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PUBLISHER'S FOREWORD

We are pleased to be publishing this second translation volume of THE
OOLLECTED PAPERS OF ALBERT EINSTEIN. As with Volume 1, we strongly urge
readers to use the translations only together with the documentary edition,
vhich provides the editorial commentary necessary for a more complete under-—
standing of the documents. Every effort has been made to insure the scientific
accuracy of this translation. It is not intended as a literary translation
that can stand alone without the documentary edition.

We are again grateful to Dr. Anna Beck and Professor Peter Havas for
their hard work and dedication to this project, which is separate fram the
documentary edition project. BAll translations appearing in the documentary
edition were prepared by the editors of that volume, and those appearing in
this volume were prepared by Drs. Beck and Havas.

We are also pleased to acknowledge the grant fram the National Science
Foundation that has made this publication possible. In particular, we thank
Dr. Ronald Overman of the NSF for his continued interest in the project.

Princeton University Press
September 1989






PREFACE

This volume contains the translations of all documents in Volume 2 of
The Collected Papers of Albert Einstein, all of which were originally written
in German. It is not self-contained and should be read in conjunction with
the documentary edition and its editorial apparatus. All editorial headnotes
and footnotes have been omitted, as have the introductory materials and the
bibliography. However, we used the bibliography to check the references cited
in the documents and, especially, to correct and complete the titles and
bibliographic data given by Einstein in his reviews of books and articles. In
this volume we have included the editorial footnote numbers, which appear in
brackets in the margin and correspond to the footnotes in the documentary
edition. We have not corrected any misprints or other errors (including those
in the formulas) if the editors have commented on them. Misspellings of names
of persons have been routinely corrected.

Although some of the documents have been translated before, we have
provided new translations here rather than attempt to use any "best" existing
translation.

The purpose of the translation project, in accordance with the agreement
between Princeton University Press and the National Science Foundation, is to
provide " a careful, accurate translation that is as close to the German
original as possible while still producing readable English." This is,
therefore, not a "literary" translation but should allow readers who are not
fluent in German to make a scholarly evaluation of the content of the
docunents while also obtaining an appreciation of their flavor.

Many technical expressions used in the original documents are outdated
(see the editorial comments in Volume 2); whenever possible, we have not
replaced them with the modern English versions but have used the expressions
employed in the technical literature of the time, if known, or else we
provided a literal tramslation. In particular, we retained the term "electric



xiv PREFACE

mass" frequently used by Einstein for electric charge. All formulas were
included in a form as similar to those in the original documents as was
possible with our word processor. We kept the standard German notation used
at the time, representing vectors by German (Fractur) letters and vector
products by [ ]; for example, we kept [€$)] for the vector denoted in
current literature by E«xil orExI.

Ve are indebted to John Stachel, the Editor of Volume 2, and Robert
Schulmann, Associate Editor, as well as Walter Lippincott, Director, and Alice
Calaprice, Senior Editor, of Princeton University Press, for their help and
encouragement. We also wish to thank Marjorie Zabierek for her part in
preparing the final typescript.

Anna Beck, Translator
Peter Havas, Consultant
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Doc. 1
CONCLUSIONS DRAWN FROM THE PHENOMENA OF CAPILLARITY
by Albert Einstein
[Annalen der Physik 4 (1901): 513-523]

If we denote by 4 the amount of mechanical work that we have to supply
to a liquid in order to increase the free surface by one unit, then 7 is not
the total energy increase of the system, as the following cyclic process will
show. Let there be a certain amount of liquid of (absolute) temperature Tl
and surface area 01. We now increase isothermally the surface 01 to 0O,
increase (at constant surface area) the temperature to 75, then reduce the
surface to 01 and cool the liquid to 7} again. If one assumes that no
heat is supplied to the body other than that received on account of its speci-
fic heat, then the total heat supplied to the substance during the cyclic
process will be equal to the total heat withdrawn. According to the principle
of conservation of energy, the total mechanical work supplied must then also
be zero.

Hence the following equation holds:
Oy - 0)7y - Oy - 0)1 =0 or 7y =1.

However, this contradicts experience.

We have, then, no other choice but to assume that the change in the sur-
face is associated with an exchange of heat as well, and that the surface has
a specific heat of its own. If we denote by U the energy, by S§ the en-
tropy of the unit surface of the liquid, by s the specific heat of the
surface, and by w, the heat necessary to form a unit surface, expressed in
mechanical units, then the quantities

dU = s.0.dT + {7 + wy}d0
and

ds = S-U.dT+ g}yp 4o

will be total differentials. Hence we will have

[1]

[2]



2 PHENOMENA OF CAPILLARITY

(s.0) _ d(y+up)

d (s d

a7 - alF)
From these equations it follows that

7+uw=7-T g% y

This is, however, the total energy necessary to form a unit surface.
Further, we form

2
g i1+ ) = Tk -

The experimental studies have shown that 7 can be represented with
141 very good approximation as a linear function of temperature, i.e.:
The energy necessary to form a unit surface of a liquid is independent
of the temperature.
It also follows that

Gty G rfieo.

{51 hence: no heat content should be ascribed to the surface as such; rather, the
energy of the surface is of potential nature. It can be seen already that the

quantity
7—T§%

is more suited for stoichiometric investigations than is the hitherto used 7
at boiling temperature. The fact that the energy required for the formation
of a unit surface barely varies with the temperature teaches us also that the
configuration of molecules in the surface layer will not vary with temperature
(apart from changes of the order of magnitude of thermal expansion).

To find a stoichiometric relationship for the quantity

7-T§%
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I proceeded from the simplest assumptions about the nature of molecular
attraction forces and examined their comsequences regarding their agreement
with experiment. In this I was guided by the analogy with gravitational (6]
forces.
Let thus the relative potential of two molecules be of the form

P = ﬂm = cl.c2.go(r) "

where ¢ is a constant characteristic of the molecule in question, and ¢(7)
is a function of their distance that does not depend on the nature of the
molecules. We assume further that (71

n n
d 2 z €a®p w(ra,ﬁ)
o=1 f=1

is the corresponding expression for # molecules. In the special case in
which all molecules are alike, this expression becomes

n n
b2 ) ) wlr, g -
a=1 f=1

We further make the additional assumption that the potential of the molecular
forces has the same magnitude it would have if the matter were homogeneously
distributed in space; this is, however, an assumption which we should expect
to be only approximately correct. Using it, the above expression converts to

P = F; - fe2y? JJ dr.dr‘w(rdT,dT.) ) [8]

where N is the number of molecules per unit volume. If the molecule of our
liquid consists of several atoms, then it shall be possible to put, in analogy
with gravitational forces, ¢ = Eca, where the ca‘s denote the values
characteristic for the atoms of the elements. If one also puts 1/¥ = v,
wvhere o denotes the molecular volume, one obtains the final formula
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(Ze,)?
P= Pm -1 _TJJ dr.dr' ‘P(’”d.r dT')

If we now also assume that the density of the liquid is constant up to
its surface, which is made plausible by the fact that the energy of the
surface is independent of tcmperature, then we are able to calculate the
potential energy per unit volume in the interior of the liquid, and that per
unit surface.

I.e., if we put

J i Iy__m L__m dadydz [T = X

then the potential energy per unit volume is

(Ee,)?
ﬁn - b=

If we imagine a liquid of volume ¥ and surface S, we obtain by
integration
(Zc,)? (X, )2
P=F -K—g— V- ——1r— o/

where the constant X&' denotes

=00 Z=00
(10] J J J J J I de.dy. dz.ds" . dy' .dz’
z'=0 Jy'=0 Y 2'=-m y=-w J 2=0

</>[J(r—z‘)2+(x/—y')2+(z—1')7] .

Since nothing is known about ¢, we naturally do not get any
relationship between K and £'.

One should keep in mind, to begin with, that we cannot know whether or
not the molecule of the liquid contains the n-fold mass of the gas molecule,
but it follows from our derivation that this does not change our expression
for the potential energy of the liquid. Based on the assumptions we have just
made, we obtain the following expression for the potential encrgy of the
surface:
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or - I;—j—;rg;

Since the quantity on the right can be calculated from R. Schiff's
observations for many substances at the boiling temperature, we have ample
material for the determination of the quantities o I took all the data
from W. Ostwald's book on general chemistry. First, I present here the data
that T used for the calculation of ¢, for C, H, and 0 by the least
squares method. The column with the heading Eca (calc) gives the Ecu as
determined from chemical formulas using the o thus obtained. Isomeric
compounds were combined into one value, because their values on the left-hand
side did not differ significantly from each other. The unit was chosen

arbitrarily because it is not possible to determine the absolute value of ¢

a
since K' is unknown.
I found:
CH = '1‘6, CC = 55,01 CO = 46;8 .

Formula Eco an {calc) Name of the compound

Cyotlys 510 524 Limonene

cb 140 145 Formic acid

ﬁ 6 193 197 Acetic acid
C3H502 250 249 Propanoic acid
C,lig0 309 301 Butyric acid and isobutyric acid
Coyo0s 365 352 Valerianic (pentanoic) acid
C4H60 350 350 Acetic anhydride

Hyols 505 501 Ethyl oxalate
CSHS 494 520 Methyl benzoate
Colisol 553 562 Ethyl benzoate
CEH103 471 454 Ethyl-acetoacetate (diacetic ether)
% 422 419 Anisole
cguoo 479 470 Phenetole and methyl cresolate
CgHyo0, 519 517 Dimethyl resorcinol
o i 345 362 Furfural
of 348 305 Valeraldehyde

lei“(] 587 574 d-carvone

It can be seen that in almost all cases the deviations barely exceed the
experimental errors and do not show any trend.

[11]

[12]
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After that I separately calculated the values for Cl, Br, and J; these
determinations are of course less reliable. I found:

¢y = 60, epr = 152 gy = 198 .

I present the data in the same way as above:

Formula Xe, e, (calc) Name of the compound
CglisC1 385 379 Chloro benzene
C,1I:C1 438 434 Chloro toluene
C:41,C1 450 434 Benzyl chloride
C5lls0C1 270 270 Epichlorohydrin
C,0HC1,4 358 335 Chloral

C,1;001 462 484 Benzoyl chloride
CHgCl, 492 495 Benzylidene chloride
Br, 217 304 Bromine

CallsBr 251 254 Ethyl bromide
C3li;Br 311 306 Propyl bromide
Cqll;Br 311 306 Isopropyl bromide
C,llsBr 302 309 Allyl bromide
CHsBr 353 354 Isobutyl bromide
Cglly Br 425 410 Isoamyl bromide
Ccﬂshr 411 474 Bromo benzene
C.l1.Br 421 526 o-Bromo tolucne
Coll4Bry 345 409 Ethylene bromide
CallgBry 395 461 Propylene bromide
CallgJ 288 300 Ethyl iodide
Cali,J 343 352 Propyl iodide
Cll;J 357 352 Isopropyl iodide
CsllsJ 338 355 Allyl iodide
Cyllgd 428 403 Isobutyl iodide
CsllyyJ 464 455 Isoamyl iodide

It scems to me that the larger deviations from our theory occur for
those compounds that have relatively large molecular masses and small
molecular volumes.

Based on our assumptions, we found that the expression for the potential
cnergy per unit volume is

(Bc,)?

Pw = ](_1}2-— £

where K denotes a definite quantity, which we, however, are not able to
calculate because it 1s only defined completely by the choice of the ca's.
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We can therefore set K = 1 and thereby obtain a definition for the absolute
values of the ca's. If we take this into account from now on, we obtain the
following expression for the magnitude of the potential pertaining to one
equivalent (molecule):

(Be )2
P=pP - F—2& |
(] v

where, of course, ﬂm denotes another constant. We could now equate the
second member of the right-hand side of this equation to the difference
DmJ- Avd, where ”m is the molecular heat of evaporation (heat of
evaporation x molecular mass), J the mechanical equivalent of ome calorie,
4 the atmospheric pressure in absolute units, and vy the molecular volume
of the vapor — if the potential energy of the vapor were zero and if at the
boiling point the content in kinetic energy would not change during the
transition from the liquid to the gaseous state. The first of these
assumptions seems to me absolutely safe. However, since we have neither a
basis for the second assumption nor a possibility to estimate the quantity in
question, we have no other choice but to use the above quantity itself for the
calculation.

In the first column of the following table I entered the quantities

p- ¢ in thermal units, with D& denoting the heat of evaporation minus the
external work of evaporation (in thermal units). In the second column I
entered the quantities Eca, as obtained from capillarity experiments; the
third column contains the quotients of the two values. Isomeric compounds are
once again combined into a single line.

