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This paper discusses the modes of optical resonators, and optical modes
of propagation or Gaussian beams of light. The passage of Gaussian beams
through lenses, telescopes, sequences of lenses, and lenslike media is studied.
Mode matching formulae are derived. A complex beam parameter is intro-
duced for which the law of transformation by any given optical structure
can bewrittenin the simpleform of a bilinear transformation (ABOD law).
Resonators with internal optical elements and their transmission line duals
are also investigated. Effective Fresnel numbers and curvature parameters
are determined which allow one to infer the diffraction losses, the resonant
conditions, and the mode patterns of the various systems. Results are ob-
tained for 1'esonatol'S with internal. lenses, sequences of lenses with irises
inserted between the lenses, 1'esonators with intemal lenslike media, trans-
mission lines consisting of a lenslike medium with periodically spaced
irises, and resonators with onevery large mirror.

I. INTRODUCTION

The theory of Fresnel diffraction is the basis for an understanding of
optical resonators':" and of optical modes of propagation.t-t-! Fresnel
diffraction explains the mode patterns and diffraction losses of optical
resonators, and the beam waist and spreading of the modes of propaga-
tion or "Gaussian beams." In this paper we will discuss how these
Gaussian beams of light are transformed on their passage through lenses,
telescopes, various lens combinations, and lenslike (guiding) media,
and how these optical systems affect the properties of optical resonators
when inserted between the resonator mirrors.

We will assume that no additional aperture diffraction effects are
introduced by these optical systems, i.e., that the apertures of the
internal lenses can be regarded as infinitely large. The imaging laws of
geometrical optics are therefore expected to apply, and we will use them
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wherever possible, as they generally simplify the algebraic derivations
and at the same time provide some physical insight.

Some of the problems to be investigated here in greater detail have
already been treated in the literature. Goubau" has given some mathe-
matical relations between the parameters of Gaussian beams trans-
formed by a thin lens. The recently published mode matching formulae?
are the result of a computation which will now be presented. Resonators
with internal lenses have also been discussed in the literature,8-11 and
we have used the concept of an effective distance9,l o in a previous publica-
tion.! In several cases an alternative to our algebraic approach is the
graphical method of Collins.t! who introduced the circle diagramll ,12

for Gaussian beams.
In the following we will first establish the rules of imaging for Fresnel

diffraction with attention to the imaging of the phase fronts which are
of particular importance for optical modes. Then we will list expressions
for the focal length and the principal planes of various optical systems of
interest, because these parameters are needed later for application of the
imaging rules. This listing includes the parameters of the telescope, of
sequences of lenses, and of sections of lenslike medium. Armed with
these tools we will study the passage of Gaussian beams through lenses
and various optical systems. The paper is concluded by an investigation
of optical resonators with internal optical elements and their transmis-
sion line duals. Effective Fresnel numbers and curvature parameters
are determined which allow one to infer the diffraction losses, the reso-
nant conditions, and the mode patterns of the various systems. Results
are obtained for resonators with internal lenses, sequences of lenses with
irises inserted between the lenses, resonators with internal lenslike
media, transmission lines consisting of a guiding medium with periodi-
cally spaced irises, and resonators with one very large mirror.

II. IMAGING RULES

While geometrical optics deals with rays, the theory of Fresnel dif-
fraction deals with (scalar) fields. To describe the field distribution, we
use complex amplitudes E(x,y,z) and a Cartesian (x,y,z) coordinate
system. We consider a wave that propagates in the direction of the
optic axis (z axis). Within the assumptions of Fresnel diffraction an
ideal thin lens of focal length f transforms the incoming wave with a
field Eloft(X,y,z = const) immediately to the left of the lens into a
wave with the field

Erighj(:r;,y,z = const) = E1ort(x,y,z = const) exp ( -jk x
2 t y) (1)
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immediately to the right of the lens. Here lc is the propagation constant.
The thin lens produces a phase shift which is proportional to the square
of the distance to the optic axis, while the intensity distribution is the
same on both sides of the lens.

Consideration of spherical waves provides a link between (1) and
the laws of geometrical optics according to which a spherical wave with
a radius of curvature R1 at the left of the lens is transformed into a
wave with curvature radius R2 as shown in Fig. 1. The radii R1 and R2
are related by

(2)

For Fresnel diffraction the transverse field distribution of a wave with
a spherical phase front of radius R is given2

•
3 by

where

E(x,y,z = const) = exp (-jkr2j 2R ) (3)

(4)

and R is counted positive for a phase front that is concave if observed
from the left. For spherical phase fronts of radius R1 on the left and - R2

on the right of the lens (where the phase front curvature is negative,
as shown in Fig. 1) we can express E 1eft and Eright with the help of (3),
compare the exponents in (1), and find the same relation (2) between
R1 , R2 , and f as for the spherical waves of geometrical optics.

To discuss imaging consider an object; i.e., the field E1(Xl, Yl) in an
object plane, and its image E2(X2 , Y2) in the corresponding image plane
(see Fig. 2). The distances d1 and d2 between the lens and the two
planes are related by

(5)

_--PHASE FRONTS

(T I
-"" '-....R1 ---- \ I I ....- .... Rz_--- \ I .....__

-------- ----.....

I
f

Fig. 1 - Lens transforming phase front of spherical wave.
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Fig. 2 - Imaging of field distribution by a thin lens.

-~Y2)
(6)

• ( r2
2

dl ). exp -:Jk dl + d2 + 2/ ~

with rl:.-= X22 + Y22• The factor dl/d2 in this equation follows from
conservation of energy; the arguments - (dI/d2)X2 and - (dI/d2)Y2
indicate that the image is inverted and magnified by d2/ dl . The first
two terms in the exponent are simply due to the phase shift k(d l + d2 )

which the light wave suffers in propagating from the object to the image
plane, while the third and last term is of particular importance for our
considerations. It describes an additional phase shift proportional to
r2

2 which appears in the field distribution of the image. Apart from
this additional phase shift the amplitude and phase distribution of the
image and the object are scales of each other.

The expression for the additional phase shift follows also from geo-
metrical optics (see e.g. Appendix B), and it is related to the thick-
mirror formulae," as we shall see later. it is also obtained by studying

We know from geometrical optics that the intensity distributions of
the object and the image are similar. This is, of course, still true for
Fresnel diffraction by any field aperture in the object plane. Assuming
that no aperture diffraction effects are introduced by the thin lens, one
can use the Fresnel diffraction formula to relate E1 and E2 (seeAppendix
A) and arrive at

E2(X2,Y2) = - ~~ E 1 ( - ~ X2 ,
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the passage of Gaussian beams through a lens," The additional phase
shift does not appear in Abbe's theory of imaging; he finds that the
image is strictly similar to the object, both as regards the amplitude
and phase distribution.'! But Abbe used the Fraunhofer diffraction
theory, where phase terms proportional to r 2 are neglected.

