MA2 drawn 
from a point M, which is near the optic axis in the field of 
view,* to the optic axis A 1 ; then ( cf. Fig. IO 1) the direction 

of vibration H 1 makes approximately the angle '!__ 0vith the 
2 

direction A 1A 2, provided A 1M is small in comparison with 

* The different points of the field of view correspond (cf. p. 351) to the different 
inclinations of the rays within the plate. 
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A 1A 2• If, further, the plane of vibration P of the polarizer 
makes the angle a with the plane A 1A 2 of the optic axes, then 

Hz 

H. 

:P 
FIG. IOI. 

,p 1t 
in (50) </J = a - 2, X = 2. The amplitudes of the two 

interfering waves are therefore 

in which 

+ E cos (a - 'I/J/2) sin (a - 'I/J/2)e- K 1u, }· (5I) 
- E sin (a - 1/J/2) cos (a - 1/J/2)e - K2u, 

21td 

u = Tb' 

since in the neighborhood of the optic axis vl = v2 = b, and 
r is to be small. 

Hence the intensity of the light which emerges from the 
analyzer is 

J= E2 sin2(2a-¢){e- 2 K 1u +e-2 K,u - 2e-(K,+K2>.cos of. (52) 
4 

If the wave normal actually coincides with the optic axis, 
the end sought may be obtained from the following considera
tions: The amplitude E is resolved into components which 
are parallel and perpendicular respectively to the plane A 1A 1 
of the optic axes. These components are E cos a and E sin a. 
After emergence from the crystal the former has the value 
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E cos a e -Kia, the latter E sin a e -K,cr. After passage through 
the analyzer the former has the amplitude E cos a sin a e - 2K;u, 

the latter - E sin a cos a e - K,u. These two waves have no 
difference in phase, since the velocity in the direction of the 
optic axis is the same for both of them. Hence when the 
wave normal is parallel to the optic axis, the light which 
emerges from the analyzer has the intensit} 

£2 . ( -K -K<T)2 J' = 4 sm 2 a e ,er - e • . (53) 

The first factor in (52) placed equal to zero determines the 
position of the black principal isogyre ,p = 2a. But while the 
black isogyre in the uncolored crystals passes through the optic 
axis itself. in the pleochroic crystals the point of intersection of 
the optic axis with the isogyre i's brigltt, unless a = o or 

1t 
a= -, i.e. unless the plate lies in the first principal position. 

2 

For, from (53), J' differs from zero when sin 2a ~ o, and K; 

differs from K,. 

The second factor in (52) placed equal to zero shows that 
there are dark rings about the optic axis, since the value of 
this second factor depends upon cos o, and cos o has periodic 
maxima and minima as the distance from the optic axis 
increases. Nevertheless even with monochromatic light these 
rings are perfectly black only where K 1 = K 2 , i.e., according 

1C 
to (48), when ¢ = ± -, for there the second factor actually 

2 

vanishes when cos o = I. The whole phenomenon of the 
rings is less and less distinct the stronger the absorption, i.e. 
the thicker the plate. For the term in (52) which depends 
upon the difference in phase o has a factor which can be 
written in the form e - (K1 + K,)u_ If the crystal is at all col
ored, then one at least of the two absorption coefficients K1 and 
K, must differ from zero, i.e. for a sufficiently large value of u 
or a sufficiently large thickness d of the plate this term cor,-
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taining cos 8 vanishes. This second factor in (52) can be 
written 

(54) 

Although u is large, these terms may yet have appreciable 
values, since K 1 or K 2 may be small for certain points M of the 
field of view provided either K1 or x. is small. It can now be 

shown that when ,p = o or"• Fis a maximum; when ,p = ± !!., 
2 

a minimum. For, from (48), 

oF 
- - u sin •1•{K - K )(e - 21<10- - e - 21<20-) oip - .,, J> • • 

Therefore maxima or minima occur when 1/' = o or n:, or when 
• 'IC 

K 1 = x2 , 1.e. ip = ± -. But when i/J = o or"• 
2 

F = e - z1<pu + e - z1<,u = F1 ; 

'IC 
and when ,p = ± -, 

2 

F = 2 • e - (K; + K.)u = F2• 

(55) 

W . . -21<;0- -21<,0" h ..tp X + y ..tp .;ntmg e = x, e = y, t en ¥ 1 = ~ 2- • , 2" 2 = ,, xy. 

But now, since the arithmetical mean is always greater than 
the geometrical (the difference between them increasing as the 
difference between x and y, i.e. between x1 and x11 increases), 
the values ,p = o or 1t correspond to a maximum, the values 

tr • • fF 'P = ± - to a mm1mum, o . 
2 

In addition to the principal i'sogyre (,p = 2a), there is 
always a black brush traversing the field of vz'ew perpendicular 

to the plane of the optic axes (¢ = ± ~). This brush coin

cides with the principal isogyre in the second principal position 

of the plate (a=~). 
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Absorption gives rise to certain peculiar phenomena when 
either the analyzer or the polarizer is removed. In the first 
case the two amplitudes which emerge from the crystal have 
the values E cos (a-H·)e - Kia- and E sin (a - ½t/J)e - K,a-. If 
these are not brought back to a common plane of vibration, 
they do not interfere and the resultant intensity is simply the 
sum of the two components, i.e. 

J = .E2{cos2(a - ½¢')e- 2 K 1u + sin2 (a- H•)e-2 K•a-l. (57) 

When the wave normal coincides with the optic axis, 

J' = E 2 { cos2 ae - 2K;u + sin2 ae - 2 K,a-}, . (5 8) 