[13]

[14]
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Name of the compound Formula le'.v Eca (calc) Quotient

Isobutyl propanoate C;H,40, 1157 456 2.54
Isoamyl acetate "
Propyl acetate
Isobutyl isobutyrate Cely60, 1257 510 2.47
Propyl valerate "

Isobutyl butyrate i

Isoamyl propanoatec

Isoamyl isobutyrate CoH,50, 1367 559 2.45
Isobutyl valerate "

Isoamyl valerate 81%"1002 1464 611 2551
Benzene 795 310 2.57
Toluene CoHe 902 372 2.48
Ethyl benzene Cg}'l‘l() 1005 424 2.37
m-Xylene

Propyl benzene Collj2 1122 475 2.36
Mesitylene i

Cymene Ciollis 1213 527 2.30
Ethyl formate Csllgl,y 719 249 2.89
Methyl acetate "

Ethyl acetate C,J'Irsl)z 837 301 2.78

Methyl propanoate
Propyl formate "
Methyl isobutyrate CsH, 00, 882 353 2.50
Isobutyl formate y
Ethyl propanoate "
Propyl acetate i
Methyl butyrate .
Ethyl isobutyrate CGHI‘ZUZ 971 405 2.40
¥ethyl valerate "
Isobutyl acetate "
Ethyl butyrate "
Propyl propanoate "
Isoamyl formate

Even though the quotient in the fifth column is by no means a constant,
but is, on the contrary, clearly dependent on the constitution of the
compounds, we can nevertheless use the material on hand to obtain the factor,
or at least its order of magnitude, with which we must multiply our ca's t0
obtain them in the absolute unit we had chosen. The mean value of the
multiplier looked for is

2.51 = [4.17 x 107 = 1.62 x 10% .

Since the foregoing discussion shows that the kinetic conditions of the
molecules change during evaporation (at least if our expression for the
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potential energy is correct), I decided to obtain the absolute quantity <,
in one more way. I proceeded from the following idea:

If we compress a liquid isothermally and its heat content does not
change in the process, as we now wish to assume, then the heat released during [16]
compression equals the sum of the work of compression and the work done by the
molecular forces. We can therefore calculate the latter work if we can find
the amount of heat released during compression. This we can do with the help
of Carnot's principle.

Let the state of the liquid be determined by the pressure p in
absolute units and by the absolute temperature 7; if the value of the heat
supplied to the substance during an infinitesimally small change of state is
d{ in absolute units, and the mechanical work done on the substance is d4,
and 1f we put

df = Xdp + $.d7T,
- _ dv dv
dd = -pdv="-p [ﬂi dp + 7 d71
= p.v.kdp - p.v.adT , [17]

then the condition that d{§/T and d§ + df must be total differentials

yields the equations
) - (]

and 9 3
g7tk + pr) = gi(S - pa) s (18]
here, as can be seen, [ denotes the heat, in mechanical units, supplied to
the substance during isothermal compression produced by pressure p =1, §
is the specific heat at constant pressure, k is the coefficient of compres-
sibility, and e is the coefficient of thermal expansion. From these
equations, we find
a

Xdp = - T[a + pg; + pg!;a]dp g [19]

One has to remember that for any phenomena involving compression of
liquids, the atmospheric pressure, to which our bodies are usually subjected,
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can be considered unhesitatingly as infinitesimally small; likewise, compres-
sions in our experiments are very nearly proportional to the compression
forces applied. Thus, the phenomena proceed as if the compression forces were
infinitesimally small. TIf this is taken into account, then our equation
reduces to

X.dp = - T.a.dp .

If we now apply the assumption that the kinetic energy of the system
does not change in isothermal compression, we obtain the equation

X.dp + work of compression + work of the molecular forces = 0.

If P is the potential of the molecular forces, then the last-mentioned
work is

P
Er

If one inserts herein our expression for the magnitude of the potential
of the molecular forces and takes into account that the work of compression is
of the order dp?, one obtains, neglecting this quantity which is
infinitesimally small of second order,

T (Eca)2
T

?%Ib

where k denotes the compressibility coefficient in absolute units. We thus
obtain once more a means for the determination of the looked-for proportional-
ity coefficient for the quantities Cyr I took the a and &k values for the
temperature of ice from Landolt and Bornstein's tables. This yields the
following values for the factor sought:

Xylene 1.71 = 104 Ethyl alcohol 1.70 x 104
Cymene 1.71 x 104 Methyl alcohol 1.74 x 104
Turpentine oil 1.73 x 104 Propyl alcohol 1.82 x 104

Ethyl ether 1.70 = 104 Amyl alcohol 2.00 x 104
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First of all, it should be noted that the two coefficients obtained by
different methods show quite satisfactory agreement even though they have been
derived from totally different phenomena. The last table shows a very satis-
factory agreement of the values; only the higher alcohols show deviations.
This i1s to be expected, because from the deviations of alcohols from
Mendeleev's thermal expansion law and from R. Schiff's stoichiometric law of
capillarity, it has already been concluded earlier that in these compounds
temperature changes are associated with changes in the size of the molecules
of the liquid. Hence it is to be expected that such molecular changes should
also arise during isothermal compression, so that for such compounds at the
same temperature the heat content will be a function of volume.

In summary, we may state that our basic assumption stood the test: To
each atom corresponds a molecular attraction field that is independent of the
temperature and of the way in which the atom is chemically bound to other
atoms.

Finally, it should also be pointed out that the constants iy generally
increase with increased atomic weight, but not always, and not in a propor-
tional way. The question of whether and how our forces are related to gravi-
tational forces must therefore be left completely open for the time being. It
should also be added that the introduction of the function ¢(r), which is
taken to be independent of the nature of the molecules, should be understood
as an approximate assumption, and so should the replacement of sums by inte-
grals; in fact, as the example of water shows, our theory does not seem to
hold for substances with small atomic volumes. Only extensive special
investigations can be expected to bring answers to these questions.

Zurich, 13 December 1900. (Received on 16 December 1900)

(28]
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(28]
[29]
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Doc. 2
ON THE THERMODYNAMIC THEORY OF THE DIFFERENCE IN POTENTIALS BETWEEN METALS
AND FULLY DISSOCIATED SOLUTIONS OF THEIR SALTS AND ON AN ELECIRICAL
METHOD FOR INVESTIGATING MOLECULAR FORCES
By A. Einstein
[4nnalen der Physik 8 (1902): 798-814]

§1. 4 hypothetical extension of the second law of the
mechanical theory of heat

The second law of the mechanical theory of heat can be applied to such
physical systems which are capable of passing, with any desired approximation,
through reversible cyclic processes. In accordance with the derivation of
this law from the impossibility of converting latent heat into mechanical
energy, it is here necessary to assume that those processes are realizable.
llowever, in an important application of the mechanical theory of heat, namely
the mixing of two or more gases by means of semipermeable membranes, it is
doubtful whether this postulate is satisfied. The thermodynamic theory of
dissociation of gases and the theory of dilute solutions are based on the
assumption that this process is realizable.

As is well known, the assumption to be introduced is as follows: For
any two gases 4 and B it should be possible to produce two partitions such
that one is permeable for 4 but not for 2, while the other is permeable for
I but not for 4. If the mixture consists of more than two components, then
this assumption becomes even more complicated and improbable. Since the
results of the theory have been completely confirmed by experiment despite the
fact that we worked with processes whose realizability could indeed le
doubted, the question arises whether the second law could not be applied to
ideal processes of a certain kind without contradicting experience.

In this sense, on the basis of the experience obtained, we certainly can
advance the proposition: One remains in agreement with experience if one
extends the second law to physical mixtures whose individual components are
restricted to certain subspaces by conservative forces acting in certain
planes. We shall hypothetically gencralize this proposition to the following:
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One remains in agreement with experience when one applies the second law
to physical mixtures whose individual components are acted upon by arbitrary
conservative forces.

In the following we will always make use of this hypothesis, even when
this does not seem absolutely necessary.

§2. On the dependence of the electric potentiial difference of a completely
dissociated salt solution and an electrode consisting of the soluie metal
on the concentretion of the soluiion and the hydrosietic pressure
Let a solution of a completely dissociated salt be contained in a

cylindrical vessel whose axis coincides with the z-axis of a Cartesian
coordinate system. Let wvdo be the number of gram-molecules of the salt
dissolved in the volume element do, Ve do the number of metal ioms, and

vy do the number of acid iomns, where v and v, are integral multiples of

m
v, so that we have the following equations:

i

14 n v,

m m

B v

ys S

Further, let =n.v.F.do be the magnitude nf the total positive electric charge
of the ions in do, and hence also, up to the infinitesimally small, the
magnitude of the negative charge. Here n is the sum of valencies of the
molecule's metal ions, and £ the amount of electricity required for the
electrolytic separation of one gram-molecule of a univalent ion.

These equations are certainly valid, since the number of excess ions of
one kind can be neglected.

We shall further assume that the metal and acid ions are acted upon by
an external conservative force whose potential per ion has the magnitude Ph
and Ps’ respectively. Furthermore, we neglect the variability of the density
of the solvent with the pressure and density of the dissolved salt, and assume
that a conservative force, whose potential per gram-equivalent of the solvent
has the magnitude P,, acts upon the parts of the solvent; there shall be
vodo gram-molecules of solvent in do.

Suppose that all force functions depend solely on the 2z-coordinate, and
that the system is in electrical, thermal, and mechanical equilibrium. Then

[2]

[3]

[4]

[51
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the quantities concentration v, electric potential =, osmotic pressures of
the two ion types 2 and Py and hydrostatic pressure p, will be func-
tions of 2z only.

At each location of the electrolyte, each of the two types of electrons
must then be in equilibrium separately, which is expressed by the equations

ar,

dp
m 1 dr _
& i el EE-U
dp dP
s 1 dr _
R ALk B
wvhere
2, = u-nm-RT s
Py = u-ns-ET #

and where R is a constant common to all ionic species. Hence the equations
take the form
dP
dlgv
nmET —aé— n 7T_ + ok 3_ =05
dP
dlgy $ dr _
WA gy B =0

(1)

If P and P are known for all 2, and » and 7 for a particular 2z,
then equations (1) yield v and = as functions of 2. Also, the condition
that the solution as a whole is in equilibrium would result in an equation for
the determination of the hydrostatic pressure p,, which need not be written
down. We only note that the reason that dp, is independent of dv and dr
is that we are free to postulate arbitrary comservative forces that act on the
molecules of the solvent.

¥We now imagine that electrodes made of the solute metal and occupying a
vanishingly small part of the cross section of the cylindric vessel are placed
in the solution at =z = 7y and z = g The solution and the electrodes to-
gether form a physical system, which we take through the following reversible
isothermal cyclic process:

1st partial process: We pass the amount of electricity =nf infinitely
slowly through the solution, using the electrode at z = z; as anode, and
that at 2 = 29 as cathode.
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2nd partial process: The amount of dissolved metal that has thus been
moved electrolytically from 7y to 2z, we now move back mechanically
infinitely slowly from zy to z;.

First of all, it is evident that the process is strictly reversible,
since all steps are imagined to proceed infinitely slowly, i.e., the process
is compounded of (ideal) states of equilibrium. For such a process the second
law requires that the total amount of heat supplied to the system during the
cyclic process shall vanish. In conjunction with the second law, the first
law requires that the sum of all other energies supplied to the system during
the cyclic process shall vanish.

During the first partial process the amount of electric work supplied is

-nE(ﬂ2 -n) o,

where H2 and nl denote the electric potentials of the electrodes.
During the second partial process

3
Kdz
22

is supplied, where K is the force acting in the positive 2z-direction that
is required for the " metal ions that are to be moved, and which are now in
the metallic state, to keep them at rest at an arbitrary location 2. It is
easily seen that the following equation will hold for K:

dp dp
m 0 _
S A

llere Y, denotes the volume of one metal ion in the metallic state. Hence
the above work takes on the value

24 29 dpﬂl dpo
J K.dz = - J ["m?:g_ ., TJz_]dz

29 2y

-nm[(]}@"’;y) i vm(poz_ pol)] g
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where the second index denotes the coordinate of the electrode.
We obtain, hence, the equation

(2) n.B (M -1y) = _"m(’yb"l;h) B "mvm(pog_ pol) i

If the electric potentials in the cross sections of the electrodes
inside the solution are denoted by r; and 7,, integration of the first
equation (1) yields

- mB(ry- 7)) = m, [P, - P, + nmﬂﬂog[%] :

where »; and v, refer again to the cross sections of the electrodes.
Adding these equations, one obtains

(nz‘ 72) - (Hl" T]) (AH)2 - (An)l

(3)

n RT n_v
o v, n’m
PYA log[,—,f] Y (poz_pol) ’

Since the »'s and p; are completely independent of each other, this
equation represents the dependence of the potential difference ANl between
metal and solution on concentration and hydrostatic pressure. It should be
noted that the postulated forces no longer appear in the result. If they were
to appear, the hypothesis posited in §1 would have been carried ad absurdum.
The equation obtained can be resolved into two equations, namely:

(A")z"(A")1 = 7? - 1r10g[%ﬂ at constant pressure,
(4) Py U
(AH)T-—(AII)1 =-7 T - (poz—-pol) at constant concentration.