For Fresnel diffraction the r2 dependence of the additional phase
shift suggests that one should use spherical reference surfaces instead
of plane ones, as shown in Fig. 3. By proper choice of the curvature of
these surfaces tangential to the image and object planes, one can achieve
an image field on one surface that strictly reproduces the object on the
other surface in amplitude and phase. For an object reference surface of
radius R1 and an image reference surface of radius R2 one gets for the
fieldsadditional phase factors of exp (_jkrI

2j 2R1 ) and exp (_jkr2
2j 2R2 ) ,

respectively. These phase factors cancel the additional phase shift in
(6) if

(7)

After some algebraic manipulations involving (5) this relation can be
rewritten as

(8)1 + 1 1
dl + RI d2 - R2 f .

This simply means that the center of curvature 0 1 of the object surface

OBJECT PLANE IMAGE PLANE

SPHERICAL
--PHASE

FRONT

I
f

SPHERICAL
PHASE---~I
FRONT I

I

r---- dI ----+------- d2 -------1
\1 I \1

c. _----R,-- C2 _---R 2- - -

Fig. 3 - Imaging of fields with spherical wave fronts; centers of curvature
are images of each other. The corresponding spherical reference surfaces are used
when fields with nonsnherieal phase fronts are imaged.
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is imaged onto the center of curvature C2 of the image surface. Thus,
whenever the centers of curvature of the image and object surfaces are
images of each other we have an image which is a strict (scaled) reproduc-
tion of the object as regards both the amplitude and phase distribution,
with no additional phase shift.

The imaging rules discussed above can also be used to study imaging
by a combination of lenses (or by any optical system that can be re-
garded as such). It is not necessary to apply the rules step by step to
each individual thin lens of the combination. It is generally simpler to
determine the parameters of the equiv:alent thick lens as usual in geo-
metrical optics. The place of f is then taken by the combined focal
length of the system, and object and image distances (dl and d2) are
measured from the principal planes of the thick lens.

III. FOCAL LENGTHS OF VARIOUS OPTICAL SYSTEMS

3.1 The Ray Matrix

When one traces a paraxial ray through combinations of lenses and
lenslike media, the quantities of interest are the position Xl and the
slope Xl' of the ray in the input plane, and the corresponding quantities
X2 and x/ in the output plane (see Fig. 4). There is in general a linear
relation16.16.17 between the output and input quantities which can be
written in matrix form as

,
X2

=
C D

(9)

We will call this ABCD matrix the ray matrix of the system. Because
of reciprocity the determinant of the ray matrix is generally unity:

AD - BC = 1. (10)

It is easy to determine the focal length and the principal planes from
the elements of the ray matrix of an optical system. By tracing a beam
that leaves the output plane parallel to the optic axis (x/ = 0) we find
the location of the focal point on the input side. Its distance 81 from
the input plane is obtained as

(11)

where we refer to Fig. 4. Similarly, we find for the distance 82 between
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I
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I
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Fig. 4 - Reference planes for optical system.

the output plane and the corresponding focal point

82 = _ X
2, I = - ~ •

X2 %1'=0 C
(12)

To find the principal plane on the input side we follow an input ray
from the focal point until its distance from the axis is equal to the
position X2 of the corresponding output ray and have

(13)

where the distance hi between the principal plane and the input plane
is measured positive as shown in Fig. 4. On the output side we find
similarly

(14)

(15)

The focal length f of the system is obtained by calculating the distance
between a principal plane and the corresponding focal point

X21 XIIf = 81 + hi = 82 + ~ = - = - - •xl %2'~O X2' %1'-0

Using the linear relations of (9) together with the last three expressions,
one finally gets

f = - (1/C) (16)
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hi = (D - I)IC

112 = (A - O/C
(17)

(18)

where the thick-lens parameters are expressed in terms of the elements
of the ray matrix. For later use we also write down the matrix elements
as functions of the lens parameters which follow from the last expres-
sions

A = 1 - (h21f)
B = hi + 112 - (hl 1l2l f)
C = - (llf)
D = 1 - (hIlf).

(19)

(20)

(21)

(22)

3.2 The Two-Lens Combination-Telescope

The lens parameters of a combination of two lenses are well known
and are listed here for completeness and for later use. The combination is
shown in Fig. 5. For lenses of focal lengths 11 and 12 spaced at a distance
d we have

III = (1/iI) + (1/h) - (dillh)
dlhI =-/2

~ = dl
II

where the lens planes are used as input and output planes.

r------ d-----1
I I

I I I

Fig. 5 - The two-lens combination.

(23)

(24)

(25)
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For a slightly misadjusted telescope the lens spacing is

d = 11 + 12 - t1d (26)

where t1d measures the misadjustment. The lens parameters of the
telescope can be written as

f =fd2 (27)t1d

ltd (28)11.1 = t1d

I~ (29)11.2 = t1d'

3.3 Sequence of Lenses

A periodic sequence of lenses of equal focal length fo and lens spacing
d is shown in Fig. 6. The reference planes are chosen just to the right
of each lens. The elements of the ray matrix B of one section of the
sequence (i.e., one lens spaced at a distance d from the input plane) are
well known":" and are given by

1 d

n

d1--fo
INPUT

L---d---i---d---l
I I-d/21

:r.' I,0

(30)

Fig. 6 - Sequence of lenses of equal focal length.
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They relate the position and slope (Xl and x/) of the ray just after the
first lens to the ray position and slope just after the zeroth lens

= S (31), ,
Xl Xu

The ray to the right of the nth lens is related to the input ray by the
nth power of the ray matrix of one section

X n Xu
= s: (32), ,

X n Xu

The matrix elements of s: can be computed with the help of Sylvester's
theorem" and are well known,":" One has*
. 1S" =-.

smO

sin nO - sin (n - 1)0

1 .
- -smnO

fu

with

d sin nO

(1 - fu)sinno - sin (n - 1)0

(33)

cos 0 = 1 - (d/2fo). (34)

We can now employ (16) and obtain for the focal length f of n sec-
tions of a periodic sequence of lenses

f = fu(sin Olsin nO). (35)

The distance of the two principal planes from the input and output
planes (zeroth and nth lens) follows also from (33) with the help of
(17) and (18). One finds

hi = (d/2) + f(1 - cos nO), (36)

and

h2 = - (dI2) + f(1 - cos nO). (37)

