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Preface

Classical electromagnetic theory, together with classical and quan-
tum mechanics, forms the core of present-day theoretical training for
undergraduate and graduate physicists. A thorough grounding in these
subjects is a requirement for more advanced or specialized training.

Typically the undergraduate program in electricity and magnetism
involves two or perhaps three semesters beyond elementary physics, with
the emphasis on the fundamental laws, laboratory verification and elabora-
tion of their consequences, circuit analysis, simple wave phenomena, and
radiation. The mathematical tools utilized include vector calculus,
ordinary differential equations with constant coefficients, Fourier series,
and perhaps Fourier or Laplace transforms, partial differential equations,
Legendre polynomials, and Bessel functions.

As a general rule a two-semester course in electromagnetic theory is
given to beginning graduate students. It is for such a course that my book
is designed. My aim in teaching a graduate course in electromagnetism is
at least threefold. The first aim is to present the basic subject matter as a
coherent whole, with emphasis on the unity of electric and magnetic
phenomena, both in their physical basis and in the mode of mathematical
description. The second, concurrent aim is to develop and utilize a number
of topics in mathematical physics which are useful in both electromagnetic
theory and wave mechanics. These include Green’s theorems and Green’s
functions, orthonormal expansions, spherical harmonics, cylindrical and
spherical Bessel functions. A third and perhaps most important pur-
pose is the presentation of new material, especially on the interaction of
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viii Preface

relativistic charged particles with electromagnetic fields. In this last area
personal preferences and prejudices enter strongly. My choice of topics is
governed by what I feel is important and useful for students interested in
theoretical physics, experimental nuclear and high-energy physics, and that
as yet ill-defined field of plasma physics.

The book begins in the traditional manner with electrostatics. The first
six chapters are devoted to the development of Maxwell’s theory of
electromagnetism. Much of the necessary mathematical apparatus is con-
structed along the way, especially in Chapters 2 and 3, where boundary-
value problems are discussed thoroughly. The treatment is initially in
terms of the electric field £ and the magnetic induction B, with the derived
macroscopic quantities, D and H, introduced by suitable averaging over
ensembles of atoms or molecules. In the discussion of dielectrics, simple
classical models for atomic polarizability are described, but for magnetic
materials no such attempt is made. Partly this omission was a question of
space, but truly classical models of magnetic susceptibility are not possible.
Furthermore, elucidation of the interesting phenomenon of ferromagnetism
needs almost a book in itself.

The next three chapters (7-9) illustrate various electromagnetic pheno-
mena, mostly of a macroscopic sort. Plane waves in different media,
including plasmas, as well as dispersion and the propagation of pulses, are
treated in Chapter 7. The discussion of wave guides and cavities in Chapter
8 is developed for systems of arbitrary cross section, and the problems of
attenuation in guides and the Q of a cavity are handled in a very general
way which emphasizes the physical processes involved. The elementary
theory of multipole radiation from a localized source and diffraction
occupy Chapter 9. Since the simple scalar theory of diffraction is covered
in many optics textbooks, as well as undergraduate books on electricity and
magnetism, I have presented an improved, although still approximate,
theory of diffraction based on vector rather than scalar Green’s theorems.

The subject of magnetohydrodynamics and plasmas receives increasingly
more attention from physicists and astrophysicists. Chapter 10 represents
a survey of this complex field with an introduction to the main physical
ideas involved.

The first nine or ten chapters constitute the basic material of classical
electricity and magnetism. A graduate student in physics may be expected
to have been exposed to much of this material, perhaps at a somewhat
lower level, as an undergraduate. But he obtains a more mature view of it,
understands it more deeply, and gains a considerable technical ability in
analytic methods of solution when he studies the subject at the level of this
book. He is then prepared to go on to more advanced topics. The
advanced topics presented here are predominantly those involving the



Preface ix

interaction of charged particles with each other and with electromagnetic
fields, especially when moving relativistically.

The special theory of relativity had its origins in classical electrodynamics.
And even after almost 60 years, classical electrodynamics still impresses
and delights as a beautiful example of the covariance of physical laws under
Lorentz transformations. The special theory of relativity is discussed in
Chapter 11, where all the necessary formal apparatus is developed, various
kinematic consequences are explored, and the covariance of electrodynamics
is established. The next chapter is devoted to relativistic particle kine-
matics and dynamics. Although the dynamics of charged particles in
electromagnetic fields can properly be considered electrodynamics, the
reader may wonder whether such things as kinematic transformations of
collision problems can. My reply is that these examples occur naturally
once one has established the four-vector character of a particle’s momentum
and energy, that they serve as useful practice in manipulating Lorentz
transformations, and that the end results are valuable and often hard to
find elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy
loss and scattering and develops concepts of use in later chapters. Here
for the first time in the book I use semiclassical arguments based on the
uncertainty principle to obtain approximate quantum-mechanical ex-
pressions for energy loss, etc., from the classical results. This approach, so
fruitful in the hands of Niels Bohr and E. J. Williams, allows one to see
clearly how and when quantum-mechanical effects enter to modify classical
considerations.

The important subject of emission of radiation by accelerated point
charges is discussed in detail in Chapters 14 and 15. Relativistic effects
are stressed, and expressions for the frequency and angular dependence of
the emitted radiation are developed in sufficient generality for ail appli-
cations. The examples treated range from synchrotron radiation to
bremsstrahlung and radiative beta processes. Cherenkov radiation and the
Weizsicker-Williams method of virtual quanta are also discussed. In the
atomic and nuclear collision processes semiclassical arguments are again
employed to obtain approximate quantum-mechanical results. I lay con-
siderable stress on this point because I feel that it is important for the
student to see that radiative effects such as bremsstrahlung are almost
entirely classical in nature, even though involving small-scale collisions.
A student who meets bremsstrahlung for the first time as an example of a
calculation in quantum field theory will not understand its physical basis.

Multipole fields form the subject matter of Chapter 16. The expansion
of scalar and vector fields in spherical waves is developed from first
principles with no restrictions as to the relative dimensions of source and
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wavelength. Then the properties of electric and magnetic multipole radia-
tion fields are considered. Once the connection to the multipole moments
of the source has been made, examples of atomic and nuclear multipole
radiation are discussed, as well as a macroscopic source whose dimensions
are comparable to a wavelength. The scattering of a plane electromagnetic
wave by a spherical object is treated in some detail in order to illustrate a
boundary-value problem with vector spherical waves.

In the last chapter the difficult problem of radiative reaction is discussed.
The treatment is physical, rather than mathematical, with the emphasis on
delimiting the areas where approximate radiative corrections are adequate
and on finding where and why existing theories fail. The original Abraham-
Lorentz theory of the self-force is presented, as well as more recent classical
considerations.

The book ends with an appendix on units and dimensions and a biblio-
graphy. In the appendix I have attempted to show the logical steps
involved in setting up a system of units, without haranguing the reader as
to the obvious virtues of my choice of units. I have provided two tables
which 1 hope will be useful, one for converting equations and symbols and
the other for converting a given quantity of something from so many
Gaussian units to so many mks units, and vice versa. The bibliography
lists books which 1 think the reader may find pertinent and useful for
reference or additional study. These books are referred to by author’s
name in the reading lists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electro-
dynamics which I have taught off and on over the past eleven years, at both
the University of Illinois and McGill University. I wish to thank my
colleagues and students at both institutions for countless helpful remarks
and discussions. Special mention must be made of Professor P. R. Wallace
of McGill, who gave me the opportunity and encouragement to teach what
was then a rather unorthodox course in electromagnetism, and Professors
H. W. Wyld and G. Ascoli of Illinois, who have been particularly free with
many helpful suggestions on the treatment of various topics. My thanks
are also extended to Dr. A. N. Kaufman for reading and commenting on a
preliminary version of the manuscript, and to Mr. G. L. Kane for his
zealous help in preparing the index.

J. D. JACksON

Urbana, Illinois
January, 1962
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Introduction to
Electrostatics

Although amber and lodestone were known by the ancient Greeks,
electrodynamics developed as & quantitative subject in about 80 years.
Coulomb’s observations on the forces between charged bodies were made
around 1785. About 50 years later, Faraday was studying the effects of
currents and magnetic fields. By 1864, Maxwell had published his famous
paper on a dynamical theory of the electromagnetic field.

We will begin our discussion with the subject of electrostatics—problems
involving time-independent electric fields. Much of the material will be
covered rather rapidly because it is in the nature of a review. We will use
¢lectrostatics as a testing ground to develop and use mathematical tech-
niques of general applicability.

1.1 Coulomb’s Law

All of electrostatics stems from the quantitative statement of Coulomb’s
law concerning the force acting between charged bodies at rest with respect
to each other. Coulomb (and, even earlier, Cavendish) showed experi-
mentally that the force between two small charged bodies separated a
distance large compared to their dimensions

(1) varied directly as the magnitude of each charge,

(2) varied inversely as the square of the distance between them,

(3) was directed along the line joining the charges,

(4) was attractive if the bodies were oppositely charged and repulsive

if the bodies had the same type of charge.
Furthermore it was shown experimentally that the total force produced
1
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on one small charged body by a number of the other small charged bodies
placed around it was the vector sum of the individual two-body forces of
Coulomb.

1.2 Electric Field

Although the thing that eventually gets measured is a force, it is useful
to introduce a concept one step removed from the forces, the concept of
an electric field due to some array of charged bodies. At the moment, the
electric field can be defined as the force per unit charge acting at a given
point. It is a vector function of position, denoted by E. One must be
careful in its definition, however. It is not necessarily the force that one
would observe by placing one unit of charge on a pith ball and placing it
in position. The reason is that one unit of charge (e.g., 100 strokes of cat’s
fur on an amber rod) may be so large that its presence alters appreciably
the field configuration of the array. Consequently one must use a limiting
process whereby the ratio of the force on the small test body to the charge
on it is measured for smaller and smaller amounts of charge. Experi-
mentally, this ratio and the direction of the force will become constant as
the amount of test charge is made smaller and smaller. These limiting
values of magnitude and direction define the magnitude and direction of the
electric field E at the point in question. In symbols we may write

F=gE (1.1)

where F is the force, E the electric field, and g the charge. In this equation
it is assumed that the charge ¢ is located at a point, and the force and the
electric field are evaluated at that point.

Coulomb’s law can be written down similarly. If F is the force on a
point charge g, located at x,, due to another point charge ¢,, located at
X,, then Coulomb’s law is
(Xl — Xz) (12)

F = kq,q,
%, — ”‘2|3

Note that ¢, and ¢, are algebraic quantities which can be positive or
negative. The constant of proportionality k depends on the system of units
used.

The electric field at the point x due to a point charge ¢; at the point x;
can be obtained directly:

E(x) = kg, X=X (1.3)

X
x —x

as indicated in Fig. 1.1. The constant k is determined by the unit of charge
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Fig. 1.1

chosen. In electrostatic units (esu), unit charge is chosen as that charge
which exerts a force of one dyne on an equal charge located one centimeter
away. Thus, with cgs units, kK = 1 and the unit of charge is called the
“stat-conlomb.” Tn the mks system, k = (4m¢,) 3, where ¢, (= 8.854 X
10-12 farad/meter) is the permittivity of free space. We will use esu.*
The experimentally observed linear superposition of forces due to many
charges means that we may write the electric field at x due to a system of

point charges g, located at x,, i = 1,2, . . ., n, as the vector sum:
"i'l
X it Xi
Ex) = > g, E=X) (1.4)
i=1 IX - zI

If the charges are so small and so numerous that they can be described by
a charge density p(x} [if Ag is the charge in a small volume Az Ay Az at
the point x’, then Ag = p(x') Ar Ay Az], the sum is replaced by an
integral:

E(x) =fp(x') X = X) jay (1.5)
x —x'f?

where d®x' = dx’ dy’ d2’ is a three-dimensional volume element at x'.

At this point it is worth while to introduce the Dirac delta function. In one
dimension, the delta function, written d(z — @), is a mathematically improper
function having the properties:

(1) 8(x —a) =0 forx # a, and
(2) f &(x —a)dx =1 if the region of integration includes # = a, and is zero

otherwise.

The delta function can be given rigorous meaning as the limit of a peaked curve
such as a Gaussian which becomes narrower and narrower, but higher and
higher, in such a way that the area under the curve is always constant. L.
Schwartz’s theory of “distributions is a comprehensive rigorous mathematical
approach to delta functions and their manipulations.t

* The question of units is discussed in detail in the Appendix.

T A useful. rigorous account of the Dirac delta function is given by Lighthill. (Full
references for items cited in the text or footnotes by author only will be found in the
Bibliography.)
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From the definitions above it is evident that, for an arbitrary function f(=),

3) ff(.;c) Hx — a) dx =f(a), and
@ f 1@ 5@ — a)dv = —f1a),

where a prime denotes differentiation with respect to the argument.
If the delta function has as argument a function f(x) of the independent
variable z, it can be transformed according to the rule,

®) Hf@) = D e — =,
d_'x(xz)

1

where f(z) is assumed to have only simple zeros, located at z = z,.
In more than one dimension, we merely take products of delta functions in
each dimension. In three dimensions, for example,

(6) o(x — X) = 6y — Xy) 6z, — Xp) d(z5 — Xy)
is a function which vanishes everywhere except at x = X, and is such that

1 if AV contains x = X,
(7 ox — X) ¥z = . .
AV 0 if AV does not contain x = X.

Note that a delta function has the dimensions of an inverse volume in whatever
number of dimensions the space has.

A discrete set of point charges can be described with a charge density by
means of delta functions. For example,

o) =3 g, 8x — x)) (1.6)
=1

represents a distribution of » point charges g;, Iocated at the points x;. Substitu-
tion of this charge density (1.6) into (1.5) and integration, using the properties of
the delta function, yields the discrete sum (1.4).

1.3 Gauss’s Law

The integral (1.5) is not the most suitable form for the evaluation of
electric fields. There is another integral result, called Gauss’s law, which
is often more useful and which furthermore leads to a differential equation
for E(x). To obtain Gauss’s Jaw we first consider a point charge ¢ and a
closed surface S, as shown in Fig. 1.2. Let r be the distance from the
charge to a point on the surface, n be the outwardly directed unit normal
to the surface at that point, da be an element of surfacc area. If the electric
field E at the point on the surface due to the charge ¢ makes an angle 6
with the unit normal, then the normal component of E times the area

element is: cos 0

— da (1.7

E-nda=gq
,

Since E is directed along the line from the surface element to the charge g,
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q inside §

q outside S n

Fig. 1.2 Gauss’s law. The normal component of electric field is integrated over the
closed surface S. If the charge is inside (outside) .S, the total solid angle subtended at
the charge by the inner side of the surface is 4n (zero).

cos 0 da = r? d(), where d() is the element of solid angle subtended by da
at the position of the charge. Therefore

E.nda=qdQ (1.8)

If we now integrate the normal component of E over the whole surface, it
1s easy to see that

__|4mq if q lies inside S
i« E-nda = {0 if g lies outside S (1.9)
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This result is Gauss’s law for a single point charge. For a discrete set of
charges, it is immediately apparent that

fﬁ E-nda =47 g, (1.10)
5 7

where the sum is over only those charges inside the surface S. For a
continuous charge density p(x), Gauss’s law becomes:

4; E-nda = 4fnf p(x) d3x (1.11)
s v

where V is the volume enclosed by S.

Equation (1.11) is one of the basic equations of electrostatics. Note that
it depends upon

(1) the inverse square law for the force between charges,

(2) the central nature of the force,

(3) the linear superposition of the effects of different charges.

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields,
with matter density replacing charge density.

It is interesting to observe that before Coulomb’s observations
Cavendish, by what amounted to a direct application of Gauss’s law, did
an experiment with two concentric conducting spheres and deduced that
the power law of the force was inverse nth power, where n = 2.00 4 0.02.
By a refinement of the technique, Maxwell showed that n = 2.0 4 0.00005.
(See Jeans, p. 37, or Maxwell, Vol. 1, p. 80.)

1.4 Differential Form of Gauss’s Law

Gauss’s law can be thought of as being an integral formulation of the
law of electrostatics. We can obtain a differential form (i.e., a differential
equation) by using the divergence theorem. The divergence theorem states
that for any vector field A(x) defined within a volume V surrounded by
the closed surface S the relation

§ A-nda= |V-Adx

] 14

holds between the volume integral of the divergence of A and the surface

integral of the outwardly directed normal component of A. The equation

in fact can be used as the definition of the divergence (see Stratton, p. 4).
To apply the divergence theorem we consider the integral relation

expressed in Gauss’s theorem:

45 E-nda=4qrf p(x) 3z
s v
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Now the divergence theorem allows us to write this as:

f (V.E — dnp) d®x = 0 (1.12)
V

for an arbitrary volume V. We can, in the usual way, put the integrand
equal to zero to obtain
V.E=4np (1.13)

which is the differential form of Gauss’s law of electrostatics. This
equation can itself be used to solve problems in electrostatics. However,
itisoftensimpler to deal with scalar rather than vector functions of position,
and then to derive the vector quantities at the end if necessary (see below).

1.5 Another Equation of Electrostatics and the Scalar Potential

The single equation (1.13) is not enough to specify completely the three
components of the electric field E(x). Perhaps some readers know that a
vector field can be specified completely if its divergence and curl are given
everywhere in space. Thus we look for an equation specifying curl E as a
function of position. Such an equation, namely,

VXE=0 (1.14)
follows directly from our generalized Coulomb’s law (1.5):
B0 = [ px) S0 g
, x — x'°
The vector factor in the integrand, viewed as a function of x, is the negative
gradient of the scalar 1/jx — x| :

m - _v(]x —]: x’l)

Since the gradient operation involves x, but not the integration variable x’,
it can be taken outside the integral sign. Then the field can be written

E(x) = —Vf—-&)— & (1.15)
Ix — x|
Since the curl of the gradient of any scalar function of position vanishes
(V x Vy =0, for all ), (1.14) follows immediately from (1.15).
Note that V x E =0 depends on the central nature of the force
between charges, and on the fact that the force is a function of relative
distances only, but does not depend on the inverse square nature.
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B

Fig. 1.3

In (1.15) the electric field (a vector) is derived from a scalar by the
gradient operation. Since one function of position is easier to deal with
than three, it is worth while concentrating on the scalar function and giving
it a name. Consequently we define the “‘scalar potential” ®(x) by the

equation: E— _Vo (1.16)
Then (1.15) shows that the scalar potential is given in terms of the charge
density by ,
B(x) =Jﬂ d (1.17)
X — x|

where the integration is over all charges in the universe, and @ is arbitrary
to the extent that a constant can be added to the right side of (1.17).

The scalar potential has a physical interpretation when we consider the
work done on a test charge ¢ in transporting it from one point (4) to
another point (B) in the presence of an electric field E(x), as shown in Fig.
1.3. The force acting on the charge at any point is

F =gE
so that the work done in moving the charge from 4 to B is
B B
W:-fF-dl:-ng.dl (1.18)
4 /1

The minus sign appears because we are calculating the work done on the
charge against the action of the field. With definition (1.16) the work can
be written

which shows that ¢@ can be interpreted as the potential energy of the test
charge in the electrostatic field.

From (1.18) and (1.19) it can be seen that the line integral of the electric
field between two points is independent of the path and is the negative of
the potential difference between the points:

B

1
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This follows directly, of course, from definition (1.16). If the path is closed,
the line integral is zero,

§;E-d1=0 (1.21)

a result that can also be obtained directly from Coulomb’s law. Then
application of Stokes’s theorem [if A(x) is a vector field, S is an open
surface, and C is the closed curve bounding S,

§>Aodl=J‘ (V x A)y-nda
c s

where dlis a line element of C, n is the normal to S, and the path C is
traversed in a right-hand screw sense relative to n] leads immediately back
toV x E=0.

1.6 Surface Distributions of Charges and Dipoles and Discontinuities
in the FElectric Field and Potential

One of the common problems in electrostatics is the determination of
electric field or potential due to a given surface distribution of charges.
Gauss’s law (1.11) allows us to write down a partial result directly. If a
surface S, with a unit normal n, has a surface-charge density of o(x)
(measured in statcoulombs per square centimeter) and electric fields E;
and E, on either side of the surface, as shown in Fig. 1.4, then Gauss’s law
tells us immediately that

(Ey; — E) +n = 4a0 (1.22)

This does not determine E, and E, unless there are no other sources of
field and the geometry and form o are especially simple. All that (1.22)
says is that there is a discontinuity of 4z¢ in the normal component of
electric field in crossing a surface with a surface-charge density o, the
crossing being made from the ““inner’” to the “outer” side of the surface.

Fig. 1.4 Discontinuity in the normal com-
ponent of electric field across a surface layer
of charge.
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The tangential component of electric field can be shown to be continuous
across a boundary surface by using (1.21) for the line integral of E around
a closed path. Itis only necessary to take a rectangular path with negligible
ends and one side on either side of the boundary.

A general result for the potential (and hence the field, by differentiation)
at any point in space (not just at the surface) can be obtained from (1.17)
by replacing p d°x by o da:

ox) = | 25 4 (1.23)
s |x = x|

Another problem of interest is the potential due to a dipole-layer
distribution on a surface S. A dipole layer can be imagined as being formed
by letting the surface S have a surface-charge density o(x) on it, and
another surface S’, lying close to S, have an equal and opposite surface-
charge density on it at neighboring points, as shown in Fig. 1.5. The
dipole-layer distribution of strength D(x) is formed by letting S” approach
infinitesimally close to § while the surface-charge density o(x) becomes
infinite in such a manner that the product of o(x) and the local separation
d(x) of S and S” approaches the limit D(x):

lim o(x) d(x) = D(x) (1.24)
d(x)—0

The direction of the dipole moment of the layer is normal to the surface S
and in the direction going from negative to positive charge.

To find the potential due to a dipole layer we can consider a single dipole
and then superpose a surface density of them, or we can obtain the same
result by performing mathematically the limiting process describedin words
above on the surface-density expression (1.23). The first way is perhaps
simpler, but the second gives useful practice in vector calculus. Con-
sequently we proceed with the limiting process. With n, the unit normal to

o(x)

d(x)

s Fig. 1.5 Limiting process involved in
S’ creating a dipole layer.
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‘: - nd(x’)

Fig. 1.6 Dipole-layer geometry.

the surface S, directed away from S’, as shown in Fig. 1.6, the potential
due to the two close surfaces is

o(x") , f o(x") "
=| —=22 da’ — d
o) s |x — x| “ s |x — x’ + ndj “

For small d we can expand |x — x" + nd|™'. Consider the general
expression |x + a|~!, where |a|] < [x|. Then we write

1 1
[x + a] \/x2+a2+2a-x

=1(1_a.2x+...)
x X

=1+a.V(_l.)+.
x

Z

This is, of course, just a Taylor’s series expansion in three dimensions. In
this way we find that the potential becomes [upon taking the limit (1.24)]:

D(x) =LD(x’)n . V’( ) da’ (1.25)

x — x’|
Equation (1.25) has a simple geometrical interpretation. We note that

n~V’( 1 )da,z_cosﬁda’=__dQ

Ix — x|

where df2 is the element of solid angle subtended at the observation point
by the area clement da’, as indicated in Fig. 1.7. Note that 4Q has a positive
sign if 0 is an acute angle, i.e., when the observation point views the *‘inner”
side of the dipole layer. The potential can be written:

O(x) = — LD(x’) dQ (1.26)
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Fig. 1.7 The potential at P due to the

dipole layer D on the area element da’ is

just the negative product of D and the

solid angle element d(Q2 subtend“ed by da’
at P.

For a constant surface-dipole-moment density D, the potential is just the
product of the moment and the solid angle subicnded at the observation
point by the surface, regardless of its shape. !

There is a discontinuity in potential in crossing a double layer. This
can be seen by letting the observation point come infinitesimally close to
the double layer. The double layer is now imagined to consist of two
parts, one being a small disc directly under the observation point. The
disc is sufficiently small that it is sensibly flat and has constant surface-
dipole-moment density D. Evidently the total potential can be obtained
by linear superposition of the potential of the disc and that of the remain-
der. From (1.26) it is clear that the potential of the“disc alone has a
discontinuity of 47D in crossing from the inner to the outer side, being
—27D on the inner side and +2#D on the outer. The potential of the
remainder alone, with its hole where the disc fits in, is continuous across
the plane of the hole. Consequently the total potential jump in crossing

the surface is: O, — O, = 47D (1.27)

This result is analogous to (1.22) for the discontinuity of electric field in
crossing a surface-charge density. Equation (1.27) can be interpreted
“physically” as a potential drop occurring “inside’ the dipole layer, and
can be calculated as the product of the field between the two layers of
surface charge times the separation before the limit is taken.

1.7 Poisson’s and Laplace’s Equations

In Sections 1.4 and 1.5 it was shown that the behavior of an electro-
static field can be described by the two differential equations:

V. .E = 4np (1.13)
VXE=0 (1.14)

the latter equation being equivalent to the statement that E is the gradient
of a scalar function, the scalar potential @:

E=—V (1.16)

and
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Equations (1.13) and (1.16) can be combined into one partial differential
equation for the single function ®(x):

V2D = —4dmp (1.28)

This equation is called Poisson’s equation. In regions of space where there
is no charge density, the scalar potential satisfies Laplace’s equation:

Vip =0 (1.29)
We already have a solution for the scalar potential in expression (1.17):
O(x) = f P gy (1.17)

Ix — x|

To verify that this does indeed satisfy Poisson’s equation (1.28) we operate
with the Laplacian on both sides:

VI = V? f XD g p(X')Vz( ) #x (1.30)

Ix — x'| Ix — x|

We must now calculate the value of V3(1/|x — x’|). It is convenient (and

allowable) to translate the origin to x” and so consider V3(1/r), where r is
the magnitude of x. By direct calculation we find that V3(1/r) = 0 for

r=+0:
2 ' 2
v(l) <L) S L gy

r r dr? r r dr?

At r = 0, however, the expression is undefined. Hence we must use a
limiting process. Since we anticipate something like a Dirac delta function,
we integrate V2(1/r) over a small volume ¥ containing the origin. Then we
use the divergence theorem to obtain a surface integral:

R R I O

=f ﬁ(}—)rz dQ = —4r
S Or\r

™

It has now been established that V(1/r) = 0 for r 5+ 0, and that its volume
integral is —4x. Consequently we can write the improper (but mathe-
matically justifiable) equation, V2(1/r) = —4=wd(x), or, more generally,

V-‘*(‘x _1 x’I) = —4md(x — X)) (1.31)

Having established the singular nature of the Laplacian of 1/r, we can
now complete our check on (1.17) as a solution of Poisson’s equation.
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Equation (1.30) becomes
VD =J‘p(X,)[—:47T(5(X — x)] &' = —4np(x)

verifying the correctness of our solution (1.17).

1.8 Green’s Theorem

If electrostatic problems always involved localized discrete or continuous
distributions of charge with no boundary surfaces, the general solution
(1.17) would be the most convenient and straightforward solution to any
problem. There would be no need of Poisson’s or Laplace’s equation. In
actual fact, of course, many, if not most, of the problems of electrostatics
involve finite regions of space, with or without charge inside, and with
prescribed boundary conditions on the bounding surfaces. These boundary
conditions may be simulated by an appropriate distribution of charges
outside the region of interest (perhaps at infinity), but (1.17) becomes
inconvenient as a means of calculating the potential, except in simple cases
(e.g., method of images).

To handle the boundary conditions it is necessary to develop some new
mathematical tools, namely, the identities or theorems due to George
Green (1824). These follow as simple applications of the divergence
theorem. The divergence theorem:

f V-Adzx = § A-nda
v s

applies to any vector field A defined in the volume ¥ bounded by the closed
surface S. Let A = ¢Vy, where ¢ and y are arbitrary scalar fields. Now

V. (¢Vy) = ¢Viy + V. Vy (1.32)
and
dn

where 0/0n is the normal derivative at the surface S (directed outwards
from inside the volume V). When (1.32) and (1.33) are substituted into
the divergence theorem, there results Green’s first identity:

f ($V2y + Vg - Vy) P = 35 2% da (1.34)
v s On

If we write down (1.34) again with ¢ and y interchanged, and then subtract
it from (1.34), the V¢ - Vy terms cancel, and we obtain Green’s second
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identity or Green’s theorem:

-
f (Vi — pVP¢) d°x = fﬁ Lan—w — wa—ﬂ da (1.35)
v sL” 0dn on

Poisson’s differential equation for the potential can be converted into an
integral equation if we choose a particular , namely 1/R = 1/|x — x/|,
where X is the observation point and x' is the integration variable. Further,
we put ¢ = @, the scalar potential, and make use of V2@ = —4rp. From

(1.31) we know that V3(1/R) = —4#d(x — x'), so that (1.35) becomes

[ [t -1+ ] = o2 (1) 122

If the point x lies within the volume V, we obtain:

_ [ 2%) o ifﬂ}j@_ i(L)] ,

) fr R @ 47 JsLR dn’ ? on’' \R da (1.36)
If x lies outside the surface S, the left-hand side of (1.36) is zero. [Note
that this is consistent with the interpretation of the surface integral as being
the potential due to a surface-charge density ¢ = (1/47)(0®/on’) and a
dipole layer D = —(1/47)®. The discontinuities in electric field and
potential (1.22) and (1.27) across the surface then lead to zero field and
zero potential outside the volume V']

Two remarks are in order about result (1.36). First, if the surface S goes
to infinity and the electric field on § falls off faster than R™1, then the
surface integral vanishes and (1.36) reduces to the familiar result (1.17).
Second, for a charge-free volume the potential anywhere inside the volume
(a solution of Laplace’s equation) is expressed in (1.36) in terms of the
potential and its normal derivative only on the surface of the volume. This
rather surprising result is not a solution to a boundary-value problem, but
only an integral equation, since the specification of both ® and J®/dn
(Cauchy boundary conditions) is an overspecification of the problem. This
will be discussed in detail in the next sections, where techniques yielding
solutions for appropriate boundary conditions will be developed using
Green’s theorem (1.35).

1.9 Uniqueness of the Solution with Dirichlet or Neumann Boundary
Conditions

The question arises as to what are the boundary conditions appropriate
for Poisson’s (or Laplace’s) equation in order that a unique and well-
behaved (i.e., physically reasonable) solution exist inside the bounded
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region. Physical experience leads us to believe that specification of the
potential on a closed surface (e.g., a system of conductors held at different
potentials) defines a unique potential problem. This is called a Dirichlet
problem, or Dirichlet boundary conditions. Similarly it is plausible that
specification of the electric field (normal derivative of the potential) every-
where on the surface (corresponding to a given surface-charge density)
also defines a unique problem. Specification of the normal derivative
is known as the Neumann boundary condition. We now proceed to prove
these expectations by means of Green’s first identity (1.34).

We want to show the uniqueness of the solution of Poisson’s equation,
V2@ = —47p, inside a volume I subject to either Dirichlet or Neumann
boundary conditions on the closed bounding surface S. We suppose, to
the contrary, that there exist two solutions ®; and ®, satisfying the same
boundary conditions. Let

U=, — d, (1.37)

Then V2U = 0 inside ¥V, and U = 0 or dU/én = 0 on S for Dirichlet and
Neumann boundary conditions, respectively. From Green’s first identity
(1.34), with ¢ = » = U, we find

aNﬂU4-VU.VU)ﬁx==§ v Y da (1.38)
v Js  on
With the specified properties of U, this reduces (for both types of boundary

conditions) to:

VU] d%> = 0
‘F?‘

which implies VU = 0. Consequently, inside V¥, U is constant. For
Dirichlet boundary conditions, {/ = 0 on S so that, inside V, ®, = @, and
the solution is unique. Similarly, for Neumann boundary conditions, the
solution is unique, apart from an unimportant arbitrary additive constant.

From the right-hand side of (1.38) it is clear that there is also a unique
solution to a problem with mixed boundary conditions (i.e., Dirichlet over
part of the surface §, and Neumann over the remaining part).

It should be clear that a solution to Poisson’s equation with both ® and
0®/on specified on a closed boundary (Cauchy boundary conditions) does
not exist, since there are unique solutions for Dirichlet and Neumann
conditions separately and these will in general not be consistent. The
question of whether Cauchy boundary conditions on an open surface define
a unique clectrostatic problem requires more discussion than is warranted
here. The reader may refer to Morse and Feshbach, Section 6.2, pp. 692-
706, or to Sommerfeld, Partial Differential Equations in Physics, Chapter
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11, for a detailed discussion of these questions. Morse and Feshbach base
their treatment on the replacement of the partial differential equation by
appropriate difference equations which they then solve by an iterative
procedure. On the other hand, Sommerfeld bases his discussion on the
method of characteristics where possible. The result of these investigations
on which boundary conditions are appropriate is summarized in the table
below (based on one given in Morse and Feshbach), where different types

Type of Equation

Type of .. . Parabolic
Boz’llsldary ,E]hpflc Hyperbolic (heat-con-
Condition (Poisson’s eq.) (wave eq.) duction eq.)