The final formula (3) could have also been obtained without the hypothesis
proposed in §1 had the external forces been identified with terrestrial
gravity. However, in that case » and p would not be independent of each
other and the resolution into equations (4) would not be permitted.
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It should also be briefly noted that the Nernst theory of electric
forces inside dissociated electrolytes, taken in conjunction with the first of
equations (4), makes it possible to calculate the electromotive force of the
concentration cell. Thus ore arrives at a result that has already been tested
repeatedly and that till now has been derived from special assumptions. [7]

§3. On the dependence of the quantity AN on the nature of the acid

We shall consider the following ideal state of equilibrium: Let us
again have a cylindric vessel. Parts I and IT shall each contain a completely
dissociated salt solution; the two salts shall have an identical metal ion
(same metal and same electric charge) but a different acid ion. Between the
two parts there shall be a connecting space ¥ which contains both salts

T, 3z

in solution. Upon the acid ions in ¥ shall act forces whose potentials
i;‘l’ and Ps(2’ depend only on 2z, and these forces shall bring about that
only infinitesimally few acid ions of the first and of the second type get
into II and I, respectively. Furthermore, Ps‘l’ and PS‘Q’ shall be chosen
such that the metal ion concentration in the two parts I and II be the same.
Also, let py = po .

If there are per unit volume um“’ and um‘2‘ metal ions that correspond
to the first and second type of salt, respectively, then

(1) — () (2) = (1 -
(1) U =Vt Vs 0, e 0,
where the subscripts refer to space I and II, respectively.
However, the condition for the equilibrium of the metal iomns in ¥
yields
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dlog(v'V + p(2)
m m dr _
T ~ekb =0,

vhere ¢ denotes the valency of the metal iom.
Integrating over ¥ and taking equations (1) into account, we obtain

(2) Ty =1 .

Next we imagine that electrodes made of the solute metal are installed in T
and IT, and construct the following ideal cyclic process:

1st partial process: We send an amount of electricity ¢F infinitely
slowly through the system, taking the electrodc in I as anode, and the other
as cathode.

2nd partial process: The metal thus transported electrolytically from
z=12 t0 z= 2 which has the mass of one gram-equivalent, is now returned
mechanically to the electrode in 2z = zy-

By applying the two laws of the mechanical theory of heat, one again
reaches the conclusion that the sum of mechanical and electrical energy
supplied to the system during the cyclic process vanishes. Since, as one can
readily see, the second step does not require any energy, one obtains the
equation

(3) n, =1

where H2 and ﬂ1 again denote the potentials of the electrodes. By
subtracting equations (3) and (2), one obtains

(HZ_ 12) = (H]— 71) = (AH)2 - (AII)1 =0

and hence the following theorem:

The potential difference between a metal and a completely dissociated
solution of a salt of this metal in a given solvent is independent of the
nature of the electronegative component, and depends solely on the
concentration of the metal ions. It is assumed, however, that the metal ion
of these salts is charged with the same amount of electricity.
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84.

Before we turn to the study of the dependency of (All) on the nature of
the solvent, we shall briefly develop the theory of conservative molecular
forces in liquids. 1 shall borrow the notation from a previous article on
this topic,! which shall at the same time temporarily justify the hypotheses I
am going to introduce.

To each molecule of a liquid or a substance dissolved in a liquid shall
be assigned a certain constant ¢, so that the expression for the relative
potential of molecular forces of two molecules, which shall be characterized
by the indices e and “eege will be

(a) P=P -ccop(r) .,
® 12

where ¢(r) 1is a function of distance common to all molecular species.
These forces shall simply superpose, so that the expression for the relative
potential of =»n molecules shall have the form

a=n f=n

(b) Const. - % z 2 ¢4tp w(raﬂ)
e=1 f=1

Should all molecules be identical, we would obtain the expression

e=n f=n
(c) Const. - #c? z 2 w(raﬂ) .
e=1 =1

Further, if the laws of interaction and distribution of the molecules
are so constituted that it is permissible to convert the sums into integrals,
then this expression becomes

Const. - $e2m J J dr.dr'plry, 40) -

IA. Einstein, Aan. d. Physik 4 (1901): 513. 191
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Here N denotes the number of molecules per unit volume. If AN, denotes the
number of molecules in one gram-equivalent, then N,/¥ = v is the molecular
volume of the liquid, and if we assume that the investigation involves one
gram-equivalent and neglect the effect of the liquid surface, our expression
becomes

2
Const. - % %;—A% JTN dT"w(Tb,dT') .

We shall now choose the unit for ¢ such that this expression reduces to

(d) Const. - %;. hence % N§ me dT'.w(ro’dT.) =1 .

By this choice one obtains absolute units for the quantities ¢. It has been
shown in the previously cited article that one remains in agreement with
experience if one sets ¢ = Eca. where the quantities €q refer to the atoms
composing the molecule.

We now want to calculate the relative attraction potential of a gram-
molecule of an ion with respect to its solvent, while making the express
assumption that the attraction fields of the solvent molecules do not act upon
the electric charges of the ions. Methods to be developed later will provide
the means by which to decide whether this assumption is permissible.

If ¢. is the molecular constant of the ion and ¢y that of the
solvent, then the potential of one molecule of the ion with respect to the
solvent has the form

Const. - % cjce,w(r) = const. - cj.cehk J dr.w(ro,dr),

where A% denotes the number of solvent molecules per unit volume. Since
No/N, = vy, this expression becomes

AB
Const. - cj'cé'iz J dr.w(ro,dr) 5
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However, since a gram-equivalent contains N, molecules of the ion, we obtain
for the relative potential of one gram-equivalent of the ion:

c..c c..c
Const. - _%e_f Aﬁj dT.QD(TO‘dT) = const. - 2—%—}[—8 ;

Introducing the solvent concentration l/vz = vy, one obtains the form
(e) Pjé = const. - 2¢;.¢pvp -

If the solvent is a mixture of several liquids, which we shall distinguish
from each other by indices, we obtain

(e”) ij = const. - ch 2 Colp o

vhere the v, denote the number of gram-molecules of the individual
components of the solvent per unit volume. The formula (e’) holds
approximately also if the quantities vy vary with position.

85. On the dependence of the electric potential difference
exisiing between a metal and a completely dissociated solution
of a salt of this metal on the nature of the solvent

Let a cylindric vessel again be divided, as in §3, into spaces I and IT
and the connecting space V. Space I shall contain a first solvent, [l a
second one, and V a mixture of both, and forces that prevent diffusion shall
act on the solvents in space ¥. The vessel shall contain a completely
dissociated dissolved salt. In V¥, on its anions there shall act forces whose
potential shall be called Ps and which shall be chosen such that the salt be
of the same concentration in I and II. We now establish the condition for the
equilibrium of the metal ions. We again take the z-axis parallel to the
cylinder axis from I to II.

The force of electric origin that acts on one gram-equivalent will be

I
o=
-~
by
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The force exerted on the equivalent by osmotic pressure is

_m.dlozgv.

The effect of molecular forces on the equivalent is

. Hdi{‘ 2 cfl gt - 2,2 vi?}

vhere the superscripts refer to the solvents. The equilibrium condition
sought is then

= %"; £ ;‘g - AT 1%)%5—” + ;?E{umc‘g”uk” *2cP v} =0 .

If one integrates over FV and takes into account that » is the same in I
and I7, and that according to our assumption uk” and u@” vanish, one
obtains

n_ 2¢
m ““m
o= {C‘fz)"?) - c%”uk”} ,

vhere the superscripts refer to spaces I and I, respectively.
We now imagine that electrodes made up of the dissolved metal are placed
into I and I7, and construct a cyclic process by sending an amount of elec-

tricity nl F through the system and then returning the transported metal

m

mechanically, which does not require any work if we assume that the hydro-
static pressure is the same in I and II. Application of the two laws of the
theory of heat yields

g - M =0.

Subtraction of the two results gives

I

(My-79) - (- 7g) = (AN - (AM)D

n_ 2c
: 3"" _E’E {e@ v - cfbuph} .



DOC. 2 23

If each of the two solvents is a mixture of several nonconducting
liquids, one obtains somewhat more gemerally

n_2¢
m m
(A - (Am = - {2 P ugd - z o |,

where now vy denotes the number of gram-molecules of a component of the
solvent in a volume element of the mixed solvent.

Hence the potential difference ANl depends on the nature of the sol-
vent. This dependence can be used as a basis for a method of exploring the
molecular forces.

§6. A method for the determination of the constant ¢ for
metal ions and solvenis

Let two completely dissociated salt solutions undergo diffusion in a
cylindrical vessel; these salts shall be indicated by subscripts. The solvent
shall be the same throughout the vessel and shall be indicated by the super-
script. The vessel shall again be divided into spaces I and II and the
connecting space ¥. Space I shall contain only the first salt, and I/ only
the second salt; diffusion of the two salts shall take place in space V.
Into spaces I and Il there shall be introduced electrodes consisting of the
respective metal solute and having electric potentials “1 and H2'.
respectively; onto the second electrode shall be soldered a piece of the first
electrode metal, whose potential is H2. Furthermore, we denote the electric
potentials in the interior of the unmixed solutions in I and IT by LS and
7. We then have

(“2_ “1)(1) = (y-My') + (Hy' - 7)) (0 + (,2- ,1)(1) - (“1_ ,1)(n .

If one produces exactly the same arrangement except for using a
different solvent, which shall be denoted by the superscript (2}, one
obtains:

(My-1) D = (I,-T,') + (' - 715) 2 4+ (1y-71,)'2 - (I )

1M
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Subtracting these two expressions and taking into account the results found in
§5, one obtains

(nz_nl)(Q) - (n2_n1)(1) =
v3) n 2 |[Cn"n) _ [ n"n 2) (2) D ,n
{mg- 7))@ - (zy-m) "} - [TL [T], APy - efP v}

The cxtension required if the solvents are mixtures is easily obtained
as in §5.

The values of the left-hand side of this cquation are obtained directly
from experiment. The determination of the first term of the right-hand side
will be dealt with in the next paragraph; for the time being, let it only be
said that this term can be calculated from the concentrations used and the
molecular conductivities of the respective ions for the respective solvent,
provided the arrangement has been suitably chosen. Thus the equation makes it
possible to calculate the second term on the right-hand side.

This we utilize to determine the constant ¢ for the metal ions and to
test our hypotheses. We always use the same two solvents in a series of
experiments of the kind described. Then for the whole experimental series the
quantity

% {ep? vy - cpV vy} = k = const.

Hence, if one puts "llnm = El’ etc., to be equal the valency of the
1
first etc. metal ion, the last term calculated of the right-hand side will be
a relative measure for the quantity

C c
e |
|

If one thus examines the combinations of all electrode metals pair by
pair, one obtains the quantities
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c [
m]- mk

(]- fk

in relative measure.

One obtains in this same measure the quantities cm/c separately by
carrying out an analogous investigation with a metal in such a way that the
salts and electrodes in I and II contain the same metal, but that ¢, i.e.,
the valency (electrical charge) of the metal ion, is different on the two
sides. The value of the quantities n in this measure can then be obtained
for the individual metals. A series of such experiments thus leads to the
ratios of the cm‘s, i.e., the constants for the molecular attraction of metal
ions. This series of cm's must be independent of the nature of the salts
used, and the ratios of the cm's thus obtained must be independent of the
nature of the two solvents on which we based the investigation. A further
requirement must be that ¢, ~must prove to be independent of the electrical
charge (valency) displayed by the ion. If this is the case, the above
assumption that the molecular forces do not act upon the electrical charges is
correct.