If we measure the distance h of the principal planes from the midplanes
between the lenses as shown in Fig. 6 we have

h = f(1 - cos nO). (38)
'" These matrix elements can be written in terms of Chebyshev polynomials

of the second kind of the variable [1 - (df2fo)].
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A more complicated sequence of lenses is shown in Fig. 7. Here a
lens of focal length fl is followed by a lens of focal length h and vice
versa. The lens spacings are dl and d2 in sequence as shown in the figure.
This sequence of lenses can be reduced to the simpler type discussed
above. We can regard it as a sequence of thick lenses formed by lens
pairs of focal lengths /I and f2 . The focal length fo of the thick lens is,
according to (23), given by

lifo = (1IfI) + 01/2) - (d1l f d 2), (39)

and expressions for the principal planes are given in (24) and (25).
The distance d between the output principal plane of a thick lens and
the input principal plane of the consecutive thick lens is obtained as

d = d2 + hi + h2 = d2+ fodl (~ + j) . (40)

With the principal planes as reference planes, rays passing through this
sequence of thick lenses behave the same way as rays passing through
a sequence of lenses of equal focal length that are equally spaced. We
can therefore use the expressions (33) and (34) obtained above. With
(39) and (40) the latter becomes

cos (J = 1 _ d l + d2 (!.. +!)+ dld2 • (41)
2 fl f2 2fd2

3.4 Lenslike Medium

A lenslike medium or "guiding medium" is one whose refractive index
n varies near the optic axis as in

r--d2--+ --d,---t-d2--+ --d,---t--d2--'

I I I I I I I I
! I

/

If,
I
"------,------'

It;
I

"'-_---,__..J

Fig. 7 - Sequence of lenses of alternating focal length with alternating lens
spacings.
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n = no (1 - 2~)
where no is a constant, r is the distance from the optic axis, and b meas-
ures the degree of the variation of n. A medium of this kind can be pro-
duced by inhomogeneities in laser crystals19,20 or by a radial variation
of the gain in high-gain gaseous lasers." Another important example
is the medium of the recently reported gas lens.22,23,24

To trace rays in a lenslike medium one uses the differential equation
for light rays.25 For paraxial rays this ray equation has the form

d2x ' a xno - = -n = -4no - (43)dz2 ax b2

for the distance x (z) of the ray from the z axis. A corresponding rela-
tion holds for y (z). The solution is, again, a linear relation between the
ray position and slope in the output plane (x and x') and the cor-
responding input quantities xo and xo'

z b . 2 zx cos 2 b - sin - xo2 b
(44)

, 2 . 2 z z ,
x - - SIn - cos 2 b xob b

A typical ray path is shown in Fig. 8. To calculate the optical parameters
for a section of lenslike medium immersed in a medium with a refractive
index of unity (vacuum), we invoke Snell's law to relate the ray slopes

n=1

LIGHT
BEAM

Fig. 8 - Hay path in lenslike medium.

n=1
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at the section boundaries. For paraxial rays we have approximately
,

X vac = no.'l: j
,

xOvac = noXo . (45)

(46)

Now we use (16) and find for the focal length of a section of length 1

f= b
2no sin 2 ~.

(for no = 1 this formula has been given in Refs. 23 and 26, for example).
The distance h of the principal planes from the input and output planes
respectively (see Fig. 8) is computed with the help of (17) and (18).
One obtains

b 1h=-tan-.2no b
(47)

The above expressions have been derived for a focusing medium where
b2
~ O. For a defocusing medium we have b2

~ O,·and the .expression
for the focal length becomes

(48)

_ I b I l
h - 2nc tanh fbi'

IV. OPTICAL TRANSFORMATION OF GAUSSIAN BEAMS

(49)

4.1 Light Propagation in Free Space

Near the optic axis an optical mode of propagation or Gaussian beam
is regarded as a TEM wave with a spherical phase-front and a trans-
verse field distribution that is described by Laguerre-Gaussians or
Hermite-Gaussian" functions. The two beam parameters of interest are
the "spot size" or beam radius w(z) and the radius of the phase front
R(z). In any beam cross section of a fundamental mode the field varies
as

( 1'2 1'2)exp - - -jk-w2 2R

The location of the corresponding principal planes is described by 
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and is specified by wand R. The light beam expands as it propagates
hr h hown i F' 9 Th If' . 2 3 6 26 27t oug space as sown mIg.. e aw 0 expansion 18 ' " ,

(50)

Here the z is measured from the beam waist where the phase front is
plane and the beam reaches its minimum radius wo. For R(z) we
have2,3,6,2o ,27

R=Z[l+(~:)]. (51)

(52)

Dividing (50) by (51) we find
~2 >..z
>..R - ~o2

which we can use to rewrite the terms in the round brackets, and ex-
press Woand z in terms of wand R

2
Wo =

(
~2)2

1 + >..R

R

(
>..R ) 2.1+ -
~W2

(53)

(54)

~-----------z ---------1
I \ II \
I

f-
Wo

I
~--------

/
I

,""--PHASE FRONT

Fig. 9 - Contour of Gaussian beam of light.
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4~2 Beam Transformation by a Lens

When a Gaussian beam passes through a lens a new beam waist is
formed, and the parameters in the expansion laws are changed. Assume
the light beam is propagating to the right. Before passing through the
lens it has a beam waist a distance d1 away from the lens with a beam
radius WI as shown in Fig. 10. The lens produces another beam waist a
distance d2 away with a beam radius W2. The distances d1 and d2 are
measured positive as shown in the figure (for a negative diane has a
virtual waist). In the following we will establish some relationships
between beam parameters of the incoming beam (identified by the
subscript 1) and the parameters of the transformed beam (subscript 2).

The far field angles" 81 and 82 of the two beams are computed from
(50) as

81 = >"/7rWl; 82 = >"/7rW~. (55)

From these two angles follow immediately the beam radii WI/ and W2/

in the two focal planes of the lens where the image of the far field appears

WI! = j82 = Xj/ 7rW2 (5&)-

W2/ = j81 = Xj/7rWI. (57)

The beam radius in ono of tho focal planes is, of course, independent of
the spacing between the lens and the beam waist of the other beam. It
follows from (51) that the center of curvature of the far field phase
front is in the beam waist. According to the imaging rules of Section II,
corresponding centers of curvature are images of each other (where we
take the phase fronts as reference surfaces). We therefore have to
determine the image of a beam waist to find the curvature center of
the phase front in the focal plane on the other side of the lens. The
distance d2' between the lens and the image of the waist W2 follows from

Fig. 10 - Gaussian beam transformed by a lens.
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(58)

(62)

(61)

and the radius of curvature Rl/ in the left focal plane is equal to the
spacing between that image and the focal plane

Rl/ = d2' - f. (59)

Combining (58) and (59) we have

lRlf = d
2

_ f (60)

and correspondingly

lR21 =--
dl -f

for the radius of curvature in the right focal plane. Rlf and R2! are
independent of the beam radii W2 and WI, respectively, a fact that can
be used for mode matching into confocal resonators.