Dirichlet
Open surface Not enough Not enough Unique, stable
solution in one
direction
Closed surface Unique, stable Too much Too much
solution
Neumann
Open surface Not enough Not enocugh Unique, stable
solution in one
direction
Closed surface Unique, stable Too much Too much
solution in
general
Cauchy
Open surface Unphysical Unique, stable}| Too much
results solution
Closed surface Too much Too much Too much

A stable solution is one for which small changes in the boundary conditions
cause appreciable changes in the solution only in the neighborhood of the
boundary.

of partial differential equations and different kinds of boundary conditions
are listed,

Study of the table shows that electrostatic problems are specified only
by Dirichlet or Neumann boundary conditions on a closed surface (part
or all of which may be at infinity, of course).
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1.10 Formal Solution of Electrostatic Boundary-Value Problem with
Green’s Function

The solution of Poisson’s or Laplace’s equation in a finite volume ¥ with
either Dirichlet or Neumann boundary conditions on the bounding surface
S can be obtained by means of Green’s theorem (1.35) and se-called
“Green’s functions,”

In obtaining result (1.36)—not a solution—we chose the function y to
be 1/|x — x'|, it being the potential of a unit point charge, satisfying the
equation:

2 ( L ) = —dmd(x — X)) (1.31)

Ix — x|

The function 1/]x — x| is only one of a class of functions depending on the
variables x and x’, and called Green’s functions, which satisfy (1.31). In

general, V2G(x, x') = —4md(x — X') (1.39)

1
X — X'|

where

G(x, x') = | + F(x, x') (1.40)

with the function F satisfying Laplace’s equation inside the volume V'
V2F(x,x) = 0 (1.41)

In facing the problem of satisfying the prescribed boundary conditions
on O or 0®/dn, we can find the key by considering result (1.36). As has
been pointed out already, this is not a solution satisfying the correct type
of boundary conditions because both @ and d®/dn appear in the surface
integral. It is at best an integral equation for ®. With the generalized
concept of a Green’s function and its additional freedom [via the function
F(x, x)), there arises the possibility that we can use Green’s theorem with
p = G(x, x') and choose F(x, x') to eliminate one or the other of the two
surface integrals, obtaining a result which involves only Dirichlet or
Neumann boundary conditions. Of course, if the necessary G(x, x')
depended in detail on the exact form of the boundary conditions, the
method would have little generality. As will be seen immediately, this is
not required, and G(x, x') satisfies rather simple boundary conditions on S.

With Green’s theorem (1.35), ¢ = @, » = G(x, x’), and the specified
properties of G (1.39), it is simple to obtain the generalization of (1.36):

oo 0G(x, x )] da’

iy gy o L NI
O(x) = Lp(x)cxx,x)d +1L ﬁ 660 22— ) 2.

(1.42)
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The freedom available in the definition of G (1.40) means that we can make
the surface integral depend only on the chosen type of boundary con-
ditions. Thus, for Dirichlet boundary conditions we demand:

G,(x,x)=0 forx'onS (1.43)

Then the first term in the surface integral in (1.42) vanishes and the
solution is

B(x) =f p(X')Gp(x, X') 2’ — ifﬁ ox) %2 (148)
v 4rr Jg on’

For Neumann boundary conditions we must be more careful. The
obvious choice of boundary condition on G(x, X') seems to be

M(x, x)=0 forx'on$S
on’

since that makes the second term in the surface integral in (1.42) vanish,
as desired. But an application of Gauss’s theorem to (1.39) shows that

~

§> ?ﬁ da’ = —4n

s on’

Consequently the simplest allowable boundary condition on Gy is
Gy x,x') = — 4 forx’on S (1.45)
on' S

where S is the total area of the boundary surface. Then the solution is

4 r S .7 1 a(D 1
D(x) = (D)g + | p(XIGN(X, X) d°" + — —— Gyda' (1.46)
Jy 4n Js On

where (@) is the average value of the potential over the whole surface.
The customary Neumann problem is the so-called ‘“‘exterior problem” in
which the volume V'is bounded by two surfaces, one closed and finite, the
other at infinity. Then the surface area S is infinite; the boundary
condition (1.45) becomes homogeneous; the average value (®)g vanishes.

We note that the Green’s functions satisfy simple boundary conditions
(1.43) or (1.45) which do not depend on the detailed form of the Dirichlet
(or Neumann) boundary values. Even so, it is often rather involved (if
not impossible) to determine G(x, x") because of its dependence on the
shape of the surface S. We will encounter such problems in Chapter 2
and 3.

The mathematical symmetry property G(x, X)) = G(x’, x) can be proved
for the Green’s functions satisfying the Dirichlet boundary condition
(1.43) by means of Green’s theorem with ¢ = G(x, y) and » = G(x', y),
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where y is the integration variable. Since the Green’s function, as a function
of one of its variables, is a potential due to a unit point charge, this sym-
metry merely represents the physical interchangeability of the source and
the observation points. For Neumann boundary conditions the symmetry
is not automatic, but can be imposed as a separate requirement.

As a final, important remark we note the physical meaning of F(x, x’).
It is a solution of Laplace’s equation inside ¥ and so represents the
potential of a system of charges external to the volume V. It can be
thought of as the potential due to an external distribution of charges so
chosen as to satisfy the homogeneous boundary conditions of zero
potential (or zero normal derivative) on the surface S when combined with
the potential of a point charge at the source point x". Since the potential
at a point x on the surface due to the point charge depends on the positicn
of the source point, the external distribution of charge F(x, x") must also
depend on the “‘parameter’” x’. From this point of view, we see that the
method of images (to be discussed in Chapter 2) is a physical equivalent
of the determination of the appropriate F(x, x’) to satisfy the boundary
conditions (1.43) or (1.45). For the Dirichlet problem with conductors,
F(x, x’) can also be interpreted as the potential due to the surface-charge
distribution induced on the conductors by the presence of a point charge
at the source point x’.

1.11 Flectrostatic Potential Fnergy and Energy Density

In Section 1.5 it was shown that the product of the scalar potential and
the charge of a point object could be interpreted as potential energy. More
precisely, if a point charge ¢, is brought from infinity to a point x; in a
region of localized electric fields described by the scalar potential @ (which
vanishes at infinity), the work done on the charge (and hence its potential
energy) is given by

W, = q,0(x,) (1.47)
The potential @ can be viewed as produced by an array of (n — 1) charges
g;(j=1,2,...,n — 1) at positions x;. Then

n—1

ox) = > —di— (1.48)

j=1 |X?I - X.'II
so that the potential energy of the charge g; is

n—1

W= g > —— (1.49)

=1 Ix‘t - X.’)I
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It is clear that the rotal potential energy of all the charges due to all the
forces acting between them is:

W= ZZ 9:4; (1.50)

i=1 i< x; — x|
as can be seen most easily by adding each charge in succession. A more
symmetric form can be written by summing over i and j unrestricted, and

then dividing by 2:
1 z 9:;
W=- —— 1.51
2 Z x; — X (130)

It is understood that i = j terms (infinite “‘self-energy’’ terms) are omitted
in the double sum.

For a continuous charge distribution [or, in general, using the Dirac
delta functions (1.6)] the potential energy takes the form:

=1 f f PROPX) o gy (1.52)
2 |x — x'|

Another expression, equivalent to (1.52), can be obtained by noting that

one of the integrals in (1.52) is just the scalar potential (1.17). Therefore

W= % Jp(x)(l)(x) & (1.53)

Equations (1.51), (1.52), and (1.53) express the electrostatic potential
energy in terms of the positions of the charges and so emphasize the
interactions between charges via Coulomb forces. An alternative, and
very fruitful, approach is to emphasize the electric field and to interpret
the energy as being stored in the electric field surrounding the charges. To
obtain this latter form, we make use of Poisson’s equation to eliminate the
charge density from (1.53):

87
Integration by parts leads to the result:
w=L f VO PP = L f E? & (1.54)
8 8

where the integration is over all space. In (1.54) all explicit reference to
charges has gone, and the energy is expressed as an integral of the square
of the electric field over all space. This leads naturally to the identification
of the integrand as an energy density w:

=L (1.55)

8
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Fig. 1.8
This expression for energy density is intuitively reasonable, since regions
of high fields ““must” contain considerable energy.

There is perhaps one puzzling thing about (1.55). The energy density is
positive definite. Consequently its volume integral is necessarily non-
negative. This seems to contradict our impression from (1.51) that the
potential energy of two charges of opposite sign is negative. The reason
for this apparent contradiction is that (1.54) and (1.55) contain “‘self-
energy” contributions to the energy density, whereas the double sum in
(1.51) does not. To illustrate this, consider two point charges ¢, and g,
located at x; and x,, as in Fig. 1.8. The electric field at the point P with
coordinate x is

E = 4i(X — Xy) | (X — Xp)
Ix — x,[* Ix — x,[°

so that the energy density (1.55) is

- a qs° DX = X1) (X — X)) g 50

= +
8m|x — x5|*  87x — Xyt dmx — x|%|x — x,/?

Clearly the first two terms are self-energy contributions. To show that the
third term gives the proper result for the interaction potential energy we_
integrate over all space:

VVint — q192 (X — Xl)s' (X — X2) d3x (157)
dr J Ix — x,% [x — x/®

A change of integration variable to p = (x — X,)/|X; — X,| yields

Wi = 82 L f pip+1) g, (1.58)
X, — x| 4w J plp +nf?
where n is a unit vector in the direction (x; — X,). By straightforward
integration the dimensionless volume integral can be shown to have the
value 4=, so that the interaction energy reduces to the expected value.
Forces acting between charged bodies can be obtained by calculating
the change in the total electrostatic energy of the system under small
virtual displacements. Examples of this are discussed in the problems.
Care must be taken to exhibit the energy in a form showing clearly those
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factors which vary with a change in configuration and those which are
kept constant.

As a simple illustration we calculate the force per unit area on the surface
of a conductor with a surface-charge density o(x). In the immediate
neighborhood of the surface the energy density is

W= L [E|?2 = 27¢? (1.59)
87

If we now imagine a small outward displacement Az of an elemental area
Aa of the conducting surface, the electrostatic energy decreases by an
amount which is the product of energy density w and the excluded volume

Az Aa: AW = —2m0?Aa Az (1.60)

This means that there is an outward force per unit area equal to 27o* = w
at the surface of the conductor. This result is normally derived by taking
the product of the surface-charge density and the electric field, with care
taken to eliminate the electric ficld due to the element of surface-charge
density itself.

REFERENCES AND SUGGESTED READING
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Sommerfeld, Partial Differential Equations in Physics, Chapter II,
Courant and Hilbert, Vol. II, Chapters ITI-VI.
The general theory of Green’s functions is treated in detail by
Friedman, Chapter 3,
Morse and Feshbach, Chapter 7.
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Jeans, Chapters II, VI, V1L
Of more recent books, mention may be made of the treatment of the general theory by
Stratton, Chapter 111, and parts of Chapter 11.

PROBLEMS

1.1 Use Gauss’s theorem to prove the following statements:
(a) Any excess charge placed on a conductor must lie entirely on its
surface. (A conductor by definition contains charges capable of moving
freely under the action of applied electric fields.)



24

1.2

1.3
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1.5

1.6
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(b) A closed, hollow conductor shields its interior from fields due to
charges outside, but does not shield its exterior from the fields due to
charges placed inside it.

(¢) The electric field at the surface of a conductor is normal to the surface
and has a magnitude 4=o, where o is the charge density per unit area on the
surface.

Two infinite, conducting, plane sheets of uniform thicknesses ¢, and #,,
respectively, are placed parallel to one another with their adjacent faces
separated by a distance L. The first sheet has a total charge per unit area
(sum of the surface-charge densities on either side) equal to ¢,, while the
second has g,. Use symmetry arguments and Gauss’s law to prove that

(@) the surface-charge densities on the adjacent faces are equal and
opposite;

(b) the surface-charge densities on the outer faces of the two sheets are
the same;

(c) the magnitudes of the charge densities and the fields produced are
independent of the thicknesses 7, and 7, and the separation L.

Find the surface-charge densities and fields explicitly in terms of ¢; and
¢a, and apply your results to the special case g; = —¢q, = Q.

Each of three charged spheres of radius a, one conducting, one having a
uniform charge density within its volume, and one having a spherically
symmetric charge density which varies radially as »™ (» > —3), has a total
charge Q. Use Gauss’s theorem to obtain the electric fields both inside and
outside each sphere. Sketch the behavior of the fields as a function of
radius for the first two spheres, and for the third with n = -2, +2.

The time-average potential of a neutral hydrogen atom is given by

e or

where ¢ is the magnitude of the electronic charge, and ! = a¢/2. Find
the distribution of charge (both continuous and discrete) which will give
this potential and interpret your result physically.

A simple capacitor is a device formed by two insulated conductors adjacent
to each other. If equal and opposite charges are placed on the conductors,
there will be a certain difference of potential between them. The ratio of
the magnitude of the charge on one conductor to the magnitude of the
potential difference is called the capacitance (in electrostatic units it is
measured in centimeters). Using Gauss’s law, calculate the capacitance of

(a) two large, flat, conducting sheets of area A, separated by a small
distance d;

(b) two concentric conducting spheres with radii a, b (b > a);

(c¢) two concentric conducting cylinders of length L, large compared to
their radii a, b (b > a).

(d) What is the inner diameter of the outer conductor in an air-filled
coaxial cable whose center conductor is B&S #20 gauge wire and whose
capacitance is 0.5 micromicrofarad/cm? 0.05 micromicrofarad/em?

Two long, cylindrical conductors of radii a; and a; are parallel and
separated by a distance & which is large compared with either radius.
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Show that the capacitance per unit length is given approximately by

—1
C ~ (4 Ing)
a

where a is the geometrical mean of the two radii.

Approximately what B&S gauge wire (state diameter in millimeters
as well as gauge) would be necessary to make a two-wire transmission line
with a capacitance of 0.1 puf/cm if the separation of the wires was 0.5 cm?
1.5cm? 5.0 cm?

1.7 (@) For the three capacitor geometries in Problem 1.5 calculate the total
electrostatic energy and express it alternatively in terms of the equal and
opposite charges Q and —Q placed on the conductors and the potential
difference between them.

(b) Sketch the energy density of the electrostatic field in each case as a
function of the appropriate linear coordinate.

1.8 Calculate the attractive force between conductors in the parallel plate
capacitor (Problem 1.5a) and the parallel cylinder capacitor (Problem 1.6)
for

(a) fixed charges on each conductor;
(b) fixed potential difference between conductors.

1.9 Prove the mean value theorem: For charge-free space the value of the
electrostatic potential at any point is equal to the average of the potential
over the surface of any sphere centered on that point.

1.10 Use Gauss’s theorem to prove that at the surface of a curved charged
conductor the normal derivative of the electric field is given by

1 9E 1 + 1
Eam~ \R, R,
where R; and R, are the principal radii of curvature of the surface.

1.11 Prove Green’s reciprocation theorem: 1If @ is the potential due to a volume-
charge density p within a volume V and a surface-charge density o on the
surface § bounding the volume ¥, while ®” is the potential due to another
charge distribution p” and o, then

f pQ’ d3x +f a®’ da =J p’® ddx +fa’(l) da
vV S V N

1.12 Prove Thomson’s theorem: If a number of conducting surfaces are fixed in
position and a given total charge is placed on each surface, then the electro-
static energy in the region bounded by the surfaces is a minimum when the
charges are placed so that every surface is an equipotential.

1.13 Prove the foliowing theorem: If a number of conducting surfaces are
fixed in position with a given total charge on each, the introduction of an
uncharged, insulated conductor into the region bounded by the surfaces
lowers the electrostatic energy.



Boundary-Value Problems

in Electrostaties: I

Many problems in electrostatics involve boundary surfaces on which
either the potential or the surface-charge density is specified. The formal
solution of such problems was presented in Section 1.10, using the method
of Green’s functions. In practical situations (or even rather idealized
approximations to practical situations) the discovery of the correct Green’s
function is sometimes easy and sometimes not. Consequently a number of
approaches to electrostatic boundary-value problems have been developed,
some of which are only remotely connected to the Green’s function
method. In this chapter we will examine two of these special techniques:
(1) the method of images, which is closely related to the use of Green’s
functions; (2) expansion in orthogonal functions, an approach directly
through the differential equation and rather remote from the direct
construction of a Green’s function. Other methods of attack, such as the
use of conformal mapping in two-dimensional problems, will be omitted.
For a discussion of conformal mapping the interested reader may refer to
the references cited at the end of the chapter.

2.1 Method of Images

The method of images concerns itself with the problem of one or more
point charges in the presence of boundary surfaces, e.g., conductors either
grounded or held at fixed potentials. Under favorable conditions it is
possible to infer from the geometry of the situation that a small number of
suitably placed charges of appropriate magnitudes, external to the rcgion
of interest, can simulate the required boundary conditions. These charges

26
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Fig. 2.1 Solution by method of :
images. The original potential I
problem is on the left, the I
equivalent-image problem on i

the right. [

are called image charges, and the replacement of the actual problem with
boundaries by an enlarged region with image charges but no boundaries is
called the method of images. The image charges must be external to the
volume of interest, since their potentials must be solutions of Laplace’s
equation inside the volume; the ‘“‘particular integral” (i.e., solution of
Poisson’s equation) is provided by the sum of the potentials of the charges
inside the volume.

A simple example is a point charge located in front of an infinite plane
conductor at zero potential, as shown in Fig. 2.1. It is clear that this is
equivalent to the problem of the original charge and an equal and opposite
charge located at the mirror-image point behind the plane defined by the
position of the conductor,

2.2 Point Charge in the Presence of a Grounded Conducting
Sphere

As an illustration of the method of images we consider the problem
illustrated in Fig. 2.2 of a point charge ¢ located at y relative to the origin
around which is centered a grounded conducting sphere of radius a.* We
seek the potential ®(x) such that ®(|x] = a) = 0. By symmetry it is
evident that the image charge ¢’ (assuming that only one image is needed)
will lie on the ray from the origin to the charge ¢g. If we consider the charge
q outside the sphere, the image position y” will lie inside the sphere. The

* The term grounded is used to imply that the surface or object is held at the same
potential as the point at infinity by means of some fine conducting connector. The
connection is assumed not to disturb the potential distribution. But arbitrary amounts
of charge of either sign can flow onto the object from infinity in order to maintain its
potential at “*ground” (usually taken to be zero potential). A conductor held at a fixed
potential is essentially the same situation, except that a voltage source is interposed
between the object and *“ground.”
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Fig. 2.2 Conducting sphere of
radius a, with charge g and image
charge ¢’.

potential due to the charges g and ¢’ is:

’

q q
O(x) = 2.1
&) Ix —yl * Ix — ¥l @D

We now must try to choose ¢’ and |y’| such that this potential vanishes at
|x| = a. If nis a unit vector in the direction x, and n’ a unit vector in the
direction y, then

’

o) = —L— 4 —T 2.2)
lan — yn’|  |an — y'n’|

If = is factored out of the first term and y’ out of the second, the potential
at x = a becomes:

oz = a) = —F—0g 4 4 (2.3)

From the form of (2.3) it will be seen that the choices:
q 4 ¥y_4a
a a y
make ®(x = a) = 0, for all possible values of n - n’. Hence the magnitude
and position of the image charge are

2

a
— -g, [ 2.4
q = y‘] y—y (2.4)
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We note that, as the charge g is brought closer to the sphere, the image
charge grows in magnitude and moves out from the center of the sphere.
When ¢ is just outside the surface of the sphere, the image charge is equal
and opposite in magnitude and lies just beneath the surface.

Now that the image charge has been found, we can return to the original
problem of a charge g outside a grounded conducting sphere and consider
various effects. The actual charge density induced on the surface of the
sphere can be calculated from the normal derivative of @ at the surface:

a®
1 90 | (1 - —2)
= dnox TG qa2(g) a® ya 7 (29)
wma Y (1-!———2-—2—(:05)/)
' Y y

where y is the angle between x and y. This charge density in units of
—q/4wa® is shown plotted in Fig. 2.3 as a function of y for two values of
yfa. The concentration of charge in the direction of the point charge ¢ is
evident, especially for y/a = 2. 1t is easy to show by direct integration
that the total induced charge on the sphere is equal to the magnitude of the
image charge, as it must according to Gauss’s law.

Fig. 2.3 Surface-charge density o
induced on the grounded sphere
of radius @ due to the presence
of a point charge ¢ located a dis-
tance ¥ away from the center of
the sphere. o is plotted in units of
—q/4ma® as function of the angular
position y away from the radius
to the charge for ¥ = 2gq, 4a.
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dF =2ro?da

Fig. 2.4

The force acting on the charge g can be calculated in different ways.
One (the easiest) way is to write down immediately the force between the
charge g and the image charge ¢". The distance between themis y — %' =
y(1 — a?/y*). Hence the attractive force, according to Coulomb’s law, is:

=22

For large separations the force is an inverse cube law, but close to the
sphere it is proportional to the inverse square of the distance away from
the surface of the sphere.

The alternative method for obtaining the force is to calculate the total
force acting on the surface of the sphere. The force on each element of
area da is 270® da, where o is given by (2.5), as indicated in Fig. 2.4. But
from symmetry it is clear that only the component parallel to the radius
vector from the center of the sphere to g contributes to the total force.
Hence the total force acting on the sphere (equal and opposite to the force
acting on q) is given by the integral:

2 2 2\2
|F| = —‘1—(3) (1 - “—)f oSy aQ 2.7)
8ma® \y y? ( a® 2a )3
L+ — — —cosy
Yy Y

Integration immediately yields (2.6).

The whole discussion has been based on the understanding that the
point charge g is outside the sphere. Actually, the results apply equally for
the charge g inside the sphere. The only change necessary is in the surface-
charge density (2.5), where the normal derivative out of the conductor is
now radially inwards, implying a change in sign. The reader may transcribe
all the formulas, remembering that now y < 4. The angular distributions
of surface charge are similar to those of Fig. 2.3, but the total induced
surface charge is evidently equal to —g, independent of y.
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2.3 Point Charge in the Presence of a Charged, Insulated,
Conducting Sphere

In the previous section we considered the problem of a point charge g
near a grounded sphere and saw that a surface-charge density was induced
on the sphere. This charge was of total amount ¢’ = —agq/y, and was
distributed over the surface in such a way as to be in equilibrium under all
forces acting.

If we wish to consider the problem of an insulated conducting sphere
with total charge Q in the presence of a point charge ¢, we can build up
the solution for the potential by linear superposition. In an operational
sense, we can imagine that we start with the grounded conducting sphere
(with its charge ¢" distributed over its surface). We then disconnect the
ground wire and add to the sphere an amount of charge (Q — ¢'). This
brings the total charge on the sphere up to Q. To find the potential we
merely note that the added charge (Q — ¢) will distribute itself uniformly
over the surface, since the electrostatic forces due to the point charge g are
already balanced by the charge ¢’. Hence the potential due to the added
charge (Q — ¢') will be the same as if a point charge of that magnitude
were at the origin, at least for points outside the sphere.

The potential is the superposition of (2.1) and the potential of a point
charge (Q — ¢) at the origin:

4 0+ %4

o) =—3 - 4 4 ¥ (2.8)
x—y | _& x

ypx =5y

The force acting on the charge ¢ can be written down directly from
Coulomb’s law. It is directed along the radius vector to ¢ and has the
magnitude:

F— E{Q _ 10"y = “2)] y (2.9)
v y@* —a Jy
In the limit of ¥ > a, the force reduces to the usual Coulomb’s law for two
small charged bodies. But close to the sphere the force is modified because
of the induced charge distribution on the surface of the sphere. Figure 2.5
shows the force as a function of distance for various ratios of Q/g. The
force is expressed in units of g2/y?; positive (negative) values correspond
to a repulsion (attraction). If the sphere is charged oppositely to g, or is
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Qlg=3

Fig. 2.5 The force on a point charge ¢ due to an insulated, conducting sphere of radius

a carrying a total charge Q. Positive values mean a repulsion, negative an attraction.

The asymptotic dependence of the force has been divided out. Fy*/g* is plotted versus

y/a for Q/g = —1,0,1,3. Regardless of the value of Q, the force is always attractive
at close distances because of the induced surface charge,

uncharged, the force is attractive at all distances. Even if the charge Q is
the same sign as g, however, the force becomes attractive at very close
distances. In the limit of Q > ¢, the point of zero force (unstable equili-
brium point) is very close to the sphere, namely, at ¥ ~ a(l + $V/ El_é).
Note that the asymptotic value of the force is attained as soon as the charge
g is more than a few radii away from the sphere.

This example exhibits a general property which explains why an excess
of charge on the surface does not immediately leave the surface because of
mutual repulsion of the individual charges. As soon as an element of
charge is removed from the surface, the image force tends to attract it
back. If sufficient work is done, of course, charge can be removed from
the surface to infinity. The work function of a metal is in large part just
the work done against the attractive image force in order to remove an
electron from the surface.
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2.4 Point Charge near a Conducting Sphere at Fixed Potential

Another problem which can be discussed easily is that of a point charge
near a conducting sphere held at a fixed potential V. The potential is the
same as for the charged sphere, except that the charge (Q — ¢') at the
center is replaced by a charge (Va). This can be seen from (2.8), since at
[x] = a the first two terms cancel and the last term will be equal to V as
required. Thus the potential is

B(x) = —1 ag___ Ve (2.10)

- 2
X — a X
Ix — ¥ ylx—Ly |x]

The force on the charge ¢ due to the sphere at fixed potential is

F = %[Va — —2—‘1’—“—3’3?}2 (2.11)
Y (y" —a)ly

For corresponding values of Va/q and Q/q this force is very similar to that

of the charged sphere, shown in Fig. 2.5, although the approach to

the asymptotic value (Vag/y®) is more gradual. For Va > g, the unstable
equilibrium point has the equivalent location y ~ a(1 + W g/ Va).

2.5 Conducting Sphere in a Uniform Electric Field by Method
of Images

As a final example of the method of images we consider a conducting
sphere of radius « in a uniform electric field E,. A uniform field can be
thought of as being produced by appropriate positive and negative charges
at infinity. For example, if there are two charges + Q, located at positions
z = FR, as shown in Fig. 2.6q, then in a region near the origin whose
dimensions are very small compared to R there is an approximately
constant electric field E; =~ 2Q/R? parallcl to the z axis. In the limit as
R, Q — oo, with Q/R? constant, this approximation becomes exact.

If now a conducting sphere of radius a is placed at the origin, the
potential will be that due to the charges +Q at FR and their images
FQa/R at z = Fa?/R:

_ Q _ Y
(r® + R® 4 2rR cos 0)*  (r* + R? — 2rR cos )"
o 4 i© 2 T 1 = 7 (2.12)
2 . d 2a*r * o . 4 2a%r :
Rir+—+ cos 0 R\r* 4 — — cos 0
R? R R? R
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Fig. 2.6 Conducting sphere in a uniform electric field by the method of images.

where @ has been expressed in terms of the spherical coordinates of the
observation point. In the first two terms R is much larger than r by
assumption. Hence we can expand the radicals after factoring out R
Similarly, in the third and fourth terms, we can factor out r? and then
expand. The result is:

2 20 a®
@:[—R—ngOSG+R—%%cosﬁ]+-” (2.13)
where the omitted terms vanish in the limit R — co. In that limit 2Q/R?
becomes the applied uniform field, so that the potential is

a®
= —Eo(r — —2) cos @ (2.14)
r

The first term (— Eg) is, of course, just the potential of a uniform field E,
which could have been written down directly instead of the first two terms
in (2.12). The second is the potential due to the induced surface charge
density or, equivalently, the image charges. Note that the image charges
form a dipole of strength D = Qa/R x 2a*/R = Ew® The induced
surface-charge density is

o= — L0 _3 g cost (2.15)

45 or Yz

r=g
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We note that the surface integral of this charge density vanishes, so that
there is no difference between a grounded and an insulated sphere.

2.6 Method of Inversion

The method of images for a sphere and related topics discussed in the
previous sections suggest that there is some sort of equivalence of solutions
of potential problems under the reciprocal radius transformation,

a2

r—r =— (2.16)
r

This equivalence forms the basis of the method of inversion, and trans-
formation (2.16) is called inversion in a sphere. The radius of the sphere is
called the radius of inversion, and the center of the sphere, the center of
inversion. The mathematical equivalence is contained in the following
theorem:

Let @(r, 6, ¢) be the potential due to a set of point charges ¢, at the
points (r;, 0, ¢,). Then the potential

, a . {a®
(D(ra ﬁa ?5):‘(1)(_:8’ ¢) (217)
ro\r
is the potential due to charges,
4/ =>q, (2.18)

located at the points (@?/r;, 0, ¢,).

The proof of the theorem is as follows. The potential d(r, 0, $) can be
written as

(D=2\/r2+ri2 .

— 2rr; cos y;

where y, is the angle between the radius vectors x and x,. Under trans-
formation (2.16) the angles remain unchanged. Consequently the new
potential @’ is

O'(r, 0, $) =2

Z q;
r Jat 2a®
¢ 9
,\/—2+rz — — I;COS Y,
r r
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Fig. 2.7

By factoring (r2/r?) out of the square root, this can be written

"
NS v+

4 2
. a a
' A/r2+—2—2r——cosyi

r; r;

This proves the theorem. :

Figure 2.7 shows a simple configuration of charges before and after
inversion. The potential @’ at the point P due to the inverted distribution
of charge is related by (2.17) to the original potential ® at the point P’ in
the figure.

The inversion theorem has been stated and proved with discrete charges.
It is left as an exercise for the reader to show that, if the potential ®
satisfies Poisson’s equation,

V2D = —47p
the new potential @’ (2.17) also satisfies Poisson’s equation,
V2Q'(r, 0, ) = —4=wp'(r, 0, P) (2.19)
where the new charge density is given by
aVY (a®
pi(r, 0, ¢) = (;) P(: , 0, ¢) (2.20)

The connection between this transformation law for charge densities and
the law (2.18) for point charges can be established by considering the
charge density as a sum of delta functions:

p(xX) = 2 4:0(x — x,)
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In terms of spherical coordinates centered at the center of inversion the
charge density can be written

pUr. 0, ) = 2, 40(Q — )= 80 — 1)

where 0(£2 — £2)) is the angular delta function whose integral over solid
angle gives unity, and 6(r — r;,) is the radial delta function.* Under
inversion the angular factor is unchanged. Consequently we have

2 1 2
p(“7, 0,4) = D400 - )L, a(% )

The radial delta function can be transformed according to rule 5 at the
end of Section 1.2 as

2 2 2 2 2
(% =r) =5o(r - L) = Lol )
r a r; ¥, v,

2 K

(%)

a’ \ a® B ¥,
P(—’j , 0, ¢) = zi:qz‘é(ﬁ — ) i -(?2)2——
F;
and the inverted charge density (2.20) becomes

P04 =% Da, (f) 0 — x/) = > a/8(x = %))

Then

T

where x,” = (a%/r,, 0, $) and g, = (a/r))q,. as required by (2.18).
With the transformation laws for charges and volume-charge densities

given by (2.18) and (2.20), it will not come as a great surprise that the
transformation of surface-charge densities is according to

o(r, 0, $) = (%)30(%2 0, ¢) (2.21)

Before treating any examples of inversion there are one or two physical
and geometrical points which need discussion. First, in regard to the
physical points, if the original potential problem is one where there are
conducting surfaces at fixed potentials, the inverted problem will not in
general involve the inversions of those surfaces held at fixed potentials.
This is evident from (2.17), where the factor a/r shows that even if @ is
constant on the original surface the potential @’ on the inverted surface is

"f The factor r,~2 multiplying the radial delta function is present to cancel out the r?
Which appears in the volume element d®x = r? dr dQ.
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Fig. 2.8 Geometry of inversion.

Center of inversion is at 0. Radius

of inversion is a. The inversion of

the surface S is the surface S’, and
vice versa.

not. The only exception occurs when @ vanishes on some surface. Then
@’ also vanishes on the inverted surface.

One might think that, since @ is arbitrary to the extent of an additive
constant, we could make any surface in the original problem have zero
potential and so also be at zero potential in the inverted problem. This
brings us to the second physical point. The inverted potentials corre-
sponding to two potential problems differing only by an added constant
potential @, represent physically different charge configurations, namely,
charge distributions which differ by a point charge a®, located at the center
of inversion. This can be seen from (2.17), where a constant term @, in @
is transformed into (a®,/r). Consequently care must be taken in applying
the method of inversion to remember that the mapping of the point at
infinity into the origin may introduce point charges there. If these are not
wanted, they must be separately removed by suitable linear superposition.

The geometrical considerations involve only some elementary points
which can be proved very simply. The notation is shown in Fig. 2.8. Let
O be the center of inversion, and a the radius of inversion. The inter-
section of the sphere of inversion and the plane of the paper is shown as
the dotted circle. A surface S intersects the page with the curve AB. The
inverted surface S”, obtained by transformation (2.16), intersects the page
in the curve A’B’. The following facts are stated without proof:

(@) Angles of intersection are not altered by inversion.

() An element of area da on the surface S is related to an element of
area da’ on the inverted surface S’ by da/da’ = r?/r'™.

(¢) The inverse of a sphere is always another sphere [perhaps of infinite
radius; see (d)].

(d) The inverse of any plane is a sphere which passes through the center
of inversion, and conversely.

Figure 2.9 illustrates the possibilities involved in (c¢) and (d) when the
center of inversion lies outside, on the surface of, or inside the sphere.
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As a very simple example of the solution of a potential problem by
jnversion we consider an isolated conducting sphere of radius R with a
total charge Q on it. The potential has the constant value Q/R inside the
sphere and falls off inversely with distance away from the center for points
outside the sphere. By a suitable choice of center of inversion and
associated parameters we can obtain the potential due to a point charge ¢
a distance d away from an infinite, grounded, conducting plane. Evidently,
if the center of inversion O is chosen to lie on the surface of the sphere of
radius R, the sphere will invert into a plane. This geometric situation is
shown in Fig. 2.10. Furthermore, if we choose the arbitrary additive
constant potential @ to have the value — Q/R, the sphere and its inversion,
the plane, will be at zero potential, while a point charge —a Q/R will appear
at the center of inversion. In order that we end up with a point chargeg a
distance 4 away from the plane it is necessary to choose the radius of
inversion to be ¢ = (2Rd)** and the initial charge, Q = —(R/2d)*%q. The
surface-charge density induced on the plane can be found easily from (2.21).
Since the charge density on the sphere is uniform over its surface, the
induced charge density on the plane varies inversely as the cube of the
distance away [rom the origin (as can be verified from the image solution;
see Problem 2.1).

If the center of inversion is chosen to lie outside the isolated uniformly
charged sphere, it is clear from Fig. 2.9 that the inverted problem can be
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l’j‘ig, 2.9 Various possibilities for the inversion of a sphere. If the center of inversion O
lies on the surface S of the sphere, the inverted surface S” is a plane; otherwise it is
another sphere. The sphere of inversion is shown dotted.
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made that of a point charge near a grounded conducting sphere, handled
by images in Section 2.2. The explicit verification of this is left to Problem
2.9.