If one wishes to determine the absolute value of the quantities ¢, at
least approximately, one can do so by taking the approximate value of £ for
both solvents from the results of the previously cited paper using the formula
g = an. It has to be noted here, of course, that just for the two liquids
most obviously suggesting themselves as solvents, namely water and alcohol, it
has not been possible to demonstrate the validity of the law of attraction
from the phenomena of capillarity, evaporation, and compressibility.

Our results could equally well serve as a basis for studying the solvent
constants ¢, however, by basing the investigation on two metal ions and
varying the solvent, so that then the quantity

is to be considered as constant. By also using mixtures for solvents, the
investigation might be extended to all electrically nonconductive liquids.
From such experiments it is possible to calculate relative values of the

[11]
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quantities €y that pertain to the atoms constituting the liquid molecules.
This, too, opens ample possibilities for testing the theory inasmuch as the
¢, can be arbitrarily overdetermined. Here, too, the result must be
independent of the choice of the metal ions.

§7. (Calculation of (ry-17;)

All that now remains is to study the diffusion process in the space V
in greater detail. Let the variable quantities depend on =z only, where the
z-axis of the Cartesian coordinate system we have chosen coincides with the
direction of the axis of our vessel. Dﬁn’ Vs,’ umz, and VSz shall be the
z-dependent concentrations (gram-equivalents per unit volume) of the four
ionic species, ‘an €, E, 2E, €, E their electric charges, and = the
electric potential. S1nce no substant1a1 electric charges occur anywhere, we
have for all 2z approximately

(a) umlfml - ”31631 + "n%fmb - ”32632 = 0 .

In addition, for each ionic species we obtain an equation which states
that the increase per unit time in the number of ions of a certain kind
present in one volume element equals the difference between the number of
molecules entering and the number of molecules leaving that volume element
during the same time period:

v
0
o o+ et 8] <

) 9 »RTayS N P dr| _ 6us
‘031.32 _(TZ_L eslusl % B _a_t_l ?
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where v with the corresponding subscript denotes the constant velocity
imparted by a unit mechanical force to one gram-equivalent of the
corresponding ion in the solution.

In conjunction with the boundary conditions, these four equations
completely determine the process taking place, since they permit the
determination of the five quantities

o 6u 311
i N TR
dz 0t ot

uniquely for all times. The general treatment of the problem would entail
great difficulties, however, especially since equations (f) are not linear in
the unknowns. However, we are only interested in the determination of Tg - 7q-
We therefore multiply the equations (f) successively by eﬂh' -esl, Emz’ —esz,
and obtain, when taking into account (a),

-0,

where
o, 31/8 . or i
IZTve—l-ve—1+-—-+veu +v_ €y, + -+ - . 13
¢ = m g, 818 g, { EmPm T Vs, S5,V s, } 7

In view of the fact that

3u c‘?u ar
_l N

0z 0z dz

vanish wherever diffusion does not take place, integration of this equation
with respect to 2z yields

@=0.
Since time is to be considered as comstant, we may write

IlT{vme dum - v, .€,.dv, +v_€ dv —vsesdus}

dr = - 1 8 51 8%  mymy My 28y 1597 [14]

2 2 2 2
o€ V + U €SV +V €<V + 9, €LV
my my m 81 81 84 My "My My 89 (52 8o
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In general, the expression on the right is not a total differential,
which means that Al is determined not only by the concentrations in
diffusion-free regions but also by the character of the diffusion process.
However, one can make the integration possible by applying an artifice in the
arrangement .

Ve imagine that space F 1is divided into three parts, space (1), space
(2), and space (3), and that these are separated from cach other by two
partitions before the start of the experiment. Let (1) be connected with 7
and (3) with II, and let the two salts be simultaneously dissolved in (2), at
concentrations that shall be exactly the same as in I and II, respectively.
Thus, before the experiment, (1) and I contain only the first salt in solu-
tion, IT and (3) only the second, and (2) a mixture of both. The concen-
tration is everywhere constant. At the start of the experiment the partitions
are removed and immediately thereafter the potential difference between the
two electrodes is measured. For this time it is possible to integrate over
the diffusing layers, because Yy and ¥, in the first diffusing layer,
and Yy and v in the second, are constant. The integration yields

S2
vo- v, v €2v  + v €2,
Tg-7y = RT[_”'l_‘_sl_ 1g [1 L WL L S1 81 8
+ 2y 4 2y J
ﬂ'1€ml vslesl ”’”26”12 My 1}32682 Sg

v - v v €2y + v €2y,
N m M 1g [1 4 Mo My my 52 S é‘2” )

€2 2y
Sy

v_c + v, C v +
g My 89 ' Sg vml my my USl(Sl

The method can be simplified if it is possible to choose the same acid
ion of the same concentration in [ and II. If in this case I is connected
directly with space 71, onec has to put for the start of the diffusion process:

Sy Sg S S So s’
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Equation (1) then becomes

(1') =0 .

YmEm * VmCmy, ~ VsCs
0f the equations (2), the first and the third remain unchanged, and the
second and the fourth yield, by addition,

dv v
ad s or s
v RT —=2 - e v F = it
s 0z { PR s s 3?] a1
If the derivatives with respect to time are eliminated by means of

equation {1') from the equations (2) thus modified, one obtains, as pre-
viously, an expression for dr, that is a total differential. Integrating,
one gets

- 2 2

v v v o+ €2 wp

ie -1, = - BT Um, m_ g €m,'my my * €5Ys"s

2 1~ " T v_¢€ - v_¢€ ey v + €vv °
My 2 m1 i my my ml S8 S8

where the numerical indices now refer to the integration limits. Due to the
relations

€m¥m = €s¥s T CmPmy °
we obtain even more simply
- +
To - T, = - ¥ va vml g emva2 esvs
2 1 v - v T
”,262 ml€1 Emlvml 63‘”5

In conclusion, I feel the need to apologize for outlining here a skimpy
plan for a laborious investigation without contributing anything to its
experimental solution; but I am not in the position to do so. All the same,
this work will have achieved its goal if it motivates a researcher to tackle
the problem of molecular forces from this direction.

Bern, April 1902. (Received on 30 April 1902)
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KINETIC THEORY OF THERMAL EQUILIBRIUM AND OF THE SECOND LAW
OF THERMODYNAMICS
by A. Einstein
[Annalen der Physik 9 (1902): 417-433]

Great as the achievements of the kinetic theory of heat have been in the
domain of gas theory, the science of mechanics has not yet been able to pro-
duce an adequate foundation for the general theory of heat, for one has not
yet succeeded in deriving the laws of thermal equilibrium and the second law
of thermodynamics using only the equations of mechanics and the probability
calculus, though Maxwell's and Boltzmann's theories came close to this goal.
The purpose of the following considerations is to close this gap. At the same
time, they will yield an extension of the second law that is of importance for
the application of thermodynamics. They will also yield the mathematical
expression for entropy from the standpoint of mechanics.

§1. Hechanical model for a physical system

Let us imagine an arbitrary physical system that can be represented by a
mechanical system whose state is uniquely determined by a very large number of
coordinates Py---by and the corresponding velocities

dpl dpn
LR

Let their energy £ consist of two additive terms, the potential energy V
and the kinetic energy L. The former shall be a function of the coordinates
alone, and the latter shall be a quadratic function of

dp
v o_
R 7
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whose coefficients are arbitrary functions of the p's. Two kinds of external
forces shall act upon the masses of the system. One kind of force shall be
derivable from a potential Va and shall represent external conditions (grav-
ity, effect of rigid walls without thermal effects, etc.); their potential may
contain time explicitly, but its derivative with respect to time should be
very small. The other forces shall not be derivable from a potential and
shall vary rapidly. They have to be conceived as the forces that produce the
influx of heat. If such forces do not act, but Va depends explicitly on
time, then we are dealing with an adiabatic process.

Also, instead of velocities we will introduce linear functions of them,
the momenta g¢,,....q,, as the system's state variables, which are defined by
n equations of the form

where [ should be conceived as a function of the Pireeespy and pi,...,p;.

§2. UOn the distribution of possible states between N ideniical adiabalic
stationary systems, when the energy contents are almost identical.

Imagine infinitely many (#) systems of the same kind whose energy
content is continuously distributed between definite, very slightly differing
values F and F+ 6F. External forces that cannot be derived from a poten-
tial shall not be present, and Va shall not contain the time explicitly, so
that the system will be a conservative one. Ve examine the distribution of
states, which we assume to be stationary.

We make the assumption that except for the energy F = La—Va+ Vi, or a
function of this quantity, for the individual system, there does not exist any
function of the state variables p and ¢ which remains constant in time; we
shall henceforth consider only systems that satisfy this condition. Our
assumption is equivalent to the assumption that the distribution of states of
our systems is determined by the value of £ and is spontaneously established
from any arbitrary initial values of the state variables that satisfy our
condition regarding the value of energy. I.e., if there would exist for the

[4]

[5]

(6}
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system an additional condition of the kind w(pl....,qn) = const. that
cannot be reduced to the form ¢(F) = const., then it would obviously be
possible to choose initial conditions such that each of the N systems could
have an arbitrarily prescribed value for ¢. HNowever, since these values do
not vary with time, it follows, e.g., that for a given value of £ any
arbitrary value might be assigned to Xy, extended over all systems, through
appropriate selection of initial conditions. On the other hand, Xp is
uniquely calculable by the distribution of states, so that other distributions
of states correspond to other values of Xp. It is thus clear that the exis-
tence of a second such integral ¢ would necessarily have the consequence
that the state distribution would not be determined by ¥ alone but would
necessarily have to depend on the initial state of the systems.

If ¢ denotes an infinitesimally small region of all state variables

Pioe-Pys G-y which is chosen such that E(p1...qn) lies between F

and E+ 6F when the state variables belong to the region g, then the
distribution of states is characterized by an equation of the form

dN'—‘ ¢(p1;-.-,qn) J dpl-..dq",
g

where dN denotes the number of systems whose state variables belong to the
region ¢ at a given time. The equation expresses the condition that the
distribution is stationary.

¥e now choose such an infinitesimal region €. The number of systems
whose state variables belong to the region ¢ at a given time ¢ =0 1is then

av = p(Py,...0) Ja ap,...dq,.

where the capital letters indicate that the dependent variables pertain to
time ¢ = 0.

Ve now let elapse some arbitrary time {. If the system possessed the
specific state variables P1'---0n at time ¢ = 0, then it will possess the
specific state variables Pyseergy, at time f = t. Systems whose state
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variables belonged to the region 6 at ¢ = 0, and these systems only, will
belong to a specific region g at time { = ¢, so that the following equation
applies

a¥ = ¥(py, - -q,) I ) (9]
g

However, for each such system Liouville's theorem holds, which has the form

j dPy,...df, - j dpy,...dg,.

From the last three equations it follows that
15(}’1,---0,‘) = ¢(P1----qn) 2

Thus, ¢ 1is an invariant of the system, which from the above must have the
form ¢(p1,...q”) = ¢*(F). However, for all systems considered, ¢*(£)

differs only infinitesimally from #*(E) = const., and our equation of state
will then simply be

it dpy,...dg,
g

where 4 1is a quantity independent of the p's and ¢'s.

§3. UOn the (stationary) probabilitly of the siates of e system S that is
mechanically linked with o system I whose energy ts relatively infinite

We again consider an infinite number (#) of mechanical systems whose
energy shall lie between two infinitesimally different limits E and E+ 6E.
Let each such mechanical system be, again, a mechanical link between a system
§ with state variables p;,...q, and a system T with state variables [11]
Tyree Xy The expression for the total energy of both systems shall be con-
stituted such that those terms of the energy that accrue through

ICf. L. Boltzmann, (astheorie [Theory of gases], Part 2, §32 and §37. [10]
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action of the masses of one partial system on the masses of the other partial
system are negligible in comparison with the energy £ of the partial system
S. Further, the energy # of the partial system ¥ shall be infinitely
large compared with E. Up to the infinitesimally small of higher order, one
might then put

E=¥0+F.

We now choose a region ¢ that is infinitesimally small in all state var-
iables Pi---Gpr Tpoo-Xy and is so constituted that E lies between the

constant values E and E + 6E. The number dN¥N of systems whose state
variables belong to the region ¢ 1is then according to the results of the
preceding section

v = 4 jg dp,...dy, -

Ve note now that we are free to replace 4 with any continuous function of
the energy that assumes the value 4 for E = E, as this will only
infinitesimally change our result. For this function we choose A‘.e_QhE,
where £ denotes a constant which is arbitrary for the time being, and which
we will specify soon. We write, then,

dN = 4" J e 2By, ay, .
g

We now ask: How many systems are in states in which Py is between

Pyt dpl, and, respectively, 2 between Py + dp2... 4, between 9, and
g, + dqn, but T Xy have arbitrary values compatible with the conditions
of our system? If we call this number dN', we obtain

B -2hE -2hK
v = 4¢Py . dq J e 2Myr .. .dy, .
The integration extends over those values of the state variables for which ¥

lies between E-F and E- E+ 6E. We now claim that the value of % can
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be chosen in one and only one such way that the integral in our equation
becomes independent of £.