To relate the beam waists we use (56) and (60) to write

'1rW1/ _ X(d2 - f)
XRl/ - 1rW2 2

and similarly

'1rW2/ _ X(d1 - f)
XR2! - 1rW1 2 (63)

To express W2 in terms of WI and d1 we insert (57) and (63) into (53)
and find

(64)

(65)

This relation, first given by Goubau," relates the beam radius of the
waist of the transformed beam to the parameters of the incoming beam.
A corresponding relation for the spacing ~ between the lens and the
beam waist W2 is found by inserting (61) and (63) in (54). The result is

J2

The above expressions were derived with the help of the imaging
rules of Section II. As mentioned before, these rules apply not only to
thin lenses but also to thick lenses and lens combinations. Therefore,
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(68)

(67)

if dl and rh are measured from the principal planes the results given
above are valid for the transformation of Gaussian beams by thick
lenses.

4.3 Mode Matching

In experiments with optical modes one often wants to transform a
beam with a given beam radius WI at the waist into another beam of
waist radius W2 • One wants to "match" the modes of one optical system
(like a laser resonator) to the modes of another one (an optical trans-
mission line for example). This can be done by selecting a suitable lens
and by properly adjusting the waist spacings dl and d2 , where we refer
to Fig. 10. The proper spacings are given by the mode matching formulae"
derived below.

We combine (62) or (63) with (52) and obtain

dl - 1 WI
2

(
d2 - 1 = W22 ' 66)

This is used to rewrite (64) in the form

1 1 ( ) ( ) 1 (1rWI)2
W22 = W22f2 «, - 1 d2 - 1 + 12 T

Multiplying (57) by W2
2l we arrive at

(di - f) (d2 - f) = l - 102

where we have defined

fo = 1r(WIW2/"1I.). (69)

To arrive at the mode-matching formulae we multiply or divide (68)
by (66), extract the square root, and find

(70)

or

(71)

As discussed in Ref. 7, one achieves mode matching by choosing a
lens (or lens combination) with a focal length 1 that is larger than 10
or equal to it. For a given lens there are generally two ways open to
match the modes. One can choose either the plus sign in both (70) and
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(71), or the minus sign. Fori = io there is only one set of proper spacings
d1 = d2 = i = io .

4.4 Complex Beam Parameter - A BCD Law

In the foregoing we have used two parameters to characterize a
Gaussian beam in a given beam cross section: the spot size or beam
radius w, and the radius of phase front curvature R. We define now a
more abstract complex beam parameter q

(72)

The propagation and transformation laws for this beam parameter are
particularly simple and allow one to trace Gaussian beams through
more complicated optical structures. The old parameters Rand w can,
of course, be recovered from the real and imaginary parts of llq. Note
that we can regard the circle diagram of Collinsll as plotted in the com-
plex plane of the variable jlq, and the circle diagram of Li12 as plotted
in the complex plane of jq*.

In terms of the complex beam parameter the laws of propagation
(50) and (51) have the simple and compact form t

q=qo+z

as one easily verifies by inserting (50) and (51) into (72). Here

qo = j(lIWo2/X)

(73)

(74)

is the complex beam parameter at the beam waist. Because of the
linearity of (73) the parameters ql and q2 of two arbitrary beam cross
sections are related by

(75)

where d is the distance between the two planes of interest measured
positive in the direction of the optic axis.

The beam parameters ql and q2 to the left and to the right of a lens
are related by

(76)

which simultaneously states the transformation of the phase fronts as
in (1) or (2), and the fact that the beam radii (widths) are the same
on both sides of the lens [compare (1)].

t Similar propagation laws for optical modes have been used independently by
D. A. Kleinman, A. Ashkin, and G. D. Boyd in an analysis of second-harmonic
generation in crystals and by G. A. Deschamps and P. E. Mast in their recent
paper in Proc. Symp. Quasi-Optics, Polytechnic lnst. Brooklyn, 1964, p. 379.
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The imaging law (6) applied to Gaussian beams takes the form

~ = dl
2

• !. + ! dl (77)
q2 d22 ql f d2

if written in terms of the complex parameters ql and q2 of the beam in
the object or image planes, respectively. Comparing with (7) and (8)
one can also write this relation between the parameters of the object
and the image as

1 + _1_ = ! (78)
dl + ql d2 - q2 f .

Using (75) and (76) one can easily determine how an incoming beam
with the parameter ql at a distance d: from a lens is transformed. The
parameter q2 of the transformed beam at a distance d2 from the lens is
obtained as

(79)

To establish a link to the transformation laws for the real parameters
developed before, we multiply both sides of (79) with the denominator
of the right side. Then we postulate that we have beam waists at dl

and d2by putting ql = j-TTWl2/X and q2 = j-TTW22/X. If we compare the real
parts of the resulting expression, we obtain relation (68), and comparing
the imaginary parts we find (66).

Let us now regard ql and q2 as the beam parameters in the input and
output planes of an optical system described by its ray (ABCD) matrix
as in Section III. This system is also described by its focal length and
its principal planes as calculated from (16), (17), and (18); To relate
ql and q2 we use (79) and put d1 = hc , and d2 = ~. Comparing with
(19), (20), (21), and (22) we see that

Aql + B
q2 = Cql + D (80)

which we shall call the ABCD law. The q parameters of the input and
the output are related by this bilinear transformation. The ABCD
law says that the constants of this transformation are equal to the
elements of the ray matrix. The ray matrices of several optical struc-
tures are given in Section III, and we shall use the ABCD law to study
the passage of Gaussian beams through some of these structures.

There appears to be a very close connection between Gaussian light
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beams and the spherical waves of geometrical optics. In fact, all the
important laws of this chapter are formally the same for a spherical wave
with a radius of curvature q. One is therefore tempted to regard a Gaus-
sian beam as a spherical wave with a complex radius of curvature. For
the limit of infinitely small wavelengths the curvature radius becomes
real and one has a spherical wave of geometrical optics.

The ABCD law allows also a kind of "black box" approach to the
study of optical modes. One can, for example, inquire about the mode
parameters of a sequence of equal black boxes, i.e., optical structures
characterized by their ray matrix elements A, B, C, and D. For a mode
the beam parameter at the output of a black box is equal to the param-
eter at the input (ql = q2 = q). From (80) follows a quadratic equation
for the mode parameter q

cl + (D - A)q - B = O.