The following principal cases will be investigated: 
I. a= o. Then 

J = £ljcos2 ½if:e - 2 K 1u + sin2 ½t/:e - 2 K,a-}, 

J' = E'e - 2K;u_ 

But since 

~~~sin f/,{ o-(K. - Kp)(sin2 ½t/Je- 2 K1u - cos2 fi/-e - 2 K1~ 

e- 2Kz<T - e - 2K1<T} 

+ 2 l 

therefore 

oJ 
oip = o for¢= o or n, or for ip = ± 1t/2 • 

When tJ = o or ir, 

J =Ji= £2,e -2K;U; 

when f/, = ± "/2, 
J = Jz = E2,e-(Kt+K,)u_ 

If, therefore, Kp < K, (type II, iolite, epidote), J 1 > J;, i.e. 
there is a dark brush perpendicular to the plane of the optic 
axes, which is, however, intercepted by a bright spot on the 
optic axis. But if KP> K, (type I, andalusite, titanite), then 
J1 > Ji. In this case the dark brush lies in the plane of the 
optic axes and is continuous. 
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7C 
2. a= 

2 

J = E 2{sin2 ½tfle - 2 K10- + cos2 ½tpe - 2 Kz<T}, 

J' = £2.e - 2K,<T. 

When 'P = o or 1C, 

J = Ji = £2. e - 2Ks<T; 

when ,p = ± 1t/2, 

J=J2 = £2.e-(Kp+K,)o-. 

379 

If, therefore, KP< K,, J 1 <J2 , i.e. a continuous dark brush 
lies in the plane of the optic axes. But if KP> K,, J 1 > J 2 , 

i.e. the dark brush is perpendicular to the plane of the optic 
axes and is intercepted by a bright spot on the optic axis. 

If both analyzer and polarizer are removed, i.e. if a plate 
of biaxial pleochroic crystal cut perpendicular to one of the 
optic axes is observed in transmitted natural light, the resultant 
intensity is 

J = P(e- 2K1<T + e - 2KzD); 

while along the optic axis itself it is 

J' = E2(e - 2KW + e - 2K,o-). 

(59) 

(6o) 

For natural light may be conceived as composed of two in
coherent components of equal amplitudes which vibrate in any 
two directions which are at right angles to each other. Hence 
in (60) 2£~ denotes the intensity of the incident light. Since 
now it was shown above [equation (54), page 377] that (59) 

has a minimum value when tp = ± ~. it is evident that a dark 
2 

brush perpendicular to the plane of the optic axes and intercepted 
by a bright spot upon the axis will be seen. These figures 
produced in natural light were observed by Brewster as long 
ago as 1819. They may be easily seen in andalusite and 
epidote.* 

• For further discussion of these idiocyclophonous figures cf. Winkelmann's 
Handbuch, Optik, p. 817, note I. 
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6. Interference Phenomena in Absorbing Uniaxial Crys
tals. -Let the plate of crystal be cut perpendicular to the 
optic axis. 

I. Crossed Nicols. Let the plane of vibration of the polar
izer make an angle ¢ with the line AM which connects the 
optic axis A with a point M in the field of view of a polarizing 
arrangement which furnishes convergent light. Then AM 
is the direction of vibration H of the extraordinary ray, 
which, after emergence from the crystal, has the amplitude 
E cos </> e - K,u, and, after emergence from the analyzer, the 
amplitude E cos ¢ sin ¢ e - K,u. The ordinary ray has, after 
emergence from the crystal, the amplitl,lde E sin ¢ e - Kou, 

and, after emergence f1om the analyzer, the amplitude 
- E sin ¢ cos ¢ e - Kou, Hence the intensity of the light 
emerging from the analyzer is 

.£2sin2 2¢ ( + ) J = ----{e-2KoCT + e-2K,CT - 2 COS 0/'- Ko K, CT}. (61) 
4 

Along the optic axis K0 = K,, o = o; hence 

J' = o. . . (62) 
Interference rings are formed, which, however, disappear when 
the thickness of the plate is so great that the absorption effects 
appear. In the field of view there is a dark cross whose arms 
are parallel to the directions of vibrations of the analyzer and 
polarizer respectively. Outside of this cross the field of view 
is bright for those crystals for which a' 2 is small (cf. (49), 
page 373] and c' 2 large (type I, magnesium-platinocyanide), 
i.e. for those whose absorption in the direction of the optic axis 
is small. But for crystals of type II (tourmaline), for which 
a' 2 is large and c' 2 small, the field of view is everywhere dark. 

2. Analyser or polariser alone present. These two cases 
are the same. If only the polarizer is present, and if its plane 
of vibration makes the angle ¢ with the direction Ail£, then 
the intensity of the extraordinary ray is E 2 cos2 ¢ e- 2K,u, that 
of the ordinary ray E2 sin2 p e - 2K 0 u. Hence 

J = P(sin• <p e - 2 KoCT + cos2 </J e - 2K•"). . • (63) 
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Along the optic axis K,, = Ke; hence 

J' = E2e-2K,,rr. 

Crystals of the first type (K0 < K,) show, therefore, a dark brush 
when ¢ = o an<l ¢ = n:; i.e. in a direction parallel to the direc
tion of vibration, or perpendicular to the plane of polarization 
of the polarizer. The dark brush is intercepted by a bright 
spot on the axis. In the case of crystals of the second type 

(K0 > K,) there is a dark brush when ¢ = ± ~• i.e. parallel to 

the plane of polarization of the polarizer. The dark brush 
passes through the axis itself. 

3. Transmz"tt;d natural-light. The intensity of the ordinary 
ray is E2e - 2 K 0 rr, that of the extraordinary ray is Ee - 2 K,rr, 

hence 
J = £2(e - 2Ko<r + e -2K,~. 

Along the optic axis itself K 0 = Ke , hence 

J' = 2E2e - 2Ko<r. • (66) 

2£2 denotes the intensity of the incident natural light. In 
crystals of the first type there is a bright spot on the axis sur
rounded by a dark field; in crystals of the second type, a 
dark spot on the axis surrounded by a bright field. 
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DISPERSION 

1. Theoretical Considerations.-A theory which accounts 
well for the observed phenomena of dispersion may be obtained 
from the assumption that the smallest particles of a body 
(atoms or molecules) possess natural periods of vibration. 
These particles are set into more or less violent vibration 
according as their natural periods agree more or less closely 
with the periods of the light vibrations which fall upon the 
body.* That such vibrations can be excited by a source of 
light, i.e. an oscillating electrical force, is easily comprehended 
from a generalization of the theory, necessitated by the facts 
of electrolysis, that every molecule of a substance consists of 
positively or negatively charged atoms or groups of atoms, the 
so-called ions. t In a conductor these ions are free to move 
about, but in an insulator they have certain fixed positions of 
equilibrium about which they may oscillate. In every element 

* As Lord Rayleigh has recently shown (Phil. Mag. (S) 4,8, p. 151, 1889), 
Maxwell was the first to found the theory of anomalous dispersion upon such a 
basis (cf. Cambr. Calendar, 1869, Math. Tripos Exam.). His work did not, 
however, become known, and, independently of him, Sellmeier, v. Helmholtz, and 
Ketteler have used this idea for the basis of a theory of dispersion. The assumption 
that molecules have natural periods can be justified from various points of view, 
even from that of the mechanical theory of light. From the electric standpoint 
these natural periods can be looked upon in two different ways : the treatment 
here given is based upon Reiff's presentation ofv. Helmholtz's conception-a pres
entation which also contains interesting applications to other domains of science 
(cf. Reiff, Theorie molecularelektrischer Vorgllnge, 1896). This conception is 
more probable than the other which was used by Kolacek (Wied. Ann. 32, p. 224, 
1887). 

t These are not necessarily identical with the ions in electrolysis. 
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of volume the sum of the charges of the positive and negative 
ions must be zero, since free electrification does not appear at 
any place upon a body which has not been charged from 
without. 

Consider first only the positive ions, and denote by e1 the 
charge of a positive ion, by m1 its mass, by l 1 the x-component 
of its displacement from its position of equilibrium; then the 
equation of motion of this ion, when an exterior electrical force 
whose x-component is Xis applied, must be of the form* 

For the first term of the right-hand side e1X is the total 
impressed force. The second term denotes the (elastic) force 
which is called into play by the displacement of the ion and 
which acts to bring it back to its original position. The 
factor e12 is introduced to indicate that the sign of this force is 
independent of sign of the charge. The third term repre
sents the force of friction which opposes the motion of the 
ion. This term also contains the factor e.2, since it must also 
be independent of the sign of the charge. m1 , '91 , r 1 are 
positive constants. The meaning of '91 is obtained by deter
mining the position of equilibrium of the ion under the action 
of the force X. For if t 1 is independent of the time t, then, 
from (1), 

e.e. = ~x. 4,r 

'91 is proportional to the facility with which the ions may 
be displaced from their positions of rest, i.e. it is inversely 
proportional to the elastic resistance ( or the coefficient of elas
ticity). For conductors '91 is to be set equal to oo . 

* All quantities are to be measured in electrostatic units. Equation (1) would 
also hold if the ion had no mass, provided the self-induction due to its motion be 
taken into consideration. 
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An entirely similar equation holds for the negative~y 
charged ions, namely, 

?le2 X 41re22 2 0&2 ( 
m2 ot2 = e2 - Tel - r2e2 ?ii' . 3) 

Here, too, m1 , '92 , r 2 , are positive, but e2 is negative, 
Now the electric current.along the x-axis consists of three 

parts: 
I. The current which would be produced in the free ether 

by an electrical force X if no ponderable molecules were 
present. According to ( I 3) on page 268, the current density 
has the value 

(J') I oX 
"0 = 411: ?J· • (4) 

2. The current due to the displacement of the positive 
charges. If the displacement during the time dt amounts to 
dtI' and if91' denotes the number of positive ions in unit length, 
and 91" the number in unit cross-section, then there passes in 
time dt through unit cross-section the quantity 

e19l'' -dt191' = el9lldel, 

in which 911 = 91'. 91" denotes the number of ions of the 
type I which are present in unit volume. Hence in unit time 
there passes through unit cross-section the quantity 

. m del m oel 
(J,,)1 = e1;;,~1 dt = e1;;,~1 Te• (S) 

• h" h 0e1 • d'ffi • 1 ffi • • h h • m w 1c ot 1s a I erent1a coe c1ent wit respect to t e time. 

(j,,)1 denotes the current density which is produced by the 
motion of the ions of type I. 

3. The current due to the displacement of the negative 
charges. This may be written in a form similar to the above, 
thus 

(6) 
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for a displacement of a negative charge in the negative direc
tion of the x-axis is equivalent to a positive current in the 
positive direction of the x-axis. 

The total current density along the x-axis is then 

J~ = U,.)o + (j.,.)1 + (j,.)z = 4~ aa~ + !/e.~lel + e~z5z)- (7) 

The components of the current along they- and .s-axes take a 
similar form 

Since no free charge can exist in an element of volume, 
the following relation holds: 

e1911 + e2~ 2 = o. (8) 

Now the fundamental equations (7) and (11) on p~ges 265 
and 267 are, as always, applicable. The permeabilityµ will 

b d I • th t oa II e assume equa to unity, so a 41rs,. = ot' etc. ence 

these fundamental equations, together with (1), (3), and (7), 
constitute a complete theoretical basis for all the phenomena 
of dispersion. 

The general integral of differential equations (1) and (2) can 
be immediately written out if X be assumed to be a periodic 
function of the time. For 51 and 52 are proportional to the 
same periodic function of the time plus a certain term which 
represents the natural vibrations of the ions, which, according 
to (1) and (3), take place when X = o. But in considering 
stationary conditions this term can be neglected, since, on 
account of the resistance factors r 1 and r1 , it disappears in the 
course of time because of damping. Hence it is possible to set 

. t . I 
e1 = A 1-e'"r, e2 = A 2 -e'-;, 

-r = T: 211:, • 

(9) 

(10) 

in which A1 and A 2 are still undetermined functions of the 
coordinates, which, however, no longer contain the time; 
while T is the period of the impressed force, i.e. of the light 
vibrations. In reality 51 and ~z stand for the real parts of the 
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complex quantities written in (9); nevertheless they can be set 
equal to these complex quantities and the physical meaning 
can be determined at the end of the calculation from the real 
parts. This method of procedure makes the calculation much 
simpler. 

Now, from (9), 

at. i 
c)/ = Tt1 , • (II) 

Hence (1) may be written 

( i r/\ I m1-81 \ -81 

e.e. I+ -;:-4~ - r2 41re/l = 41rX; 

or when 

it follows that 

The similar expression for e/12 is obtained by replacing the 
subscript I by 2. Hence, from (7), 

. I oX { 191911 '92912 t 
J,, = 41r ot i + i bi+ i b2 f. 

I + - al - 7i I + -a2 - __.2 
'T T 't r 

(14) 

A comparison of this equation with ( I 7) on page 269, 

namely, j = !_. oX, shows that in place of the dielectric 
" 41r at 

constant e there appears the complex quantity e' which depends 
upon the period T( = T • 2 1r); thus 
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in which the following abbreviation has been introduced: 

f>,.' = f>,.fil,.. 
The ::E is to be extended over all the ions which are capable 

of vibrating. It is possible to assume more than two different 
kinds of ions. But in the case of the high periods of light 
vibrations and of dielectrics, these kinds are not to be assumed 
to be identical with those found in electrolysis. 

The meaning of the constants which appear in (15) can be 
brought out as follows: If the period is very long, i.e. if 
-r = oo , a condition which is practically realized in static 
experiments or in those upon slow electrical oscillations, it 
follows from ( 15) that 

(16) 
In such experiments € is the dielectric constant of the 

medium. From (2) and (13) it is evident that 8; can be called 
the dielectric constant of the ions of kind h. The resultant 
dielectric constant z"s then the sum of the dielectric constants of 
the ether and of all the kinds of ions. 

Further, b,. is a constant which is associated with the 
natural period T,. which the ions of kind h would have if their 
coefficient of friction a,. could be neglected. For in this case 
(X = o, a,.= r,. = o) it follows from (1) that 

It has been shown above on page 361 that a complex 
dielectric constant indicates absorption of light. If n represent 
the index of refraction and K the coefficient of absorption, then 
from the discussion there given [equation (11)], and the equa
tion (15) here deduced, 

€ 1 = n2(1 - iK)2 = I + ~ f)~ 2 • (18) 
k + .a,. -r,. 

I ZT - -r2 

By separating the real and the imaginary parts of this equation, 
two relations may be obtained from which n and K may be 
calculated. 
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2. Normal Dispersion.-In the case of transparent sub
stances there is no appreciable absorption. The assumption 
must then be made that for these substances the coefficient of 

friction a,. is so small that the quantity a,. can be neglected in 
T 

\ 2 

comparison with 1 - ( :") . This is evidently possible only 

when the period T of the light does not lie close to the natural 
period T,. of the ions; for if these periods are nearly the same, 
T1, . - = I and absorption would occur even though a,. were small. 
-r 
Transparent substances are to be looked upon as those in which 
the natural periods of the ions do not coincide with the periods 
of visible light, and in which the coefficients of friction of the 
ions are small. If then for this case a,,_ be neglected, the right
hand side of ( 18) is real, so that K = o; and the index of 
refraction is determined by 

{)~ 

Tr= I+ L (T,.)2" 
I - \r 

If the difference between the natural and the impressed 
periods is great, rr can be developed in a rapidly converging 
series. The natural periods in the ultra-violet T., must be 
separated from the natural periods in the ultra-red Tr. For 

the former T"' is a small fraction, hence 
T 

For the latter !.. is a small fraction, hence 
Tr 
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Using these series and introducing in place of r the period 
T itself, in accordance with (IO) and ( I 7), ( I 9) becomes 

2 + ' ~{3:Tv2 + ~f):Tv4 + n = I ~f)v+ _T_2_ ~ . •. 

Now in fact a 
namely, 

T l f)~ 
:2rz-,. 

dispersion formula 

T•~· fJ: - (22) T,.' ••• 

with four constants, 

in which A', A, B, and C are positive, has been found to 
satisfy observations upon the relation between n and T for 
transparent substances. (23) is easily recognized as the 
incompleted series (22), and it is easy to see from (22) why the 
coefficients A', A, B, and C must be positive. It also appears 
that the term A of the dispersion equation, which does not 
contain T, has the following physical significance: 

A = I + ;2f):. . (24) 
Since by (16) the dielectric constant e has the meaning 

€ = I + ;2{3~ = I -f- ;2f): + ;2f):, 

it appears that • 

E - A = :2f)~, , • . (25) 

i.e. the difference between the dielectric constant and the term of 
the dispersion equation which does not contain Tis always posi
tive and is equal to the sum of the dielectric constant$ of the ions 
whose natural periods lie in the ultra-red. In this way the 
discrepancies mentioned above between Maxwell's original 
theory and experiment are explained. 

Such a difference between e and A must always exist when 
the dispersion cannot be represented by the three-constant 
equation 

B C 
n2=A + T2+ T•' 
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for the coefficient A' of equation (23) depends upon the ions 
which have natural periods in the ultra-red. The behavior of 
water is a striking verification of this conclusion. For the 
coefficient A' of the four-constant dispersion equation has a 
larger value for water than for any other transparent substance; 
and this agrees well with the fact that water absorbs heat-rays 
more powerfully than any other substance, and also with the 
fact that for water the difference betwen e and A is greater 
than for any other substance. If the assumption be made that 
there be but one region of absorption in the ultra-red, the posi
tion of this region can be calculated from A' and e - A. For 
in this case, from (22), (23), and (25), 

A l -8~ A , • T2 E - A ( ) = T2' E - = -8r, i.e. r = ----y-· 27 
r 

Now, according to Ketteler, for water A'=o.0128- I08 -c2 sec-2, 
in which c = 3· 1010• Further, E - A= 77. From these data 
the wave length measured in air which corresponds to the 
region of absorption in the ultra-red is calculated as 

A. ll = (!JT 2 = 77 10- 8 = 60-10-• 
,. ,. 0.0128 ' 

i.e. 
l,. = 7.75 • 10- 3 cm.= 0.08 mm. . (28) 

This wave length lies in fact far out in the ultra-red. 
Experiment has shown that water has more than one region of 
absorption in the ultra-red,* but the order of magnitude of the 
wave length which is most strongly absorbed is in fact in 
agreement with (28).t 

Experiments upon flint glass, fl.uor-spar, quartz, rock salt, 
and sylvine have given further quantitative verifications of the 
dispersion equation (19) when rays of long wave length have 
been investigated. :j: If (I 9) be written in the form 

.Cl' 2 
2 + , + ,, v.-r,. 

n = l ;Ef),. ~ r2 - -r,.2• 

* F. Paschen, Wied. Ann, 53, p. 334, 1894. 
t Rubens and Aschkinass, Wied. Ann. 65, p. 252, 1898, 
t Rubens and Nichols, Wied. Ann, 6o, p. 418, 1897 ; Paschen, Wied. Ann. 

54, P· 672, 1895. 
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Le. in the form 

it is evident that Ir must be identified with the dielectric con
stant €. In the case of the substances just mentioned 1fl can 
be well represented by equation (29); for example, for quartz, 
for the ordinary ray, the values of the constants are: 

~ = o.01o6, 'A}= o.01o6, 

~ = 44.224, 'A.12 = 78.22, 

M's= 713.55, 'A32 = 430.56, b2 = 4.58. 

In this '}.4 = T4 • V, and the unit in which '}.4 is measured is a 
thousandth part of a millimetre(µ). According to (29) these 
seven constants ~, Mz, M's, Ap 'A.2 , 'A.11 , Ir must satisfy the 
equation 

L2 I M,+Mz M's 
u-- 1 = ~t),, = v v+ v· ... (30) 

1 2 3 

The numerical value of the right-hand side is 3.2, that of the 
left 3.6. The difference is due to molecules whose natural 
periods of vibration lie so far out in the ultra-violet that T.t = a 
for them. If the sum of the dielectric constants of these mole, 
cules be denoted by t>o', then, from (29), 

b2 = I+ t)~ + ~8:, M,. = t);.'}.,.2. 

Hence the following takes the place of (30): 

M,. I 

b2 - I - l,.2 = f>o- • • • • • (30') 

Now the value of the dielectric constant of quartz lies between 
4.55 and 4.73, which agrees very well with the value of Ir. 

For fluor-spar 

M, = o.oo612, 'A.12 = 0.00888, 
Mz = 5099, 'A.z"' = 1258, 
b2 = 6.09, € = 6.7 to 6.9. 

[Here again (30) is not exactly satisfied.] 
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For rock salt 

~ = 0.018, 
M, = 8977, 
!JI= 5.18, 

'A}= 0.0162, 
'Al= 3149, 

€ = 5.81 to 6.29. 

[(30) is approximately satisfied. 00' = o. 18.] 
For sylvine 

~ = 0.0150, 
M, = 10747, 
b2 = 4.55, 

'Al= 0.0234, 
'A.22 =45 17, 

€ = 4 94. 

[(30) is not satisfied. According to (30') 00' = 0.53.] 
The conclusion that the difference between € and A of 

equation (25) indicates natural periods of vibration and absorp
tion in the ultra-red cannot be inverted, i.e. even if the dielec
tric constant € has the same value as the constant A, which is 
independent of the period in the dispersion equation, natural 
periods and absorption in the ultra-red are not necessarily 
excluded. According to (25) it is only necessary that the 
dielectric constants 8; of the kinds of ions which lie in the 
ultra-red be very small. Nevertheless appreciable absorption 

can occur when.,.= Tr• For then in (18) the term t>;: i• ar 
T,,. 

appears in the expression for e'. By (12) this term has the 
value - z2 Trfil.-: rr, in which r,, denotes the frictional resist
ance defined in (I). The value of this term remains finite even 
when 8r is very small. Thus many substances actually exist, 
such as the hydro-carbons, for which the difference between € 

and A is small and which yet absorb. heat-rays to a certain 
extent. 

From equations (22) or (23) it follows that n2 continually 
decreases as T increases. This can be observed in all trans
parent substances: it is the normal form of the dispersion 
curve, and hence this kind of dispersion is said to be normal. 

3. Anomalous Dispersion. - The dispersion is always 
normal so long as the investigation is confined to a region oF 
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impressed periods which does not include a natural period of 
the ions. But whenever an impressed period coincides with a 
natural period, the normal course of the dispersion is disturbed. 
For it follows from (19) that for periods T which are smaller 

than a natural period T,., i.e. for which I - ('!f )2 has a nega

tive value, say - C, n2 contains the large negative term 
- t)~ : I;; while for those values of T which are larger than 

T,., 1 - (:," )2assumes the negative value C', so that n2 contains 

the positive term + t){ : C'. Hence as T increases conti'n· 
uously Ji}- in general decreases; but in passing through a region 
of absorption it increases. Within the region of absorption 
(19) cannot be used, but ni and K must be calculated from 
(18), a1,; being now retained in the calculation. In any case 
n2 must be a continuous function of T. Hence the general 
form of the n2 and K curves is that shown in Fig 102. The 
value of K differs from zero only in the immediate neighborhood 
of T,., and there it is larger the smaller the value of a,.. For, 
from (18), when T= T1,;, 

Hence if a,., i.e. r,., is small, the absorption bands of the 
substance are sharp and narrow; but if a,. is large, the absorp
tion extends over a large region of wave lengths but has a 
small intensity. 

The form of the anomalcus dispersion curve shown in Fig. 
102 represents well the observations upon .substances which 
exhibit strong selective absorption, for example, fuchsine. * 
The gases and the vapors of metals are distinguished by very 
narrow and intense absorption bands, and anomalous dispersion 
occurs in the neighborhood of these bands. 

* Cf. Ketteler, Tbeoret. Optik, Braunscbwe1g, 1885, p. 548 sq. A good 
verification for the case of cyanine is given by Pfittger, Wied. Ann. 65, p. 173, 
18g8. 
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The existence of anomalous dispersion is most simply 
proved by the fact that a prism of some substances produces 
from a line source a spectrum in which the order of the colors 
is not normal. The phenomenon is, however, complicated by 
the fact that in the spectrum two colors may overlap. Hence 
it is preferable to use Kundt's method in which a narrow hori
zontal spectrum formed by a glass prism with a vertical edge 
is observed through a prism of the substance to be investigated, 
the refracting edge of the latter being horizontal. If the dis-

Fro. 102. 

persion produced by the second prism is anomalous, the 
resultant spectrum is divided into parts which are at different 
heights and are separated from one another by dark spaces 
which correspond to the regions of absorption. 

An objection to this prism method is this, that when the 
absorption of the substance under observation is large, only 
prisms of small refracting angle can be used. Hence the 
method of Mach and Ar bes,* in which total reflection is made 
use of to determine the anomalous dispersion, is preferable. 
A solution of fuchsine is placed in the glass trough G and a 
flint-glass prism P placed upon it. The rays from a line 
source L, which lies in a vertical plane, are concentrated by 
means of the lens s1 upon the bounding surface between the 
glass and the fuchsine solution. The lens s2 collects the 

* Mach and Arbes, Wied. Ann. 27, p. 436, 18g6. 
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reflected rays and forms a real image of L upon the screen S. 
This image is spread out into a spectrum by means of a suitably 
placed glass prism. This spectrum then shows the distribution 
of light indicated in the figure : the curve mnpq represents the 
limiting curve of total reflection. The break in the curve 
between n and p shows at a glance the effect of anomalous 
dispersion. Between n and p there is a dark band, since, for 
the colors which should appear at this place, the index of 
refraction of the flint glass is the same as that of the fuchsine 
solution, so that no reflection whatever takes place. The 
index of refraction within the region of maximum absorption 
cannot always be determined by this method, since, on account 
of the high absorption, the partial reflection in this region is so 

s 
m 

Red 

Yellow 
p 

Blue 

i q 

FIG. 103. 

large (cf. metallic reflection) that it passes continuously into 
total reflection, so that no sharp limiting curve appears. n and 
x can then Le determined from the partial reflection as in the 
case of the metals. 

A striking confirmation * of the theory here presented has 
recently been brought out by the discovery of the fact that for 
very long waves (A. = 56µ) quartz has a much larger index 
(n = 2.18) than for the shorter visible rays. Equation (29) 
gives, with the assumption of the values of the constants given 
for quartz on page 39 I, n = 2. 20. Hence if the radiation from 
an Auer burner be decomposed into a spectrum by means of 
a prism of quartz, these long waves are found beyond the violet 

* Rubens and Aschkinass, Wied. Ann. 671 p. 459, 1899. 
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end of the spectrum and may therefore be easily isolated by 
cutting off the other rays with a screen. 

The case inverse to that of narrow absorption bands is that 
in which not a,. but b,. or r,. are to be neglected in (18) or 
(15), i.e. the case in which the region of absorption is one in 
which no natural periods of the ions occur (the impressed 
periods are larger than the natural periods could possibly be). 
In this case, from (18), 

n'(r -;K}'= r + L ~; . .,(, - ;•;) + L (,.y- (32) 
1+ra 1-r 

The last~. that connected with the index v, refers to the 
natural periods which lie in the ultra-violet. If these periods 
are assumed to be small in comparison with T, then from (32), 
if, as on page 391, ~8~ be called -8~. 

If only ions of kind h are present, it appears that as T 
decreases from T = oo , n decreases continuously, and the 
absorption, which covers a broad region, reaches a maximum 
for a certain period T. These equations appear to represent 
well for many substances the dispersion phenomena as they are 
observed by means of long electrical waves ranging between 
the limits l = oo and l = 1 cm.* 

4. Dispersion of the Metals.-In considering conductors 
of electricity it is necessary to bear in mind that within these 
conductors a constant electrical force produces a continuous 
displacement of quantities of electricity, and that these latter 
have no definite positions of equilibrium. The idea made use 
of in electrolysis, that the displaced electrical quantities are 
connected with definite masses (ions), will be applied to the 
metals to the extent that the motion of the ions will be 
assumed to take place in the metals also as though the ions 

* Cf. Drude, Wied. Ann. 64, p. 131, 18g8. 
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possessed inert mass m. But this may be only apparent 
:,nass, since the inertia may be accounted for by self-induction 
(cf. note, page 383). 

The constant t) of these conducting ions must be taken as 
infir.itely great, since, according to (2), t)1 is proportional to 
the displacement of the ions from their original position be
cause of the influence of a constant electrical force. The equa
tion of motion of these ions is therefore obtained from equation 
(1) on page 383 by substituting in it t)1 = oo. It is, therefore, 

7J2& a& 
m- = eX -re2- (34) 

a-fl at' 

or if the current due to these ions, which according to (5) is 

J~ = efil~~, be introduced, 

mQJ~ r. X 
rma, + ~1,.= • (35) 

In this equation m is the (apparent or real) mass of an ion, e 
its charge, m the number of ions in unit volume. From (35) 
it is evident that if two kinds of conducting ions, one charged 
positively and the other negatively, whose resistance factors 
are r 1 and r 2 , respectively, are present, then for a constant 
current the following holds: 

ml + m2 = CT, • (36) 
r1 r2 

in which cr is the specific conductivity of the substance measured 
in electrostatic units (cf. page 358). 

For periodic changes, since X = - iT ~~-' by (35), 

1~{{e2~ +; }= - ir0{,, 

or 

• (37) 
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Equation (14) on page 386 must then be extended by a 
term of this kind so that if, for abbreviation, 

m: e2 = m', . 

the resultant complex dielectric constant takes the form 

I +L -BJ. L 9l € = I b + 47l'T ,. _a,. ,. . m 
"1+z--:;T k zr--

T T T 

(39) 

If it be assumed that the periods are remote from the 
natural periods of the ions of kind h, so that a,. may be neg
lected, then since €' = n2(1 - iK)2, it follows from (39), by 
separation of the real and the imaginary parts, that 

~ r9l 
n2K = 21l'T k (m')2· . 

r2+ -
T 

(41) 

From this it is evident that in the case of the metals K may 
be greater than 1, since the right hand side of (40) may be 
negative not only on account of the second term, but also on 
account of the third term, which is proportional to the mass m) 
of the conducting ions. For a given value of m' and -r the 
right-hand side of (40) becomes negative sooner the smaller r 
is, i.e. the larger the specific conductivity. Furthermore, (41) 
explains the second difficulty which was mentioned on page 
368, namely, that for the metals trK is smaller than uT. For 
if m' = o, or T = oo, (41) actually gives, in connection with 
(36), the relation demanded by Maxwell's original theory, 
namely, 

9l 
n2K = 21l'T~- =<r T; 

r 

but if m' cannot be neglected in comparison with r, and this 
T 
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is the case when the period is small (-r small) and the conduc
tivity large (r small), then (41) gives n2K < <rT.* 

Still more general equations than (40) and (41) could be 
formed by taking account of the conditions represented by (33), 
which would correspond to the assumption that, in addition to 
the actually conducting ions, other conducting constituents 
were present, which constituents, however, under the action 
of a constant electric force, would be displaced only a finite 
distance from their original positions. This is the case of 
so-called internal conductivity which can be roughly imitated 
by embedding conductors in dielectrics. Whether such an 
assumption is necessary or not cannot be determined without 
a more complete investigation of the dispersion of the metals 
than has as yet been possible. 

Equations (40) and (41) also account for the fact that only 
in the case of substances which are as good conductors as are 
the metals does the electric conductivity cause absorption of 
light, while in the very best conducting electrolytes the con
ductivity is still so small that they can be quite transparent, as 
observation shows them to be. Thus, for example, the specific 
conductivity of the best conducting sulphuric acid or nitric acid 
is only 7 • I0- 5 times that of mercury. Since for the latter 
(cf. page 358) <T = I016 , for the best conducting electrolyte 
<T = 7 · 1011 • Now the period of the light vibrations is about 
T= 2,10- 15, hence <rT= 14,10-' or =0.0014. But, from 
(41), n2K is always smaller than <rT. Thus K, i.e. the light 
absorption, or at least that part of it due to conductivity, is 
very small. 

* For a more complete discussion d. Drude, Phys. Zeitschr. p. 161, January, 
1900. 
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OPTICALLY ACTIVE SUBSTANCES 

I, General Considerations.-If a ray of plane-polarized 
light falls perpendicularly upon a plane-parallel plate of glass, 
the plane of polarization of the emergent ray is the same as 
that of the incident ray. This is generally true for all sub
stances, including crystals which are cut perpendicularly to 
the optic axis. 

Nevertheless the so-called optically active substances present 
a striking exception to the rule. Thus, for example, a plate 
of quartz, cut perpendicularly to the optic axis, rotates the 
plane of polarization strongly, and even a sugar solution rotates 
it appreciably. This last fact is the more remarkable because 
it is customary to look upon a solution as a perfectly isotropic 
substance; but this phenomenon indicates that it is not iso
tropic. For, from considerations of symmetry, if a substance 
were perfectly isotropic, it could produce no change whatever 
in the plane of polarization of the incident light. 

This phenomenon therefore indicates that, optically con
sidered, a sugar solution possesses no plane of symmetry, since 
otherwise, if the plane of polarization of the incident light 
coincided with this plane, no rotation could take place. But 
the nature of a solution is of itself evidence that it has the same 
properties in all directions. Hence the form of the differential 
equations which are able to describe the optical processes in a 
sugar solution must be such that it remains unchanged for any 
arbitrary rotation of the entire coordinate system; but it must 

400 
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change if only one of the coordinate axes is inverted, i.e. if, 
for instance, x and y remain unchanged while z is changed to 
- z. Substances for which differential equations of this form 
hold are called unsymmetrically isotropic. 

On the other hand a crystal which, like quartz, has no 
plane of optical symmetry is called an unsymmetrically crystal
line substance. 

2. Isotropic :Media.-Lack of symmetry in a solution can 
have its origin only in the constitution of the molecules, not 
in their arrangement. In fact le Bel and van't Hoff have been 
able to bring the rotating power of substances into direct con
nection with their chemical constitution. In the case of solids 
the lack of symmetry may be due to the arrangement of the 
molecules. 

An attempt will here be made to extend the preceding 
theory by altering equation (I) on page 383, Maxwell's fun
damental equations being as usual maintained. 

The unsymmetrical constitution of a substance can be 
recognized only by comparing its properties at one point with 
those at a neighboring point. The extension of the preceding 
ideas as to the motions of the ions will consist in considering 
the displacement of an ion to depend not only upon the elec
tric force which exists at the point occupied by the ion, but 
also upon the components of the electric force in the immediate 
neighborhood of this point. In order to express this idea 
mathematically it is necessary that equations (1) or (2) on page 
353 contain not only X but also the differential coefficients of 
X, Y, and Z with respect to the coordinates. Now in view 
of the condition of isotropy, i.e. that the properties of the sub
stance in one coordinate direction are not to be distinguished 
from those in another, the only possible extension of t2) is 

-a ( '[av aZ7) et=-X+f -- -J, 
41t cs oy 

to which are to be added two similar equations obtained by a 
cyclical interchange of the letters in ( 1 ). So far as isotropy 
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is concerned (I) might also contain the term ~:, but this must 

vanish because otherwise 

(o~ 011 a') a2X a2Y a2Z 
e OX + oy + oz ~ o.r + oy~ + oz2 ' 

i.e. an accumulation of free charge might take place, since in 
general-for example, in the case of light vibrations-the 
right-hand side does not. vanish. 

An unsymmetrical isotropic medium would result if all 
the molecules were irregular tetrahedra of the same kind, -
the tetrahedra of the opposite kind (that which is the image of 
the first) being altogether wanting. The same would be true 
if. one kind existed in smaller numbers than the other. A 
graphical representation of equation (I) may be obtained by 
conceiving that because of the molecular structure the paths 
of the ions are not short straight lines, but short helixes twisted 
in the same direction and whose axes are directed at random 
in space. Consider, for example, a right-handed helical path 
whose axis is parallel to the x-axis. The component X drives 
the charged ion always toward the left; but a positive Y drives 
the ion on the upper side of the helix toward the left, on the 
x. lower side toward the right. The result 

!I 

is therefore a force toward the right which 

• • 1 oY • • d d IS proport1ona to - "az• smce It epen S 

upon the difference between the value of 
Y above and its value below. Likewise 

x a positive Z drives the ion on the front 
