
COMPLEX QUANTITIES AND THEIR USE IN 
ELECTRICAL ENGINEERING. 

BY CHAS. PROTEUS STEINllETZ. 

1.-INTRODUCTION. 

In the following, I shall outline a method of calcula.ting alter
nate current phenomena, which, I believe, differs from former 
methods essentially in so far, as it allows us to represent the alter
nate current, the sine-function of time, by a C<>n1Jtant numerical 
quantity, and thereby eliminates the independent variable "time" 
alt:ogether from the calculation of alternate current phenomena. 

Herefrom results a considerable simplification of methods. 
Where before we had to deal with periodic functions of an in
dependent variable, time, we have now to add, subtract, etc., 
constant quantities-a matter of elementary algebra-while 
problems like the discussion of circuits containing distributed 
capacity, which before involved the integration of differential 
equations containing two independent variables: " time " and 
" distance," are now reduced to a differential equation with one 
independent variable only, " distance," which can easily be in
tegrated in its most general form. 

Even the restriction to sine-waves, incident to this method, is 
no limitation, since we can recom1truct in the usual way the com
plex harmonic wave from its component ,:,iine-waves; though al
most always the assumption of the alternate current as a true 
sine-wave is warranted by practical experience, and only und.er 
rather exceptional circumstances the higher harmonics become 
noticeable. 

In the graphical treatment of alternate current phenomena 
different representations have been used. It is a remarkable 
fact, however, that the &implest graphical representation of 
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periodic functions, the common, well-known polar ooordim,a,t.e,; 
with Ums as angk or ampUt'ttAU, and the inatan:/o,1UHJtUJ 'VfM/UM of 
the function as .,.adi;i, vectnrea, which has proved its usefulness 
through centuries in other branches of science, and which is 
known to every mechanical engineer from the Zenner diagram 
of valve motions of the steam engine, and should consequently 
be known to every electrical engineer also, it is remarkable that 
this polar diagram has been utterly neglected, and even where it 
has been used, it has been misunderstood, and the sine-wave rep
resented-instead of by one circle--by two circles, whereby 
the phase of the wave becomes indefinite, and hence the diagram 

FIG. 1. 

useless. In its place diagrams have been proposed, where re
volving lines represent the instantaneous values by their projec
tions upon a. fixed line, etc., which die.grams evidently are not 
able to give as plain and intelligible a conception of the varia
tion of instantaneous values, as a curve with the instantaneous 
values as radii, and the time as angle. It is easy to understand 
then, that graphical calculations of alternate current phenomena 
have found almost no entrance yet into the engineering practice. 

In graphical representations of alternate currents, we shall 
make use, therefore, of the Polar Coordinau SyBum, repre
senting the time by the angle 'P a.s amplitude, counting from an 
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initial radius o A chosen as zero time or s~rting point, in posi
tive direction or counter-clockwise,* and representing the time of 
one complete period by one complete revolution or 360° = 2 rr. 

The instantaneous values of the periodic function are repre
sented by the length of the radii vectores o B = r, correspond
ing to the different angles 'P or times t, and every periodic 
function is hereby represented by a closed curve (Fig. 1 ). At any 
time t, represented by angle or amplitude tp, the inste.nt&neous 
value of the periodic function is cut out on the movable radius 
by its intersection OB with the characteristic curve c of the func-

FIG. 9. 

ti.on, and is positive, if in the direction of the radius, negative, 
if in opposition. 

The 81/IUMD<W6 is represented by one circle (Fig. 2). 
The diameter o o of the circle, which represents the sine-wave, 

is called the intmunty of the sine-wave, and its amplitude, 
.A O B = w, is called the ph<ue of the sine-wave. 

The sine-wave is completely determined and characterized by 
inttmsity and phase. 

It is obvious, that the ph<ue is of interest only as difference of 
pluue, where several waves of different phases are under con
sideration. 

-Th.is direction of rotation has been chosen as positive, since it is the direc
t.ion of rotation of celestial bodies. 

• 
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Where only the vn,t,egra/, voJ,V61J of the sine-wave, and not it.s 
imt,anuJlfUJO'U,8 'VO},U61J are required, the characteristic circle c of 
the sine-wave can be dropped, and it.e diameter o o considered as 
the repreeentatation of the sine-wave in the polar-diagram, and 
in this case we can go a step further, and instead of using the 
maJ1Jilm1t1,m 'lJlU/U,8 of the wave as it.e representation, 1188 the l!Jfect--
• • -1 h" h . h . . maa:imum mlffll 
ive VUAi't.ee, w 1c m t e sme wave 18 = ,vi • 

Where, however, the characteristic circle is drawn with the 
ffl!ecfAlv6 volJue 88 diameter, the ill.8tantaneo118 values, when taken 
from the diagram, have to be enlarged by ,vi 

0 

Fie. 8. 

We see herefrom, that : . 
"In polar coordinateJJ, t/uJ airuHJJave UJ represen:t«l in -in

tensity and ph(J,IJe by a vector o o, and in coml;i,nVIUJ or du
solving ai.ne-waveB, they a1·6 t<> be comlnned or diaaolved ~ the 
paral.ulogram or polygon of aine-wa1.•es." 

For the purpose of calculation, the sine-wave is represented 
by two constant.e : 0, ai, intensity and phase. 

In this case the combination of sine-waves by the Law of 
Parallelogram, involves the use of trigonometric functions. 

The sine-wave can be represented also by its rectan.gu/,a,r co
ordin<uea, a and l> (Fig. 3), where : 
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a= Ocoetol 

b=Osintof 

Here a and bare the two rect,o;n,gul.,alr oomponen;ts of tM nne-
1oa/lJ6. 

This representation of the sine-waves by their rectangular 
component.a a, and bis very useful in 80 far as it avoids the use of 
trigonometric functions. To combine sine-waves, we have sim
ply t.o add or subtract their rectangular component.a. For 
instance, if a, and b are the rectangular component.a of one sine
wa ve, a,1 and b1 those of another, the resultant or combined sine-

• wave has the rectangular component.a a+ a1 and b + b1
• 

To distinguish the horizontal and the vertical components of 
sine-waves, 80 as not to mix them up in a calculation of any 
greater length, we may mark the ones, for instance, the vertical 
component.a, by a distinguishing index, as for instance, by the 
addition of the letter j, and may th118 represent the sine-wave by 
the expression: 

a+jb 

which means, that a is the horizontal, b the vertical component 
of the sine-wave, and both are combined t.o the resultant wave: 

which has the phase: 
0 = .Ya'+ ~2 

tan ai = ~a 

Analogous, a -j b means a sine-wave with a as horizontal, 
and - b as vertical component, etc. . 

For the :fi.rst,j is nothing but a distinguishing index without 
numerical meaning. 

A wave, differing in phase from the wave a,+ j b by 180°, or 
one-half period, is represented in polar coordinates by a vect.or 
of opposite direction, hence denoted by the algebraic expression : 
-a-j b. 

This means: 
" K ultipyilfUJ t°M algebrOAC e:rpr688ion a + j b of tM BVne

wa-ve by - 1, m.eanll reversi,'fU} t!UJ wave, or rotating it by 180° = 
one-half period. 

A wave of equal strength, but lagging 90° = one-quarter 
period behind a + j b, has the horizontal component - b, and 
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the vertical component a, hence .is represented algebraically by 
the symbol: 

ja-b. 
:Multiplying, however: a + j b by j, we get: 

Ja+,:l2b 
hence, if we define the-until now meaningless-symbol j so, as 
to say, that: 

l=-1 
hence: j (a + j b) = j a - b, 
we have: 

" N. mtipling th.e algebraic ~pr68awn a + j b of the R-ine-wat,e 
by j, 1TUJMl,8 rotatvng the wave by 90°, ur one-<J.'Ullll'fm' period, tluit 
i8, •reto;rdi,ng tM wave by one-<J.'Ut0trter period." 

In tbe same way : 
"Multiplying by - j, 'IManB adv01Ming the wave by mie

quarfm' period." 
J..,, = -1 means: 

j = t' - 1, that is: 
"j u the im,agi,nary unit, and the 8'ine-wave ia repr~ 'by a 
compk:J, imuJgi;n,ary quantity a + .i b." 