The solution of this equation can be written as

(81)

(82)

from which one can obtain the beam radius or spot size of the mode
and the radius of curvature of its phase front.

4.5 Beam Tronsformaiioi: by a Telescope

In this chapter we shall study the passage of a Gaussian beam through
a telescope consisting of two lenses of focal Iength jr andf2 , respectively,
spaced at a distance d = fl + f2 - lid. The "misadjustment" lid is
assumed small. The focal length and the location of the principal planes
of the telescope are given in (27), (28), and (29). We consider an in-
coming beam with a beam radius WI at its waist, and the waist spaced
at a distance SI from the first lens as shown in Fig. 11. We want to de-
termine the location S2 of the waist of the outgoing beam and its beam
radius W2.

The distances of the waists to the corresponding principal planes are

(83)

(84)

From this we find with (24) and (27)

~ _ 1 = .t! + lid (~ - 1).
f f2 f2fl

Inserting this expression together with (27) in (64) we get for the beam



waist Wz

OPTICAL MODES

Fig. 11 - Gaussian beam passing through a telescope.
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(85)

(86)

W2 = WI ~ [1 + ~~ (1 - j~)J
which is correct to first order in Sd, We see that the ratio of the beam
waists is more or less equal to the ratio of the focal lengths of the lenses.
There is only a slight dependence on the position of the input beam waist
for i1d ~ O.

To determine the location of the output beam waist we use (84)
and the corresponding expression for (dz/f) - 1 to rearrange (68) as

- ~~2 [ (h - 1)(~- 1)
+ 11~2 (1r W~2)].

Inserting (85) and expanding to first order in i1d this becomes

81 - II + 82 - /2 = i1d [( _ 1)2 _ (1rWI2)2J
(87)112 122 114 81 1 A •

For a well-adjusted telescope we have i1d = 0, and the distances
between the beam waists and the focal planes of the corresponding
lenses (i.e., 81 - IIand 82 - iz) scale like the squares of the focal lengths
of the two lenses. The signs in (87) indicate that for an input waist
which lies to the left of the focal plane of the input lens one has an out-
put beam waist to the left of the focal plane of the output lens, and
conversely for an input waist to the right of the input focal plane.
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4.6 Beam Transformation by a Sequence of Lenses 

Consider now a sequence of lenses of equal focal length / spaced at a 
distance d as shown in Fig. 6. Immediately to the right of each lens an 
optical mode of this structure has a phase front with a radius of curva-
ture of —2/ and a beam radius Wm given''*'̂ ° by 

λ 1 . /TT Τ sin θ 

where θ is defined in (34). To the right of each lens the complex beam 
parameter (72) of a mode is therefore 

1 = - 1 J?ÎΞ_^ (89) 
qm 2f ·' d 

Assume that a Gaussian beam is injected into the lens sequence, and 
call its complex beam parameter in the input plane q i . If gi = g„ , 
then we have launched a mode of the system, and the parameter of the 
beam to the right of every lens is qm • For qi ^ qm we use the ABCD law 
(80) to compute the beam parameter q2 to the right of the nth lens. The 
elements of the ray matrix of η sections of the lens sequence are given 
in (33), and we use them to apply the ABCD law. We have 

[sin ηθ — sin (n — l)ö]ci + dsinnS , ^ 
qi = — J . (90) 

- J sin 710- gi + ^1 — jj sin ηθ — sin (η — 1)0 

From (34) it follows that 

sin ηθ — sin (n — 1)0 = (d/2/) sin ηθ + sin 0 cos ηθ (91) 

which can be used together with (89) to rewrite (90) as 

1 1 sm θ-β'"^ 

8ΐιιθ·β-ί"0 + d(- - —)smn0 \3i qmJ 
(92) 

After some further rearrangmg this can be written in the form 
1 

1 1 1 , 1 
32 qm qm f Lffl ffm Qm fj 

1 _ 1 2_ 1 exp ( - 2jne). (93) 

For the case where the q parameter of the injected beam does not 
differ too much from the parameter qm of a mode we can put 

Δ = (1/Si) - (l/qm) (94) 
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(96)

(97)

and assume that a is small. Developing (92) in powers of a we obtain

!.. _ .!.. = a.e2j n8 _ ja2 1rWm
2

(e2j n8 _ e4j n8 ) + 0(a3 ) . (95)
q2 qm 2A

If we neglect all but the first-order term in (95) and compare the real
and imaginary parts, we arrive at approximate formulae* for the output
parameters R2 and W2 :

1 1 (1 1) A ( 1 1 ) .-+-= -+- cos2nO+- --- sm2nOR2 2/ R 1 2f 'II" Wl2 wm2 '

1 1 '11"(1 1). .(1 1)- - - = - - - + - sm 2nO + - - - cos 2 nO.
W2 2 wm2 A R1 2/ Wl2 wm2

Comparing these expressions with (33) we see that the beam radius
W2 varies in z direction with a period that is half the period with which
a ray displacement varies. This fact has already been seen experimen-
tally,' and has also been noted for other optical structures,"

The formulae (96) are valid for cases where the parameters WI and
R1 of the input beam do not differ much from the parameters of the mode
of the lens sequence (i.e. for small a). For cases where this condition is
not fulfilled we have to go back to (90). Using (72) we re-express the
q parameters in terms of WI , R1 , W2 , and R2 and compare the imaginary
parts of 1/q2 as given by (90). After some algebra, where (91) is used
to make simplifications, we obtain

::: =~ [1 +:~4 +(7r~m)2 (~l +;/)]
l[ w

4 (1rW 2)2(1 1)2J+_ 1-~- _m_ -+- cos2n8
2 Wl4 A R1 2/

+ ('II"~m) (kl + ;j) sin 2n 8.

In this exact expression for W2 we find the same periodicity in z direction
as in (96). As n is varied W2 goes through maximum values W m"" and
minimum values Wmin. It is easy to show from (97) that

2
Wmax Wmin = W m •

Note that W max and Wmin are the extrema of the envelope curve obtained
for continuously variable n. The extremal values of W2 actually occur at
a lens only if the corresponding n is an integer.

* In a recent publication by J. Hirano and Y. Fukatsu in Proc, IEEE, 51, Nov.,
1964, p. 1284, similar expressions were derived by means of a perturbation tech-
nique in which the real beam parameters were used directly.
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An exact expression for R2 is obtained by comparing the real parts of
l/q2 in (90) in a similar way.