A very interesting use of inversion was made by Lord Kelvin in 1847.
He calculated the charge densities on the inner and outer surfaces of a thin,
charged, conducting bowl made from a sphere with a cap cut out of it. The
potential distribution which he inverted was that of a thin, flat, charged,
circular disc (the charged disc is discussed in Section 3.12). As the shape
of the bowl is varied from a shallow watch glass-like shape to an almost
closed sphere, the charge densities go from those of the disc to those of a
closed sphere, in the one limit being almost the same inside and out, but
concentrated at the edges of the bowl, and in the other limit being almost
zero on the inner surface and uniform over the outer surface. Numerical
values are given in Kelvin’s collected papers, p. 186, and in Jeans, pp.
250-251.

2.7 Green’s Function for the Sphere; General Solution
for the Potential

In preceding sections the problem of a conducting sphere in the presence
of a point charge has been discussed by the method of images. As was
mentioned in Section 1.10, the potential due to a unit charge and its image
(or images), chosen to satisfy homogeneous boundary conditions, is just
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the Green’s function (1.43 or 1.45) appropriate for Dirichlet or Neumann
boundary conditions. In G(x, x') the variable x’ refers to the location P’
of the unit charge, while the variable x is the point P at which the potential
is being evaluated. These coordinates and the sphere are shown in Fig.
2.11. For Dirichlet boundary conditions on the sphere of radius a the
potential due to a unit charge and its image is given by (2.1) with ¢ = 1
and relations (2.4). Transforming variables appropriately, we obtain the
Green’s function:
G(x,x') = ! — 2 r— (2.22)
a ’
X — ;:72 X

xl

In terms of spherical coordinates this can be written:

1 1
(2 + &'% — 222’ cos y)* (xzx’2

G(x, x') =

L3
— + a® — 2xx’ cos y)
a

(2.23)

where y is the angle between x and x’. The symmetry in the variables x
and x’ is obvious in the form (2.23), as is the condition that G = 0 if either x
or x’' is on the surface of the sphere.
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For solution (1.44) of Poisson’s equation we need not only G, but also
0G/dn’. Remembering that n’ is the unit normal outwards from the
volume of interest, i.e., inwards along x’ toward the origin, we have

_@E
on’

(2% — a?)

— ; 2.24
a(z® + a® — 2azx cos y)* 224

«’ =a

[Note that this is essentially the induced surface-charge density (2.5).]
Hence the solution of Laplace’s equation outside a sphere with the potential
specified on its surface is, according to (1.44),

a(z®* — a%)

(2 + a® — 2ax cos y)*

o0 =+ Joia 0, 99 Q225

where d()’ is the element of solid angle at the point (g, 0', ¢") and cos y =
cos 6 cos 0" + sin Osin 6" cos (¢ — ¢"). For the interior problem, the
normal derivative is radially outwards, so that the sign of 0G/dn’ is opposite
to (2.24). This is equivalent to replacing the factor (2 — 42) by (a? — 2?)
in (2.25). For a problem with a charge distribution, we must add to (2.25)
the appropriate integral in (1.44), with the Green’s function (2.23).

2.8 Conducting Sphere with Hemispheres at Different Potentials

As an example of general solution for the potential outside a sphere
with prescribed values of potential on its surface, we consider the con-
ducting sphere of radius ¢ made up of two hemispheres separated by a small
insulating ring. The hemispheres are kept at different potentials. It will
suffice to consider the potentials as £V, since arbitrary potentials can be
handled by superposition of the sclution for a sphere at fixed potential
over its whole surface. The insulating ring lies in the z = 0 plane, as
shown in Fig. 2.12, with the upper (lower) hemisphere at potential + ¥

(=¥

Fig. 2.12
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From (2.25) the solution for ®(z, 0, ¢) is given by the integral:
2 2
(z, 0, $) = f dg’ U d(cos ') — f d(cos 0 )} . alw” —a)

(a® + 2* — 2ax cos y)*
(2.26)

By a suitable change of variables in the second integral (0’ > m — 0,
' —¢ + ), this can be cast in the form:

M_f_) f e’ J d(cos 6")[(a® + 2* — 2azxcosy) ™%

— (a® + 22 + 2axcos )~ F] (2.27)

O(z,0,$) =

Because of the complicated dependence of cos y on the angles (0, ¢") and
(0, $), equation (2.27) cannot in general be integrated in closed form.

As a special case we consider the potential on the positive z axis. Then
cosy = cos ' since 6 = 0. The integration is elementary, and the
potential can be shown to be

D)=V [1 - (ﬁ;ﬂ} (2.28)
2?4+ a®
At z = a, this reduces to ® = V as required, while at large distances it
goes asymptotically as @ ~ 3Va2/222,
In the absence of a closed expression for the integrals in (2.27), we can
expand the denominator in power series and integrate term by term.
Factoring out (¢® 4+ a?) from cach denominator, we obtain

Z—Vd_((x_-{—w d¢ f d(cos 0 )[(1 — 2acosy)” %

— (14 2xcosy)™ %] (2.29)

O(z, 0, d) =

where « = ax/(a® + 2*). We observe that in the expansion of the radicals
only odd powers of « cos  will appear:

[(1 — 2a cos p)=* — (1 + 2« cos y)~*] = 6x cos ¥ + 35a3 cos®y + - -
(2.30)

It is now necessary to integrate odd powers of cos y over d¢’ d(cos 8'):

2r 1 b
f dgb’f d(cos 0") cos y = mcos 0 ‘
R L (2.31)

27 1
f qu’f d(cos 6') cos® y = Zcos 6(3 — cos® B)J
0 0
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If (2.30) and (2.31) are inserted into (2.29), the potential becomes

3Va? {a¥(a® — a®)
O(z, 0, ) = o ((xz - az)%) cos 0

35  a%® }
X |14+ =—""-—(3—cos?) +--- 2.32

[ +24(a2+x2)2( )+ (232)
We note that only odd powers of cos 6 appear, as required by the symmetry
of the problem. If the expansion parameter is (a?/#?), rather than o2, the
series takes on the form:

_3va? _Ta*(5 5, 3 ) }
O(x, 0, d) = > [Cosﬁ 12x2(2 cos®f 2c0s6 + (2.33)
For large values of x/a this expansion converges rapidly and so is a useful
representation for the potential. Even for z/a = 5, the second term in the
series is only of the order of 2 per cent. It is easily verified that, for
cos B = 1, expression (2.33) agrees with the expansion of (2.28) for the
potential on the axis. [The particular choice of angular factors in (2.33) is
dictated by the definitions of the Legendre polynomials. The two factors
are, in fact, Py(cos ) and Py(cos ), and the expansion of the potential is
one in Legendre polynomials of odd order. We shall establish this in a
systematic fashion in Section 3.3.]

2.9 Orthogonal Functions and Expansions

The representation of solutions of potential problems (or any mathe-
matical physics problem) by expansions in orthogonal functions forms a
powerful technique that can be used in a large class of problems. The
particular orthogonal set chosen depends on the symmetries or near
symmetries involved. To recall the general properties of orthogonal
functions and expansions in terms of them, we consider an interval (a, b)
in a variable & with a set of real or complex functions U,(§),n= 1,2, ...,
orthogonal on the interval (@, b). The orthogonality condition on the
functions U, (&) is expressed by

]
J‘ U QU5 dE=0, m#£n (2.34)

If n = m, the integral is finite. We assume that the functions are normal-
ized so that the integral is unity. Then the functions are said to be
orthonormal, and they satisfy

ben*(s)Um(S) dE =6, (2.35)
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An arbitrary function f(£), square integrable on the interval (a, b), can
be expanded in a series of the orthonormal functions U, (§). If the number
of terms in the series is finite (say V),

&> 30,0, 236

then we can ask for the ““best” choice of coefficients a,, so that we get the
“best” representation of the function f(&). If “best” is defined as mini-
mizing the mean square error My :

b
@

it is easy to show that the coefficients are given by

2
dé¢ (2.37)

N

a, = f bUn*@)f(s) dé (2.38)

where the orthonormality condition (2.35) has been used. This is the
standard result for the coefficients in an orthonormal function expansion.

If the number of terms N in series (2.36) is taken larger and larger, we
intuitively expect that our series representation of f(&) is *‘better” and
“petter.”” Our intuition will be correct provided the set of orthonormal
functions is complete, completeness being defined by the requirement that
there exist a finite number &, such that for N > N, the mean square error
M y can be made smaller than any arbitrarily small positive quantity. Then
the series representation

E':ilanvn@) — 1(® (2.39)

with a,, given by (2.38) is said to converge in the mean to f(&). Physicists
generally leave the difficult job of proving completeness of a given set of
functions to the mathematicians. All orthonormal sets of functions
normally occurring in mathematical physics have been proved to be
complete.

Series (2.39) can be rewritten with the explicit form (2.38) for the
coefficients a,,:

1o =["{Surew.o) e e (2.40

Since this represents any function f(&) on the interval (a, b), it is clear that
the sum of bilinear terms U, *(¢")U,,(¢) must exist only in the neighborhood
of & = £, In fact, it must be true that

2 U0 = E - 8 241)
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This is the so-called completeness or closure relation. It is analogous to the
orthonormality condition (2.35), except that the roles of the continuous
variable & and the discrete index n have been interchanged.

The most famous orthogonal functions are the sines and cosines, an
expansion in terms of them being a Fourier series. If the interval in # is
(—a/2, a/2), the orthonormal functions are

,\/E . (Z-nmx) A/Z (27Tma‘.)
—sin , - cos | ——
a a a a

where m is an integer. The series equivalent to (2.39) is customarily
written in the form:

f(2) = 34, + mil [A cos (2”'"“") + B,,sin (2”;’”)] (2.42)

where

al2
A, = 2 f(x) cos (277"13:) dz
a

—af2 a

a/2 3
B, =2|" f(2)sin (2”’"”) de

a v —af2 a

(2.43)

If the interval spanned by the orthonormal set has more than one
dimension, formulas (2.34)-(2.39) have obvious generalizations. Suppose
that the space is two dimensional, and that the variable & ranges over the
interval (a, b) while the variable % has the interval (¢, d). The orthonormal
functions in each dimension are U,(§) and V,(n). Then the expansion of
an arbitrary function f(&, %) is

fEMN =2 2 a,nU(OV,n) (2.44)

where

Qnm =J dé fc dnU, &)V " () f(€, ) (2.45)

If the interval (a, b) becomes infinite, the set of orthogonal functions
U, (&) may become a continuum of functions, rather than a denumerable
set. Then the Kronecker delta symbol in (2.35) becomes a Dirac delta
function. An important example is the Fourier integral. Start with the
orthonormal set of complex exponentials,

1 .
U, (2) = —= '@l (2.46)
Ja

m=0, +£1, £2, ..., on the interval (—a/2, a/2), with the expansion:

fl@) = — Z A, ¢iCrmai) (2.47)

m= =
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where
a/2

Am —_ _ltj e—-i(‘hmw’ja)f(x:) dx' (248)
Ja d-an
Then let the interval become infinite (¢ — o0), at the same time trans-

forming ;

2mm K
a
zaf‘” am =97 ax | (2.49)
m -0 T ev—w
A,, — *2114(/{)

The resulting expansion, equivalent to (2.47), is

1 (= |
2) = — 2 g 2.50
== [” 00 (2.50)
where
ARy = —— | 7 e f(2) dr @.51)
\/277 )

The orthogonality condition is
1 fm eETF dy = §(k — k') (2.52)
27 J-w

while the completeness relation is
| B By :
— | e*ET Gk = §(x — ) (2.53)
277' -
These last integrals serve as convenient representations of a delta function.

We note in (2.50)-(2.53) the complete equivalence of the two continuous
variables z and k.

2.10 Separation of Variables; Laplace’s Equation
in Rectangular Coordinates

The partial differential equations of mathematical physics are often
solved conveniently by a method called separation of variables. In the
process, one often generates orthogonal sets of functions which are useful
in their own right. Equations involving the three-dimensional Laplacian
operator are known to be separable in eleven different coordinate systems
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(see Morse and Feshbach, pp. 509, 655). We will discuss only three of these
in any detail-—rectangular, spherical, and cylindrical—and will begin with
the simplest, rectangular coordinates. '
Laplace’s equation in rectangular coordinates is

P "0 | 00

0x* 0y 048 (234)
A solution of this partial differential equation can be found in terms of
three ordinary differential equations, all of the same form, by the assumption
that the potential can be represented by a product of three functions, one
for each coordinate:

O(z, y, 2) = X(x) Y(y)Z(2) (2.55)
Substitution into (2.54) and division of the result by (2.55) yields
1 d*X 1 d* 1 d*Z _
X(x) d2®?  Y(y)dy®  Z(z) d2°
where total derivatives have replaced partial derivatives, since each term
involves a function of one variable only. If (2.56) is to hold for arbitrary

values of the independent coordinates, each of the three terms must be
separately constant:

(2.56)

(2.57)

where o+ pE=19

If we arbitrarily choose * and 2 to be positive, then the solutions of the
three ordinary differential equations (2.57) are exp (Liax); exp (£ify),

exp(:t\/oc2 + p%). The potential (2.55) can thus be built up from the
product solutions:

(D — eiiaxeiiﬂyei\/az‘*'ﬁzz (2.58)

At this stage « and § are completely arbitrary. Consequently (2.58), by
linear superposition, represents a very large class of solutions to Laplace’s
equation.

To determine « and § it is necessary to impose specific boundary
conditions on the potential. As an example, consider a rectangular box,
located as shown in Fig. 2.13, with dimensions (a, b, ¢) in the (z, y, 2)
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Fig. 2.13 Hollow, rectangular

(i
box with five sides at zero x=a
potential, while the sixth (z = ¢) 5=0
has the specified potential ® = -
X

Viz, y).

directions. All surfaces of the box are kept at zero potential, except the
surface z = ¢, which is at a potential ¥(z, y). It is required to find the
potential everywhere inside the box. Starting with the requirement that
O =0forx=0,y=0,2z=0, it is easy to see that the required forms of
X, Y, Z are

X = sin ax

Y = sin fy (2.59)
Z = sinh (Vo2 + %)

In order that ® = 0 at = @ and y = b, it is necessary that «a = nw and
b = mm. With the definitions,

nwr 1
o, = —
a
m
B =— » (2.60)
b
nz2 m?
Vom =T ;‘é + ﬁ

We can write the partial potential ®,,; satisfying all the boundary
conditions except one,

®d,,,. = sin (a,2) sin (B,,y) sinh (v,,,,2) (2.61)

The potential can be expanded in terms of these @,,,, with initially arbitrary
coefficients (to be chosen to satisfy the final boundary condition):

O,y )= S Ay, sin (,2) sin (B,9) sinh (7,,7)  (2.62)

n,m=1
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There remains only the boundary condition ® = ¥(z, y) at z = c:

V@ 0) = 3 Ay sin (@0 sin (Ba) sith (7,0 (263)

n,m=1
This is just a double Fourier series for the function ¥(z, y). Consequently
the coefficients 4,,, are given by:

a b
Ay = —— fdf dyV (@, 9) sin (2,2 sin (B.y)  (2.64)
ab sinh (y,,,¢) Jo  Jo

If the rectangular box has potentials different from zero on all six sides,
the required solution for the potential inside the box can be obtained by a
linear superposition of six solutions, one for each side, equivalent to (2.62)
and (2.64). The problem of the solution of Poisson’s equation, i.e., the
potential inside the box with a charge distribution inside, as well as
prescribed boundary conditions on the surface, requires the construction of
the appropriate Green’s function, according to (1.43) and (1.44). Discus-
sion of this topic will be deferred until we have treated Laplace’s equation
in spherical and cylindrical coordinates. For the moment, we merely note
that solution (2.62) and (2.64) is equivalent to the surface integral in the
Green’s function solution (1.44).
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PROBLEMS

21

2.2

23

2.4

A point charge g is brought to a position a distance d away from an infinite
plane conductor held at zero potential. Using the method of images, find:
(a) the surface-charge density induced on the plane, and plot it;
(b) the force between the plane and the charge by using Coulomb’s law
for the force between the charge and its image;
(¢) the total force acting on the plane by integrating 2=o* over the whole
lane;
P (d) the work necessary to remove the charge ¢ from its position to
infinity;
(e) the potentia! energy between the charge ¢ and its image [compare the
answer to (d) and discuss].
(f) Find answer (d) in electron volts for an electron originally one
angstrom from the surface.

Using the method of images, discuss the problem of a point charge ¢
inside a hollow, grounded, conducting sphere of inner radius a. Find

(@) the potential inside the sphere;

(b) the induced surface-charge density;

(c) the magnitude and direction of the force acting on q.
Is there any change in the solution if the sphere is kept at a fixed potential
V'? 1f the sphere has a total charge Q on it?

Two infinite, grounded, conducting planes are located at z = af2 and
@ = —af2. A point charge g is placed between the planes at the point
(', y’, 2"), where —(a/2) < 2’ < (af2).

(a) Find the location and magnitude of all the image charges needed to
satisfy the boundary conditions on the potential, and write down the
Green’s function G(x, x’).

(b) If the charge g is at (2/,0,0), find the surface-charge densities
induced on each conducting plane and show that the sum of induced
charge on the two planes is —g.

Consider a potential problem in the half-space defined by z > 0, with
Dirichlet boundary conditions on the plane z = 0 (and at infinity).

(a) Write down the appropriate Green’s function G(x, xX”).

(b) If the potential on the plane z = 0 is specified to be ® = V inside a
circle of radius a centered at the origin, and ® = 0 outside that circle, find
an integral expression for the potential at the point P specified in terms of
cylindrical coordinates (p, ¢, 2).

(c) Show that, along the axis of the circle (p = 0), the potential is given by

O =Vl ——°>
Va? + 22

(d) Show that at large distances (p® + 2% > a%) the potential can be
expanded in a power series in (p® + 2271, and that the leading terms are
Va® z [ 1 — 3a® 5(3p%* + a*)

2 (p? + 2% l_ 4(p? + 2%) 8(p% + 2%)? )

O =
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2.5

2.6

2.7

2.8

Classical Electrodynamics

Verify that the results of (¢) and (d) are consistent with each other in their
common range of validity.

An insulated, spherical, conducting shell of radius ¢ is in a uniform electric
field E,. If the sphere is cut into two hemispheres by a plane perpendicular
to the field, find the force required to prevent the hemispheres from separa-
ting

(@) if the shell is uncharged;

(b) if the total charge on the shell is Q.

A large parallel plate capacitor is made up of two plane conducting sheets,
one of which has a small hemispherical boss of radius a on its inner surface.
The conductor with the boss is kept at zero potential, and the other
conductor is at a potential such that far from the boss the electric field
between the plates is E.

(a) Calculate the surface-charge densities at an arbitrary point on the
plane and on the boss, and sketch their behavior as a function of distance
(or angle).

(b) Show that the total charge on the boss has the magnitude 3Eqq%/4.

(c) If, instead of the other conducting sheet at a different potential, a
point charge ¢ is placed directly above the hemispherical boss at a distance
d from its center, show that the charge induced on the boss is

, 1 d2 — aZ
1 q{: dvd? + a2:|
A line charge with linear charge density 7 is placed parallel to, and a distance
R away from, the axis of a conducting cylinder of radius b held at fixed
voltage such that the potential vanishes at infinity. Find

(a) the magnitude and position of the image charge(s);

(b) the potential at any point (expressed in polar coordinates with the
line from the cylinder axis to the line charge as the x axis), including the
asymptotic form far from the cylinder;

(c) the induced surface-charge density, and plot it as a function of angle
for R/b = 2, 4 in units of +/2xb;

(d) the force on the charge.

(a) Find the Green’s function for the two-dimensional potential problem
with the potential specified on the surface of a cylinder of radius b, and
show that the solution inside the cylinder is given by Poisson’s integral:

I b2 —r?
=— ’ ao’
o(r, 0) 2 J:) (6, b% 4+ r%2 — 2brcos (0" — 6)

(b) Two halves of a long conducting cylinder of radius b are separated
by a small gap, and are kept at different potentials ¥, and ¥,. Show that
the potential inside is given by

. V] + V2 V]. - V2 1 Zbl‘
O(r, 0) = 3 + - tan g cos ¢
where 0 is measured from a plane perpendicular to the plane through the
gap-
(¢) Calculate the surface-charge density on each half of the cylinder.
(d) What modification is necessary in (a) if the potential is desired in the
region of space bounded by the cylinder and infinity ?
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29

2.10

2.11

(@) An isolated conducting sphere is raised to a potential . Write down
the (trivial) solution for the electrostatic potential everywhere in space.

(b) Apply the inversion theorem, choosing the center of inversion
outside the conducting sphere. Show explicitly that the solution obtained
for the potential is that of a grounded spherein the presence of a point charge
of magnitude — VR, where R is the inversion radius.

(¢) What is the physical situation described by the inverted solution if
the center of inversion iics inside the conducting sphere ?

Knowing that the capacitance of a thin, flat, circular, conducting disc of
radius a is (2/m)a and that the surface-charge density on an isolated disc
raised to a given potential is proportional to (a*> — r? Y2, where r is the
distance from the center of the disc,

(a) show that by inversion the potential can be found for the problem
of an infinite, grounded, conducting plane with a circular hole in it and a
point charge lying anywhere in the opening;

(b) show that, for a unit point charge at the center of the opening, the
induced charge density on the plane is

olr, 0, 4) = —

a
22V — @@

(c) show that (a) and (b) are a special case of the general problem,
obtained by inversion of the disc, of a grounded, conducting, spherical
bowl under the influence of a point charge located on the cap which is the
complement of the bowl.

A hollow cube has conducting walls defined by six planes z =y =z = 0,
and * =y =2 =a. The walls z = 0 and z = a are held at a constant
potential V. The other four sides are at zero potential.

(@) Find the potential ®(z, y, #) at any point inside the cube.

(b) Evaluate the potential at the center of the cube numerically, accurate
to three significant figures. How many terms in the series is it necessary to
keep in order to attain this accuracy? Compare your numerical result
with the average value of the potential on the walls.

(¢) Find the surface-charge density on the surface z = a.



Boundary-Value Problems
in Electrostatics: 11

In this chapter the discussion of boundary-value problems is con-
tinued. Spherical and cylindrical geometries are first considered, and
solutions of Laplace’s equation are represented by expansions in series of
the appropriate orthonormal functions. Only an outline is given of the
solution of the various ordinary differential equations obtained from
Laplace’s equation by separation of variables, but an adequate summary of
the properties of the different functions is presented.

The problem of construction of Green’s functions in terms of ortho-
normal functions arises naturally in the attempt to solve Poisson’s equation
in the various geometries. Explicit examples of Green’s functions are
obtained and applied to specific problems, and the equivalence of the
various approaches to potential problems is discussed.

3.1 Laplace’s Equation in Spherical Coordinates

In spherical coordinates (r, 6, ¢), shown in Fig. 3.1, Laplace’s equation
can be written in the form:

1 &2 1 0 ( BCD) 1 0
=0 3.1
% sin 0 96 t (31

L9 o ing = 9=
rarz(r )+ MY r®sin® 6 0?

If a product form for the potential is assumed, then it can be written:

@ = X2 po)o(g) (3.2)

54
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When this is substituted into (3.1), there results the equation:

poLl 4 U2 i(sined—P) Up_d0_,

dr | Psin0do\  do) " Psin?0dgt
If we multiply by r?sin? 6/UPQ, we obtain:
[ 1 dU 1 d dP 1 a0
o] L 4 (0p42)] 129 s
r Oy @ T remap o\ 3a) 1 T g ap (33

The ¢ dependence of the equation has now been isolated in the last term.
Consequently that term must be a constant which we call (—m?):

1 &
g " 69
This has solutions
Q = eximé (3.5

In order that Q be single valued, m must be an integer. By similar con-
siderations we find separate equations for P(6) and U(r):

1 d(. dP) [ mz}
— Zsin0=) + |II+ 1) — P=0 3.6
sn6do\ T do T+ D=5 (3.6
a&U 1+ 1)
—_ U=0 3.7
dr? r2 (3.7)

where /! + 1) is another real constant.
From the form of the radial equation it is apparent that a single power
of r (rather than a power series) will satisfy it. The solution is found to be:

U= Ar'tt + Brt (3.8)

but / is as yet undetermined.



56 Classical Electrodynamics

3.2 Legendre Equation and Legendre Polynomials

The 6 equation for P(6) is customarily expressed in terms of x = cos 0,

instead of 6 itself. Then it takes the form:

Ho-n) (o)

—\(1 — 2% — Ii+1 - P=0 39

S-S )+ {1+ n - (39)
This equation is called the generalized Legendre equation, and its solutions
are the associated Legendre functions. Before considering (3.9) we will
outline the solution by power series of the ordinary Legendre differential
equation with m? = 0:

d( o dP
—{(1 —
dx( x)d

X

) + I+ 1DP=0 (3.10)

The desired solution should be single valued, finite, and continuous on the
interval —1 <« <1 in order that it represents a physical potential. The
solution will be assumed to be represented by a power series of the form:

P(x) = x“ﬁ:a,xj (3.11)

where « is a parameter to be determined. When this is substituted into
(3.10), there results the series:

20{(11 + o+ j = Da,a*ti"2
— [+ De+j+ 1D =11+ D]aa*} =0 (3.12)

In this expansion the coefficient of each power of * must vanish separately.
For j = 0, 1 we find that

ifa,# 0, then a(x — 1) =0
(3.13)
ifa, 0, then o+ 1) =0

while for a general j value

Gj12 = [(“ as j)(a.+ i+ D ; G D:I“:i (3.14)
(a+j+De+i+2)

A moment’s thought shows that the two relations (3.13) are equivalent and

that it is sufficient to choose either g, or g, different from zero, but not both.

Making the former choice, we have « = 0 or x = 1. From (3.14) we see

that the power series has only even powers of z(a = 0) or only odd

powers of z(«x = 1).
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For either of the series « = 0 or « = 1 it is possible to prove the
following properties:

(a) the series converges for 22 < 1, regardless of the value of /;

(b) the series diverges at x = %1, unless it terminates.
Since we want a solution that is finite at * = =*1, as well as for 2* << 1, we
demand that the series terminate. Since « and j are positive integers or
zero, the recurrence relation (3.14) will terminate only if / is zero or a
positive integer. Even then only one of the two series converges at z = *1.
If [ is even (odd), then only the o = 0 (« = 1) series terminates.* The
polynomials in each case have z! as their highest power of z, the next
highest being #'-2, and so on, down to 2° (x) for /even (odd). By convention
these polynomials are normalized to have the value unity at * = +1 and
are called the Legendre polynomials of order I, Py(z). The first few
Legendre polynomials are:

Py(x) =1 }
Pi(x) =«

Py) = 3(3* — 1)

Py(x) = §(52° — 32)

Py(z) = }(352* — 302% + 3) J

(3.15)

g

By manipulation of the power series solutions (3.11) and (3.14) it is

possible to obtain a compact representation of the Legendre polynomials,
known as Rodrigues’ formula:

1 4

Py(x) =

2 1
5T 1 (z® — 1) (3.16)
[This can be obtained by other, more elegant means, or by direct /-fold
integration of the differential equation (3.10).]

The Legendre polynomials form a complete orthogonal set of functions
on the interval —1 < 2 < 1. To prove the orthogonality we can appeal
directly to the differential equation (3.10)., We write down the differential
equation for Py(z), multiply by P,(x), and then integrate over the interval:

t d{ ap
P,I(a:) —((1 - :cz) = —+ l(l + l)Pl(x) der =20 (3.17)

-1 dx dx
* For example, if / = 0 the o = 1 series has a general coefficient a; = a.ff + 1 for
j=0,2,4,.... Thus the series is a(x + 32° + 3a* + --+.) This is just the power

. . 1+ .
series expansion of a function Q.(x) = 4 In (i-+—m-) , which clearly diverges atz = +1.

For each / value there is a similar function Q,(=) with logarithms in it as the partner to
the well-behaved polynomial solution. See Magnus and Oberhettinger, p. 59.
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Integrating the first term by parts, we obtain
1
J [(xz — 1) 48P g 4 P ()P (x)] de=0 (3.18)
-1 dx dz

If we now write down (3.18) with / and /’ interchanged and subtract it from
(3.18), the result is the orthogonality condition:

[+ 1D — (' + 1)]]_111),,(@?3@) dz =0 (3.19)

For / =~ I', the integral must vanish. For / = [’, the integral is finite. To
determine its value it is necessary to use an explicit representation of the
Legendre polynomials, e.g., Rodrigues’ formula. Then the integral is
explicitly:

1 14
[rrera-gis [ Lot -yl o -y

Integration by parts / times yields the result:

1 _qy (1 21
f_l[Pl(:as)]2 dx = (=1 J‘_l(xz — 1)’f:7m(x2 — Dldx

22!(”)2
The differentiation of (v* — 1)* 2/ times yields the constant (2/)!, so that
fl [P ()] de = — DL r (1 — &) da (3.20)
ot 222 J '

The remaining integral is easily shown to be 22+1(/)%/(2/ + 1)! Con-
sequently the orthogona ity condition can be written:

2

and the orthonormal functions in the sense of Section 2.9 are

Ue) = | 3’—}—1 P (%) (3.22)

Since the Legendre polynomials form a complete set of orthogonal
functions, any function f(x) on the interval —1 < < | canbeexpanded in

+ 11—

=1

I
i
|
[
I
I
!
|

——1-1
!
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terms of them. The Legendre series representation is:

ICESFRIC (3.23)
where

_21+

A, = j f(2)P(z) d (3.24)

As an example, consider the function shown in Fig. 3.2:
f@)=+1lforx>0
=—1forz<O

A, = glzil[f P(x)dx —-folPl(x) dx:l

Since P,(x) is odd (even) about x = 0 if / is odd (even), only the odd /
coefficients are different from zero. Thus, for / odd,

Then

1
A, =2l + I)J P(x) dz (3.25)

0
By means of Rodrigues’ formula the integral can be evaluated, yielding

(I—1)/2 — ]
4= (_ 1) QI+ DI — 2! (3.26)
2 2(l+_1),
2

where(2n + D= 2n 4+ D(2n — 1)(2n — 3)--- X 5 X 3 X 1. Thus the
series for f(x) is:
f(@) = 3Py(x) — §P3(2) + 1EP5(x) — - (3.27)
Certain recurrence relations among Legendre polynomials of different
order are useful in evaluating integrals, generating higher-order poly-
nomials from lower-order ones, etc. From Reodrigues’ formula it is a
straightforward matter to show that
dP,,; _dP,
dz dx

This result, combined with differential equation (3.10), can be made to
yield various recurrence formulas, some of which are:

(l + )Py, — 2l + DaP, + IP,_y = 0]

dP,. dP,;
Tl L, 4+ 1P, =0
du v dx ¢ P : (3.29)

— @+ 1)P, =0 (3.28)

=12 dPl — IzP, 4+ IP,_, =0

J
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As an illustration of the use of these recurrence formulas consider the
evaluation of the integral:

1
I, = f_l 2P (2)Py(z) dw (3.30)

From the first of the recurrence formulas (3.29) we obtain an expression
for zP(x). Therefore (3.30) becomes

1
L= 2—1-3—1 _PUD( + DPs(@) + IPry(@)] da

The orthogonality integral (3.21) can now be employed to show that the
integral vanishes unless /" = / & 1, and that, for those values,

1 QL+ DRI+ 3)°
f xP ()P (x) dx = (3.31)
o 2l P=l—1
QI—DRI+ 1

These are really the same result with the roles of / and /" interchanged. In
a similar manner it is easy to show that

21+ )L+ 2) I

, I=142
1 204+ D21+ 3)21+ 5

[ wppy(eyde = { 17 08T IS (332)

Jo1 2028 + 21 — 1) y_

20— D2+ DERL+ 3)’
where it is assumed that /" > /.

3.3 Boundary-Value Problems with Azimuthal Symmetry

From the form of the solution of Laplace’s equation in spherical
coordinates (3.2) it will be seen that, for a problem possessing azimuthal
symmetry, m = 0 in (3.5). This means that the general solution for such
a problem is:

O(r, 6) = 3[4 + B~ CV]P(cos ) (3.33)
t=¢0

The coefficients 4, and B, can be determined from the boundary condi-
tions. Suppose that the potential is specified to be V() on the surface of a
sphere of radius a, and it is required to find the potential inside the sphere.
If there are no charges at the origin, the potential must be finite there.
Consequently B, = 0 for all /. The coefficients A4, are found by evaluating
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(3.33) on the surface of the sphere:
V(6) = A,a'P(cos b) (3.34)
=0

This is just a Legendre series of the form (3.23), so that the coefficients 4,
are:

A, = 2’2‘; 1f0 V(6)P,(cos ) sin 0 d (3.35)

If, for example, ¥(6) is that of Section 2.8, with two hemispheres at equal
and opposite potentials,

V(o) = 2 (3.36)

then the coeflicients are proportional to those in (3.27). Thus the potential
inside the sphere is:

0(r,0) = V[ 22 Pyeos 0) = (I pieos 0 + L(*picos sy -+
2a 8\a 16 \a
(3.37)

To find the potential outside the sphere we merely replace (r/a)’ by (a/r)"+1.
The resulting potential can be seen to be the same as (2.33), obtained by
another means.