It is obvious that the integral J e_2hﬂaxl...dx", for which the limits
of integration may be determined by the limits E and E + 3E, will for a

specific ¢E be a function of E alone; let us call the latter y(E). The
integral in the expression for dN° can then be written in the form

x(E - B) .

Since F is infinitesimally small compared with E, this can be written, up
to quantities which are infinitesimally small of higher order, in the form

X(E - £) = x(E) - Bx'(E) .

The necessary and sufficient condition for this integral to be independent of
E is hence

x'(E) =0 .
But then we can put

Y(E) = e 2kE y(E) |

where w(E) = J drl...dxn, extended over all values of the variables whose
energy function lies between E and E+ éE.
Hence the condition found for % assumes the form

e_zhE.w(E).{-Zh . ﬂ'_@l] = 5
w(E)

or

Thus, there always exists one and only one value for % that satisfies
the conditions found. Further, since w(E) and w'(E) are always positive,

as shall be shown in the next section, 4 1is also always a positive quantity.

[14]
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If we choose kb in this way, the integral reduces to a quantity inde-
pendent of £, so that we obtain the following expression for the number of

systems whose variables pi---4, lie within the indicated limits:

av = 4e gy dq
Thus, also for a different meaning of 4", this is the expression for the
probability that the state variables of a system mechanically linked with a
system of relatively infinite energy lie between infinitesimally close limits
when the state has become stationary.

84. Proof that the quantily h is positive

Let ¢(z) be a homogeneous quadratic function of the variables
Tyee T, Ve consider the quantity 2z = [ dzl...dzn, where the limits of
integration shall be determined by the condition that ¢(z) lies between a
certain value y and y+A, where A is a constant. We assert that z,
which is a function of y only, always increases with increasing gy when
n> 2.

If we introduce the new variables z = azi...zn = az;, where
e = const., then we have

z=a" J dzi...dz; .

Further, we obtain ¢(z) = aZp(z').
Hence, the limits of integration of the integral obtained for ¢(z')
are

Further, if we assume that A is infinitesimally small, we obtain

Z = a"-2 J dzi...dx; )

Here y' lies between the limits
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The above equation may also be written as

2 [y
2(y) = a Z[az] "

Hence, if we choose a to be positive and # > 2, we will always have [18]

which is what had to be proved.
We use this result to prove that % is positive.
We had found

_ . w'(E
b=t S5,
where

w(B) = J dpy...dq, »

and E lies between E and E+ 6E. By definition, w(E) is necessarily
positive, hence we have orly to show that w'(E) too is always positive.

We choose E; and E, such that E2> E, and prove that “(Ez’ > w(El)
and resolve u(El) into infinitely many summands of the form

d[w(El)] - dpy...dp, J dg,...dg, .

In the integral indicated, the p's have definite values, which are such that
V< El‘ The limits of integration of the integral are characterized by [
lying between E, - ¥ and E, + 6k - V.

To each such infinitesimally small summand corresponds a term out of
w(E2) of magnitude

d[o(E))] = dpy...dp, J dg...dg,,
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where the p's and dp's have the same values as in d[w(El)], but I lies

between the limits E, - ¥ and Ep - F+ 8E.
Thus, according to the proposition just proved,

d[w(E2)] > d[w(E))] .
Consequently,

Y dle(Ey)] > Y dlu(E,)] ,

vwhere X has to be extended over all corresponding regions of the p's.
However,

Y dlw(E))] = w(E,) .
if the summation sign extends over all p's, so that

V< E1 .
Further, we have

[19] Y dla(Ey)] < w(Ey) .
since the region of the p's, which is determined by the equation

K< E2

includes all of the region defined by the equation

V< E1

§5. 0On the temperature equilibrium

Ve now choose a system § of a specific constitution and call it a
thermometer. Let it interact mechanically with the system X whose energy is
relatively infinitely large. If the state of the entire system is stationary,
the state of the thermometer will be defined by the equation
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d¥ = le'2hEdp1...dqn 5

where d¥ is the probability that the values of the state variables of the
thermometer lie within the limits indicated. The constants 4 and A& are
related by the equation

1=4. J e'zhidpl...dqn .
where the integration extends over all possible values of the state variables.
The quantity A thus completely determines the state of the thermometer. We
call h the temperature function, noting that, according to the aforesaid,
each quantity H observable on the system § must be a function of &
alone, as long as Vn remains unchanged, which we have assumed. The quantity
h, however, depends only on the state of the system ¥ (§3), i.e., it does
not depend on the way in which ¥ is thermally connected with S. From this
we immediately obtain the theorem: If a system I is connected with two
infinitesimally small thermometers § and S§', the same value of h obtains
for both thermometers. If § and S§' are identical systems, then they will
also have identical values of the observable quantity A&.

We now introduce only identical thermometers S and call H the
observable measure of temperature. We thus arrive at the theorem: The
measure of temperature K that is observable on § is independent of the way
in which ¥ is mechanically connected with §; the quantity # determines
h, which in turn determines the emergy E of the system £, and this in turn
determines its state according to our assumption.

From what we have proved it follows immediately that if two systems 21
and 22 are mechanically linked, then they cannot form a system that is in a
stationary state unless the two thermometers S§ connected to them have equal
measures of temperature or, what amounts to the same, if they themselves have
equal temperature functions. Since the state of the systems 81 and 22 is
completely defined by the quantities h1 and h2 or H& and Hé, it follows
that the temperature equilibrium can be determined only by the conditions
hl = h2 or Hi = Hé.

It now only remains to be shown that two systems that have the same
temperature function A (or the same measure of temperature H) can be
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mechanically connected into one single system that has the same temperature
function.

Let two mechanical systems 3 and 22 be merged into one system, but
in such a way that the energy terms that contain state variables of both
systems be infinitesimally small. Let I, aswell as 22 be connected with
an infinitesimally small thermometer §. The readings 4 and K, of the
latter are certainly identical up to the infinitesimally small because they
refer only to different locations within a single stationary state. The same
is of course true of the quantities hl and hy. We now imagine that the
energy terms common to both systems decrease infinitely slowly toward zero.
Thereby the quantities K and k as well as the distributions of state of
the two systems change infinitesimally because they are determined by the
energy alone. If then the complete mechanical separation of 21 and 22 is
carried out, the relations

I = H,, hy = hy

continue to hold all the same, and the distribution of states changes infin-
itesimally. h& and hl, however, will now pertain only to El, and Hé and
h2 only to 22. Our process is strictly reversible, as it consists of a
sequence of stationary states. We thus obtain the theorem:

Two systems having the same temperature function k£ can be merged into
a single system having the temperature function A such that their
distribution of states changes infinitesimally.

Equality of the quantities & is thus the necessary and sufficient
condition for the stationary combination (thermal equilibrium) of two systems.
From this follows immediately: If the systems I, and %, as well as I,
and I3, can be combined in a stationary fashion mechanically (in thermal
equilibrium), then so can 22 and 23.

I would like to note here that until now we have made use of the assump-
tion that our systems are mechanical only inasmuch as we applied Liouville's
theorem and the energy principle. Probably the basic laws of the theory of
heat can be developed for systems that are defined in a much more general way.
We will not attempt to do this here, but will rely on the equations of



Doc. 3 41

mechanics. We will not deal here with the important question as to how far
the train of thought can be separated from the model employed and generalized.

86. Un the mechanical meaning of the quantity k!

The kinetic energy [ of a system is a homogeneous quadratic function
of the quantities g¢. It is always possible to introduce variables r by a
linear substitution such that the kinetic energy will appear in the form [21]

I = f(alr% + 02r§ oo+ anri)
and that

J dql...dq" = J drl...dru,

when the integral is extended over corresponding infinitesimally small
regions. The quantities s are called momentoids by Boltzmann. The mean
kinetic erergy corresponding to one momentoid when the system together with
one of much larger energy forms a single system, assumes the form

v

-2h[Vrasr2+a,r3+. . .+a,12] @ 12
J A"e 1'1772"2 il -—%r—-dpl...dpn.drl...drn

1
= : [22]
—2h[V+alr%+02r§+...+anr§] 4
j I dpy..dp dry...dr,

Thus, the mean kinetic energy is the same for all momentoids of a system
and is equal to

s [24]

where I denotes the kinetic energy of the system.

1Cf. L. Boltzmann, Gasiheorie, Part 2, §§33, 34, 42. (23]
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§7. Ideal gases. Adbsolute temperalure

The theory we developed contains as a special case Maxwell's distribu-
tion of states for ideal gases. I.e., if in §3 we understand by the system S
one gas molecule and by ¥ the totality of all the others, then the expres-
sion for the probability that the values of the variables py---py of § lie
in a region ¢ that is infinitesimally small with respect to all variables
will be
ah = 1 [ dpy g,
g
One can also immediately realize from the expression for the quantity A
found in §4 that, up to the infinitesimally small, the quantity A& will be
the same for a gas molecule of another type occuring in the system, since the
systems ¥ determining A& are identical for the two molecules up to the
infinitesimally small. This establishes the generalized Maxwellian
distribution of states for ideal gases. —
Further, it follows immediately that the mean kinetic energy of motion
of the center of gravity of a gas molecule occurring in a system § has the

value %-h because it corresponds to three momentoids. The kinetic theory of
gases teaches us that this quantity is proportioral to the gas pressure at
constant volume. If, by definition, this is taken to be proportional to the
absolute temperature, one obtains a relationship of the form

)
)

=i

= ¢

w'(

gf k.T

where & denotes a universal constant, and ® the function introduced in §3.

88. The second law of the theory of heat as a consequence
of the mechanical theory

We consider a given physical system § as a mechanical system with
coordinates Pi---Py- As state variables of the system we further introduce
the quantities
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dp, .
TP T TP

Pl"'Pn shall be the external forces tending to increase the coordirates of
the system. Vi shall be the potential energy of the system, [ its kinetic
energy, which is a homogeneous quadratic function of the pLs. For such a
system Lagrange's equations of motion assume the form

av.-1) dTal
_?;”—+H[W;]-PI/-O' (V=1! '/=ﬁ)

The external forces consist of two kinds of forces. The first kind, Pil),
are the forces that represent the conditions of the system and can be derived
from a potential that is a function of py---py only (adiabatic walls,
gravity, etc.):
Y :g:—”.

v
Since we have to consider processes which consist of states that infinitely
approximate stationary states, we have to assume that even though Va
explicitly contains the time, the partial derivatives of the quantities
ara/apy with respect to time are infinitesimally small.

The second kind of forces, Pﬁz) =0, shall not be derivable from a
potential that depends on the ?, only. The forces N represent the forces
that mediate the influx of heat.

If one puts V; + Vi = ¥, equations (1) become

n o= oLy il
v " apy di 35; :

The work supplied to the system by the forces ﬂu during the time di
represents then the amount of heat df absorbed during di by the system S,
vhich we will measure in mechanical units.

[26]
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dg =Y N dp, - -(%V—dp —a——dp "ZTT[BQL_]‘“‘
v
llowever, since

d o] 4 . oLy oL
prw[zrp;]dt-dma;;' o7
and, further,

al ~ dl al v
23-1,—;1}"}—2.6. mdpv+ mdpy-dL,
we have
d0=2£7,/rdp
Since, further
T=ql-=t
T 4kk T Wk
we will have
(1) 4zg=nn%—+4nh2—a—dp

We will now concern ourselves with the expression
ar
7, 4

This represents the increase of potential energy in the system that would take
place during time dt if F were not explicitly dependent on time. The time
element dt shall be chosen so large that the sum indicated above can be
replaced by its average value for infinitely many systems S of equal temper-
ature, and at the same time so small that the explicit changes of & and V
with time be infinitesimally small.

Suppose that infinitely many systems § in a stationary state, all of
which have identical 4 and Va’ change to new stationary systems which are
characterized by values h+ 8k, ¥+ 6V common to all. Generally, "§&" shall
denote the change of a quantity during transition of the system to a new
state; the symbol "d" shall no longer denote the change with time but differ-
entials of definite integrals. —
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The number of systems whose state variables lie in the infinitesimally
small region ¢ before the change is given by the formula

dN = Ae2h(V+L) J dp,...dp, ;

here we are free to choose the arbitrary constant in FV for each given £
and Va such that 4 will equal unity. We shall do this to simplify the
calculation and shall call this more precisely defined function F/*.