4.7 Beam Transformation by a Lenslike Medium

The passage of Gaussian beams through a lenslike medium as de-
scribed by (42) has been discussed by several investigators.19.28.29.30,31
We assume here for simplicity that no = 1, or a refractive index given by

(98)

(100)

It is easy to ShOWI9.28,29.30,31 that for a Gaussian beam that is injected
with a plane wave front and a beam radius Wo given by

wo2 = Xb/21r (99)

the wave front remains plane, and the beam radius remains constant
as the wave propagates. These light beams are called the modes of the
lenslike medium. H the beam is injected with a beam radius WI ¢ Wo , the
wave front and the beam radius will change as a function of z: This
problem has been treated by Tien et aI.23with the help of a differential
equation, and by Marcatili" who expanded the field distribution of the
input beam in terms of the modes of the lenslike medium. We will show
here that one can get the desired results in a rather simple fashion by
employing the ABeD law (80).

The elements of the ray matrix of a medium section of length z are
given in (44). Using these together with (80) one computes for a beam
with the complex parameter ql in the input plane a beam parameter

2 z + b . 2zqlCOS - -sm-b 2 b

2'2z + 2z
- q l 1i sm b cos b

in the output plane a distance z away from the input. Assuming an
input beam with a plane wave front and a beam radius WI we have

Inserting this and (99) in (100) we obtain
2

. 2 z + .Wo 2z
_ ~ sm b J~cos b

1rWo2 Z • wo2 • Zcos 2- - J - sin 2-b Wl2 b

(101)

(102)
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If we compare the imaginary parts in this expression we get

( 4)2 2 2Z WO.2Z
W2 = WI cos 2- +- Sill 2-b Wl4 b

(103)

which agrees with the results of Refs. 28 and 29. A comparison of the
real parts yields an expression for the curvature of the wave front.

V. RESONATORS WITH INTERNAL OPTICAl, ELEMENTS

6.1 The Basic Resonator Parameters

A resonator consisting of two spherical mirrors spaced at a distance
d is shown in Fig. 12. R1 and R2 are the radii of curvature of the two
mirrors, measured positive as shown in the figure. The mirror diameters
or widths are 2al and 2a2, respectively. The three basic parameters of
such a resonator arel O,32 ,33

N = ala2
"Ad' (104)

(106)