Series (3.33), with its coefficients determined by the boundary conditions,
is a unique expansion of the potential. This uniqueness provides a means
of obtaining the solution of potential problems from a knowledge of the
potential in a limited domain, namely on the symmetry axis. On the
symmetry axis (3.33) becomes (with z = r):

De=r)=3 [4r'+Br ] (3.38)

valid for positive z. For negative z each term must be multiplied by (—1)".
Suppose that, by some means, we can evaluate the potential @(z) at an
arbitrary point z on the symmetry axis. If this potential function can be
expanded in a power series in z = r of the form (3.38), with known
coefficients, then the solution for the potential at any point in space is
obtained by multiplying each power of r* and r—*1) by P,(cos 8).
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2

Fig. 3.3

At the risk of boring the reader we return to the problem of the hemi-
spheres at equal and opposite potentials. We have already obtained the
series solution in two different ways, (2.33) and (3.37). The method just
stated gives a third way. For a point on the axis we have found the closed

form (2.28): 2 _ g2
T‘ a

This can be expanded in powers of a*[r?:

Oz = 1) = Z( 1yi-1 (2j — 1)1‘(1 —3 (’)w (3.39)

Comparison with expansion (3.38) shows that only odd / values
(! = 2j — 1) enter. The solution, valid for all points outside the sphere,
is consequently:

w0 = > -y EZIU=D (4Fp o) @a0)
VT =1 r

Jj!

This is the same solution as already obtained, (2.33) and (3.37).
An important expansion is that of the potential at x due to a unit point
charge at x':

1 > 7 .
= > 1= pcos y) (3.41)
x'| 1=0 I'>

where r_ (r.) is the smaller (larger) of |x| and |x|, and y is the angle
between x and x’, as shown in Fig. 3.3. This can be proved by rotating
axes so that x’ lies along the z axis. Then the potential satisfies Laplace’s
equation, possesses azimuthal symmetry, and can be expanded according
to (3.33), except at the point x = x:

| 1 7 = Z At + Br ¢D)P(cos y) (3.42)
x—x| =
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If the point x is on the z axis, the right-hand side reduces to (3.38), while
the left-hand side becomes:

1 1 1
!x—-x’lh(r2+r’2—2rr’cosy)% ir —r'|

(3.43)

Expanding (3.43), we find

SE -i— 2 (”—<)1 (3.44)

IX—X’| ¥

For points off the axis it is only necessary, according to (3.33) and (3.38),
to multiply each term in (3.44) by P,(cos y). This proves the general result
(3.41).

Another example is the potential due to a total charge g uniformly
distributed around a circular ring of radius a, located as shown in Fig. 3.4,
with its axis the z axis and its center at z = 5. The potential at a point P
on the axis of symmetry with z = r is just ¢ divided by the distance 4P:

Dz =r) = g : 3.45
=n (r2 + ¢ — 2cr cos )" (3:43)

where ¢ = a* + b? and o = tan™? (a/b). The inverse distance AP can be
expanded using (3.41). Thus, for r > ¢,

0 i
O =r)=q r—f;—l P,(cos «) (3.46)
=0

Fig. 3.4 Ring of charge of radius a and total
charge g located on the z axis with center at
z=b.
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For r < ¢, the corresponding form is:

2 1
Oe=1r =g ;;—1 Py(cos @) (3.47)
=0

The potential at any point in space is now obtained by multiplying each
member of these series by P,(cos 6):

@ > I
(r6)=q =, P(c0s 2)P,(cos ) (3.48)
1=0" "~

where r_ (r.) is the smaller (larger) of r and c.

3.4 Associated Legendre Polynomials and the Spherical Harmonics

Y,n(0:6)

So far we have dealt with potential problems possessing azimuthal
symmetry with solutions of the form (3.33). These involve only ordinary
Legendre polynomials. The general potential problem can, however, have
azimuthal variations so that m = 0 in (3.5) and (3.9). Then we need the
generalization of P(cos 6), namely, the solution of (3.9) with / and m both
arbitrary. In essentially the same manner as for the ordinary Legendre
functions it can be shown that in order to have finite solutions on the
interval —1 < x < 1 the parameter / must be zero or a positive integer and
that the infeger m can take on only the values —/, —(/ —1),...,0,...,
(/ — 1), I. The solution having these properties is called an associated
Legendre function P,"(x). For positive m it is defined by the formula*:

P(x) = (—1)"(1 — a2 j? P(2) (3.49)

If Rodrigues’ formula is used to represent 2,(x), a definition valid for both
positive and negative m is obtained:

P"(x) = (=b" (1 — x2)mf2ﬂ (2% — 1) (3.50)

l 211 da* ™ '

* The choice of phase for P,”{x) is that of Magnus and Oberhettinger, and of E. U.
Condon and G. H. Shortley in Theory of Atomic Spectra, Cambridge University Press
(1953). For explicit expressions and recursion formulas, see Magnus and Oberhettinger,
p. 54.
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P,~™(x) and P™(x) are proportional, since differential equation (3.9)
depends only on m? and m is an integer. It can be shown that
Pm"(x) = (—1)" —— P/™(x 3.51
C () ()(l+m)!L() (3.51)
For fixed m the functions P,"(x) form an orthogonal set in the index /
on the interval —1 <z < 1. By the same means as for the Legendre
functions the orthogonality relation can be obtained:

1 .
[" prapr ae = 20 (352
-1 204+ 1( ~ m)!

The solution of Laplace’s equation was decomposed into a product of
factors for the three variables r, 6, and ¢. It is convenient to combine the
angular factors and construct orthonormal functions over the unit sphere.
We will call these functions spherical harmonics, although this terminology
is often reserved for solutions of the generalized Legendre equation (3.9).
Our spherical harmonics are sometimes called “tesseral harmonics™ in
older books. The functions Q,,(#) = ™ form a complete set of ortho-
gonal functions in the index m on the interval 0 < ¢ < 27, The functions
P,™(cos ) form a similar set in the index / for each m value on the interval
—1 < cos 6 < 1. Therefore their product P,*Q,, will form a complete
orthogonal set on the surface of the unit sphere in the two indices /, m.
From the normalization condition (3.52) it is clear that the suitably
normalized functions, denoted by Y,,.(0, ¢), are:

20+ 1(1 — m)! -
Y. 6’ — N/ m, 6 ime ]
1m0, @) 4r (I + m)! P;"(cos O)e (3.53)
From (3.51) it can be seen that
Ifl,—m(es d’) = (—l)myl*m(aa ¢) (3'54)

The normalization and orthogonality conditions are

2r T
f d(ﬁf Sin 6 de Y;'f1n’(65 (ﬁ)xm(e’ ()6) = 6l'lém’m (3°55)
0 0

The completeness relation, equivalent to (2.41), is
0 1
> O YO, )Y,,.(00, §) = 8( — ¢)d(cos 6 — cos §')  (3.56)
=0 1

m= -

For a few small / values and m > 0 the table shows the explicit form of
the Y,,.(0, ¢). For negative m values (3.54) can be used.
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Spherical harmonics

Note that, for m = 0,

{

A=
[\®]
)

i

i

Ylm(oa ¢)

-

Vin

B

3

— /2 sin 6ei®
8=

3 cos B
4

1

Lh

sin2 0%

sin 6 cos &4

1 /105 ., .
-~ {——sin26 2i¢
[ | 5 Sin” 6 cos fe

- lﬁ sin (5 cos? 0 — 1)ei®
4 A 4
l §cos36—§cos()
4n \2 2

Vull, 8) = J 27 Picos 0)

An arbitrary function g(f, ¢) can be expanded in spherical harmonics:

=] 2

=0 m=-1

where the coefficients are

(3.57)

(3.58)
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A point of interest to us in the next section is the form of the expansion
for 6 = 0. With definition (3.57), we find:

!

[g(6, $)lo-o =Z »\/2 :7; lAw (3.59)
1=0

Ay = /21; 1 J dQ P,(cos 0)g(6, 4) (3.60)

All terms in the series with 7 % 0 vanish at 0 = 0.

The general solution for a boundary-value problem in spherical coordi-
nates can be written in terms of spherical harmonics and powers of r in a
generalization of (3.33):

where

(D(l‘, 95 (,'b) = % i [Almrl + Blmr~(1+1)] Ylm(09 (}S) (361)

l=pm

If the potential is specified on a spherical surface, the coefficients can be
determined by evaluating (3.61) on the surface and using (3.58).

3.5 Addition Theorem for Spherical Harmonics

A mathematical result of considerable interest and use is called the
addition theorem for spherical harmonics. Two coordinate vectors x and
x', with spherical coordinates (r, 6, ¢) and (', §', ¢'), respectively, have an
angle y between them, as shown in Fig. 3.5. The addition theorem
expresses a Legendre polynomial of order / in the angle ¥ in terms of

2
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products of the spherical harmonics of the angles 0, ¢ and §', ¢":

47
20+ 1

D VO, )Y, §) (3.62)

m=—1

Py(cos y) =

where cosy = cos 0 cos ' + sin 0 sin 6" cos (¢ — ¢’). To prove this
theorem we consider the vector x’ as fixed in space. Then P,(cos y) is a
function of the angles 6, ¢, with the angles 0’, ¢" as parameters. It may be
expanded in a series (3.58):
0 U

P(osy) =3 3 Avn(®', $)Yin(0s ) (363)
Comparison with (3.62) shows that only terms with /" = / appear. To see
why this is so, note that, if coordinate axes are chosen so that x’ is on the z
axis, then y becomes the usual polar angle and P,(cos y) satisfies the
equation:
I+ D

2
r

V’2P,(cos y) + Pcosy) =0 (3.64)

where V2 is the Laplacian referred to these new axes. If the axes are now
rotated to the position shown in Fig. 3.5, V2 = V2 and r is unchanged.*
Consequently P;(cos y) still satisfies an equation of the form (3.64); i.e.,
it is a spherical harmonic of order /. This means that it is a linear com-
bination of Y,,,’s of that order only:

[4
Pcosy) = X An(t, $)%in(0: 6) (3.69)

The coefficients A4,,(0", ¢) are given by:

A0, ¢) =‘[Yu’§(9, $)Py(cos y) dQ (3.66)

To evaluate this coeflicient we note that it may be viewed, according to
(3.60), as the m' = 0 coefficient in an expansion of the function
Varf2l + 1) Y (0, ) in a series of Y, (y, B) referred to the primed
axis of (3.64). From (3.59) it is then found that, since only one / value is
present, coefficient (3.66) is

L 4
Am(e,qﬁ)--zlj:l

In the limit y — 0, the angles (0, ¢), as functions of (y, f), go over into

* The proof that V’* = V? under rotations follows most easily from noting that
V2y = V . Vy is an operator scalar product, and that all scalar products are invariant
under rotations.
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(¢, ). Thus addition theorem (3.62) is proved. Sometimes the theorem
is written in terms of P,™(cos 6) rather than Y,,. Then it has the form:

Pycos y) = Pl(cos 6)P,(cos 6')

+2 (= m! ——— P,™(cos B)P"(cos 0") cos [m(¢ — ¢')] (3.68)
o (L + m)!
It the angle y goes to zero, there results a “sum rule” for the squares of
Yim's: :
D Y0, o =21

m=—1 4

The addition theorem can be used to put expansion (3.41) of the potential
at x due to a unit charge at X’ into its most general form. Substituting
(3.62) for P,(cos y) into (3.41) we obtain

0 i

i 1

e —4% m;% =t mnmm B0, $)  (370)
Equation (3.70) gives the potential in a completely factorized form in the
coordinates x and x’. This is useful in any integrations over charge
densities, etc., where one variable is the variable of integration and the
other is the coordinate of the observation point. The price paid is that
there is a double sum involved, rather than a single term.

(3.69)

3.6 Laplace’s Equation in Cylindrical Coordinates; Bessel Functions

In cylindrical coordinates (p, ¢, 2z), as shown in Fig. 3.6, Laplace’s
equation takes the form:

2O 190 1 0% 52(1)
Sttt =0 371
0p* * pop * p* 04® 70

The separation of variables is accomphshed by the substitution:

D(p, ¢, 2) = R(p) AHZ(2) (3-72)
In the usual way this leads to the three ordinary differential equations:
2
Z _ 12z — ¢ (3.73)
d2?
Qe
+1°Q0 =0 3.74
e (3.74)
2 2
d_R+1d_R+( _2.2)R=o (3.75)
dp®  pdp P
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The solutions of the first two equations are elementary:
Z(z) — eikz
Q(g) = e**¢

In order that the potential be single valued, » must be an integer. But
barring some boundary-condition requirement in the z direction, the
parameter k is arbitrary. For the present we will assume that k is real.

The radial equation can be put in a standard form by the change of
variable * = kp. Then it becomes

2 2
d_13+1£13+(1_1)x=o (3.77)

de®  zdx x>

(3.76)

This is Bessel’s equation, and the solutions are called Bessel functions of
order ». If a power series solution of the form:

R(z) = a*> aa’ (3.78)
i=0

is assumed, then it is found that

o= 4 (3.79)
and
Ay, = — 1 a (3.80)
M TR |

forj=0,1,2,3,.... All odd powers of 2 have vanishing coefficients.

The recursion formula can be iterated to obtain

_ (=DTe@+1
2T +a+ 1) |

(3.81)

ds;
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It is conventional to choose the constant g, = [2*I'(« + 1)]71. Then the
two solutions are

I Aw) = (g)z j!F(J(;]m))jJr 1)(2)% (3.82)

i=0

PANE I

jzoj!F(j—’V-i- 1)

These solutions are called Bessel functions of the first kind of order 4.
The series converge for all finite values of x. If » is not an integer, these
two solutions J_ (x) form a pair of linearly independent solutions to the
second-order Bessel’s equation. However, if v is an integer, it is well known
that the solutions are linearly dependent. In fact, for » = m, an integer,
it can be seen from the series representation that

J_ (@) = (= 1)"J () (3.84)

Consequently it is necessary to find another linearly independent solution

when m is an integer. It is customary, even if » is not an integer, to replace

the pair J_ (x) by J(r) and N,(x), the Neumann function (or Bessel’s

function of the second kind):

J () cos vm — J_ (x)
sin

Nv(x) =

(3.85)

For » not an integer, N,(z) is clearly linearly independent of J,(x). In the
limit v — integer, it can be shown that N () is still linearly independent
of J,(z). As expected, it involves log x. lts series representation is given
in the reference books.

The Bessel functions of the third kind, called Hankel functions, are
defined as linear combinations of J,(x) and N, (z):

H®P(z) = J(2) + iN(2) l (3.86)
(@) = J,() = iN,(@)

The Hankel functions form a fundamental set of solutions to Bessel’s
equation, just as do J,(z) and N,().
The functions J,, N,, HV, H'® all satisfy the recursion formulas:

Qy1(8) + Oy r(e) = %Qv(x) (3.87)

Qy1(2) — Qy () = 2 922 (3.88)
dr



72 Classical Electrodynamics

where Q,(z) is any one of the cylinder functions of order . These may be
verified directly from the series representation (3.82).

For reference purposes, the limiting forms of the various kinds of
Bessel functions will be given for small and large values of their argument.
Only the leading terms will be given for simplicity:

1 Ay
g(m (-E) + 0.5772 - - ) y=0
Nyz) > 1 (3.90)
| oy s
L v X/ ’

In these formulas » is assumed to be real and nonnegative.

l‘> 1,‘1’ JV(ZL’)—> /icos(x_v_ﬂ_z)l
L 2 4

N@)—> [ sin (x_’ﬁf_z)J
(g 2 4

The transition from the small x behavior to the large x asymptotic form
occurs in the region of x ~ ».

From the asymptotic forms (3.91) it is clear that each Bessel function
has an infinite number of roots. We will be chiefly concerned with the
roots of J,(x):

(3.91)

J(z,)=0, n=1,23,... 3.92)

z,. is the nth root of J (x). For the first few integer values of », the first
three roots are:

=0, =z, = 2.405, 5.520, 8.654,...

v =1, x4, = 3.832,7.016, 10.173, ..

v =2, x,, = 35.136, 8417, 11.620, . ..

For higher roots, the asymptotic formula

xmzmr—l—(v—%)g

gives adequate accuracy (to at least three figures). Tables of roots are
given in Jahnke and Emde, pp. 166-168.

Having found the solution of the radial part of Laplace’s equation in
terms of Bessel functions, we can now ask in what sense the Bessel
functions form an orthogonal, complete set of functions. We will consider



[Sect. 3.6] Boundary-Value Problems in Electrostatics: II 73

only Bessel functions of the first kind, and will show that V/p J (x, pla), for
fixed v >0, n=1,2,..., form an orthogonal set on the interval 0 <
p < a. The demonstration starts with the differential equation satisfied by

J (=,,.pla):

1 d dJ"(x””B) 2,2
=—\p =+ (‘”2 —%)JV (xf) =0 (393

pdp dp a p a
If we multiply the equation by pJ,(z,,.p/a) and integrate from O to a, we
obtain

\ . de(wm f)
f"v(xvn' B)_ P—-_a dP
0 a dp dp
a xvn2 1)2
+J(; ( a2 - _2)pJv(xvn' B)Jv(xvn E)dp =0
P a a

Integration by parts, combined with the vanishing of (pJ,J,") at p = 0
(for v > 0) and p = a, leads to the result:

a d‘]v(mvn’ B) d‘]v(xvn £)
a a
_ f ,
0

dp dp

a [ A2 2
+f (_xv—: — v—z)PJV(xvn‘ B)Jv(xvn E) dp =0
0o\ a p a a

If we now write down the same expression, with » and »’ interchanged,
and subtract, we obtain the orthogonality condition:

a
0 a a

By means of the recursion formulas (3.87) and (3.88) and the differential
equation, the normalization integral can be found to be:

dp

a p p a2

p‘Iv Xy _)‘Iv(xvn -) dp == [Jv+1(xvn)]26n’n (395)
0 a a 2

Assuming that the set of Bessel functions is complete, we can expand an

arbitrary function of p on the interval 0 < p < a in a Bessel-Fourier

series:

a

flp) = iAJ(x f) (3.96)
n=1
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where

2 [ e (222) dp (397)

vn 212
J +1( v

Our derivation of (3.96) involved the restriction » > 0. Actually it can
be proved to hold for all » > —1.

Expansion (3.96) and (3.97) is the conventional Fourier-Bessel series
and is particularly appropriate to functions which vanish at p = a (e.g.,
homogeneous Dirichlet boundary conditions on a cylinder; see the
following section). But it will be noted that an alternative expansion is

possible in a series of functions \/;J,(ymp/a) where ,, is the nth root of
the equation [dJ,(x)]/dx = 0. The reason is that, in proving the ortho-
gonality of the functions, all that is demanded is that the quantity
[/ (Ap)(d[dp)J (A p)] vanish at the end points p =0 and p = a. The
requirement is met by either A = x,,/a or A = y,,[a, where J,(«,,) = 0 and
J, (y,,) = 0. The expansion in terms of the set \/;_)J,,(y,,,,p/a) is especially
useful for functions with vanishing slope at p = a. (See Problem 3.8.)

A Fourier-Bessel series is only one type of expansion involving Bessel

o0

functions. Neumann series [ S aJ, +n(z)], Kapteyn series [Z a, X
#=0

n=0
Jy (v + n)z)], and Schlomilch series [ ZlanJv(nx)] are some of the other

possibilities. The reader may refer to Watson, Chapters XVI-XIX, for a
detailed discussion of the properties of these series. Kapteyn series occur
in the discussion of the Kepler motion of planets and of radiation by
rapidly moving charges (see Problems 14.7 and 14.8).

Before leaving the properties of Bessel functions it should be noted that
if, in the separation of Laplace’s equation, the separation constant k* in
(3.73) had been taken as —k?2, then Z(z) would have been sin kz or cos kz
and the equation for R(p) would have been:

2 ! 2
ARy LR (o y 2)R=—-0 (3.98)
dp*  pdp p ,
With kp = z, this becomes

2 2
flﬂ+ld_R_(1+ ) =0 (3.99)
dx? xdx

The solutions of this equation are called modified Bessel junctions. It is
evident that they are just Bessel functions of pure imaginary argument.
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The usual choices of linearly independent solutions are denoted by I,(x)
and K,(x). They are defined by

I(x) = i7"J (ix) (3.100)

K (2) = 12’ LD i) (3.101)

and are real functions for real x. Their limiting forms for small and large
z are, assuming real » > 0:

z<1l  I(2)-> ﬁ(iz“) (3.102)
o ;(Snz g) +0.5772 - - ) y=0 10
7(;)’ r#0
z>1,y I(z)—> \/217:3 e’”[l 40 (i)] 1 o
i 2o ()]

3.7 Boundary-Value Problems in Cylindrical Coordinates

The solution of Laplace’s equation in cylindrical coordinates is © =
R(p)O($)Z(z), where the separate factors are given in the previous section.
Consider now the specific boundary-value problem shown in Fig. 3.7.
The cylinder has a radius a and a height L, the top and bottom surfaces
being at z = L and z = 0. The potential on the side and the bottom of
the cylinder is zero, while the top has a potential ® = ¥V(p, $). We want
to find the potential at any point inside the cylinder. In order that ® be
single valued and vanish at z = 0,

0(¢) = A sin m¢ + B cos m }

(3.105)
Z(z) = sinh kz

where ¥ = m is an integer and k is a constant to be determined. The radial
factor is

R(p) = CJkp) + DN, (kp) (3.106)
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If the potential is finite at p =0, D = 0. The requirement that the
potential vanish at p = a means that kX can take on only those special

values:
x

kpp="-22, n=1,23,... (3.107)
a
where z,,, are the roots of J,,(x,,,) = 0.
Combining all these conditions, we find that the general form of the
solution is

ee] @

O, )= J kK np) Sinh (k,,, 2[4, sSin mé + B,,,, cos me]
e (3.108)
Atz = L, we are given the potential as ¥(p, ¢). Therefore we have
V(p, ¢) = 3 sinh (k,,, L), (k,.up) |4, sin md + B,,, cos md]

This is a Fourier series in ¢ and a Bessel-Fourier series in p. The coeffi-
cients are, from (2.43) and (3.97),

__2cosech (kL) (¥

mn T

d f“d Vip, $)J (K, p) sin m
k) o ¢ e (P> S (K ) ¢
and r o (3.109)
2 cosech (k,., L) (¥, , (®
= 2eosech ) (%44 (") 0V, $11,(epu)cos m
7a*J5,  1(kme@) Jo 0 J
with the proviso that, for m = 0, we use }B,, in the series.
The particular form of expansion (3.108) is indicated by the requirement

that the potential vanish atz = 0 for arbitrary p and at p = g for arbitrary
z. For different boundary conditions the expansion would take a different

mn
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form. An example where the potential is zero on the end faces and equal
to V(¢, z) on the side surface is left as Problem 3.6 for the reader.

The Fourier-Bessel series (3.108) is appropriate for a finite interval in
p,0 < p < a If a— oo, the series goes over into an integral in a manner
entirely analogous to the transition from a trigonometric Fourier series
to a Fourier integral. Thus, for example, if the potential in charge-free
space is finite for z > 0 and vanishes for z — co, the general form of the
solution for z > 0 must be

O(p, §, 2) = z Lﬁk e ", (kp)[A,,(k) sin mé + B, (k) cos m$] (3.110)
m=0

If the potential is specified over the whole plane z = 0 to be F(p, ¢) the
coefficients are determined by

Vo, &) = . | dkd (kA0 s m + B,k cos mg]
m=0 0

The variation in ¢ is just a Fourier series. Consequently the coefficients
A, (k) and B, (k) are separately specified by the integral relations:

v, @{Sin ’"ﬂ dp = f me(k'p){Am("")} dk’ @1
0 cos mo 0 B,.(k")

These radial integral equations of the first kind can be easily solved, since
they are Hankel transforms. For our purposes, the integral relation,

f "ol (k) (k'z) dw = ié(k’ — k) (3.112)

can be exploited to invert equations (3.111). Multiplying both sides by
pJu(kp) and integrating over p, we find with the help of (3.112) that the
cocfficients are determined by integrals over the whole area of the plane
z=0:
Am(k)] k f °° f 2 sin m¢
=Z| 4 d$ V(p, $)J w(kp) (3.113)
B~ mh PP, ¢ V(p, M ulkp cos mg

As usual, for m = 0, we must use 3B,(k) in series (3.110).

3.8 Expansion of Green’s Functions in Spherical Coordinates

In order to handle problems involving distributions of charge as well as
Poundary values for the potential (i.e., solutions of Poisson’s equation) it
18 necessary to determine the Green’s function G(x, x) which satisfies the
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appropriate boundary conditions. Often these boundary conditions are
specified on surfaces of some separable coordinate system, e.g., spherical or
cylindrical boundaries. Then it is convenient to express the Green’s
function as a series of products of the functions appropriate to the coordi-
nates in question. We first illustrate the type of expansion involved by
considering spherical coordinates.

For the case of no boundary surfaces, except at infinity, we already
have the expansion of the Green’s function, namely (3.70):

i Zl TR (A RO

]x—-x} ‘ll+ rz

Suppose that we wish to obtain a similar expansion for the Green’s
function appropriate for the “exterior’” problem with a spherical boundary
at r = a. The result is readily found from the image form of the Green’s
function (2.22). Using expansion (3.70) for both terms in (2.22), we obtain:

l 2\1+1
ﬁirl(i,) ]Y;:;(ﬁ', )0, §) (3.114)

G(XX)—4WZ2I+1|: a\rr

To see clearly the structure of (3.114) and to verify that it satisfies the
boundary conditions, we exhibit the radial factors separately for r < r’

and for r > r’:
1 ; a21+1 ,
=1 r<<r

1 ri+1
ri’;'l a\rr’ [ " a21+1] 1 - p
yoo—- —_—, r r
r;H—l rl+l

First of all, we note that for either r or r’ equal to a the radial factor
vanishes, as required. Similarly, as r or r’ — o, the radial factor vanishes.
It is symmetric in r and r’. Viewed as a function of r, for fixed #/, the
radial factor is just a linear combination of the solutions r* and r=(1 of the
radial part (3.7) of Laplace’s equation. It is admittedly a different linear
combination for » < #" and for > r’. The reason for this will become
apparent below, and is connected with the fact that the Green’s function
is a solution of Poisson’s equation with a delta function inhomogeneity.

Now that we have seen the general structure of the expansion of a
Green’s function in separable coordinates we turn to the systematic con-
struction of such expansions from first principles. A Green’s function for
a potential problem satisfies the equation

(3.115)

V.2G(x, x) = —47 (x — X') (3.116)
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subject to the boundary conditions G(x, x") = 0 for either x or x’ on the
boundary surface S. For spherical boundary surfaces we desire an expan-
sion of the general form (3.114). Accordingly we exploit the fact that the
delta function can be written*

ox — x') = ;1—25(r — 71') (¢ — ¢") d(cos 6 — cos ')

and that the completeness relation (3.56) can be used to represent the
angular delta functions:

5(x — x') = écxr =D > YAO N0 4 G
I

=0 m=-—1

Then the Green’s function, considered as a function of x, can be expanded
as

Gx,x) =3 3 A0 $)gdr 1Ym0, ) (3.118)

l=0m=—1

Substitution of (3.117) and (3.118) into (3.116) leads to the results

A8, ) = Yy (0, ¢) (3.119)
and

1 d I(1+1 : 4 :
- — (rg(r, 1)) — ( -I; )gl(r, )= — ——:(S(r —r)  (3.120)
rdr r r

The radial Green’s function is seen to satisfy the homogeneous radial
equation (3.7) for r 5= r’. Thus it can be written as:

Art 4 Br~@tD, forr < 7'

gir,r’) = _
’ A'r' + B'r~OFY, forr > v

The coefficients A, B, A’, B’ are functions of r’ to be determined by the
boundary conditions, the requirement implied by é(r — r’) in (3.120), and
the symmetry of g,(r, r’) in r and r’. Suppose that the boundary sufaces are
concentric spheres at r = g and r = b. The vanishing of G(x, x") for x on

* To express d(x — x') = d(z; — x,") 8(xy, — x,) 6(xs — z,") in terms of the coordi-
nates (§,, &,, &3), related to (x,, z,, z,) via the Jacobian J(z;, §,), we note that the mean-
ingful quantity is d(x — x’) d®z. Hence

1

(S(X — X/) = m(ﬁ(fl — 51/) 6(52 - 52/) 6(53 - 5.’5/)
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the surface implies the vanishing of g,(r, r") for r = a and r = b. Con-
sequently g,(r, r’) becomes

a2t+1
A(rI — 'TLT)’ r<<rv
r
glr,r) = { L (3.121)
, r ,
(;lTl _ b21+1)’ r>r

The symmetry in » and r’ requires that the coefficients A(r") and B’(r") be
such that g(r, r') can be written

glr,r) = C(rl< — azlﬂ)( L _ r ) (3.122)
’ i+ 1 i+1 p2i+1 )

F< r

where r_ (r.) is the smaller (larger) of r and #’. To determine the constant
C we must consider the effect of the delta function in (3.120). If we multiply
both sides by r and integrate over the interval fromr = r’ — etor = r' +
€, where € Is very small, we obtain

[;%(l‘gz(r, r’))] - [dir (rg(r, r'))i' =— %’ (3.123)

Fals o3 r'—€

Thus there is a discontinuity in slope at r = r’, as indicated in Fig. 3.8.
Forr=r"4er.=r,r_=r". Hence

d , a_a@t\ld(1
U = T

21+1 AVIZS!
r ¥ b
Similarly

[f;("gz(f‘, r’))l}_€ = rg(l +1+ l(f‘,)mﬂ)(l B (Z_f)zm

Substituting these derivatives into (3.123), we find:
4

R Ei

Combination of (3.124), (3.122), (3.119), and (3.118) yields the expansion
of the Green’s function for a spherical shell bounded by r = aand r = b:

G(x, x') =
WS § OO (1 (L) )

z 20+1 1+1 11 p2it1
= m=s 21+1[1—(9) J
1=0 1 ( ) b

C= (3.124)

re< rs
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Fig. 3.8 Discontinuity in slope of
the radial Green’s function.

For the special cases a — 0, b — o0, and b — o, we recover the previous
expansions (3.70) and (3.114), respectively. For the “interior” problem
with a sphere of radius b we merely let a — 0. Whereas the expansion for
a single sphere is most easily obtained from the image solution, the general
result (3.125) for a spherical shell is rather difficult to obtain by the method
of images, since it involves an infinite set of images.

3.9 Solution of Potential Problems with the Spherical Green’s Function
Expansion

The general solution to Poisson’s equation with specified values of the
potential on the boundary surface is (see Section 1.10):

B(x) =L p(x)G(x, X) &%’ — Zi} i B(x') gg da’  (3.126)

For purposes of illustration let us consider the potential inside a sphere of
radius b. First we will establish the equivalence of the surface integral in
(3.126) to the previous method of Section 3.4, equations (3.61) and (3.58).
With a = 0 in (3.125), the normal derivative, evaluated at r’ = b, is:

2 _26
on’' or

= — 4-ir _’: I * Y
P =p - bzlzm(b) Ylm(g > ¢ )Ylm(e, QS) (3127)

Consequently the solution of Laplace’s equation inside r = b with
D = V(#, ¢') on the surface is, according to (3.126):

O(x) =szV(9', $)YE @, 61 dQ’] (i)lym(e, $  (3.128)

For the case considered, this is the same form of solution as (3.61) with
(3.58). There is a third form of solution for the sphere, the so-called
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Fig. 3.9 Ring of charge of radius ¢ and
total charge Q@ inside a grounded, conduct-

x ing sphere of radius b.

Poisson integral (2.25). The equivalence of this solution to the Green’s
function expansion solution is implied by the fact that both were derived
from the general expression (3.126) and the image Green’s function. The
explicit demonstration of the equivalence of (2.25) and the series solution
(3.61) will be left to the problems.

We now turn to the solution of problems with charge distributed in the
volume, so that the volume integral in (3.126) is involved. It is sufficient
to consider problems in which the potential vanishes on the boundary
surfaces. By linear superposition of a solution of Laplace’s equation the
general situation can be obtained. The first illustration is that of a hollow
grounded sphere of radius & with a concentric ring of charge of radius «
and total charge . The ring of charge is located in the -y plane, as shown
in Fig. 3.9. The charge density of the ring can be written with the help of
delta functions in angle and radius as

o(x') = 2—-‘22 5(r' — @) (cos ') (3.129)
ma

In the volume integral over the Green’s function only terms in (3.125) with
m = 0 will survive because of azimuthal symmetry. Then, using (3.57)
and remembering that a — 0 in (3.125), we find

B(x) = f p(x)G(x, X') d*x’

N 1 rt
= Qsz(O)ri(El — ﬁi—l)Pl(cos 6) (3.130)
=0
where now r_ (r.) is the smaller (larger) of r and a. Using the fact that
—DH"2n — 1! .
P,,.,(0) = 0 and P,,(0) = (=1) (zn ' ) , (3.130) can be written as:
"n!

D(x) = Qi (=D"en — DY ri”(rziﬂ _ = )Pzn(cos 9) (3.131)
n=0 =

zfnn! b4n+1



[Sect. 3.9] Boundary-Value Problems in Electrostatics: II 83

z

Linear
[ > <density

2%

Fig. 3.10 Uniform line charge of
length 25 and total charge Q inside
a grounded, conducting sphere of

radius b. x

In the limit b — oo, it will be seen that (3.130) or (3.131) reduces to
expression (3.48) for a ring of charge in free space. The present result can
be obtained alternatively by using (3.48) and the images for a sphere.

A second example of charge densities, illustrated in Fig. 3.10, is that of
a hollow grounded sphere with a uniform line charge of total charge Q
located on the 2z axis between the north and south poles of the sphere.
Again with the help of delta functions the volume-charge density can be
written:

o(x) =2 1 [6(cos 8 — 1) + d(cos 6" + 1)]  (3.132)
2b 27r™®
The two delta functions in cos 6 correspond to the two halves of the line
charge, above and below the z-y plane. The factor 2#r'% in the denominator
assures that the charge density has a constant linear density Q/2b. With
this density in (3.126) we obtain
1 ri

(x) = %;} [P + P(—1)]P(cos B)J; r}:(r_g;‘; — bz”l) dr’ (3.133)

The integral must be broken up into the intervals 0 <r’ <<r and

r<r <b. Then we find
r , , b 1 rrl ,
Lr dr'+ er; (r’Hl - bzz+1) dr

f:= (rll“ - b;“)
-l

For / = 0 this result is indeterminate. Applying L’Hospital’s rule, we
have, for [ = 0 only,

- ()
b
f — lim di’ b. — Hm(_ i elln(?,’b)) = In (é) (3.135)
0 10 d 10 dl r

p ()
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This can be verified by direct integration in (3.133) for / = 0. Using the
fact that P(—1) = (—1)}, the potential (3.133) can be put in the form:

D(x) = % {m (g) + :12—5‘(% [1 _ (i)m}Pz,.(cos 6)} (3.136)

The presence of the logarithm for / = 0 reminds us that the potential
diverges along the z axis. This is borne out by the series in (3.136), which
diverges for cos 6 = %1, except at r = b exactly.