It can easily be seen that the value of the quantity we seek will be

(2) %,f—: oy = | 81Dy pipy. g,

where the integration should extend over all values of the variables, because
this expression represents the increase of the mean potential energy of the
system that would take effect if the distribution of states would change in
conformity with &6F* and &6h, but ¥ would not change explicitly.

Further, we obtain

v 1 -2h(P*+1)
- 4kh 2 35; dp, = 4x § J e }.h.V.dpl...dq"

ax[hy] - 3 [ 2R P+ hlgrhy gy g .
N 1 n

Here and in the following the integrations have to be extended over all pos-
sible values of the variables. Further, it should be kept in mind that the
number of systems under consideration does not change. This yields the
equation

J 6(e'2h(p*+L))dpl...dqn =0,

or

[ T Dihndp,...dg, + b [ ™ Di(1yap,....dg, = 0 ,

or

(4) %I e D) sy dp, .. .dg, + axLéh = 0 .

[35]

[36]

(371
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¥V and I denote the mean values of the potential and kinetic energies
of the N systems. Adding (3) and (4), one obtains

axh Y ggf dp, = 4k8[AV] + 4xL.6h ,

or, because

[38] h ¥ 6k = - - 8L,

B
412

Qil=

4xh g}c)/_ dp, = 4k6[hV] - nn-’i-’L— -
v

If we substitute this formula in (1), we obtain

g 4 - §lanhi¥) = 5[!’}] :

Thus, df/T is a complete differential. Since

% = 1K thus 6[%] =0 4

4-45)

Thus, apart from an arbitrary additive constant, F£*/7 is the expression for
the entropy of the system, where we have put F* = /*+ [. The second law thus

one may also sct

appears as a necessary consequence of the mechanistic world picture.

89. Calculation of the entropy
The expression ¢ = F*/T that we obtained for the entropy € only
appears to be simple, because F* remains to be calculated from the

conditions of the mechanical system. I.e., we have

L’*=E+Eo,
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where F is given directly, but £; has to be determined as a function of Z
and - & from the condition

J e_2hw_£°)dp1...dqn =N. (40}

In this way, one obtains

ol %; _E Lo, log[I e—2h3dp1_,.dqn] + const. (41]

In the expression thus obtained, the arbitrary constant that has to be added
to the quantity £ does not affect the result, and the third term, denoted
"const.," is independent of ¥ and T.
The expression for the entropy € is strange, because it depends solely
on F and 7, but no longer reveals the special form of F as the sum of
potential and kinetic energy. This fact suggests that our results are more
general than the mechanical model used, the more so as the expression for &
found in §3 shows the same property. [42]

§10. Ezlension of the second law

No assumptions had to be made about the nature of the forces that corre-
spond to the potential Ph, not even that such forces occur in nature. Thus,
the mechanical theory of heat requires that we arrive at correct results if we
apply Carnot's principle to ideal processes, which can be produced from the
observed processes by introducing arbitrarily chosen V&'s. 0f course, the
results obtained from the theoretical consideration of those processes have a
real meaning only when the ideal auxiliary forces Va no longer appear in
them. [43]

Bern, June 1902. (Received on 26 June 1902)
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Doc. 4
A THEORY OF THE FOUNDATIONS OF THERMODYNAMICS
by A. Einstein
[Annalen der Physik 11 (1903): 170-187]

In a recently published paper I showed that the laws of thermal equi-
librium and the concept of entropy can be derived with the help of the kinetic
theory of heat. The question that then arises naturally is whether the
kinetic theory is really necessary for the derivation of the above foundations
of the theory of heat, or whether perhaps assumptions of a more general nature
may suffice. In this article it shall be demonstrated that the latter is the
case, and it shall be shown by what kind of reasoning one can reach the goal.

81. On a general mathematical representation of the processes
in isolated physical systems

Let the state of some physical system that we consider be uniquely
determined by very many () scalar quantities PisPg---Py» which we call
state variables. The change of the system in a time element df is then
determined by the changes dpl,dp2...dp” that the state variables undergo
during that time element.

Let the system be isolated, i.e., the system considered should not
interact with other systems. It is then clear that the state of the system at
a given instant of time uniquely determines the change of the system in the
next time element d¢, i.e., the quantities dpl,dpz...dpn. This statement is
equivalent to a system of equations of the form

P; . '
(1) m—z—:wi(‘pl'“?n) (3= Tess i = a) ;
vhere the ¢'s are unique functions of their arguments.

In general, for such a system of linear differential equations there
does not exist an integral of the form
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¢(p1...pn) = const.,

which does not contain the time explicitly. However, for a system of
equations that represents the changes of a physical system closed to the
outside, we must assume that at least one such equation exists, namely the
energy equation

E(pl...pn) = const.

At the same time, we assume that no further integral of this kind that is
independent of the above equation is present.

82. UOn the stationary distribution of stale of infinitely
many isolated physical systems of almost equal energies

Experience shows that after a certain time an isolated system assumes a
state in which no perceptible quantity of the system undergoes any further
changes with time; we call this state the stationary state. Hence it will
obviously be necessary for the functions w; to fulfill a certain condition
so that equations (1) may represent such a physical system.

If we now assume that a perceptible quantity is always represented by a
time average of a certain function of the state variables Py---Dy and that
these state variables py---py keep on assuming the same systems of values
with always the same unchanging frequency, then it necessarily follows from
this condition, which we shall elevate to a postulate, that the averages of
all functions of the quantities py---p, must be constant; hence, in
accordance with the above, all perceptible quantities must also be constant.

We will specify this postulate precisely. Starting at an arbitrary
point of time and throughout time 7, we consider a physical system that is
represented by equations (1) and has the energy E. If we imagine having
chosen some arbitrary region I of the state variables py---p,» then at a
given instant of time T the values of the variables py---p, will lie
within the chosen region T or outside it; hence, during a fraction of the
time 7, which we shall call 7, they will lie in the chosen region T. Our
condition then reads as follows: If py---p, are state variables of a

[4]
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physical system, i.e., of a system that assumes a stationary state, then for
each region T the quantity 7/T has a definite limiting value for 7 = «.
For any infinitesimally small region this limiting value is infinitesimally
small.

The following consideration can be based on this postulate. Let there
be very many (&) independent physical systems, all of which arc represented
by the same system of equations (1). We select an arbitrary instant ¢ and
inquire after the distribution of the possible states among these N systenms,
assuming that the energy F of all systems lies between F* and the
infinitesimally close value F* + §F*. From the postulate introduced above,
it follows immediately that the probability that the state variables of a
system randomly selected from among N systems will lie within the region I
at time ¢ has the value

lim ; = const.

= ®

The number of systems whose state variables lie within the region T' at time
t is thus

N lin %,

T=m7

i.e., a quantity independent of time. If ¢ denotes a region of the coordi-
nates py-..p, that is infinitesimally small in all variables, then the
nunber of systems whose state variables fill up an arbitrarily chosen
infinitesimally small region ¢ at an arbitrary time will be

(2) dN = e(p;--.p,) J dpy---dp, -
g

The function € is obtained by expressing in symbols the condition that
the distribution of states expressed by equation (2) is a stationary one.
Specifically, the region ¢ shall be chosen such that »y shall lie between
the definite values py and py o+ dpl, py between py and Py + dpz,...p"
between P, and P, + dpn; then we have at the time ¢

d%& = e(pl...pn).dpl.dpz...dpn,
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where the subscript of dN denotes the time. Taking into account equation
(1), one obtains furthermore at time ¢ + d¢ and the same region of the state
variables

Vﬂa(e‘p)

dNt+dt = dNt _3—_—— dp1 dpu.dt
v=1

However, since dNt = d”t+dt’ because the distribution is stationary, we have

(7(6(,0”) 0 [6]
_?ﬁi;__ =0 .
This yields

2 p 2 (log €) Z a(log (log

where d(log €)/dt denotes the change of the function log ¢ with respect to
time for an individual system, taking into account the changes with time of
the quantities P,
One obtains further
v=n

- [ a 2 g‘p—ww)

V=

e-m+¢(5') .

The unknown function ¢ is the time-independent integration constant which
may depend on the variables Py Py but can contain them, according to the
assumptions made in §1, only in the combination in which they appear in the
energy £.

However, since ¢(£) = $(F*) = const. for all N systems considered,
the expression for ¢ reduces in our case to

V=R
&pv
- dt ap_'
v
€ = const. e =, = const. ¢ "

According to the above we now have



(7

52 FOUNDATIONS OF THERMODYNAMICS

_ -m
dN = const. e Jg dpl...dpn .

For the sake of simplicity we now introduce new state variables for the
system considered; they shall be denoted by T, Ve then have

-m
_ €
d”——pW dﬂ'l...da'n ’
Dlp,.--p,) g

n

where the symbol D denotes the functional determinant. — We now want to
choose the new coordinates such that

o D(zl...r")
Dipl...pni )

This equation can be satisfied in infinitely many ways, e.g., by setting

g =Py

To = P )
33 LE} =Jem-dp1 .
L

Using the new variables, we thus obtain

dN = const. J drl...drn -
Henceforth we will always suppose that such variables have been introduced.
§3. On the distribution of state of a system in coriact
with a system of relatively infinitely large energy.

We now assume that each of the X isolated systems is composed of two
partial systems ¥ and ¢ in interaction. Let the state of the partial
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system I be determined by the values of the variables “1“'“)’ and that of
the system o by the values of the variables Ty Tpe Further, let the
energy £, which for each system shall lie between the values F£* and &F%,
i.e., shall equal F* up to the infinitesimally small, be composed of two
terms, of which the first, #, shall be determined only by the values of the
state variables of ¥, and the second, #, only by the state variables of o,
so that, except for the relatively infinitesimally small, one has

F=H+19.

Two systems in interaction which satisfy this condition will be called two

systems in contact. We also assume that # 1is infinitesimally small compared

with M.
For the number dﬂi of the AN-systems whose state variables “1"'“)
and 1.7y lie between nl and Hl + dnl, ﬂ2 and H2 + dH2, ...11A and

HA + dHA. and T and T+ drl, LN and Ty + drz, Ty and T+ dxe, we

get the expression
le = C-dl]l...dll)\~dxl...dwe .

where € can be a function of £ = K + 1.
However, since according to the above assumption the energy of each of
the systems considered up to the infinitesimally small has the value F*, we

can replace € by const.e 2P = const.e 2PN ithout causing any

changes in the result, where A& is a constant still to be defined precisely.
Hence, the expression for dAﬁ becomes

lel = const. e’zh(llm)-dﬂl...dﬂA-drl...dre .

The number of systems whose state variables 7 lie between the indi-
cated limits, while the values of the variables I are not subjccted to any
restrictive condition, may thus be represented in the form

dN, = const. e_Zh”-dxl...dz[J e 2l _..an,

8]
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where the integral is to be extended over all values of NI to which
correspond values of the energy K lying between F* - 5 and FE* + 6% - 7.
Had the integration been carried out, we would have found the distribution of
the state of the systems ¢. This is in fact possible.

We put

Je'Qh”-dnl...dHA = x(E) ,

where the integral on the left-hand side is to be extended over all values of
the variables for which # lies between the definite values £ and F + 6F*.
The integral that appears in the expression dN2 then assumes the form

X(E* - 7’) B

or, since g is infinitesimally small compared with F£*,
x(E*) - x'(B*)-q .

Thus, if & can be chosen such that x'(£*) = 0, the integral reduces
to a quantity that is independent of the state of o.
It is possible to put, up to the infinitesimally small,

xw)=aﬁﬂjmr“mA=a“5mm,

where the integration limits are the same as above, and where w denotes a
new function of F£.
The condition for A& now assumes the form

¥ () = e 2P (B - 2ho(E9)) = 0
consequently:
1 o' (F¥)
h=5=—"=2.
2 w(F¥)

If h 1is chosen in this way, the expression for dﬂb will assume the form
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(3) dNé = const. e'zh”drl...dze .

Vith suitable choice of the constant this expression represents the proba- [10]
bility that the state variables of a system in contact with another system of
relatively infinitely large energy will lie within the indicated limits. The
quantity A depends only on the state of the above system I of relatively
infinitely large energy.