Herefrom we get the result : 
" In the polar diagratm of ti~, tM 8Vn6-'Wa'#Je u repr68(m'1ea 

i.n interutity a8 well O,JJ pluue by one compl,e.:r: quanti;f;g: 

a+ .i b, 
where a is tM lwmont,al, b the ver'flwal component of the W(//Vt, 
tM int.erunty u gvven by: 0 = t' a2 + '/J'I. 

a;n,d, the ph.atJe by: tan ii> = ! , 
a 

amd it iR: a = 0 cos ii> 
b = 0 sin,;; 

hence the wave: a + j b COin, oho be eap768Bed by: 

0 (cos ii> + j sin ii>)." 
Since we have seen that sine-waves are combined by adding 

their rectangular components, we have : 
"Sine-wave1J are combined by adding their comp~ alge'lnaw 

e;r_pr688'UJn.8.'' 
For instance, the sine-waves : 

a+Jb 
aud a1 +J "61 

• 
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combined give the wave : 

A + j B = (a + a1) + j (b + b1). 
As seen, the combination of sine-waves is reduced hereby to 

the elementary algebra of complex quantities. 
If O = o + j c1 is a sine-wave of alternate current, and r is 

the 1'88istance, the E. x. F. consumed by the resistance is in phase 
with the current, and equal to current times resistance, hence 
it is: 

r O = r o + j r c1. 
If L is the " coefficient of self-induction," or 8 = 2 1r N L 

the "inductive resistance" or "ohmic inductance," which in 
the following shall be called the " inductance," the E. K. F. pro
duced by the inductance (counter E. K. F. of self-induction) is 
equal to current times inductance, and lags 90° behind the cur
rent, hence it is represented by the algebraic expreesion: 

}80 
and the x. K. F. required to overcome the inductance is conse
quently: 

-j80 
that is, 90_0 ahead of the current (or, in the usual expression, the 
cm1,mt lags 90° behind the E. K. F. ). 

Hence, the E. K. F. required to overcome the .resistance r and 
the inductance 8 is : 

(r-j 8) 0 
that is: 

"I= r -j a i8 the e;,,pre11ai<m, of the imp«l,a;n,ce, in C<YI~ 

lJ'UO!nfA-eia, where r = rwt,a,n,ce, 8 = 2 1r 1( L = im,ductomee." 
Hence, if O = c + j c1 is the current, the E. K. F. required to 

overcome the impedance I= r -j a is: 
E = I O = (r -j a) (c + j o'), hence, since J"2 = - 1 : 

= (r o + 8 01
) + j (r c1 

- 8 c) 
or, if E = e + j et is the impressed E. K. F., and I= r -j R is 
the impedance, the current fl.owing through the circuit is : 

O
_E_e+Je1 

-y- '1'-J8 

or, multi11lying numerator and denominator by (r + j 11), to elim
inate the imaginary from the denominator : 

0 
(e + j e1

) (r + j 8) e r - e1 8 • e1 r + e a 
= r2+r = r+al +, r2+s2 

• 
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If K is the oapaci,ty of a. condenser, connected in series into 
a circuit of current O = c + j 01

, the :s. H.F. impressed upon 

the . terminals of the condenser is E = 2 rr t K' a.nd lags 90° 

behind the current, hence represented by : 

E • 0 "kO. 
=J21rNK=J ' 

1 
where k = 2 1r N Kean be called the "oapaci,f;y inuluctantt" 

or simply " inductam,ce" of the condenser. Capacity induc
tance is of opposite sign to magnetic inductance. 

That means: 
" ..(f r = r68U'taln.,oe, 
L = coejficient qf aelf-vn.d:uotwn, hence s = 2 1r NL = i11-

ductance, 

K = capaeif;y, lum.oe k = 2 1r ~ K = oapaei,ty imductanee, 

I= r -j (s - k) ·iR the impedance qf the cirouit, and Ohm's 
la·w is re-e-8uihlished : 

• 
E= I 0, 

E 
(J = 1' 

E 
I= '{J' 

in a more gmi,eral form., lwwei•er, gim,ng not rm,/;y tM i~, 
but alHo the p/1.a./Jt qf the tr1°;ne-wooe.B, by tAe.ir e;r.presRion. in e01n-

1__ • • " pu:w q1.Ulln:titus. 
In the following we shall outline the applfoation of complex 

r1uantities to· various problems of alternate and • polyphase cur
rents, and shall show that these complex quantities can be ope
rated upon like ordinary algebraic numbers, so that for the solu
tion of most of the problems of alternate and polyphase cur
rents, elementary algebra is sufficient. 

Al,gebraic operatwn8 with cornplex quantities: 

J"2=-1 

a + j b = c ( cos w + j sin ,;;) 

o = .y' a2 + b2, 

... b 
tan a, = a• 
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If a + j b = a1 + j b1, it must be: a = a1, b = b1
• 

Addition and au btraction : • 

(a + j b) ± (a' + j b1) = (a ± a1) + j (b ± b1). 
Multiplication: 

(a+ j b) (a1 + j b1

) = (a a1 

- b b1

) + j (a b1 + b a1

). 

Division: 
a+Jb (a+Jb)(a1 -jb1

) aa1 +bb1 .aFb-ab1 

at +J b' = au+ bu = au+ 1)12 +J au+ b12· 

Difference of phase between : 

a + j b = c ( cos ,;; + j sin w) and, 
a1 + j b' = c1 ( ooe w1 + j sin w1) : 

1>1 l> 
tan '"'l - ta ... iii - a a b1 

- b a1 

tan (,;;1 -cu)= 1 +:n,i.ita:; = b b• = aa• +bb'' 
1+-1 aa 

:Multiplication by - 1 means reversion, or rotation by 180° = 
one-half period. 

:Multiplication by j means rotation by 90°, or retardation by 
one-quarter period. 

Multiplication by - j means rotation by - 90°, or advance 
by one-quarter period. 

Multiplication by cos w + j sin ciJ means rotation by angle,;;. 

II. CIRCUITS CoN'fAI.NING RESISTANOE, lNDUOTANOE .A:ND 

CAPACITY. 

Having now established Ohm's law as the fundamental law of 
alternate currents, in its complex form : 

E= IO, 
where it represents not only the ~ty, but the phase of the 
electric quantities also, we can by simple application of Ohm's law 
-in the same way as in continuous current circuits, keeping in 
mind, however, that E, O, I are complex quantities--dissolve and 
calculate any alternate current circuit, or network of circuits, 
containing resistance, inductance, or capacity in any combination, 
without meeting with greater difficulties than are met with in 
continuous current circuits. Indeed, the continuous current dis
tribution appeal'S as a particular case of the general problem, 
characterized by the disappearance of all imaginary terms. 

As an instance, we shall apply this method to an indluetive 
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cilrO'tllit, alvwn,ted &g a ~, am,d fed tl,,rovgl,, ~ 
'11UJlim,,, upon which a constant alternate E. K. F. is impreseed, 88 

shown diagrammatically in Fig. 4. 
Let r = resistance, 

L = coefficient of self-induction, hence 
a = 2 1r N L = inductance, and : 
I = r -j a = impedance of consumer circuit.. 

Let r 1 = resistance of condenser lead.a, 
K = capacity, hence 

k = 2 1r ~ K = capacity inductance, e.nd: 

l 1 = r 1 + j k = impedance of condenser circuit. 
Let r 0 = resistance, 

L 0 = coefficient of self-induction, hence 
BO = 2 1r NL O = inductance, and: 

1.l'I&. 4:. 

10 = r-j Bo = impedance of the two main leads. 
Let Eu = E. K. F. impressed upon the circuit. 
We have then, if, E = E. x. F. at ends of main leads, or at 

tenninals of consumer and condenser circuit : 

C t . . . 0 E orren m consumer Circuit, = 7 

Current in condenser circuit, 01 = ~
1 

Hence, total current, 0 0 = 0 + 0 1 = E{-} + J
1

) 

E. x. F. consumed in main leads E1 = 0 0 I 0 = Ji ( J + ~) 
Hence, total E.M.F. E., =.E+.E'=E{ 1 +J+7.} 
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or, E. 11. F. at end of main leads, E = Io I+ E_i
0 
~ ~ + I Ii 

edb • ln.nAaE1 Eo Io (I+ Ii) 
E.11.F.consum 1mam ~ = 

10 
I+ Io 

11 
+ I Ii 

Cu • • • c E E 0 I 1 
rrent m consumer c1rcu1t, = I = Io I+ Io Ii + 1 Ii 

Cu t • d • ·t, n E E 0 I rren 1n con enser c1rcm v 1 = 7;_ =fol+ 
1011 

+ I Ii 

T tal t n _ C + n _ Eo (I+ I;.) 
o curren , Vo - v1 - Io I+ Io Ii + I Ii 

Substituting herein the values, 
Io= ro -j Bo 

I= r-j s 

Ii= r1 +i k 
and, 10 I+ 10 Ii + 1 Ii = a -j b, 
where, a = ro 'r + ro r1 + 'r 1'1 - lo lJ + llo } + 8 k 

b = 80 'I' + 80 r 1 + lJ r1 + lJ '1'0 - r 0 k - r k 

we get 

E = iJ t b' { [a(rr1+Bk)+b(r18-'l"k)]+j[b(rr1+ak)-a(r18-'l"k)]} 

0 = a2 ~ b2 { (r1 a - k b) + j (r1 b + le a) } 

01 = "2 t b, { (r a + B b) + j (r b - a a) } 

C.= at! lJ { [(r+ r1) a+ (s-k) b] + j[(r + r1)b-(1J-k)a)] } 

Ae an instance, we ma,- consider the case : 

r 0 = 1 ohm} 
,. = 10 ohm 
10 = 1-lOj 

hence 

E0 = 100 volts, 
r = 2 ohm} 
, = 10 ohm 
I-;- 2-lOj 

a= 302 
b =-30 

Substituting these values, we get, 

E0 = 100, 
E = 68.0 (.98 + .17 J), 
E 1 = 35.1 (.94 - .34J), 
0 = 6.6 (.10 + .99 .7), 

' 

r1 = 0 } 
k = 20 ohm 
ft= 20j 
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01 = 3.4 (.17 - .98 J), 
0 0 = 3.4 (.37 + .98 ;), 

where the complex quantities are represent.ed in the form c ( oos 
w + j sin w), so that the numerical value in front of the paren
thesis gives the effective intensity, the parenthesis gives the pluwJ 
of the alt.eme.te current or E. M. F. 