The surface-charge density on the grounded sphere is readily obtained
from (3.136) by differentiation:

100 = Q [1 + @+ 1D P, (cos 9):]

o(6) = - .
4 O bees 4rb <2 + 1)

(3.137)

The leading term shows that the total charge induced on the sphereis — Q,
the other terms integrating to zero over the surface of the sphere.

3.10 Expansion of Green’s Functions in Cylindrical Coordinates

The expansion of the potential of a unit point charge in cylindrical
coordinates affords another useful example of Green’s function expan-
sions. We will present the initial steps in general enough fashion that the
procedure can be readily adapted to finding Green’s functions for potential
problems with cylindrical boundary surfaces. The starting point is the
equation for the Green’s function:

VG X) = — T a(p — p) (¢ — ) 8z — ) (3.39)
P
where the delta function has been expressed in cylindrical coordinates.

The ¢ and z delta functions can be written in terms of orthonormal
functions:

5z — ') = 2i f T dkerem = 1 f " dk cos [kz — ]|
T e L (3.139)
o= d) == D e e |

We expand the Green’s function in similar fashion:

I NOU
G(x, xX') = —; Z J- dk ™4~ cos [k(z — 2)]gu(p, p)) (3.140)
27T 0

m=—
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Then substitution into (3.138) leads to an equation for the radial Green’s

function g,.(p, p):

1 d{ dg, m® 4 .

pdp\ dp P p
For p # p’ this is just equation (3.98) for the modified Bessel functions,
1,(kp) and K, (kp). Suppose that y,(kp)is some linear combination of
I, and K,, which satisfies the correct boundary conditions for p < p’, and
that wo(kp) is a linearly independent combination which satisfies the
proper boundary conditions for p > p’. Then the symmetry of the Green’s
function in p and p’ requires that

gnlps p') = palkp<)palkp>) (3.142)

The normalization of the product v,y, is determined by the discontinuity
in slope implied by the delta function in (3.141):

=4 (3.143)

’

- P
where |, means evaluated at p = p’ & . From (3.142) it is evident that

[4&.@
dp

_ dgn
+ dp

dgm
dp

_ 9&m
+ dp

J = k(ypys’ — woypy') = kW[wy, vo] (3.144)

where primes mean differentiation with respect to the argument, and
Wly,, w,] is the Wronskian of v, and v,  Equation (3.141) is of the
Sturm-Liouville type

af o dy) oo
- (p<:c) dx) + g(@)y =0 (3.145)

and it is well known that the Wronskian of two linearly independent
solutions of such an equation is proportional to [l/p(x)]. Hence the
possibility of satisfying (3.143) for all values of p’ is assured. Clearly we
must demand that the normalization of the product y,y, is such that the
Wronskian has the value:

Wy(2), po(2)] = — 4—:; (3.146)

If there are no boundary surfaces, the requirement is that g,.(p, p’) be
finite at p = 0 and vanish at p — co. Consequently y,(kp) = Al (kp)and
Yolkp) = K, (kp). The constant A is to be determined from the Wronskian
condition (3.146). Since the Wronskian is proportional to (1/x) for all
Values of z, it does not matter where we evaluate it. Using the limiting
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forms (3.102) and (3.103) for small = [or (3.104) for large «], we find
WII(2), K ()] = — - (3.147)
x

so that 4 = 4s. The expansion of 1/]x — x'| therefore becomes:

L _2
x —x'| =

Z dek ¢m@=#) cos [k(z — 2) | (kp<)K,(kp=) (3.148)
0

m=—o0

This can also be written entirely in terms of real functions as:

1 4 [* ,
—— —;J; dk cos [k(z — 2')]
(U)K olkp-) + . cos [ — )11, kp K plkp-)
m=1

(3.149)

A number of useful mathematical results can be obtained from this
expansion. If we let x" — 0, only the m = O term survives, and we obtain
the integral representation:

1.2 f cos kz Ky(kp) dk (3.150)
Vet 2w

If we replace p?in (3.150) by R® = p® + p” — 2pp’ cos (¢ — ¢'), then we

have on the left-hand side the inverse distance |x — x'|"* with 2’ = 0, i.e.,

just (3.149) with 2’ = 0. Then comparison of the right-hand sides of

(3.149) and (3.150) (which must hold for al/l values of 2) leads to the

identification:

Ky(kv/p? + p — 2pp’ cos (6 — ¢))

= Iy(kp<)Ko(kp>) + 22005 [m($ — ¢V (kp<)Ku(kp>) (3.151)

m=1
In this last result we can take the limit X — 0 and obtain an expansion for
the Green’s function for (two-dimensional) polar coordinates:

& (\/ I 2:,0' cos (¢ — 95’))
= In (i) + i l(Bf)mcos [m(¢ — ¢)] (3.152)

P> m=1 m P
This representation can be verified by a systematic construction of the
two-dimensional Green’s function for Poisson’s equation along the lines
leading to (3.148).
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3.11 Eigenfunction Expansions for Green’s Functions

Another technique for obtaining expansions of Green’s functions is the
use of eigenfunctions for some related problem. This approach is inti-
mately connected with the methods of Sections 3.8 and 3.10.

To specify what we mean by eigenfunctions, we consider an elliptic
differential equation of the form:

VEp(x) + [f(x) + Alp(x) =0 (3.153)

If the solutions p(x) are required to satisfy certain boundary conditions
on the surface S of the volume of interest ¥V, then (3.153) will not in general
have well-behaved (e.g., finite and continuous) solutions, except for
certain values of 2. These values of 2, denoted by 4,, are called eigenvalues
(or characteristic values) and the solutions vy, (X) are called eigenfunctions.*
The eigenvalue differential equation is written:

Vap,(x) + [f(x) + 4,lp,(x) =0 (3.154)

By methods similar to those used to prove the orthogonality of the
Legendre or Bessel functions it can be shown that the eigenfunctions are
orthogonal::

fpwm*(x)wn(x) &z = 8y, (3.159)

where the eigenfunctions are assumed normalized. The spectrum of
eigenvalues 2, may be a discrete set, or a continuum, or both. It will be
assumed that the totality of eigenfunctions forms a complete set.

Suppose now that we wish to find the Green’s function for the equation:

V2G(x, X') + [f(x) + 1]G(x, X') = —47d(x — x') (3.156)

where 4 is not in general one of the eigenvalues Z,, of (3.154). Furthermore,
suppose that the Green’s function is to have the same boundary conditions
as the eigenfunctions of (3.154). Then the Green’s function can be
expanded in a series of the eigenfunctions of the form:

G(x, x) = 23 a,(X)p,(x) (3.157)

Substitution into the differential equation for the Green’s function leads

to the result:
> a, (XY — 1)y (X) = —4nd(x — x') (3.158)

* The reader familiar with wave mechanics will recognize (3.153) as equivalent ta the
Schrédinger equation for a particle in a potential.
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If we multiply both sides by ,*(x) and integrate over the volume V, the
orthogonality condition (3.155) reduces the left-hand side to one term, and
we find:

Yo (X))
a,(x) = 4o 21—+ 3.159
() = 4w P2 (3.159)
Consequently the eigenfunction expansion of the Green’s function is:
L
N = ¥u K)yu(x)
G(x, X) = 4 ; i (3.160)

For a continuous spectrum the sum is replaced by an integral.

Specializing the above considerations to Poisson’s equation, we place
f(x) =0and A =0in (3.156). As a first, essentially trivial, illustration
we let (3.154) be the wave equation over all space:

(V2 + KB (x) = 0 (3.161)

with the continuum of eigenvalues, k%, and the eigenfunctions:

1 iKex
Yi(X) = 2 . (3.162)

These eigenfunctions have delta function normalization:

fwkf*(x)wk(x) &’z = ok — k) (3.163)
Then, according to (3.160), the infinite space Green’s function has the
expansion: ik-(x—x)
1 1 f e
= a 3.164
x — x| 27° k? 3.164)

This is just the three-dimensional Fourier integral representation of
1/]x — x| .

As a second example, consider the Green’s function for a Dirichlet
problem inside a rectangular box defined by the six planes, z = y = z =0,
x=a, y=>b, z=c. The expansion is to be made in terms of ecigen-
functions of the wave equation:

(V2 + kipn)¥imn(®, ¥, 2) = 0 (3.165)

where the eigenfunctions which vanish on all the boundary surfaces are

8 . l’lTx . mary N nme )
Wlmn(xa Y, z) = —Ssm{—jsmji{——) sin { —
abe a b ¢

and + (3.166)
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The expansion of the Green’s function is therefore:

Gx,x) = 32 i

wabe

L,m,n=1
. (lvn:) . (lwx’) . (mﬁy) . (mwy’) : (mrz) : (n‘n-z’)
sin { —< ) sin | ~—— ) sin sin sin sin
v a a b . b ¢ ¢
2 2 2
(;+§+§

(3.167)

To relate expansion (3.167) to the type of expansions obtained in
Sections 3.8 and 3.10, namely, (3.125) for spherical coordinates and
(3.148) for cylindrical coordinates, we write down the analogous expansion
for the rectangular box. If the x and y coordinates are treated in the
manner of (0, ¢) or (¢, z) in those cases, while the z coordinate is singled
out for special treatment, we obtain the Green’s function:

G(x, x') = 16m sin (IIE) sin (llx—) sin (———mﬁy) sin (__mny)
ab a a b b

t,m=1
9 [smh (K2 <) 31'nh (K (e — z;,)):l (3.168)
K,,, sinh (K,,,¢)
12 g\
where K,,, = 17(-—2 + E-z-) . If (3.167) and (3.168) are to be equal, it must
a

be that the sum over » in (3.167) is just the Fourier series representation
on the interval (0, ¢) of the one-dimensional Green’s function in z in

(3.168): ,
. ( mrz)
Sin
C

(3.169)

The verification that (3.169) is the correct Fourier representation is left as
an exerctse for the reader.

Further illustrations of this technique will be found in the problems at
the end of the chapter.

sin (TZ)
sinh (K2 <) sinh (Kpu(c — 25)) _ 2N ¢
C

K,, sinh (K,,, ) - Skoeq (E,_,)z
C

3.12 Mixed Boundary Conditions; Charged Conducting Disc

The potential problems discussed so far in this chapter have been of the
orthodox kind in which the boundary conditions are of one type (usually
Dirichlet) over the whole boundary surface. In the uniqueness proof for
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2

Fig. 3.11

solutions of Laplace’s or Poisson’s equation (Section 1.9) it was pointed
out, however, that mixed boundary conditions, where the potential is
specified over part of the boundary and its normal derivative is specified
over the remainder, also lead to well-defined, unique, boundary-value
problems. There is a tendency in existing textbooks to mention the
possibility of mixed boundary conditions when making the uniqueness
proof and to ignore such problems in subsequent discussion. The reason,
as we shall see immediately, is that mixed boundary conditions are much
more difficult to handle than the normal type.

To illustrate the difficulties encountered with mixed boundary con-
ditions we consider the apparently simple problem of an isolated, infinitely
thin, flat, circular, conducting disc of radius a with a total charge ¢ placed
on it, as shown in Fig. 3.11. The charge distributes itself over the disc in
such a way as to make its surface an equipotential. We wish to determine
the potential everywhere in space and the charge distribution on the disc.

From the geometry of the problem we see that the potential is symmetric
about the axis of the disc and with respect to the plane containing the disc.
If cylindrical coordinates are chosen with the axis of the disc as the z axis
and the origin at the center of the disc, the potential must therefore be of
the form [from (3.110)],

D(p, 2) = fo " dk fk)e ¥ J(kp) (3.170)

The unknown function f(k) must be determined from the boundary
conditions at z = 0. If the potential were known everywhere over the
whole z = 0 plane, f(k) could be found by inverting the Hankel transform,
as in going from (3.110) to (3.113). Unfortunately the boundary con-
ditions at z = 0 are not that simple. For 0 < p < a we do know that the
potential is constant at an unknown value, ® = V = ¢/C, where C is the
capacitance of the disc. But for a << p < o, the potential is unknown,
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From symmetry, however, we know that the normal derivative of the
potential vanishes there. Thus the boundary conditions are mixed:

D(p, 0) =V, for0 <p<a

(3.171)
aaLzD(p,O)=0, fora<p<

The connection between the potential of the disc ¥ and the total charge ¢
on it will be established by the fact that at large distances (p and/or z > a)
the potential must approach ¢g/(p* + 2%)"¢. From (3.170) and an identity
of Problem 3.12¢ this requirement can be seen to imply
lim f(k) = q (3.172)
k-0
When boundary conditions (3.171) are applied to the general solution
(3.170), there results a pair of integral equations of the first kind:

dekf(k)JO(kp) =V, for0<p<a 1
iy (3.173)

f dk k f(k)J(kp) =0, fora < p< ooJ
0

Such pairs of integral equations, with one of the pair holding over one
part of the range of the independent variable and the other over the other
part of the range, are known as dual integral equations. The general theory
of dual integral equations is complicated and not highly developed. But
the charged disc problem and variations of it have received considerable
attention over the years. H. Weber (1873) first solved the present problem
by using certain discontinuous integrals involving Bessel functions.
Titchmarsh, p. 334, uses Mellin transforms to effect a solution of a some-
what more general pair of dual integral equations. E. T. Copson [Proc.
Edin. Math. Soc. (2), 8, 14 (1947)] reduces the disc problem to an integral
equation for the surface-charge density of the Abel type. Tranter, p. 50
and Chapter VIII, considers slight generalizations of the pair (3.173). He
introduces a systematic technique of finding the most general form satis-
fying the homogeneous member of the pair and then delimiting that form
by substitution into the other equation. The Wiener-Hopf technique can
also be used.
For our purposes it is sufficient to observe that the dual integral
€quations,
® 1
f dyg(pJ,(yx) =2", for0 <z <1 L
’ (3.174)

f dy y g(y)J (yx) =0, forl <z < ooj‘
0



92 Classical Electrodynamics

have the solution,

gy =20t ;) TatD

JT(n + ) T(n + 3)
In this relation j,(y) is the spherical Bessel function of order n (see Section

16.1). For the set of equations (3.173) the variables are « = p/a and
y = ka, while n = 0. Thus the solution is

() Tuasd®)  (3.175)

Flo) =2 Va jo(ka) = (sm k“) (3.176)
ka
Remembering the connection (3.172) which determines the potential V
in terms of the charge ¢, we find
y="1
2a

This shows that the capacitance of a disc of radius a is

C=2a

ki

This value was experimentally established with remarkable precision by
Cavendish (ca. 1780) by comparing the charges on a disc and a sphere at
the same potential.

The potential anywhere in space is found from (3.170) and (3.176) to be

sin ka

O(p, 2) = qf dk ——— e 7" J (kp) (3.177)

Values of the potential along the axis and in the plane of the disc can be
found readily by putting p = 0 and z = 0 in (3.177). The results are

@0, z) = L tan? (9)

a 2
sin ™1 (g), for p > a
O(p, 0) =
for0 <p<a

For arbitrary p and z the integral can be transformed into Weber’s form
of the solution:

B(p, 2) = g sin™? [ 20

Vip—ap+2+J(p+aR + 2

} (3.178)
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The charge density o(p) on the surface of the disc is given by

o(p) = — =25 0) = —‘i—f dk sin ka Jo(kp)
2m Oz 2ma Jo
The integral is a well-known discontinuous integral which vanishes for

p > a. For p < a, the charge density is

o(p) =4 L (3.179)
27761 \/az J— Pz

The (integrable) infinity in o(p) for p — a is a mathematical singularity
which results from the assumption of an infinitely thin disc. In practice
the charge is repelled to the outer regions of a thin disc approximately
according to (3.179), but near the edge the distribution levels off to a large,
but finite, value which depends on the detailed construction of the disc.

We have discussed the charged conducting disc in cylindrical coordinates
in order to illustrate the complications of mixed boundary conditions.
For this particular example, the mixed boundary conditions can be avoided
by separating Laplace’s equation in elliptic coordinates. Then the disc
can be taken to be the limiting form of an oblate spheroidal surface. See,
for example, Smythe, pp. 111, 156, or Jeans, p. 244.
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PROBLEMS

3.1

3.2

33

34

The surface of a hollow conducting sphere of inner radius « is divided into
an even number of equal segments by a set of planes whose common line of
intersection is the z axis and which are distributed uniformly in the angle ¢.
(The segments are like the skin on wedges of an apple, or the earth’s
surface between successive meridians of longitude.) The segments are kept
at fixed potentials £V, alternately.

(a) Set up a series representation for the potential inside the sphere for
the general case of 2n segments, and carry the calculation of the coefficients
in the series far enough to determine exactly which coefficients are different
from zero. For the nonvanishing terms, exhibit the coefficients as an
integral over cos 6.

(b) For the special case of n = 1 (two hemispheres) determine explicitly
the potential up to and including all terms with / = 3. By a coordinate
transformation verify that this reduces to result (3.37) of Section 3.3.

Two concentric spheres have radii a, b (b > a) and are divided into two
hemispheres by the same horizontal plane. The upper hemisphere of the
inner sphere and the lower hemisphere of the outer sphere are maintained
at potential V. The other hemispheres are at zero potential.

Determine the potential in the region @ < r < b as a series in Legendre
polynomials. Include terms at least up to / = 4. Check your solution
against known results in the limiting cases b — oo, and a — 0.

A spherical surface of radius R has charge uniformly distributed over its
surface with a density Q/4=R?, except for a spherical cap at the north pole,
defined by the cone 0 = a.

(a) Show that the potential inside the spherical surface can be expressed
as

4

oS _! s
o == IZ{; ST Pra(C0s @) — Py_y(os @)] 25 Py(cos )

where, for / = 0, P;_;(cos ) = —1. What is the potential outside?
(b) Find the magnitude and the direction of the electric field at the origin.
(c) Discuss the limiting forms of the potential (@) and electric field (b) as
the spherical cap becomes (1) very small, and (2) so large that the area
with charge on it becomes a very small cap at the south pole.

A thin, flat, conducting, circular disc of radius R is located in the #-y plane
with its center at the origin, and is maintained at a fixed potential V. With
the information that the charge density on a disc at fixed potential is
proportional to (R? — p®) %, where p is the distance out from the center of
the disc,

(a) show that for r > R the potential is

(b) find the potential for r < R.
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35

3.6

3.7

3.8

39

A hollow sphere of inner radius a has the potential specified on its surface
to be ® = V(6, 4). Prove the equivalence of the two forms of solution for
the potential inside the sphere:

_al@® —r? Ve, é) ,
(@) D(x) = A f(rz + a® — 2ar cos p)¥ ai

where cos ¥ = cos 0 cos 8’ + sin 0 sin 6” cos (¢ — ¢°).

o8]

l l
®) 00 = > > Am(;’;) Yin(0, 4)

I=0m=—1
where A4, = f 4 Y (0, 9V, $).

A hollow right circular cylinder of radius 4 has its axis coincident with the
z axis and its ends at z = 0 and z = L. The potential on the end faces is
zero, while the potential on the cylindrical surface is given as V(4, 2).
Using the appropriate separation of variables in cylindrical coordinates,
find a series solution for the potential anywhere inside the cylinder.

For the cylinder in Problem 3.6 the cylindrical surface is made of two
equal half-cylinders, one at potential V" and the other at potential —V/, so
that

Yi

2<<;5<1—r

V for —
or 5

Vg, z) =+
—V for= < ¢ <3
2 7 T2

(a) Find the potential inside the cylinder.

(b) Assuming L > b, consider the potential at z = L/2 as a function of p
and ¢ and compare it with two-dimensional Problem 2.8.
Show that an arbitrary function f(x) can be expanded on the interval
0 <z < ain a modified Fourier-Bessel series

0

f@=> AnJy(ym z)

n=1
: dJ () . .
where y,,, is the nth root = =0 and the coefficients 4, are given by
2 “ w
A, = 5 J; [, (ym E) dx
v
o~ 2o

Yo

An infinite, thin, plane sheet of conducting material has a circular hole of
radius a cut in it. A thin, flat disc of the same material and slightly smaller
radius lies in the plane, filling the hole, but separated from the sheet by a
very narrow insulating ring. The disc is maintained at a fixed potential ¥,
while the infinite sheet is kept at zero potential.

(@) Using appropriate cylindrical coordinates, find an integral expression
involving Bessel functions for the potential at any point above the plane.
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(b) Show that the potential a perpendicular distance z above the center
of the disc is

z
b (2) = V 1 —
) ( = +z2)

/

(c) Show that the potential a perpendicular distance z above the edge of
the disc is

Vv z
O, (z) = > ,:l — f—aK(k)}

where k = 2a/(z* + 4a%)'%, and K(k) is the complete elliptic integral of the
first kind.

3.10 Solve for the potential in Problem 3.2, using the appropriate Green’s
function obtained in the text, and verify that the answer obtained in this
way agrees with the direct solution from the differential equation.

3.11 A line charge of length 24 with a total charge Q has a linear charge density
varying as (d® — 2?), where z is the distance from the midpoint. A grounded,
conducting, spherical shell of inner radius b > d is centered at the midpoint
of the line charge.

(a) Find the potential everywhere inside the spherical shell as an
expansion in Legendre polynomials.

(b) Calculate the surface-charge density induced on the shell.

(c) Discuss your answers to (a) and (b) in the limit that d < b.

3.12  (a) Verify that
l [o0]
p dp — p) =L kJ y(kp) wlkp”) dic

(b) Obtain the following expansion:

[+¢]
1 ©
'X — x’] = Z f dk ez"l(&ﬁ—d’ )Jm(kP)Jm(kp')e_"(z>—z<)
m=—wv0

(c) By appropriate limiting procedures prove the following expansions:
1
P2 + 22

JokVp + p% = 2pp’ cOs $) = z ™9k k)

m=— o

= f e—*121 ] (kp) dk
0

=]

a0

etkpcosd = Z ime'm ], (kp)

m= —x©

(d) From the last result obtain an integral representation of the Bessel

function:
2n
Jou(2) = 1 €1 c0s ¢ —ime g,

2xi™ Jo

Compare the standard integral representations.
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3.13 A unit point charge is located at the point (p’, ¢’,2’) inside a grounded
cylindrical box defined by the surfaces 2 = 0,z = L, p = a. Show that the
potential inside the box can be expressed in the following alternative forms:

4 o o etm(¢ f¢')Jm(mmnP)Jm(xmnP,)
a
o(x, x) = Z Z ?

m=—o n=1 man3a+1(wmfn)Sinh (m L)

a
x sinh [wﬂ z<] smh[ mr (L —z- :l
a
(n‘n'p<)
CD(X,X’)=E Z z im($— ”“sn(mr)m ( ) (n a)
% [I (nvra K nﬂp>)_K (mra)l ("'"P>)
"\L) "\ L "\L) "\ L

0 ] 0 e?-m(é —¢’} Sin (?) Sirl (kzz’)Jm(xmnP)Jm(%—nP:)
a a
2. 22 P
m=—o k=ln=l - Tz I 41 nn)

Discuss the relation of the last expansion (with its extra summation) to the
other two.

3.14 The walls of the conducting cylindrical box of Problem 3.13 are all at zero

potential, except for a disc in the upper end, defined by p = b, at potential V.

(@) Using the various forms of the Green’s function obtained m Problem
3.13, find three expansions for the potential inside the cylinder.

(b) For each series, calculate numerically the ratio of the potential at
p =0,z = L/2 to the potential of the disc, assuming b = L/4 = a/2. Try
to obtain at least two-significant-figure accuracy. Is one series less rapidly
convergent than the others? Why?

(Jahnke and Emde have tables of J;, and J; on pp. 156-163, Iy and I; on
pp- 226-229, (2/m)K, and (2/m)K, on pp. 236-243. Watson also has
numerous tables.)



Multipoles, Electrostatics of
Macroscopic Media,
Dielectrics

This chapter is first concerned with the potential due to localized
charge distributions and its expansion in multipoles. The development is
made in terms of spherical harmonics, but contact is established with the
rectangular components for the first few multipoles. The energy of a
multipole in an external field is then discussed. The macroscopic equations
of electrostatics are derived by taking into account the response of atoms
to an applied field and by suitable averaging procedures. Dielectrics and
the appropriate boundary conditions are then described, and some
typical boundary-value problems with dielectrics are solved. Simple
classical models are used to illustrate the main features of atomic polariza-
bility and susceptibility. Finally the question of electrostatic energy in the
presence of dielectrics is discussed.

4.1 Multipole Expansion

A localized distribution of charge is described by the charge density
p(x"), which is nonvanishing only inside a sphere of radius R* around some
origin. The potential outside the sphere can be written as an expansion in
spherical harmonics:

@O i
4m Ym0, $)
(I)(X) =Z z 2[ + 1qlm rH_l (41)

=0 m=-1

* The sphere of radius R is an arbitrary conceptual device employed merely to divide
space into regions with and without charge.

98



[Sect. 4.11  Multipoles, Electrostatics of Macroscopic Media, Dielectrics 99

where the particular choice of constant coefficients is made for later
convenience. Equation (4.1) is called a multipole expansion; the /=0
term is called the monopole term, / = 1 is the dipole term, etc. The
reason for these names becomes clear below. The problem to be solved
is the determination of the constants ¢,,, in terms of the properties of the
charge density p(x’). The solution is very easily obtained from the
integral (1.17) for the potential:

with expansion (3.70) for 1/[x — x’|. Since we are interested at the
moment in the potential outside the charge distribution, r_ = r’ and
r. =r. Then we find:

009 = 4r> | [0 oy e [E B e

Consequently the coefficients in (4.1) are:

G = [ Y50, $r500) v @3

These coefficients are called multipole moments. To see the physical inter-
pretation of them we exhibit the first few explicitly in terms of cartesian
coordinates:

doo = N fp(x ) dx’ = \—/Z;q (4.4)

qll = -_/\/‘8:—‘; J.(m’ - l?/’)P(X’) d3 ' = _Jér (pm - ip’y)

T - 4.5)
10 = «/_ fz'P(x') d*z’ =,\/—" p.
4n
1 /15 1 . )
oo = Z“/;r J.(a:’ — iy )ZP(X ) e’ = ‘1_2 — (Q11 2iQ15 — Qg9)

da1= — A/g J.z’(a:’ — iy)p(x) &’ = — 5"/5 (@13 — 1Q2) L(4-6)
mo=1 [ [e — ey aw =1 (2o,

Only the moments with m > 0 have been given, since (3.54) shows that for
a real charge density the moments with m < 0 are related through

‘h,-—m = (_'l)m ?:m (4'7)
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In equations (4.4)-(4.6), g is the total charge, or monopole moment, p is
the electric dipole moment:

p =fx’ p(x) &z’ (4.8)

and @, is the quadrupole moment tensor:

Q“=f6%%;~r%%w33fw (4.9)

We see that the /th multipole coefficients [(2/ + 1) in number] are linear
combinations of the corresponding multipoles expressed in rectangular
coordinates. The expansion of ®(x) directly in rectangular coordinates:

_a px 15, @y 410
o(x) r+r3+2;QuP-F (4.10)

by direct Taylor’s series expansion of 1/|x — x’| will be left as an exercise
for the reader. It becomes increasingly cumbersome to continue the
expansion in (4.10) beyond the quadrupole terms.

The electric field components for a given multipole can be expressed
most easily in terms of spherical coordinates. The negative gradient of a
term in (4.1) with definite /, m has spherical components:

_Anl+ 1) Y..0. ¢ )

T2l T gt
4 1 0

E — — m— — Y,,.(6, > 4.11

6 21+141 2 3g (05 B) (4.11)
47 1 im

E,=— n Y,

TR Loy

dY,,/06 and Y,,/sin 0 can be expressed as linear combinations of other
Y,,’s, but the expressions are not particularly illuminating and so will be
omitted. The proper way to describe a vector multipole ficld is by vector
spherical harmonics, discussed in Chapter 16.

For a dipole p along the z axis, the fields in (4.11) reduce to the familiar
form:

X
E, =2pc;)36
r
_psinf ¢ 4.12
£, == (4.12)
E,=0

These dipole fields can be written in vector form by recombining (4.12) or
by directly operating with the gradient on the dipole term in (4.10). The
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result for the field at a point x due to a dipole p at the point x’ is:

E(x) = @1 — P (4.13)
Ix — x'[®

where n is a unit vector directed from x’ to x.

4,2 Multipole Expansion of the Energy of a Charge Distribution in an
External Field

If a localized charge distribution described by p(x) is placed in an
external potential ®(x), the electrostatic energy of the system is:

W= fp(x)d)(x) d*x (4.14)

If the potential @ is slowly varying over the region where p(x) is non-
negligible, then it can be expanded in a Taylor’s series around a suitably
chosen origin:

1 D
B = O0) + x - VO(0) + 2 sz, 3o om, ©) + - (4.15)

Utilizing the definition of the electric field E = — V@, the last two terms
can be rewritten. Then (4.15) becomes:

) = 00 — x-EO) =3 3 S, 2 0) + -

Since V - E = 0 for the external field, we can subtract
1r*V - E(0)

from the last term to obtain finally the expansion:
1 oE,
= ®(0) — x+ E0) — - 3u,a, — F25,,) —3 cee (4.
O(x) = @O0) — x- EO) — = ; ;( w5 — 1°0;,) 52, 0 + (4.16)

When this is inserted into (4.14) and the definitions of total charge, dipole
moment (4.8) and quadrupole moment (4.9), are employed, the energy
takes the form:

1 ok,
W =q®(0) — p+E0) — - GOy +--- 4.17
40(0) — p - E(0) 62{2@ O+ (417)
This expansion shows the characteristic way in which the various multi-
poles interact with an external field—the charge with the potential, the
dipole with the electric field, the quadrupole with the field gradient, and
SO on.
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In nuclear physics the quadrupole interaction is of particular interest.
Atomic nuclei can possess electric quadrupole moments, and their magni-
tudes and signs have a bearing on the forces between neutrons and protons,
as well as the shapes of the nuclei themselves. The energy levels or states
of a nucleus are described by the quantum numbers of total angular
momentum J and its projection M along the z axis, as well as others which
we will denote by a general index «. A given nuclear state has associated
with it a quantum-mechanical charge density* p ;. (x), which depends
on the quantum numbers (J, M, «), but which is cylindrically symmetric
about the z axis. Thus the only nonvanishing quadrupole moment is g
in (4.6), or Qgz in (4.9).t The quadrupole moment of a nuclear state is
defined as the value of (1/e) Qg, with the charge density p; 5,(X), where e
is the protonic charge:

Qrma = 'i‘ f(322 - VQ)PJMa(X) d*x (4.18)

The dimensions of Q ,,, are consequently (length)®. Unless the circum-
stances are exceptional (e.g., nuclei in atoms with completely closed
electronic shells), nuclei are subjected to internal fields which possess field
gradients in the neighborhood of the nuclei. Consequently, according to
(4.17), the energy of the nuclei will have a contribution from the quadrupole
interaction. The states of different M value for the same J will have
different quadrupole moments Q,,,,, and so a degeneracy in M value
which may have existed will be removed by the quadrupole coupling to the
“external” (crystal lattice, or molecular) electric field. Detection of these
small energy differences by radiofrequency techniques allows the deter-
mination of the quadrupole moment of the nucleus. }

The interaction energy between two dipoles p, and p, can be obtained
directly from (4.17) by using the dipole field (4.13). Thus, the mutual
potential energy is

le — PP — 3(“ * pl)(n * p2) (419)
|x; — X,f?

where n is a unit vector in the direction (x; — x;). The dipole-dipole
interaction is attractive or repulsive, depending on the orientation of the
dipoles. For fixed orientation and separation of the dipoles, the value of

* See Blatt and Weisskopf, pp. 23 ff., for an elementary discussion of the quantum
aspects of the problem.

T Actually Q,, and Q,, are different from zero, but are not independent of Q,,, being
given by Q= Qs = _%Qaa-

1“The quadrupole moment of a nucleus,” denoted by Q, is defined as the value of
Q, . in the state M = J. See Blatt and Weisskopf, loc. cit.
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the interaction, averaged over the relative positions of the dipoles, is zero.
If the moments are generally parallel, attraction (repulsion) occurs when
the moments are oriented more or less parallel (perpendicular) to the line
joining their centers. For antiparallel moments the reverse is true. The
extreme values of the potential energy are equal in magnitude.

4.3 Macroscopic Electrostatics; Effects of Aggregates of Atoms

The equations
V.e=4xnp

4.20
Vxe=0 ( )

govern electrostatic phenomena of all types, provided the “microscopic”
electric field € is derived from the total “microscopic™ charge density p’.
For problems with a few idealized point charges in the vicinity of mathe-
matically defined boundary surfaces, equations (4.20) are quite acceptable.
But there are many physical situations in which a complete specification
of the problem in terms of individual charges would be impossible. Any
problem involving fields in the presence of matter is a case in point. A
macroscopic amount of matter has of the order of 10%®%” charges in it, all
of them in motion to a greater or lesser extent because of thermal agitation
or zero point vibration.