84. On absolute temperature and thermal equilibrium

Thus, the state of the system ¢ depends only on the quantity 4, and [11]
the latter only on the state of the system 2. We call the quantity
1/4hs = T the absolute temperature of the system I, where & denotes a
universal constant. [12]

If we call the system ¢ '"thermometer," then we can immediately advance
the following propositions:

1. The state of the thermometer depends only on the absolute tempera-
ture of the system £, and not on the kind of contact of the systems £ and o.

2. If in case of contact two systems 21 and 22 impart the same
state to a thermometer o, then they have the same absolute temperature and
will also impart the same state to another thermometer ¢' 1in case of
contact.

Further, suppose two systems 21 and 22 are in contact and 21 is
also in contact with a thermometer ¢. The distribution of states of o
depends then only on the energy of the system (21 + 22), i.e., on the quan-
tity hl,?' If the interaction between X, and Iy is imagined to decrease
infinitely slowly, this does not change the expression for the energy ”1,2
of the system (El + 22), which can be readily seen from our definition of
contact and the expression for the quantity & that we formulated in the last
section. Finally, if the interaction had ceased completely, the distribution
of states of ¢, which does not change during the separation of 21 and Zys
will now depend on 21, i.e., on the quantity hl’ where the index denotes
association with the system El alone. Hence we have
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hy = hyg -

By an analogous line of argument, one could have obtained
hence

or, in words: If one separates two systems 21 and 22 in contact which
form an isolated system (21 + 22) of absolute temperature 7T, then the now
isolated systems El and 22 will have the same temperature after separa-
tion. Ve imagine a given system in contact with an ideal gas. This gas shall
be completely describable in terms of the kinetic theory of gases. As the
system ¢ we consider a single monoatomic gas molecule of mass p whose
state shall be completely determined by its orthogonal coordinates =z, y, 2
and the velocities &, 7, (. In accordance with §3, we obtain for the
probability that the state variables of this molecule lie between the limits
z and z + dz, ...( and ( + d( the well-known Maxwellian expression

d¥ = const. e“h”(£2+”2+<2)-dz...dc .

By integration, one obtains from this for the mean kinetic energy of this
molecule

e+ ot + (1) = g5

However, the kinetic theory of gases teaches that at constant volume of
the gas this quantity is proportional to the pressurc exerted by the gas. The
latter is by definition proportional to the quantity designated in physics as
absolute temperature. Thus the quantity we designated as absolute temperature
is nothing else but the temperature of a system measured by the gas
thermometer.
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§5. On infinitely slow processes

Until now we have only considered systems that are in a stationary
state. Now we are also going to investigate changes of stationary states,
though only those that proceed so slowly that the distribution of states
existing at an arbitrary instant differs only infinitesimally from the
stationary distribution; or, more precisely, that, up to the infinitesimally
small, the probability that the state variables lie in a certain region ¢
can be represented at any moment by the formula found above. We call such a
change an infinitesimally slow process.

If the functions ?, (equation (1)) and the energy F of a system are
specified, then, according to the above, its stationary state distribution is
also specified. An infinitely slow process will thus be specified either by a
changing £, or by the functions ¢,  containing the time explicitly, or by
both circumstances simultaneously, but in such a way that the corresponding
differential quotients with respect to time are very small.

We assumed that the state variables of an isolated system change accord-
ing to equations (1). However, conversely, if there exists a system of
equations (1) according to which the state variables of a system are changing,
this system does not always have to be an isolated one. For it can happen
that a system under consideration is influenced by other systems in such a way
that this influence depends only on such functions of the variable coordinates
of the influencing systems which do not change when the distribution of states
of the influencing system is constant. In this case the change of the coordi-
nates p, of the system considered can also be represented by a system having
the form of equations (1). However, the functions ¥, will then depend not
only on the physical nature of the system in question, but also on certain
constants that are defined through the influencing systems and their distribu-
tions of states. This kind of influence on the system under consideration we
call adiabatic. It is easy to see that as long as the distributions of state
of the adiabatically influencing systems do not change, there exists an energy
equation for the equations (1) in this case as well. If the states of the
adiabatically influencing systems do change, then the functions ¢, of the
systems considered change explicitly with time, with equations (1) maintaining

[15]
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their validity at all times. Such a change of the distribution of states of
the system under consideration we call an adiabatic one.

Ve now consider a second kind of changes of the state of a system X.
Consider a system that can be influenced adiabatically. We assume that at
time f = 0 the system X enters into such an interaction with a system P
of a different temperature that we called "in contact” above, and we remove
the system P after the time necessary for the equalization of the
temperatures of ¥ and P. The energy of ¥ has then changed. The
equations (1) of ¥ are invalid during the process but valid before and after
it, while the functions ¢, are the same before and after the process. Such
a process we call "isopycnic" and the energy supplied to £, "heat supplied."

It is evident that, up to the infinitesimally small, it is possible to
construct each infinitely slow process from a succession of infinitesimally
small adiabatic and isopycnic processes, so that in order to get a general
overview we have to study the latter ones only.

86. On the concepl of eniropy

Let there be a physical system whose instantaneous state shall be
completely determined by the values of the state variables Pi---Py- Let this
system undergo a small, infinitely slow process, in which the systems that
influence this system adiabatically cxperience an infinitesimally small change
of state, and energy is being supplied to the system considered by systems in
contact. We take account of the adiabatically influencing systems by
stipulating that in addition to the Pr--oPy the energy £ of the system
considered shall also depend on some parameters AI,A2.... whose values shall
be determined by the distributions of states of the systems that influence
adiabatically the system considercd. In purely adiabatic processes there
holds at any instant a system of equations (1) whose functions @, depend
not only on the coordinates p, but also on the slowly changing quantities
X; for adiabatic processes 100, there will hold at any instant the energy
equation, whose form is
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We now investigate the energy increase of the system during an arbitrary
infinitesimally small, infinitely slow process.
For each time element d¢ of the process we have

(4) =Y % o+ gpidpy
v

For an infinitesimally small isopycnic process, all dA vanish in each time
element, and thus the first term of the right-hand side vanishes too.

However, since according to the previous sectionr, in an isopycnic process dE
is to be considered as heat supplied, for such a process the heat supplied d{
is represented by the expression

oF
dg =Y o,

However, for an adiabatic process, during which equations (1) are always
valid, we have, according to the energy equation,

ok _\v or -
Hp—y‘dp”-xap—y(pvdt—o.

On the other hand, according to the previous section, df = 0 for an
adiabatic process, so that one can put

oF
g =) o, @,

for an adiabatic process as well. Hence, this equation must be considered as
valid for any arbitrary process during each time element. Thus equation (4)
becomes

(4') dt::zg{{d,nda.

This expression represents the energy change of the system occurring during
the whole infinitesimally small process at changed values of d} and d{ as
well.
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At the beginning and the end of the process, the distribution of states
of the system considered is stationary, and when the system is in contact with
a system of relatively infinitely large energy before and after the process,
this assumption having formal significance only, this distribution is defined
by the equation having the form

d¥ = const. e
= ec_zhﬂ-dpl...

-2hF
h -dpl...dpn

dpn 5
where dF denotes the probability that the values of the system's state

variables lie within the limits indicated at any arbitrarily chosen moment.
The constant ¢ 1is defined by the equation

(5) J ec_ZhE-dpl...dpn =Bl

vhere the integration has to be extended over all values of the variables.
Specifically, if equation (5) holds before the process under
consideration, then afterwards we have

1...dpn =1,

ok
- J e(cn-dr)—2(h+dh)[£ ) B%d,\] .

and the two last equations yield

| [de - 28an - 20§ G| e ap, = 0

or, since the expression in parentheses can be taken as a constant during
integration because the system's energy £ never differs markedly from a
fixed average value before and after the process, and taking into account
equation (5),

(5") de - 2kdh - 28 Y iy -0

However, according to equation (4') we have
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-2 + 20 Y S ar + 2hdg = 0,
and by adding these two equations one obtains

2h-df = d(2hE - ¢) ,

#:d[f,-m]:ds.

This equation states that d/T is a total differential of a quantity that we
will call the entropy § of the system. Taking into account equation (5),
one obtains

or, since 1/4h = «.T,

§ = om(2hE-c) = £+ 2lclogJ ey ...dp

vhere the integration has to be extended over all values of the variables.

§7. 0On the probability of distribulions of states

In order to derive the second law in its most general form, we have to
investigate the probability of distributions of states.

Ve consider a very large number (¥) of isolated systems, all of which
can be represented by the same system of equations (1), and whose energies
coincide up to the infinitesimally small. The distribution of states of these
N systems can then be represented by an equation of the form

(2") dN = e(pl...pn,t)dpl...dpﬂ 5

where in general € depends explicitly on the state variables Py, and
also on time. Here the function ¢ completely characterizes the distribution
of states.

It follows from §2 that when the distribution of states is constant,
which, according to our assumptions, is always the case at very large values
of ¢, we must have € = const., so that for a stationary distribution of

states we will have
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dN = const. dpl"'dpn :

From this it follows immediately that the expression for the probability
d¥ for the values of the state variables of a system randomly chosen from
among the N systems to lie in the infinitesimally small region ¢ of the
state variables located within the assumed energy limits is given by

d¥ = const. I dpl...dpn -
g

This proposition can also be formulated as follows: If the whole pertinent
region of state variables that is determined by the assumed energy limits is
divided into ¢ partial regions 91799---9 such that

L1=ng= "”L,_,'

and if one denotes by h&, ﬁb, etc., the probabilities that the values of the

state variables of the arbitrarily chosen system lie within 91299--- at a
certain instant, then
B _ _1
hy=Fy=--F=7.

The probability that at a given moment the system considered will belong to a
specific region from among these 91---9p regions is thus just as great as
the probability that it will belong to any other of these regions.

The probability that, at a randomly chosen time, € of N systems
considered will belong to the region 91> €9 tO region g9s ---€y to region

9¢> is hence
AI
N il
WiE hd e legl e T

or also, since €+€9-..€, are to be thought of as very large numbers:

n

e=f
log ¥ = const. - z € log € .
e=1
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If £ is sufficiently large, one can put without noticeable error

log ¥ = const. - I € log ¢ dpl...dpn ]

In this equation ¥ denotes the probability that a given distribution of
states, which is expressed by the numbers €12€g---€py OT, else, by a specific
function € of Py---py according to equation (2'), prevails at a given
time.

If in this equation ¢ were constant, i.e., independent of the py's
within the energy limits considered, then the distribution of states con-
sidered would be stationary, and, as can easily be proved, the expression for
the probability ¥ of the distribution of states would be a maximum. If ¢
depends on the values of the p”'s, then it can be shown that the expression
for log ¥ for the distribution of states considered does not have an
extremum, i.e., that there exist distributions of states differing
infinitesimally from the considered one for which ¥ 1is larger.

If we follow the N systems considered for an arbitrary time interval,
the distribution of states, and thus also ¥, will contipually change with
time, and we will have to assume that always more probable distributions of
states will follow upon improbable ones, i.e., that ¥ increases until the
distribution of states has become constant and ¥ a maximum. [17]

It will be shown in the following sections that the second law of
thermodynamics can be deduced from this proposition.

First of all, we have

- J €' log ¢' dpl...dpn 2 - J € log e dpy...dp, ,

where the function e determines the distribution of states of the ¥
systems at a certain time {, the function €' determines the distribution of
states at a certain later time {', and the integration on both sides is to be
extended over all values of the variables. Further, if the quantities log e
and log ¢' of the individual systems from among the N systems do not
differ markedly from each other, then, since
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I edpy...dp, = I ¢'dpy...dp, = N,

the last equation becomes

(6) - log €' > - log € .

88. Application of the results obtained to a pariicular case

We consider a finite number of physical systems 0 20g.-. that together
form an isolated system, which we shall call total system. The systems
Ty+0g. - shall not interact markedly with each other thermally, but they
might affect each other adiabatically. The distribution of states of each of
the systems T1s0g s vhich we shall call partial systems, shall be station-
ary up to the infinitesimally small. The absolute temperatures of the partial
systems may be arbitrary and different from each other.