This means: Of the 100 volts impressed, 35.1 volt.a are con
sumed by the leads, and 68.0 volts left at the end of the line. 

The main current of 8.4 amperes divides into the consumer 
current of 6.6 amperes, and the condenser current of 3.4 
amperes. 

Increasing, however, the capacity K, that is reducing the capa<,._ 
ity inductance to k = 10, or I,.= 10 j, we get: 

Hence: 

a= 102, 
b = o. 

E0 = 100, 
ll = 100 (.98 + .20 .1), 
E 1 = 19.9 (.10 - .99 J), 
0 = 9.8j, 
01 = 10 (.20 - .98 J), 
0 0 = 1.98. 

Here, though the leads consume 19.9 volts, still the full 
potential of 100 volts is left at their end. 

1.98 amperes in the main line divide into two branch current.s, 
of 9.8 and of 10 amperes. We have here one of the frequent 
cases, where one alternat;e current divides into two branches, so 
that either branch current is larger than the undivided or tot.al 
current. 

Increasing the capacity still further to k = 5, or I,_ = ~ j, 
gives: 

Hence: 

a= 2, 
b = 15. 

E0 = 100, 
E = 387 (.32 - .95 j), 
E 1 = 318 (- .03 + j), 
0 = 33.0 (.99 + 18 J), 
01 = 96.3 (1 + .06 J). 
00 = 63.6 (1 + .03 .1), 

That means, in the leads self-induction consumes an E. K. F. of 
318 volts, and still 337 volts exist at the end of the line, giving 
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a rise of potential in the leads of 237 volts, due to the combined . 
effect of self-induction and cape.city. 

The main current of 63.6 amperes divides into the two branch 
currents of 33.0 and 96.3 amperes. . 

The current which passes over the line is far larger than the 
current which in the absence of capacity would he permitted hy 
the dead resistance of the line. While in this case 63.6 amperes 
flow over the line, a continuous E. M. F. of 100 volts would send 

only 1:;:. = 33.3 amperes over the line; and with an alter-
ro r 

nating E. M. v., but ~thout capacity the current would be limited 
to 4.95 amperes only, since in this case : 

o. = ( ) E0
• ( + )·= 3 loio . = 4.95 (.15+.99 j). 0 r0 + r -J 80 8 • - J 

Even by short-circuiting the line, we get only : 
E0 100 

Oo = . = 1 10 • = 10 (.1 + .99 i), 
ro-J8o - J 

or 10 amperes over the line. 
Hence we have in this arrangement of a condenser shunted to 

the inductive circuit and fed by inductive mains, the curious re
sult that a short-eircuit at the terminals of the consumer circuit 
reduces the line current to about one-sixth. 

As a further instance, we may consider the problem : 
"W/1.,,t iB the '11Ulndmwm power which can be transmitUJI}, over 

an inductive Une into a n<m-i1iductvve reBiBtance, as lights, ,,n,d 
lww f,ir can this o-utput be increa,sed by the UYe of 8liunted 
capacity." 

Let, 

hence, 

r O = resistance, 
80 = inductance, 

Io = r O -j 80 = impedance of the line. 

Let r = resistance of the consumer circuit, which is shunted 
by the capacity inductance k. 

r and k a.re to be determined as to make the power in the 
receiving circuit: 0 2 r, a maximum. 

In a contin11,0U8 current ci'rcuit the maximum output is 

reached, if r = r 0 , or E • 1\ where .E~ is the E. M. F. at the 

• • L' h h d f l l" <l C' Eo begmnmg, .1~ t e E. M. 1''. at t e en o t 1e me, an = 2 -ru, 
hence: 
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P Eo2 h . fB • = ~ t e maximum output at e c1ency 50 per cent. 
~ ro 

Hence, if Eo = 100, r0 = 1, it is: P = 2,500 watts. 

• 

Very much less is the maximum output of an tilternate cur
rent circuit. With an alt.ernate E. K. F. Ko, but without the use 
of a condenser, the impedance of the whole circuit is: 

1 = r 0 + r -j 10 , 

Ko Eo (ro + r-j Bo) 
hence the current: 0 = 1 = (ro + r'f + 1102 

_ E0 { ro + r • Bo l 
- ¥(r0 +r)2+ t10

2 ¥(r0 + r)2 + Bo2 + J ¥(ro + r)2 + 80
1 ' 

the E. K. F. at end of line: 

E- O _ Eo r ~ r0 + r • _ 80 } 

- r- t'(r0 +r)2+ao1 ( +'(r0 +r)2+a0
2 + J ¥(ro+r)2+ao' ' 

E 0
1 

r 

hence the power: P = E O = ( + )2 + 2• 
. ro 'r Bo 

The condition of maximum output is, 

/JP= 0 
Ir 

that is, 
0 = (r + r0'J + 80

1 - 2 r (r + r 0), or, 
r2 = ro

2 + Bo2, 
• r = .Y ro"' + ,0

2
, 

and the maximum output is, 
J!,,~I 

P=~---:=;=:;;;;=;:;::;;;:; 
• 2 Jro + t' r 0

2 + B0
2f 

.,. ti r0
2 + 80

2 

at the efficiency, + - + , ll 2 1'0 r r0 t' r0 ,- B0 

In the instance, E0 = 100, r0 = 1, B0 = 10 is: 
P = 453 watts, against 2,500 watts with continuous currents. 
If, however, we shunt the receiver circuit by capacity induc-

tance k, we have, 
Leads, I0 = r0 -j s0, 
Consumer circuit, J = r, a= 0, 
Condenser circuit, Ii = j k, r 1 = 0, 

hence, by substituting in the equations derived in the first part 
of this chapter, 
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a= r0 r + 80 k 

lJ = 80 r - k (r0 + r) 
and, 0 = a'E-t-kli' (-b +j a), 

or, substituting, 

and, 

hence, power, 

p = OE= Eo2
k'r = E:2 k'r 

a2 + li' (ro r + 80 k)2 + (10 r -. k r0 - k r)2 

The condition of the maximum output P is, 
IP IP • -= 0,-= 0 hr lk 

that is, 

'Jc' {ro2 + 1/) = 'r (ro1 + [Bo - k]') k 80 = ro2 + 80
2 

hence, 

substituting this in P, we get : 
E.2 

P - 0 ---, 
4 f"o 

the same condition as for continuous current. 
That means, 
"' No mattw Aow large tM self-inductwn of an alternating 

current circ-uit ill, l>g a proper use of ,hunted capacity the out
put of tM circuit can always be railled to the same aB f<»' con
ti1n1,0U1J et1,rren't8 ,· that is, the effect of self-induction upon the 
o-utput can entirely.and completely be annihilated." 
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III. THE ALTERNATE CURRENT TIU.N8FORM'.ER. 

A. General, Rem,arks. , 

In the coils of an alternate current transformer, E. JI. F. is in
duced by the alternations of the magnetism, which is produced 
by the combined magnetizing effect of primary and secondary 
current. 

If, X = maximum magnetism, 
N = frequency (complete cycles per second), 
1i = number of turns, 

the tdfective int<mlli,flg of the induced E. :w:. F. is, 

E = +'2 r. n N .JI. lo-' 
= 4.44 n N .M 10-a 

Hence, if E. 11. F., frequency and number of turns are given, 
or chosen, this formula gives the 'ffl,(J{Dimum magnetism, 

Eto• 
M= t"ir.nN 

To produce the magnetism JI. of the transformer, a JI. 11. F. 

Fis required, which is determined from the shape and the mag
netic characteristic of the iron, in the usual manner. 

At no load, or open secondary circmt, tbe 11. 11. F. Fis fur
nished by the "exciting current," improperly called the "leakage 
currentr' 

The energy of this current is the energy commmed by hystere
sis and eddy-currents in the iron ; its intensity represents t~e 
M, M. F. 

This current is not a aine-w01Ve, but is di8torted by hysteruu. 
It reaches it.s maximum t.ogether with the maximum of magnet
ism, but passes through zero long before the magnetism. 

This exciting current can be dissolved in two components: 
a sine-wO/Ve 000 of IKJtt,a,/, intensi,ty a11d Bq_'IJ,(U power witl,, tM Q:

cit,ing current,, and a wattless complez higher Jw,rmonic. 
Practically this separation is made by the electro-dyne.mometer. 

Connecting ammeter, voltmeter and wattmeter into the 
primary of an alternate current transformer, at open secondary 
circuit the instrument readings give the current 000 in intensity 
and phase, but suppre~s the higher harmonics. 