FIG. 104. side of the helix toward the left, on the 

back side toward the right. The resultant effect toward the 

right is therefore proportional to + ~:- These conditions are 

represented in equation (I), in which f' would be negative if 
the paths of the ions were right-handed helices and if the 
coordinatt> system were chosen as in Fig. 104. 
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In consideration of equation (I}, equation (I) on page 38 3 
would become 

m ??E = e(x + f'[oY _ oZ-,)- 411e2 e _ re2oe_ (z) 
oil oz oiJ 8 a, 

If, as on page 38 5, e be assumed to be a periodic function of 
the time, then there results, upon introduction of the current 

U,,Ji=e~~;. 

(3) 

in which 

(4) 

In what follows ~ will be neglected, which is permissible 
-r 

if the periods of the light vibrations are not close to the natural 
periods of any of the ions. The whole current due to all of 
the ions and the ether is then 

in which 

• 1 o { (oY oz,)} 
J,, = 41tot eX+f oz - oy ' 

f - ~ 8J,.'~,. 
- (-r,.)2' 

I - -r 

(5) 

(6) 

The fundamental equations (7) and (11) on pages 265 
and 267 become therefore, if the permeability µ = I, so that 

oa 
4,rs_.. = a' etc., 
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(7) 

.: ~(cZ+ f~x _ oYJ) _ o/1 oa 
c at Loy ax - ox oy • 

1 oa o Y aZ I o/3 oZ oX I oy aX a Y 
cot= -oz - oy' cot= ox - oz' cat =I oy - ox' (8) 

From the same considerations which were given on page 
271, it is evident that the boundary conditions to be fulfilled in 
the passage of light through the surface separating two differ
ent media are continuity of the components parallel to the sur
face of both the electric and magnetic forces. 

In this way a complete theory of light phenomena in 
optically active substances is obtained. 

From equations (7) it follows that 

(9) 

Hence from equations (7) and (8) there results, by the elimina
tion of a, p, y, •as on page 275, 

I o2 ( [aY aZJ) c2ot2 cX +I a;- oy = L1X, 

1 02 ( [oz ax]) 
c2ot2 cY +I OX - ~ = LJY, (10) 

I a2 ( [oX oYJ) c2 ot2 cZ + I oy - ox = LJZ. 

a, /1, y satisfy equations of the same form. 
3. Rotation of the Plane of Polarization.-If a plane wave 

is travelling along the z-axis, it is possible to set 

V U ~(t - pz) .,~ = .ir1.er , 

i 
Y u-(t - pz) = .iver , Z=o . (11) 
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p represents the reciprocal of the velocity of the wave. If the 
values in ( I I) be substituted in ( IO), there results 

z 
eM - -:;JPN= Mp2c2, 

z 
eN + - fpM = Np2c2. 

T 

These equations are satisfied if 

. (12) 

or if 

e-p2ci=_P;, M=-i'N.. (13) 

Hence in this case the peculiar result is obtained that two 
waves exist which have different values of p, i.e. different 
velocities. Further, the waves have imaginary y--amplitudes if 
they have real x-amplitudes. 

In order to obtain the physical significance of this it is to 
be remembered that the physical meaning of X and Y is found 
by taking the real part of the right-hand side of (II). Hence 
when z'N=M, 

I 
X = M cos -(t - pz), 

r 

whenz"N= -M, 

I 
X = M cos -(t - pz), 

T 

Y = M sin ~(t - pz); 
T 

Y= - Msin ~t- px). 
r 

These equations represent circularly polarized light; and 
since, in accordance with the conventions on page 264, the 
x-axis is directed toward the right, the y-axis upward to an 
observer looking in the negative direction of the z-axis, the 
first is a left-handed circularly polarized wave, since its rotation 
is counter-clockwise; the second is a right-handed circularly 
polarized wave (cf. page 249). 
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Now these two waves have different velocities 
fact, from (12), for the first 

, 1 f 1✓ f2 
P = V' = - 2rc2 + c 4T2c2 + E, 

and, from (13), for the second 

,, I f I✓ f2 
p - V" - + · ~ + 2 ,.2 + €. 2rc c 4rv 

V, and m 

. (16) 

Hence the indices of refraction for right-handed and left
handed circularly polarized light in optically active substances 
must be somewhat different; and a ray of natural light is 
decomposed into two circularly polarized rays one of which 
is right-handed, the other left-handed. When the incidence 
is oblique these two rays should be separated. These deduc
tions from theory have been actually experimentally verified 
by v. Fleischl * for the case of sugar solutions and other 
liquids. 

The effect of the superposition of two circularly polarized 
waves whose velocities are V' and V" respectively, one of 
which is right-handed, the other left-handed, is 

1( P'+p" ) 1p'' p' } X= X+X" = 2Mcos - t z cos----z, 
T 2 T 2 

I( P'+ p'') I p"-p' • (18) 
Y = Y' + Y' = 2M cos - t---- z sin - C------=-z. 

T 2 T 2 

Hence in one particular position, i.e. for a certain value of z, 
the light disturbance is plane-polarized, since, according to 
(18), Xand Yhave the same phase. The position of the plane 
of polarization with respect to the x-axis is determined from 

I p" p' 
Y: X = tan - '---~z, 

T 2 

* E. v. Fleischl, Wied. Ann. 24, p. 127, 1885. It is easier to prove the cir
cular double refraction of quartz along the direction of the optic axis. In quartz 
the constant/is greater than m liquids. 
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i.e. this position varies with z. Thus the plane of polarization 
rotates uniformly about the direction of propagation of the 
light, the angle of rotation corresponding to a distance z being 

z p" -p' f f 
~ - --- - --z - 21r2-z 
u - r 2 - 2r2c~ - 'A 82 ' 

provided 'J,. 0 = Tc denote the wave length in vacuum of the 
light considered. Since pc represents the index n of the sub
stance with respect to a vacuum, 

z n" - n' 1r o = - --- = z-:,-(n" - n'), 
TC 2 ~O 

n" and n' denoting the respective indices of refraction of the 
substance for a right-handed and a left-handed circularly 
polarized wave. Hence, from (19) and (191), 

If, then, plane-polarized light fall perpendicularly upon a 
plate of an optically active substance of thickness s, the plane 
of polarization will be rotated an angle o by the passage of the 
light through the crystal. The rotation o may take place in 
one direction or the other according to the sign off. n" - n' 
may be calculated from o by (191). 

Special arrangements have been devised for measuring this 
angle of rotation easily and accurately.* In the half-shadow 
polarimeter the field of view is divided into two parts in which 
the planes of polarization are slightly inclined to each other. 
But even with the use of two simple Nicols, a polarizer and an 
analyzer, when the light is homogeneous and sufficiently 
intense the position of the plane of polarization can be deter
mined from the mean of a number of observations to within 

* For a description of such instruments cf. Landolt, Das optische Drehungs
vermOgen der organischer Substanzen, Braunschweig, 2d Edition, 1897; Muller
Pouillet, Optik, p. 1166 sq. Rotation of the plane of polarization has been 
practically made use of in sugar analysis. 
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three seconds of arc, provided the setting is made with the aid 
of the so-called Landolt band. For when Nicol prisms are 
used the field of view is never polarized uniformly throughout, 
so that, when the Nicols are crossed, the whole field is not 
completely dark, but is crossed by a dark curved line which 
was first observed by Landolt. The position of this band 
changes very rapidly as the plane of polarization of the light 
which falls upon the analyzer changes.* 

4. Crystals.-In order to obtain a law for crystals, it must 
be borne in mind that the constants -81 , r 1 , which appear in 
equations (1) of the dispersion theory on page 383, depend 
upon the direction of the coordinates. Also that the terms 
which have been added in this chapter and which correspond to 
the optical activity can have a much more general form within a 
crystal than that given in (1) on page 401. Nevertheless the 
assumption will be made that, so far as these added terms are 
concerned, a crystal is to be treated like an unsymmetrically 
isotropic substance. No objection can be made to this assump
tion, since the coefficients f of these added terms are so small, 
in the case of all the actually existing substances, that the 
change off with the direction which is due to the crystalline 
structure can be neglected. 

If the coordinate axes be taken in those directions which 
would be the axes of optical symmetry of the crystal if it were 
not optically active, the extension of equations (7) and (8) 
would bet 

1 o ( [ov oz]) or o/J C ot elX + f oz - oy - oy - CZ' 

1 o ( [ cZ oXJ) ca or 
C ot e2 Y + f ox - oz - oz - OX' 

1 o ( [ox ovJ-) ofJ oa 
cot €7 + f ar - OX - ex - cy • 

• Cf, Lippich, Wien. Ber. (2), 85, p. 268, 1892 ; Muller Pouillet, Optik, 

t C is wri!t~n 'nr r. 
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I oa oY oZ I ofJ oZ oX I oy oX oY 
c ot = oz - oy ' c ot = ox - oz ' c ot = oy - ex' <2 1) 

in which 

(23) 

In this -B~fil,., -B;fil,., -B;'fil,. denote the three different dielec
tric constants of the ions of kind h along the three coordinate 
directions, and r~ , r;, -r; are proportional to the three periods 
of vibration corresponding to the three axes. In (23) 8,., r,. 
are mean values of-8~, -B;, -B;', and r~, r;, -r;', respectively. 

For the sake of integration set, as on page 36g, 

in which u, v, w may be interpreted as the components of the 
light-vectors. Then it follows from (20) and (21),* using the 
abbreviations 

C2 : E\ = a2, C 2 : €2 = b2, C 2 : €3 = c2, (25) 
21tfC 

1/ = Tel- ' (26) 

(in which e denotes a mean value of e1 , e2 , e3) that the expres-

* This is more fully developed in Winkelmann's Handhuch, Optik, p. 791. 
The normal surface and the ray surface are more fully discussed by O. Weder in 
Die Lichtbewegung in zweiaxigen Crystallen, Diss. Leipzig, 18g6, Zeitschr, f. 
Jtrystallogr. I 896, 
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sion for the velocity V in terms of the direction m, n, p of the 
wave normal takes the form : 

m1( v2 - b2)( v2 - c2) + n2( V2 - c2)( v2 - a2) 

+ p,2(V2 - a2)(V2 - b2) = rf. (27) 

The introduction of the angles g 1 and g 2 which the wave 
normal makes with the optic axes gives, as on page 320, 

2 V12 = a2 + c2 + (a2 - c2) COS g 1 COS g 2 t 
+ -v'(a2 - c2)2 sin~ g1 sin2 g2 + 4,7~, (28) 

2 V/ = a2 + c2 + (a2 - c2) cos g 1 cos g 2 

- -v'(a2 - c2)2 sin2 g 1 sin2 g 2 + 4,f. _ 

It appears from this that the two velocities V1 and V2 are 
never identical, not even in the direction of the optic axes. 

Thus upon entering an active crystal a wave always divides 
into two waves which have different velocities. These two 
waves are elliptically polarize<l, and tte vibration form of both 
is the same, but the ellipses lie oppositely and the direction of 
rotation in them is opposite. The ratio h of the axes of the 
ellipse is given by 

h 1 ¥(a2 - c2)2 sin2 g 1 sin2 g 2 + 4rf' 
+ 7i = Tf • (29) 

Hence in the direction of an optic axis (g1 or g 2 = o) 
h = I, i.e. the polarization is circular. But when the wave 
normal makes but a small angle with the direction of an optic 
axis, the vibration form is a very flat ellipse, since 217, even in 
the case of powerfully active crystals, is always small in com
parison with the difference a 2 - c2 of the two velocities. 

Biaxial active crystals have not thus far been found in 
nature; but several uniaxial active crystals exist. Quartz is 
one of these. It exists in two crystallographic forms, one of 
which is the image of the other: hence one produces right
handed, the other left-handed, rotation. The rotation of the 
plane of polarization which is produced by a plate of quartz cut 



OPTICALLY ACTIVE SUBSTANCES 411 

perpendicular to the optic axis is given, as in the case of 
isotropic media, by the equation 

f '1( 

o = 2'1r2 ,:iz = y:s(n'' - n'). (30) 
llo 0 

When s = I mm. and yellow light (Ao= 0.000589 mm.) is 
used, o = 21.7° = o. 1271' radians. Hence in this case 

f 11 , A0 ( ) 
2'1r- = n - n = 0.12•- = 0.000071. . 31 l 0 s 

In this n' and n" denote the two indices of refraction which 
quartz must have in the direction of its optic axis in conse
quence of its optical activity. Now a double refraction n11 - n' 
of the magnitude given in (3 1) has actually been observed in 
quartz in the direction of its axis by V. v. Lang. This double 
refraction can be conveniently demonstrated by the method 
due to Fresnel, in which the light is successively passed through 
right- and left-handed quartz prisms whose refracting angles 
are turned in opposite directions. 

If a quartz plate of a few millimetres' thickness, which is 
cut perpendicular to the axis, be observed between crossed 
Nicols in white light, it appears colored. For the plane of 
polarization of the incident light has been rotated a different 
amount for each of the different colors, and all of those colors 
must be cut off from the field of view whose planes of polariza
tion are perpendicular to that of the 
analyzer. Hence the color of the 
quartz plate changes upon rotation 
of the analyzer. In convergent 
white light the interference figure 
described on page 356 for uniaxial 
crystals when placed between 
crossed Nicols are observable only 
at considerable distance from the 
centre of the field. Near the centre 
the circular polarization has the 
effect of nearly destroying the black FIG. 105. 

cross of the principal isogyre. Hence a quartz plate cut per-
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pendicular to the axis shows, between crossed Nicols in con
vergent light, the interference figure represented in Fig. 105. 

Spiral interference patterns appear when the incident light 
is drcularly polarized. The calculation of the form of these 
spirals, which are known as Airy's spirals, is given in 
Neumann's "Vorlesungen tiber theoretische Optik," Leipzig, 
1885, page 244. 

5. Rotary Dispersion.-The rotation 6 of the plane of 
polarization, which is produced by optically active substances, 
varies with the color. The law of dispersion can be obtained 
from equations (6) and (19) by setting the thickness of the 
plate z = I and introducing for i\0 , the wave length in vacuum, 
it, the wave length in air,* thus 

k -8,.l;W,. 
0 = j\2~ (T")2' 

I - --r 
in which k is a constant. 

If the natural periods of the active ions t are so much 
smaller than the period of the light used that (r,. : -r)2 is neg
ligible in comparison with 1, there results the simplest form ot 
the dispersion equation, namely, 

k' 
0 = Ti" (33) 

This equation, due to Biot, agrees approximately with the 
facts; yet it is not exact. If all the natural periods of the 
active ions lie in the ultra-violet, (32) can be developed in 
ascending powers of (-r,. : T)2 and put into the form 

- kl k2 k3 
0 - A,2 + "i4 + A,& + . . . (34) 

Now in most cases the first two terms of this equation 
(Boltzmann's equation) are sufficient; nevertheless this is not 

* In view of the small dispersion of air th is is permissible. 
t Ry active ions will be understood those kinds of ions whose equations of 

motion are of the furm (2) above, while those ions will be called inactive for which 
he constant/' in equation (2) has the value zero. 
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so for quartz, in which o has been measured over a large range 
of wave lengths, namely, from ;\ = 2µ to l = 0.2µ. The 
constants k1 , k2 , k3 can have different signs, since the f~ 
corresponding to the different kinds of active ions need not 
have the same sign. 

If some of the active ions have natural periods -r in the 
ultra-red, then (32) must be developed in powers of (-r : -r,.)2. 
The equation then takes the form 

o = :: + :! + :: + ... + k' + k/ l 2 + k2' ;\ 4 +. . . (3 5) 

If, as in the case of quartz, it is desired to represent the 
dispersion over a large range of colors, some of which have 
periods which are close to the natural periods, then it is better 
to avoid development in series and to write, in accordance 
with (32), 

Now in the case of quartz the wave lengths ;\1 of the natural 
periods which lie closest to those of light are known for the 
ordinary wave; they are (cf. page 391) ;\/ = 0.010627, 
Al= 78.22, 'A32 = 430.6. The unit of wave length is here 
taken as 1µ =0.001 mm. But the conclusion has already 
been drawn from equation (30') that quartz has ions for which 
;\1 is much smaller than the wave length of light. The activity 
coefficient k' of ions of this kind, for which 'A12 may be neg
lected in (36) in comparison with ;\ 2, must be taken into con
sideration, so that the following dispersion equation is obtained 
for quartz:_ . 

kl k2 + k3 k' 
o = 12 - ;\ 2+ 12 _ 'A 2 71.2 - 'A 2+ 12· 

2 3 
(37) 

If this equation be applied to the dispersion of quartz, it is 
found from observation that k2 = k3 = o, i.e. that the kinds of 
ions whose natural periods lie in tlze ultra-red are inactive, and 
that k1 and k' have different signs. Now it argues for the 
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correctness of the foundations of the theory here presented 
that, with the help of the equation 

k k' 
0 = 12 _ 1 ;\ 2 + 12, (38) 

l 

which contains but two constants, since ;\1 is a constant which 
depends upon ordinary dispersion and not upon rotary disper
sion, the latter can be well represented, as is shown by the 
following table,* in which the rotation is given in degrees per 
mm. of thickness: 

kl= 12.200, k' = - 5.046. 

l (inµ). iJ obs. iJ calc. 

2.140 1.6o 1•57 
1.770 2.28 2.29 
1.45o 3.43 3.43 
1.o80 6.18 6.23 
o.67o82 16.54 16.56 
0.65631 17.31 17-33 
0.58932 * 21.72 21.70 
o.57905 22.55 22.53 
o.57695 22.72 22.70 
0.54610 25·53 25.51 
o.5o861 29.72 29.67 
0.49164 31.97 31.92 
o.48oo1 33.67 33.6o 
0.43586 41-55 41.46 
0.40468 48.93 48.85 
0.34406 7o.59 70.61 
0.27467 121.o6 121.34 
0.21935 220.72 220.57 

* The D-line. 

It is possible that values of the constants k1 and k' might 
have been chosen so as to give a somewhat better agreement 
with the observations. Nevertheless the important fact is that 
this two-constant equation is in satisfactory agreement with 
observation, while the three-constant equation, which is 
obtained from (37) by placing k' = o, does not satisfy the 
observations. Hence in quartz ions must be assumed to exist 

* The observed values a.re taken from Gumlicb, Wied. Ann. 64, p. 349, 1898. 
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whose natural periods are extremely small, much smaller than 
those corresponding to i\.1• 

As the table shows, o increases as i\. decreases. This is the 
course of normal dispersion. But, as appears from (38), this 
condition would be disturbed, i.e. anomalous rotary dispersion 
would take place, if the wave lengths were smaller than A.1 , 

for then o would be negative. In general anomalous rotary 
dispersion is produced whenever i\. approaches the wave length 
A.. of a natural period. But even when i\. is much greater than 
A.1 , a change in the sign of o may take place, as is shown by 
the general equation (36), if two kinds of active ions are 
present which have activity coefficients k1 of opposite sign. 
In this case maxima and minima in o for variations in A. can 
also appear. 

Cases of anomalous rotary dispersion have often been 
observed. (Cf. Landolt, '' Das optische Drehungsvermogen, '' 
p. 135.) G. H. v. Wyss has produced anomalous rotary 
dispersion by mixing right- and left-handed turpentine (Wied. 
Ann. 33, p. 554, 1888). In general every active substance 
must show anomalous rotary dispersion in certain regions of 
vibration, but these regions do not necessarily lie within the 
limits of the vibrations which can be produced experimentally. 

6. Absorbing Active Substances.-If the wave length i\. 
lies close to the wave length i\.1 which corresponds to the natural 
period of an active ion, then, by (36), the rotation o of the plane 
of polarization is very large. But in this case the coefficient 
of friction a1, which was neglected on page 388, must be taken 
into consideration. a1 must also be taken into consideration 
when the substance shows a broad absorption band. In this 
case e as well as/becomes complex in equation (10); thus 

+ ~ 8,JR1 
e=I ,,IJ b' 

• al l 
i+zT- 1"2 

(39) 
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The quantity p in equation (11) must therefore also be 
taken as complex. If it be written in the form (cf. page 360) 

I - iK 
p= V 

V represents the velocity and K the coefficient of absorption 
of the wave. Since there are two values of p obtained from 
(16) and (17), there must also be two different coefficients of 
absorption, K1 and K", one of which corresponds to a left
handed and the other· to a right-handed circularly polarized 
wave. This has been experimentally verified by Cotton for 
solutions of the tartrates of copper and of chromium in caustic 
potash (C. R. 120, pp. 989, 1044, Ann. de chim. et de phys. 
(7) 8, p. '347, 1896.) That these solutions also showed 
anomalous rotary dispersion is easily understood from the 
foregoing, since the strong absorption which they produce 
is evidence that l lies in the region which corresponds to the 
natural periods. 

If the two indices of refraction n' and n" for left- and right
handed circularly polarized waves be introduced into ( 16), 
(17), and (18), there results 

( 
f II • , f f z-n:f ( 

c p" - p) = n - n' - i(n' K'' - n K') = -= --. 41) 
TC A 

If a sharp absorption band is present, which, according to the 
above, corresponds to a small value of a", then the difference 
between K" and K1 within the absorption band itself becomes 
very marked. For when r 2 = b,., it follows from (39) and 
(41) that 

n" - n' = 0, n" K 11 - n' K 1 = -81,,J;.m,._ . 
a,.·c 

If -r is farther from the natural period -r,., and if a" is sufficiently 
small, so that it is only necessary to retain terms of the first 
order in Kor a,., then, from (39) and (41), the law of dispersion 
for the difference of the coefficients of absorption takes the 
form 

(43) 
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As A. varies, a change in sign, and also maxima and minima 
of n'' K 11 - n' K', may occur, provided there are present several 
kinds of ions which have activity coefficients f,,, of different 
signs. 

Moreover the difference in the absorptions of the right- and 
the left-handed circularly polarized waves is always small in 
comparison with the total absorption. 

For if/2 be neglected, and if only one absorption band is 
present, it is easy to deduce, from (16) and (17), 

n" K 11 - n' K' 2 -n:.f:. 
n" K" + n' K' = Tn, • (44) 

in which n denotes the mean of n' and n''. 
But.f.: A. is always a small number. 
Moreover it is to be observed that it is not necessary that 

every active substance which shows an absorption band should 
exhibit the phenomena here described. For, in order that this 
be the case, it is necessary that the ions which cause the 
absorption should be optically active. It is easily conceivable 
that absorption and optical activity may be due to different 
kinds of ions. 



CHAPTER Vil 

MAGNETICAJ.LY ACTIVE SUBSTANCES 

A. HYPOTHESIS OF MOLECULAR CURRENTS 

1. General Considerations.-Peculiar optical phenomena 
are observed in all substances when they are brought into a 
strong magnetic field. Furthermore it is well known that 
the purely magnetic properties of different substances are very 
different, i.e. the value of the permeability µ varies with the 
substance (cf. page 269). It is greater than I for para
magnetic substances, less than I for diamagnetic ones. Hence 
a magnetic field is said to produce a greater density of the 
lines of force in a paramagnetic substance than in the free 
ether, and a less density in a diamagnetic substance than in 
the free ether. Ampere and Weber have advanced the theory 
that so-called molecular currents exist in paramagnetic sub
stances. According to the theory of dispersion which has 
been here adopted, these currents are due to the ionic charges. 
When an external magnetic force is applied, these molecular 
currents are partially or wholly turned into a definite direction 
so that the magnetic lines due to them are superposed upon 
the magnetic lines due to the external field. 

According to this theory, diamagnetic substances ordi, 
narily have no molecular currents. But as soon as they are 
brought into a magnetic field, molecular currents are sup
posed to be produced by induction. These currents remain 
constant so long as the external field does not change. The 
ionic charges must be assumed to rotate without friction so that 
the maintenance of these currents requires the expenditure of 

418 
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no energ.y. The lines of force due to these induced molecular 
currents must oppose the lines of the external field, since, 
according to Lenz's law, induced currents always flow in such 
a direction that they tend to oppose a change in the external 
magnetic field. 

If it is desired to determine the optical properties of a sub
stance when placed in a strong magnetic field, it is always 
necessary to bear in mind that both in para- and diamagnetic 
substances certain ions are supposed to be in rotation and to 
produce molecular currents. If e be the charge of a rotating 
ion of kind I, and T its period of rotation, the strength of the 
molecular current produced by it is 

i = e: T. (I) 

If now such an ion, rotating about a point ~. be struck by 
the electric force of a light-wave, its path must be changed. If 
the period of rotation T is very small in comparison with the 
period of the light, the path of the ion remains unchanged in 
form and period, but the point about which it rotates is changed 
from ~ to a point ~' distant /; from ~ in the direction of the 
electrical force. The ion then oscillates back and forth 
between ~ and ~' in the period of the light-wave. The same 
mean effect must be produced if the period of rotation is large, 
provided it is not a multiple of the period T of the light vibra
tion. Any rotation of the plane of the path, which is produced 
by the magnetic force of the light-wave, may be neglected, 
since this is always much smaller than the external magnetic 
force. This displacement of the molecular current also pro
duces a displacement of the magnetic lines of force which arise 
from it, so that a peculiar induction effect takes place, an effect 
which must be considered when a wave of light falls upon a 
molecular current. 

This inductive effect can be at once calculated if the 
number of lines of force associated with a molecular current is 
known. 

Now this number can easily be found. Let the paths of 
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the molecular currents all be parallel to a plane whicn is per
pendicular to the direction R of the external magnetic field. 
Consider first a line of length l parallel to the direction R. 
Let 91' denote the number of molecular currents due to ions of 
kind I upon unit length; then l • 91' denotes the number upon 
the length l. These currents may be looked upon as a 
solenoid of cross-section q, q being the area of the ionic orbit. 
The number of lines of force in this solenoid is* 

M = 41r91' iq : c. 

If now there are 91'' such solenoids per unit area, then the 
number of magnetic lines per unit area due to these molecular 
currents is 

91' 91" iq . 91 
Ml = 4 C = 41rzq7, 

in which 91 is the number of rotating ions of kind I in unit of 
volume. 

The components of~ in the direction of the coordinates 
are 

«1 = :,r t"q91 cos (K.r), p1 = 4; iq91 cos (Ky), } . 
47l'. (2) 

Y1 = -zq91 cos (Kz). 
C 

2. Deduction of the Differential Equations.-The discus
sion will be based upon equations (7) and (11) (cf. pages 265 
and 267) of the Maxwell theory, namely, 

47l' . or o/J 41l' -av oz 
C Jz = OJ' - oz etc., 7sx = oz - oy etc. (3) 

But while in the extensions of the Maxwell theory which have 
thus far been made only the expression J~ for the electric cur
rent density was modified by the hypothesis of the existence 
of ions, the magnetic current density s,. retaining always the 

• The number of lines of force in a solenoid is 41tniq, where n is the number of 
turns in unit length and i tlie strength of the current in electromagnetic units. 
Since here i is defined electrostatically, c occurs in the denominator. 
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l 1 •• oa f h . . constant va ue ,;'It• ot' here, because o t e introduction of the 

concept of rotating ions, s,. must also assume another form. 
4n;~ and 41rs.,. are defined by (12) on page 268 as the change 
in the density of the electric and the magnetic lines of force in 
unit time. 

Now in order to calculate 4n:s. it is necessary to take 
account of the fact that it consists of several parts. The 
change whicb is produced directly by a light-wave in the flow 
of lines of force through the rectangle dy dz in the ether is 

oa 
represented by dy dz. ot. But another quantity must be added 

to this-a quantity which is due to the motion, produced by 
the light-wave, of the point , about which the ions rotate, 
since the lines of force M1 move with the point P. 

In order to calculate the amount of this portion of s,., con
sider a rectangular element dy dz perpendicular to the .r-axis, 
and inquire what number of lines of force cut z~ 
the four sides abed of the rectangle because 
of the motion of ,, the components of the c 
motion being e, r,, t;;. a Y 

Consider first only the lines of force « 1 • 

which are parallel to the .r-axis. In unit Fm. 100• 

time the number of lines of force which pass into the rectangle 

through the side a is ( a 1 • ~;) /z; and the number which pass 

out through the side c is (a1-::) dz. The subscripts a and c 
• 

are to indicate that the value of the expression « 1 • ~; is to be 

calculated along these sides respectively. Hence 

(ai- ~;), = («1-~;)a + dy:Y(a1• ~;). 

In the last term a 1 is left under the sign of differentiation in 
order to include the case of non-homogeneous media for which 
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a 1 , /11 , y 1 are functions of the coordinates. In homogeneous 
substances a

1 

', /J
1

, y 
I 

are constant. The number of lines a
1

, 

which in their motion cut the sides a and c, increase the 
number of lines which pass through the rectangle by the 

amount - dy dz!( a 1 ~;). Similarly the number of lines a1 

which in their motion cut the sides b and d of the rectangle 
add to the total flow through the rectangle the amount 

o ( oC\ 
- dy dzoz al otl· 

Because of the component e of the motion of \J!, the lines 
of force f:J1 , which are parallel to the y-axis, can cut only the 
sides a and c of the rectangle. Now the number of lines which 
pass through the rectangle changes only because of a rotation 
of the lines f:J1 about the z-axis, this change being positive if 
the lines /J1 rotate from the + direction of y to the + direction 
of x. The effect of this rotation can be calculated by subtract-

ing from the expression (p1 • ~~) dz, which gives the number 
ut C 

of lines which cut the side c in a second, the expression 

(f:J1 • t;) dz, which represents the number which cut a in a 
a 

second. Since now 

( ae) ( o& ) a ( ae) 
f:J1·Tt C = P1·Tt .. + dyay fJ1• ot , 

the rotation of ,P1 adds to the flow of lines through the rectangle 

the amount+ dy dz0~ (111t;). 
Similarly the rotation of the lines y 1 about the y-axis adds 

the amount + dy dz0°)r1t;) to the flow oflines through the 

rectangle. 
The total flow through the rectangle, obtained by adding 

these amounts, is 
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The change in unit time in the number of lines which pass 
through an element of unit area perpendicular to the x-axis is 
therefore, since for a constant external field a 1, /J1, y1 are 
independent of the time t, 

4,rs_., = :t {« + a~(r1e - alq - a~(«// - /J1e)} • (4) 

Strictly speaking, the current density is modified in a com
plicated way by the rotation of the ions. But if the ratio of 
the period of rotation of the ion to the period of the light is 
not rational, it is only necessary, in order to find the mean 
effect, to take account of the motion e, T/, t; of the centre of 
rotation,. 

The current density J~ may therefore be written as above 
[cf. equation (7), page 385] in the form 

. 1 ax ae 
J,, = 41l' at + em~,- (5) 

For the motion of a point,, which is the mean position of a 
rotating ion of kind I, two equations will be assumed. The 
first is the same as that given above on page 383, namely, 

a2e 41re2 ae 
m~ = eX - -e-re2- . (6) 

ut2 -8 at' 
and corresponds to the case in which , can oscillate about a 
position of equilibrium (ions of a dielectric). The second 
is equation (34) on page 397, namely, 

a2e ae 
m ofJ = eX - re2at' (7) 

and corresponds to the case in which , moves continually in 
the direction of the constant force X, i.e. the case in which e 

is the ion of a conductor, for example a metal. m denotes 
the ponderable mass of the ion. 

If the changes are periodic, so that every X and every e is 
. t 

proportional to e' r, there results from (6) 

ae j . rfJ m8 1 } -8 oX 
eotl I +z 4,rf' - 4,re' 0 f'2 = 4,r ot' . . (8) 



THEORY OF OPTICS 

while from (7) 

o&( t' m) . oX 
e& r + T e2 = X = - z-r ~- • • 

Hence, setting as above 

(9) 

r8 
-=a, 
4,r 

m ' e2 = m' • • (10) 

(5) gives, in case e is an ion of a non-conductor, 

• 1 -ax { gza } 
Jz = 41r ot I+ I+ ia/r - 6/n ' • . (11) 

But if e is the ion of a conductor, 

. I OX { 47rTgz t 
Jz = 4,r ot 1 + ir - ""Ir f. 

In any case it is possible to set 

. e' oZ 
1• = 41r ot' . (13) 

in which e' is in general a complex quantity depending upon -r. 
Moreover from (I), (2), and (8) there results, for an ion of 

a non-conductor, 

gzf) q 
Y1& = + . I b/ • -T- cos (Kz) X, (14) I za r - r1 C 

and from (9), for an ion of a conductor, 

41rrgz q 
y 1e = . '/ . -T cos (Kz) X. . • . (15) zr _,,, r c 

In both cases it is possible to set 

y1& = r cos (Kz) X, (16) 

in which ,, is in general a complex quantity depending upon T. 

A similar expression may be obtained for a1,, etc. Setting 
further 

,, cos(K.r) = v,., v cos (Ky)= v7 , ,, cos (Kz) = "•• (17) 
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ther. from (13), l4), and (16) the fundamental equations (3) 
become 

1 a 5 a a } -aY az c at1 a+oz(v.X-v_.,Z)-a/r..,Y- v_,X) =-oz -oy' 

1-a{ a c i az-ax 
Cat P+a_;.(v.., Y-ryA)- -a/r,Z-v. Y) f = OX - oz' 

1 a 5 a a l aX av 
cctir+a/r,Z-v.Y)-ox(Y.X-v..,Z)f =ay-o.r' 

(18) 

e' ax oy o/J e' a y oa or e' oz ofJ oa 
---; a1= oy - oz' cat"= oz - ox' cot = o.r - oy· (r 9) 

When several kinds of molecules are present the same 
equations ( I 8) and ( I 9) still hold, but the constants e' and v 
are sums ; thus 

The index h refers to the ions of a dielectric, the index k 
to those of a conductor. T,. is positive or negative according 
as the positively charged rotating ion strengthens or weakens 
the external magnetic field. In the case of a negatively 
charged ion T,. is to be taken as negative when the lines of 
force of the molecular current lie in the same direction as those 
of the external magnetic field. In the case of paramagnetic 
substances T,. is positive for the positively charged ions and 
negative for those charged negatively. For diamagnetic ions 
the case is the inverse. Further, q,. is to be considered as 
dependent upon the strength of the outer magnetic field, for 
when the magnetization is not carried to saturation all of the 
molecular currents have not been made parallel to one another 



THEORY OF OPTICS 

-a fact that is most simply expressed by saying that the value 
of q,. is then smaller. q,. is therefore to be assumed propor
tional to the magnetization of the substance. From their 
method of derivation (cf. page 422) it is evident that equations 
(18) and (19) are perfectly general, i.e. hold also in non-homo
geneous bodies for which e' and v are functions of the coordi
nates. 

3. The Magnetic Rotation of the Plane of Polarization.
Assume that the direction of the beam of light is parallel to 
the direction of magnetization. and let this direction coincide 
with the z-axis. Then X. Y, a, /J depend only upon z and t, 
provided plane waves are propagated along the z-axis. 
Furthermore, Z = r = o, and 

Hence the fundamental equations (18) and (19) become 

A differentiation of these equations with respect to t and a 
aa ap 

substitution in them of the values of at, at taken from (22) 

gives 

For the sake of integration write, as above on page 404, 

.!..(t - ps) .!.c.t - P•> 
X= Mer , Y= Ner (25) 
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Then there results from (24) 
y 

e'M = jr~(M + i-N), 
c-r 

e'N = jr~(N- i.::_M). 
c-r 

These equations can be satisfied in two different ways, 
namely, if 

J?c2( I + ;:.) = e', M=iN, . . (26) 

or if 

p2c2(1 - ~:) = e', M= -iN. (27) 

From the interpretation given on page 405 of the analogous 
equations (12) and (13) it appears that equations (26) and (27) 
represent right-handed and left-handed circularly polarized 
waves and that these waves travel with different velocities. 
The first (26) is a left-handed circularly polarized wave, and 
the value of p corresponding to it is 

✓ e' p'c= Y 

I+
C'T 

The value of p corresponding to the right-handed circularly 
polarized wave is 

p"c = ~- . . . (29) 
I --er 

In case e' and v, i.e. p' and p'', are assumed to be real, a 
superposition of the two circularly polarized waves gives 
plane-polarized light whose plane of polarization rotates, while 
the wave travels a distance z, through the angle 

zp" -P' 
rS=r 2 . (30) 
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If, as is generally the case, v: c-r is small in comparison with 
1, then, from (30), 

y .ye' 
6=~z. 

2C T 

When v is positive the direction of the rotation is from right 
to left, i.e. counter-clockwise, to an observer looking opposite 
to the direction of propagation. The positive paramagnetic ions 
rotate in the same direction when the magnetization has the 
direction of the positive z-axis. Hence when vis positive the 
rotation of the plane of polarization is in the direction of the 
molecular currents in paramagnetic substances. 

Since the direction of rotation depends only upon the direction 
of magnetization, for a given magnetization the rotation of the 
plane of polarization is doubled if the light after passing through 
the magnetized substance is reflected and made to traverse it 
again in the opposite direction. By such a double passage of 
light through a naturally active substance no rotation of the 
plane of polarization is produced. For in an optically active 
substance the direction of rotation of the plane of polarization 
is always the same to an observer looking in a direction oppo
site to that of propagation, i.e. the rotation changes its absolute 
direction when the direction of propagation changes. 

Whether the rotation 6 i's in the di'recti'on of the paramag
netic molecular currents or opposite to i't cannot be determined 
from tke magnetic character of the substance (whether para- or 