(105)G1 = al (1 - ~) ,
a2 R1

G2 = a2 (1 - !£) .
al &

Within the Fresnel diffraction theory of optical resonators these three

~-

~~~

-----R,~~

~--

T-
I
I
I
I2a,
I
I
I
I
I --~-R2~

I -- I II ~~ I
IL 1-1

~------------d------------~

Fig. 12 - Empty spherical mirror resonator.
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parameters determine completely the diffraction losses, the resonant
frequencies, and the mode patterns of the resonator."

In the following we will show that resonators in which lenses 01' similar
optical structures are inserted between the resonator mirrors are equiva-
lent to an empty resonator of the type shown in Fig. 12. By equivalent
resonators we mean here resonators with the same diffraction losses,
the same mode patterns except for a scaling factor, and the same resonant
conditions. To specify an empty resonator equivalent to a resonator
with internal optical elements we will compute its parameters N, G1 ,

and G2 •

5.2 Resonators with an Internal Lens

A resonator with an internal lens is shown in Fig. 13. A lens of focal
length f is spaced a distance d1 away from the left mirror and rh away
from the right mirror. As before we call the radii of curvature of the
two mirrors R1 and R2, and their diameters 2al and 2a2 as shown. The
internal lens is assumed to be so large that no additional aperture
diffraction effects are introduced.

Suppose now that we know the modes of the resonator. We can apply
the imaging rules of Section II and choose the mirror surface of the right
mirror, say, as reference surface. The image of the mode pattern on this
mirror appears a distance

-,-
a,

-,-
a,

Fig. 13 - Resonator with internal lens and equivalent empty resonator.
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(108)

d2' =~ (107)
d2 - f

away from the lens as shown in the figure. The field of the wave reflected
from the mirror is zero outside the mirror aperture a2 . The field of the
corresponding image is therefore zero outside an aperture a2' given by
the magnification

a2 = ,_ d2 = 1 _ d2

~' d2' f .
The image is a scaled reproduction of the mode pattern on the mirror
which is exact in amplitude and phase if a spherical reference surface
is chosen. The correct curvature of this surface is found in accordance
with (6) and (8) by imaging the center of curvature of the mirror on the
right.

Consider now a mirror of diameter 2~' placed at the location of the
image a distance

(109)

away from the original left mirror as shown in the lower part of Fig. 13.
The mirror curvature is chosen to be the same as the curvature of the
reference surface for the image. This mirror may be called _~ image -
mirror of the original mirror on the right. Apart from a phase difference
of 21e (d2 + d2' ) it reflects a wave coming in from the left in exactly the
same way as the original mirror combined with the-Tens. The incoming
wave produces the same (magnified) complex amplitude distribution
or field pattern on the image mirror as on the original mirror on the
right. The outgoing wave reflected by the image mirror has a field pattern
at d2' that is identical to the field pattern at d2' of the outgoing wave
reflected by the combination of the original mirror and the lens. The
field patterns of the two outgoing waves are thus also identical in any
other beam cross section, and in particular across the left mirror. There-
fore the modes of the empty resonator formed by the image of the right
mirror and the original left mirror as shown in the figure are equivalent
to the original resonator with the internal lens. The mode patterns on
the left mirror are identical in both cases, and the mode patterns of the
corresponding mirrors on the right are scales of each other. The diffrac-
tion lossesof the two systems are also the same, and there is only a small
difference in the corresponding resonant conditions due to the difference
in phase shift of Ie (d2 + d/) per transit.

The basic parameters of the equivalent empty resonator are easily
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obtained. According to (104) we have a Fresnel number of

N = alG.2'lAd

and with (105)

(110)

(111)

With (107), (108), and (109) these expressions can be written in terms
of the dimensions of the resonator with the internal lens. One obtains

(112)

and

(113)

By interchanging subscripts one gets

These three parameters determine the properties of the modes of the
internal lens resonator. In the above expression one notes the appearance
of the term

(115)

which one might call the effective distance between the mirrors. It is
modified by the presence of the lens.

In Refs. 4 and 32 approximate expressions are given for the resonant
condition and the beam radii (spot size) of the fundamental mode at
the mirrors of an empty resonator that is stable. Recall that for a stable
resonator there holds

(116)

We can apply these formulae to our equivalent resonator and obtain
by imaging the corresponding expressions for the resonant wavelength
A and the beam radii WI and W2 on the mirrors of our resonator with an
internal lens. Using the parameters discussed above we get
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(117)2(d1 + d2) _ + 1 ( + + 1) -1 - I(f7lGA - q :; m n cos V U'lU2

where q is the longitudinal mode number, and m and n are the transverse
mode numbers. The sign of the square root should be chosen equal to
the sign of GJ (or G2 ) . For the beam radii we get

and

Ado ( G G )-1WIW2 = - 1 - 1 2 ,
1r

(118)

(119)WI = ~ (G2)1.
W2 a2 G1

The image mirror discussed above can also be obtained from the
concept of a "thick mirror." A thick mirror" is a combination of a
spherical mirror and a lens. The optical characteristics of this combina-
tion are represented by a combined focal length and a principal plane."
A mirror of this focal length located at the principal plane is equivalent
to the thick mirror combination. This equivalent mirror is the same as
our image mirror.

The equivalence of the empty resonator and the internal lens resonator
can also be shown by using the Fresnel diffraction formuhr in-the.manner
of Appendix A. One obtains integral equations for the modes of an
internal lens resonator. After performing the integration over the lens
plane which involves infinite Fresnel integrals, the equivalence to the
empty resonator is easily seen.

For cases where the effective distance do as given by (115) is very
small, ray angles of interest become rather large and the theory of
Fresnel diffraction is no longer expected to apply. We have to exclude
these cases from our considerations.

Our discussion includes internal lens resonators with Bat mirrors as
shown in Fig. 14. The basic parameters of this resonator type can be
obtained from (112), (113), and (114) by putting R1 = R2 = 00. Burch
and Toraldo di Francia" have discussed the confocal system of this
resonator family where G1 = G2 = O. The transmission line dual of an
internal lens resonator with Bat mirrors is also shown in Fig. 14. It is a
sequence of lenses and irises spaced as shown. In this sequence the lenses
are large and the irises inserted between them control the modes of the
system. For a symmetric system of this kind where d1 = d2 = d and
al = a2 = a the above expressions simplify, and we have

G1 = G2 = 1 - (d/f) , (120)
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Fig. 14- Internal lens resonator with Hat mirrors and its transmission line
dual, a sequence of lenses with irises placed between the lenses.

and a Fresnel number of

(121)

5.3 Resonators with an Iniemol Optical System

As discussed before, the imaging rules of Section II apply not only
to thin lenses but to any optical system that can be characterized by a
focal' length and by principal planes. The expressions derived above for
internal lens resonators can therefore be applied also to spherical mirror
resonators with an internal optical system. All one has to do is to inter-
pret f as the focal length of the system and put

(122)

where hI and 1'-2 measure the distances between the two principal planes
and the corresponding mirrors.

We can also characterize the internal optical system by its ABeD
or ray matrix as in (9). Inserting (122) in (112), (113), and (114) we
compare the resulting expressions with (19) through (22). We note
immediately that the three basic resonator parameters can be written
in terms of the elements of the ray matrix in the form

N = ala2
>J3' (123)
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(124)

(125)

5.4 Internal Lenslike Medium - Guiding Medium with Apertures

In this section we consider a spherical mirror resonator with a lenslike
medium inserted between the resonator mirrors. The optical properties
of a lenslike medium have been discussed in Sections 3.4 and 4.7. The
refractive index of this medium changes with the square of the distance
from the optic axis and is described by (98) if we assume no = 1. The
degree of this index variation is measured by the parameter b. As shown
in Fig. 15, we assume that the medium fills the space between the
resonator mirrors which are spaced at a distance l. The mirror diameters
are 2al and 2CZ2 , respectively, and the corresponding radii of curvature
are R I and R2 •

The three basic resonator parameters which describe the modal prop-
erties of this resonator with an internal lenslike medium are easily
computed by using the results obtained before. The elements of the ray
matrix for a medium section of length l are given in (44). Inserting
these in (123), (124), and (125) we obtain for the Fresnel number of
the system

and for the G parameters

(126)

R, I
~--h--~-

I
~-- h--~

Fig. 15 - Resonator with an internal lenslike medium.
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al ( lb. l)G1 = - cos 2 - - - SID 2 -
a2 b 2R1 b'

a2 ( lb. l)G2 = - cos 2 - - - SID 2 - .al b 2R 2 b

A special case of the above system is shown in Fig. 16, where the
mirrors are flat, i.e., R1 = R2 = 00. The transmission line dual of this
resonator is also shown in the figure. It is the interesting case of a lenslike