In Fig. 5 such a. wave is shown in rectangular coordinates. 
The sine-wave of magnetism is represented by the dotted curve 
X, the exciting current by the dist.orted curve c, which is sepa
rated int.o the sine-wave 000 and the higher harmonic C. 
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As seen, the higher harmonic is small, even in a closed circuit 
transformer, compared with the exciting current 000, and since 
000 itself is only a few per cent. of the whole primary current, 
the higher harmonic can for all practical purposes be suppressed. 

All tests made on transformers by electro-dynamometer 
methods suppress the higher harmonic anyway. 

Representing the exciting current by a sine-wave 000 of equal 
effective intensity and equal power with the distorted wave, the 
exciting current is advanced in phase age.inst the magnetism by 
an angle a, which may be called the "angk ef hysuretic ad
vance ef phase." This angle a is very small in all open circuit 
transformers, but may be as large as 40° to 50° in closed circuit 
transformers. 

- r -- • 1 r-1 -t
1 

_[_: ' -~_h I -i J- I : -·_, I :-j 
- C I I I r , - ,· 

I M 

C 

. l -L I I . ' 

L_ L I I L ~ -. I I ~ 

Li--~~! ! __.__.--~'~- --1~P I . I L ~ -~ I~ 
Fm. 5. 

We can now in the usual manner dissolve the sine-wave of ex
citing current 000 into its two rectangular components: 

h, the "hysuretic energy current" at right angles with the 
magnetism, hence in phase with the induced E. ~1. F., and, there
fore repruenting consumption qf energy ; and, 

g, the "magnetizing current" in phase with the magnetism, 
hence at right angles with the induced E. :M. F., and, therefore, 
wattkas. 

h = 000 sin a, and can be calculated from the loss of energy 
Ly hysteresis (and eddies), for it is: 

h = energy co.nsumed by hysteresi11
1 primary E. x. F, 
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And since 000 can be calculated from shape and characteristic 
of the iron, the angle of hysteretic advance of phase a is given 
by: 

sin a= h 
ooo· 

The magnetizing current g = 000 cos a does not consume 
energy ( except by resistance), and can be supplied by a condenser 
of suitable capacity shunted to the transformer. 

Since in the closed circuit transformer h, which cannot be 
supplied by a condenser, is not much smaller than 000, there is 
no advantage in using a condenser on a closed circuit transformer. 
In an open circuit transformer, however, or transformer· motor, 
000 is very much larger than h, and a condenser may be of ad
vantage in reducing the exciting current from 000 to h. 

B.-The Ofosed Circuit Lighting Tranif orm,er. 

The alternate current transformer with closed magnetic cir
cuit, when feeding into a non-inductive resistance, as lights, can 
be characterized by four constants : 

p = resistance loss as fraction of the total trans£ ormed power: 
resistance loes 

p = total power at full load. 

s = hysteretic loss as fraction of the total tre.m~formed power: 

_ bysteretic Joss t" f }l I ad 
e - total power a u O • 

a = E. M. F. of self-induction as fraction of total E. ». F.: 

8(.'}f ·induction 
t1 = total E. 11. F. at full load. 

r = magnetizing current as fraction of total current : 
magnetizin1t curreut 

r = -total current st full load. 

Denoting 
In primary: 

no 

ro 
Oo 
.E~ 
If 
00

1 

we have then: 

In secondary : 
and n1 

" 
" 
" 
" 
" 

= number of turns. 
= resistances. 
= currents. 
= induced E. M. F.'s . 

= E. ::.v. F.'s at terminals. 
= currents at full load. 
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8 
a= .M' where 

8 = magnetism leaking between primary and secondary . 
.M = magnetism surrounding both primary and secondary. 

h 
! = 001' 

g 
t" =7J;r 

Hence at the fraction IJ of full lead. 

{J = 01 

0/ 
choosing the induced E. x. F. as the real axis of coordinates, 
the magnetism as the imaginary axis of CO(!rdinates), we have, 

Primary exciting current, 000 = h + j g 
Primary current correspond- } 0 = n1 0

1 ing to secondary current Oi, f n0 

hence, t.otal primary current, 

and, ratio of current.s, 

Since, however, 

0. I,, + • 0. 1 + • ) n1 r, 1 ( + • ) ni OY c + j r oo = J g = o ( £ J ?' = - VJ ! J 't' = - 1 'J. , 
no no t. 

we have, substituted, 
Ratio of 0urr8'nfAJ. 

~o = 1l-i } 1 + _! + j !._ I. 
(; 1 no f ,4; /j ~ 

= ~ 1/(1 + ~ )2 + (; )2 

or,formediumandlargeload, 

=n. {1+!_+~} n0 {} 2 IP 

The E. :M. F. at the secondary terminals is, 

Ee = Ea - 01 1'( = E. { 1 - pi } 
2 . 

at the primary terminals, 

E E+ r,( • ) E, 11+ {} • iii = o l.lo 'ro -J Bo = o ) P 2 -J ti f 
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hence, since L" {Jo E ~o = - 1, 
n1 

Ratio of E. M. F.'s at termiwJJs. 

• i = :; { 1 + /Hl -j a{}} 

= no ~ 1 + /' {} + 62, {P_ l 
11,1 ' 2 { 

Difference of phase w between E. M. F. at primary terminals 
and primary currents. 

Since we have seen, that multiplying a complex quantity by 
( cos <u + j sin oj), means rotating its vector by angle ,ti, the 
difference of phase between primary current and E. K. F., ii i@, 

given by, 
C0 = a ( cos w + j sin cu) E 

or, ( . + • • •) (Jo a cos w J sm w = -· -· 
E 

where w is the difference of phase, and a a constant. 
Since in the present case the secondary current is in phssc 

with the secondary E. M. F., it is, b = !~ 
combining this with the foregoing, we have, 

a b ( cos w + j sin cu) = ~; 1~ 

hence, 

a b cos w = (-~!_)
2

(1 - p 8 + -=-) = (!!:!)2 

no ,., no 

a l, Rill UJ = ( :: r ( (1 lJ + ; ) 
and, 

J)ifference qf phnRf' betuwm, pr/mary cu.rren'. and E. M. F. at 
t Nm in al a. 

tan w = a lJ + !:_ 
' ,"} 
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hence: 
" With vMyi,ng load IJ, the dijf erence of phase w ur th~ lag, 

first decreaBea, reache, a minilmum at a IJ = !. or lJ = 1/ r , 
/'} a 

and af'terwarda increa868 again." 
At light loads it is mainly the magnetizing current r, at large 

load the self-induction a, which determine the lag. 

The formula, tan w = a {J + ,; is only an approximation, and 

ceases to hold for any light load, where we have to use the 
complete expression. 

alJ+~ 
I} 

tan ,,, = -----
1 -pi IJ. +; 

The 8jfteiency is, 1 - (P ij + ; ), and the • 

hence a minimum at, lJ = 1/ E , the point of maximum efficiency. 
f> 

Let, as an instance, be : 

no= 10 
ni 

hence, 

p = .02 
a= .06 

e = .03 
1" = .08 

at full load, {J. = 1, 

0. u; = .1 (1 + .oa + .0032) = .1033 

:: = 10 (1 + .02 + .0018) = 10.2~ 

tan ,,, = .06 + .08 = .14, or, ,u = ~0
, 

energy factor, cos "' == .tt9 
at 100% overload,{} = 2, 

-i: = .1 (1 + .015 + .0008) = .l0lti 

~ = 10 (1 + .04 + .0072) = 10.-t-7 
.E, 



BTJIINJIBTZ ON OOJIPLRX QUAN1T1'IB8. 

tan a, = .12 + .04 = .16, or, "' 9°, 
energy factor, cos "' = .99 

at one-half load : 
Oo . 

iJ = .5: 7Y = .1 (1 + .06 + .0128) = .1073. 
' li1 

Eo ( Er, = 10 1 + .01 + .0005) = 10.11. 

tantii=.03+.16=.19, or ii=ll 0 ,energy factor: cos ii=.98. 
at one-tenth load: 

Oo 
(ft = 1 (1 + .8 + .32) = .162. 

or more exactly, 

= .1 t'(l + .3)2 + .82 = .153. 

Eo Ki = 10 (1 + .002 + .0000) = 10.02 . 

• tan cii = .006 + .8 = .806. 
or more exactly, 

•006+·8 62 - s2° f .. S" = 1-.oo2+.s=· , or"'= , energy actor: cos a,=. a, 

at open secondary : 

tan w = :~: = 2.67, or w = 70°, energy factor: cos w = .34, 

the minimum leg takes place at : 

-/J = 1/·08 = 1.155, 
.06 

or 15i per cent. overload, and is: 
ta.nw=.0693+.o693=.1386,orw=7.9°,energy factor: cos,.i=.99, 
the efficiency is a maximum at: 

• A 1.03 
-/J = V ·- = 1.225 . 

. 02 
or 22i per cent. overload, and is : 

1-.0245- .0245 = .951,or 95.1 percent. 

0.-Genera~ Equati-011,8 of .Alternate Current Tramfqr,ner. 