diamagnetic), for the sign of v cannot be calculated from the 
permeability µ of a substance when more than one kind of 
rotating ions is present.* In accordance with (I 9) on page 
270, the permeability µ is defined by setting the entire 
density of the lines of force ~ in the direction of the z-axis 
equal to µy. Now by (2), when the magnetization is in the 

* Reiff called attention to this point in his book,'' Theorie molecularelektrischer 
Vorgllnge,'' 18g6. His standpoint differs from that here taken in that he assumes, 
not rotating ions, but molecular magnets which have no electric charge but are 
capable of turning about an axis. 
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direction of the z-axis, the total number of lines in unit section 
(the so-called induction) is 

M. = µy = r+ 4 1r ~iqfil = y + 4 1r ~efilTq. (31) 
C C 

Hence the substance is para- or diamagnetic according as 

41r q > 
c~efilT < o. . . . (32) 

But no conclusion as to the sign of v can be drawn from the 
sign of this sum. Take, for example, the simplest case, 
namely, that in which two different kinds, 1 and 2, of paramag
netic ions are present. Let e1 = - e2 = e, fil1 = fil2 = fil, 
T 1 = - T 2 = T, q1 = q2 = q. Then, from (31), 

41r q 
(µ - I) y = C . 2efil T > o. 

But, from (21), when a,. and b,. are negligible, 

Thus the sign of ,, depends upon the difference of the two 
dielectric constants fil-81 and filB2• 

Observation also shows that the magnetic character of a 
substance furnishes no criterion for determining the direction 
of the magnetic rotation of the plane of polarization. 

4. Dispersion in Magnetic Rotation of the Plane of 
Polarization. - If the wave length in vacuo A0 = Tc of the 
light used be introduced into (30'), it becomes 

6 _ 21r2v,vE' _ 21C'Jvn 
- A 2 z - A 2 z, • • • • (33) 

0 0 

in which .y' e' = n represents the index of refraction of the sub
stance ( unmagnetized). 

If n be assumed to be constant, as is roughly the case, ,.. 
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must also be considered constant. Hence in this case 6 is 
inversely proportional to l/, as it is in the case of the natural 
rotation of the plane of polarization. • This is in fact approx
imately true. 

But if the expression for e' = n2 be written in the form* 
(l, the wave length in air, is introduced instead of lo) 

2 _ Al A. A. 

n - l + I - e~ r + I - ( 1• r + I - ( ~ r + • • • ' (34) 

(35) 

in which A/, A/, A 3', ••• are constants which are indepen-
dent of A1 , A 1 , A 5 , • • • . 

Thus the number of constants which appear in the disper
sion equation for the magnetic rotation of the plane of 
polarization depends upon the number of constants which is 
necessary to represent ordinary dispersion, i.e. upon the 
number of natural periods which must be taken into considera
tion. 

In order to represent the dispersion within the visible spec
trum it is in general sufficient to assume one natural period in 
the ultra-violet, whose wave length l.1 is not negligible with 
respect to A, and in addition a number of other natural periods 
whose wave lengths A2 , A5 , etc., are negligible in comparison 
with A. The dispersion equation (34) then becomes 

A l.2 

n2 = I + A2 +As+ •• + 1• ~ l. 2 
l 

A A/1.12 = I +Al+ A.+ 3 + • • • + l.' _ l. •• 
l 

* C£ equation (19) an page 388. This form holds only in the region of normal 
dispersion and in cases in which no conduction ions are present. 
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" n'=a+l2-A2· 
l 

In this case, from (35), the dispersion equation must be 
written 

i.e. the dispersion equation for the magnetic rotation 6 is, from 
(33), when 2n2z is set equal to 1, 

( a' // \ 
6 = n l2 + l2 - l 2}· 

l 

This is a two-constant dispersion equation, since l 1 is 
obtained from the equation for ordinary dispersion. The 
experimental results are in good agreement with (38), as is 
shown by the following table: * 

BISULPHIDE OF CARBON. 

A.1 = 0.212µ, 
a = 2.516, 
a' = - 0.0136, 

Spectr. Line. n calc. 

A 1.6n5 
B 1.6179 
C 1.6210 
D 1.6307 
E 1.6439 
F 1.656o 
G 1.68o5 
H 1.7o33 

1.2 = 0.0450, 
" = 0.0433, 
b' = +0.1530. 

nobs. 1$ calc. 1$ obs. 

1.6118 ••••••••• ••••••••• 
1.6181 ......... ••••••••• 
1.6214 0.592 0.592 
1.63o8 0.762 o.76o 
1.6438 0.999 1.000 
1.6555 1.232 1.234 
1.68oo 1.7o4 1.7o4 
1.7032 ......... ••••·•••• 

• Poincare has published a collection of other single-constant dispersion 
equations which have been proposed in L'~lairage ~lectrique, XI. p. 4,88, 18g7. 
None of these equations agree well with the observations. 
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CREOSOTE. 

ll = o. 1845µ, l,12 = 0.0340, 
b = 0.0227, a = 2.2948, 

a'= - o.1799, b' = + 0.3140. 

Spectr. Line. n calc. nobs. iS calc. 8 obs. 

B 1.5319 1.5319 0.515 ••••••••• 
C 1.5336 I -5335 o.573 o.573 
D 1.5386 1.5383 o.745 0.758 
E 1.5454 1.5452 o.990 1.000 
F 1.5515 1-55 15 1.226 1.241 
G 1.5636 i .5639 1.723 1.723 
H 1.5744 1.5744 2 2o6 ••••••••• 

If the simplest possible supposition be made, namely, that 
two kinds of rotating ions are present, one charged positively, 
the other negatively, then the difference in the signs of a' and 
b' shows that these ions rotate in opposite directions. 

The equations of dispersion (33), (34), and (35) show that 
the rotation 6 is very large if l is nearly equal to the 11 which 
corresponds to a natural period. This result has recently been 
confirmed by Macaluso and Corbino * in experiments upon 
sodium vapor. Nevertheless their observations are not repre
sented by the equations here developed. For, as appears from 
equation (38) and as can be shown by a more rigorous discus-

sion in which the frictional resistance ~ is not neglected, the 
T 

rotation 6 should have a different sign on the two sides of the 

absorption band, i.e. for l ~ 11• But according to the obser

vations the sign of o is the same on both sides of the absorption 
band. 

Tkus for tkis case, and probably for all g-ases and vapors, 
tke tkeory kere presented does not represent tke facts. Another 

• Rend. d. R. Accad. d. Lincei (5) 7, p. 293, 1898. 
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fact which will be discussed in the next paragraph leads to the 
same conclusion. 

5. Direction of Magnetization Perpendicular to the Rays .. 
-Let the z-axis be the direction of the magnetization, the 
x-axis that of the ray. Then x and t are the only independent 
variables and v.,. = v, = o, v. = y. In the last of equations 

( 1 8) the coefficient v appears only in the term - v ~!, but this 

term vanishes, because from the first of equations (19) X = o. 
Hence from tke preceding discussion tke mag-neti'zati'on kas no 
effect upon the op#cal relatz'ons when the ray is perpendicular 
to the directi'on of magnetz'zatz'on. But as a matter of fact such 
an effect has recently been observed in the case of the vapors 
of metals. Thi's is a second reason for seeking another 
hypothesis upon which to base the explana#on of the opti'cal 
behavior of substances in the magnetic field. 

The above theory might be extended by assuming that the 
structure of the magnetized substance becomes non-isotropic 
because of the mutual attractions of the molecular currents in 
the direction of the lines of force. Nevertheless another 
hypothesis leads more directly and completely to the end 
sought. This hypothesis also is suggested by certain observed 
properties of substances in a magnetic field. 

B. HYPOTHESIS OF THE HALL EFFECT. 

1. General Considerations.-The assumption of rotating 
ions will now be dropped and the previous conception of 
movable ions again taken into consideration. Now a strong 
magnetic field must exert special forces upon the ions, because 
an ion in motion represents an electrical current, and every 
element of current experiences in a magnetic field a force which 
is perpendicular to the element and to the direction of mag
netization. Consequently the current lines in a magnetic field 
tend to move sideways in a direction at right angles to their 
direction. Thi;; phenomenon, known as the Hall effect, is 
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actually observed in all metals, particularly in bismuth and 
antimony. 

If an element of current of length di and intensity z",,. (in 
electromagnetic units) lies perpendicular to a magnetic field 
of intensity .p, * then the force Sf which acts upon the element 
is 

(39) 

in which i represents the strength of the current in electrostatic 
units. When the coordinate system is chosen as on page 264, 
Sf lies in the direction of the x-axis if i and .p lie in the direc
tions of they- and z-axes respectively. 

If an ion carrying a charge e be displaced a distance d11 
along the y-axis in the time dt, then, according to page 384, 

the strength of current along df/ is i = efil'~;, in which fil' is 

the number of ions in unit length. Hence from (39), since 
di= d17, 

Sf = !_ fil' d11 aa" .p. 
C t 

This is the force acting upon the whole number of ions along 
the length d11. The number of these ions is fil'd11. The force 
impelling a single ion along the x-axis is therefore 

ea,, 
Sf.,.= 7 a,.P.· . (40) 

If in addition there is a magnetization in the direction of the 
y-axis, a displacement C would add a force 

eoC 
Sf.,.= - c a,.P,· (41) 

These two terms, (40) and (41), must be added to the 
right-hand side of the equations of motion of the ions, (6) and 

* If u is not equal to I then () must be replaced by the density of the lines of 
{Nee, i.e. by the induction. 
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(7) on page 423. If it be assumed that the ions are dielectric 
ions, not conduction ions, an assumption which is permissible 
for the case of all substances which have small conductivity, 
then 

2;2e 41re2 a& e ( 011 oC ) 
m~ 2 =~-Te-~~+~~~-~~• 
and by a cyclical interchange of letters 

a211 41rr a,, e (ac a& ) 
m at2 = e Y -T 71 - re2 at + c at .P. - ai .P. , 

(42) 

a2, _ 41re2 2 a, e (a& a,,, ) 
m at~ - eZ - T' - re at + C ot .p.,. - ot .P ... 

2. Deduction of the Differential Equations.-The funda
mental equations (3) on page 420 remain as always unchanged. 
Since it has been assumed that there are no rotating ions, the 
ions do not carry with them in their motion magnetic lines of 
force, hence the permeability µ = I, and the previous relation 
(cf. page 269) holds, namely, 

Furthermore, as above (page 384), 

a 
47TJ_. = at (X + 47T~ein&), 

cl 
4,y~ = at ( Y + 4,r~ein11), 

a 
4,rJ. = at (Z + 4,r~ein,). 

(43) 

(44) 

Equations (3), (42), (43), and (44) contain the complete 
theory.* 

* The most general equations can be obtained from the theory of rotating ions 
presented above in Section A in connection with equation (42). The system of 
equations thus obtained would cover all possible cases in which movable ions are 
present in a strong magnetic field. For the sake of simplicity the two theories 
are separately presented in Sections A and B. 



436 THEORY OF OPTICS 

When the conditions change periodically and the former 
abbreviations are used, namely, 

rt> mt} 
--a --b (45) 
471' - ' 4ne2 - ' • • • • • 

(42) becomes 

et(1 + /! - ~\ - it> (11.p - C.p) = _!_ X_ . (46) 
1' 1' / 4nc-r • ., 411' 

If the z-axis be taken in the direction of the magnetic field 
so that .Ps = .p., = o, .p. = .p, then, by use of the abbreviati~ns 

.a b 
1+z----.=e T 'I'll , 

there results from (46) 

• t> X eE • e - t • e11 • iP = -4,r , 

+ . t> 
eq • e t • eE • iP = - Y, 

471' 

t> 
ec. e = 4,rz. 

• • (47) 

If these equations be solved with respect to E, 71, and C, 
there results 

4neE(e2- ~) = t>(eX+iiPY),} 
4Keq( 02 - iP") = f>( 0 Y - ii.PX), . • 

4neC • e = t>Z. 
• (49) 

Hence, from (44), 

• oX ( "°' t>file , • o v "°' t>fil4> 
4n.1.=Tt I+ ke2- ~ +zTt ke2- i.Pll' 

• o v ( "°' t>9le \ • -ax "°' t>filiP 
471'.J,=75t I+ ke2- i.P2/- 'Tt ke2- '1>2' . (50) 

• oZ ( "°' t>fil) 411'.J.=~ I+ k 8. 

These equations will be written in the abbreviated form 
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. ,, ax _J • av 
47TJ_,, = € &7-ZV Tt• 

. ,, oY . ax 
47TJ.,, = e Tt - w ~t ' 

3. Rays Parallel to the Direction of M:agnetization.-In 
this case z and t are the only independent variables, and equa
tions (3 ), (43 ), and (5 I) give 

~(e"oX + iv o Y) = _ ofJ ~(e" a Y _ iv oX) = aa 1 
c ot ot oz' C at ot az' l ( 2) 

~ ~; - aa:, ; ~ - - ~~, r - z - o. J 5 

If a and /J be eliminated, there results 

e'' a2x a•x iv o2Y } 
c2 ot2 = oz2 - i' oil ' 
e"a2 Y a2 Y iv o2X • 
7 afJ = az2 + 7 oil • 

. . • (53) 

For the sake of integration set, as above on pages 404 and 
426, 

i i 
X -- "1rez=(t - p:.)

1 
-(I - pz) 

1w Y= Ner . 
Then there results, from (53), 

e"M = /J2i'M - ivN, e"N = fl'c2N + ivM, 
i.e. the two sets of equations 

(54) 

p2cl = n' 2(1 - iK')2 = e" + v, M = iN, t 
p''i' = n" 2(1 - iK11 )2 = e'' - v, M = - iN. ~ (55) 

n', K' correspond to left-handed, n", K" to right-handed cir
cularly polarized waves. From the meanings given to e" and 
v in (50) and (51) it follows that 

0 - 4> . . . (56) 
n' 2(I - iK')2 = 1 + L ~•} 
n"\1 - iK")1 = 1 + L~: 4>. 
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If -r does not lie close to a natural period, then the 

imaginary term in e, namely, i ~. can be neglected, so that 
T 

K' = K" = o, and since e is always small in comparison with 
I, and therefore in comparison with e, 

n'2= 1 + L8!(1 + :), } 
n" 2 = 1 + L8!(1 - :). • 

(57) 

From (19) on page 407 the rotation o of the pl.1.ne of 
polarization is 

7C " ' 7C n" 2 - n' 2 o = z-:,-(n - n) = z,. ,, + ,-. (58) 
Ao Aon n 

If the mean of n" and n' be denoted by n, then 
7C n"2- n'2 

o=z----
Ao 2n 

• (59) 

(6o) 

Thus the index of refraction n is given, to terms of the first 
order in '11, by 

n2 = I+ L -8:. . • . (61) 

4. Dispersion in the Magnetic Rotation of the Plane of 
Polarization.-Upon introduction of the values of e and ip 
from (47) in the last equations they become 

7C z """' -89l -8 
o = - 2n Ao2.P k (1 - tzf. e' • (62) 

n2 = I+ L -89\. . . . . (63) 
l- r 

Hence, as in hypothesis A, to a first approximation 6 i~ 
inversely proportional to 'A}. 
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If n2 can be represented with sufficient accuracy by the 
two-constant dispersion equation (cf. page 431) 

b 
n2 - a + ------, (64) - l,2-'A} 

(A, the wave length in air, is written for A0), then, from (62), it 
must be possible to represent o by the two-constant dispersion 
equation 

a' and b' must have different signs if but two different kinds of 
ions, one charged positively, the other negatively, are present. 
This is the simplest assumption that can be made. 

The agreement between (65) and observations upon carbon 
bisulphide and creosote is shown in the following tables: 

BISULPHIDE OF CARBON. 

l,12 = 0.0450, a'= + o. I 167, b' = + 0.2379. 

Spectr. Line. 8 calc. 8 obs. 

C 0.592 0.592 
D o.76o 0.760 
E 0.996 1.000 

F 1.225 I .234 
G 1.7o4 1.704 

CREOSOTE. 

li'J. = 0.0340, a'= - 0.070, b' = + 0.380. 

Spectr. Line. o calc. 8 obs. 

C 0.573 0.573 
D o.744 0.758 
E 0.987 1.000 

F 1.222 1.241 
G 1.723 1.723 
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The agreement between theory and observation is almost 
as good as that obtained by the hypothesis of molecular cur
rents ( cf. page 43 I). 

5. The Impressed Period Close to a Natural Period.
When the period of the light lies close to a natural period, 

the friction term ~ cannot be neglected. Assume that T is 
-r 

close to the natural period T1 of the ions of kind I, and 

write, therefore, r = t'~(1 +g) = r1(I +g), in which g is 
small in comparison with 1. Then in equation (56), since 
<P is small, it is possible to write in all the terms which are 
under the sign ~ and do not correspond to the ions of kind I 

{9- ~ -

so that, using the abbreviations 

"'"' ~Bfil _ A' 
~ ( b)2- ' 

I-
,,2 

1 

(66) 

it follows from (56), if terms containing g in powers higher 
than the first be neglected, and if g• <f, be also neglected in 
comparison with g or cf>, that 

n' 2(I - iK')2 =A+ A'+ + ~ <P' • • (68) 
2g ' -

n" 2(I - z'K")2= A -A' -1- -f! . (69) 
2g+zn + <f, 

The imaginary part of the right-hand side of (68) reaches its 
largest value, i.e. a left-handed circularly. polarized wave 
experiences maximum absorption, when 

2g = + <f,, i.e. r = -rl = T12(I + <f,). (70) 
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But the maximum absorption for a right-handed circularly 
polarized wave occurs when 

2g = - <P, i.e. T2 = Tr2 = T/(1 - cf>). (71) 

Thtts a small absorption band in incident natural light i's 
doubled by the presence of the magnett"c field when the dz"rection 
of the field is parallel to that of the light. In one of the bands 
the left-handed circularly polarized wave i"s strongly absorbed 
so that the transmitted light is weakened and shows rz"ght
lzanded ci"rcular polarzzatz"on; ziz tlze other band the right-handed 
circularly polarized light i"s wanting. 

The same result would be reached from the hypothesis A 
of the molecular currents. 

If g is not small and if 2g is numerically larger than <P, so 
that h is negligible in comparison with 2g ± cf>, then in (68) 
and (69) K' anq K" can be placed equal to zero, provided the 
right-hand sides are positive. Hence at some distance from 
the absorption band 

n' 2 =A+A'+ B n" 2 =A-A'+ B 
2g-<P' 2g+ <P" 

(In order that the right-hand sides may be positive, the 

numerical value of A must be greater than that of B <p)· 
2g ± 

From equation (59) on page 438, the amount of the r~tation 
of the plane of polarization is 

1t z(, <P) 
o= --. ~ A +B o-2-</J~, 

1l "o 4o 
in which (72) 

n =~(F+ 2g H <P+VA + 2g~-<P)· 

From this it appears that the rotation o has the same sign 
upon both sides of the absorption band, and is nearly sym
metrical with respect to this band, for, at least approximately, 
6 depends only upon g 1• The same result follows from equa-
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tion (62). If 6 is positive, it appears from page 428, that the 
rotation takes place in the direction of paramagnetic Amperian 
currents. Since the sign of o is not determined by the sign of 
the small term A', but by the much larger term B¢: 4g2 - q,2, 

and since the numerical value of 2g is to be larger than </J, 
and since further Bis always positive, the sign of 6 depends 
only upon ¢,, i.e. upon the charge e1• When e1 is positive, 
i.e. when rt, > o, the direction of 6 is opposite to that of the 
molecular currents, and further, r, > r,., i.e. that wave (I) 
whose direction of rotation is in the sense of the molecular 
currents reaches its maximum absorption for a slower period 
T than the wave (r) whose direction of rotation is opposite to 
that of the molecular currents. When e1 is negative the plane 
of polarization is rotated in the direction of the molecular 
currents. Then r1 < r,., i.e. in general that wave whose 
direction of rotation is the same as that of the rotation 6 of 
the plane of polarization reaches its maximum absorption for 
a shorter period than the wave which rotates in the opposite 
direction. 

All these results have been verified by experiments upon 
sodium vapor. These experiments will be discussed later. 
For both absorption lines of this vapor (the two D lines) e is 
found to be negative. The two D Nnes of sodium i1apor are 
then produced by negatively charged ions. 

The absorption at a place where g = o may be small pro
vided rt, is large in comparison with h. Then, by (68) and (69), 

n' 2 =A+A'-!, n'' 2 =A-A'+!· 

The right-hand sides of these equations must be positive if 
they are to have any meaning, i.e. the numerical value of A 

B 
must be greater than that of <P. The rotation o of the plane 

of polarization is then proportional to 

n"2 - n'2 
6~ ---=B/<f,-A'. 

2 
• (73) 
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o is therefore large since cf> is small. If e1 is positive, the 
rotation o is in the same direction as the molecular currents, 
i.e. within the absorption band the rotation is opposite to that 
just outside of the absorption band. Nevertheless the rotation 
o need not pass through zero values, for at places where n' K' 
and n" K'' have large but different values it is meaningless to 
speak of a rotation of the plane of polarization. 

6. Rays Perpendicular to the Direction of Magnetization. 
-Let the a-axis be taken in the direction of the magnetization, 
the x-axis in that of the wave normal. Then x and t are the 
independent variables and equations (3), (43), and (5 1) give 

,,ax+. av 
e at w at = 0 • 

~ (e" a y - iv ax) = - or 
C ot ot OX' 

e' oZ o/J 
cat= ox' 

a=o, 

Elimination of fJ and y gives 

e" X + ivY= o, 
e'' o2Y o2v . v o2x 
c2 cP = or + i c2 of 
e' o2Z o2Z 
c2 oil= or· 

(74) 

(75) 

If X be eliminated from the first two equations, there results 

( " v2) a2 Y a2 Y 
e - e" oil = c2- or • 

Setting, for the sake of integration, 

i , 
-(t-px) 

X= M-er , 
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it follows from (75) and (76) that 

iv 
M= --,,N. 

€ 
(77) 

The velocities of Z and Yare then different, i.e. the sub
stance acts like a doubly refracting medittm. For Z, i.e. for a 
wave polarized at right angles to the direction of magnetiza
tion, the index of refraction and the coefficient of absorption 
are obtained from 

. (78) 

for a wave polarized parallel to the direction of magnetization 
the following holds: 

(79) 

The difference between n' and n is in general very small, 
since it is of the second order in q; provided f) is not small. 
Hence this magnetic double refraction can only be observed in 
the neighborhood of a natural period, since then 9 is very 
small. 

7. The Impressed Period in the Neighborhood of a 
Natural Period.-Set as above -r = -ri{I + g) = t'~(I + g), 
and assume that g is small in comparison with I. 

Then in every term under the sign ~. save that which 
corresponds to ions of kind 1, 9 is to be considered a real 
quantity which is not very small. q,2 is then negligible m 
comparison with f)'l. 

Hence, using the abbreviations (67) on page 440, 

. A B 
n'Z(1 - ,K')2 = + (2g + i'lt)2 - ~ 

• ~ 2 + ih - Bql l 
( g [(2g + ih)2 - tp2]A + (2g + ih)B f' 
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or 

1 • , 2 B[(2g + ik)A + B] 
n 2(1 -tK) =A+ A[(2g+ih)2-¢2] +B(2g+ ihf (80) 

Now for a metallic vapor the index of refraction is always 
nearly equal to I, even when g is quite small. Hence it fol
lows (cf. equation for n2 on page 441) that A is almost equal 
to I and B must be very small, so that in the second term of 
the right-hand side of (80), which contains the small factor B, 
B can be neglected in comparison with A. Therefore 

, 2 • ) 2 -A+ B(2g+ih) 
n ( I - tK - ( 2g + ih)2 - qr· (81) 

The imaginary part, i.e. the absorption, will therefore be 
a maximum, provided h is small, when 

4g2 - </>2 = o, i.e. 2g = ± </J. . (82) 

Hence when the plane of polarization of tlze wave i's 
parallel to the direction <Jf magnetization, there are two absorp
ti'on bands, one on eack side of the single band which appears 
when the magnetic field z's not present. 

For a wave whose plane of polarization is perpendicular to 
the direction of magnetization (78) gives 

_..2 • 2 A B 
n-(l-tK)= + 1 /l• (83) 2g I z 

The absorption is a maximum at a place where g = o. Thus 
for a wave whose plane of polarization is perpendicular to the 
direction of magnetization the absorption z"s not altered by the 
presence of tlze field. 

If 2g is large in comparison with It and <P, K and K' are 
very small, and approximately 

n' 2 _ A .!!_ A-4g2 + B-2g - + 2g A(4g2 - ¢2) + B-2g' 

hence 
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or, since 4g2 is large in comparison with </>2, approximately 

, AB<P2 

n - n = 16nsg3• (84) 

i.e. the sign of n' - n depends upon the sign of g, but is inde
pendent both of the direction of magnetization and of the sign 
of (/). Voigt and Wiechert have succeeded in verifying this 
law of magnetic double refraction in the case of sodium vapor.* 

8. The Zeeman Effect.-Zeeman discovered that when the 
vapor of a metal, like sodium or cadmium, is brought to 
incandescence in a magnetic field, a narrow line in its emission 
spectrum is resolved into two or three lines (a doublet or a 
triplet) of slightly different periods.t The doublet is produced 
when the direction of the magnetic lines is the same as the 
direction of emission, the triplet when these directions are at 
right angles to each other. These observations are explained 
by the theoretical considerations given above + in connection 
with the law, which will be presented later, that the emission 
lines of a gas correspond to the same periods of vibration as 
the absorption lines.§ According to the preceding discussion 
the two separate lines of the doublet ought to show right- and 
left-handed circular polarization, while in the triplet the middle 
line ought to be polarized in a plane which is perpendicular to 
the direction of the magnetization, and the two outer lines in 
a plane which is parallel to it. These conclusions are actually 
verified by the experiment. From measurements upon the 
two triplets into which the two sodium lines (D1 and D2) are 

* W. Voigt, Wied. Ann. 67, p. 36o, 1899. 
f P. Zeeman, Phil. Mag. (5) 43, p. 226 ; 44, p. 255, 1897. 
f This method of explaining the Zeeman effect is due to Voigt (Wied. Ann. 67, 

p. 345, 1899). The differential equations upon which Voigt bases his theory are 
the same as those deduced in § 2, but he refrains from giving any physical mean
ing to the coefficients in the differential equations. 

§ This law results both from experiment and from Kirchhoff's law as to the 
proportionality between the emission and absorption of heat-rays. The radiation 
from a metallic vapor brought to incandescence in a Bunsen flame does not appear 
to be a case of pure temperature radiation (cf. Part III), nevertheless tbeory shows 
that eYell for luminescent rays the emission and absorption lines must coincide. 
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resolved, Zeeman obtained for the distance 2g between the 
two outer lines of the triplet, when the strength of the mag
netic field was .S) = 22,400, the value 2g = 2 : 17,800. 
Now, from (82) and (67), 

-81.P 
2g=</J=~· 

1 1 

or since i-1 = ¥61 , and consequently, from (45) on page 436, 
81 = 41r-r12e12 : m1 , it follows that 

• e1 .pT1 ---2 ) 
2g = </J = .p-r,- = - . (85 cm1 21' cm1 

If the values of 2g, .p, and T1 for sodium light be introduced, 
there results 

~ = I.6• 107. 
cm1 

This number represents the ratio of the charge of the ion, 
measured in electromagnetic units, to its apparent mass (cf. 
note on page 383). From observations upon a cadmium 
line (A. = 0.48µ) this ratio is determined as 2.4. 107.* 

Michelson has shown from more accurate observations, 
made both with the interferometer and with the echelon spec
troscope, that in general the emission lines are not resolved 
simply into doublets and triplets but into more complicated 
forms.t This is to be expected when, as is the case with 

* It is to be noted that Kaufmann obtained from the magnetic deflection of the 
kathode rays (Wied, Ann. 65, p. 439, 1898) almost the same number (1.86°107) 
for the ratio of the charge to the mass of the particles projected from the kathode. 
For the ions of electrolysis this ratio is much smaller (9-5 -1<>8 for hydrogen, 
4.1. 103 for sodium). This can be aa:ounted for either by assuming that an 
electrolytic ion contains a large number of positively and negatively charged p~r
ticles (electrons) which are held firmly together in electrolysis but are free to move 
by themselves in a high vacuum, or to vibrate so as to give out light ; or that the 
,electrolytic ion consists of a combination of an electric charge e1 of apparent mass 
1tl1 with a large uncharged mass M. In a slowly changing electric field or in a 
constant current the electron clings fast to the mass M. But in a rapidly changing 
electric field, such as corresponds to light vibrations, only the electron moves, and 
in a high vacu·Jm the electron becomes separated from its mass M. 

f Cf. Phil. Mag. /5) 45, p. 348. Astrophys. Joum. 7, p. 131; 8, p. 37, 18g8. 
Wied. Beibl. 18g8, p. 797. 
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Michelson's experiments, the method of investigation is carried 
to such a degree of refinement that the emission lines are 
found, even in the absence of the magnetic field, to have a 
structure more complicated than is assumed in the above 
theoretical discussion, i.e. when an emission line is shown to 
be a close double. Furthermore, a theoretical extension of 
equation (46) is possible if the influence of the motion of neigh
boring ions is taken into account. In this case in that equation 
the second differential coefficient of the electric force with 
respect to the coordinates would appear, and the magnetic 
resolution of the absorption and emission lines would be more 
complicated.* 

A very powerful grating or prism is necessary for observing 
the Zeeman effect directly. Hence it is more convenient to 
use a method of investigation described by Konig t in which a 
sodium flame in a magnetic field is observed through another 
such flame outside the field. If the line of sight is perpendic
ular to the field, the first flame appears bright and polarized. 
From Kirchhoff's law as to the equality of emission and 
absorption, only those vibrations of the magnetized sodium 
flame whose period in the magnetic field is the same as with
out the field can be absorbed by the unmagnetized sodium 
flame. Perhaps the phenomenon observed by Egoroff and 
Georgiewsky,+ that a sodium flame in a magnetic field emits 
partially polarized light in a direction perpendicular to the 
field, can also be explained in this way, i.e. by absorption 
in the outer layers of the flame, the field being non-homo
geneous. But even if the field were perfectly homogeneous, 
this phenomenon could be theoretically explained, since the 
total absorption n' K' for the waves polarized in the direction of 
magnetization, when calculated from equation (So) for all 

*Voigt (Wied. Ann. 68, p. 352) accounts for the anomalous Zeeman effects by 
longitudinal magnetic effects. What is the physical significance of such an effect 
has not yet been shown. 

t Wied. Ann. 63, p. 268, 1897. 
tC. R. 127, pp. 748, 949, 1897. 
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possible values of g, is found to be somewhat different from 
the total absorption nK of the waves polarized in a plane which 
is perpendicular to the magnetization when this is calculated 
from ( 8 3) for all possible values of g. * 

9. The :Magnet~optical Properties of Iron, Nickel, and 
Cobalt.-Although it has been shown above that in the case 
of metallic vapors the conception of molecular currents does 
not lead to a satisfactory explanation of the phenomena, yet 
this concept must be retained in order to account for the mag
neto-optical properties of the strongly magnetic metals. This is 
most easily proved by the fact that, in the case of these metals, 
the magneto-optical effects are proportional to the magnetiza
tion, and therefore reach a limiting value when the magneti
zation is carried to saturation, even though the outer mag
netic field is continuously increased. t The explanation based 
upon the Hall effect would not lead to such a limiting value,t 
since the magneto-optical effects would then be proportional 
to the magnetic induction of the substance, i.e. proportional 
to the total density of the lines of force. It is true that, 
strictly speaking, the Hall effect is never entirely absent, even 
upon the hypothesis of molecular currents; nevertheless the 
experimental results show that, in the case of iron, nickel, and 
cobalt, the influence of the molecular currents is very much 
greater than that of the Hall effect, so that, for simplicity, the 
terms which represent the Hall effect will now be neglected. 

*Voigt (Wied. Ann. 6g, p. 2go, 1899) accowits for the phenomenon observed 
by Egoroff and Georgiewsky, as well as for the variations in intensity in the 
Zeeman effect, by the assumption that the friction coefficient r in equations (42) on 
page 435 depends upon the strength of the magnetic field in different ways for 
vibrations of different directions. This assumption cannot be simply and plausibly 
obtained from physical conceptions. 

f This is proved by observations of Kundt (Wied. Ann. 27, p. 191, 1886) and 
DuBois (Wied. Ann. 39, p. 25, 18go). 

t This, together with the difference in form of the deduced Jaws of dispersion, 
is the difference between the two theories. They would be identical if the equa
tions deduced from the hypothesis of the Hall effect were developed only to the 
first order in the added magneto-optical terms. This is allowable because in the 

• case of the metals no narrow absorption bands occur. 
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a. Transmitted Light. -When a plane wave passes normally 
through a thin film of iron which is magnetized perpendicularly 
to its surface, the equations in § 3 on page 426 are applicable. 
Denote by n and K the index of refraction and the coefficient 
of absorption of the unmagnetized metal, by n' and K' the 
corresponding quantities for the left-handed circularly polarized 
wave, by n" and K" the same quantities for the right-handed 
circularly polarized wave. Then from (28) and (29) on page 
427, retaining only terms of the first order in v, 

p'c = n' (1 - iK') = 'VE' (1 - ~). 
2CT 

p" C = n" ( I - iK") = t'E' ( I + 2;J, 
n(I - iK) = YE. 

If v be supposed to have the form 

v = a+bi, 

in which a and b are real, then 

n'' - n' = !!_(a+ bK), 
CT 

n -
n" K" - n' K 1 = -(aK - b). 

CT 

(86) 

(88) 

The second of these equations asserts that the right- and 
left-handed circularly polarized waves are absorbed in different 
amounts; while the first one, in connection with (19') on page 
407 (provided the difference between n" K" and n' K 1 is small 
so that the emergent light is approximately plane-polarized), 
shows that the rotation o* of the plane of polarization is de
termined by 

z 'Ir o = -(n'' - n') = 2i\ 2 zn(a + bK), (89) 
2CT 0 

in which it is assumed that i\0 = c T = 27rCT. 

The film of metal must be very thin ( a fraction of i\0) in 
order that it may be transparent. Nevertheless appreciable 

* Unless w'K" and n'K' are nearly equal, so that the emergent light is approx
imately plane-polarized, 6 has no meaning. 
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rotation is observable; for example, when z = o. 33210 the 
rotation of red light (l.0 = o.ooo64 mm.) in the case of iron 
magnetized to saturation is o = 4.25°. This would give for 
tlze rotation produced by a plate of iron I cm. thick the enor
mous value o = 200 000°. From these observations and (89) 
there results, for red light and for iron magnetized to satura
tion, the centimetre being the unit of length, 

n(a + bK) = 0.7 58- 10-•. . (90) 
The sign of a + bK is positive since the rotation o takes 

place in the direction of the molecular currents in paramag
netic substances. 

The relation between the rotation o and the period -r or 
the wave length A. 0 is obtained from equations (20) and (21) 
on page 425, taken in connection with (87) and (89). It is a 
noteworthy fact that o decreases as l. 0 decreases.* This result 
is seen from equation (89) to be probable, since n and nK 

actually decrease rapidly as l.0 decreases, and since, from (21), 
it appears that a and b likewise decrease as l.0 decreases, pro
vided only one kind of conduction ions is particularly effective 
in producing the magneto-optical phenomena. 

b. Reflected Lz'glzt (Kerr Effect).-In order that the proper
ties of the light reflected from a magnetized mirror may be 
calculated, the boundary conditions which hold at the surface 
of the mirror must be set up. These conditions can be 
obtained from the differential equations (18) and (19) on page 
42 5, apd the consideration that the surface of the mirror is in 
reality a very thin non-homogeneous transition layer in which 
these differential equations also hold (cf. page 426). 

If the surface of the mirror is taken as the xy-plane, the 
boundary conditions are found, by a method similar to that 
used on page 271, to be 

. Continuity of 

l O 
Y - - - (-v X - ., Z) 

C Ct • '" • 

*Cf.experiments of Lobach, Wied. Ann. 39, p. 347, 1890. 
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From these conditions a theoretical explanation of the effect 
discovered by Kerr can be deduced.* This effect t consists in 
a slight rotation of the plane of polarization of light reflected 
from a magnetized mirror, when the incident light is plane
polarized either in or perpendicular to the plane of incidence. 
This can only be due to some peculiar effect of magnetization, 
since without magnetization there is complete symmetry and 
no such effect would be possible. 

10. The Effects of the :Magnetic Field of the Ray of 
Light.-It has been shown above that a powerful external 
magnetic field produces a change in the optical properties of a 
substance. Now the question arises whether, with delicate 
methods of observation, an effect due to the magnetic fiel~ of 
the light itself might not be detected in the absence of an 
external field. 

If, first, only the terms representing the Hall effect 
be taken into account, i.e. if it be assumed that there are no 
molecular currents (revolving ions), then the equations to be 
used are ( cf. page 43 5) 

41l'Js = oy o/J 
C Oy - az' etc., 

if 

(93) 

(94) 

(95) 

* This deduction was made by Drude, Wied. Ann. 46, p. 353, 1892. The 
constant /J which appeared there and was assumed to be real must here be taken as 
complex, since from (21) on page 425 Y is complex. This change makes the 
result ,of the theory identical with that given by Goldhammer, Wied. Ann. 46, p. 
71, 1892. The theory is in agreement with practically all of the facts. For the 
etrect of the surface layer on the phenomenon cf. Micheli, Diss. Lpz. 1900- Ann. 
cl. Phys. 1, l!)00. 

tKerr, Phil. Mag. (5) 3, p. 321, 1877; 5, p. 161, 1878. 



MAGNETICAUY AC71VE SUBSTANCES 453 

(94) is the characteristic equation of this problem. This 
shows, since 'T/ and C are approximately proportional to Y and 
Z, that the differential equations of the electromagnetic field 
are no longer linear in X, Y, Z, a, fl, y. This means that the 
optical properties must depend upon the intensity of the light. 
Such a dependence has never yet been observed, and it can 
easily be shown that the correction terms in (94), which 
represent the departures from the equation heretofore used, 
namely, 

are so small that their effect could not be observed. Since the 
magnetic force a, fl, y is equal to, or at least of the same 
order of magnitude as, the electric force X, Y, Z, it is neces-

1 a.,, 1 a~ . . 
sary to find the value of-:;-, --, 1.e. to find the ratio of the 

Cut C c)t 

velocity of the ion to the velocity of light. Now approximately, 