Setting aside the question of whether electrostatics can be relevant to a
situation in which the charges are in incessant motion, let us consider the
task of handling macroscopic problems with large numbers of atoms or
molecules. Clearly the solution for the electric field:

e(x) = f H p'(x") 3’ (4.21)

is not very suitable, since (a) it involves a charge density p’ which must
specify the exact positions of very many charges, and (b) it fluctuates
wildly as the observation point moves by only very small distances (of the
order of atomic dimensions). Fortunately, for macroscopic electrostatics
we do not want as detailed information as is contained in (4.21). We are
content with averages of electric field strengths over regions of the order
of 10®cm?® (ie., 10~2cm linear dimension) or greater. Since atomic
volumes are of the order of 10-2* cm3, there are of the order of 1018 or more
atoms in the volumes of macroscopic interest. This means that the micro-
scopic fluctuations will be entirely averaged out. We will wish to deal with
an average €(x) and p'(x). The averages will be over a macroscopically
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small volume AV, large enough, however, to contain very many atoms or
molecules:

;
() = /fl—/f x+ B
aF l> (4.22)
' — _1_ ’ 3
(p'(x)) =i AVP(X + E)dEJ:

The averaged quantities are denoted by angle brackets ( ); the variable
€ ranges over the volume AV.

The averaging procedure now allows us to answer the question of
whether it is legitimate to talk in static terms when the charges in matter
are in thermal motion. At any instant of time the very many charges in
the volume A} will be in all possible states of motion. An average over
them at that instant will yield the same result as an average at some later
instant of time. Hence, as far as the averaged quantities are concerned,
it is legitimate to talk of static fields and charges.* Furthermore, the
averaging can be done as if the atomic charges were fixed in space at the
positions they have at some arbitrary instant. Hence the situation can be
regarded as electrostatic even at the microscopic level for purposes of
calculation.

In the treatment of macroscopic electrostatics it is useful to break up
the averaged charge density (p'(x)} into two parts, one of which is the
averaged charge of the atomic or molecular ions, or excess free charge
placed in or on the macroscopic body, and the other of which is the
induced or polarization charge. In the absence of external fields, atoms
or molecules may or may not have electric dipole moments, but if they do,
the moments are randomly oriented. In the presence of a field, the atoms
become polarized (or their permanent moments tend to align with the
field) and possess on the average a dipole moment These dipole moments
can contribute to the averaged charge density (p’(x)). Since the induced
dipole moments tend to be proportional to the applied field, we will find
that the macroscopic version of (4.20) will involve only one constant to
characterize the average polarizability of the medium involved.

To see how the induced dipole moments enter the problem we first
consider the microscopic field due to one molecule with center of mass at
the point x; in Fig. 4.1 while the observation point is at x. The molecular
charge density is p,’(x’), where X’ is measured from the center of mass of
the molecule. [tshould be noted that p,”in general depends on the position
of x, of the molecule, since the distortion of the charge cloud depends on
the local field present. The microscopic electric field due to the jth

* This ignores the very small (at room temperature) induction and radiation fields due
to the acceleration of the charges in their thermal motion.
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Fig. 4.1 A molecule with center of

mass at x; gives a contribution to

the potential at the point P with

position x. The internal coordinate

x’ is measured from the center of
mass.

molecule is
€,(x) = --Vf p;,/(x) 1 py (4.23)
mol [x —x; — x|

For observation points outside the molecule we can expand in multipoles
around the center of mass of the molecule. According to (4.10}, this leads
to

e(x) = —V[J— + Vg.(;_l_—xj') ‘P, + - ] (4.24)

Ix — x,]

=L e |
el ‘> (4.25)

p; = ( X' p;(x) &' |
mol

where

v

are the molecular charge and the dipole moment, respectively. The
quadrupole term in (4.10) could have been retained, but as long as the
macroscopic variations of field occur over distances large compared to
molecular dimensions it contributes negligibly to the averaged field
relative to the dipole term. Both e; and p; are functions of the position of
the molecule.

To obtain the microscopic field due to all the molecules we sum over j:

€(x) = _VZL}%J +p; -v,-(fl—)] (4.26)

X — x|

We now want to average according to (4.22) in order to obtain a macro-
scopic field. To facilitate this averaging procedure we replace the discrete
sum over the molecules by an integral by introducing apparently con-
tinuous charge and polarization densities:

pmor(X) = D €;0(x — x;) |
’ (4.27)
Tmol(X) = ;P:'é(x - X;)
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Then (4.26) can be rewritten formally as:

G(X) = —VJ‘da ,,{:Pmol(x ) + TCmol(X ) V”( 1 - ):1 (428)
‘| [x — x"|
To illustrate the averaging process we consider the first term in (4.28).
The averaged value is, by (4.22):

(&(x)) = —V[Kll-/- fw d’¢ fd3w” h{—p_'%(x_’lx—] (4.29)

where we have used the fact that differentiation and averaging can be
interchanged. If the variable of integration x” is replaced by X" = x' + E,

then 1
(e,(x)) = _v[ f A3 f &Pz’ M"—Jf—g)} (4.30)
AV Jay x — x|

The equality of (4.29) and (4.20) shows the obvious equivalence of averag-
ing by means of moving the observation point around the volume AV
centered at x and averaging by moving the integration point over the
molecules in a volume AV centered around x'. From definition (4.27) it
is clear that the integral of p,,, over the volume A} at x’ just adds up all
the molecular charges e, inside AV

lf N . 1 Z
. d°pm = j
Viay Spmolx’ + 8) AV ¢

AV

If the macroscopic density of molecules at x” is N(x) molecules per unit
volume and (e, (x)) is the average charge per molecule within the volume
AV at x', then

l

AV (‘ d*pmo(x’ + B) = N(X'){emal(X')) (4.31)
V/ar

Now (4.30) can be written
@) = 7 [XVemal)) s,

x — x|

Exactly similar considerations can be made for the second term in (4.28).
With the same definitions of averages we have

/;—V AVd fmmo(x’ + &) = N(X'){pmai(x)) (4.32)

Then the averaged form of (4.28) is given by:
1

[x —

(e(x)) = —V f N(x ){<"‘“°‘( X)) 4 Prroi(x)) - V (

< ’)} &P (4.33)
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To obtain the macroscopic equivalent of (4.20) we take the divergence of
both sides. Recalling that V¥(1/|x — x'|) = —4md(x — x'), we find:

V. (e(x)) = 4wa(x’){(emol(x’))5(x — x') + Puor(x’)y - V'o(x — x)} d?a’
From the properties of the delta function (Section 1.2) it follows that

V- (e(x)) = 4nNX)(epa(X)) — 47V « (M(x)(Prci(X)))  (4.34)

This is of the form of the first equation of (4.20) with the charge density p’
replaced by two terms, the first being the average charge per unit volume
of the molecules and the second being the polarization charge per unit
volume. The presence of the divergence in the polarization-charge density
seems very natural when one thinks of how this part of the charge density is
created. If we consider a small volume in the medium, part of the charge
inside that volume may be due to the net charges on the molecules. But
there is a contribution arising from the polarization of the charge cloud of
the molecules in an external field, since, for example, molecules whose
charge once lay totally inside the volume may now have part of their
charge cloud outside the volume in question. If the polarization is uniform
over the space containing our small volume, then as much charge will be
brought in through the surface of the volume as will leave it, and there will
be no net effect. But if the polarization is not uniform, there can be a net
increase or decrease of charge within the volume, as indicated schemati-
cally in Fig. 4.2. This is the physical origin of the polarization-charge
density.
In (4.34) the two divergences can be combined so that the equation
reads:
V. [(€) + 4nN{p,0] = 47N{e,o (4.35)

It is customary to introduce certain macroscopic quantities, namely, the
electric field E, the polarization P (electric dipole moment per unit volume),

Fig. 4.2 Origin of polarization-charge density.

Because of spatial variation of polarization more

molecular charge may leave a given small volume
than enters it.
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the charge density p, and the displacement D, defined as follows:

E = (¢)
P = Npna)
o > (4.36)
P = N<emol>
D =E + 4P

If there are several different kinds of atoms or molecules in the medium
and perhaps extra charge is added, these definitions have the obvious

eneralizations:
¥ P=3Np) “L

p= ;N1~<ei> + PexJ

where N, is the number of molecules of type i per unit volume, (e;) is their
average charge, and (p,) is their average dipole moment. p,, is the excess
(or free) charge density. Usually the molecules are neutral, and the total
charge density p 1s just the free charge density.

With the definitions of (4.36) or (4.37), the macroscopic divergence

equation becomes: V.D = dnp (4.38)

The macroscopic equivalent of the other member of the pair (4.20) can be
obtained by taking the curl of (4.33). Obviously the result is

VxE=0 (4.39)

(4.37)

For macroscopic electrostatic problems in the presence of dielectrics,
(4.38) and (4.39) replace the microscopic equations (4.20).

The solution for the electric field (4.33) can be expressed in terms of the
macroscopic variables as

E(x) = —V f P [IXLE%' + P(x) -v'(IX - x’iﬂ (4.40)

The second term, describing the dipole field, has already been discussed in
Section 1.6.

4.4 Simple Dielectrics and Boundary Conditions

It was mentioned in the previous section that the molecular polarization
depends on the local electric field at the molecule. In the absence of a
field there is no average polarization.* This means that the polarization

* Except for electrets, which have a permanent electric polarization.
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P, which is in general a function of E, can be expanded as a powers series
in the field, at least for small fields. Any component will have an expansion

of the form:
P;=3ayE; + 2 binE;Ec+ - -
5 ik

A priori it is not clear how important the higher terms will be in practice.
Experimentally it is found that the polarization as a function of applied
field looks qualitatively as shown in Fig. 4.3. At normal temperatures and
for fields attainable in the laboratory the linear approximation is completely
adequate. This is not surprising if it is remembered that interatomic
electric fields are of the order of 10° volts/cm. Any external field causing
polarization is only a small perturbation. For a general anisotropic
medium (e.g., certain crystals such as calcite and quartz), there can be six
independent elements a,;. But for simple substances, called isotropic, P
is parallel to E with a constant of proportionality y, which is independent
of the direction of E. Then P=yE (4.41)

The constant y, is called the electric susceptibility of the medium. We
then find the displacement proportional to E:

D = ¢E (4.42)
where
€ =1+ 4my, (4.43)
1s the dielectric constant.
If the dielectric is not only isotropic, but also uniform, € is independent
of position. Then the divergence equation can be written

v.E=2, (4.44)
€

and all problems in that medium are reduced to those of previous chapters,
except that the electric fields produced by given charges are reduced by a

Fig. 4.3 Components of polariza-
tion as a function of applied
electric field.
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Region 2

€
€2

Region 1

Fig. 4.4

factor 1/e. The reduction can be understood in terms of a polarization of
the atoms which produce fields in opposition to that of the given charge.
One immediate consequence is that thecapacitanceofacapacitorisincreased
by a factor of ¢ if the empty space between the electrodes is filled with a di-
electric with dielectric constant e (true only to the extent that fringing fields
can be neglected).

An important consideration is the boundary conditions on the field
quantities E and D at surfaces where the dielectric properties vary dis-
continuously. Consider a surface .5 as shown in Fig. 4.4. The unit vector
nis normal to the surface and points from region 1 with di¢lectric constant
¢, to region 2 with dielectric constant ¢,. In exactly the same manner as in
Section 1.6 we find, by taking a Gaussian pill box with end faces in regions
1 and 2 parallel to the surface S, that

(D, — D)) +n = 4wo (4.45)

where o is the surface-charge density (rot including polarization charge).
Similarly, by applying Stokes’s theorem to V x E = 0, we find that

(E,—E) xn=0 (4.46)

These boundary conditions on the normal component of D and the
tangential component of E replace the microscopic conditions (1.22) and
below. The macroscopic equivalent of (1.22) can be recovered from (4.45)
by extracting the polarization-charge density from the left-hand side.

4.5 Boundary-Value Problems with Dielectrics

The methods of previous chapters for the solution of electrostatic
boundary-value problems can readily be extended to handle the presence
of dielectrics. In this section we will treat a few examples of the various
techniques applied to dielectric media.
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To illustrate the method of images for dielectrics we consider a point
charge 4 embedded in a semi-infinite dielectric ¢, a distance d away from a
plane interface which separates the first medium from another semi-infinite
dielectric €,. The surface may be taken as the plane z = 0, as shown in
Fig. 4.5. We must find the appropriate solution to the equations:

&V +E = 4mp, z2>0 ]
&V -E =0, 2 <0 | (4.47)
and VxE=0, everywhere J
subject to the boundary conditions at z = O:
I[- ElEz } E2Ez
lim { E L —tm {E (4.48)
z—0t J 20~
L E, E,

Since V x E = 0 everywhere, E is derivable in the usual way from a
potential @. In attempting to use the image method it is natural to locate
an image charge g’ at the symmetrical position 4’ shown in Fig. 4.6. Then
for z > 0 the potential at a point P described by cylindrical coordinates

(p, ¢, 2) will be
O = _1_(_‘L + 4
€ 'Ry R,

’

), 2> 0 (4.49)

where R, =V p2+ (d —2)%, Ry,=Vp?+ (d+ 2?2 So far the pro-
cedure is completely analogous to the problem with a conducting material
in place of the dielectric €, forz << 0. But we now must specify the potential
for z << 0. Since there are no charges in the region z < 0, it must be a
solution of Laplace’s equation without singularities in that region. Clearly
the simplest assumption is that for z < 0 the potential is equivalent to that
of a charge ¢” at the position 4 of the actual charge g:

, z<0 (4.50)

s

\ 7

Fig. 4.5
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€2 €1

Fig. 4.6
Since 2(1) =__2(i) -4 _
92 \Ry/ l:=0 02\R,/ =0 (p® + d»”*
while E’.(L) _ i(i) _ =P
dp\Ry/lz=0  Op\Ry/lz=0 (p* + d¥"

the boundary conditions (4.48) lead to the requirements:
9—q9 =9q"
1 ! 1 "
~(g+4)=—4q
€ €2
These can be solved to yield the image charges ¢’ and ¢":

qr —_ _(62 _ €l)q
€+e (4.51)

qrr_ ( 262 )q
€& 1+ g J

For the two cases ¢, > ¢, and ¢, < ¢, the lines of force are shown qualita-
tively in Fig. 4.7.

The polarization-charge density is given by —V .P. Inside either
dielectric, P = y,E, so that —V . P = —»,V . E = 0, except at the point
charge gq. At the surface, however, y, takes a discontinuous jump,
Ay, = (1/47)(e; — €,) as z passes through z = 0. This implies that there
is a polarization surface-charge density on the plane z = 0:

Opo = —(Py — Py)+n (4.52)

where n is the unit normal from dielectric 1 to dielectric 2, and P, is the
polarization in the dielectric 7 at z = 0. Since

P, = (ef — 1)E = —(E" — 1)vq>
41 4
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N2

Q\/L

€ >€ €2<€

Fig. 4.7 Lines of electric force for a point charge embedded in a dielectric €, near a semi-
infinite slab of dielectric €,.

it is a simple matter to show that the polarization-charge density is

g (e —¢) d
49 , 4.53
27 e (e + &) (p* + A (39

In the limit €, > ¢, the dielectric €, behaves much like a conductor in that
the field inside it becomes very small and the surface-charge density (4.53)
approaches the value appropriate to a conducting surface.

The second illustration of electrostatic problems involving dielectrics is
that of a dielectric sphere of radius @ with dielectric constant € placed in an
initially uniform electric field which at large distances from the sphere is
directed along the z axis and has magnitude E,, as indicated in Fig. 4.8.
Both inside and outside the sphere there are no free charges. Consequently
the problem is one of solving Laplace’s equation with the proper boundary
conditions at r = a. From the axial symmetry of the geometry we can

Opol = —

— —

Fig. 4.8
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take the solution to be of the form:

INSIDE : d,, = D AP (cos ) (4.54)
=0
OUTSIDE: D = D [Byrt + Cyr= V1P (cos 6) (4.55)
=0
From the boundary condition at infinity (0 — —Epz = — Er cos f) we
find that the only nonvanishing B, is B, = —E,. The other coefficients are
determined from the boundary conditions at r = a:
1 00, 1 0D ]
TANGENTIAL E:  ——-—2) = ___ou
a 06 |,_, a 960 |,_,
y 4.56
o0, 3Vuu (420
NORMAL D: —e€ = —
or |._, or l._a ]
The first boundary condition leads to the relations:
c R
A]_ — —E0 + —;
\ (4.57)
[4
A,,=a21+1, forl+#1
while the second gives: ’
X
a
C > (4.58)
= L ,
eld; = —(+1) i forl#1

The second equations in (4.57) and (4.58) can be satisfied simultaneously
only with 4, = C; = 0 for all / = 1. The remaining coefficients are given
in terms of the applied electric field E,:

A]_ - ""(7 3 )EO
“te (4.59)
-1
C, = (€ ) °E
1 e 12 a Ly
The potential is therefore
DQin = —( 3 2)Eor cos 6
€+ (4.60)

3
E ‘icosﬁ

0
r2

1

)

€ —

€ +

|

Doyt = —Eyrcos 6 + (
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The potential inside the sphere describes a constant electric field
parallel to the applied field with magnitude

3

€+ 2

Outside the sphere the potential is equivalent to the applied field E; plus
the field of an electric dipole at the origin with dipole moment:

€ — 1) 3
= E 4.62
P (€+ 5 a Ly ( )

oriented in the direction of the applied field. The dipole moment can be
interpreted as the volume integral of the polarization P. The polarization

1S
P= (e - 1)E - —3—(6 — 1)E0 (4.63)
4 4drie + 2

It is constant throughout the volume of the sphere and has a volume

integral given by (4.62). The polarization surface-charge density is,
according to (4.52), 6, = (P - 1)/r:

3 (e — 1)
= = E cos B 4.64
ol = et 2/ (464)

This can be thought of as producing an internal field directed oppositely
to the applied field, so reducing the field inside the sphere to its value (4.61),
as sketched in Fig. 4.9.

The problem of a spherical cavity of radius a in a dielectric medium with
dielectric constant e and with an applied electric field E, parallel to the z
axis, as shown in Fig. 4.10, can be handled in exactly the same way as the
dielectric sphere. In fact, inspection of boundary conditions (4.56) shows
that the results for the cavity can be obtained from those of the sphere by
the replacement € — (1/¢). Thus, for example, the field inside the cavity

Fig. 4.9 Dielectric sphere in a uniform field E,, showing the polarization on the left
and the polarization charge with its associated, opposing, electric field on the right.
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.

Fig. 4.10. Spherical cavity in a
dielectric with a uniform field
applied.

is uniform, parallel to E,, and of magnitude:

3e
2¢e + 1

Similarly, the field outside is the applied field plus that of a dipole at the
origin oriented oppositely to the applied field and with dipole moment:

€ — 1 3
= E 4.66
P (2e + 1)“ 0 (4.66)

E,> E, (4.65)

in =

4,6 Molecular Polarizability and Electric Susceptibility

In this section and the next we will consider the relation between
molecular properties and the macroscopically defined parameter, the
electric susceptibility y,. Our discussion will be in terms of simple
classical models of the molecular properties, although a proper treatment
necessarily would involve quantum-mechanical considerations. Fortu-
nately, the simpler properties of dielectrics are amenable to classical
analysis.

Before examining how the detailed properties of the molecules are related
to the susceptibility we must make a distinction between the fields acting
on the molecules in the medium and the external field. The susceptibility
is defined through the relation P = x E, where E is the macroscopic
electric field. In rarefied media where molecular separations are large
there is little difference between the macroscopic field and that acting on
any molecule or group of molecules. But in dense media with closely
packed molecules the polarization of neighboring molecules gives rise to
an internal field E; at any given molecule in addition to the average
macroscopic field E, so that the total field at the molecule is E + E,. The
internal field can be written as

E, = (4—3-" + s)P (4.67)
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where sP is the contribution of molecules close to the given molecule, and
(47/3)P is the contribution of the more distant molecules. It is customary
to consider the two parts separately by imagining a spherical surface of size
large microscopically but small macroscopically surrounding a molecule,
as shown in Fig. 4.11, and determining the field at the center due to the
polarization of the molecules exterior to the sphere and the resulting charge
density induced on the surface of the sphere. This charge density is
—P - n, where n is the outward normal from the spherical surface. The
resulting field at the center is obviously parallel to P and has the magnitude:

2 40 (—P cos 6)(—cos 6) _4m

1) —
EM = ) T P (4.68)

sphere r

giving the first term in (4.67).

The field sP due to the molecules near by is more difficult to determine.
Lorentz (p. 138) showed that for atoms in a simple cubic lattice s = 0 at
any lattice site. The argument depends on the symmetry of the problem,
as can be seen as follows. Suppose that inside the sphere we have a cubic
array of dipoles such as are shown in Fig. 4.12, with all their moments
constant in magnitude and oriented along the same direction (remember
that the sphere is macroscopically small). The positions of the dipoles are
given by the coordinates x,;; with the components along the coordinate
axes (ia, ja, ka), where a is the lattice spacing, and i, j, k each take on
positive and negative integer values. The field at the origin due to all the
dipoles is, according to (4.13),

_ 3(P * Xyy)Xije — x?jkp
E = Z - (4.69)

40k

The x component of the field can be written in the form: -

Z 3(ipy + ijps + ikpy) — (I + j° + KDpy
E, = - 4.70
1 aa(iz +j2 + kz)é ( )

iik

n
Spherical <7 j
surface %" ™\ 8
/! //\
t e
l N ! P
\  Molecule !
Fig. 4.11 Calculation of the internal field— N /o

contribution from distant molecules. S -
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Fig. 4.12 Calculation of the in-
ternal field—contribution from near-
by molecules in a simple cubic lattice.

Since the indices run equally over positive and negative values, the cross
terms involving (ijp, + ikps) vanish. By symmetry the sums:

2 2 2

Z l e — Z j == z k B
s (i2 +j2 + k2)/§ < (i2 +j2 + kz)% < (i2 +j2 + kz)/é

are all equal. Consequently

g o NBP @+ + B)]p
1= Z a3(l-2 +}2 + k2)% -

0 4.71)

ijk
Similar arguments show that the ¥ and z components vanish also. Hence
s = 0 for a simple cubic lattice.

If s = 0 for a highly symmetric situation, it seems plausible that s = 0
also for completely random situations. Hence we expect amorphous
substances like glass to have no internal field due to near-by molecules.
Although calculations taking into account the structural details of the
substance are necessary to obtain an accurate answer, it is a good working
assumption that s ~ 0 for almost all materials.

The polarization vector P was defined in (4.36) as

P=N <pmol>

where (p, > is the average dipole moment of the molecules. This dipole
moment is approximately proportional to the electric field acting on the
molecule. To exhibit this dependence on electric field we define the mole-
cular polarizability vy, as the ratio of the average molecular dipole
moment to the applied field at themolecule. Taking account of the internal
field (4.67), this gives:

<Pm0]> = ymol(E + E)) (4'72)

Ymar 1S, in principle, a function of the electric field, but for a wide range of
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field strengths is a constant which characterizes the response of the
molecules to an applied field (see Section 4.4). Equation (4.72) can be
combined with (4.36) and (4.67) to yield:

P = Nymol(E + 4?"" P) (4.73)

where we have assumed s = 0. Solving for P in terms of E and using the
fact that P = y,E defines the electric susceptibility of a substance, we find

Xe = Iii’“‘“ (4.74)
1 — ‘3_ N)/mol

as the relation between susceptibility (the macroscopic parameter) and
molecular polarizability (the microscopic parameter). Since the dielectric
constant is € = 1 + 4wy,, it can be expressed in terms of y,,, or
alternatively the molecular polarizability can be expressed in terms of the
dielectric constant:

3 (e —_ 1)
-3 475
Ymol = N \e + 2 (4.75)

This is called the Clausius-Mossotti equation, since Mossotti (in 1850) and
Clausius independently (in 1879) established that for any given substance
(¢ — 1)/(e + 2) should be proportional to the density of the substance.*
The relation holds best for dilute substances such as gases. For liquids
and solids, (4.75) is only approximately valid, especially if the dielectric
constant is large. The interested reader can refer to the books by Bottcher,
Debye, and Frohlich for further details.

47 Models for the Molecular Polarizability

The polarization of a collection of atoms or molecules arises in two ways:

(a) the applied field distorts the charge distributions and so produces
an induced dipole moment in each molecule;

(b) the applied field tends to line up the initially randomly oriented
permanent dipole moments of the molecules.

To estimate the induced moments we will consider a simple model of

* At optical frequencies, € = n?, where # is the index of refraction. With r* replacing
€ in (4.75), the equation is sometimes called the Lorentz-Lorenz equation (1880).
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harmonically bound charges (electrons). Each charge e is bound under
the action of a restoring force

F = —mw,2x (4.76)

where m is the mass of the charge, and w, the frequency of oscillation
about equilibrium. Under the action of an electric field E the charge is
displaced from its equilibrium by an amount x given by

mwy?x = eE

Consequently the induced dipole moment is

e2

Pmol = X =

E (4.77)

mwq

This means that the polarizability is y = e*/mw,?. If there are Z electrons
per molecule, f; having a restoring force constant mw;? (3. f; = Z), then the
molecular polarizability due to the electrons is: 7

_E S
gm—m2%2 (4.78)

To get a feeling for the order of magnitude of y,; we can make two
different estimates. Since y has the dimensions of a volume, its magnitude
must be of the order of molecular dimensions or less, namely y, < 10-23
cm3. Alternatively, we note that the binding frequencies of electrons in
atoms must be of the order of light frequencies. Taking a typical wave-
length of light as 3000 angstroms, we find w ~ 6 x 10® sec!. Then
Ya ~ (€}/mw?) ~ 6 x 1072 cm?, consistent with the molecular volume
estimate. For gases at NTP the number of molecules per cubic centimeter
is N = 2.7 x 10", so that their susceptibilities should be of the order of
2. < 107 This means dielectric constants differing from unity by a few
parts in 103, or less. Experimentally, typical values of dielectric constant
are 1.00054 for air, 1.0072 for ammonia vapor, 1.0057 for methyl alcohol,
1.000068 for helium. For solid or liquid dielectrics, N ~ 1022 — 10%
molecules/cm3. Consequently, the susceptibility can be of the order of
unity (to within a factor 10*1) as is observed.*

The possibility that thermal agitation of the molecules could modify the
result (4.78) for the induced dipole polarizability needs consideration. In
statistical mechanics the probability distribution of particles in phase

* See Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., or
American Institute of Physics Handbook, McGraw-Hill, New York, (1957), for tables of
dielectric constants of various substances.
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space (p, q space) is proportional to the Boltzmann factor
exp (—H[kT) (4.79)

where A is the Hamiltonian. In the simple problem of a harmonically
bound electron with an applied field in the z direction, the Hamiltonian is

H=-\ p? + 2 wx? — eEz (4.80)
2m 2

where here p is the momentum of the electron. The average value of the
dipole moment is

d3pfd3x (ez) exp (—H/KT)

(Pmo1) = (4-81)

fd:’pfd% exp (—H/kT)

The integration over (d®p) and (dx dy) can be done immediately to yield
g P ytoy

fdzzexp[ (mr;o - eEz)]
(Pmo1) = Jvdz exp [ (mwg 22 eEz)Zl

An integration by parts in the numerator yields the result:

e2

(Pmo1) = 2 E
may

the same as was found in (4.77) by elementary means, ignoring thermal
motion. Thus the molecular polarizability (4.78) holds even in the presence
of thermal motion.

The second type of polarizability is that caused by the partial orientation
of randomly oriented permanent dipole moments. This orientation polari-
zation is important in “polar” substances such as HCl and H,O and was
first discussed by Debye (1912). All molecules are assumed to possess a
permanent dipole moment p, which can be oriented in any direction in
space. In the absence of a field thermal agitation keeps the molecules
randomly oriented so that there is no net dipole moment. With an applied
field there is a tendency to line up along the field in the configuration of
lowest energy. Consequently there will be an average dipole moment. To
calculate this we note that the Hamiltonian of the molecule is given by

H = Ho - po . E (4.82)
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Polar
g7
el Nonpolar
Fig. 4.13. Variation of molec-
ular polarizability ymea with
temperature for polar and non-
polar substances. Ymot is plot-
T —— ted versus T-1,

where H,, is a function of only the “internal” coordinates of the molecule.
Using the Boltzmann factor (4.79), we can write the average dipole
moment as:

E cos 6
dQ 6 (&’———)
f Py cOs 0 exp T

Pma) = fdQ exp (poE COS 3)
kT

(4.83)

where we have chosen E along the z axis, integrated out all the irrelevant
variables, and noted that only the component of p, parallel to the field is
different from zero. In general, (p,£/kT) is very small compared to unity,
except at low temperatures. Hence we can expand the exponentials and

obtain the result:
2

1 py
mol) =~ -~ —E 4.84
(Pmor? 3kT ( )

We note that the orientation polarization depends inversely on the tempera-
ture, as might be expected of an effect in which the applied field must
overcome the opposition of thermal agitation.

In general both types of polarization, induced (electronic) and orienta-
tion, are present, and the general form of the molecular polarization is

ymor ~ ya + L PO (4.85)

This shows a temperature dependence of the form (a 4 b/T) so that the
two types of polarization can be separated experimentally, as indicated in
Fig. 4.13. For “polar” molecules, such as HCl and H,O, the observed
permanent dipole moments are of the order of an electronic charge times
10~% cm, in accordance with molecular dimensions.
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4.8 Flectrostatic Energy in Dielectric Media

In Section 1.11 we discussed the energy of a system of charges in free
space. The result

W= %fp(x)(b(x) P (4.86)

for the energy due to a charge density p(x) and a potential ®(x) cannot in
general be taken over as it stands in our macroscopic description of
dielectric media. The reason becomes clear when we recall how (4.86) was
obtained. We thought of the final configuration of charge as being
created by assembling bit by bit the elemental charges, bringing each one
in from infinitety far away against the action of the then existing electric
field. The total work done was given by (4.86). With dielectric media
work 1s done not only to bring real (macroscopic) charge into position,
but also to produce a certain state of polarization in the medium. If p
and O in (4.86) represent macroscopic variables, it is certainly not evident
that (4.86) represents the total work, including that done on the dielectric.

In order to be general in our description of dielectrics we will not
initially make any assumptions about linearity, uniformity, etc., of the
response of a dielectric to an applied field. Rather, let us consider a small
change in the energy dW due to some sort of change dp in the charge
density p existing in all space. The work done to accomplish this change
is

oW =f6p(x)d)(x) dPx (4.87)

where ®(x) is the potential due to the charge density p(x) already present.
Since V : D = 47p, we can relate the change dp to a change in the dis-
placement of 4D:

1
dp = —V.(6D 4.88
P= (0D) (4.88)
Then the energy change W can be cast into the form:
ow =L fE . 0D d® (4.89)
4
where we have used E = — V® and have assumed that p(x) was a localized

charge distribution. The total electrostatic energy can now be written
down formally, at least, by allowing D to be brought from an initial value
D = 0 to its final value D:

D
W=—Lfd3xf E-éD (4.90)
4 0
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If the medium is linear, then
E-6D = }5E-D) (4.91)

and the total electrostatic energy is
W=u1—-fE-Dd3x (4.92)
87

This last result can be transformed into (4.86) by using E = — V® and
V . D = 4xp, or by going back to (4.87) and assuming that p and @ are
connected linearly. Thus we see that (4.86) is valid macroscopically only
if the behavior is linear. Otherwise the energy of a final configuration must
be calculated from (4.90) and might conceivably depend on the past
history of the system (hysteresis effects).

A problem of considerable interest is the change in energy when a
dielectric object is placed in an electric field whose sources are fixed.
Suppose that initially the electric field E, due to a certain distribution of
charges py(x) exists in a medium of dielectric constant €, which may be a
function of position. The initial electrostatic energy is

WO = l on . DO d3x
8mr

where D, = ¢E;,. Then with the sources fixed in position a dielectric
object of volume V; is introduced into the field, changing the field from E,
to E. The presence of the object can be described by a dielectric constant
€(x), which has the value ¢, inside V] and ¢, outside V;. To avoid mathe-
matical difficulties we can imagine €(x) to be a smoothly varying function
of position which falls rapidly but continuously from ¢, to ¢, at the edge
of the volume ¥V,. The energy now has the value

Wl - _];"' JE - D d3$
8
where D = ¢E. The difference in the energy can be written:

‘W=if(E-D—E0-D0)d3x
8

=£;f(E'D°_ D.Eo)d3x+8iwf(E+E0)-(D— D) &z (4.93)

The second integral can be shown to vanish by the following argument.
Since V x (E + Ey) = 0, we can write
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Then the second integral becomes:
[=— —lmJV(D-(D— D,) &x
8
Integration by parts transforms this into
1=ifc1>v-(n— D) &z = 0
8o

since V - (D — D;) = 0 because the source charge density py(x) is assumed
unaltered by the insertion of the dielectric object. Consequently the energy
change is

=8if(E-D0— D-E,) &’ (4.94)

The integration appears to be over all space, but is actually only over the
volume V) of the object, since, outside V;, D = ¢,E. Therefore we can
write

1

W= — L
8 Vi

(6, — €)E - Ey d* (4.95)

If the medium surrounding the dielectric body is free space, then ¢, = 1.
Using the definition of polarization P, (4.95) can be expressed in the form:

W = —%f P.E, & (4.96)
Vi

where P is the polarization of the dielectric. This shows that the energy
density of a dielectric placed in a field E, whose sources are fixed is given

by
w= —3}P-E, (4.97)

This result is analogous to the dipole term in the energy (4.17) of a charge
distribution in an external field. The factor } is due to the fact that (4.97)
represents the energy density of a polarizable dielectric in an external field,
rather than a permanent dipole. It is the same factor { which appears in
(4.91).

Equations (4.95) and (4.96) show that a dielectric body will tend to
move towards regions of increasing field E, provided ¢, > ¢,. To calculate
the force acting we can imagine a small generalized displacement of the
body 6&. Then there will be a change in the energy 6W. Since the charges
are held fixed, there is no external source of energy and the change in field
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energy must be compensated for by a change in the mechanical energy of
the body. This means that there is a force acting on the body:

Fe= —(aa—v;)Q (4.98)

where the subscript Q has been placed on the partial derivative to indicate
that the sources of the field are kept fixed.