The foregoing considerations will apply strictly only to the 
closed circuit transformer, where p, a2, e, r are so small that their 
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product.s a.nd higher powers may be neglected when feeding into 
a non-inductive resist.ance. 

The open circuit transformer, a.nd in general the transformer 
feedi~ into a.n inductive circuit-in which case a and r become 
of greatly increased importance-requires a. fuller consideration. 

Let: 
n0 and n1 = number of turns, 

" ...... r 0 r 1 = resISw.nce, 
80 = 21r N L 0 and 81 = 2 1r N L1 = self-inductances, hence: 
L, = r 0 -j 80 and 11 = r 1 -j _81 = impedances of the two 

transformer coils. 
The secondary terminals may be connected to a. circuit of re

sistance 1-l and inductance 8, hence of impedanr.e I= R- j 8. 
Then we have : 

Magnetism: j .M. 
Secondary induced E.M.F.: .E,_ = ¥2 ;r n1 .lV .M·10-·. 

- no Primary induced E. M. F.: E0 = t 2 Tr n0 1V M 10-• - .E,_. . n, 

Secondary current: C - .E,_ - - - E. 1 
- BL -(Jl+r1)-j(S+s1) 

or: 
where: 

E~ (S + s,l 
b = (It + r1)2 + (8 + a2)2 

Primary current correspondin{;? hereto: 
n 1 n 1 • n1 

0 = - 01 = - a + 'I - b. 
no no • ·no 

Primary exciting current: 

Ooo = h +} g, 
hence, total primary current: 

( n1 ) • (n1 ) l~ = 0 + l~0 = .,,
0 

a + h + J ;;_
0 

1, + fl 
or: 00 = o + j d, 
where: 

---
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E. M. F. consumed by primary impedance : 
0 0 I 0 = (c + j d) (r0 -j B0 ) 

= (c r0 + d B0) + j (d r0 - C a0) • 
. E.M.F. consumed by secondary impedance: 

0, I. = (a+ j b) (r1 -j a1) 

= ( a r 1 + b a1) + j (b r1 - a a1). 

hence, E. :M. F. at secondary terminals: 

E _ r;o ()" .l _ E j 1 (a 1·1 + b 81) + j (b r 1 - a a1) } 
C - fit - 1 l - 1 l - E; • 

E. :M. F. at primary terminals: . 

E = Eo + 00 I;, = E { l + (c r0 + d B0
) +j (d 1"0 

- C 80
) } • 

Substituting now in Oi, 0 0 , E~, Ethe values of a, b, c, d, we 
get: 

8econdarg c mTen t: 
Ki (R + r1) . E .. , (8 + a1) 

O,=(R + r 1)2 + (8 + s1) 2 + J (R + r,)2 + (8 + a.)"· 
Primary current : 

j ~Ei(R+r,) l j ~1Ei(8+B1) l 
O.,= ( (R~r1f+(8+a1) + h f + j ( (R~1·i)''+8 +a1)1+g) • 

E. M. F, at secondary te-rmin,(l.ls, 

E. _ E j 1 ri( R+r1)+s1(S +s,) } .E { Sr1-RB1 } 

' - 1 l - (R+r,)2+(8-f-s1l -J 1 (R-tr1)2+(8+a1)2 

E. M. F. at primary term,inal&, 

E -[nu Ei { i+( n1 )
2
ru(R + ·r1! + Bt,(S + &1)} +(r/i + 8<(1)7 

n1 1io (ll+r,)2+(8 +si)2 ...l 

+J• [n1 E { 1·0 (S + s,) - s" (R + r1) l + (r. g _ •- h)] 
nu 

1 
(R + r1)2 + (S + s1)2 f O 

vu 

the general equati<>n8 of the alternate current transform.er, 
repre8enti11g the currents and E. M. F.'B in intemnty and plia88. 

In general, the percent8.e,cre of resistance in inductance will be 
the same, or can without noticeab]e error be assumed the 88.Jlle 
in primary as in secondary circuit. 

That means, 
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substituting this, we get, 
E. M:. J'. at a6CO'llitary 'tlmnitiallJ, 

Ee = E1 [1 - A -j B] 
E. M:. F. at primary U'rminah, 

E = : Ei { 1 + A + j B} + (r0 h ·+ Bog) + j (r0 g - Bo h) 

where, 

.A = r1 (R + r1) + R1 (8 + 81) 
(R + r1)

2 + (8 + 81)
2 

B _ r1 8- 81 R 
- (R + r1t + (8+ s1)2 

Therefore we get for the closed circuit transformer, feeding 
into a non-inductive resistance, 8 = 0 . 

at full load. 

..El = no { 1 + 1, + o2 l 

.E; n, 2f 

Oo= n,{ 1+e+~ +°'O'} 
O. n 2 2 

IV. DISTRIBUTED CA.PA.CITY, INDUOTANOE, LEAKAGE A.ND 

RE818TANOE. 

In many cases, especially in long circuits, as lines conveying 
altern&t.e power currents at high potentials over long distances 
by overhead conductors or underground cables, or very feeble 
currents at extremely high frequency, as telephone currents, the 
consideration of the rwtance-which consumes E. M. F. in 
phase with the current-and of the vnductance -which con
sumes E. M:. F. in quadrature with the current-is not sufficient 
for the explanation of the phenomena. taking place in the line, 
but seven} other factors have to be taken into account. 

In long lines, especially at high potentials, the electro~tatic 
capa,cwg of the line is sufficient to consume noticeable currents. 
The charging current of the line-condenser is proportional to 
the difference of potential, and one-quarter period ahead of the 
E. x. F. Hence it will either increase or decrease the main cur
rent, according to the relative phase of the me.in current and 
the E. JI. F. 

In consequence hereof, the current will change in the line 
• from point to point, in intensity as well as phase, and the E. M. 
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F.'s consumed by resistance and inductance wi11, therefore, 
change also from point to point, being dependent upon the 
current. 

In considering the effect of capacity, it is not permissible, 
however, to neglect the inductance, since in overhead lines the 
inductance is usually at least of the same magnitude as the con
denser effect, and is not negligible in concentric cables even. 
In the latter, however, and to a lesser extent everywhere else, 
still other factors have to be considered. 

The line consumes not only currents in quadrature with the 
E. :M. F., but also curren-ta in phase with the E. M. F. 

Since no insulator has an infinite resistance, and at higher 
potentials not only leakage, but even direct eacape of ilectrit:ity 
into the air takes place by "silent discharge," we have to recog
nize the existence of a current approximately proportional, and 
in phase with the E. x. F. of the line. This current represents 
·consumption of energy, and is therefore analogous to the E. M. F. 

consumed by resistance, while the condenser current, and the R. 

x._F. of inductance are wattless. 
Furthermore, the alternate current passing over the line in

duces in all neighboring conductors secondary currents, which 
react upon the primary current and thereby introduce E. M. F.'s 
of mutual, inductarwe into the primary circuit. 

Mutual inductance is neither in phase nor in quadrature with 
the current, and can, therefore, be dissolved into an 1:nergy com
ponent of mutual inductance-which acts like an increase of re
sistance-in phase with the current, and a wattleas oomp<ment, in 
quadrature with the current-which decreases the self-inductance. 

The mutual inductAnce is by no means negligible, as for in
stance, its disturbing influence in telephone circuits shows. 

The alternate potential of the line induces by electro,tatic iln,.. 
jl.1.umce electric charges in neighboring conductors outside of the 
circuit, which retain corresponding opposite charges in the line 
wires. This electrostatic influence requires the expenditure of a 
current, proportional to the E. M. F., and consisting of an energy 
component, in phase with the E. M. F., and a wattless component, 
in quadrature thereto. 

The alternate electro-magnetic :field of force, set up by the 
line current, causes in some materials a Joss of energy by elec
flro-magnetic hystereRia, requiring the expenditure of an E. M. F. 

in phase with the current, which acts like an increase of resis-. 
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t&nce. The wattless component of this • E. x. F. disappears 
under "inductance," or rather we must say, that the hya'ttlremc 
E. x. F. is the eM'rfl'!I component of ind·uctance. This magnetic 
hysteresis loss may take place in the conductor proper, if iron 
wires are used, and will then be very serious at high frequencies, 
as with telephone current.a, or it may take place in the iron 
armor of the cable, etc. 

The effect of the "eddy owrren'ts" is referred to ~!ready under 
"mutual inductance," whose energy component it is. 

The alternating electrostatic field of force, expends energy in 
dielectric.a by what I called" diekctric hysteresis." In concen
tric cables, where the electrostatic gradient in the dielectric is 
comparatively large, the dielectric hysteresis may at high poten
tials even consume more energy than the ohmic resistance. 

The dielectric hysteresis appears in the circuit as consumption 
of a current, whose component in phase with the :E. K. F. is the 
" diekct,ric 8'Tl,6rgy cu,rrent "-the component in quadrature with 
the E. K. F. disappears in the "condenaer C'Urrent," whose energy 
component the dielectric energy current is. 

Besides this, there is the increase of ohmic resistance due to 
un8f_fU,(1,l diatriJ>,u,tion of C1trrent, which, however, is practically 
never large enough to be noticeable. 