from (94), 

i.e., when 

!.. 0~ = 2 n:. ~ A-cos 21r(!_ - ~). . (g6) 
cot cl 41tef> T A. 

Now, according to page 436, the natural period T0 of the 
ion is determined in the following way: 

or 

(97) 
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A substitution of this value in (96) shows that the largest value 

h• h I at 1 h • h • w 1c -- can 1ave as t e time c anges 1s 
eat 

I at T 2 e --- __ o_ -A 
e at - 2 'It TfJ • me • 

r2 
If in this 0 be set equal to 1 - 7\, a substitution which is 

permissible provided Tis not close to T0, it follows that 

I at T e T 2 
C at - 2 7C • me • T 2 -

0 To 2 • A• 

e : me has for sodium vapor the value 1 .6 • 1 o7 ( cf. page 
447). This value will be used in what follows. Further, in 
the visible spectrum T = 2 • w- 15 approximately. Hence 
(98) may be written 

I at _ T/ _9 c at - A • P. - rr 5 • IO • (99) 

It is first necessary to find a value for A, i.e. for the 
strength of field in an intense ray of light. A square metre 
on the surface of the earth receives from the sun about 124 

kilogrammetres of energy in a second, i.e. 1.22- I06 absolute 
units (ergs) to the square centimeter. But from equation ( 2 5) 
on page 273, for a plane wave of natural light of amplitude A, 
the energy flow dE in unit time through unit surface (cm.2) in 
air or in vacuum is* 

2) e A2 dE(in I sec per cm. = - .. 
4" 

(IOO) 

* Without using Poynting's equation, the result contained in ( 100) may be 
deduced as follows : The electromagnetic energy which in unit time passes 
through I cm.1 must be that contained in a volume of 17 cm.•, Vbeing the velocity 
of light. In air or vacuum V == ,. Further, from page 272 the electromagnetic 
energy in unit volume of air for the case of natural light is equal to A1 : 41r. 
Hence dE = ,A2 : 41r. 
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From which, if half of the energy of the sun's radiation is 
ascribed to visible rays, the maximum strength of the electric 
field in sunlight is * 

✓4" • A =c. 0.61. 108 = 1.6. 10- 2 = 0.016.t. 

Hence for intense sunlight 

I 7)/; - - 1 702 c ot - s. 10 I T2 - T 2. 
0 

(101) 

(102) 

This expression is always small provided T is not close 
to T0. But even if, for example, T: T0 = 60: 59 (sodium 
flame illuminated by light of wave length A. = 0.0006 mm.), 
T02 : T 2 - T02 = 30, and the value of (101) is still very small. 

If the velocity of a plane wave be calculated from (94 ), it 
is easy to see that its dependence upon the magnetic correction 
terms is of the second order, i.e. the change in the velocity of 
light produced by an increase in intensity from zero to that of 
sunlight would be of the order Io- 20 V. Hence the conclusion 
may be drawn that an observable magneto-optical effect due to 
the magnetic field of the light itself does not exist. There 
might be some question as to this conclusion in the case in 
which the period of the incident light very nearly coincides 
with the natural period (sodium vapor illuminated by sodium 
light). But the absorption which would then take place would 
render impossible a decisive test as to whether or not in this 
case the index of refraction varies with the intensity. 

If now molecular currents (revolving ions) be assumed, 
equations (3), (4), (5) on page 420 sq. become applicable. 
If it were necessary to consider only one kind of revolving 
ion, then, from (31) on page 429, the density y 1 of the lines of 
force might be set equal to(µ - 1)y, µ being the permeability 

* As a matter of fact this ratio is only about I• 
t The maximum strength of the magnetic field has the same value. This would 

tht-refore be about n of the horizontal intensity of the earth's magnetic field in 
Germany. 
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of the substance. In this it is assumed that the magnetization 
of the substance can follow instantaneously the rapid changes 
in y. If this should not be the case, it would be necessary to 
give µ a value smaller than that which is obtained with a con
stant field. Hence equations (3) and (4) take the form 

1 a ( at ) av az C ot a + (µ - I )y oz + . . . = oz - oy • (103) 

N ae • f h d f • d i ae c· ow 08 1s o t e same or er o magmtu e as c ot m vacuo 

the two quantities are the same). Hence the magneto-optical 
correction terms of ( 103) are very small even when µ - 1 has 
as large a value as 1000, as is the case for iron; for then these 
terms are of the order of magnitude I ooo • 1 o - 10 = Io- 7 ; so 
that the magneto-optical effect due to the magnetic field of the 
light itself could never be detected in iron even if the magnetiza
tion of the iron were able to follow completely the rapid changes 
of field which take place in a lzght-wave. This also explains 
why in a constant magnetic field the molecular currents give 
rise to a permeabrnty which is greater than unity, while for 
light-vibrations the same substance acts as though its pe,·
meability were equal to unity. But tltis is not due to any sort 
of lag in the magnetization, for the conclusions here drawn are 
independent of such lag. 



CHAPTER VIII 

BODIES IN MOTION 

:1. General Considerations.-ln what has preceded the 
optical properties of substances have been explained on the 
assumption of movable ionic charges. In this explanation the 
substance as a whole was considered to be at rest. But a 
motion of a substance as a whole produces a modification in its 
optical properties. In order to be able to develop a theory 
for this case, an hypothesis must be made as to whether the 
charged ions alone are carried along by the motion of the sub
stance, or whether the ether which lies between these ions is 
also carried along in whole or in part. The assumption which 
will be adopted here is that the ether always remains completely 
at rest. Upon this basis H. A. Lorentz* has developed a 
complete and elegant theory. It is essentially this theory 
which is here presented. The conception of an ether abso
lutely at rest is the most simple and the most natural,-at 
least if the ether is conceived to be not a substance but merely 
space endowed with certain physical properties. Moreover 
the explanation of aberration presents insuperable difficulties 
if the ether is not assumed to be at rest. Lorentz has shown 
that the theory of a stationary ether is essentially in agreement 
with all the observations which bear upon this point. This 
matter will be more fully discussed below. 

2. The Differential Equations of the Electromagnetic 
Field Referred to a Fixed System of Coordinates.-The 
starting-point will be, as always, the fundamental equationi 

* H. A. Lorentz, Versuch einer Theorie der elektrischen und opHschen Er 
~cheimmgen in bewegten Korpern. Leiden, 18g5. 
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(7) and (11) of the Maxwell electromagnetic theory (cf. pages 
265 and 267), namely, 

41r . or a/J 
-;.,, = ~ - ~• etc., c vy vz 

41r av -az 
-s = - - -, etc. . (1) cz az a.r 

It has already been shown [equation (7), page 385] that when 
there is present only one kind of ion, whose charge is e and 
whose number in unit volume is 91, the components of the 
electric current density are give_n by 

In this ~ denotes the .r-component of the displacement of the 
ion from its position of equilibrium within the substance. If 
the ions be given a constant velocity whose components are 
v,., v,, v., then the above equations take the more general 
form: 

. oX d~ 
41r;,. = ot + 41re91 dt + 41re91v,., 

. oY d,1 
41r;, = ot + 41re91 dt + 41re91v,, 

41rj. = !; + 4,re91 ! + 41re91v •. 

In these equations the differential coefficients with respect 

to the time are purposely written in the two forms 0~ and !
The first means that the change with respect to the time of 
some quantity at a definite point in space is considered, the 
second that the change in some quantity with respect to the 
time at a definite point in the substance is under consideration. 
Hence, if the components of the velocity of the substance are 
v., v,, v., then in the formation of the differential coefficient 
the observed point is displaced in the element of time dt the 
distances v,.dt, v,dt, v_dt along the coordinate axes. This 
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change in position alters the quantities to be differentiated by 
o o a 

v,.dt-, v,dt;;:-, v,.dt -, when .r, y, z are referred to a fixed or cJY oz 
system of coordinates, so that finally the relation holds 

Now the terms ~;, etc., must appear in equations (2) because 

the entire velocity of the ions is composed of the velocity of 
translation v,. of the substance, and the velocity of the ion with 

respect to the substance. 

b 3/; 
Y at· 

d~ 
This last is represented by dt , not 

For the components of the magnetic current density the 
equations ( 13) on page 268 hold, namely, 

o/J 
41rs, = 7,t • (4) 

since it is proposed to neglect the effect of any external 
magnetic field, and since, in accordance with page 456, the 
permeability µ of all substances is equal to unity for optical 
periods. 

If the substance has no velocity of translation, i.e. if 
v. = v, =v. = o, then the equation of motion of an ion is 
(cf. page 383) 

Now it will be assumed that the influence of the substance 
upon the ion is not affected by the motion of the substance. 
Nevertheless the differential equation must be modified because 
of the fact that the ions share in the motion of the sustance, 
and a moving ion is equivalent to an electric current whose 
components are proportional to rv,., ev,, ev.. The magnetic 
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force a, /J, y acts upon this current. Hence the equation of 
motion of an ion is (cf. similar discussion on page 434)* 

d2e de e2 e 
m d~ +re2 dt + 4"~e = eX +-;(v,y - v./J). (S) 

d o 
Here, too, it is to be observed that dt appears, but not ot' 

since (5) expresses the relative motion of the ions with respect 
to the substance. 

When the changes in X or e are periodic, it is possible to 
write 

(6) 

r' is then equal to the period T' divided by 21r. Nevertheless 
it is to be observed that this period T' is the relative period 
with respect to the moving substance, and not the absolute 
period T referred to a fixed system of coordinates. It is 
important to distinguish between T and T'; thus, for example, 
T' > T when the substance moves in the direction of the 
propagation of the light. In the case of plane waves in which 
all the quantities are proportional to 

~(1 _ p,x + p.y + f>•z) 
er ,., ' 

in which x, y, and z refer to a fixed coordinate system, 
r = T: 21r is proportional to the absolute period T. 

,. For the reasons discussed on page 455 the terms r._ ~'l, etc., are omitted from 
Cat 

the right.hand side of (4), for they are too small to be considered. For the motion 
of the earth v: c = Io-', i.e. it is of an entirely different order of magnitude from 

:: : c. Also in Fizeau's experiment with running water, which will be described 

later, in which v : c has a still smaller value, it is only the terms which depend 
upon v which have an appreciable effect upon the optical phenomena. The ionic 

velocities i etc., do not have such an effect. 
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Now, from (3) and (6), 

_: = _: (• _ P1v,. + P2v, + p3v.). 
~ T W ' 

i.e., if the velocity v is small in comparison with w,. 

T' T' / 1V,. + P2v, + Pillz 'lfn ( 7) -= -T= I+--~~-~= I+---, 
T W W 

in which v. denotes the velocity of the substance in the direc
tion of the wave normal. 

If the abbreviations used on page 386, namely, 

m8 
b = 4,reZ' (8) 

be introduced into (5), there results 

~( .a b) (x+v,y-v./J) 
41re,:, I + '? - T' 2 = ~ C • (9) 

In equations (2) e9'l means the charge present in unit 
volume. 

If the value of e9'l [cf. page 270, equation (20)] obtained 
from (the dielectric constant e of the ether is set equal to 1) 

oX oY oz 
4 ,re9'l = ox + oy + oz • 

be substituted in (2), there results 

. oX (ox oY oz) 
4,r.l.,. = a,+ v" ox + oy + oz 

• (IO) 

d(X+ v,r-v.P) 
+ 9'll) C • (II) 

1+ia/r'-6/r'' dt 

If several kinds of molecules are present, the first factor of 

the last term of this equation becomes, provided i ~ be neg-
. 't 
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lected, i.e. provided the substance has no appreciable absorp• 
tion, 

. (12) 

In this equation n is the index of rofaction corresponding 
to tke period T' = 21r-r' when the substance is at rest. Equa
tion (12) is derived from the theory of dispersion [cf. equation 
(18) on page 387]. If now in equation (11) the differential 

coefficient ! be replaced by its value in terms of :, taken from 

(3), and if the resulting value for 41rj.,. be substituted in (1), a 
differential equation is obtained for the substance in motion 
referred to a fixed system of coordinates. This equation is 
much simplified if only terms in the first order in v be retained. 
It is always permissible to neglect the other terms, since, even 
when v represents the velocity of the earth in space, it is still 
very small in comparison to the velocity of light. It is then 

possible to replace ~ by ;, in those terms in ( 1 1) which are 

multiplied by v, and also to neglect, in the case of homo• 
geneous substances, the second term of (11) which is multiplied 
by v.,., since approximately, i.e. for v = o, for a periodic 
change of condition in such substances the following relation 
holds (CL page 275): 

aX oY oZ 
or+ oy + os = o. • • • • • (i 3) 

Thus ( I I) becomes 

ax {ax ax ox 
~1Y .. = n'at + (n" - i) v.,. or + v, oy + v. oz 

1( or ofJ)} +-; v,~ - v.Tt . 
But, from (1) and (4), 

1 or ax av 
cat = oy - oz ' 
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hence 4"/~ may be written in the form 

41(1 = n2 ax + (n2 - I) 5 2 (v ax + 'l! oX + V oX) 
':I" ct ( " ax :, oy • oz 

- 0!(v.X + v,Y + v7) }· 

Hence, in view of (1) and (4), there result for a moving, komo
geneous, isotropic medium wkose points are referred to a fixed 
systt·m of coordinates the following differential equations: 

n2 ax n2 - 1 j ( oX ax ax) 
cat+ -c- ~ 2 \v"oz + v, oy + v. oz 

- ~(v X + V y + V Z) l = oy - oP 
oz " 7 • ) oJ' oz ' 

n2 o Y n2 - q ( o Y o Y o Y) 
ca,+ & ( 2 \'l!"oz + v,a.,, + 11-az 

- ~(v y + V y + V Z) l = oa - or 
OJ' ~L 7 • ) oz oz , 

(IS) 

n2 az n2 - 1 j ( az az az) 
c~+ C 12 11"oz + 111 OJ' + v. oz 

- ~(v y + V y + 'l' Z) l = ofJ - oa 
C)Z ,rL :, • ) oz oy , 

1 oa o Y oZ I ofJ oZ oX I oy oX o Y , 
cat=aa- oy' cat= ox - os' c a1= oy- ax· (is) 

Differentiation of equations (1 S) with respect to z, y, and 
z respectively and addition gives, with the use of the abbrevia
tion 

ax + a Y + az = F. 
ox oy oz ' 

n2 oF n2 - I 5 ( oft oF oF) c ot + -c- t 2 v,. o.t" + 111 ay + 11• az 

- (v.'4X + v,AY + v.'4Z) t = o. (16) 
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In the terms which are multiplied by v,., etc., the following 
approximations may be used: 

Hence, from (16), 

F= o, 
n2 o2Y 

.::1Y= c2 o/3' 

ax a Y az n2 - 1 a 
F= ox+ o)' + as =-c-o,(v.X+v.,Y +v.z>. (181 

This equation asserts that t"n the movz"ng substance the elec
trz"cal force cannot be propagated as a plane transverse wave, 
since F is not equal to zero. But the magnetic force, on the 
other hand, can be so propagated, since, from (1 5 '), 

(19) 

The differential equations (15) and (15') may easily be 
transformed into equations each of which contains but one of 
the quantities X, Y, Z, a, /J, y. For example, if the first of 

equations (15) be differentiated with respect to t, and if oy and 
at 

ap 
at be replaced by their values taken from (15'), there results 

n2 'iiX n2 - 1 { a ( ax ax ax) 
c" aP + -c- 2ot v,.a.i + v., o)' + v. oz 

a• i a(ax av az) 
- atax<v.X +v.,Y+ v.z)f =.::1X-ax ox+ 01 + OS • 

In consideration of ( 18) this becomes 

n2 o2X n 2 - I a ( oX aX aX) 
c2 of' + 2 -c2- ct v,.?.i + V.,a_,, + v. oz = .::1X. (20) 

The differential equations in Y, Z, a, fJ, y have the same 
form. 
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3. The Velocity of Light in :Moving :Media.-From the 
last equation the velocity of light in a moving medium can be 
simply calculated. Setting 

.!.(, _ p,x + PsY + P•s) 
X= A•er ,., , .. {21) 

there results, from (20), 

or 

n2 2(n2 - I)p1v,. + p2v:, + p3v. I 

c2 - C' GiJ - r..r' 

n2 ( _ 2(n2 - 1) v,.)- _1 
C' I n2 ro - ro2' . (22) 

in which v,. denotes the velocity of translation of the medium 
in the positive direction of the wave normal. Hence, to terms 
of the first order in v,., 

__ 2 _ !_( 2(n2 - 1)_ v,.) 
W-- 21+ n2 I n w 

i.e. 

C ( n2 - I v,.) 
w = - I + --. -·-. n n~ w 

If, in the term on the right-hand side which contains v,., GO be 
replaced by its approximate value c : n, 

C n2- I 
w=-+--v. n n2 • 

This equation asserts tkat the motion of a medium kas tke 
same effect upon the velocity of ligkt as tkougk it communicated 

to tke etker a certain fraction (namely, n2 n2 
1) of its velocity 

of translation. 
This conclusion was drawn by Fresnel from the experiments 

of Fizeau in which the velocity of light in running water was 
measured. However, this interpretation of equation (23) is 
not quite rigorous, for tbe effect of the motion of the medium 
is not entirely contained in the second term of the right-hand 
side of (23). It appears also in the first. For, from page 462, 
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n does not denote the index of refraction for the absolute 
period T, but for the relative period T'. Now, according to 
(7), 

Hence if v represent the index: of the medium at rest for the 
absolute period T, 

av v,. c:w v,. 
n = v +. o T. T w = v + aA.1 w' 

in which A. = c T represents the wave length of the light in 
vacuo. Hence, from (23), 

C ( oY A, V,.) tr - I 
w= ;- I - oA. •vw +-rv,., 

or, since in the terms which contain v,. the approximate values 
n = v, w = c : v may be introduced, 

C (v2 - I A. av) 
w = v +v,. --;z- - v·oA. • • 

C 
- is the velocity V of light for waves of absolute period T in 
y 

the medium at rest; hence the term in (25) which contains v,. 
as a factor represents the change in the velocity which is due 
to the motion of the medium. This term is larger than 

F l d • b • av · . r. l d. resne assume 1t to e, smce oA. 1s negative 1or norma 1s-

persion. However, the difference is smaller than the errors of 
observation. 

The experiment was first performed by Fizeau * and 
repeated later by Michelson and Morley. t In this experiment 
water was forced in opposite directions through two parallel 
tubes, and the velocities of the light in the tubes were compared 
by an interference method. The coefficient of ether drift, i.e. 

* C. R. 33, p. 349, 185 I ; Pogg. Ann. Ergbd. 3, p. 457 ; Ann. chim. et phys. 
(3) 57, P· 385. , 

t Michelson and Morley, Am. Jo. Sci. (3) 31, p. 377, 1886. 
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the coefficient of v. in the expression for w, was found by 
experiment to have the value 0.434 ± 0.02, while for water 
and the Fraunhofer line D equation (25) gives its value as 
0.45 I. The value of this coefficient given by the assumption 
of Fresnel is, for this case, v2 - I : v2 = 0.438. 

4. The Differential Equations and the Boundary Condi
tions Referred to a Moving System of Coordinates which is 
Fixed with Reference to the Moving Medium.-lf .r', y', 3' 

represent the coordinates of a point referred to an origin within 
the moving medium, then 

.r = .r' + v • . t, y = y' + v, . t, 8 = 8 1 + v •. t. (26) 

Since v., v,, v. do not depend on .r, y, 8, the partial 
differentiation with respect to .r, y, z can be replaced by a 
partial differentiation with respect to .r', y', 8 1, i.e. in the equa
tions of the preceding paragraph the differential coefficients 
with respect to .r, y, z may be considered as taken with 
respect to .r', y', 3 1• In what follows this will be done and 
.r, y, 8 will be understood to represent simply the coordinates 
referred to a point of the moving medium. But in place of the 

ffi • oX dX b • d d differential coe c1ents ~• etc., dt, etc., must e mtro uce , 

since here the dependence of X upon the time is to be investi
gated, and hence X must be referred to a point whose position 
relative to other points in the moving medium is fixed. This 
change is made with the aid of equation (3) on page 459, so 
that, for example, 

-ax dX -ax ax oX 
at= dt - v,. or - v, oy - v. 08 • • (27) 

If this equation be substituted in (2), then for any number 
of kinds of ions, in consideration of (9), (10), and (12), 

. dX ax ax ax 
41r;. = dt - v. or - v, oy - v. 08 

+ (r _ i) d(x + v,y - v.P) + v (ax+ oY + az). (28) 
Jt c •ax oy 08 
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Hence equations (1), (3), (4), and (28) give, in connection 
with (19), 

n2 dX n2 - 1 d o ( v X- v Y) 
C dt +-~-d,(v,y - v.fJ) = oy r+ y C " 

_ :
8 

(tJ + v,.Z-: v.x), 

n2 dY n2 - I d O ( V y - V z) c dt + -~-dt (v.a -v,.y) = 08 a+ • c :, 

_ _i_ ( + v 1X - v,.Y.) 
axY C ' 

n2 dZ 1r - 1 d a ( v ,.z - v .X) c dt + ~ d/v,.fJ - v,a) =ox fJ+ c 

- _E_ (a+ v. y - v,z). 
oy C 

!_ da = ~ (Y v.a - v,.y) _ _E_ (z v,./J - v,a) 
c dt 08 + c ay + c • 

!_ dfJ = E-(z + v,./J- v,a) _ ~ (x + v7 y - v.P), 
C dt ax C 08 C 

!_ dy = _E_ (x + v,y -v.fJ\ -~ (v + v.a - v,.r). 
c dt oY c - I ax c 

Tkese equations kold also for non-homogeneous (isotropic) 
media, since the approximate equation ( I 3), which does not hold 
for such media, has not been made use of in deducing them; 
while all the equations which have been so used are applicable 
to both homogeneous and non-homogeneous media. Hence, 
in accordance with the considerations presented on page 271, 

it follows at once from (29) that the boundary conditions 
which must be fulfilled in passing from one medium to another 
are, provided the boundary is perpendicular to the 8-axis, that 

X + v,y - v.fJ, y + v.a - v,.y, l . 
c c I be continuous at t ( ) 

v Y v z v,.Z - v v the boundary. f 30 + . - ., /J + ___ ,ti_ .. 
a C ' C ' 
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From this and (29) the following additional conditions are 
obtained, namely, that 

n2 - I 
n2Z + -c-(v,,/J-v:,a), y be continuous at the boundary. (30') 

Since in (30), in the terms multiplied by v., v:,, v., the 
approximate values which are obtained when v,, = v, = v. = o 
may be substituted, the boundary conditions may be put in the 
form 

X Y: a - v,Z 
' ' C ' 

+ v ,,Z } must be continuous at } 0 ,, 
fJ c the boundary. • (3 ) 

For a homogeneous medium differential equations can easily 
be obtained each of which contains but one of the quantities 
X, Y, Z, a, /J, y. For it follows from (27), when terms of 
the first order only in •z,.,., v:,, v. are retained, that 

a2x a•x d ( ax ax ax) 
ot2 = dt2 - 2 dt v"oz + v,a.,, + v. oz ; 

hence (20) becomes 

n2 c12x 2 d( aX ax ax) 
c2· dt2 - ~ dt v,, oz + v, oy + v. oz = .1X. 

Equations of the same form may be obtained for Y, Z, a, 
fl, y. The preceding equations (18) and (19) also hold here, 
i.e. the electric force is not propagated as a transverse wave; 
but the magnetic force is so propagated. 

Writing 

!__(1 _.P,'z+l•Y+P•'~ 
X= A-er 111,' J, 

in which, since it is assumed that p/ 2 + p/ 2 + p3' 2 = 1, Pi', 
p2', p3' denote the direction cosines of the wave normal, oo' the 
velocity of light referred to the moving system of coordinates. 
Then, from (31), 

'Ir+ 2 ( , + , , I 
c2 c2w' P, v,, Pz v, +Pav.) = ,..,,2 • 
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or 

Writing on the right-hand side for c.l the approximate 
value ul = c : n, there results 

5. The Determination of the Direction of the Ray by 
Huygens' Principle.-The velocity c.:l of the wave along its 
normal depends upon the direction Pi' p2', P3' of the normal. 
In order to find the direction l)1 , l)2 , l)3 of the ray correspond
ing to the direction of the normal Pi', p/, Ps', it is convenient 
to pursue the method used on page 330 in the case of crystals, 
namely, to find by means of Huygens' principle the point of 
intersection of three adjacent wave fronts. Thus differentiate 
the equation 

with respect to Pi', p2', p3' [cf. equation (59), page 330]. The 
result is 

-1- ,-1". I oc.l ,-1". ' om' + ,-r. ' ow 
.r • 2//i = oPi'' y + 2//2 = oP:'' z 2/Ps = ops'; 

i.e., in consideration of (32), 

+ I V• ) z 2fPs = - n2· (34 

If these three equations be multipled by Pi', P2', Ps', respec
tively, and added, there results, since Pi'"+ P1' 2 + P1' 2 = I, 

Pi' .r + PaY + p,.' z + 2/ = - p/v.,, + P~, + Ps'v. 
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But, from (33), p/r + p2'y + p3'z = m'; i.e., in considera
tion of (32), 2f = - c: n. Hence, from (34), the direction of 
the ray is determined from the proportion 

cp/ v,, 
ll1 : ll2 : lJ3 = r : Y : z = n - n2 : • • • , 

or 

h • h • h p I V,, . p I Vy . p I V• 
't'l • 't'2 • 't'3 = 1 - - • 2 - - • 3 - - • nc nc nc (35) 

Thus the ray does not coincide with the wave normal. 
Neglecting terms of the second order in v, (35) may be 

written 

(35') 

6. The Absolute Time replaced by a Time which is a 
Function of the Coordinates.-In place of the variables r, y, 
z, t, in which t denotes the absolute time and r, y, z the 
coordinates referred to a point· in the moving medium, the 
quantities r, y, z, and 

will be introduced as independent variables. 
t' may conveniently be called a sort of '' position '' time, 

since it depends upon the position of the point under considera
tion, i.e. upon r, y, z. The partial differential coefficients 

with respect to r, y, z will then be denoted by (:,~)', (!)', 
(0°J', while 0:, etc., will be used as above to denote the 

partial differential coefficients when .r, y, z, t are the inde
pendent variables. From (36), 

a (a)' v,. d a (a)' v, d l 
dt = dt'' o.r = o.r c2 dt'' oy - ay c2 dt'' I 

o o )' v. d (37) 
oz= (az - c2 dt'' 

d d 
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If the following abbreviations be used, 

X + i,,y - v./3 = X', 
C 

+ i,.Y- v,Z , 
a c =a, 

Y+ 11.~ - 'll,.y = Y' 
C I 

V 7 - v.X 
p + -~-- = /J', 

C 

v,X - v,.Y , r+~--=r, 
C 

then the introduction of the values (37) in (29) gives, when 
terms in the fitst order only in v are retained, and when the 

differentiation (0':) is again denoted simply by 0:, 

n2 dX' oy' o/3' n2 dY' oa' oy' 
c dt' = oy - oz ' c dt' = oz - ox ' 

1r dZ o/J' oa' 
c dt' = o.r - oy • 

I da' o Y' oZ I d,81 oZ' oX' 
c dt' = oz - oy ' c dt' = o.r - oz , 

1 dy' oX' oY' 
c dt' = oy - o.r • 

(39) 

According to (30) and (38) the boundary conditions, 
when the boundary is perpendicular to the z-axis, are that 

X', Y', ti, fJ' be continuous at the boundary. . (40) 

Now equations (39) and (40) have the same form as the 
differential equations and boundary conditions of the electro
magnetic field for the case of a medium at rest. Hence the 
important conclusion: 

If, for a system at rest, X, Y, Z, a, f:J, y are certai'n 
known functions of x, y, z, t, and the period T, then, for t!te 
system i'n motion, X', Y', Z', a, /J', y' are the same fur.cti!J'tlS 
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v~+11:,y+,,.z . . 
of .r, y, z, t - c2 , and T; m which now .r, y, z 

are the relative coordinates referred to a point of the medium, 
and Tis the relative period with respect to a point of the moving 
medium. From (7) on page 461, the absolute period is in the 

latter case to be assumed as T ( 1 - :: ) . 

7. The Configuration of the Rays Independent of the 
Motion.-The last proposition is capable of immediate applica
tion to the relative configuration of the rays. For, in a system 
at rest, let the space which is filled with light be bounded 
by a certain surface S so that outside of S both X, Y, Z, and 
a, p, y vanish. Then when the system is in motion X', Y', 
Z', and a·, /J', y' vanish for points outside of S, i.e. z·n the 
moving system also the surface S z"s the boundary of the space 
whz"ch z"s filled wz"th Nght. Now suppose that S is the surface 
of a cylinder (a beam of light), an assumption which can be 
made if the cross-section of the cylinder is large in comparison 
with the wave length. The generating lines of this cylinder 
are called the light-rays. According to the 1.bove proposition, 
the boundary of the beam of light, even though it be frequently 
reflected and refracted, is unchanged by the common motion 
of the whole, i.e. in the moving system light-waves of the rela
tz"ve peri"od T are reflected and refracted according to the same 
laws as rays of the absolute perz"od T z"n the syslt'm at rest. 

The laws of lenses and mirrors need therefore no modifica
tion because of the motion. Likewise the motion has no 
influence upon interference phenomena. For these phenomena 
differ from the others only in that the form of the surface S 
which bounds the light-space is more complicated, and, as 
above remarked, this form is not altered by the motion. 

For crystals* also the configuration of the rays is inde
pendent of the motion, for the differential equations and 

•Whether this is true for naturally and magnetically active substances will not 
here be discussed. To determine this a special investigation is neces•ary. 
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boundary conditions applicable to these can be put into forms 
similar to (39) and (40), so that it is only necessary to refer 
to the laws of refraction of the crystal at rest. 

8. The Earth as a Moving System.-The last considera
tions are especially fruitful in discussing the motion of the 
earth through space. For, according to what has been said, 
the motion of the earth* can never have an influence of the first 
order in v upon the phenomena which are produced with terres
trial sources of light; for the periods emitted by such sources 
are merely the relative periods of the above discussion, i.e. 
they are wholly independent of the motion of the earth, so that 
the configuration of the rays cannot be altered by this motion. 
Now in fact numerous experiments by Respighi,t Hoeck.+ 
Ketteler,§ and Mascart II upon refraction and interference (some 
of them upon crystals) have proved that the phenomena are 
independent of the orientation of the apparatus with respect to 
the direction of the earth's motion. On the other hand, when 
celestial sources of light are used the effect of the earth's 
motion can be detected, for in this case the relative period 
depends upon that motion. As a matter of fact the spectral 
lines of some of the fixed stars appear somewhat displaced. 
This is to be explained by the relative motion of the earth, or 
of the whole solar system, with respect to the fixed stars. 
For the laws of refraction and interference are concerned with 
relative periods, and from equation (7) these are given by 

r( 1 - ~ ), in which Tis the absolute period. Thus T varies 

with the magnitude and sign of v., and hence also the posi
tion of the spectral lines formed upon the moving earth by 

* Substances which show natural or magnetic optical activity are here 
neglected. 

t Mem. di Bologna ( 2) II, p. 279. 
t Astr. Nachr. 73, p. 193. 
§ Astron. Undulat. Theorie, pp. 66, 158, 166, 1873. 
I Ann. de 1'6cole norm. (2) 1, p. 191, 1872; 3, p. 376, 1874-
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refraction or diffraction. This is known as Doppler's Prin
ciple.* 

Since the path of the earth about the sun is nearly a circle, 
v. is in this case equal to zero. Hence, as has been also 
experimentally shown by Mascart, t the motion of the earth 
causes no shifting in the Fraunhofer lines of the solar 
spectrum.:j: 

9. Aberration of Light.-Although, as was shown in § 7, 
the configuration of the rays is not influenced by the motion of 
the earth, yet the direction of the wave normal which corre
sponds to a given direction of the ray does depend upon that 
motion. This has already been shown on page 470; but it is 
worth while to here deduce directly the definition of the ray 
without using Huygens' principle as was done above. Con
sider, for example, the case of a plane wave in a system at rest: 

all the quantities involved are functions oft_ Pi,r + PzY + Ps3 _ 
(i[J 

In a system at rest p1 , p2 , p3 are the direction cosines of 
both the wave normal and the ray. The physical criterion 
for the direction of the ray will be that the light pass through 

* In the above it is assumed that the source A is at rest and the point of obser
vation B in motion. The considerations also hold in case both A and B move. 
v,. is then the relative velocity of B with respect to A measured in the direction of 
the propagation of the light. In this case the rigorous calculation shows that the 
actual period T and the relative period T' observed at B stand to each other in 
the ratio T: T' = ID - v': ID - v, in which v' is the absolute velocity of B, v that 
of A in the direction of the ray, and ID tha\ of the light in the medium between A 
and B. It is only when v' and v are both small in comparison with ID that this 
rigorous equation reduces to that given in the text, i.e. to the customary furm of 
Doppler's principle. Now we know nothing whatever about the absolute velocities 
of the heavenly J-.odies ; hence in the ultimate analysis the application of the usual 
equation representing Doppler's principle to the determination of the relative 
motion in the line of sight of the heavenly bodies with respect to the earth might 
lead to error~. Attention was first called to this point by Moessard (C. R. 114, 
p. 1471, 18g2). 

t Ann. de l'ecole norm. (2) 1, pp. 166, 190, 1872. 
i No account is here taken of the displacement, due to the rotation of the sun, 

of the lines which are obtained from light which comes from the rim of the sun. 
In experiments the light from the entire disk of the sun is generally used. 
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two small openings whose line of connection has the direction 
cosines p1, p2 , p3• If now the whole system moves with a 
velocity v,., v1 , v., there must always be one ray (called a 
relative ray when referred to a moving system) whose direction 
cosines are p1 , p2 , p3 . But according to page 47 3 this ray is 
produced by waves which are periodic functions of 

v,.x + ·v,y + vsz p1.r + P<JY + p3 z 
t - cl - oo • (41) 

This expression corresponds to plane waves for which the 
direction cosines of the wave normal Pi', p/, Ps' are propor
tional to 

This relation (42) makes possible the calculation of the direc
tion of the wave normal in the moving system from the 
direction of the ray, and vice versa. This relation is also 
identical with that deduced on page 471 [cf (35')], from 
Huygens' principle, for the quantities .\)p .))2 , .))3 there corre
spond to p1, p2, p3 here, and approximately c : m = n. 

Hence if upon the moving earth a star appears to lie in the 
direction p1 , p2 , p3 , referred to a coordinate system connected 
with the earth, its real direction is somewhat different, for this 
latter coincides with the direction of the normal to the wave 
from the star to the earth, i.e. the position of the star is 
obtained from Pi' P,,' Ps'-

The case in which the line of sight to the star and the 
motion of the earth are at right angles to each other will be 
considered more in detail. Thus set p1 = p 2 = o, p3 = I, 
vY = v. = o, v,, = 11; then from (42), if the velocity in air oo 
be identified with c,-as is here permissible,-the position of 
the star is given by 

Pi' : P/ : Ps' = v: o : c, • • • • (43) 

i.e. the real direction of the star differs from its apparent direc
tion by the angle of aberration C which is determined by 
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tan , = v : e. This angle of aberration is not changed when 
the star is observed through a telescope whose tube is filled 
with water, since it has been shown that the relative configura
tion in any sort of a refracting system is not changed by the 
motion.* This conclusion may be reached directly as follows: 
If m differs appreciably from e, as is the case when the obser
vation is made through water, then the wave normal in the 
water is no longer given by (43), but, in accordance with 
(42), by 

c2 
Pi' : Pz' : Ps' = v : O : - = v : o : en, . (44) 

uJ 

from which the angle of aberration ,, is determined by 
tan C' = v: en. The corresponding wave normal in air or in 
vacuo makes, however, another angle , with the z-axis such 
that, since the boundary between air and water is to be 
assumed perpendicular to the direction of the ray, according 
to Snell's law sin C : sin C' = n. Since now, on account of 
the smallness of C and C', the sin is equal to the tan, it follows 
that tan C = v : e, i.e. the angle of aberration is the same as 
though the position of the star had been observed directly in 
air. 

10. Fizeau's Experiment with Polarized Light.-Although 
in accordance with the theory the motion of the earth should 
have no influence upon optical phenomena save those of aber
ration and the change in the period of vibration in accordance 
with Doppler's principle, and although experiments designed to 
detect the existence of such an effect have in general givep. nega
tive results, nevertheless Fizeau t thought that he discovered 
in one case such an effect. When a beam of plane-polarized 
light passes obliquely through a plate of glass, the azimuth of 
polarization is altered (cf. p. 286). The apparatus used con
sisted of a polarizing prism, a bundle of glass plates, and an 
analyzer. At the time of the solstice, generally about noon, 

• Cf. p. 116 above. 
t Ann. de chim. et de phys. (3) 58, p. 129, 186o ; Pogg. Ann. 114, p. 554, 

1861. 
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a beam of sunlight was sent, by means of suitably placed 
mirrors, through the apparatus from east to west, and then from 
west to east. It was thought that a slight difference in the 
positions of the analyzer in the two cases was detected. 

According to the theory here given no such difference can 
exist. For if in any position of the apparatus the analyzer is 
set for extinction, then the light disturbance is limited to a 
space which does not extend behind the analyzer. According 
to the discussion on page 473, the boundary of this space does 
not change because of the motion of the earth, provided the 
configuration of the rays with respect to the apparatus remains 
fixed; and this is true even when crystalline media are used 
for producing the bounding surface S of the light-space, 
Hence the position of extinction of the analyzer must be inde
pendent of the orientation of the apparatus with respect to the 
earth's motion. In any case it is to be hoped that this experi
ment of Fizeau's will be repeated. Until this is done it is at 
least doubtful whether there is in reality a contradiction in this 
matter between experiment and the theory here presented. 

u. Michelson's Interference Experiment. - The time 
which light requires to pass between two stationary points A 

l 
and B whose distance apart is / is t1 = -, where c represents 

C 

the velocity of light. It will be assumed that the medium in 
which the light is travelling is the ether, or, what amounts to 