In practical situations involving the motion of dielectrics the electric
fields are often produced by a configuration of electrodes held at fixed
potentials by connection to an external source such as a battery. As the
distribution of dielectric varies, charge will flow to or from the battery to
the electrodes in order to maintain the potentials constant. This means that
energy is being supplied from the external source, and it is of interest to
compare the energy supplied in that way with the energy change found
above for fixed sources of the field. We will treat only linear media so that
(4.86) is valid. It is sufficient to consider small changes in an already
existing configuration. From (4.86) it is evident that the change in energy
accompanying the changes dp(x) and 0®(x) in charge density and potential
is

SW =} f [p0D + Ddp] dPx (4.99)

Comparison with (4.87) shows that, if the dielectric properties are not
changed, the two terms in (4.99) are equal. If, however, the dielectric
properties are altered,

e(x) — €(x) + de(x) (4.100)

the contributions in (4.99) are not necessarily the same. In fact, we have
just calculated the change in energy brought about by introducing a
dielectric body into an electric field whose sources were fixed (dp = 0).
The reason for this difference is the existence of the polarization charge.
The change in dielectric properties implied by (4.100) can be thought of as a
change in the polarization-charge density. If then (4.99)is interpreted asan
integral over both free and polarization-charge densities (i.e., a micro-
scopic equation), the two contributions are always equal. However, it is
often convenient to deal with macroscopic quantities. Then the equality
holds only if the dielectric properties are unchanged.

The process of altering the dielectric properties in some way (by moving
the dielectric bodies, by changing their susceptibilities, etc.) in the presence
of electrodes at fixed potentials can be viewed as taking place in two steps.
In the first step the electrodes are disconnected from the batteries and the
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charges on them held fixed (6p = 0). With the change (4.100) in dielectric
properties, the energy change is

SW, = ;fpacbl d (4.101)

where d®, is the change in potential produced. This can be shown to
yield the result (4.95). In the second step the batteries are connected again
to the electrodes to restore their potentials to the original values. There
will be a flow of charge dp, from the batteries accompanying the change in
potential* §@, = —J®,. Therefore the energy change in the second step
is

oW, = %f(pé@z + Ddp,) d®x = —26W, (4.102)

since the two contributions are equal. In the second step we find the
external sources changing the energy in the opposite sense and by twice
the amount of the initial step. Consequently the net change is

OW = —%fp@@l d*z (4.103)

Symbolically
oWy, = —oW, (4.104)

where the subscript denotes the quantity held fixed. If a dielectric with
e > 1 moves into a region of greater field strength, the energy increases
instead of decreases. For a generalized displacement d¢ the mechanical
force acting is now

oW
e (2
s = ot /v ( )
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PROBLEMS

4.1 Calculate the multipole moments g;,, of the charge distributions shown
below. Try to obtain results for the nonvanishing moments valid for all /, but
in each case find the first rwo sets of nonvanishing moments at the very least.

z z z
Total
-g +q¢ charge
a
s ey y y
q a

Conducting circular
disc of radius
a

(a) ) (c)

(d) For the charge distribution (b) write down the mulfipole expansion
for the potential. Keeping only the lowest-order term in the expansion, plot
the potential in the z-y plane as a function of distance from the origin for
distances greater than a.

(e) Calculate directly from Coulomb’s law the exact potential for (b) in the
z-y plane. Plot it as a function of distance and compare with the result found
in (d).

Divide out the asymptotic form in parts (d) and (e) in order to see the
behavior at large distances more clearly.

4.2 A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric

electric field with a gradient (9E,/ 3z), along the 2 axis at the position of the
nucleus.

(a) Show that the energy of quadrupole interaction is

e oFE
W - Q( Z)
4 0z o
(b) If it is known that Q = 2 x 10724 cm? and that W/h is 10 Mc/sec,

where £ is Planck’s constant, calculate (9E,/dz), in units of efa,®, where
ay = h¥[me* = 0.529 x 1078 cm is the Bohr radius in hydrogen.
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(¢) Nuclear-charge distributions can be approximated by a constant
charge density throughout a spheroidal volume of semimajor axis a and
semiminor axis 5. Calculate the quadrupole moment of such a nucleus,
assuming that the total charge is Ze. Given that Eu!® (Z = 63) has a
quadrupole moment Q = 2.5 x 1072 cm? and a mean radius

R=(a+b)2=7x 108 cm,
determine the fractional difference in radius (¢ — b)/R.

4.3 A localized distribution of charge has a charge density
1
= — r2e=rgin2 0
p(r) & rée™7 sin

() Make a multipole expansion of the potential due to this charge
density and determine all the nonvanishing multipole moments. Write
down the potential at large distances as a finite expansion in Legendre
polynomials.

(b) Determine the potential explicitly at any point in space, and show
that near the origin ;

1 r
(r) ~ i~ 1% Py(cos &)

(c) If there exists at the origin a nucleus with a quadrupole moment
Q = 10~2% cm?, determine the magnitude of the interaction energy, assuming
that the unit of charge in p(r) above is the electronic charge and the unit of
length is the hydrogen Bohr radius a, = A*/me* = 0.529 x 108 c¢m.
Express your answer as a frequency by dividing by Planck’s constant #.

The charge density in this problem is that for the m = +1 states of the
2p level in hydrogen, while the quadrupole interaction is of the same order
as found in molecules.

4.4 A very long, right circular, cylindrical shell of dielectric constant € and inner
and outer radii @ and b, respectively, is placed in a previously uniform
electric field E, with its axis perpendicular to the field. The medium inside
and outside the cylinder has a dielectric constant of unity.

(a) Determine the potential and electric field in the three regions,
neglecting end effects.

(b) Sketch the lines of force for a typical case of b ~ 2a.

(c) Discuss the limiting forms of your solution appropriate for a solid
dielectric cylinder in a uniform field, and a cylindrical cavity in a uniform
dielectric.

4.5 A point charge g is located in free space a distance d from the center of a

dielectric sphere of radius a (a < d) and dielectric constant e,

(a) Find the potential at all points in space as an expansion in spherical
harmonics.

(b) Calculate the rectangular components of the electric field near the
center of the sphere.

(¢) Verify that, in the limit € — oo, your result is the same as that for the
conducting sphere.
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4.6 Two concentric conducting spheres of inner and outer radii @ and b,
respectively, carry charges (. The empty space between the spheres is
half-filled by a hemispherical shell of dielectric (of dielectric constant ¢), as
shown in the figure.

(a) Find the electric field everywhere between the spheres.

(b) Calculatc the surface-charge distribution on the inner sphere.

(c) Calculate the polarization-charge density induced on the surface of the
dielectric at r = a.

4.7 The following data on the variation of dielectric constant with pressure are
taken from the Smithsonian Physical Tables, 9th ed., p. 424:

Air at 292°K

Pressure (atm) €
20 1.0108 Relative density of
40 1.0218 air as a function of
60 1.0333 pressure is given in
80 1.0439 AIP Handbook, p.
100 1.0548 4-83.

Pentane (C;H,,) at 303°K

Pressure (atm)  Density (gm/cm?®) €
1 0.613 1.82
108 0.701 1.96
4 x 103 0.796 2.12
8 x 10 0.865 2.24
12 x 103 0.907 2.33

Test the Clausius-Mossotti relation between dielectric constant and density
for air and pentane in the ranges tabulated. Does it hold exactly ? Approxi-
mately? If approximately, discuss fractional variations in density and
(e — 1). For pentane, compare the Clausius-Mossotti relation to the cruder
relation, (¢ ~ 1) « density.

4.8 Water vapor is a polar gas whose dielectric constant exhibits an appreciable
temperature dependence. The following table gives experimental data on
this effect. Assuming that water vapor obeys the ideal gas law, calculate the
molecular polarizability as a function of inverse temperature and plot it.
From the slope of the curve, deduce a value for the permanent dipole
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moment of the HyO molecule (express the dipole moment in esu—stat-
coulomb-centimeters).

T (°K) Pressure (cm Hg) (e — 1) x 10°

393 56.49 400.2
423 60.93 371.7
453 65.34 348.8
483 69.75 328.7

4.9 Two long, coaxial, cylindrical conducting surfaces of radii @« and b are
lowered vertically into a liquid dielectric. If the liquid rises a distance A
between the electrodes when a potential difference V is established between
them, show that the susceptibility of the liquid is

(b® — a®)pgh In (bfa)
V2

Xe =

where p is the density of the liquid, g is the acceleration due to gravity, and
the susceptibility of air is neglected.



Magnetostatics

5.1 Introduction and Definitions

In the preceding chapters various aspects of electrostatics (i.e., the
fields and interactions of stationary charges and boundaries) have been
studied. We now turn to steady-state magnetic phenomena. From an
historical point of view, magnetic phenomena have been known and
studied for at least as long as electric phenomena. Lodestones were known
in ancient times; the mariner’s compass is a very old invention; Gilbert’s
researches on the earth as a giant magnet date from before 1600. In
contrast to electrostatics, the basic laws of magnetic fields did not follow
straightforwardly from man’s earliest contact with magnetic materials.
The reasons are several, but they all stem from the radical difference
between magnetostatics and electrostatics: there are no free magnetic
charges. This means that magnetic phenomena are quite different from
electric phenomena and that for a long time no connection was established
between them. The basic entity in magnetic studies was what we now know
as a magnetic dipole. In the presence of magnetic materials the dipole
tends to align itself in a certain direction. That direction is by definition
the direction of the magnetic-flux density, denoted by B, provided the
dipole is sufficiently small and weak that it does not perturb the existing
field. The magnitude of the flux density can be defined by the mechanical
torque N exerted on the magnetic dipole:

N=wxB (5.1)
where w is the magnetic moment of the dipole, defined in some suitable
set of units.*

* In analogy with the 100 strokes of cat’s fur on an amber rod, we might define ourunit
of dipole strength as that of a 4-inch finishing nail which has been stroked slowly 100

times with a certain “‘standard” lodestone held in a certain standard orientation. With
a little thought we might even think of a more reliable and reproducible standard!

132
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Already, in the definition of the magnetic-flux density B (sometimes
called the magnetic induction), we have a more complicated situation than
for the electric field. Further quantitative elucidation of magnetic
phenomena did not occur until the connection between currents and
magnetic fields was established. A current corresponds to charges in
motion and is described by a current density J, measured in units of positive
charge crossing unit area per unit time, the direction of motion of the
charges defining the direction of J. In electrostatic units, current density
is measured in statcoulombs per square centimeter-second, and is some-
times called statamperes per square centimeter, while in mks units it is
measured in coulombs per square meter-second or amperes per square
meter. If the current density is confined to wires of small cross section,
we usually integrate over the cross-sectional area and speak of a current
of so many statamperes or amperes flowing along the wire.

Conservation of charge demands that the charge density at any point
in space be related to the current density in that neighborhood by a
continuity equation:

@+V‘J=0 (5.2)
ot

This expresses the physical fact that a decrease in charge inside a smail
volume with time must correspond to a flow of charge out through the
surface of the small volume, since the total number of charges must be
conserved. Steady-state magnetic phenomena are characterized by no
change in the net charge density anywhere in space. Consequently in

magnetostatics
V.-J=0 (5.3)

We now proceed to discuss the experimental connection between current
and magnetic-flux density and to establish the basic laws of magneto-
statics.

5.2 Biot and Savart Law

In 1819 Oersted observed that wires carrying electric currents produced
deflections of permanent magnetic dipoles placed in their neighborhood.
Thus the currents were sources of magnetic-flux density. Biot and Savart
(1820), first, and Ampére (1820-1825), in much more elaborate and
thorough experiments, established the basic experimental laws relating the
magnetic induction B to the currents and established the law of force
between one current and another. Although not in the form in which
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Fig. 5.1 Elemental magnetic induction
P dB due to current element [ dl.

Ampére deduced it, the basic relation is the following. If dl is an element
of length (pointing in the direction of current flow) of a filamentary wire
which carries a current 7 and x is the coordinate vector from the element
of length to an observation point P, as shown in Fig. 5.1, then the
elemental flux density dB at the point P is given in magnitude and direction
by

(dl x x)

3

dB = kI (5.4)

x|

It should be noted that (5.4) is an inverse square law, just as is Coulomb’s
law of electrostatics. However, the vector character is very different.

If, instead of a current flowing there is a single charge ¢ moving with a
velocity v, then the flux density will be*

VXX
13

B = kq = kv x E (5.5)

Ix

where E is the electrostatic field of the charge g. (This flux density is,
however, time varying. We shall restrict the discussions in the present
chapter to steady-state current flow.)

In (5.4) and (5.5) the constant & depends on the system of units used, as
discussed in detail in the Appendix. If current is measured in esu, but the
flux density is measured in emu, the constant is k = 1/c, where ¢ is found
experimentally to be equal to the velocity of light in vacuo (¢ = 2.998 X
10% cm/sec). This system of units is called the Gaussian system. To insert
the velocity of light into our equations at this stage seems a little artificial,
but it has the advantage of measuring charge and current in a consistent
set of units so that the continuity equation (5.2) retains its simple form,
without factors of ¢. We will adopt the Gaussian system here.

Assuming that linear superposition holds, the basic law (5.4) can be
integrated to determine the magnetic-flux density due to various config-
urations of current-carrying wires. For example, the magnetic induction

* True only for particles moving with velocities small compared to that of light.
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B of the long straight wire shown in Fig. 5.2 carrying a current I can be
seen to be directed along the normal to the plane containing the wire and
the observation point, so that the lines of magnetic induction are concentric
circles around the wire. The magnitude of B is given by

IR |® dl 21
Bl = —

—_— = — 5.6
cd-w (RE+ B”® R (5:6)

where R is the distance from the observation point to the wire. This is the
experimental result first found by Biot and Savart and is known as the
Biot-Savart law. Note that the magnitude of the induction B varies with
R in the same way as the electric field due to a long line charge of uniform
linear-charge density. This analogy shows that in some circumstances
there may be a correspondence between electrostatic and magnetostatic
problems, even though the vector character of the fields is different. We
shall see more of that in later sections.

Ampere’s experiments did not deal directly with the determination of
the relation between currents and magnetic induction, but were concerned
rather with the force which one current-carrying wire experiences in the
presence of another. Since we have already introduced the idea that a
current element produces a magnetic induction, we phrase the force law as
the force experienced by a current element 7, dl; in the presence of a
magnetic induction B. The elemental force is

dF = (a1, x B) 5.7)
C

1, is the current in the element (measured in esu), B is the flux density (in
emu), and c is the velocity of light. If the external field B is due to a closed
current loop #2 with current I,, then the total force which a closed current

dl|]

Fig.5.2
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Fig. 5.3 Two Ampérian current loops.

loop #1 with current I; experiences is [from (5.4) and (5.7)]:

1,1 dl; X (dl, %
F,, = (1:22 §§ 1 |(x 2|3 X12) (5.8)
12

The line integrals are taken around the two loops; Xy, is the vector
distance from line element dl, to dl;, as shown in Fig. 5.3. This is the
mathematical statement of Ampére’s observations about forces between
current-carrying loops. By manipulating the integrand it can be put in a
form which is symmetric in dl; and dl, and which explicitly satisfies
Newton’s third law. Thus

dl; x (dl; X x X dl; - x5
. I(x 2|3 12) = —(dl, - diy) ]x12!3 + dlz( I; |31~)' (5.9)
12 12 12

The second term involves a perfect differential in the integral over dl,.
Consequently it gives no contribution to the integral (5.8), provided the
paths are closed or extend to infinity. Then Ampére’s law of force between
current loops becomes

I dl; - dly)x
F, = — 222 §§( 1+ dlp)Xg, (5.10)

IX12|3

showing symmetry in the integration, apart from the necessary vectorial
dependence on X;,.

Each of two long, parallel, straight wires a distance d apart, carrying
currents I; and I,, experiences a force per unit length directed perpen-
dicularly towards the other wire and of magnitude,

F o 20l

5.11
c*d G.11)

The force is attractive (repulsive) if the currents flow in the same (opposite)
directions. The forces which exist between current-carrying wires can be
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used to define magnetic-flux density in a way that is independent of per-
manent magnetic dipoles.* We will see later that the torque expression
(5.1) and the force result (5.7) are intimately related.

If a current density J(x) is in an external magnetic-flux density B(x), the
elementary force law implies that the total force on the current distribution
is

= EfJ(x) x B(x) d*z (5.12)
C

Similarly the total torque is
N = 1fx x (J x B) & (5.13)
¢

These general results will be applied to localized current distributions in
Section 5.6.

5.3 The Differential Equations of Magnetostatics
and Ampere’s Law

The basic law (5.4) for the magnetic induction can be written down in
general form for a current density J(x):

B(x) = + f Ix) x E=X) ey (5.14)

c |x — x3

This expression for B(x) is the magnetic analog of electric field in terms of
the charge density:

E(x) = f px) X=X oy (5.15)

Ix — x|

Just as this result for E was not as convenient in some situations as
differential equations, so (5.14) is not the most useful form for magneto-
statics, even though it contains in principle a description of all the
phenomena.

In order to obtain the differential equations equivalent to (5.14) we
transform (5.14) into the form:

B(x) = %v x f I oy (5.16)

x —

* In fact, (5.11) is the basis of the internationally accepted standard of current (actually
Ifc here). See the Appendix.
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From (5.16) it follows immediately that the divergence of B vanishes:
V.-B=0 (5.17)

This is the first equation of magnetostatics and correspondsto V x E = 0
in electrostatics. By analogy with electrostatics we now calculate the curl
of B:

VxB=1Vxfo_:'ﬂ_d3x' (5.18)

c |x — x'|

With the identity V x (V x A) = V(V.A) — V2A for an arbitrary
vector field A, expression (5.18) can be transformed into

VxB= %VJ.J(XI) 'v(|x -1- x’|) o’ = % fJ(x’)Vz(p: —1 x’|) &
(5.19)

V(|x —1 x'|) B _v‘(|x —1 x’|)

vz( 1 ) = —4nd(x — X))

x — x|

Using the fact that

and

the integrals in (5.19) can be written:

VxB=— 1VJ‘J(x’) . V’(—L——) d®x’ + 4n J(x) (5.20)
c x — x| c
Integration by parts yields
VxB=£’J+-1-va;—'J—(X—)d3x’ (5.21)
c ¢ Ix — x'|

But for steady-state magnetic phenomena V - J = 0, so that we obtain

UxB=2"3 (5.22)
C

This is the second equation of magnetostatics, corresponding to V. E =
47p in electrostatics.

In electrostatics Gauss’s law (1.11) is the integral form of the equation
V - E = 47p. The integral equivalent of (5.22) is called Ampére’s law. 1t
is obtained by applying Stokes’s theorem to the integral of the normal
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SN

Fig. 5.4

component of (5.22) over an open surface S bounded by a closed curve C,
as shown in Fig. 5.4. Thus

foB-nda=4-”fJ-nda (5.23)
8 cJs
is transformed into

3§B-d1=4—”fJ-nda (5.24)
C CvSs

Since the surface integral of the current density is the total current / passing
through the closed curve C, Ampére’s law can be written in the form:

Sﬁn.dm“—ﬂ (5.25)
C

c

Just as Gauss’s law can be used for calculation of the electric field in highly
symmetric situations, so Ampere’s law can be employed in analogous
circumstances.

5.4 Vector Potential

The basic differential laws of magnetostatics are given by

VxB=41J
c (5.26)
V:-B=0

The problem is how to solve them. If the current density is zero in the
region of interest, V x B = 0 permits the expression of the vector
magnetic induction B as the gradient of a magnetic scalar potential,
B = —V®,,. Then (5.26) reduces to Laplace’s equation for ®,,, and all
our techniques for handling electrostatic problems can be brought to
bear. There are a large number of problems which fall into this class, but
we will defer discussion of them until Jater in the chapter. The reason
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is that the boundary conditions are different from those encountered in
electrostatics, and the problems usually involve macroscopic media
with magnetic properties different from free space with charges and cur-
rents.

A general method of attack is to exploit the second equation in (5.26).
If V.B =0 everywhere, B must be the curl of some vector field A(x),
called the vector potential,

B(x) =V x A(X) (5.27)

We have, in fact, already written B in this form (5.16). Evidently, from
(5.16), the general form of A is

Ax) =1L f 6Dy 4 v (5.28)

cJ|x —x

The added gradient of an arbitrary scalar function V" shows that, for a
given magnetic induction B, the vector potential can be freely transformed
according to

A—-A+ VY (5.29)

This transformation is called a gauge transformation. Such transformations
on A are possible because (5.27) specifies only the curl of A. For a
complete specification of a vector field it is necessary to state both its curl
and its divergence. The freedom of gauge transformations allows us to
make V - A have any convenient functional form we wish.

If (5.27) is substituted into the first equation in (5.26), we find

Vx(VxA)=4—”J
C

or (5.30)
VV-A) —vA=2"3
C

If we now exploit the freedom implied by (5.29), we can make the con-
venient choice of gauge,* V. A = 0. Then each rectangular component
of the vector potential satisfies Poisson’s equation,

VA= — 273 (5.31)

c

* The choice is called the Coulomb gauge, for a reason which will become apparent
only in Section 6.5.
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From our discussions of electrostatics it is clear that the solution for A in
unbounded space is (5.28) with ¥ = 0:

Ax) =1 | I gy (5.32)
cJ|x — x|

The condition't" = 0 can be understood as follows. Our choice of gauge,
V.A =0, reduces to V2V = 0, since the first term in (5.28) has zero
divergence because of V' -J = 0. If V2¥ = 0 holds in all space, ¥" must
vanish identically.

5.5 Vector Potential and Magnetic Induction for
a Circular Current Loop

As an illustration of the calculation of magnetic fields from given
current distributions we consider the problem of a circular loop of radius
a, lying in the 2-y plane, centered at the origin, and carrying a current 7, as
shown in Fig. 5.5. The current density J has only a component in the ¢
direction,

J, = Is(cos ) 2 —9) (5.33)
a

The delta functions restrict current flow to a ring of radius @. Only a ¢
component of J means that A will have only a ¢ component also. But this
component A, cannot be calculated by merely substituting J; into (5.32).
Equation (5.32) holds only for rectangular components of A.* Thus we
write rectangular components of J:

J, = —J4sin qS’} (5.3

J, = J4cos ¢

Since the geometry is cylindrically symmetric, we may choose the obser-
vation point in the z-z plane (¢ = 0) for purposes of calculation. Then it is
clear that the = component of the vector potential vanishes, leaving only

* The reason is that the vector Poisson’s equation (5.31) can be treated as three
uncoupled scalar equations, V24; = (—4n/c)J;, only if the components A4;, J; are
rectangular components. If A is resolved into orthogonal componcnts with unit vectors
which are functions of position, the differential operation involved in (5.31) mixes the
components together, giving coupled equations. See Morse and Feshbach, pp. 51 and
116-117.
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Fig. 5.5

the y component, which is 4,. Thus

cos ¢’ 8(cos 0') 8(r" — a)
Ix — x|

Ayr, 0) = ~ f 2 dr dQ’
ca

(5.35)

where [x — X'| = [r® + #'2 — 2rr'(cos 0 cos 8’ + sin 6 sin 6’ cos ¢')]*%.
We first consider the straightforward evaluation of (5.35). Integration
over the delta functions leaves the result

Ia (2 cos ¢’ do’
ey I _ 5.36
o1, 0) ¢ Jo (a4 r? — 2ar sin 6 cos ¢)"* 39

This integral can be expressed in terms of the complete elliptic integrals X
and E:

4la [(2 — k®)K(k) — 2E(k)

(5.37)
eva® + 2 + 2arsin 0 k? :'

Ayr, 0) =

where the argument of the elliptic integrals is

a__ 4ar sin 0
a®+ r* + 2arsin 6

The components of magnetic induction,

1 @
— Y inoA
B, rsin 6 00 (sin 04,

19 (5.38)
By= —- = (r4))

By, =0 J
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can also be expressed in terms of elliptic integrals. But the results are not
particularly illuminating (useful, however, for computation).

For small k2%, corresponding to @ >r, a <r, or § <1, the square
bracket in (5.37) reduces to (wk?/16). Then the vector potential becomes
approximately

Ima® r sin 6
Agr, ) = — - 5.39
or: 0) ¢ (a® + r® + 2arsin 6)* (5-39)

The corresponding fields are
2 2 2 :
B, ~ Ima® cos 9(2a + 2rf + ar‘smésf/) ]
¢ (a® + r® + 2ar sin 6)

(5.40)

Ina® “in 6 (2a®> — r* + arsin 0) |

By~ — 5
? c (a® + r® + 2arsin )%

These can easily be specialized to the three regions, near the axis (6 < 1),
near the center of the loop (r < a), and far from the loop (r > a).
Of particular interest are the fields far from the loop:

Im7a?\ cos 6 |
-
c ré

2 -
B, = (Iwa ) sin 9

C r3

(5.41)

Comparison with the electrostatic dipole fields (4.12) shows that the
magnetic fields far away from a circular current loop are dipole in character.
By analogy with electrostatics we define the magnetic dipole moment of the
loop to be

2
m =" (5.42)
C

We will see in the next section that this is a special case of a general
result—localized current distributions give dipole fields at large distances;
the magnetic moment of a plane current loop is the product of the area of
the loop times I/c.

Although we have obtained a complete solution to the problem in
terms of elliptic integrals, we will illustrate the use of a spherical harmonic
expansion to point out similarities and differences between the magneto-
static and electrostatic problems. Thus we return to (5.35) and substitute
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the spherical expansion (3.70) for [x — x'|7*:

— 4_11 Re Ylm(aa 0)
ca 2l +1

lL,m

Ay

4
X f r2dr dQ 8(cos 0) 8(r' — a)e® —= Y (0, ¢)  (543)
r

i+1
>

The presence of ¢ means that only m = 41 will contribute to the sum.
Hence

87%la wY(GO)r’[ *( n )}
A, = Re> L2 =1y (0=Z ¢ )& 5.44
¢ T, 2, 2+ 1 L 7 ¥ (5.44)

=1

where now r_ (r.) is the smaller (larger) of ¢ and r. The square-bracketed
quantity is a number depending on /:

0, for l even

_ 214+ 1 Ly
I: } - ’\/4771([ + 1) P, 0) = J 20 + 1 [(_‘.I)n+1r\(n + %)} (5.45)
(N 4ml(l+ L T+ DIE L
for l =2n 4+ 1

Then A¢ can be written

Ta <3 (—1D"2n — DI 22t
A, = — = : P}, .. (cos @ 5.46

where 2n — D =Q2n—1D2n —3)(---) x 5 x 3 x 1,and the n =0
coefficient in the sum is unity by definition. To evaluate the radial com-
ponent of B from (5.38) we need

5‘; (V1 < 2P@)) = Il + D)P,@) (5.47)
Then we find
2rlads (=1)%(2n + 1)!! p2n+1
B, = ’C’r“ ( )2(“:'+ ) T Parea(c0s ) (5.48)
n=¢ ) -

The 6 component of B is similarly

_(2n + 2)_1_(1)2"1
_alad® & (=1D"2n + D! 2n + 1/a*\a

Bo=—", Z 2%(n + 1)! 1 (a)zn

P341(cos 0)

n=0 _
3

r (5.49)

r
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The upper line holds for r < a, and the lower line for r > a. Forr > a,
only the n = O term in the series is important. Then, since P;!(cos ) =
—sin 6, (5.48) and (5.49) reduce to (5.41). For r < a, the leading term is
again n = 0. The fields are then equivalent to a magnetic induction
2nljac in the z direction, a result that can be found by elementary means.

We note a characteristic difference between this problem and a cor-
responding cylindrically symmetric electrostatic problem. Associated
Legendre polynomials appear, as well as ordinary Legendre polynomials.
This can be traced to the vector character of the current and vector
potential, as opposed to the scalar properties of charge and electrostatic
potential.

Another mode of attack on the problem of the loop is to employ an
expansion in cylindrical waves. Instead of (3.70) as a representation of
|x — x’[~! we may use the cylindrical form (3.148) or (3.149). The appli-
cation of this technique to the circular loop will be left to the problems. It
is generally useful for any current distribution which involves current
flowing only in the ¢ direction.

5.6 Magnetic Fields of a Localized Current Distribution;
Magnetic Moment

We now consider the properties of a general current distribution which
is localized in a small region of space, “‘small” being relative to the scale
of length of interest to the observer. The proper treatment of this problem,
in analogy with the electrostatic multipole expansion, demands a discussion
of vector spherical harmonics. These are presented in Chapter 16 in
connection with multipole radiation. We will be content here with only
the lowest order of approximation. Starting with (5.32), we expand the
denominator in powers of X" measured relative to a suitable origin in the
localized current distribution, shown schematically in Fig. 5.6:

4

1 _L XX
Ix —x Ix|  [x®

+ - (5.50)
Then a given component of the vector potential will have the expansion,
Ax) = - f J(x) dPr + —. f T d + - (5.51)

cfx| c|x|

For a localized steady-state current distribution the volume integral of J
vanishes because V - J = 0. Consequently the first term, corresponding to
the monopole term in an electrostatic expansion, vanishes.
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The integrand of the second term can be manipulated into a more
convenient form by using the triple vector product. Thus

x-x)=(x-Ix —x x (X' x J) (5.52)

The volume integral of the first term on the right can be shown to be the
negative of the integral of the left-hand side of (5.52). Thus we consider
the integral,

ij:v,-' d*z' =fV’ (2, Dz Pz’ = —ij’(J Nz, &z’
= _ij'.]i >’ (5.53)

The step from the first integral to the second depends on V «J = 0; the
following step involves an integration by parts. With this identity (3.52)
can be written in integrated form as

f x-xXWEX)dr = —ix % f[x’ x J(x')] &3’ (5.54)
We now define the magnetic moment of the current distribution J as
m = El—fx % J(x") d (5.55)
c

Note that it is sometimes useful to consider the integrand in (5.55) as a
magnetic-moment density or magnetization. We denote the magnetization
due to the current density J by

~Llxxy (5.56)
2c

The vector potential (5.51) can be expressed in terms of m as

m X x
Ix[®

This is the lowest nonvanishing term in the expansion of A for a localized
steady-state current distribution. The magnetic induction B can be

Ax) = (5.57)

P

Fig. 5.6 Localized current density

J(x’) gives rise to a magnetic induc-

tion at the point P with coordi-
nate x.
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da-\ dl

Fig. 5.7
calculated directly by evaluating the curl of (5.57):

B(x) = @ ]'“lz —m. 8?" m 8(x) (5.58)
X
Here n is a unit vector in the direction x. Since (5.57) and (5.58) have
meaning only outside the current distribution, we drop the delta function
term. The magnetic induction (5.58) has exactly the form (4.13) of the
field of a dipole. This is the generalization of the result found for the
circular loop in the last section. Far away from any localized current
distribution the magnetic induction is that of a magnetic dipole of dipole
moment given by (5.55).
If the current is confined to a plane, but otherwise arbitrary, loop, the
magnetic moment can be expressed in a simple form. If the current 7 flows
in a closed circuit whose line element is dl, (5.55) becomes

m=L §x x dl (5.59)
2e¢

For a plane loop such as that in Fig. 5.7, the magnetic moment is perpendi-
cular to the plane of the loop. Since }(x x dI) = da, where da is the
triangular element of the area defined by the two ends of 4l and the origin,
the loop integral in (5.59) gives the total area of the loop. Hence the
magnetic moment has magnitude,

im| =% x (Area) (5.60)
C

regardless of the shape of the circuit.

If the current distribution is provided by a number of charged particles
with charges ¢, and masses M, in motion with velocities v,, the magnetic
moment can be expressed in terms of the orbital angular momentum of
the particles. The current density is

J =Ygy 0x—x),) (5.61)
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where x; is the position of the ith particle. Then the magnetic moment
(5.55) becomes

1
m = 2——012q,(xz X V,,-) (5-62)

The vector product (x; x v,) is proportional to the ith particle’s orbital
angular momentum, L; = M,(x; x v,). Thus (5.62) becomes

m= > 2 |, (5.63)
—2Mc
If all the particles in motion have the same charge to mass ratio (g,/M; =
e/M), the magnetic moment can be written in terms of the rotal orbital
angular momentum L:
e

L,=—L (5.64)
2Mc -

2Mc

This is the well-known classical connection between angular momentum
and magnetic moment which holds for orbital motion even on the atomic
scale. But this classical connection fails for the intrinsic moment of
electrons and other elementary particles. For electrons, the intrinsic
moment is slightly more than twice as large as implied by (5.64), with the
spin angular momentum S replacing L. Thus we speak of the electron
having a g factor of 2(1.00117). The departure of the magnetic moment
from its classical value has its origins in relativistic and quantum-mechanical
effects which we cannot consider here.

5.7 Force and Torque on a Localized Current Distribution in an External
Magnetic Induction

If a localized distribution of current is placed in an external magnetic
induction B(x), it experiences forces and torques according to Ampére’s
laws. The general expressions for the total force and torque are given by
(5.12) and (5.13). If the external magnetic induction varies slowly over
the region of current, a Taylor’s series expansion can be utilized to find
the dominant terms in the force and torque. A component of B can be
expanded around a suitable origin,

B,(x) = B,0)+ x-VB,0) + - -. (5.65)
The force (5.12) then becomes

F=—1B(0) x f Ix) e + & f IX) x [(x' - V)BO)] & + - - (5.66)
¢ C
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Since the volume integral of J vanishes for steady-state currents, the
lowest-order term is the one involving the gradient of B. Because the
integrand involves J and x, in addition to VB, we expect that the integral
can be somehow transformed into the magnetic moment (5.55). To
accomplish this we use

IJx[x-V)B]=J x V(x'-B)=—V x [Jx"-B)] (5.67)

The first step depends on the fact that V. x B = 0 for the external field,
and that the gradient operator operates only on B. Then the force can be
written

F=— 1V X fJ(x’ Bydz' + - (5.68)
c

Use can now be made of identity (5.54) with the fixed vector x replaced by
B. Then we obtain

F=VxBxm=m-V)B=V@m:B) (5.69)

where m is the magnetic moment (5.55). The second form in (5.69) follows
from V - B = 0, while the third depends on V x B = 0.