Hence we have the phenomena.: 
Rwtance--consumes E. K. F. in phase with current. 
&l,f-vruluetance, and its energy component dectro-rnagn,etic 

hyaterw. 
Af'U,f/u,'ll ir,,d,ucta,nce, and its energy component eddg currenta. 
L6aka,ge--consumes current in phase with E. K. F. 

Capacity, and it.a energy component dulecflric hysterem. 
I"tftuenoe. 
This gives, as the most general case, per unit length of line; 

E. x. F.'s CO'fl,IJUm,ed in phase with the C'ltrrent 0, (llnd = r 0, 
representing consumption of energy and due to : 

Resilltance, and its increase by unequal current distribution. 
Energy component of ailf-ind!uction, or electro-magnetic 

lvgsterma. 
Energy component of tnlutual, inductance, or indvced 

C'urrents. 
E. x. F.'s ConlJ'UIITJ,6d in quadrature with the current 0, and = 

B 0, being wattless, and due to: 
Self JVTUJ,uct,ance. 



80 STllINMETZ ON OOJIPLBX QU.ANTITIEB. 

M ut'U,(J,i, vn,d/11,C"ta,nce. 
Ourr(NU(J oon8'lJ/fll,6Q, in pluue with t~ E. K. F. E anul, = IJ E, 

representing consumption of energy, and due to: 
Leoi,age through the insulation, including silent discharge. 
Energy component of capacwJ/, or diekctric hyat6rellu. 
Energy component of ilectr011tatic injftu,ence. 

OtllN'enta consumed in quadrature with the E. M. F. E and = 
x E, being we.ttless, and due to : 

Oapaoi,ty. 
ElectroflUl,tic influence. 

Hence we get four constants: 
r, a, {J, x. 

representing the coefficient, per unit length of line, of: 
E. M. F.'s consumed in phase with current, r. 
E. M. F.'s consumed in quadrature with current, 8. 

Currents consumed in phase with E. K. F., IJ. 
Currents consumed in quadrature with E. M. F., x. 

This line we may assume now as feeding into a receilver C'ircuit 
of any deacription, and determine current and E. K. F. at any 
point of the circuit : 

That is: 
E. K. F. and current (differing in phase by any desired angle) 
may be given at the terminals of the receiver circuit. To be 
determined is the E. M. F. and the current e.t any point of the 
line, for instance e.t the generator terminals. 

Or: 
Impedance 1 = R-j S of receiver circuit, and ,E, M. F. E 0 at 
generator terminals are given. Current and E.M.F. at any point 
of circuit are to be determined, etc. 

The cases, which are usually and solely treated: 
1. Current = 0 at end of line, tbat is open circuit. 
2. E. K. F. = 0 at end of line, that is line grounded, and 
3. Line of infinite length 

are evidently of little practical interest, but of importance is 
only the case of a line feeding into an inductive or non-induc
ti ve receiver circuit. 

Of the four line constants, r, 8, {}, 21:, usually: 
r is me.inly the resistance, per unit length of line. 
a is mainly = 2 r. N L, where L = coefficient of self-induction, 

per unit length of line. 
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,'J iB mainly = ~ , where i the insulation resistance, per unit 
1, 

length of line. 
x is mainly = 2 r. N K, where K = the capacity, per unit length 

of line. 
Counting now the distance 21 from a point ·o of the line, which 

has the E.M.F., E. = e1 + j e/ 
the current, 01 = c1 + j c/ 

and counting 21 positive in the direction of rising energy, 
counting 21 negative in the direction of decree.sing energy, 

we have at any point 21, in the line differential d 21: 

Leakage current, E {} d :c 
Capacity current, -j Ex d 21 

hence, total current consumed by d 21: 

d O = E (fJ -j x) d 21, or: 

dO=E(lJ-jx) 
d 21 

E. K. F. consumed hy resistance, C' r d .v 
E. K. F. consumed by inductance, -j Os d ;;_• 
hence, total E. K. F. consumed by d ir.: 

d E = 0 (r -j a) d .v, or: 

d E O( • ) -d = TJB a, 

. 
(1.) 

(2.) 

These Fundamental Differential EquationH (1.) and (2.) are 
symmetrical in O and E. 

Differentiating these equations : 

d 2 0 _ d E (lJ _ • ) ---- JX: dw d.v 
d 2 E d O . 
d re = d :c (r -J a) 

(3.) 

and substituting (3.) in (1.) and (2.), gives: 

~
2
: = E (fJ -j x:) (r -j s) (4.) 

d 2 O _ 
d ai2 - 0 (tJ -j x) (r -j a) (5.) 

The Differential Equation of O and of E. 
Tlieae Dii/ferential, Equations are identical, and consequently 

0 and E are functions differing by their limiting conditUJ'l'l4 
orJ,y. 

7 
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These equations (4.) and (5.) are of the form: 

~
2
; = v, (IJ -j x) (r - j a) 

and are integrated by : 
1D = a e"x 

where e is the base of natural logarithms. 
For, differentiating this, we get: 

hence: 

or: 

d2 to = ,,p a e"x = # w 
dar 

# = (IJ -j x) (r -j a) 

v = ± t' (IJ -j x) (r -j 1) 

hence, the comp'let8 int,egrol is ; 

(6.) 

(7.) 

w = a ,+r,x + b r"x (8.) 
where a and b are the two constant.a of integration. 

Substituting : 
V 7 a-j p (9.) 

in (7.), we have: 
(a -j {1)' = (IJ -j x) (r -j a), or: 

<r-{/' = IJr-xs } 
2a{1 = IJs+xr 

herefrom : rr + fl' = t' (lP + ~) (r + tr) 
(10.) 

and: a = v' ½ J ii'(,~ + r) (r2 + tr) + (IJ r - x ;) l (11.) 

11 = v ½ t ii' (,~2 + r) <r2 + s2) - (/} r - "s) f 
substituting (9.) in (8.): 

(a-j{tµ: -(a-jb);r 
w=at +be 

. a:e ~ 

= a e (cos {1 aJ-j sin p aJ) +be (cos p x + j sin /J a,) 
a;r -<lZ az -ar 

w = (a e + b e ) cos {1 w -j (a e - b e ) sin {1 a, (12.) 

the general solution of differential equations (4.) and (5.) 

Differentiating (8.) gives: 

d w u -N: 

d a: = v (a r - b e ) 



STEINMETZ ON OOMPLEX QUANTITIES. 68 

hence, substituting (9.): 
dw a.z -az az ~ 

d 
0 
= (a-j P)t(ae -be )cospa:-j(ac +be )sin pa,, 1(13.) 

substituting now O for w, and substituting (13.) in (1.), and 
writing: 

we get the 

(a-j P) a= A 
(a-j P) b = B 

0MUn"a/, In.f;egral, E~ of the Prob"lem. 

0 1 ·pH.A eaz +Be-az)cospa:-j(A eaz-Be-az )sinpa:J 1 
a-J (14.) 

1 az -az aa, -a:r 
E {}-. HAe -.Be )cosp.v-j(.A e +Be )sinpwf J 

JX . 
where A and Bare the Constants of Integration. 

If : 0. = c1 + j c/ is the current, 
.E,. = e1 + j e/ is the E. M. F., {15.) 

at the point : a: = 0, 
We get, substituting (15.) in {14.) 

2A = I ( ac1+Pci1)+( De1+ze.1) l +} { ( ac11-Pc1)+( 1?e/-xc,1H l (l 6.) 
2B= {(ac1+Pc/HDe1+xe11)}+j{(ac,1-Pc1)-(IJe11-xe1)! f 
If: I = R -j 8 is the impedance of the receiver circuit, and 

Eo = eo+Jeo1 (17.) 
is the E. K. F. at the dynamo terminals, and 

l = length of line, we get at: a, = 0: 

O= A +B. 
a-JP 

E=.A-B 
P-Jx 

hence: 

I _ IC_ A - B a -j p . 
- 0 - A + B p -j x' or· 

A-B=IP-}x 
A+ B a -j p (lS.) 

and at : a, = l : 
1 , al -al al -al l 

Eo= {l-jx { (.Ae -Be )cos/U-j(.Ae +Be )sin19l, {19.) 

.. 
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Equations (18.) ·and (19.) determine the constants A and B,, 
which, substituted in (14.), give the final integral equations. 

The length : Xo = 2 pn: is a complete wave le~gth, that means, 

in the distance ~ = 2
1
; the phase of current and E. x. F. repeat, 

in half this distance they arc just opposite. Hence the remark
able condition exists in a very long line, that at different points 
at the same time the currents flow in opposite directions, and the 
E. M. F.'s are opposite. 

The JJiff erence of plw,,.e between current and E. M. F. at any 
point of the line is determined by : 

I(cos w + j sin w) = ft, 
where I is a constant. 

Hence, "' varies from point to point, oscillating around a 
medium position '"oo, which it approaches at infinity. 