the same thing, air. If the two points A and B have a common 
velocity v in the direction of the ray, then the time of passage 
t/ of tlie light from A to B is somewhat different. For the 
light must travel in the time t/ not only the distance /, but 
also the distance over which the point B has moved in the time 
t/, i.e. the total distance travelled by the light is / + vt/, so 
that 

t/c = t+ vt1 , •• (45) 
If the light is reflected at B, in order to return to A it 

requires a time 11
1 such that 

t1'c = l - i,t/ . . . . (46) 
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For this case differs from the preceding only in this, that now 
A moves in a direction opposite to that of the reflected light. 
Hence the time t' required for the light to pass from A to B 
and back again to A is, from (45) and (46), 

or 

• • (47) 

provided the development be carried only to terms of the 

d . V 
second or er m -. 

C 
Now although the influence of the com-

mon motion of the points A and B upon the time t' is of the 
second order, it should be possible to detect it by a sensitive 
interference method. 

The experiment was performed by Michelsen in tho year 
I 881. * The instrument used was a sort of an interferential 
refractor furnished with two horizontal arms P and Q set at 
right angles to each other and of equal length (cf. Fig. 57, 
page 149). Two beams of light were brought to interference, 
one of which had travelled back and forth along P, the other 
along Q. The entire apparatus could be rotated about a 
vertical axis so that it could be brought into two positions such 
that first P, then Q coincided with the direction of the earth's 
motion. Upon rotating the apparatus from one position to the 
other a displacement of the interference bands is to be 
expected. 

The amount of this displacement will now be more 
accurately calculated. Let the arm P coincide with the direc
tion v of the earth's motion, the arm Q be perpendicular to it. 
Let A be the point in which P and Q intersect. The time t' 
required for the light to pass the length of P and back is given 
by (47). But the time t" required for the light to travel the 

• Am. Jo. Sci. (3) 22, p. 120, 1881, 
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length of Q and back is not simply t'' = 2!: c; for it is neces
sary to remember that the point of intersection A of the twc 
arms P and Q, from which the light starts and to which it 

FIG. 107. 

normal. The 
t"elation holds, 

returns after an interval of time t', has in this 
time changed its position in space. Thus the 
distance through which this point A has 

l moved is vt' (Fig. 107). The first position 
of the point A will be denoted by A 1 , the last 
by A 2• In order that the light from A 1 may 
return to A 2 after reflection at the end of the 
arm Q, it is necessary that the reflecting 
mirror at Q be somewhat inclined to the wave 

distance travelled by the light is 2s and the 

t' 2 
si = 12+ ( 2 ). 

Also, t" = 2s : c denotes the time which the light requires to 
travel the length of Q and back. Now, from (47), if terms of 
higher order than the second in v be neglected, 

hence 
, ,, l v2 

t - t = c. c2· (49) 

If this difference in time were one whole period T, the 
interference fringes would be displaced just one fringe from the 
position which they would occupy if the earth were at rest, i.e. 
if v = o. Hence if the displacement 6 be expressed as a 
fractional part of a fringe, there results from (49) 

t' - t'' l -;JJ l 
tJ= -r- = cT. "--1. = x'2, (so; 

in which C is the angle of aberration. According to page 
116, C = 20.5" = 20.5.1t: 180-601 = 0.995.10- 4 radians. 
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The displacement produced by turning the instrument 
from the position in which P coincides with the direction of 
the earth's motion to that in which Q coincides with this 
direction should be 20. 

But no displacement of the interference fringes was 
observed. The sensitiveness of the method was afterwards 
increased by Michelson and Morley* by reflecting each beam 
of light several times back and forth by means of mirrors. 
The effect of this is to multiply several times the length of the 
arms P and Q. Each beam of light was in this way compelled 
to travel a distance of 22 metres, i.e. l was I I metres. The 
apparatus was mounted upon a heavy plate of stone which 
floated upon mercury and could therefore be easily rotated 
about a vertical axis. According to (50) this rotation ought 
to have produced a displacement of 20 = 0.4 of a fringe, but 
the observed displacement was certainly not more than 0.02 

of a fringe,-a difference which might easily arise from errors 
of observation. 

This difficulty t may be explained by giving up the theory 
that the ether is in absolute rest and assuming that it shares in 
the earth's motion. The explanation of aberration becomes 
then iiwolved in insuperable difficulties. Another way of 
explaining the negative results of Michelson's experiment has 
been proposed by Lorentz and Fitzgerald. These men assume 
that the length of a solid body depends upon its absolute motion 
in space. 

As a matter of fact, if the arm which lies in the direction 
of the earth's motion were shorter than the other by an amount 

2 

I-;.;,, the difference in time t '- t'', as calculated in (49), would 

*Am.Jo. Sci. (3) 34, p. 333, 1887 ; Phil. Mag. (5) 24, p. 449, 1887. 
t Sutherland (Phil. Mag. (S) 45, p. 23, 1898) explains Michelson's negative 

result by a lack of accuracy in the adjustment of the apparatus. But, according 
to a communication which I have recently received from H. A. Lorentz, this 
objection is not tenable if, as is always the case, the observation is made with a 
telescope which is focus11ed upon the position of maximum sharpness of the fringes. 
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be just compensated, i.e. no displacement of the fringes would 
be produced. 

However unlikely the hypothesis that the dimensions of a 
substance depend upon its absolute motion may at first sight 
seem to be, it is not so improbable if the assumption be 
made that the so-called molecular forces, which act between 
the molecules of a substance, are transmitted by the ether 
like the electric and magnetic forces, and that therefore a 
motion of translation ih the ether must have an effect upon 
them, just as the attraction or repulsion between electrically 
charged bodies is modified by a motion of translation of the 

particles in the ether. Since ~ has the value 10- 8, the 

diameter of the earth which lies in the direction of its motion 
would be shortened only 6.5 cm. 



PART Ill 

RADIATION 

CHAPTER I 

ENERGY OF RADIATION 

1. Emissive Power.-The fundamental laws of photom
etry were deduced above (page 77) from certain definitions 
whose justification lay in the fact that intensities and bright
nesses calculated with the aid of these definitions agreed with 
observations made by the eye. But it is easy to replace this 
physiological, subjective method by a physical, objective 
means of measuring the effect of a source of light. Thus it is 
possible to measure the amount of heat developed in any sub
stance which absorbs the light-rays. To be sure this intro
duces into the photometric definition a new idea which was 
unnecessary so long as the physiological unit was used, name
ly, the idea of time, since the heat which is developed in an 
absorbing substance is proportional to the time. According 
to the principle of energy, the heat developed must be due to 
a cert 1in quantity of energy which the source of light has 
transmitted to the absorbing substance. Therefore the emz"s
sz"on E of a source Q is defined as the amount of energy which 
is radiated from Q into the surrounding medium in unit time. 

Now radiant energy consists of vibrations of widely differ
ing wave lengths. It must be possible to express the amount 

483 
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of energy transmitted in unit time by waves whose lengths lie 
between A. and l + dl in the form E>.dA.. The factor E" wz1/ 
/Je called the emzssz"on for the wave length l. 

The emission between the wave lengths 11 and \ 1 is there
fore 

. (1) 

and the total emission is 

E= 1~".dl .. . (2) 

The emission of a body depends not only upon its nature, 
but also upon the size and form of its surface. In order to be 
independent of these secondary considerations, the term emzs
sz"ve power will be introduced and defined as the emission 
( outward) of unit surface. 

2. The Intensity of Radiation of a Surface.-The funda
mental law stated on page 77 that the quantity of light is the 
same at every section of a tube of light, i.e. of a tube whose 
surface is formed by rays of light, appears nece!?sary from the 
energy standpoint, since the quantity of light is interpreted as 
the energy flow in unit time. For, as was shown on page 273, 
the rays of light are the paths of the energy flow, i.e. energy 
passes neither in nor out of a tube of light. Hence the flow 
of energy must be the same through every section of a tube, 
since the same amount of energy must flow out of every 
element of volume as flows into it, provided this element 
neither contains a source of light nor absorbs radiant energy. 

Hence the energy flow which a surface element ds sends 
by radiation into an elementary cone of angular aperture dD. 
may be written in the form [cf. equation (69), page 83] 

dL = z"ds cos </> dD., . . • . • (3) 

in which q, denotes the angle included between the element of 
surface ds and the axis of the elementary cone, i.e. the direc-
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tion of the rays under consideration. i will be called the 
intensity of radiation of the surface ds. 

If all parts of a curved radiating surface appear to the eye 
equally bright, then, as was shown on page 82, i must be 
constant, i.e. independent of the inclination </J. The discus
sion as to whether or not i is constant when considered from 
the energy standpoint will be reserved till later. If, for the 
present, i be assumed to be constant, then from (3) the energy 
flow which passes from ds into a finite circular cone whose 
generating lines make an angle U with the normal to ds is 
found to be [cf. (73) on page 83] 

L = 1rz"ds sin2 U. • (4) 
1l' 

Setting U = - and dividing by ds, the emissive power e of 
2 

tis is obtained in the form 
e= 1rz". (5) 

Here again z·, the total intensity of radiation, must be dis
tinguished from i>., the intensity of radiation for wave 
length A.. If e>. denote the emissive power for the wave length 
.:\, then 

(6) 

3. The Mechanical Equivalent of the Unit of Light.-On 
page 81 the flame of a Hefner lamp was assumed as the unit 
of light. Tumlirz * has found the emission within a horizontal 
cone of unit solid angle from such a flame to be 0.1483 gram
calories a second; Angstrom'st value for the same is 0.22 

gram-calories a second. If such a lamp be assumed to radiate 
uniformly in all directions, then its total emission, i.e. the 
energy which it emits in all directions (into the solid angle 
41r), is calculated from the value of Tumlirz as 

gr cal gr cal 
E = 41r.o.1483 - = 1.86 --, sec sec 

• Wied. Ann. 38, p. 650, 188\,. 
t Wied. Ann. 67, p, 641!, 1899. 
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or, since one gram-calorie is equal to 419. 105 ergs, the value 
of E in the C.G.S. system is 

erg 
E= 78-106 --. 

sec (7) 

Only 2.4 per cent of this energy corresponds to visible 
rays.* Hence the light emission amounts to 

erg 
E' = 1.9- 106 --. 

sec (8) 

Hence if the unit of light is understood to mean the energy of 
the light-rays emitted by a Hefner lamp in a second in a hori
zontal direction within a cone of unit solid angle, i.e. upon 
1 cm. 2 at a distance of I cm., then 

• f 1· h s erg I umt O 1g t = I. 5 I • IO --. 
sec (9) 

This is then the mechanical equivalent of the unit of light. 
The candle-metre is taken as the unit of intensity of illumi

nation (cf. page 81). It is defined as the quantity of light 
which a Hefner lamp radiates upon I cm. 2 at a distance of 
1 m. The solid angle amounts in this case to I: JOO· 100. 

Hence, from (9 ), 

erg 
1 candle-metre = 1 5 • - . 

sec 

Hence when the intensity of illumination is I candle-metre, 
i.e. when an eye is at a distance of I m. from a standard 
candle, it receives, assuming that the diameter of the pupil 
is 3 mm. , about I erg of energy in a second. This rate of 
energy flow would require I year and 89 days to heat I gm. 
of water 1 ° C. This calculation gives some idea of the 
enormous sensitiveness of the eye. When the eye perceives a 
star of the 6th magnitude it responds to an intensity of illumi
nation of about I• 10- 8 candle-metres, since a star of the 6th 

* In the experimental determination of this number the heat.rays were 
absorbed by a layer of water. 
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magnitude has about the same brightness as a Hefner lamp at 
a distance of 1 1 km. In this case the eye receives about 
1 • 1 o- 8 ergs per second. 

The so-called normal candle (a paraffine candle of 2 cm. 
diameter and 50 mm. flame) has an emission about I .24 times 
that of the Hefner lamp. 

4. The Radiation from the Sun.-According to Langley 
about one third of the energy of the sun's radiation is absorbed 
by the earth's atmosphere when the sun is in the zenith, 
According to his measurements, if there were no atmospheric 
absorption, the sun would radiate upon I cm. 2 of the earth's 
surface at perpendicular incidence about 3 gr. cal. (more 
accurately 2.84) per minute (solar constant). Angstrom 
obtained a value of 4 gr. cal. a minute. Hence, making 
allowance for the absorption of the earth's atmosphere, the 
flow of energy to the earth's surface is, according to Langley, 
about 2 gr. cal. a minute= 1 .3. 106 erg/sec. Pouillet's value, 
which was given on page 454, is somewhat smaller. The 
energy of the visible light between the Fraunhofer lines A 
and~ amounts to about 35% of the total radiation, i.e. the 
so-called intensity of illumination B of the sun, without allow
ing for the absorption in the air, is, from Langley's measure
ments, 

erg 
B = 6.9.105- = 46300 candle-metres. (11) sec 

If the mean distance of the sun from the earth be taken as 
149. 109 m., the candle-power of the sun is found to be 
1.02.1027• 

5. The Efficiency of a Source of Light.-The efficiency g 
of a source of light is defined as the ratio of the energy of the 
light radiated per second to the energy required to maintain 
the source for the same time. 

Thus a Carcel lamp of 9.4 candle-power consumes 42 gm. 
of oil in an hour or I. 16• 10-2 gm. in a second. The heat 
of combustion of the oil is 9500 calories per gram, i.e. 
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39.7. 1010 ergs. Now equation (8) gives the em1ss10n of the 
standard unit, hence the efficiency of the lamp is 

9.4• 1.9• I05 -

g = I. 16• 10- 2. 39.7- 1010 = "·4· 10-2 = 0.4%. 

Thus the efficiency is very small; only 0.4% of the energy 
contained in the oil is used for illumination. 

The electric light is much more efficient. With the arc 
light I candle-power can be obtained with an expenditure of 
i watt, i.e. 5. l08 erg/sec. Hence for the arc light 

1.9· 10& 
g = 6 = 0. 38 = 38:i. 

5 • IO 

For the incandescent lamp g has about the value 5. S:i-
These figures show that it is more economical to use the 

heat of combustion of oil to drive a motor which runs a dynamo 
which in turn feeds an arc light, than to use the oil directly 
for lighting purposes. A Diesel motor transforms about 70:' 
of the energy of the oil into mechanical energy, and 90:' of 
this can be transformed into electrical energy by the dynamo 
which feeds the arc light; hence the efficiency of the electric 
light, upon the basis of the energy of the oil used, may be in
creased to 

In this calculation no account has been taken of the fact 
that the carbons in the lamp are also consumed. For an 
incandescent lamp of the ordinary construction, which requires 
about 3! watts per candle-power, g would be equal to 3-4% 
calculated upon the basis of the fuel consumption of the motor. 
For a Nernst incandescent lamp which requires I watt per 
candle-power,* g would be as high as 12~. 

6. The Pressure of Radiation.-Consider the case of a 
plane wave from a constant source of light falling perpendicu-

• The consumption of energy varies from .5 to 1.8 watts according to con
ditions. 
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larly upon a perfectly black body. Such a body is defined as 
one which does not reflect at all, but completely absorbs all 
the rays which fall upon it, transmitting none.* According 
to the theory of reflection given above, an ideally black body 
must have the same index of refraction as the surrounding 
medium, otherwise reflection would take place. t Moreover it 
must have a coefficient of absorption, which must, however, 
be infinitely small, since otherwise reflection would take place 
( cf. chapter on Metallic Reflection), even though the index of 
refraction were equal to that of the surrounding medium. 
Hence, in order that no light may be transmitted by the body, 
it must be infinitely thick. An approximately black body can 
be realized by applying a coat of lamp-black or, since lamp
black is transparent to heat-rays, of platinum-black; likewise 
pitch or obsidian immersed in water, not in air, are nearly black 
bodies. The most perfect black body is a small hole in a 
hollow body. The rays which enter the hole are repeatedly 
reflected from the walls of the hollow body even though these 
walls are not perfectly black. Only a very small part of the 
rays are again reflected out of the hole. This part is smaller 
the smaller the hole in comparison with the surface of the 
body. 

Let plane waves, travelling along the positive z-axis, fall 
upon a black body ~- Conceive a cylindrical tube of light 
parallel to the z-axis and of cross-section q. Let energy flow 
in at z = o. This energy will be completely absorbed, i.e. 
transformed into heat within the black body, which is supposed 
to extend from z = a to z = oo. The amount of energy thus 
absorbed in any time t is E-q· V.t, if E denote the radiant 
energy which is present in unit of volume of the medium in 
front of~. and V the velocity of the waves in this medium. 

* A perfectly black body can emit light if its temperature is sufficiently high. 
Hence it would be preferable to use the term "perfectly absorbing" instead of 
"perfectly black." 

t This shows that the definition of a black hod~· depends upon the nature of the 
medium surrounding it. 
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If now the black body be displaced a distance dz in the 
direction of light, then the energy which falls upon the body 
in the time t is less than before by the amount of the energy 
contained in the volume q-dz of the medium, i.e. by the 
amount q·dz-E. Hence the amount of heat developed in the 
body is smaller than before by the same amount (measured in 
mechanical units). But the same amount of radiant energy 
always enters the tube in the time t no matter whether the 
body St is displaced or not. Further, the electromagnetic 
energy contained in the volume q·dz, which has been vacated 
by the motion of the body, is always the same, i.e. it is inde
pendent of whether this volume is occupied by Sf or not, since 
the index of refraction, and therefore also the dielectric con
stant, of ~ is to be identical with that of the surrounding 
medium, so that reflection does not occur, i.e. the electric and 
magnetic forces at the surface of the body are the same in the 
medium and in Sf. If, therefore, because of the displacement 
of Sf a distance dz, the same energy which has entered the 
light-tube in the time t develops less heat than when ~ is not 
displaced, then, according to the principle of the conservation 
of energy, this loss in heat must be represented by work 
gained in the displacement of Sf. If this work be expressed in 
the form P•q•dz, p represents the pressure which is exerted 
upon ~ by the radiation. Hence 

P·q·dz = q-dz-E, 

i.e. 

p = E .. (12) 

Thus the pressure of radiation which is exerted by plane 
waves falling perpendicularly upon a perfectly black body is 
equal to the amount of energy of the incident waves contained in 
unit of volume of tke medium outside. 

Since, according to § 4, the energy flow from the sun to the 
earth amounts to 1.3o106 erg/sec. per cm.2, this is the amount 
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of energy contained in 3 • 1010 cm.8 of air. Hence the energy 
in I cm. 8 is 

1.3-106 
E = 10 = 4· io- &. 

3-10 

Therefore the sun's rays exert this pressure upon I cm.2 of a 
black body. This pressure is about equal to a weight of 
4• 10- 5 mgr., i.e. it is so small that it cannot be detected 
experimentally. Nevertheless this pressure is of great theoret
ical importance, as will be seen in the next chapter. 

7. Prevost's Theory of Exchanges.-Every body, even 
when it is not self-luminous, radiates an amount of energy 
which is greater and contains more waves of short period the 
higher the temperature of the body. If, therefore, two bodies 
A and B of different temperatures are placed opposite to each 
other, then each of them both radiates and receives energy. 
The temperatures of the two bodies become equal because 
the hotter one radiates more energy than it receives and 
absorbs from the colder, while the colder receives more than 
it radiates. This conception of the nature of the process of 
radiation was first brought forward by Prevost. 

If, therefore, the emission of a body A be determined by 
measuring the rise in temperature produced in a black body 
which absorbs the rays from A, the result obtained depends 
upon_ the difference in temperature between the bodies A 
and B. The rise in the temperature of B would be so much 
more correct a measure of the entire emission of A the smaller 
the amount of energy which B itself radiates. Hence if it is 
desired to measure the energy of the light-rays from a source 
A, whose ultra-red rays are all absorbed in a vessel of water, 
it can be done by measuring the absorption in a black body B 
which has the same temperature as the water. For at the 
temperature of a room the body B emits only long heat-rays, 
and it receives from the water as many of these rays as it 
emits. On the other hand the total emission of a source of 
light is somewhat greater than that which is represented by 
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the absorption of the body B at the temperature of the ro:>m; 
nevertheless, in considerat on of the greater temperature of 
the source (the sun or a flame), the result of the measurements 
is practically independent of the variations in temperature of 
the body B. But the temperature of B must be taken into 
account in measuring the emission of a body A which is not 
much hotter than B. This subject will be resumed in the next 
chapter. 



CHAPTER II 

APPLICATION OF THE SECOND LAW OF THERMO
DYNAMICS TO PURE TEMPERATURE RADIATION 

1. The Two Laws of Thermodynamics.-The first law of 
thermodynamics is the principle of energy, according to which 
mechanical work is obtained only by the expenditure of a 
certain quantity of energy, i.e. by a change in the condition of 
the substance which feeds the machine. Although this law 
asserts that it is impossible to produce perpetual motion, i.e. 
to make a machine which accomplishes work without produc
ing a permanent change in the substance which feeds it, yet a 
machine which works without expense is conceivable. For 
there is energy in abundance all about us; for example, con
sider the enormous quantity of it which is contained as heat in 
the water of the ocean. Now, so far as the first law is con
cerned, a machine is conceivable which continually does work 
at the expense of heat withdrawn from the water of the ocean. 
Now mankind has gained the conviction that such a machine, 
which would practically be a sort of perpetual motion, is 
impossible. In all motors which, like the steam-engine, 
transform heat into work, at least two reservoirs of heat of 
different temperatures must be at our disposal. These two 
reservoirs are the boiler and the condenser. This latter may 
be the air. In general heat can be transformed into work 
only when a certain quantity of heat Q is taken from the 
reservoir of higher temperature and a smaller quantity Q' is 
given up to a reservoir of lower temperature. 

Hence the following law is asserted as the result of 
universal experience: Mechanical work can never be continually 

493 
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obtained at the expense of heat if only one reservoir of heat of 
uniform temperature is at disposal. This idea is the essence 
of the second law of thermodynamics. 

Only one consequence of this law will be here made use of. 
If a system of bodies, so protected that no exchanges of heat or 
work can take place betu1een it and the !xternal medium, has at 
any time the same temperature ziz all its parts, then, if no 
changes take place in the nature of any of the bodies, no 
difference of temperature can ever arise in the system. For 
such a difference of temperature might be utilized for driving 
a machine. If, then, this difference of temperature should be 
equalized by the action of the machine, it would again arise of 
itself in such a system, and could again be used for the pro
duction of work, and so on indefinitely, although originally but 
one source of heat at uniform temperature was at disposal. 
This would be in contradiction to the second law. It is 
important to observe that heat originally of one temperature 
could be used in this way for the continual production of work 
only if the nature of the bodies of the system remained un
changed. For if this nature changes, if, for example, chemi
cal changes take place, then the capacity of the system for 
work ultimately comes to an end. A condition of equality 
can indeed be disturbed by chemical changes; this is not, 
however, in contradiction with the second law. This phe
nomenon can be observed in any case of combustion. 

2. Temperature Radiation and Luminescence. - Every 
body radiates energy, at least in the form of long heat-rays. 
Now two cases are to be distinguished: either ( 1) the nature 
of the body is not changed by this radiation, in which case it 
would radiate continuously in the same way if its temperature 
were kept constant by the addition of heat. This process 
will be called pure temperature radiation. Or (2) the body 
changes because of the radiation, in which case, in general, 
the same radiation would not continue indefinitely even though 
the temperature were kept constant. This process is called 
luminescence. The cause of the radiation does not in this case 
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lie in the temperature of the system, but in some other source 
of energy. Thus the radiation due to chemical changes is 
called chemical luminescence. This occurs in the slow oxida
tion of phosphorus or of decaying wood. The phenomenon of 
phosphorescence which is shown by other substances, i.e. the 
radiation of light after exposure to a source of light, is called 
photo-luminescence. Here the source of energy of the radia
tion is the light to which the substance has been exposed, 
which has perhaps produced some change in the nature, for 
instance in the molecular structure, of the substance, which 
change then takes place in the opposite sense in producing 
phosphorescence. The radiation produced in Geissler tubes 
by high-tension currents is called electro-luminescence. 

From what was said in § I it is clear that the second law of 
thermodynamics leads to conclusions with respect to pure tem
perature radiations only. From the conception of heat 
exchanges mentioned on page 491 it follows, for example, 
that if an equilibrium of temperature has once been established 
in a closed system of bodies, it tan never be disturbed by pure 
temperature radiation. But a disturbance of the equilibrium 
might be produced by luminescence. 

In what follows only pure temperature radiations will be 
considered. 

3. The Emissive Power of a Perfect Reflector or of a 
Perfectly Transparent Body is Zero.-Consider a very large 
plate of any substance K enclosed between two plates of per
fectly reflecting substance SS. A perfectly reflecting body is 
llnderstood to be one which reflects all of the radiant energy 
which falls upon it. Let Kand SS have originally the same 
temperature. Kand SS may be thought of as parts of a large 
system of uniform temperature which is closed to outside influ
ences. If now K emits energy, it also receives the same 
amount back again by reflection from SS. Assume that the 
absorption coefficient of K is not equal to zero. The absorb
ing power a of a body* or of a surface may be defined as the 

* The absorbing power a must be carefully d1stingu1Shed from the coefficient 
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ratio of the energy absorbed to the energy radiated upon it 
from without. If the incident energy is I, then the quantity 
absorbed is a, the quantity reflected I - a, provided the body 
transmits no energy. Hence this quantity I - a is the rejlect
t"ng power r = l - a, provided the body is so thick that no 
energy is transmitted ; otherwise r < I - a. 

The energy reflected to K from the mirrors SS is now par
tially absorbed in K and partially reflected to SS. This 
reflected part is again entirely reflected back to K from SS, 
and so on. It is easy to see, since SS absorb no energy, that, 
when a stationary condition has been reached, the body K 
reabsorbs all the energy which it emits. If, therefore, the 
mirrors SS also emitted energy, the temperature of the body 
K would rise, since then K would absorb not only all the 
energy which it itself sends out, but also a part of the energy 
emitted by SS. On the other hand the temperature of the 
mirrors would fall, since they radiate but do not absorb. Now 
since, according to the second law, the original equilibrium of 
temperature cannot be disturbed by pure temperature radiation, 
the conclusion is reached that the emt"sst"ve power of a perfect 
mt"rror t"s zero. If, therefore, a system of bodies is surrounded 
on all sides by a perfect mirror, it is completely protected from 
loss by radiation. In a similar way the conclusion may be 
reached that the emi'ssi've power of a perfectly transparent body 
i's zero. For conceive an absorbing body K surrounded by a 
transparent body, the whole being enclosed within a perfectly 
reflecting shell, then the temperature of the transparent body 
must fall if it emits anything, since it does not absorb. 

4. Kirchhoff's Law of Emission and Absorption.-Con
sider a small surface element ds of an absorbing body at the 
centre of a hollow spherical reflector of radius I, which has at 
opposite ends of a diameter two small equal openings d.Q 

(cf. Fig. 108). 

of absorption mentioned on page 36<>. A metal, e.g. silver, has a very large 
coefficient of absorption K, but an extremely small absorbing power a, since silver 
reflects almost all of the incident light, 
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Let ds be small in comparison with dfl. The energy 
radiated by ds through each of the openings d.Q is, according 
to (3) on page 484, 

dL = tils cos ¢ d.Q, (1) 

in which ¢ is the angle between the normal to ds and the line 
connecting the middle points of ds and d.a. i is called the 
intensity of radiation from ds in the direction ¢. Whether or 

FIG. 108. 

not i depends upon <P will not here be discussed. All the 
energy which ds emits in other directions it again receives and 
completely absorbs because of the repeated reflections which 
take place at the surface of the hollow sphere. Suppose now 
that the hollow sphere is surrounded by a black body K', 
whose outer surface is a perfect reflector. K' then radiates 
towards the interior only. Part (dE') of the energy emitted 
from K' passes through the two openings d.Q to the element 
ds and is there partially absorbed. The element ds subtends 
at a surface element ds' of the black body a solid angle 

ds 
d.Q' = r cos ¢ (2) 

if r denotes the distance between ds and ds'. The energy 
radiated from ds' to ds is then 

dL' = i'ds' cos q,'d.Q', . . (3) 
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in which i' represents the intensity of radiation of the black 
surface at an angle <fl from its normal. The sum of all the 
surface elements ds' which radiate upon ds is 

~ds' = r2d.Q: cos¢', . 

in which r and ¢' are to be considered constant for the different 
elements of surface ds'. Hence the entire energy radiated 
from K' through the opeRing d.Q upon the element ds is 

dE' = ~dL' = i' ·r•dD. d.Q', 

or, from (2), 
dE' = i' d.Q ds cos q,. (6) 

Similarly the energy which comes to ds from the other side is 

dE" = i" d.Q ds cos ¢, . . . (7) 

in which i" and i' must be distinguished if they depend upon 
q,' and if ¢' is different on the two sides of the enveloping 
black body. 

If there is originally equilibrium of temperature, it cannot 
be disturbed by the radiation. The energy zdL sent out by 
ds through the two openings d.Q must be compensated by the 
energy a(dE' + dE") absorbed, a being the absorbing power 
of ds corresponding to the direction q,. According to the 
second law and (1), (6), and (7), 

zi = a(i' + i"). . . (8) 

This equation must remain unchanged when the enveloping 
black body K' changes its form, thus varying ¢'. Hence 
i'( = i") must be independent of ¢', i.e. the intensitJ1 of radia
tion i' of a black body is independent of the direction of radia
tion. Hence, from (8), 

i = a•i'. . (9) 

If different black bodies be taken for the surface ds', while 
the substance ds remains unchanged, then, according to (9), i' 
must always remain constant, i.e. the intensity of radiation of 
n hlack body does not depend upon its particular nature, but i's 
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always the same function p of the temperature.* Hence (9) 
may be stated as follows: 

The ratio between the emission and the absorption of any 
body at a given angle of inclination depends upon the tempera
ture only: this ratio is equal to the emission of a black body at 
the same temperature. These laws are due to Kirchhoff. t 
They hold not only for the total intensity of emission, but also 
for the emission of any particular wave length, thus 

For if a perfectly transparent dispersing prism be placed 
behind the opening dfl outside of the hollow sphere (page 
497), then one particular wave length from ds can be made to 
fall upon the black body, the others being returned by perfect 
mirrors through the prism and the opening dD. to ds. Then 
within a small region of wave lengths which lie between l and 
l + dl the considerations which lead to equation (9) are 
applicable. 

Equations (9) and (9') must hold for each particular 
azimuth of polarization of the rays. For if a prism of a trans
parent doubly refracting crystal be introduced behind dfl, the 
waves of different directions of polarization will be separated 
into two groups. One of these groups may now be allowed 
to fall upon a black body while the other is returned by a suit
ably placed perfect mirror. The above considerations then 
lead to equation (9'), which therefore also holds for any par
ticular direction of polarization. 

5. Consequences of Kirchhoff's Law.-If a black body is 
slowly heated, there is a particular temperature, namely, about 
525° C., at which it begins to send out light. This is at first 
light of long wave length (red); but as the temperature is 
raised smaller wave lengths appear in appreciable amount (at 

* This function can depend upon the index of refraction of the space through 
which the rays pass. This will be considered later. Here this index will be 
assumed to be I, i.e. the space will be considered a vacuum. 

t Cf. Ostwald's Klassiker, No. 100. 
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about 1000° the body becomes yellow, at 1200° white).* 
Now equation (91) asserts that no body can begin to emit light 
at a lower temperature than a black body, but that all bodies 
begin to emit red rays at the same temperature (about 525° C.) 
(Draper's law). t The intensity of the emitted light depends, 
to be sure, upon the absorbing power aA. of the body at the 
temperature considered. Polished metals, for example, which 
keep their high reflecting power even at high temperatures 
emit .much less light than lamp-black. Hence a streak of 
lamp-black upon a metallic surface appears, when heated to 
incandescence, as a bright streak upon a dark background. 
Likewise a transparent piece of glass emits very little light at 
high temperature because its absorbing power is small. If a 
hollow shell with a small hole in it be made of any metal, the 
hole acts like a nearly ideally black body (cf. page 489). It 
must therefore appear, at the temperature of incandescence, as 
a bright spot upon the surface of the hollow shell, since the 
metal has but a small absorbing power. 

In the case of all smooth bodies which are not black, the 
reflecting power increases as the angle of incidence increases ; 
hence the absorbing power must decrease. Hence, according 
to (9'), the intensity of emission i of all bodies whz'clz are not 
black is greater when it takes place perpendicular to the surface 
thun wizen it is oblique. Hence the cosine law of em£ssion holds 
rigorously only for black surfaces. 

At oblique incidence, as was shown on page 282, the 

* The first light which can be perceived is not red but a ghostly gray. This 
can be explained by the fact that the retina of the human eye consists of two 
organs sensitive to light, the rods and the cones. The former are more sensitive 
to light, but cannot distinguish color. The yellow spot, i.e. the most sensitive 
point of the retina, has many cones but few rods, H~nce the first impression of 
light is received from the peripheral portions of the retina. But as soon as the eye 
is focussed upon the object, i.e. as soon as its image is formed upon the yellow 
spot, the impression of light vanishes, hence the ghostliness of the phenomenon. 

t Every exception to Draper's law, as for example phosphorescence at low 
temperatures, signifies that the case is not one of pure temperature radiation, but 
that, even when the temperature remains constant, some energy transformation is 
the cause of the radiation. 
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reflecting power, and therefore the absorbing power, depends 
upon the condition of polarization of the incident rays. Hence 
the radiatz"on emitted obliquely by a body is partially polarz"zed. 
That component of the radiation which is polarized in a plane 
perpendicular to the plane defined by the normal and the ray 