medium or a gas lens with periodically spaced irises as shown. For irises
of equal diameter (al = a2 = a) the above expressions simplify, and
we obtain for the Fresnel number of the system

2a2

N = l'
Ab sin 2 lj

(129)

(130)

and

l
G1 = G2 = cos2lj'

This system is confocal for l = (r/4)b. When the value of 2l/b ap-
proaehea.a multiple of r, N gets very large and we have a case where the
effective distance between the mirrors is very small [compare (115)].
As discussed before, the theory of Fresnel diffraction is no longer expected
to apply under these circumstances,

Fig. 16 - Resonator with flat mirrors and an internal lenslike medium, and
its transmission line dual, a gas lens with periodically spaced irises.
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(132)

(131)

In high-gain lasers the parameter lib can become rather large for
certain frequencies." For frequencies where the laser medium is focusing
we have b2 > 0, while for frequencies where the medium is defocusing
b2 < 0 and b is imaginary. It is interesting to study the stability" of a
resonator with an internal lenslike medium allowing for positive and
negative values of e. For simplicity we assume that the radii of curvature
of the two resonator mirrors are equal and put R1 = R2 = 21. With
(127) and (128) we obtain

2 ( lb. l)2G1G2 = G = cos 2 - - - sm 2 -b 4f b

and write the stability condition (116) in the form

-1 ~ G ~ 1.

One can plot a stability diagram in which each resonator with given
parameters l, I, and b is represented by a point. Such a diagram is shown
in Fig. 17, where llj is plotted as ordinate and lib and jllb are plotted
as abscissae. Resonators with b2 > 0 are represented by points to the

Fig. 17 - Stability diagram for a resonator with an internallenslike medium.
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(133)P integer,

right of the llj axis, and resonators with b2 < 0 are represented by points
to the left. Points in the shaded regions correspond to unstable reso-
nators, and resonators represented by points in the unshaded regions
are stable. The boundaries between the stable and unstable regions
follow from (131) and (132). They are described by the equations

l 1r

b = P 2'

(135)

(134)l l l
- = 4 - cot-j b b'

l l l
f = -4 btan s

For b2 < 0, where b is imaginary, the trigonometric functions of (134)
and (135) become hyperbolic functions as in (48) and (49). For b2 > 0
one gets periodically stable and unstable regions as lib is increased.

We have not discussed in detail cases where the lenslike medium
occupies only a part of the space between the resonator mirrors. How-
ever, one can compute easily the basic parameters for resonators of this
kind with the help of the matrix elements of (44), and the formulae
(123), (124), and (125).

5.5 Resonators with One Very Large Mirror

Let us return to the case of an empty resonator. In some practical
arrangements the diameter of one of the two mirrors, say 2a2, is so
large that diffraction by its aperture can be neglected. The resonator
modes are then more or less controlled by the aperture al of the other
mirror. This statement is not true for resonators of the degenerate
confocal type where the diffraction losses at each mirror are equal" for
any aperture ratio a21al . We exclude resonators of this type from our
present discussion.

The properties of the resonator modes are generally determined by
the three basic parameters given in (104), (105), and (106). But for
an infinitely large a2 the Fresnel number N and the parameter G2 be-
come infinitely large, and G1 = O. The resonator parameters are now
quite meaningless. It is, however, possible to construct an equivalent
resonator with parameters of finite value, as we will show below.

Consider Fig. 18. An empty resonator with one mirror of large diameter
is shown schematically at the top. Below it we have drawn its transmis-
sion line dual. It consists of a sequence of lenses where an apertured lens
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Fig. 18 - Empty resonator with one very large mirror, its transmission line
dual, and its equivalent internal lens resonator.

follows an unapertured lens of large diameter. But this transmission
line is also the dual of the resonator shown at the bottom of the figure.
This is a resonator formed by apertured mirrors of finite diameter 2al
with an internal lens of focal length f = R2/2. The lens is unapertured.
Internal lens resonators of this type have been considered before. We
can compute the Fresnel number of this system from (112) and obtain

N = 2Xd (1 - ~J . (136)

Equations (113) and (114) are used to calculate the G parameters with
the result
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These parameters determine the properties of the modes of the internal
lens resonator shown in Fig. 18. The mode patterns at the apertured
mirrors of this resonator are, of course, equal to the mode pattern at the
apertured mirror of the empty resonator. The one-trip diffraction loss
of a mode of the internal lens resonator is equal to the return-trip diffrac-
tion loss of an empty resonator mode, as there are no diffraction losses
at the infinitely large mirror.

For the special case where the large mirror is :fiat (R2 = 00) the above
discussed equivalences are well known. They follow from symmetry
considerations.
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APPENDIX A

Imaging for Freenel Diffraction

The purpose of this appendix is to show how the imaging relation (6)
of the main text is derived within the formalism of scalar Fresnel diffrac-
tion theory. Assume a light wave traveling in z direction and refer to
Fig. 19. Call the object field E1(Xl, Yl) and the image field E2(X2,Y2).
The distances d1 and d2 between the lens and the object and image
planes, respectively, are related by

(138)
OBJECT PLANE IMAGE PLANE
~ ~ ~r------- d, -------+------d,-------l

L--------p,-------- -------P2'------_~

I
f

Eo(X o; Yo) Eo (XoIYo)

Fig. 19- Dimensions of interest for Fresnel diffraction theory of imaging.
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The field immediately to the left of the lens is denoted Eo(xo, Yo) and
the field to the right of the lens is Eo(xo, yo). According to (1) of the
main text we have for a large, ideal lens

Eo = Eo exp ( -jk xo
2t Yo) (139)

where k = 27r/X is the propagation constant in the medium. With the
help of the Fresnel diffraction formula the fields Eo and E2 can be ex-
pressed as

(140)

and

jk 1+'" -E2 = 2 d dxodyoEo exp (-jkp2)
7r 2 -'"

(14l)

where

and

(144)

.exp [ - jk (PI + P2 + ;~)]

The integrationin (140) is performed over the aperture area Al of the
object field, and the integration limits in (141) are extended to infinity
with the assumption that the lens is so large that no additional aperture
diffraction effects are introduced.

Combining (139), (140), and (141) we obtain by interchanging the
order of integration

k
2 f 1+'"E2 = - 4 2d d dxIdylEI dxodyo

7r I 2 Al -'"

where
(145)

Now the expressions (142) and (143) for PI and P2 are inserted. One
finds that in the exponential the terms proportional to ro2 cancel because
of (138). The integration with respect to Xo and yocan be performed by
noting that
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1+ 00 [ • (:l:l X2)J ([Xl X2J)
-00 d:l:o exp Jk:l:o a; + ih. = 211"15 k 'ih + d:i

where 15 is the Dirac delta function." With this (144) becomes

E2= - d~:2 exp [ - jk (dl + d2+ ;~)]

.£J dxldylE I exp ( -jk i)

(146)

(147)

This simplifies immediately with the help of the formalism of the delta
function" to

Multiplying (138) by dl/d2 one finds that

!. (1 +~) =! ~d2 d2 i d«

which is used to write (148) in the form of (6) of the main text.

APPENDIX B

(149)

Pl'incip~e of Equal Optical Path Leading to Additional Phase Shift in
Image Plane

The process of imaging the field distribution in the object plane into
the image plane can be understood in terms of the rays leaving each
point (say PI) in the object plane at various angles as shown in Fig. 20.
All rays originating from PI are collected at a corresponding point P 2

in the image plane. A form of the principle of equal optical path35 says
that the optical path lengths from PI to P2 are the same for all rays
regardless of initial slope.

To obtain an image which is an exact reproduction of the original
amplitude and phase distribution it would be necessary for the various
optical paths which connect corresponding points, say PI and P 2 or
QI and Q2, to be equally long for all points regardless of their distance
from the optic axis. That these path lengths are not the same for all



OBJECT PI. ...NE

I
I

P,

OPTICAL MODES

IM...GE PI. ...NE

W"'VE FRONT \ I
CORRESPONDING #:, I

TO INCIDENT-~ \
PI....NE W"'VE \

\
_- Q2------

493

Fig. 20 - Rays emerging from a point of the object collected at the image.

points but increase with increasing distance between the imaged point
and the optic axis can be seen from the simple example of an ideal plane
wave coming in from the left. This case furnishes an expression for the
path length difference as a function of the distance between the imaged
point and the axis. As the path length is independent of the field distribu-
tion imaged, this expression is valid for the general case. To derive it
we recall that an ideal plane wave is transformed by an ideal lens into
an ideal spherical wave with the focal point of the lens as its center.
The rays connecting points which lie on corresponding wave fronts are
equally long for all points on the wave front." Therefore all path lengths
measured from the object plane to the spherical wave front which touches
the image plane are equal. Paraxial rays (which are practically parallel
to the optic axis) need an additional length equal to rN2f to reach a
point (P2) in the image plane which is a distance r2 away from the axis.
This additional ray length accounts for the additional phase shift given
in (6) in the main text.
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