A localized current distribution in a nonuniform magnetic induction
experiences a force proportional to its magnetic moment m and given by
(5.69). One simple application of this result is the time-average force on a
charged particle spiraling in a nonuniform magnetic field. As is well
known, a charged particle in a uniform magnetic induction moves in a
circle at right angles to the field and with constant velocity parallel to the
field, tracing out a helical path. The circular motion is, on the time average,
equivalent to a circular loop of current which will have a magnetic moment
given by (5.60). If the field is not uniform but has a small gradient (so that
in one turn around the helix the particle does not feel significantly different
field strengths), then the motion of the particle can be discussed in terms
of the force on the equivalent magnetic moment. Consideration of the
signs of the moment and the force shows that charged particles tend to be
repelled by regions of high flux density, independent of the sign of their
charge. This is the basis of the so-called “magnetic mirrors™ discussed in
Section 12.10 from another point of view.

The total torque on the localized current distribution is found in a
similar way by inserting expansion (5.65) into (5.13). Here the zeroth-
order term in the expansion contributes. Keeping only this leading term,
we have

N=1 f X' x [J % BO)] P (5.70)
C
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Writing out the triple vector product, we get
N= 1[[(::’ -B)J — (x' - )B] d®’ (5.71)
¢

The first integral is the same one considered in (5.68). Hence we can write
down its value immediately. The second integral vanishes for a localized
steady-state current distribution, as can be seen from the identity,
V. @) = 2(x+ J) + 22V - J. Theleading term in the torque is therefore

N =m x B(0) (5.72)

This is the familiar expression for the torque on a dipole, discussed in
Section 5.1 as one of the ways of defining the magnitude and direction of
the magnetic induction.

The potential energy of a permanent magnetic moment (or dipole) in
an external magnetic field can be obtained from either the force (5.69) or
the torque (5.72). If we interpret the force as the negative gradient of a
potential energy U, we find

U=-m-B (5.73)

For a magnetic moment in a uniform field the torque (5.72) can be inter-
preted as the negative derivative of U with respect to the angle between B
and m. This well-known result for the potential energy of a dipole shows
that the dipole tends to orient itself parallel to the field in the position of
lowest potential energy.

We remark in passing that (5.73) is not the total energy of the magnetic
moment in the external field. In bringing the dipole m into its final
position in the field, work must be done to keep the current J which
produces m constant. Even though the final situation is a steady-state,
there is a transient period initially in which the relevant fields are time
dependent. This lies outside our present considerations. Consequently
we will leave the discussion of the energy of magnetic fields to Section 6.2,
after having treated Faraday’s law of induction.

5.8 Macroscopic Equations

So far we have dealt with the basic laws (5.17) and (5.22) of steady-state
magnetic fields as microscopic equations in the sense of Chapter 4. We
have assumed that the current density J was a completely known function
of position. In macroscopic problems this is often not true. The atoms in
matter have electrons which give rise to effective atomic currents the
current density of which is a rapidly fluctuating quantity. Only its average
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over a macroscopic volume is known or pertinent. Furthermore, the
atomic electrons possess intrinsic magnetic moments which cannot be
expressed in terms of a current density. These moments can give rise to
dipole fields which vary appreciably on the atomic scale of dimensions.
To treat these atomic contributions we proceed similarly to Section 4.3.
The derivation of the macroscopic equations will only be sketched here.
A somewhat more complete discussion will be given in Section 6.10. The
reason is that for time-varying fields there is a contribution to the atomic
current from the time derivative of the polarization P. Hence all the
contributions to the current appear only in the general, time-dependent
problem.
The total current density can be divided into:
(a) conduction-current density J, representing the actual transport of
charge;
(b) atomic-current density J,, representing the circulating currents
inside atoms or molecules.
The total vector potential due to all currents is

YT TSV

e |x—x'| ¢ |x—x|

We use a small a for the microscopic vector potential, just as we used € for
the microscopic electric field in Chapter 4. For the atomic contribution
we first consider a single molecule, and then average over molecules. The
discussion proceeds exactly as in Section 5.6 for a localized current
distribution. For a molecule with center at x; the vector potential at x is
given approximately by

= Mot X (X = X,) (5.75)

To take into account the intrinsic magnetic moments of the electrons, as
well as the orbital contribution, we interpret m,; as the total molecular
magnetic moment. If we now sum up over all molecules, averaging as in
Section 4.3, the macroscopic vector potential can be written

AR =2 f D f M) x X=X o (5.76)
cJ |x — x'| x — x|

where M(x) is the macroscopic magnetization (magnetic moment per unit
volume) defined by
M = N(m,,,) (5.77)

where N is the number of molecules per unit volume.
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The magnetization contribution to A in (5.76) can be rewritten in a more
useful form:

f M(x') i—") P fM(x') x v'|

x ~—x

Then the identity, V x (qSM) = Vé x M+ ¢V x M, can be used to
obtain

fM(x)x (x=x) VXM fv' ( M )d‘*"(579)

x|3 |x—x| [x — x|

d%'  (5.78)
— x|

M
The last integral can be converted to a surface integral of lx—x——,| ,and so
- X
vanishes if M is assumed to be mathematically well behaved and localized
within a finite volume. Combining the first term in (5.79) with the con-

duction-current term in (5.76), we can write the vector potential as

Jx) 4+ V' x M(x') .5,
Ax) = Cf g d°x (5.80)

We see that the magnetization contributes to the vector potential as an

effective current density J,,:
Jy =c(V x M) (5.81)

There is one questionable step in the derivation of (5.80). That is the
use of the dipole vector potential (5.75) for all molecules, even those near
the point x. If a molecule lies within a sphere of radius a few molecular
diameters d of x, its vector potential will differ appreciably from the dipole
form (5.75), being much less singular. Thus in (5.80) the contribution
from that sphere around x is in error. To estimate its importance we note
that the magnitude of the vector potential per unit volume near X is
IV x M|/R, while the volume within a distance R to (R + dR) of the
point x is 47R* dR. Hence the contribution to A from the immediate
neighborhood of x is in error at most by an amount of the order of
d?|V x M|~ (d?/L) (M), where L is a macroscopic dimension measuring
the spatial variation of M. Since the whole vector potential is of the order
of (M)L, the relative error made in using the dipole approximation every-
where is of the order of d?/L% This is completely negligible unless the
macroscopic length L becomes microscopic; then the whole development
fails.

To obtain the macroscopic equivalent of the curl equation (5.22) we
calculate B from (5.80) or, what is the same thing, write down (5.22) with
the total current (J + J,,) replacing J:

VxB=Y"344v xM (5.82)
c
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The V x M term can be combined with B to define a new macroscopic
field H, called the magnetic field,

H=B — 4M (5.83)
Then the macroscopic equations, replacing (5.26), are

VxH= 37—7.1
¢ (5.84)

V:-B=90

The introduction of H as a macroscopic field is completely analogous to
the introduction of D for the electrostatic field. The macroscopic
equations (5.84) have their electrostatic counterparts,

(5.85)

V-D=4rp ]
VxE=0 }

We emphasize that the fundamental fields are E and B. They satisfy the
homogeneous equations in (5.84) and (5.85). The derived fields, D and H,
are introduced as a matter of convenience in order to take into account in
an average way the contributions to p and J of the atomic charges and
currents.

In analogy with dielectric media we expect that the properties of magnetic
media can be described by a small number of constants characteristic of
the material. Thus in the simplest case we would expect that B and H are
proportional:

B = uH (5.86)

where u is a constant characteristic of the material called the permeability . *
This simple result does hold for materials other than the ferromagnetic
substances. But for these nonmagnetic materials u generally differs from
unity by only a few parts in 10° (u > 1 for paramagnetic substances,
u <1 for diamagnetic substances). For the ferromagnetic substances,
(5.86) must be replaced by a nonlinear functional relationship,

B = F(H) (5.87)

The phenomenon of hysteresis, shown schematically in Fig. 5.8, implies
that B is not a single-valued function of H. In fact, the function F(H)
depends on the history of preparation of the material. The incremental
permeability of u(H) is defined as the derivative of B with respect to H,

* To be consistent with the electrostatic relation D = ¢E, expressing the derived
quantity D as a factor times E, we should write H = w’B. But traditional usage is that
of (5.86). It makes most substances have u > 1. Perhaps that is more comforting than
uw <1,
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Fig. 5.8 Hysteresis loop giving Bina
ferromagnetic material as a function
of H.

assuming that B and H are parallel. For high-permeability substances,
u(H) can be as high as 10%. Most untreated ferromagnetic materials have
a linear relation (5.86) between B and H for very small fields. Typical
values of initial permeability range from 10 to 10%,

The complicated relationship between B and H in ferromagnetic
materials makes analysis of magnetic boundary-value problems inherently
more difficult than that of similar electrostatic problems. But the very
large values of permeability sometimes allow simplifying assumptions on
the boundary conditions. We will see that explicitly in the next section.

5.9 Boundary Conditions on B and H

Before we can solve magnetic boundary-value problems, we must
establish the boundary conditions satisfied by B and H at the interface
between two media of different magnetic properties. If a small Gaussian
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pillbox is oriented so that its faces are in regions 1 and 2 and parallel to
the surface boundary, S, as shown in Fig. 5.9, Gauss’s theorem can be
applied to V « B = 0 to yield

By, —B):n=0 (5.88)

where n is the unit normal to the surface directed from region 1 into region
2, and the subscripts refer to values at the surface in the two media.

If we now consider a small, narrow circuit C, as shown in Fig. 5.9, with
normal n’ parallel to the interface and surface S, Stokes’s theorem can be
applied to the curl equation in (5.84) to give

C[;H dl——— RELEL (5.89)

The contributions to the line integral are the tangential values of H in
the two regions, while the surface integral is proportional to the surface-
current density K (charge/length x time) in the limit of vanishing width
to the loop. Thus (5.89) becomes
(H, — H) (0 xn)="n.K
or ¢ (5.90)
n x (H, — H) = 7K
c
We express these boundary conditions in terms of the magnetic field H

and the permeability #. For simplicity assuming no surface currents, we
have

Hg'n =(‘lﬂ)H1 N
e (5.91)
H, xn=H,; xn

If 4, > u,, the normal component of H, is much larger than the normal
component of H,, as shown in Fig. 5.10. In the limit (u,/u,;) — oo, the

N ‘ﬁ

Fig. 5.10

\\
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magnetic field H, is normal to the boundary surface, independent of the
direction of H, (barring the exceptional case of H, exactly parallel to the
interface). The boundary condition on H at the surface of a very high-
permeability material is thus the same as for the electric field at the surface
of a conductor. We may therefore use electrostatic potential theory for
the magnetic field. The surfaces of the high-permeability material are
approximately “equipotentials,” and the lines of H are normal to these
equipotentials. This analogy is exploited in many magnet-design problems.
The type of field is decided upon, and the pole faces are shaped to be
equipotential surfaces.

5.10 Uniformly Magnetized Sphere

To illustrate the different methods possible for the solution of a
boundary-value problem in magnetostatics, we consider in Fig. 5.11 the
simple problem of a sphere of radius a, with a uniform permanent
magnetization M of magnitude M, and parall¢l to the z axis, embedded in
a nonpermeable medium. Outside the sphere, V.:B=V x B =0.
Consequently, for r > a, B = H can be written as the negative gradient of
a magnetic scalar potential which satisfies Laplace’s equation,

5.92
With the boundary condition that B — 0 for r —> o0, the general solution
for the potential is P,(cos )

D, (r, 6) =Z % — (5.93)
=0

Bout = —V(I)M}

Past experience tells us that only the lowest few terms in this expansion will
appear, probably just / = 1.

Inside a magnetized object we cannot in general use equations (5.92)
because V x B 5~ 0. This causes no difficulty in the present simple situation
because (5.83) implies that B, H, and M are all parallel in the absence of
applied fields.

M = Moeg
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Hence we assume that

B, = By€, } (5.94)

H;, = (B, — 47 M,)e,

The boundary conditions at the surface of the sphere are that B, and H,
be continuous. Thus, from (5.92), (5.93), and (5.94), we obtain

al+2

N ]
By cos 0 =Z (I + Doy, Pfcos 6)
1=0

[ (5.95)

: N dP,(cos 0)
—(B, — 47M,) sin § = — ad! L
(B, o) Z pa

Evidently only the / = 1 term survives in the expansion. We find the
unknown constants «, and B, to be

4‘77 3
0(1 _— Oa
(5.96)
8r

The fields outside the sphere are those of a dipole (5.41) of dipole moment,

m=?ﬁM (5.97)
The fields inside are
.
Bin = 8—77 M
3 (5.98)
4
1m=—§M

We note that B, is parallel to M, while H;, is antiparallel. The lines of B
and H are shown in Fig. 5.12. The lines of B are continuous closed paths,
but those of H terminate on the surface. The surface appears to have a
“magnetic-charge” density on it. This fictitious charge is related to the
divergence of the magnetization (see below).

The solution both inside and outside the sphere could have been
obtained from electrostatic potential theory if we had chosen to discuss H
rather than B. We can treat the equations,

VxH=0 ]

(5.99)
V-H= —4+V . MJ
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B H

Fig.5.12 Lines of B and lines of H for a uniformly magnetized sphere. The lines of B
are closed curves, but the lines of H originate on the surface of the sphere where the
magnetic “‘charge,” —V - M, resides.

These equations show that H is derivable from a potential, and that
~V - M acts as a magnetic-charge density. Thus, with H = —V®,,, we
find

V2@, = 47V -M (5.100)

Since M is constant in magnitude and direction, its divergence is zero

inside the sphere. But there is a contribution because M vanishes outside

the sphere. We write the solution for @, inside and outside the sphere as
V, * M(X’) d3xf
Ix — x|

Then we use the vector identity V « (¢M) = M . V¢ + ¢V - M to obtain

D 4(x) = — (5.101)

®,,(x) = — f v M) f M(x') - V'(—L—f) P (5.102)

Ix — x| Ix — x|
The first integral vanishes on integration over any volume containing the
sphere. If we convert the derivative with respect to x’' into one with
respect to x according to the rule V' — — V when operating on any
function of |x — x’|, the potential can be written

Dy(x)= -V f__MLX_)I_ Bx' = V. [M0153J~ r? dr’de' 1 , :|
[x — x'| 0 |x — x|

(5.103)
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Only the / = 0 part of |x — x|~ contributes to the integral. Therefore

a .2 r
@ (%) = —4WM{,V.[e3J z d"] (5.104)

0 rs
The integral yields different values, depending on whether r lies inside or
outside the sphere. We find easily

2
@ ,y(x) = Mo (fi)cose (5.105)
3 %

where r_ (r.) is the smaller (larger) of r and a. This potential yields a
dipole field outside with magnetic moment (5.97) and the constant value

H,, (5.98) inside, in agreement with the first method of solution.*
Finally we solve the problem using the generally applicable vector
potential. Referring to (5.80), we see that the vector potential is given by

A(x) = f VIXM(x) a0 (5.106)
Ix — x'|
Since M is constant inside the sphere, the curl vanishes there. But because
of the discontinuity of M at the surface, there is a surface integral contri-
bution to A. If we consider (5.79), the required surface integral can be
recovered :
A(x) = — f v x (M—(")—-)dsm' _ M) xm, (5107
x — x| |x — x'|
The quantity ¢(M x n) can be considered as a surface-current density.
The equivalence of a uniform magnetization throughout a certain volume
to a surface-current density ¢(M X n) over its surface is a general result
for arbitrarily shaped volumes. This equivalence is often useful in treating
fields due to permanent magnets.
For the sphere with M in the z direction, (M X n) has only an azimuthal
component,
(M x m); = M, sin §’ (5.108)

To determine A we choose our observation point in the z-z plane for
calculational convenience, just as in Sections 5.5. Then only the ¥ com-
ponent of —(n X M) enters. The azimuthal component of the vector
potential is then

sin 6’ cos ¢’

A&(X) = Moa2fdQ’
Ix — x|

(5.109)

* The development from (5.101) to (5.105) is unnecessarily complicated for the simple
calculation at hand. For the uniformly magnetized sphere it is easy to show that
V-M = —M,cos §6(r — a). Substitution into (5.101) and use of (3.70) yields
(5.105) directly. Equation (5.103) is still useful, of course, for more complicated
distributions of magnetization.
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where X’ has coordinates (a, 6, ¢"). The angular factor can be written
sin 0 cos ¢/ = — %’1 Re[ Y,,(0', 6] (5.110)

Thus with expansion (3.70) for |x — x| only the /= 1, m = 1 term will
survive. Consequently
A, = 4?” uaz(%i) sin 0 (5.111)

r>

where r_ (r.) is the smaller (larger) of » and a. With onlya ¢ component
of A, the components of the magnetic induction B are given by (5.38).
Equation (5.111) evidently gives the uniform B inside and the dipole field
outside, as found before.

The different techniques used here illustrate the variety of ways of
solving steady-state magnetic problems, in this case with a specified
distribution of magnetization. The scalar potential method is applicable
provided no currents are present. But for the general problem with
currents we must use the vector potential (apart from special techniques
for particularly simple geometries).

5.11 Magnetized Sphere in an External Field; Permanent Magnets

In Section 5.10 we discussed the fields due to a uniformly magnetized
sphere. Because of the linearity of the field equations we can superpose a
uniform magnetic induction B, = H,, throughout all space. Then we have
the problem of a uniformly magnetized sphere in an external field. From
(5.98) we find that the magnetic induction and field inside the sphere are
now

Bjn = Bo + §37_TM
(5.112)
4
Hin = Bu - _3—M

We now imagine that the sphere is not a permanently magnetized object,
but rather a paramagnetic or diamagnetic substance of permeability u.
Then the magnetization M is a result of the application of the external
field. To find the magnitude of M we use (5.86):

B,

mn

= uH,, (5.113)
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\ H
Thus Fig. 5.13
8 47
This gives a magnetization,
M = i(“‘;I)B0 (5.115)
dr\y + 2

We note that this is completely analogous to the polarization P of a
dielectric sphere in a uniform electric field (4.63).

For a ferromagnetic substance the arguments of the last paragraph fail.
Equation (5.115) implies that the magnetization vanishes when the
external field vanishes. The existence of permanent magnets contradicts
this result. The nonlinear relation (5.87) and the phenomenon of hysteresis
allow the creation of permanent magnets. We can solve equations (5.112)
for one relation between H;, and B,, by eliminating M:

B;, + 2H;, = 3B, (5.116)

The hysteresis curve provides the other relation between B,, and H,,, so
that specific values can be found for any external field. Equation (5.116)
corresponds to lines with slope —2 on the hysteresis diagram with inter-
cepts 3B, on the y axis, as in Fig. 5.13. Suppose, for example, that the
external field is increased until the ferromagnetic sphere becomes saturated
and decreased to zero. The internal B and H will then be given by the
point marked P in Fig. 5.13. The magnetization can be found from (5.112)
with B, = 0.

The relation (5.116) between B, and H,,, is specific to the sphere. For
other geometries other relations pertain. The problem of the ellipsoid can
be solved exactly and shows that the slope of the lines (5.116) range from
zero for a flat disc to — oo for a long needle-like object. Thus a larger
internal magnetic induction can be obtained with a rod geometry than
with spherical or oblate spheroidal shapes.
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5.12 Magnetic Shielding; Spherical Shell of Permeable Material in a
Uniform Field

Suppose that a certain magnetic induction By, exists in a region of empty
space initially. A permeable body is now placed in the region. The lines
of magnetic induction are modified. From our remarks at the end of
Section 5.9 concerning media of very high permeability we would expect
that the field lines would tend to be normal to the surface of the body.
Carrying the analogy with conductors further, if the body is hollow, we
would expect that the field in the cavity would be smaller than the external
field, vanishing in the limit x — oo. Such a reduction in field is said to be
due to the magnetic shielding provided by the permeable material. Tt is of
considerable practical importance, since essentially field-free regions are
often necessary or desirable for experimental purposes or for the reliable
working of electronic devices.

As an example of the phenomenon of magnetic shielding we consider a
spherical shell of inner (outer) radius @ (b), made of material of perme-
ability u, and placed in a formerly uniform constant magnetic induction
B,, as shown in Fig. 5.14. We wish to find the fields B and H everywhere
in space, but most particularly in the cavity (r < @), as functions of u.
Since there are no currents present, the magnetic field H is derivable from
a scalar potential, = —V®,,. Furthermore, since B = yH, the
divergence equation V - B = 0 becomes V - H = 0 in the various regions.
Thus the potential @4, satisfies Laplace’s equation everywhere. The
problem reduces to finding the proper solutions in the different regions to
satisfy the boundary conditions (5.88) and (5.90) at r = a and r = b.

For r > b, the potential must be of the form,

@ = —Byrcos § + Z ;_‘j‘T’I P(cos ) (5.117)
=0

Y
\
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in order to give the uniform field, H = B = B, at large distances. For
the inner regions, the potential must be

S 1
a<r<b D, =Z(ﬁlrt + 9 m)Pl(cos O)l

1=0 4 (5.118)
r<a @, =3 o' P(cos b)

1=0

The boundary conditions at r = @ and r = b are that H, and B, be
continnous. In terms of the potential ®,, these conditions become

a0 o od ]

W .y = 9Pa gy g,y =ar(,

00 06 o6 00 1

oD od om od (.119)
M b — M b__ M — M B

) =ul20)  w2a@y =22

The notation b, means the limit r — b approached from r Z b, and
similarly for a,. These four conditions, which hold for all angles 6, are
sufficient to determine the unknown constants in (5.117) and (5.118). All

coefficients with /3~ 1 vanish. The [ = 1 coefficients satisfy the four
simultaneous equations

ou— b — 7 = b*B,
200 + by — 2pyy = —b*B, I (5.120)
a@py+ y—ad=0
ua’fy — 2uy, — a*é; = 0.
The solutions for o, and ¢, are
o0 = (z.u -+ 1)(}“ _a13) (bS _ aS)BO
Qu+Yu+2)—2—@w—17
b L (5.121)
8 = — o = B,
Qu+ Dip+2) =25 (1 ~ 1?

The potential outside the spherical shell corresponds to a uniform field
B, plus a dipole field (5.41) with dipole moment «, oriented parallel to B,.
Inside the cavity, there is a uniform magnetic field parallet to B, and
equal in magnitude to —d,. For x > 1, the dipole moment «, and the
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Fig. 5.15 Shielding effect of a shell of highly permeable material.

inner field — &, become
«; — b°B,

9

a3
2“(1 - 3)

We see that the inner field is proportional to x~!. Consequently a shield
made of high-permeability material with g ~ 10® to 10® causes a great
reduction in the field inside it, even with a relatively thin shell. Figure

5.15 shows the behavior of the lines of B. The lines tend to pass through
the permeable medium if possible.

—8, —

B, (5.122)

REFERENCES AND SUGGESTED READING

Problems in steady-state current flow in an extended resistive medium are analogous to
electrostatic potential problems, with the current density replacing the displacement and
the conductivity replacing the dielectric constant. But the boundary conditons are
generally different. Steady-state current flow is treated in

Jeans, Chapters IX and X,
Smythe, Chapter VI.
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Magnetic ficlds due to specified current distributions and boundary-value problems in
magnetostatics are discussed, with numerous examples, by
Durand, Chapters XIV and XV,
Smythe, Chapters VII and XII.
The atomic theory of magnetic properties rightly falls in the domain of quantum
mechanics. Semiclassical discussions are given by
Abraham and Becker, Band 1I, Sections 29-34,
Durand, pp. 551-573, and Chapter XVII,
Landau and Lifshitz, Electrodynamics of Continuous Media,
Rosenfeld, Chapter IV.
Quantum-mechanical treatments appear in books devoted entirely to the electrical and
magnetic properties of matter, such as

Van Vleck.
PROBLEMS
5.1 Starting with the differential expression
JB — 1dl >; X
¢ X

for the magnetic induction produced by an increment I 4l of current, show
explicitly that for a closed loop carrying a current I the magnetic induction

at an observation point P is

B-—lva
c

where (2 is the solid angle subtended by the loop at the point P. This is an
alternative form of Ampgre’s law for current 100ps.

5.2 (a) For a solenoid wound with N turns per unit length and carrying a
current 7, show that the magnetic-flux density on the axis is given approxi-

mately by

2aN.
B, = W—CI (cos 0, + cos 6,)

where the angles are defined in the figure.

(b) For a long solenoid of length L and radius a show that near the axis
and near the center of the solenoid the magnetic induction is mainly parallel
to the axis, but has a small radial component

967 NI [ a*zp
==\
correct to order a?/L?, and for z € L, p <€ a. The coordinate z is measured
from the center point of the axis.
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(¢) Show that at the end of a long solenoid the magnetic induction near
the axis has components

2a NI 7NI[p
Bz e ’ Bp = _(—')
(4 C a

A cylindrical conductor of radius & has a hole of radius b bored parallel to,
and centered a distance d from, the cylinder axis (d + & < a). The current
density is uniform throughout the remaining metal of the cylinder and is
parallel to the axis. Use Ampere’s law and the principle of linear super-
position to find the magnitude and the direction of the magnetic-flux
density in the hole.
A circular current loop of radius a carrying a current / lies in the #-y plane
with its center at the origin.

(a) Show that the only nonvanishing component of the vector potential is

4Ia [
Aglp,2) = - dk cos kz I (kp ) K (kp)
0

where p. (p-) is the smaller (larger) of a and p.
(b) Show that an alternative expression for Ay is

0
Aylp, 2) = 2"7[“ dk e7*\2 I (ka) J1(kp)

0
(c) Write down integral expressions for the components of magnetic
induction, using the expressions of (a) and (b). Evaluate explicitly the
components of B on the axis by performing the necessary integrations.
Two concentric circular loops of radii a, b and currents I, I, respectively
(b < a), have an angle « between their planes. Show that the torque on one
of the loops is about the line of intersection of the two planes containing
the loops and has the magnitude:

_ 2=21I'b* s n+1 T(n + ) 2 /p\2n
Ve “ (2n + 1){P(n + 2) I‘(%):‘ (_) P3, 41(c0s )

a

where P;(cos «) is an associated Legendre polynomial. Determine the
sense of the torque for « an acute angle and the currents in the same
(opposite) directions.

A sphere of radius a carries a uniform charge distribution on its surface.
The sphere is rotated about a diameter with constant angular velocity w.
Find the vector potential and magnetic-flux density both inside and outside
the sphere.

A long, hollow, right circular cylinder of inner (outer) radius a (b), and of
relative permeability , is placed in a region of initially uniform magnetic-
flux density B, at right angles to the field. Find the flux density at all points
in space, and sketch the logarithm of the ratio of the magnitudes of B on the
cylinder axis to B, as a function of log,, « for a®/b> = 0.5, 0.1. Neglect end
effects.

A current distribution J(x) exists in a medium of unit permeability adjacent
to a semi-infinite slab of material having permeability # and filling the
half-space, z < 0.
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5.9

5.10

5.11
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(@) Show that for z > 0 the magnetic induction can be calculated by
replacing the medium of permeability # by an image current distribution,
J*, with components,

(Z_:_‘) Ty, =9, (‘“‘I)Jy(x,y, —9), —(""‘)Jz(x,y, —2)

1 w41 w+1

(b) Show that for z < 0 the magnetic induction appears to be due to a

H . . . -
P I) J in a medium of unit permeability.

4

current distribution (

A circular loop of wire having a radius ¢ and carrying a current 7 is located
in vacuum with its center a distance 4 away from a semi-infinite slab of
permeability u. Find the force acting on the loop when

(a) the plane of the loop is parallel to the face of the slab,

(b) the plane of the loop is perpendicular to the face of the slab.

(c¢) Determine the limiting form of your answers to (@) and (b) when
d > a. Can you obtain these limiting values in some simple and direct
way?

A magnetically “hard’’ material is in the shape of a right circular cylinder
of length L and radius a. The cylinder has a permanent magnetization M,
uniform throughout its volume and parallel to its axis.

(a) Determine the magnetic field H and magnetic induction B at all
points on the axis of the cylinder, both inside and outside.

() Plot the ratios B/4=M, and H/4=M, on the axis as functions of z for
Lla = 5.

(a) Starting from the force equation (5.12) and the fact that a magnetiza-
tion M is equivalent to a current density J;; = ¢(V x M), show that, in
the absence of macroscopic currents, the total magnetic force on a body
with magnetization M can be written

F = —f(V-M)Bede

where B, is the magnetic induction due to all other except the one in
question.
(b) Show that an alternative expression for the total force is

= —f(V-M)Hd%

where H is the total magnetic field, including the field of the magnetized
body.

H);m: The results of (a) and (b) differ by a self-force term which can be
omitted (why?).
A magnetostatic field is due entirely to a localized distribution of permanent
magnetization.

(@) Show that

jB-Hd3w=0

provided the integral is taken over all space.
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(b) From the potential energy (5.73) of a ciipole in an external field show
that for a continuous distribution of permanent magnetization the magneto-
static energy can be written

= l fHoHd% = —%fMHdax
8=

apart from an additive constant which is independent of the orientation or
position of the various constituent magnetized bodies.

Show that in general a long, straight bar of uniform cross-sectional area A4
with uniform lengthwise magnetization M, when placed with its flat end
against an infinitely permeable flat surface, adheres with a force given
approximately by

F ~2nAM?

A right circular cylinder of length L and radius & has a uniform lengthwise
magnetization M.

(a) Show that, when it is placed with its flat end against an infinitely
permeable plane surface, it adheres with a force

F = sraipre K8® = E®) Kl = EGky)
k ky
where
k = —2___..,—‘1—__— » kl = —a—__—..
Vida? + L Va* + L?

(b) Find the limiting form for the force if L > a.



Time-Varying Fields,
Maxwell’s Equations,
Conservation Laws

In the previous chapters we have dealt with steady-state problems
in electricity and in magnetism. Similar mathematical techniques were
employed, but electric and magnetic phenomena were treated as indepen-
dent. The only link between them was the fact that currents which produce
magnetic fields are basically electrical in character, being charges in motion.
The almost independent nature of electric and magnetic phenomena
disappears when we consider time-dependent problems. Time-varying
magnetic fields give rise to electric fields and vice-versa. We then must
speak of electromagnetic fields, rather than electric or magnetic fields. The
full import of the interconnection between electric and magnetic fields
and their essential sameness becomes clear only within the framework
of special relativity (Chapter 11). For the present we will content ourselves
with examining the basic phenomena and deducing the set of equations
known as Maxwell’s equations, which describe the behavier of electro-
magnetic fields. General properties of these equations will be established
so that the basic groundwork of electrodynamics will have been laid.
Subsequent chapters will then explore the many ramifications.

In our desire to proceed to other things, we will leave out a number of
topics which, while of interest in themselves, can be studied elsewhere.
Some of these are quasi-stationary fields, circuit theory, inductance
calculatlons eddy currents, and induction heating. None of these subjects
involVes new concepts beyond what are developed in this chapter and
previous ones. The interested reader will find references at the end of the
chapter.

169
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6.1 Faraday’s Law of Induction

The first quantitative observations relating time-dependent electric and
magnetic fields were made by Faraday (1831) in experiments on the
behavior of currents in circuits placed in time-varying magnetic fields. It
was observed by Faraday that a transient current is induced in a circuit
if (a) the steady current flowing in an adjacent circuit is turned on or off, (b)
the adjacent circuit with a steady current flowing is moved relative to the
first circuit, (¢) a permanent magnet is thrust into or out of the circuit. No
current flows unless cither the adjacent current changes or there is relative
motion. Faraday interpreted the transient current flow as being due to a
changing magnetic flux linked by the circuit. The changing flux induces
an electric field around the circuit, the line integral of which is called the
electromotive force, &. The electromotive force causes a current flow,
according to Ohm’s law.

We now express Faraday’s observations in quantitative mathematical
terms. Let the circuit C be bounded by an open surface S with unit normal
n, as in Fig. 6.1. The magnetic induction in the neighborhood of the
circuit is B. The magnetic flux linking the circuit is defined by

F LB ‘nda 6.1)

The electromotive force around the circuit is

& = § E -dl (6.2)
C

where E’ is the electric field at the element 4l of the circuit C. Faraday’s
observations are summed up in the mathematical law,

&= k% 6.3)

dt

The induced electromotive force around the circuit is proportional to the
time rate of change of magnetic flux linking the circuit. The sign is
specified by Lenz’s law, which states that the induced current (and
accompanying magnetic flux) is in such a direction as to oppose the change
of flux through the circuit.

The constant of proportionality k depends on the choice of units for the
electric and magnetic field quantities. It is not, as might at first be
supposed, an independent empirical constant to be determined from
experiment. As we will see immediately, once the units and dimensions in
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Fig. 6.1

Ampere’s law have been chosen, the magnitude and dimensions of k follow
from the assumption of Galilean invariance for Faraday’s law. For
Gaussian units, k = ¢, where c is the velocity of light.

Before the development of special relativity (and even afterwards, when
dealing with relative speeds small compared with the velocity of light), it
was understood, although not often explicitly stated, by all physicists that
physical laws should be invariant under Galilean transformations. That
is, physical phenomena are the same when viewed by two observers
moving with a constant velocity v relative to one another, provided the
coordinates in space and time are related by the Galilean transformation,
x' = x +vt, ' = t. In particular, consider Faraday’s observations. It is
obvious (i.e., experimentally verified) that the same current is induced in a
circuit whether it is moved while the circuit through which current is
flowing is stationary or it is held fixed while the current-carrying circuit is
moved in the same relative manner.

Let us now consider Faraday’s law for a moving circuit and see the
consequences of Galilean<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>