must be the stronger, because it is the component which is less 
powerfully reflected, and is therefore more strongly absorbed. 
In the case of crystals like tourmaline, the absorbing power, 
even at perpendicular incidence, depends upon the condition 
of polarization of the incident light. If, therefore, tourmaline 
retains this property at the temperature of incandescence, a 
glowing tourmaline plate must emit partially polarized light 
even in a direction normal to its surface. Kirchhoff has ex
perimentally confirmed this result. To be sure the depend
ence of the absorption upon the condition of polarization is 
much less at the temperature of incandescence than at ordi
nary temperatures. 

Kirchhoff made an important application of his law to the 
explanation of such inversion of spectral lines as is shown in the 
Fraunhofer lines in the solar spectrum. For if the light from 
a white-hot body (an electric arc) be passed through a sodium 
flame of lower temperature than the arc, the spectrum shows 
a dark D-line upon a bright ground. For at high tempera
tures sodium vapor emits strongly only the D-line, conse
quently it must absorb strongly only light of this wave length. 
Hence the sodium flame absorbs from the arc light the light 
which has the same wave length as the D-line. To be sure it 
also emits the same wave length, but if the sodium flame is 
cooler than the arc, it emits that light in smaller intensity than 
the latter. Hence in the spectrum the intensity in the position 
of the D-line is less than the intensities in the positions cor
responding to other wave lengths which are transmitted with
out absorption by the flame.* According to this view the 
Fraunhofer lines in the solar spectrum are explained by the 

* For further discussion cf. MUller-Pouillet, Optik, p. 333 sq., 1897, 
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absorption of the light which comes from the hot centre of the 
sun by the cooler metallic vapors and gases upon its surface. 
Nevertheless this application of Kirchhoff's law assumes that 
the incandescence of gases and vapors is a case of pure tem
perature radiation. According to experiments by Pringsheim 
this does not seem to be in general the case. This point will 
be further discussed in § 1 of Chapter III. 

6. The Dependence of the Intensity of Radiation upon 
the Index of Refraction of the Surrounding :Medium.-Con
sider two infinitely large plates PP' of two black substances 
placed parallel to one another. Let the outer sides of PP' be 
coated with a layer of perfectly reflecting substance SS' so 
that radiation can pass neither out of nor into the space PP'. 
It has thus far been assumed that the space into which the 
radiation is to take place is absolutely empty, or filled with a 
homogeneous perfectly transparent medium like air. Instead 
of this the assumption will now be made that an empty space 

p 

FIG. 109. 

adjoins P, while a perfectly transparent substance, whose index 
is n for any given wave length 1, adjoins P'.* Let the 
boundary of this medium be the infinitely large plane E 
(cf. Fig. 109), which is assumed to be parallel to the plates 
PP' in order that P may be everywhere adjacent to a vacuum. 

Now, according to page 83, an element of surface ds upon 
P radiates into a circular conical shell, whose generating lines 
make the angles ¢ and ¢ + dq, with the normal to ds, the 
energy 

dL = 21tids sin¢ cos¢ d¢, (10) 

* In order that P and P' may both be ideally black bodies they must in this 
case consist of different substances, since a black body must have the same index 
as the surrounding medium 
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in which i· denotes the intensity of radiation from P. Part of 
the emitted energy aL is reflected at the plane E and again 
absorbed by P. Let the amount thus reflected be 

dLr·= 211:i"ds sin </J cos¢ d</)-v,p, . (11) 

in which r <b denotes the factor of reflection at the boundary E 
for the angle of incidence ¢. The rest of the energy, 
dL - dL,., reaches P' and is there absorbed. 

Similarly the energy emitted from an element of surface ds 
upon P' into a circular conical shell whose generating lines 
make the angles X and X + dx with the normal to P' is 

dL' = 21ti'ds sin X cos X dx, 

in which i' denotes the intensity of radiation from P'. There 
is returned to P' by reflection at Ethe energy 

dL; = 21d'ds sin X cos X d,t•rx, 

hence the energy 

dL" = dL' - dL; = 21t£'ds sin X cos X dx (1 - rx) (12) 

reaches P and is there absorbed. 
Since the temperature of P is to remain constant, it follows 

that 

i.e. from (10), (11), and (12), since, according to page 498, 
the intensities of radiation £ and i' are independent of the 
angles ¢ and X, 

--12 j"/2 if sin¢ cos¢ d¢ (1 - r<b) = i' 
0 

sinxcos xdx(•-rx)· (13) 

Now it is to be noted that for angles X, for which 

sin x > ~. rx = 1, since in this case total reflection takes place 
n 

at E. Hence it is only necessary to extend the integral ( 1 3) 
- . - I 

from x = o to x = x, where sm x = -. It will for the present 
n 
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be assumed that n is constant for all wave lengths. Hence in 
( I 3) ¢ and X can be thought of as a corresponding pair of 
angles of incidence and refraction for which the following 
holds: 

sin </> : sin x = n, (14) 

and the integration can. then be carried out with respect to </> 

7t 
between the limits¢= o and ¢ = -. Now, from (14), 

2 

. d I • .J sm ,Y cos X X = n2 sm </> cos </> a<f>. 

Moreover, according to equations (24) on page 282, for every 
direction of polarization, and hence also for natural light, 
ref>= rx: For, according to those equations (disregarding the 
sign, which need not here be considered), the reflected ampli
tude is always the same fraction of the incident amplitude; 
whence it is immaterial whether </> is the angle of incidence 
and X that of refraction or the inverse, i.e. the reflection 
factors are the same whether the light is incident from above 
upon the plane E at the angle ¢ or from below at the angle 
X, so long as sin ¢ : sin x = n. Hence from (13) and (1 5), 
when rx. = r4,, 

Since the integral which appears upon both sides of this equa
tion is not equal to zero, there results at once 

i.e. tke intensities of radiation of two black surfaces are propor
tional to tke squares of the indices of refraction of tke 
surrounding media.* 

* This law is also due to Kirchhoff (Ostwald's Klassiker, No. 100, p. 33). It 
is often fulsely ascribed to Clausius, who did not publish it till several years after 
Kirchhoff had done so. The law has been experimentally tested by Smolochowski 
de Smolan (C.R. 123, p. 230, 18g6; Wied. Beibl. 20, p. 974, 18g6) by comparing 
the radiations in air and bisulphide af carbon. His results agree fairly with the 
theory. 
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This proof relates only to the total radiation, and the index 
n was assumed constant for all wave lengths. But equation 
(z7) holds also for the partial radiations of any one particular 
period T. Let the intensity of emission of P for rays whose 
periods lie between Tand T + dTbe denoted by i-rtfT. Simi
larly denote the intensity of radiation from P' for the same 
rays by i~dT. Then, from (16), 

-r1 .,) r12 
LdL \ir - :: J

0 
sin¢ cos ¢(1 - r.,.)dq, = o. . (18) 

The ~ is to be extended over all periods between T = o and 
T= oo. 

Between the two bodies P and P' conceive a layer intro
duced which is transparent to a certain wave length A., but 
reflects other wave lengths. Equation (18) must always hold, 
but the functional relation between r.,. and T varies according 
to the thickness and nature of the layer. Now in order that 
( 1 8) may hold as r 4> is indefinitely varied, every term of the ::S 
in ( 1 8) must vanish, i.e. for every value of T* 

According to Kirchhoff's law (9'), for a body which is not 
black the ratio of the emission t~ to the absorption aA is pro
portional to the square of the index n of the surrounding 
medium. Since the change of aA with n may be calculated 
from the reflection equations, the relation between t~ and n is 
at once obtained. In any case, then, for bodies that are not 
black the intensity of radiation is not strictly proportional to n2• 

7. The Sine Law in the Formation of Optical Images of 
Surface Elements.-If ds' is the optical image of a surface 
element ds formed by a bundle of rays which are symmetrical 

* Equation (17) can also be obtained by the method employed on page 497 if 
the space outside of the hollow sphere be conceived as filled with a medium differ
ent from that inside the sphere, but the calculation is somewhat more complicated. 
Since in such an arrangement the waves of different periods T may be separated 
from one another by refraction and diffraction, (19) results at once from (17) in 
consideration of the conclusions upon page 497. 
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to the normal to ds and have an angle of aperture u in the 
object space, tt' in the image space, then the whole energy 
emitted by ds within the bundle under consideration must fall 
upon ds'; and inversely, ds' must radiate upon ds, since the 
rays denote the path of the energy flow. Hence if ds and ds' 
be considered black surfaces of the same temperature, and 
coated on their remote sides by perfectly reflecting layers, 
then, since no difference in temperature between ds and ds' 
can arise because of the radiation, the energy dL sent out from 
ds must be equal to the energy dL' received by it from ds'. If 
now ds lies in a medium of refractive index n, ds' in one of index 
n', artd if the intensity of emission of a black body in vacuo be 
denoted by z~, then, by (17), the intensity of emission of ds is 
i = n2z~, that of ds', i' = n' 2z~. Moreover, from (4) on page 
485, 

dL = 1t·ds·i-sin2 u, dL' • 1t-ds' ·i' -sin2 u'. 

Hence, since dL = dL', 

1tdsn2i~ sin2 u = 1tds'n12i0 sin2 u', 
i.e. 

dsn2 sin2 u = ds'n' 2 sin2 u'. . . (20) 

This is the sine law deduced on page 61 (cf. equation 
(46)]. The deduction there given, which was purely geomet
rical, is more complicated than the above, which is based upon 
considerations of energy. 

8. Absolute Temperature.-As was noted on page 493, 
work can be obtained, with the aid of a suitable machine, by 
withdrawing a certain quantity of heat W. from a reservoir 1, 
and giving up a smaller quantity of heat ~ to another reser
voir 2, which is colder than I. In this process the machine 
may return to its original condition, i.e. it m~y perform a 
so-called cycle. The principle of the conservation of energy 
then demands that the work A performed be equal to the 
difference between the quantities of heat W. and ~ when 
these are measured in mechanical units, i.e. 

A = W. - ~- . (21) 
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Now compare two machines M and M', both of which 
withdraw in one cycle the same quantity of heat ~ from reser
voir I. They may, however, give up different quantities ~ 
and ~' to reservoir 2. In that case the two quantities of 
work A and A' done by them are different, for from (21) 

A=~-~. A'=~-W/. 

Now consider M to be so constructed that it can be made 
to work backwards (i.e. let it describe a reversible cycle). In 
so doing it withdraws the quantity of heat ~ from reservoir 
2, gives up the quantity ~ to reservoir I, and performs the 
work - A. If now a cycle of machine M' be combined with 
suc,h an inverted cycle of machine M, the resultant work 
accomplished is 

A' - A = ~ - W2'. (22) 

This process can be conceived to be repeated indefinitely. 
Hence according as ~ - ~' is positive or negative heat is 
continually withdrawn from or added to reservoir 2, while on 
the whole heat is neither withdrawn from nor added to reser
voir 1. Hence in this case reservoir I may be assumed to be 
finite and may be considered to be part of the machine which 
describes the cycle; while reservoir 2 may be conceived to be 
the surrounding medium, for example the water of the ocean, 
whose heat capacity may be considered infinite. If now 
A' - A were greater than o, then a machine would have been 
constructed which, with the aid of one infinitely large heat
reservoir, would do an indefinite amount of work. But by the 
second law of thermodynamics this is impossible (cf. page 
493), hence* 

A' - A < o, i.e. A > A', 

i.e. of all machines which take up a quantity of heat ~ at a 
definite temperature and give up heat to a colder reservoir, and 

* That in general the equality A = A' does not hold is evident from a con
sideration of many irreversible processes, e.g. friction. As soon as useless heat is 
developed A'< A. 
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which work in a cycle, that machine does the largest amount of 
work which descrz'bes a reversible cycle. In the case of such 
a machine, the work A which is obtained from a given quantity 
of heat W. taken from the higher reservoir is therefore per
fectly definite, since it is a finite maximum, i.e. this work A is 
determined by the amount of heat ~ taken up and by the tem
peratures of the two reservoirs, and is wholly independent of 
the nature of the machine. Evidently A must be proportional 
to w; so that the relation holds, 

A = w;fti-i> r 2), (24) 

in which f denotes a universal function of the reservoir tC;m
peratures measured according to any scale whatever. A 
combination of (2 1) and (24) gives 

w2 = Wl(I - f[rl, rJ), 

or 

in which ¢ is a universal function, i.e. one which is independ, 
ent of the nature of the machine. 

Now it can be easily shown that this function ¢ must be 
the product of two functions, one of which depends only upon 
r1 , the other only upon r2 . For if another machine be con
sidered which works reversibly between the temperatures r 2 

and r3 , taking up the amount of heat ~ and giving up the 
amount ~. then, by (25), 

If now a cycle of the first machine, working between r1 

and r9 , be combined with a cycle of the last machine, then the 
quantity of heat ~ is taken up at the temperature r 1 , the 
quantity ~ given up at the temperature i-3 ; but the reservoir 
at temperature i-2 can be left out of account, since just as much 
heat ~ is given up to it by the first machine as is taken from 
it by the last machine. Hence 

W. : 1~ = ¢(r1 , r3). • (27) 
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A multiplication of (25) by (26) gives 

~ ; W~ = <j,(T1 , T2)• </J(T2 , T3). 

Hence from a comparison of (27) and (28) 

¢(T1 , T3) = ¢(Tl' TJ•</>(T2 , T3). 

In this equation T2 can be looked upon as an arbitrary 
parameter whose value need not be considered. Thus the 
right-hand side of (29) represents the product of two factors 
one of which depends only upon T1 , the other only upon T2. 

I * h These factors will be denoted by -81 and if"' so t at, from 
s 

</>( Tp '-r3) = '91 : '93 • • (3o) 

Hence in (25) ¢(T1 , TJ = -81 : -82 and there results 

wl '91 
Wz = ~2 • (31) 

-81 and -82 are functions of the two reservoir temperatures T1 

and T 2 measured upon any scale. t>1 and -82 are called the 
absolute temperatures of tke reservoz"rs. The ratio of the abso
lute temperatures of any two bodies means then the ratio of 
the quantities of heat which a machine working in a reversible 
cycle withdraws from one and gives up to the other of these 
bodies, provided the bodies may be considered infinitely large 
so that their temperatures are not appreciably changed by the 
gain or loss of the quantities of heat ~ or ~-

Since this merdy defines the ratio of the absolute tempera
tures of the two bodies, it is necessary to establish a second 
relation in order to establish a scale of temperature. This 
relation is fixed by the following convention: The difference 
between the absolute temperatures of melting ice and boiling 
water, both at atmospheric pressure, shall be called 100. It 

• It is desirable to write the second factor ; instead of -&1 , because then the 
• parameter r1 disappears from (29), as can be seen at once by writing 

q)(r
1

, r
1

) = -&
1

: -&
1 

and q)(r
1

, r
1

) = -&
1

: -&
1

• 
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is shown in the theory of heat that the absolute temperature is 
approximately obtained by adding the number 273 to the tem
perature measured in centigrade degrees upon an air-thermom
eter. 

9. Entropy.-Consider again a machine Mwhich, in per
forming a reversible cycle, takes up the quantity of heat ~ at 
the absolute temperature -81 and gives up the quantity W, at 
the absolute temperature 82• If heat be always considered 
positive when it is given up by the machine, then, from (3 I), 

~+ ~=o. (32) 
-t\ -t\ 

If now there be combined with this a similar machine 
which works between the temperatures ..9-3 and ..9-,., then, from 
(32), 

wl + ~ + ~ + w, - 0 (33) 
,.9-1 .9-2 .ss .94 - • 

In general, then, it may be said that when a reversible 
cycle is described, in which the elements of heat o Ware given 
up at the temperatures !:3-, 

~ 0,.9-W = j oi; = o, (34) 

in which the sum or the integral is to be extended over all the 
quantities of heat given up, and {} denotes the correspondz"ng 
absolute temperatures of the machine or of the reservoirs.* 

Hence if a reversible cycle between two different conditions 
I and 2 of a body be considered, it is possible to write, in 
accordance with (34), 

(35) 

(35') 

* In a reversible process the temperature of the machme must be the same as 
that of the source, otherwise an exchange of heat could not take place equally well 
in eithei direction and the process would not be reversible. 
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in which S represents a single-valued function of the state of 
the body, and dS the differential of this function. For then, 
according to (34), the right-hand side of(35') always reduces to 
zero as soon as a cycle is described in which the final condi
tion 2 of the substance is identical with the initial condition I. 
This function S of the state of a body or of a system of bodies 
is called the entropy of the body. 

The energy E is also a function of the state of the body. 
It is defined by means of the assertion of the first law of ther
modynamics, that in any change of the body the work oA 
done by the body plus the heat oW given up (measured in 
mechanical units) is equal to the decrease - dE in the energy 
of the body, i.e. it is defined by the equation 

oA + oW= - dE . . 

10. General Equations of Thermodynamics.-lt is con
venient to choose as the indep ndent variables which determine 
the state of a body or of a system, the absolute temperature t) 
and some other variables x, whose meaning will for the pres
ent be left undetermined. x will be so chosen that when the 
temperature changes in such a way that x remains constant, 
no work is done by the body. Then, since A does not change 
when x remains constant, the following relations hold: 

oA = Mox, oW= Xox+ Yo\9. (37) 

ox and o-& represent any changes in x and -&; oA and oW, the 
corresponding work done and heat given up by the body. 
The process will be assumed to be reversible, i.e. the equations 
(37) will be assumed to hold for either sign of ox and o-&. 
Now from (35), (36), (37), 

X y 
- dS = ~ox + ~08, - dE = (M + X)ox + Yoe. (38) 

Since in general 

as as, 
dS= oxox + 08 08, 
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X oS 
T = -oX, 

oE 
M+X= -- ox' 

Y oS 
-8 = - o-8' 

oE 
Y= - o-8· 

Differentiation of these equations gives 

(39) 

o~£.,) = o~:.,). o(M0t X) = ~:, (41 ) 

or, after a few transformations, 

X oM oY o2M 
~ = - o-8 • ox = - -8 0-82 • • C 42) 

II. The Dependence of the Total Radiation of a Black 
Body upon its Absolute Temperature.-Consider a cylinder 
whit:h has unit cross-section and length x and whose walls con
sist of a perfectly black body. Let these walls be covered with 
perfect mirrors so as to prevent radiation into the space out
side. Within the cylinder temperature equilibrium will occur at 
a certain temperature -8. Let the energy in unit volume at this 
temperature be denoted by ¢(8). This radiant energy exerts 
a definite pressure upon the walls of the cylinder. It was 
shown above on page 490 that the pressure exerted upon a 
black surface by plane waves at normal incidence is equal to 
the energy contained in unit volume. If the radiation is irreg
ular, taking place in all directions, the normal pressure due to 
any set of waves may be resolved into three rectangular com
ponents in such a way that one is perpendicular to a surface s 

of the walls of the cylinder. Only this component exerts a 
pressure upon s. Consequently the whole pressure upon sis 
not ¢(-8), but ¼¢(-8).* 

If unit area of the cylinder wall moves a distance ox out
ward, the work done is 

(43) 

• For a deduction of this factor i- cf. Boltzmann, Wied. Ann. 22, p. 291, 1884; 
or Galitzine, Wied. Ann. 47, p. 488, 1892. 
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Again, if the temperature of ~he entire cylinder is increased an 
amount 08, while x remains constant, the energy increases by 

• (44) 

since the volume of the cylinder is x. No work is done so 
long as x remains constant. 

A comparison of (43) with (37) and of (44) with (38) shows, 
since by {38), when ox = o, dE= - Yot9, that 

a!/J 
M= ¼¢, Y= - .x-08. . . (45) 

It follows, therefore, from (42), since¢ depends only upon 
t) and not upon x, that 

a¢ 02¢ 1 a ( a¢ ) 
aB = tt9 atf' = 30'9 t> 08 - ,p • 

Integration of this equation with respect to t) gives 

An integration constant need not be added, because when 
t) = o the body contains no heat, and hence no radiation can 
take place. It follows from (46) that 

o,p . dt9 d,p 
4¢ = t) ot9' 1.e. 4 8 = ,p; 

hence 
4/g-t9 =lg-¢+ const., 

or 
(47) 

If now a small hole be made in the wall of this cylinder, 
radiation will take place from the hole as though it were a 
black body (cf. page 489).* The intensity of radiation i must 

• This also occurs if the walls of the cylinder are not perfectly black. Hence 
in this case also ¢(6) is the energy in unit volume fur the condition of temperature 
equilibrium, and lt/1 is the pressure on the wall of the cylinder. Only if the walls 
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evidently be proportional to the energy in unit volume f/,(8) 
within the cylinder. Hence the intensity of radiation of a 
black body is 

i.e. the total intensity of emission of a black body is proportional 
to the fourth power of its absolute temperature. 

This law, which Stefan* first discovered experimentally 
and Boltzmann deduced theoretically in a way similar to the 
above, has been since frequently verified. The most accurate 
work is that of Lummer and Pringsheim. t who found by bolo
metric measurements that within the temperature interval 100° 

to 1300° C. the radiation from a hole in a hollow shell followed 
the Stefan-Boltzmann law. It is of course necessary in such 
experiments to take account of the temperature of the bolome
ter ( cf. page 491). The radiation of the small surface ds upon 
the surface ds' at a distance r amounts, when ds and ds' are 
perpendicular to r [ cf. the definition of intensity of radiation, 
equation (3), page 484], to 

d d I 

d'L - . _!__!_ 
-i r . 

The radiation from ds' upon ds amounts, if i' denote the 
intensity of radiation of ds', to 

d'L' _ ., ds ds~ 
_z r . 

of the cylinder had been perfect mirrors and no heat had been originally admitted 
into the cylinder would the energy in unit volume t/J = o. The energy in unit 
volume would reach the normal value t/J if the walls of the cylmder contained a 
spot, no matter how small, which was not a perfect mirror. If this spot were per
fectly black, the pressure upon it would be lt/J- But in that case every part of the 
cylinder wall, even that formed of perfect mirrors, would experience the same 
pressure, since otherwise the cylmder would be set into continuous motion of trans
lation or rotation. 

* Wien. Ber. 79, (2), p. 391, 1879. Stefan thought that this law held for all 
bodies. It is only strictly true for black bodies. 

tWied. Ann. 63, p. 395, 18g7. 
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Hence if i and i' follow the law (48), the total quantity of heat 
transmitted in unit time to the element ds' is 

'L' ds ds' , co.,, 
dW=dL-d =a~(S -~ ), . (49) 

in which f)' denotes the absolute temperature of ds'. 
The constant a has recently been determined in absolute 

units by F. Kurlbaum * by means of bolometric measurements. 
In these experiments the temperature to which the bolometer 
was raised by the radiation was noted ; the radiation was then 
cut off, and the bolometer raised to the same temperature by 
a measured electric current. The radiation is thus measured 
in absolute units by means of the heat developed by the current. 
Kurlbaum found that the difference between the emissive power 
of unit surface of a black body between 100° and 0°, i.e. the 
difference between the energy radiated in all directions, was 

gr-cal 
e100 -e0= o.o I 763--

sec (so) 

Now [ cf. equation (5), page 48 5] e = 1ri, in which i is the 
intensity of radiation. Further, I gm-cal= 419• 105 ergs, 
hence 

i.e. the radiation constant a for a black body zit absolute 
C. G. S. units is 

or, in gm-cal, 

• (5 I') 

12. The Temperature of the Sun Calculated from its 
Total Emission.-lf the sun were a perfectly absorbing (i.e. a 
black) body which emitted only pure heat radiations, its tem-

* Wied. Ann. 65, p. 746, 1898. 
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perature could be calculatt:d from the solar constant (page 487) 
and the absolute value of the constant a.* If t) denote the 
absolute temperature of the sun, 8' that of the earth, then from 
(49) and (51') the solar constant, i.e. the energy radiated in a 
minute upon unit area of the earth, would be 

ds 
dW = 0.408 • w- 12 -6o r (-8' - f>''). . . (52) 

But 

in which <f, is the apparent diameter of the sun = 32'. 
If, therefore, Langley's value of the solar constant be 

taken, namely, dW = 3 gm-cal per minute, t the effective tem
perature of the sun would bet)= 6500°, i.e. about 6200° C. 
If Angst,.om's value be taken, namely, 4 gm-cal per minute, 
the effective temperature would be about 6700° C. 

13. The Effect of Change in Temperature upon the Spec
trum of a Black Body .-The spectrum of a black body is 
understood to mean the distribution of the energy among the 
different wave lengths. The investigation will be based upon 
the principle of the equilibrium of temperature within a closed 
hollow shell. The intensity of radiation of a black surface 
(conceived as a small hole in the wall of the hollow shell) is 
proportional to the energy in unit volume within the shell. 
Following the method used on page 513 (cf. note 1) it appears 
that the temperature at which temperature equilibrium is 
attained is not dependent upon the nature of the walls of the 
hollow shell, provided they do not consist entirely of perfect 
mirrors. 

The effect of a change in temperature upon the spectrum 

• The temperature obtained by this calculation is called the effective tempera
ture of the sun. Its actual temperature would be higher if its absorbing power is 
less than 1, but lower if luminescence is involved in the sun's radiation. 

t &' can be neglected, since, according to (52), &'' is small in comparison 
with&' •. 
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of a black body can now be determined by means of the fol
lowing device, due to W. Wien.* 

Conceive a cylinder of unit cross-section within which two 
pistons S and S', provided with light-tight valves, move. 
Let Kand K' be two black bodies of absolute temperatures{) 

:1 , ~s z 1 ~ 3 1::b 
~ 

FIG. 110. 

and 8 + 68. Let the side walls of the cylinder, as well as the 
pistons S and S', be perfect mirrors. Let also the outer sides 
of Kand K' be coated with perfect mirrors. Let there be a 
vacuum within the cylinder. 

At first let S' be closed and S be open. Then K radiates 
into the spaces I and 2, K' into 3. The energy in unit volume 
is greater in 3 than in 2 because the temperature of K' is greater 
by 68 than that of K. Let now S be closed and moved a 
distance 6x toward S', until the energy in unit volume in 2 is 
equal to that in 3. The value which 6x must have in order 
that this condition may be fulfilled will now be calculated. If 
~ denote the original amount of radiant energy contained in 
space 2, then the original energy in unit volume in this space is 

~ 
¢(8) =--. 

a-x 

Hence the change in energy in unit volume corresponding to 
a change in x is 

Now d~ is the work which is done in pushing forward the 
piston S. Hence, from page 512, d~ = t'f:6x. Hence 

6x ( G: ) 6x 
d,p = a - x ¼¢ + ;-=-; = ;-=-; . j,p. • (53) 

• Berl. Ber. 18g3. Sitzung vom 9 Febr, 
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'But, by (47), ¢ is proportional to the fourth power oft), hence 

. 08 
d1p = 4'P ~. • • (54) 

If, therefore, the energy in unit volume in space 2 is to be made 
equal to that in 3 by a displacement ox of the piston S, a 
comparison of (53) and (54) gives 

(55) 

Now from the second law of thermodynamics the conclusion 
may be drawn that, if the total radiant energy in unit volume 
is the same in spaces I and 2, the distribution of energy 
throughout the spectrum must be the same within the two 
spaces. 

For if this were not the case there would be waves of some 
wave lengths which would have a larger energy in unit volume 
in 3 than in 2. For it would be possible to place in front of 
the valve in S' a thin layer which would transmit waves of the 
length considered, but reflect all others. If then the valve 
were opened, a greater quantity of energy would pass from 3 
to 2 than in the inverse direction, and the energy in unit 
volume would become greater in 2 than in 3. Suppose now 
that S' were closed, the layer removed, and the piston S' 
pushed back by the excess of pressure in 2 until the energy in 
unit volume in the two spaces became again equal. Let the 
work which would be thus gained be denoted by A. Then 
let S' be again opened and brought into its original position. 
This operation would require no work. Let then S' be closed 
and S pushed back to its original position. In this operation 
the same work would be gained which was expended in the 
displacement of S through the distance ox. If, finally, the 
valve in S were again opened, the original condition would be 
restored; no heat would have been taken from or added to the 
body K, but a certain amount would have been withdrawn from 
K' (by radiation through the layer before the valve in S'). 
Further, a certain amount of work A would have been gained. 
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But, according to the second law, work A can never be 
gained by means of a cycle in which heat is withdrawn from 
only one source K', the heat being thus entirely transformed 
into work. Hence the conclusion that when the two spaces 2 

and 3 contain the same quantity of energy in unit volttme, the 
distribution of energy in their spectra is always the same. 

But, according to Doppler's principle, the distribution of 
energy in the spectrum is changed by the motion of the 
piston S. Let the total energy in unit volume in space 2 be 
given by 

then the expression </{A, .9)dA. represents the energy in unit 
volume of the waves whose lengths lie between A. and A.+ dA.. 
Consider the plane waves which are reflected back and forth 
at normal incidence between the pistons S and S' in the 
space 2. The wave length of these waves is changed by the 
motion of S. Consider first a ray which starts from a point P 
and has been reflected but once upon S. If the vibration at 
the point P due to the incident wave has the period T, then 
the vibration at P due to the wave reflected from Swill have 
some other period T'. For if a disturbance starts out from P 
at the time t = o, it returns to P after reflection upon S at a 
time t' = 2b1 : c, in which c is the velocity of light in space 2 

(in vacuo), and b1 the distance of P from the mirror at the time 
t 1 when the disturbance from P reached S. 

If at the time t = o the distance between P and S is b, 
then evidently b = b1 + s1 , in which s1 denotes the distance 
travelled by the mirror S in the time tr If S moves with a 
velocity v with respect to P, then s1 = vt1 , and b1 = ct1 ; hence 
it follows from b = (c + v)t1 that t1 = b : c + v, or 

b 2b 
t'- 2...L- -- c - c+v· 
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After the interval T the distance between P and S has 
diminished to b' = b - v T. Hence a disturbance which starts 
from P at a time t = T returns to P after reflection at a time 
T + t", in which 

11 2b' 2(b - vT) 
t = -- = --'------=-

c + v c+v • 

The reflected wave therefore produces at P a vibration which 
has a period T' such that 

2vT c -v 
T' = T + t" - t' = T - --= T--. 

c+v c+v 
A wave reflected twice at S has at P a period T" such that 

T" = T'c - V = r(c - v)2. 
c+ v c+v 

A wave reflected n times has a period 

( C - v)• T<•>= T-- . 
c-v (S7) 

Now n will be considered to be the number of times that 
the rays which are travelling back and forth in the space 2 

between S and S' are reflected from S while it is moving a 
distance oz. If the distance between S and S' had the con
stant value a - z, the time ot required for n reflections at S 
would be 

2(a - z) ot=n--~. 
C 

. (S8) 

It will be assumed that the motion ox is so small with 
respect to a - z that a - x may be taken as a constant. In 
this time ot, S traverses a distance oz= v•ot. Hence, from 
(58), 

i.e. 

2(a - z) oz=vn~--, 
C 

ox & 
n = 2(a - z)' v· . • . . . (s9) 
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It will now be assumed that v is small in comparison 

with c. Then from (57), retaining only terms of the first 
order in v : c, 

T<•> = r( I - 2n : ) ; 

i.e., in consideration of (59), 

T(n) = -r{ I - ~) .t\ a-x,· 

The change in the period due to the motion of the piston 
S amounts then to 

ox 
oT= T<•>- T= - T--, 

a-x 

and also the change 8i, in the wave length A due to the 
motion of S is 

(6o) 

When ox is positive 81A is negative, i.e. the wave length is 
shortened. 

Mo_reover, it must be remembered that only one third of 
that part of the energy which is represented by (56) and which 
corresponds to the wave length A can be looked upon as due 
to waves which travel at right angles to S (cf. page 512). 
The waves which travel parallel to S undergo no change in 
wave length because of the motion of S. If, therefore, that 
part of the energy which is originally present in space 2 and 
which corresponds to waves whose lengths lie between A and 
l + dA. is 

dL = <P(i\, ~)di\, (61) 

then, neglecting the increase of energy in unit volume due to 
the motion (cf. page 517), the energy dL' which, after the 
motion of the piston, corresponds to wave lengths between A 
and A+ dA, would consist of two thirds of dL and one third 
of </>(A - o;>.., ~)di\, in which n1;\, denotes the increase in wave 
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length due to the motion of the piston as worked out in (60). 
Thus 

dL' = [ftP(l, '9) + ¼tP(l - «f1l, '9)]dl. 

Now, from Taylor's theorem, 

'P(A - 811, '9) = </>(A, 8) - «f1l ~i_. 
Hence 

I «fli\_ ()cf, 
dL = ml;\ 8, - -·--.,,, , , 3 oA, 

or again, from Taylor's theorem, by setting ¼(\;\ = «f il, 

dL' = cp(l - ol, 8)dA. (62) 

The energy which corresponds to the wave length A at the 
temperature '9 + 88, i.e. after the motion of the piston, is the 
same as the energy corresponding to the wave length l - «fl. 
at the temperature '9. But now, from (60) and (55), 

l «fx 8 ox 
«fl= 1 8 l = - - -- o-8 = - ~-

lr I 3 a - x' 3 a - x' 

i.e. the relation holds 
8'9 «fl 
T+y=O, 

which can be written as 8(81) = o, i.e. 

'9l = const. 

Hence neglecting the increase in the energy in unit volume 
due to the motion of the piston, i.e. neglecting the increase in 
energy due to rise in temperature, tke same energy in unit 
volume exists at a temperature 8 in waves of lengtk ;\ as exists 
at the lower temperature 8 1 in waves of length l', provided 
A.8 = l''9'. 

But if the increase in the total energy in unit volume, 
which is proportional to ~,, be taken into consideration, the 
law just given may still be shown to hold if the distribution of 
energy be investigated in the expression ,p : -84 instead of in ,f,. 
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The above law then asserts that for a black body one and 
tke same curve expresses the functional relationship between 
¢ : -84 and A.-8 at any temperature. Now, from (56), 

¢~~) = 1"' ,p(~5 f>)d(Af>). (65) 

Hence ,p{A, f>} : -85 must be a function of Af>, thus 

,p(~s f>) = f(A.f>). . • • (66) 

If, therefore, for any temperature f) the curve of the dis
tribution of energy be plotted using l.8 as abscissa! and 
cf,(A, -8) : -85 as ordinates, then this curve holds for all tempera
tures, and it is easy to construct from this curve the actual 
distribution of energy for other temperatures, when the A's are 
taken as abscissa! and the cp's as ordinates. Hence the follow
ing theorem: 

If at a temperature f> the maximum radiation of a black 
body corresponds to the wave length A,,., tken at the temperature 
f)' it mtlst correspond to a wave length 1,:. suck that 

A,.•f> = A,:.-8'. . . . . . (67) 

Further, it follows from (66) and (67), if the function cp 
which corresponds to the wave length A,. be denoted by <P,,., 
that 

cf,,,.: cp,:. = -85: -8'5; . . (68) 

i.e. if two black bodies have different temperatures, the intensity 
of radiation of those wm1e lengths which correspond to tke 
maxima of tke intensity curves for the two bodies are propor
tional to the fifth power of tke absolute temperatures of the 
bodies. 

14. The Temperature of the Sun Determined from the 
Distribution of Energy in the Solar Spectrum.-Equation 
(67) has been frequently verified by experiment.* The mean 

• Cf. Paschen and Wanner, Berl. Ber. 1899, Jan., Apr.; Lummer and Prings
heim, Verb. d, deutsch phys. Ges. 18gg, p. 23. For low temperatures, cf. 
Langley, Ann. de chim. et de phys. (6) 9, p. 443, 1886. With the use of a bolom-
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value of A,..9- as determined from a number of experiments in 
good agreement is A.,..9- = 2887, the unit of wave length being 
0.001 mm. Since now, according to Langley, the maximum 
energy of the sun's radiation corresponds to the wave length 
A,~= 0.0005, it would follow that the temperature of the sun 
is 

.9-' = 57740 = 55010 C. 
This result is of the same order of magnitude as that calculated 
on page 516. It is, however, questionable whether the sun is 
a perfectly absorbing (black) body which emits only pure tem
perature radiation. If chemical luminescence exists in the 
sun, its temperature may be wholly different. 

15. The Distribution of the Energy in the Spectrum of a 
Black Body.-The preceding discussion relates to the change 
in the distribution of the energy in the spectrum of- a black 