This difference of phase, towards which current and E. M. F. 

tend at infinity, is determined by : 

J ( cos '"oo + j sin w00 ) = ~: 
-a.r 

or, substituting for 000 and Eoc their values, sine£ = O, and 
{tJ: 

A e (cos pa, - sin pa,) cancels: 

J (cos w00 

(20.) 

This angle wf'f) = O, that is, current and 1<:. M. F. come more 
and more in phase with each other, if: {1 lJ - a :r = O, that is : 

a + f1 = /J + :r, or: 

,1."-{P _ /P-x2 
- 2 ,1. /i - ~ /J x 

b . . (10 ) . /j r - x 8 lP - r su st1tutmg . , gives: _(I + - 2 ff , 
V8 X'I' IZ 
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hence, expanded : 

r + 8 = D + x. 
that iR: 

(21.) 

"The ratio of remtance t,o 111ul,U,()i,anoe equab., t!UJ ratio of 
lealeage to capacity." 

I 
·-~ -

:,--~-
DIF'l'ERENC. \ 

roi.n OF PttA81!, \ +ao ' Ill 000 , 
\ ~-°' . 

I -+-.ao I L_ 
I 1 ,- ... , looo . 

't~. -t- I 
I 

'\, i - r-; .. \b /4 / h...i 0 'e I ··~ I 

\ I',_ "", .... If --10 I ; I • - -- ~.!!!!! 
• I I \ I J -20 . I r~ 0 000 ,.._,, ~ 

__ ., J / 
,..--'"" 

8 000 --

-40l 

, ,, 
) 

AIIP 
~- t.'ooo 290 : 

/' I 1':: ~-~ . 
~ , I 

~ I / ~o : 2 000 

" I / IOO !0,000 

I J 1,/ ,,,..... 
"-- _I 180 1,000 

I - , - v' 
c--

__ , 
110 8 000 

v"' 
,. 

/ 140 4,000 

E. 

/,,. "\ I 
, 

/ 
_..J 1IO 2,000 

I ' I, I 
, 

--- , , 100 0 000 

I K / ,...,.1 r=I ... •=4 IO 8 000 

c-
l •=5b,ooo so !,,ooo : / • 

\ 1/ '=I! 
-r -

,000 I 

~y..,, k 40 4,000 

RO 2,000 

I 3L !?L , 3L 
_o 4 T 4 4 l 2 H

ll'IG. 6. 

Tliis angle w00 = 45°, that is, current and E. M. F. differ by 
one-eighth period, if: p D - a x = a D + p x, that is : 

a D+x 
7-0~ 

or: 
(22.) 

__ ____.. 
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that is: 
"Two of the four line constants must be = O, either ll and z 

or I} and s." 
As an instance, in Fig. 6 a line diagram is sbown, with the 

distances from the receiver end as abecisse. Figure 6 repre
sents one and a half complete waves, and gives t.otal effective 
current, t.otal E. M:. F., and difference of phase between both, u 

• functions of the distance from receiver circuit, under the condi
tions: 

E. v. F. at receiving end: 10,000 volts, hence: Ei. = e1 = 10,000. 
Current at receiving end: 65 amperes at .385 energy coeffi

cient, that is: 

01 = 01 + j 01 l = ~5 + 60 .f. 
Line constants per unit length : 

r = 1 t'i = ~ X 10-5 

s = 4 . it = 20 X to➔ 

hence: a = 4.95 X 10--s 

p = 28.36 X 10-a 

a·i + {P = .829 X 10-1 

~ ,r . :vu = L = p = j21.5 = length of lme, corresponding to 

one complete period of wave propagation. 
A= 1.012 -1.206j 

B = .812 + .71l4} 

These values substituted give: 

0 { /\47.3cosP.r+~7.4sinp.l,)-c ~(22.8cos,1.r+32.6~in11;r)} 

{
~ ~ l 

+J e (27.4cosp3'-47Jlsinp.r)+e (:-J2.6cos;1;;r-22.3sin19-z) 1 

E: { e~(6450cosp.c+4410sin/~x)+e•-a.r(3580co8j9il'-4410sin11.:r) f 

+ j { , cu,( 441 0cos,9a-:-6450sin19a-)-r -az( 441 0cos,9..r-8580sin,1a-) :-

t _ P {J - a it _ • 0 .... 1 
an ,000 - ---- - - • '"', 

alJ+/1x 

.., 
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S0111,e Particu.l,ar Oaae11 . 

... 1. Open Oircuit at End of Line. 

::r = 0. o. = 0. 

A = (lj. e1 + x e.1) + j (/J e1
1 

- x e.) = - B 
hence: 

• 1 • cu -a.r a.r -aJi f 
fa..' = . A { ( £ + £ ) cos 11 :;r -j ( £ - £ ) sin p a, ( 

t'J-J x . . 

1 j a.r -uJ az -a.r } 
{' = . ~ A 1 (, - , ) cos 11 a, -j (1 + , ) sin 11 z 

(l. -J /J ' 
B. Line G-round,ed at llnd. 

-.r = 0. l!,~ = 0. 

A = (a c, + /1 c.1) + j (a c/ - P c1) = B, 
hence: 

1 . IU' -a.e a.r -a,: • 

I( = -~ . A ·', (, - e ) cos /1 a, -j ( t + t ) sin fJ z l 
t -J K , f 

1 . n..r -a.r a.r -a.r • 
C = -- -. .., .. .:1 J (a + £ ) cos /J .r -j"(• - t ) sin /J z :-

a-; fJ t 
0. Irifim,uely Long (}onducu»-11 . 

.Replacing a, by - 'J'J, that is, counting dist;ance positive in the 
direction of decreasing energy, we have: 

hence: 

and: 

a, = ®: (! = 0, E = 0: 
R=O 

J -cu 
E = 'J • A t ( cos fj (I) + ,· sin p w) 

t -J X 

1 -az 
0-= --. '.j A , (cos j1 a,+ j sin p w) a-J ,1 

revolving decay of the wave. 
The rota/, impedance of the infinite circuit is: 

l=E 
C 

- a-}/~ 
- ;~ -.i X 

_ (a li + /J x) -.i (11 lJ - ax) 
- -- tP + r 

"The infinitely long conductor acts like an impedance 
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I = a I} + ti x: - .7· ~ lJ - a x: that . is like a resist.ance 
01+.r r7-2 +r' ' 

R = a I} + f1 ", combined with· an inductance S = ~ -~ - ":/:' ~+r v-+~-

Herefrom we get the difference of phase between E. M. F. and 

8 )IJ-ax: current : tan co = - = ____,,-------=,......_ 
R aD+ 11x: 

which is constant at e.11 points of the line: 

If: /J = 0, s = 0, we have: a= 19 =\I'":., hence: _, 

tan co = 1, or: ,o = 45°. 

that hi, current and v.. M. F. differ by one-eighth period. 

Flo. 7. 

I). Generat,or Fl!.eding into Closed Ci·rc·uit: 
Let ((J = 0 be the center of the cahle. It is then: 

Ox.= O_x, 
Ex. = - E;'_x , 

hence: .E' = 0 at ~ = 0, 
that means, the equatious are the 88.me as in B., where the line 
is grounded at .r = 0. 

V. PoLYPHASJt; 8YSTJ1;1t1s. 

In polyphase systems, we have two ways of connecting then 
circuits of an n-phase generator with each other and with the line. 

1. The atar connection, represented diagrammatically in Fig. ·7, 
where the n-circuits, containing E. M. F.'s differing from each 

l 
I 

I 
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other b,v ~ of a period, are connected together at one end into a 
n 

neutral pf>flfl:t 0-which may either be grounded or not-while 
the other ends of the circuit a.re connected to th~ line-wires, and: 

2. The ring connect-ion, represented by Fig. 8, where then 
generator circuits are connected in closed circuit, and the n line 
wires connected to the points of contact of adjacent circuits. 

Outside of the generato.r the two systems are identical. 
The consumer circuits may now either be connected between 

any pairs or sets of line-'\\ires, or between the wires and a neutral 
point. O', which may be grounded, or connected to the neutral 
point of the generator 0. 

1. Let now, in the 11tar connectinn.. of generator, Ebe the E. 

lil. 1-·. of one branch of the generator, and let 1, 2, . . . n be the 
generator circuits. 

Since the E. M.. F.'i; of adjacent circuits differ by_!_ of a period, 
n 

by 2: is represented algebraice.Uy by mul-• 2 ,r d •~ • = 1 - , an rol,Qtion 
n 

tiplication with: 

2,r+·· 2,r "1 l=C08- JSlll- = ¥ 
n n 

(1.) 

The E. M. F. in an~· circuit i is: 

E;=e;E (2.) 

Hence, if O; is the current in circuit i, and I is the impedance 
per generator circuit, we have: 
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E. v . .,._ at terminal i of generat;or: 
E',. = E,.- 0,-I=e,. E- O,.I (3.) 

And the E. M. F. at the end of a. line of impedance I,., con
nected to terminal i: 

E",- = E,-- 0,-(I +I;)= e,. ll- O,(I + I,-) (4.) 
Let now E.x denote the difference of potential between any 

pair of terminals i and x,. 

where: ll;x = - Ex; (5._1 
we have~ 

E. v. F. of generat;or, acting between terminals i, and x: 
E;x = (e; - i.1-) /f (6.) 

Difference of potential between generat;or tenninals i and x: 
E',-x = (,J- r) If-- l(l~ - Ox) (7.) 