body with the temperature; hut nothing has been said about 
the distribution of the energy for a given temperature. In 
order to determine the law of this distribution W. Wien pro
ceeds as follows : * 

If the radiating black body be assumed to be a gas, then, 
upon the assumption of the kinetic theory of gases, l\.faxwell 'E 

law of the distribution of velocity of the molecules would hold. 
According to this law the number of molecules whose veloci
ties lie between v and v + dv is proportional to the quantity 

-v'/ 1 v•e /J th', (6g) 

in which Pis a constant which can be expresse<l u1 terms of 

the mean velocity v as follows : 

"ir = -j-/J2. (70) 

eter cooled to - 20· C. he found that the maximum radiation of a blackened 
copper plate at a temperature - 2° C. corresponded to .l,. = 0.0122 mm. From 
A.,,&= 2887 it would follow that at - 2° C. A~ = 0.0107. To be sure the copper 
plate was not an ideal black body and it was. only its maximum relative to a 
bolometer at - 20• that was measured. This relative maximum corresponds to 
a smaller A than the absolute maximum, as can be seen by drawing the intensity 
curves. 

• Wied. Anu. 58, p. 662, 18g6. 
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According to the kinetic theory the absolute temperature is 
proportional to the mean kinetic energy of the molecules, i.e. 

-8~v2~/J2.. (71) 

Now Wien makes the hypotheses : 
I. That the length i\. of the waves which every molecule 

emits depends only upon the velocity ,, of the molecule. 
Hence 11 must also be a function of i\.. 

2. The intensity of the radiations whose wave lengths lie 
between .i\. and i\. + di\. is proportional to the number of 
molecules which emit vibrations of this period, i.e. propor
tional to the expression (69). If this intensity of radiation be 
written in the form 

</>(i\., -8)ai\., 

then from (69), (70), and (7 r), since v is a function of A, 
f(A) 

<t>(il, -8) = F(i\.)-e - tl.* (72) 

Since now, from (66), </> : -85 must be a function of the argu
ment l-8, it follows that F(\) = c1 : i\.5 and fii\.) = c2 : i\., so 
that the following law of radiation results: 

c -e-c,:A& 
rf,(i\_ -8) - _l~-~ 
'Y ' - i\_,5 ' (73) 

and the total radiation is 

f "'e-c,:A& 

i = c1 .i\.5 di\.. (74) 

This law of radiation must hold for all black bodies whether 
they be gases or not, since, as was shown on page 498, the law 
of radiation of a black body does not depend upon the nature 
of the body. 

This law has been frequently verified by experiment. t 

* Planck decluces the same radiation law from electromagnetic theory (Berl. 
Ber. 1899; Ann. de Phys. 1, 1900). 

t Cf. note on page 523. Recently certain deviations from Wien's law have 
been found (cf. Lummer and Pringsheim, Verb. deutsch. phys. Ges. 1, p. 23, 215, 
18gg; Beckmann, Diss. Ttlhingen, 18g8 ; Rubens, Wied. Ann. 6g, p. 582). 
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That wave length, A.,,. , at which the intensity of radiation is a 

• • d • d r. h • o</> N maximum 1s etermme irom t e equation al = o. ow, 

from (73), 

hence 
1 o<t> r s 
<f, oA. = 11-8 - x· 

Hence the relation obtains, 

l,,.. '9 = C2 : 5. . (75) 

Since l,,.-8 has the value 2887 (cf. page 524), 

c2 = 14435 • (76) 

when the unit of wave length is 0.001 mm.* In cm., 

c2 = I ,443 5 • • (76') 

W .. I C2 , ( b ntmg X = J', -8 = c, 74) ecomes 

t' = - c1j"r, e - c'y dy. 
00 

But 

Hence 

and 

* According to Beckmann (Diss. Tnbingen, 1898) and Rubens (Wied. Ann. 69, 
p. 576, 1899) the constant c1, when calculated from the emission of waves of great 
length, is considerably larger. According to this Wien's law is not rigorously 
correct. 
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If this equation be compared with (48) on page 5 14, it 
appears that 

in which a is the constant of the Boltzmann-Stefan law of 
radiation. Now from equation (51), page 515, 

a= 1.71. 10-5 erg/sec. 

Hence in consideration of (76') the constant c1 has the value 
in C.G.S. units 

C79) 

The law of radiation (73), which is universal, furnishes a 
means of establishing* a truly absolute system of units of 
length, mass, time, and temperature-a system which is based 
upon universal properties of the ether and does not depend 
upon any particular properties of any body. Thus universal 
gravitation and the velocity of light represent two universal 
laws. The absolute system is then obtained from the assump
tion that the constant of gravitation, the velocity of light, and 
the two constants c1 and c2 in the law of radiation all have the 
value I. 

• Planck, Berl. Ber. 1899, p. 479· 



CHAPTER III 

INCANDESCENT VAPORS AND GASES 

1. Distinction between Temperature Radiation and 
Luminescence.-The essential distinction between tempera
ture radiation and luminescence has already been mentioned 
on page 494. What is now the criterion by which it is possi
ble to decide whether a luminous body shines by virtue of 
luminescence or by pure temperature radiation ? 

In the case of luminescence Kirchhoff's law as to the pro
portionality between emission and absorption is not applicable; 
nevertheless even in this case the emission of sharp spectral 
lines is accompanied by selective absorption of these same 
lines, since both are closely connected with the existence of 
but slightly damped natural periods of the ions. 

A criterion for the detection of luminescence can be 
obtained from measurements of the absolute value of the 
emissive power or of the intensity of radiation. For if the 
intensity of radiation of a body within any region of wave 
lengths is greater than that of a black body at the same 
temperature, and within the same region of wave lengths, then 
luminescence. must be present. By means of this criterion 
E. Wiedemann,* F. Paschen,t and E. Pringsheim + have shown 
that the yellow light which is radiated when common salt is 
burned in the flame of a Bunsen burner is due at least par
tially to chemical luminescence (according to Pringsheim the 

• Wied. Ann. 37, p. 215, 188g. 
tWied. Ann. 51, p. 42, 1894-
lWied. Ann. 45, p. 428, 1892; 49, p. 347, 1893. 

5118 
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reduction of the sodium from the salt). The latter concludes, 
after many experiments, that in general, in all methods which 
are used for the production of the spectra of gases, the in
candescence is a result of electrical* or chemical t processes. 
Nevertheless at sufficiently high temperatures all gases and 
vapors must emit temperature radiations which correspond to 
Kirchhoff's law,t since otherwise the second law of thermo
dynamics would be violated. It is, to be sure, possible that 
the absorption, and hence also the temperature radiation, 
when chemical processes are excluded, is small, and gives 
possibly no sharp spectral lines because the absorbing power 
reaches an appreciable value only because of chemical pro
cesses. For example, it would be conceivable that the natural 
vibration of the ions, which occasion strong selective absorp
tion, become possible only upon a change in the molecular 
structure of the molecule. 

2. The Ion-hypothesis.-According to the electromag
netic theory, the vibrations of the ions produce electromagnetic 
waves of their own period, i.e. light-waves of a given color. 
fhe attempt will be made to find out whether this hypothesis 
can be carried to its conclusions without contradicting other 
results deduced from the kinetic theory of gases. 

Consider a stationary condition, in which the vibrations of 
the ionic charges have a constant amplitude. Since this 
amplitude would necessarily diminish because of radiation and 

* E. Wiedemann has shown that a low temperature exists in Geissler tubes 
(Wied. Ann. 6, p. 298, 1879). 

tPringsheim (Wied. Ann. 4S, p. 440) obtained photographic effects from CS1 

flame at a temperature of 150° C. Pure temperature radiation could in this case 
have produced no photographic effect. According to E. St. John (Wied. Ann, 56, 
p. 433, 1895) the effectiveness of the Auer burner does not depend upon lumi
nescence, but is due to the use in the flame of a substance of little mass, small con
ducting power, large surface, and large emissive power. But according to Rubt!ns 
(Wied. Ann, 69, p. 588, 1899) the Auer burner is probably chemically active for 
long waves. 

!According to Paschen (Wied, Ann. 50, p. 409, 1893) CO2 and water vapor 
show pure temperature radiation. Their absorbing power fur certain regions of 
wave lengths is also very great. 
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friction, it is necessary to suppose that it is kept constant by a 
continuous supply of energy. In the case of temperature 
radiation this supply of energy comes from the impacts of the 
molecules; in the case of luminescence, from chemical or elec
trical energy. 

If the distance between two equal electric charges (meas
ured in electrostatic units) of opposite sign (they may be at 
rest or in motion) undergoes a periodic change of amplitude / 
and period T, then, according to Hertz,* the electromagnetic 
energy emitted in a half-period is 

L' = 811" e212 
3A,3 , {I) 

in which .l denotes the wave length in vacuo. 
Hence the amount of energy radiated in unit time from two 

opp.:>sitely charged ions is 

16 e2/2 16 4 e2/2 

L = 3 1r\s7 = 31r cl'. 

Now, according to measurements of E. Wiedemann,t the 
energy emitted in a second, in the two D-lines, by I gm. of 
sodium is 

L1 = 3210 gr-cal = 13.45 • 1o1° ergs. (3) 

The atomic weight of sodium is 23. It is next necessary 
to calculate the absolute weight of an atom of sodium. 
According to Avogadro's law, in every gas or vapor, at a 
given temperature and pressure, there exists the same number 
of molecules in unit volume. This number, at a pressure of 
1 atmosphere and at 0° C., ·is calculated from the kinetic 
theoryt as N = 1<:r" in a cm.3• According to Regnault I cm.8 

of air at 0° C. and atmospheric pressure weighs 0.001293 gm. 

* Wied. Ann. 36, p. 12, 188g. A di:ferent numerical mctor is here giYen be-
cause Tis defined differently. • 

t Wied. Ann. 37, p. 395, 1889. 
l C£ Richarz, Wied. Ann. 52, p. 395, 18g,J. 
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Hydrogen is 14.4 times lighter than air; hence the weight g 
of one molecule of hydrogen is given by 

nA 0.001293 
g· w•u = 14.4 ; 

g = 9· 10-25 gr. 

Since a molecule of hydrogen (H2) consists of two atoms, the 
weight of an atom of hydrogen is 4.5-10- 25 gm. An atom 
of sodium is 2 3 times heavier; hence it weighs 1. 03 • 10- 23 gm. 

Sodium is a univalent atom. Each atom is connected with 
one ion whose charge will be denoted by e. If, therefore, two 
atoms with charges ± e are required to produce one vibrat
ing system, then in one gram of sodium there are present 
½ : 1.03 • 10-23 = 4.85. 1<>2"'" such systems. Hence, from (2) 

and (3), 

Now e is a universal constant, since it represents the electrical 
charge which is connected with a univalent atom (it is the 
charge corresponding to a valence 1); for since, according 
to Faraday's law of electrolysis, a given electrical current 
always decomposes the same number of valences in unit time, 
the charge corresponding to a valence I must be a universal 
constant which does not depend upon the special nature of the 
atom. Now an electric current of I ampere decomposes in 
one second o. I 160 cm. 3 of hydrogen at 0° C. and atmospheric 
pressure. Now the quantity of electricity carried in a second 
through any cross-section of a conductor conveying I ampere 
of current is -h electromagnetic units or 3 • Io9 electrostatic 
units. Half of this flows as positive electricity in one direction, 
half as negative in the other. Hence in o. 116 cm. s of 
hydrogen at 0° C. and atmospheric pressure, the total positive 
charge is I. 5 . 109 electrostatic units, the negative charge being 
the same. In I cm. 8 there would therefore be 1. 29 • 1010 units. 
Since, according to page 530, the number of molecules in a 
cm.1 is N = 10•, and since each molecule contains a positive 
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and a negative charge, the charge of a univalent ion (the 
element of electric quantity) is 

. (S) 

The introduction of this value into (4) gives, since c = 3. 1010 

and A= 0.000589, for the value of l, 

l = 1. 13 • 10- 11 cm. . (6) 

The diameter of a molecule as calculated from the kinetic 
theory is about d = 2. 10- 8 cm. t Since from (6) l is seen to 
be considerably smaller than d, the relatively strong emission 
of sodium vapor appears to be due to an oscillation of the ions 
(the valence charge) within the molecule (sphere of action of 
the molecule). 

On page 447 the ratio of the charge e to the mass m of a 
negative ion of sodium vapor was calculated as 

e: m = c• 1.6- 107• 

Hence 
m = 2.7 • 10-28 gr., (7) 

i.e. the mass of the ion is the 38000th part of the mass of an 
atom of sodium. 

On page 383 the equation of motion of an ion vibrating 
under the influence of an electrical force X was written in the 
formt 

(8) 

t denoting the displacement of the ion from its position of rest. 
When r is small the natural period T' of the ion is given by 

(9) 

* J. J. Thomson (Phil. Mag. (5) 46, p. 29, 1898) has calculated from certain 
observ--£tions e as ~7. 10- 10, which is in good agreement with the value above 
given. 

f Cf. Richarz, Wied. Ann. 52, p. 395, 18g4. 
t He~ & no longer denotes absolute temperatur... 
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Since for sodium vapor T' = 2 • 10-1~, it follows from (5) and 
(7) that 

(10) 

Finally, in order to determine the constant r, it is possible 
to make use of the conclusion reached on page 387, namely, 
that the index of refraction n and the coefficient of absorption 
Kare determined from the equation 

n2(1 - iK)2 = 1 + £JU) 0 , 
+ .a 

i '""r- r 
(11) 

in which 9l denotes the number of ions in a cm. 3, and in which 
also 

r = T: 2,r, 
r8 

a=-, 
4,r 

Hence the value of r could be obtained from observations 
upon K. Such measurements of K for sodium vapor have not 
been made and would be very difficult to make, since the 
absorption in the neighborhood of a natural period would vary 
rapidly with the period T. But an estimation of the value of 
r may be obtained in another way: From the sharpness of the 

a 
absorption lines of sodium vapor it is evident that - must be 

'T 

very small. But when T = T' : 2,r, 

~ = r-e-~ = r· 1.9. 10-•. 
T V 4'W' 

r must then in any case have an order of magnitude less than 
l04• There is also another way for obtaining an upper limit 
for r. 

If the ions, after being set into vibration, are cut off from 
external influences, they execute damped vibrations of the form 

t . t 
-y- s:z,r-

E = l·e T .e T'. 
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Hence, from (8), when r is small, 
re 

y = -r = r•0.6· 10-1, 
2m 

in which T' is determined by (9). Now the damping factor 
must be very small, since interference has been observed with 
sodium light with a difference of path of 200 oool. Also if 
t = 200000T', e cannot be very small. Hence 2oooooy 
must be less than 1, i.e. 

(16) 

In what follows a lower limit for the value of r will be 
derived. 

3. The Damping of Ionic Vibrations because of Radiation. 
-If at the time t = o a negatively charged ion - e is at a 
distance I from a positively charged ion -1- e, and if in the 
course of the time T' this distance has changed by di, then 
the change d(i, in the electrostatic energy is 

e2 
d(i, = /2 -di. (17) 

Now, from (14), in the course of the period of time T' the 
amplitude of the motion of the ion has changed by di= - yl, 
provided y is small. Further, by ( 1) on page 5 30, the decrease 
in energy in the time T' is 

d(i,' = - 1:; e2/2. (18) 

Now the decrease in energy d(i, must at least be equal to 
the decrease d(i,' which is due to radiation. Hence, from (17) 
and (18), there results, if di is set equal to - yl, 

~y~ It. ;: e212, i.e. y~ l~?t' (-it (19) 

Introducing the value of I from (6), 
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i.e., from (15), 

It will be shown below that r must be considerably above 
the lower limit thus determined, and that, for the value of / 
used, the damping of the ionic vibrations, because of their own 
radiation, would be altogether negligible. 

Even if I were assumed to be of the order of magnitude 
of the diameter of a molecule, i.e. if I= 2 -10- 8, then 
y = 2· w- 8, while it is probable that y is considerably larger. 

4. The Radiation of the Ions under the Influence of 
External Radiations.-Under the influence of an external 
force of period T = 21t1: and of amplitude A the ions take up 
a motion of the same period whose amplitude may be written 
[cf. (8) and the abbreviations (12)] 

The energy emitted in unit time by a layer of thickness dz 
and of area I is, according to (2) on page 530, 

I A 282 

dL = 31r
2
cNd\,{ [i -(tYJ+ ~}. . . (2 1) 

C 
On the other hand the energy -A2 enters the layer in unit 

4,r 

time (cf. page 454; the electric energy is equal to the mag-

netic), while the energy _!'_A' 2 passes out, provided A' repre-
4" 

sents the amplitude of the impressed electric force after it has 
passed through the layer dz. Hence 

th 
A l A -20K= ·e .il• 
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The energy absorbed in unit time within the layer amounts 
then to 

c c dz 
d'i, = -(A2 - A'')= -A2 -41tnK-, (22) 

4,r 4,r l 

But now, from (11) on page 533, in the neighborhood of a 
natural period 

In consideration of this equation the ratio of the emitted to 
the absorbed energy is 

dL 2,r2 {fr 4,r2 n 
de¥, = 31san = 3" cA.2,-· (24) 

This ratio is larger the smaller the value of r. For n = 1 

and A = 5 .9. 10- 5 (24) gives 

dL 0.126 
~-- r 

Since in any case this ratio must be considerably less than 
1, as otherwise a reversal of the sodium line ( cf. page 50 1) 

would be impossible, then, in consideration of the inequality 
(16), the value of r must be about 

r = IO to 100. 

5. Fluorescence.-If r had the value I for sodium vapor, 
an appreciable radiation of light would of necessity take place 
under the influence of radiation from without. This effect has 
not as yet been observed, although no delicate experiments 
have been made to attempt to discover it. In the case of the 
fluorescent bodies an appreciable radiation is actually produced 
by exposure to light. The attempt might be made to explain 
this phenomenon by assuming a small value of r. The char
acter of the absorption of a body can in this way be made very 
variable, since this absorption depends upon the quantity a, 
i.e. upon r8. Nevertheless any attempt to found a theory of 
fluorescence upon the equation of motion (8) of the ions can 
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be seen at once to be useless. For, according to that equa
tion, when a stationary condition has been reached, the 
vibrations of the ions must have the same period as that of the 
incident force X. But this will not explain one of the chief 
characteristics of fluorescence, namely this, that fluorescent 
light is of a different color from that of the light most strongly 
absorbed. 

Fluorescence is to be looked upon as a case of luminescence 
which is due to certain special (chemical) changes whose cause 
is to be found in the illumination to which the body is exposed. 
The mathematical equations thus far given would therefore 
need to be considerably extended.* 

6. The Broadening of the Spectral Lines due to Motion 
in the Line of Sight. t-If the natural vibrations of the ions 
were altogether undamped, they would nevertheless give sharp 
spectral lines only when their centres of vibration remained at 
rest. But since this centre is within the molecule, and since, 
according to the kinetic theory, the molecule is moving hither 
and thither with great velocity, the vibration produced by the 
ions must, according to Doppler's principle, be of somewhat 
variable period, i.e. the spectral lines cannot be perfectly 
sharp. 

If an ion which has the period T moves toward the observer 
with the velocity v, then, according to Doppler's principle, the 
light which comes to the observer has the period 

T' = r(1 ± ~), (26) 

in which c is the velocity of light in the space between the ion 
and the observer. Since the index of refraction of gases differs 

* No satisfactory theory has yet been brought forward. That of Lommel 
(Wied. Ann. 3, p. 113, 1878) has been compared with experiment by G. C. 
Schmidt (Wied. Ann. 58, p. 117, 18g6) and has been found faulty. 

t This question was first treated by Ebert (Wied. Ann. 36, p. 466, 188g). 
According to his calculations the difference of path over which interference ca.11 he 
obtained is smaller than it would be if the finite width of the lines depended upon 
Doppler's principle. But Rayleigh has removed this difficulty in a more complete 
discussion (Phil. Mag, (S) 27, p. 2g8, 188g), 
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but slightly from I, c = 3 • 1010 cm/sec.• If then the assump
tion were made that all the molecules had the same velocity 
v, the emitted wave lengths would all lie within the limits 

A( 1 ± ~). The width d A. of the spectral line would therefore 

be 
2V 

d'A. ='A-. 
C 

Now, according to the kinetic theory,* the 
the squaae of the velocities is given by 

mean value of 

M ( 2) 248· J0',-8 
ean v = M , . (28) 

in which M is the molecular weight of the gas, -8 its absolute 
temperature. Hence, setting 

v = t'mean (v2) = 15.8, I01✓ ;, (29) 

the velocity of a hydrogen molecule, for example (M = 2), at 
50° C. (8 = 323) would be 'V = 2010• 1<>8 cm/._.= 2010 m/.ec.• 
Hence, from (27 ), the width of a spectral line would be 
dA = A• 1.34, 10-5• According to (27) the lines in the red 
end of the spectrum should be broader than those in the blue. 
This corresponds to the facts. t 

The width of a spectral line is connected with the greatest 
difference of path over which the light can be made to produce 
interference (cf. page 152). If a spectral line be decomposed 
into two parts and if these parts be brought together after 
having traversed paths which differ by d cm., then, according 
to equation (28) on page I 53, these parts can produce inter
ference fringes whose visibility V, for the case in which the 
intensity of the light is constant throughout the whole width 
of the line, is given by 

V = sin 4,rda. 
4,rda 

• L Boltzmann, Gastheorie, I, p. 14, 

. . . 

t Winkelmann, Handb. der Physik, Optik, p. 424-

(30) 
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In this, according to equations (22) and (20) on page 151, the 
quantity a is connected with the width dA. = Ai - 13 of the 
spectral line in the following way: 

The visibility V of the fringes is defined by equation (26) 
on page 152. According to Rayleigh the interference fringes 
are still visible when the ratio J min. : Jmax. of the intensities 
at the positions of greatest darkness and of greatest bright
ness is 0.95. In this case Vwould have the value o.Q25. If 
this value be substituted in (30), then from (27) and (31) it 
appears that the maximum difference in path d at which inter
ference could still be observed would be 

sin (41t 4/.t · v /,) sin 'lfZ 

0.025 = 47C djA. .v/, = ~• . (32) 

in which, for brevity, 4~~ is replaced by x. Since the right

hand side of (32) is small, the smallest root of x is to be 
looked for in the neighborhood of 1. Setting x = I - e, (32) 
gives 

'If€ 
0.025 = ( ) = e. 

'lfl-E 

Hence 
d C C 
, = X•- = o.975.-. • 
"' 4v 4v • (33) 

If account be taken of the fact that all the molecules have 
not the same velocity v, the value of d would be still greater, 
namely, approximately* 

d C 

1 = 0.345v. (34) 

If, for example, the temperature of incandescent hydrogen 

* C£ Rayleigh, Phil. Mag. {S) 27, p. 2981 188g. 
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in a Geissler tube is 50° C., the ability of its spectral lines to 
produce interference ·,vould vanish for a difference of path 

d h x- = 51 000. 

For sodium vapor in a Bunsen flame M= 2.23 = 46. 
Assuming the temperature to be 1500° C., i.e. assuming~= 
1773, then from (29) it would follow that v = 98.2. 108, and 

d 
from (34) that X = 105 ooo. 

The ability to produce interference would be higher if the 
temperature were lower. As a matter of fact interference can 
be obtained over a longer difference of path if the sodium light 
is produced by an electric discharge in a vacuum tube. In this 
electro-luminescence the temperature is much lower. Michel-

son estimates it in one case at 2 50° C. i would then have the 

value 205 ooo. At 50° C. ~ = 245 ooo. The ability of -the 

mercury lines to prnduce interference over a large difference 
of path is accounted for by the large atomic weight of mercury 
(which, since the vapor is monatomic, is equal to the molecular 
weight). For, according to (29), a large value of M means 
a small velocity v of the molecule. For mercury M = 200; 

d 
hence for -8 = 273 + 50° = 323, v = 2 • 10', i = 517 ooo. 

The numbers calculated in this way agree approximately 
with the results of Michelson's observations.* Michelson 
could also directly observe the effect of temperature upon the 
ability to produce interference when the source of light was a 
hydrogen tube placed in a copper box and heated to 300° C. t 
Heating decreased the clearness of the fringes. This phenom
enon furnishes addition.:..l evidence that the temperature in a 
vacuum tube is low, i.e. that the light emitted is due to lumi-

* Phil. Mag. (S) 34, p. 28o, 18g2. 

t Astrophys. Jour. 2, p. 2511 18g6. 
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nescence rather than to a high temperature. For the heating 
of the gas to 300° C. could only appreciably change the mo
lecular velocity if the temperature ~ were low, for example 
500 C. 

Although the results of the above calculation are in good 
agreement with the facts, neveretheless the considerations here 
presented do not completely cover the case. For on the one 
hand, according to Ebert,* the distance between two lines in 
the solar spectrum which can still be resolved is smaller than 
is consistent with Doppler's principle, and on the other hand, 
according to Lord Rayleigh, t the consideration of the rotation 
of the molecules would reduce the ability of the transmitted 
light to produce interference much more than the consideration 
of their motion of translation. To be sure the revolution of 
the molecules would have to be considered only in the case 
of molecules composed of more than one atom; hence the 
explanation given above of the great capacity for interference 
shown by the mercury lines would still stand. 

7. Other Causes of the Broadening of the Spectral Lines. 
-The motion of the molecules is not the only cause of the 
broadening of the spectral lines. The change in the period 
of the ionic vibrations due to damping must set a limit to the 
ability to produce interference, and hence must broaden the 
spectral line,+ since the ability to produce interference and the 
homogeneity of the spectral lines are closely connected. 
When a stationary condition of emission has been reached the 
ions are continually set into vibration by the collisions of the 
molecules. The more frequently these collisions occur, the 
smaller becomes the ability of the emitted light to produce 
interference. Since now the number of collisions increases 

*Sitz.-Ber. d. phys. med. Soc. Erhngen, 1889. Wied. Beihl. 1889, p. 944-
t Phil. Mag. (5) 34, p. 4m, 1892. 
lThis is the Yiew of Lomml'I (W{e<l. Ann. 3, p. 251, 1877) and Jaumanu 

(Wied. Ann. S3, p. 832, 1894; 54, p. 178, 18<)5), who have also worked it out 
mathematically. Cf. also Garbasso, (Atti d. R. Acad. d. Scienc. di Torino, 
XXX, 1894). 
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with the density of a gas, an increase in density must also 
produce a broadening of the spectral lines. Experiment shows 
this to be the case.* On the other hand a simple increase in 
the thickness of the incandescent layer (within certain limits) 
produces no broadening but only brightening of the lines. t 
However, if the thickness of the incandescent layer is so great 
that it possesses appreciable absorption for all wave lengths, 
then, if the case is one of pure temperature radiation, it must, 
according to Kirchhoff's law, show broad emission lines, or, 
in the limit, emit a continuous spectrum.t 

* Cf. Winkelmann's Handbuch, Optik, p. 419 sq, The broadening of the spec
tral lines because of the mutual electrodynamic effect of the ionic vibrations has 
been theoretically investigated by Galitziue (Wied. Ann. 56, p. 78, 18g5). Cf, 
also Mebius, Wied. Beibl. 1899, p. 419. 

tCf. Paschen, Wied. Ann, 51, p. 33, 1894, 
l C£ Wanner, Wied. Ann. 68, p. 143, 1899 ; who observed a remarkable 

reversal of the sodium line upon increasing the thickness of a sodium flame by 
repeated re8ectiom. 
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Abbe, crystal refractometer, 341 ; di
latometer, 143; numerical aperture, 
86; aprochromat, 99; focometer, 46; 
sine law, 59; theory of images, 31 

Aberration, 47 5; spherical, 54: chro
matic, 66 

Absorbing media, 358 
Absorption, coefficient of, 36o; Kirch-

hoff's law of, 496 
Achromatic interference, 144 
Airy, spirals, 412 
Amici, 58 
Ampere, molecular currents, 418 
Amplitude, 131 
Analyzer, 286 
AngstrOm, solar constant, 485, 487, 516 
Anomalous dispersion, 392; curve of, 

394 
Aperture, 73; angular, 73: numerical, 

86; effect on resolving power, 91; 
experimental determination of, 1o6 

Aplanatic, points, 58; points of sphere, 
33; surface, 9; systems, 58 

Arago, 247 
Arbes, anomalous dispersion, 394 
Astigmatism, 48; astigmatic difference, 

48 
Axes, of electric symmetry, 310; optic, 

319; ray, 328 
Axis, principal crystallographic, 242 
Azimuth, of plane of polarization, 286; 

of restored polarization, 363 

Babinet, compensator, 257; theorem, 
221 

Biaxial crystals, 338 
Billet, half-lenses, 136 
Binocular, n2 
Black body, 205, 489; dependence of 

its radiation upon absolute tempera
ture, 512; changes in spectrmn of, 

due to changes in temperature, 516; 
distribution of energy in spectrum of, 
524 

Bradley, n5 
Bravais, bi-plate, 348 
Brewster, 246; law, 283, 291 
Brightness, 86; of point sources, go 
Broadening of spectral lines by motion 

in the line of sight, 537; by other 
causes, 541 

Brodhun, 79 
Brt1cke, 97 

Candle-power, 78; candle-metre, 486 
Carcel lamp, efficiency of, 487 
Chromatic aberration, 66 
Clausius, 59 
Coaxial surfaces, images funned by, 17 
Coherent sources, 134 
Collinear relationship, 16 
Colors, S 
Condenser, 102 
Conductivity, 358 
Conjugate points, 15; construction of, 

24 
Convergent, 26 
Corbino, 432 
Crystals, absorbing, 368; biaxial, 338; 

boundary conditions for, 3o8; differ
ential equations for, 3o8; light vec
tors and rays in, 3 II; median lines 
of, 319; optic axes of, 319; principal 
position of, 324; uniaxial, 323 

Currents, conduction, 267; displacement, 
267; electric, 263; magnetic, 265 

Curves of equal inclination, 149· of 
equal thickness, 149 ' 

Damping of ionic vibrations, S34 
Diamagnetic, 26g 
Dielectric constant, 268; equals sq".13.re 
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of index, 276; discrepancies ex
plained, 389; principal, of crystals, 
310 

Dielectrics, isotropic, 268; boundar.r 
conditions for, 271 

Diffraction, 185; grating, 222; narrow 
slit, 198, 217; narrow sc!'f'en, 201; 
openings of like form and orientation, 
219; rectangular opening, 214; rhom
boid, 217 

Dioptric sy~tems, 25 
Dispersion, anomalous, 392; normal, 

388; equations of, 38g; rotary, 412 
Dispersive power, 67 
Dievrgent. 26 
Doppler. principle, 451, 475, 519, 537 
Draper, law of emission, 500 

Ebert, 541 
Echelon, 228 
Egoroff, 448 
Efficiency of source, 487 
Elastic theory, 259 
Electric field, 263; force, 262 
Electromagnetic system, 262; ratio t<> 

electrostatic, 265 
Electrostatic system, 262 
Ellipticity, coefficient of, 2go 
Emission, 482; Kirchhoff's law of, 496 
Emission theory, 125 
Emissive power, 483; of a perfect re

flector, 495; of perfectly transparent 
body, 495 

Entropy, 510 
Ether, 267; drift of, 457 
Extreme path, law of, 6 
Eye-lens, IOO 
Eyepiece, 99; Ramsden, 100: Huygens, 

IOI 

Faraday, electromagnetic theory, 26o 
Fermat, principle of least time, II 

Field lens, 100 
Field of view, 76 
Fitzgerald, ether drift, 481 
Fizeau, 150; ether drift, 477; velocity 

of light in moving water, 466; velocity 
of light, u6, 12r 

Fluorescence, 536 
Focal, plane, 17; length, determination 

of, 44 
Focometer, 46 
Focus, principal, 19 
Foucault, velocity of light, n8 
Fraunhofer, diffraction phenomena, 213 
Fresnel, bi-prism, 135, 144; .:iffraction 

phenomer.a, 188: integrals, 188; 

Huygens' principle, 162; mirrors, 
130; reflection equation, 282; rhomb, 
298; tl1eor.r, 26o; wave surface, 316, 
320; zones, 164 

Georgiewsky, 448 
Grating, concave, 225; focal properties 

of, 227; plane, 222; resolving power, 
227 

Hall effect, 434 
Hefner lamp, 81; emi~sion of, 4,86 
Helmholtz, 59 
Hertz, 530 
Hockin, sine law, 59 
Hoeck, 4iO 
Homocentric beam, 46 
Huygens, 125; <lol!ble refraction, 243; 

c::yepiece, 101; principle, 159, 179, 
.HJ 

Illumination, intensity of, 79 
Images, concept of, 14; formed by 

coaxial surfaces, 17 
Image space, 15 
Incidence, angle of, 3; plane of, 3; 

principal angle of, 362 
Index of refraction, 3, 129; effect on 

temperature radiation, 502; by total 
reflection, 30 I 

Interference, of light, 124; of polarized 
light, 247; by crystals in polarized 
light, 341; in absorbing biaxial crys
tals, 374; in absorbing uniaxial crys
tals, 38o; in cr.rsta!s in convergent 
light, 349; with large difference of 
path, 148. 

Interferometer, 144 
Ions, 382: hypothesis of, 529; ratio of 

charge to mass, 447; radiation of, 
535; vibrations of, damping of, 534 

Isochromatic curves, 352 
Isogyre, principal, 354 
Isogyric, curves, 352 

Jamin, 144 

Katoptric systems, 26 
Kerr effect, 45 I 
Ketteler, ether drift, 474 
Kirchhoff, 16q; inversion of spectral 

lines, 501; law of emission and ab
sorption, 496, 529, 542; consequences 
of law, 499 

Konig, 44,8 
Kundt, anomalous t!l.ispersion, 394; 

metal prisms, 357 
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Lagrange, 321, 330 
Langley, solar constant, ,487, 516 
Least time, law of, 129, principle of, 11 
Lenses, 40; classification of, 42; thin, 42 
Limit of resolution of microscopes, 1o6 
Lippmann, 157 
Longitudinal waves, 259 
Lorentz, moving media, 457, ,481 
Luminescence, 494, 529 
Lummer, 79 

Macaluso, 432 
Mach, 146; anomalous dispersion, 394 
Magnetically active substances, 418 
Magnetic field, 262; energy of, 272; 

furce, 262; rotation 01 the plane of po
larization, 426; dispersion in rotation 
of the plane of polarization, 429, 438 

Magneto-optical properties of iron, 
nickel, and cobalt, 449 

Magnification, angular, 22; in depth, 
21; lateral, 19; of microscope, 104, 
1o6; normal, go; of telescopes, 1o8 

Magnifying-glass, 95 
Malus, 130; law of, II 
Mascart, ether drift, 474 
Maxwell, electromagnetic theory, 26o; 

equations of electromagnetic field, 
264; fundamental assumption, 267 

Meridional beam, 50 
Metals, optical constants of, 366; dis

persion of, 396 
Michelson, echelon, 228; ether drift, 

478; interferometer, 149; limit of 
visibility, 540; velocity of light, I 19; 
in water and carbon bisulphide, 120, 
,123; in moving water, 446; visibility 
curves, 151; Zeeman effect, 447 

Microscope, 97 

Neuhauss, 158 
Neumann, elastic theory, 26o; reflec

tion equations, 283 
Newton, 125; rings, 136, 144, 1,.S; in-

tensity of rings, 302 
Nicol prism, 244 
Nodal points, 22 
Normal surface, 317 
Norremberg polariscope, 246 

Objective, microscope, g8 
Object space, 15 
Opera-glass, 109 
Optical length of the ray, 6 
Optical systems, classifications of, 25 
Orthoscopic points, 64 
Orthotomic system, 12 

Paramagnetic, 26g 
Permeability, 26g; equal to I fur light. 

waves, 466 
Phase, 126 
Photographic systems, 93 
Photography in natural colors, 156 
Polariscope, Norremberg, 246 
Polarization, 243; by diflraction, 205; 

circular, 249; elliptical, 249; ellipti
cal due to surface layer, 287; plane, 
250; by tourmaline, 247; by pile of 
plates, 285; rotary, 400 

Polarized light, partially, 253 
Polarizer, 286 
Polarizing angle, 246 
Pouillet, solar constant, 487 
Poynting, theorem, 273 
Pressure of radiation, ,488 
Prevost, theory of exchanges, 491 
Pringsheim, temperature radiation, 

502 
Prism, resolving power, 233 
Pupils, entrance and exit, 64, 73 

Quarter wave plate, 255 

Radiation, dependence upon absolute 
temperature, 512; upon the index of 
surrounding medium, 502; intensity 
of, 82,484 

Ramsden eyepiece, 100, 109 
Rays, curved, 3o6; extraordinary, 243; 

OI"dinary, 243; principal, 74: optical 
length of, 6; as lines of energy flow, 
2 73 

Ray surface, 326 
Rayleigh, 121; limit of visibility, 541 
Rectilinear propagation, 2 
Reflection, angle of, 3; diffuse, 6; law 

of, in isotropic media, 281; metallic, 
261; partial, 5; at spherical surface, 
36; total, 5, 295: polarization by, 246 

Reflecting power, 364 
Refraction, angle of, 3; at a spherical 

surface, 32; conical, 331; !aw of, in 
isotropic media, 281; index of, 3 

Respighi, 474 
Resolving power, of grating, 227; of 

microscope, 105; of prism, 233 
Resolution, limit of, human eye, 236; 

microscope, 236; telescope, 235 
Romer, n4, 120, 123 
Rotary polarization, 400; in crystala, 

408; in isotropic media, 401 

Sagittal beam, 50 
Schott, 94 
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Schmidt, curved rays, 30'/ 
Schott, 157 
Separation of lenses, 28 
Sine law, 58, 505 
Sommerfeld, 203 
Solar constant, 487 
Soleil-Babinet compensator, 258 
Spectral lines, broadening by motion in 

line of sight, 537 
Spectrum, dispersion, 224; distribution 

of energ-.r in, 524; normal, 224; of a 
black body, changes with tempera
ture, 516 

Stationary waves, 155, 284; in polarized 
light, 251 

Steinheil, 97 
Sun, temperature of, 515, 523 

Telecentric systems, 75 
Telescope, astronomical, 107; retlect

ing, 113; terrestrial, II2 
Telescopic systems, 26 
Temperature, absolute, 5o6; radiation, 

493. 529 
Thermodynamics, application of the 

second law to temperature radiation, 
493; general equations, 5n 

Thin plates, colors of, 136 
Transparent isotropic media, 271 
Transverse nature of waves, 278 

Tumlirz, ,485 

Undulatory theory, 125 
Uniaxial crystals, direction of the ray in, 

324; plates and prisms of, 335; prin
cipal indices of refraction, 336 

Unit charge, 262; of light, mechanical 
equivalent of, 485; planes and points, 
19 

Velocity of a group of waves, 121; of 
light, II4, 261, 271 ; in moving 
media, 465; equal to ratio of units, 
276 

Visioility, 140 
Voigt, 16g 

Wave length, 127; surfaces, 127; sur-
face, 326 

Weber, molecular currents, 419 
Wedge, 140 
Weierstrass, refraction, 32 
White body, 205 
Wien, spectrum of a black body, 517_ 

525 
Wiener, 155, 285 

Zeeman effect, 446 
Zehnder, 146 
Zeias, 113 