Difference of potential between lines i and x: 
E";z = (e' - r) E- I(O, - Ox) - (/,. 0, - Ix Ox) (8.) 

If now Oix represents the current, which passes from line i to 
x (and which is determined by the impedance Lx of the appara
tus connected between i and x: 

CY. _ .E;x 
,x--. 
. 1,x 

and if Ou denote~ the current passing from line i to neutral 
point 0 1

, we have: 
II 

0,- = ~ .1· (]ix 
0 

(9.) 

Furthermore, if the ueu\ral points O and O' are insulated. 
II 

~' 01 = 0 

II 

~; 0,-"= O 
1 

If, however, the neutral point O a11d O' are grounded, or 
connected oogether: 

II II 

~; 0,-= ~; O,." (11.) 

2. In the case of the ring connected generator, the generator 

j 
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Take the place of the E. v. F.'s 

E;;+i 

of the star connection, hence the E. M. F. between any pair of 
terminals i and x is: 

,· 
All tl).e other considerations remain essentially the same, so 

that: 
"Any polyphase system of the E. M. F.'s: 

,._ 
E; = ei E, i = 1, 2, . . . n, 

can be dissolved by Ohm's law: 
a = t' 1 (13.) 

E= OI (14.) 

Fm. 9. 

and Kirchhoff's laws: 

l E = 0 in any closed circuit, (15.) 

l O = 0 at any point of distribution." (16.) 
It would carry me too far for the scope of this pa.per, to enter 

further into the general theory of the polyphase systems, and it 
may be sufficient therefore, to show in a particular instance, 
taken from the threephase system, what remarkable phenomena. 
can be expected in polypha.se systems. 

Urwalanceil Thruphaae System. 

let, in a threephase system, Fig. 9, with star connected 
generator, 

E, e E~ t2 E 
be the E. 11.. ll' .. '11 of the three generator branches, where: 
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8 - 1 +. 3 a=yl=- Jt' 
2 

_ -1-.i +f8 
- 2 

Le(I = impedance per generator branch, 
L = impedance per line, 

and)et one pair of lines be connected by an impedance 12• 
We have then, if C = the current flowing in this loaded 

branch-the two other branches being unloaded, or open-that 
is, the system "unbalanced.'' 

i,;. M. F. in generator circuits: 
' 

E 

} ,E 
,,E 

Potentials)t generator terminali,: l!.,'-01 l 
eE+ OJ 

J ,'E 

Potentials at end of line~: E-0(1 + /1)} 
, E+ O(I+ 11) 
EaE 

Hence, differences of potential at generator terminals : 

E (1 - e) - 2 0 I -loaded branch. } 
, E (1 - ,) + 0 I } 
,,J'..'(l - ,) + 01 -unloaded branches. 

Difference of potential at ends of line : 

E (1 - c) - 2 0 (I + /1) -loaded branch. } 
eE(l-s)+C(I+/1) t 
,"E(l _ ,) + 0 (I+ 11) i -unloaded branches. 

Hence, current in loaded branch: 

or, expanded: 

O = .E .. (1 - E) - 2 () (1 + I,~ 
Ii 

(17.) 

(18.) 

(19.) 

(20.) 

(21.) 

rt E (l - 1) to b ted • (22.) 
l. = 

12 
+ 2 (I+ L) , as was e expec , smce 

It + 2 (/ + /1) is the total impedance, E (1 - e) the E. M. F. of 
this circuit. 

Rubstituting (22.) in (20.) and (21.), we get: 
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(23.) 

Difference of potential at ends of line: 

Jf(t -- a) (1- 2 (I+ Ii) --) -loaded brand1. \I 
.. 12 + 2 (/ + /1) 

E(l - t) (, + 12 +1
2t;t 11)).. l 

-unloaded hran<"he..14. 

E(l - t) ( £2+ 12 +1
211 ~ fi) 

(24.) 

These are three diffe.rent values. That means: 
'· Loading in a three phase system one branch only, the poten

tials of the two unloaded branches become unequal also." 
It is self evident, that this phenomenon of unbalancing does not 

take place in the three phase system only, but just a.swell in any 
other polyphase system, and that the amount of unbalancing de
pends upon the constants of the circuit, hence, can by a proper 
arrangement be reduced to almost nil, or can be exaggerated 
greatly by an improper choice of circuit constant. 

As an instance, we may consider the numerical example: 
Generator Jt~. 'M. F. 100 volts between terminals, henee: 

_E(l - a)= too 
Resistance per generator branch, 
Inductance per generator branch, 
Hence, impedanc~ per generator branch, 

Case 1. Non-inductive line of .1 ohms. I 
'• 

• Non-inductive load of .1 ohms. \ 
Case 2. Non-inductive line of .1 ohms. , 

Inductive load of - j ohms. , 
Case 3. Inductive line of - .lj ohms., 

Inductive load of - .i ohms. ! 
( 

1a.se 4. Inductive line of - . lj ohms. f. 
Non-inductive load of .1 ohms. , 

.r)l ohms. 

.05 ohms . 

. 01 - .05j. 
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Substituting these values in equations (22.), {23.) and (24.) we 
get (writing all the quantities in the form, c (cos"'+ j sin w): 

1. Non-inductive line and non-induetive load:; Ii= .1, ft·= 1: 
0=~1.6(.99+.0Sj) 

Ei= 98.0( J.m+.osJ) 
E,,= 95.9(-.51+.86}) 
Ea= 102.9(-.4 7-.88}) 

E;=81.H( .99+.osJ) 
~ = 92.6(-.44+.90/) 
1;=98;7(-.4-1-.911) 

2. Non-inductive line, inductive load: L = .1, f., = -j: 
0=89.0(.20+.98}) 

E,~90.9 
~=9'7.8(-.47 +.88j) 
Ea= 97. 8(-.4 7-.88}) 

a. Inductive line and inductive load: 
C= 7:l.O(.Ot+jJ 

E~=92.!i(l- .OV) 

fl..;= 98.8( -.4: 7 +.s~j) 
~=98.7( -.4-8-.8~j) 

4. Inductive line, non-inductive load: 
0=94.0(.96+.2&1) 

E. = 95.~ .»»+.o~j) 
~= 95.2(-.50+.86j) 
fi~= 102. 7(-.4:7-.88j) 

h;= 89.1( .98-.2-0j) 
I~= 104.9(-.42+.92}) 
A;= 89.~(-.49-.86}) 
Ii= -.tj, ]',= -j: 

h.;=78.4(1- .Olj) 
.1~=95.6( -.41 +.91J) 
1~=94-.ti( -.41-.91j) 

1. = - .1 j, ~ = 1: 

E; = 94.1( .96+.2s;) 
I½= 86.1(-.52+.85j) 
fa_;= 109.6(-.41-.9lj) 

Remarkable is in 1. and in 4-. the rise. qf poter,tial in the line 
in the branch .1;.. 

Apparently these values look rather irregular, wmetimes the 
one. sometimes the other unloaded branch being higher. Look
ing closer into it, however, we can not fail to see the regularity 
displayed in the variation of potential, which makes it poBSible 
to control this phenomenon. 

Lynn, Mt8ll., .July, 1898. 

D1scuss10N. 

PRoJ.o'. MACJ.o'ARLAN 1<; :-1 wish to make a remark in regard t:o 

the fundamental principle of the use of complex quantities. 
The letter j was first introduced as a distinguishing index with
out mathematical meaning, and afterwards defined b~ the equa
tion l = - 1. Such definition is ambiguous, for 1t refers to 
orthogonal projection of a straight line upon another straight line, 
and the right angle may be at the former straight line or at the 
]atter. Tfte latter case is the ordinary meaning. 
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It is not true that algebra is limited or bounded by the ordi
nary complex quantity. There is a more general complex quan
tity which applies to space, and of which the complex quantity 
in a plane is only a special case. 

MR. STEINKKTZ :-In introducing j, first as distinguishing index 
and then defining it as +" - 1 my object was to intreduce the 
complex quantity in an elementary and graphical manner, without 
reference to higher mathematics. To make the reasoning more 
complete, I might have added that the definition j = .V 1 
<loes not contradict the original definition of j as index without 
numerical meaning, since in the range of ordinary numbers 
t1 - 1 is meaningless. . 

From the mathematical standpoint the complex <\uantity can 
directly be introduced without further explanation, smce in pure 
1nathematics, for instance, the theory of functions, the plane, is 
known as the standard representation of the complex quantity. 

Referring to Prof. Maefarlane's last remark, my meaning is 
that the complex quantity is the last and most general <dgebraic 
number. No further generalization of numbers exists which 
fulfills the fundamental condition of ~braic numbers, that if a 
product is zero one of the factors must 'be zero. This is the rea
son why the complex quantity of the higher order does not prove 
ae useful in space as the algebraic complex quantity in the plane. 

The following paper was then read : 