The distribution of states of the system 7y will not be markedly
different from the distribution of states that would hold if g, were in
contact with a physical system of the same temperature. We can therefore
represent its distribution of states by the equation

du, = L~ 2k By Jg dP{l)---dPEi;-

vwhere the indices (1) indicate affiliation with the partial system -

Analogous equations hold for the other partial systems. Since the
instantaneous values of the state variables of the individual partial systems
are independent of those of the other systems, we obtain for the distribution
of states of the total system an equation of the form

- 2h
7 dv = dv-duy-+- = J dpy---dp,

where the summation is to be extended over all systems, and the integration
over the arbitrary region ¢, which is infinitesimally small in all the
variables of the total system.
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We now assume that after some time the partial systems 01s09--- enter
into some arbitrary interaction with each other, but that during that process
the total system always remains an isolated one. After the lapse of a certain
time there shall arise a state of the total system in which the partial
systems ¢,,04... do not affect each other thermally and, up to the
infinitesimally small, exist in a stationary state.

Then an equation completely analogous to that holding before the process
will hold for the distribution of states of the total system:

Yl - 2h1E) J B

(7") dv' = dw)-dugy--- = € .-
g

We now consider N such total systems. Up to the infinitesimally small,
equation (7) shall hold for each of these systems at time ¢, and equation
(7') at time ¢'. Then the distribution of states of the N total systems

considered at times ¢ and ¢' will be given by the equations

(¢, - 24 F)
dN. = N.ez v v

! dpl...dp

n
(¢! - 2h'F")

dNys = N-e " ¥ ~dpy...dp, .

To these two distributions of states we now apply the results of the previous

section. Neither the

. IV-eE(c” - 2h K )

nor the

e )

for the individual systems among the N systems are here markedly different,
so that we can apply equation (6), which yields

Y (2hE - c) ) (2bF - o),



66 FOUNDATIONS OF THERMODYNAMICS

or, noting that according to §6 the quantities 2h151~ s thﬁz- Cgs--. are
identical with the entropies S],S2... of the partial systems up to a
universal constant,

1 1 . e s
(8) éq + Sé + > S1 + Sé + s
i.e., the sum of the entropies of the partial systems of an isolated system

after somc arbitrary process is cqual to or larger than the sum of the
entropies of the partial systems before the process.

89. JDerivalion of the second law
Let there be an isolated total system whose partial systems shall be

called ¥, ¥, and 21,22.... Let the system ¥, which we shall call heat
reservoir, have an cnergy that is infinitely large compared with the system

¥ (engine). Similarly, the energy of the systems 21,22..., which interact
adiabatically with each other, shall be infinitely large compared with that of
¥. Ve assume that all the partial systems #, ¥, 21, 22... are in a station-
ary state.

Suppose that the cngine X passes through a cyclic process during which
it changes the distributions of states of the systems .5 infinitely
slowly through adiabatic influence, i.e., performs work, and receives the
amount of heat { from the system ¥. The reciprocal adiabatic influence of
the systems 21,22... at the end of the process will then differ from that
before the process. We say that the engine X has converted the amount of
heat {§ into work.

We now calculate the increase in entropy of the individual partial
systems during the process considered. According to the results of §6 the
entropy increase of the heat reservoir K equals -{/T if T denotes the
absolute temperature. The entropy of ¥ is the same Lefore and after the
process because the system J has undergone a cyclic process. The systems
21,22... do not change their entropies during the process at all because
these systems only experience an adiabatic influence that is infinitely slow.
llence the entropy increase S'-S5 of the total system has the value
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s-5--4.

Since according to the results of the last section this quantity §'-S5 is
always > 0, it follows that

g<o.

This equation expresses the impossibility of the existence of a perpetuum
mobile of the second kind.

Bern, January 1903. (Received on 26 January 1903)
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Doc. 5
ON THE GENERAL MOLECULAR THEORY OF HEAT
by A. Einstein
[4nnalen der Phystk 14 (1904): 354-362]

In the following I present a few addenda to an article I published last
year.!

Vhen I refer to the "general molecular theory of heat," I mean a theory
that is essentially based on the assumptions put forth in §1 of the article
cited. In order to avoid unnecessary repetitions, I assume that the reader is
familiar with that article and use the same notations I have used there.

First, I derive an expression for the entropy of a system, which is

[2] completely analogous to the expression found by Boltzmann for ideal gases and

[31  assumed by Planck in his theory of radiation. Then I give a simple derivation
of the second law. After that I examine the meaning of a universal comstant,

[4] which plays an important role in the general molecular theory of heat. I
conclude with an application of the theory to black-body radiation, which
yields a most interesting relationship betwcen the above-mentioned universal

{5] constant, which is determined by the magnitudes of the elementary quanta of
matter and electricity, and the order of magnitude of the radiation wave-
lengths, without recourse to special hypotheses.

§1. On the expression for entropy

For a system that can absorb energy only in the form of heat, or, in
other words, for a system not affected adiabatically by other systems, the
following equation holds between the absolute temperature 7 and the energy
F, according to §3 and §4, loc.cit.:

[1]  'A. Einstein, Adan. d. Phys. 11 (1903): 170.
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(1) h=t oo (6]
where & denotes an absolute constant and w is defined (slightly [7]

differently than in the article cited) by the equation

E+6E
w(E).6E = J py...dp, .

The integral on the right is to be extended over all values of the state
variables that completely and uniquely define the instantaneous state of the
system, and to which correspond values of the energy that lie between F and
E+ 6F.

From equation (1) it follows that

§ = j - log[w(B)] .

Omitting the arbitrary integration constant, the expression thus represents
the entropy of the system. This expression for the entropy of a system holds
not only for systems that experience purely thermal changes of state, but also
for systems that pass through arbitrary adiabatic and isopycnic changes of 8]
state.
The proof can be deduced from the last equation of §6, loc. cit.; I omit
it because here I do not intend to present any application of the law in its
general significance.

§2. Derivation of the second law

If a system is located in an environment of a given constant temperature
T, and is in thermal interaction ("contact") with this environment, then, as
experience shows, it too assumes the temperature 7, and maintains this temp-
erature 7, for all times.

However, according to the molecular theory of heat, this law does not
hold strictly, but rather in a certain approximation — even though this
approximation is very good for all systems accessible to direct investigation.



9]

{10]
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If the system considered has been in that environment for an infinitely long
time, the probability W that the value of the system's energy lies between
the limits £ and F+1 at an arbitrarily chosen instant (§3, loc. cit.)
will be
_F

¥ = ce 2oy ,
where € is a constant. This value is different from zero for every F but
has a maximum for a certain F and — at least for all systems accessible to
direct investigation — is very small for any appreciably larger or smaller
E. Ve call the system "heat reservoir" and assert in brief: the above
expression represents the probability that the energy of the heat reservoir in
question will have the value £ in the environment mentioned. Using the
result of the previous section, we can also write

where § denotes the entropy of the heat reservoir.

Let there be a number of heat reservoirs, all of them in the environment
at temperature T,. The probability that the energy of the first reservoir
will have the value El, the second the value Eé.... and the last the value
EZ’ is, then, in anr easily understood notation,

5 7
¢
1]&a 1
| 5T

(a) W = Fl.ﬁé...ﬂk = 01.65...62e

Let these reservoirs enter into interaction with an engine that passes
through a cyclic process. Assume that during this process no heat exchange
takes place either between the heat rescrvoir and the environment or between
the engine and the environment. After the process considered, let the
energies and entropies of the systems be, respectively,
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B, E...Ep,
and
1 Sy---Sp o
The probability of the total state of the heat reservoir defined by these [12]
values will be
b
P
2 | g 0

(b) 0 = CH.Cb...C}e

Neither the state of the environment nor the state of the engine has
changed during the process, because the latter underwent a cyclic process.
If we now assume that less probable states never follow the more
probable ones, we have
' >W. [13]

But we also have, accordirg to the energy principle,

—_ra s
S
1
—~ s
™~

If we take this into account, then it follows from equations (a) and (b) that
15 2)S.

3. On the meaning of the consiant k in the kinetic theory of atoms [14]

Let us consider a physical system whose instantaneousstate is completely
determined by the values of the state variables



[15]

[16]
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PysPg---P, -

If the system considered is in "contact" with a system of relatively
infinitely large energy and of absolute temperature 7,, then its distribution
of states is determined by the equation

£
v = ce 2T

0

dpl...dpn "
In this equation £ is a universal constant whose meaning shall now be
examined.

On the basis of the kinetic theory of atoms, one arrives at an inter-
pretation of this constant in the following way, familiar from Boltzmann's
works on the theory of gases.

b :

Let the p,'s be the orthogo?al coordinates Z1Y1712T9lg- - 2T Y, 20 and
£1"1C1’£2”2""§n”ncn the velocities of the individual atoms (considered to
be pointlike) of the system. One can choose these state variables because

they satisfy the condition ) d¢ /dp, = 0 (loc. cit., §2). One has then:

n
m
E=8(x...2) + ) 5 (£ + 12+ (2) ,
1

where the first summand denotes the potential energy and the second the
kinetic energy of the system. Let now an infinitesimally small region
dzl...dzn be given. We find the mean value of the quantity

ml/

(€2 + g2 + (2)

corresponding to this region:
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£
0]

= B -

i m
Y (€24n24(2)

(¢z1...zu) 1
S TTERT, M — %ty
e 0 dnydny | e o dgy..dg,
m
¥(z,...2,) Y S €2en2e(2)
T P Wl
Mo dzi...dz | e Ry dg; ool
+m myfg
J m €570 at,
=3 = = 3T, .

o m g3
eZETZ d{u
~m@
This quantity is thus independent of the choice of the region and the choice
of the atom, and hence is in general the mean value for the atom at the
absolute temperature 7. The quantity 3x equals the quotient of the mean
kinetic energy of an atom and the absolute temperature.!

Further, the constant & is closely connected with the number N of
true molecules contained in one molecule as the chemists understand it
(equivalent weight based on 1 g hydrogen as unit).

It is well known that for such a quantity of an ideal gas, and with gram
and centimeter used as units, we have

pv = RT, where R = 8.31 x 107 .

According to the kinetic theory of gases, however,

pv = % M,

'Cf. L. Boltzmann, Vorl. @ber Gastheorie [Lectures on the theory of gases]
2 (1898): §42.

(17]

[19]

[18]
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[21]
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wvhere I denotes the mean value of the kinetic energy of motion of the center
of gravity of a molecule. If one also takes into account that

one obtains
N2k =R .

Hence the constant 2« equals the quotient of the constant R and the number
of molecules contained in one equivalent.

If, in accordance with 0. E. Meyer, one sets ¥ = 6.4 x 1023, one gets
Kk =6.5 x 10717,

§84. The general significance of the constant k

Let a given system be in contact with a system of relatively infinitely
large energy and temperature 7. The probability d¥F that the value of its
energy will lie between F and £ + dF at an arbitrarily chosen instant is

E

¥ = Ce Flordr

For the mean value F of F one obtains

_F
Bs J: ce 2*Topdr .
Since, further,

Z
1 = J:Ce 26T g

E
J: (F - Be ““u(B)dE=0 .

we get

Differentiation of this equation with respect to 7 yields
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F
J: [2&79 dF | g - ZQ]B EE?LEHE =0. [23]

This equation states that the mean value of the bracketed expression vanishes,
and hence

212 dE P2 - I [24]

In general, the instantaneous value £ of the energy differs from £ by a
certain amount, which we call "energy fluctuation"; we put

We then obtain

P-EE:E’*’:%P%. 251

The quantity €2 is a measure of the thermal stability of the system; the

larger the €2, the less this stability.

Thus the absolute constant & determines the thermal stability of the
system. The relationship just found is interesting because it no longer
contains any quantity reminiscent of the assumptions on which the theory is
based.

The magnitudes of €3, €, etc. can be calculated by successive differ-
entiations without any difficulty.

85. Application to rediation

The last-found equation would allow an exact determination of the uni-
versal constant Kk if it were possible to determine the mean value of the
square of the energy fluctuation of a system; however, at the present state of
our knowledge this is not the case. In fact, there is only a single kind



[26]

[27]

(28]
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of physical system for which we can surmise from experience that it possesses
energy fluctuation: this is empty space filled with temperature radiation.

That is, if the linear dimensions of a space filled with temperature
radiation are very large in comparison with the wavelength corresponding to
the maximum energy of the radiation at the temperature in question, then the
mean energy fluctuation will obviously be very small in comparison with the
mean radiation energy of that space. In contrast, if the radiation space is
of the same order of magnitude as that wavelength, then the energy fluctuation
will be of the same order of magnitude as the energy of thec radiation of the
radiation space.

0f course, one can object that we are not permitted to assert that a
radiation space should be viewed as a system of the kind we have assumed, not
even if the applicability of the general molecular theory is conceded.
Perhaps one would have to assume, for example, that the boundaries of the
space vary with its electromagnetic states. However, these circumstances need
not be considered, as we are dealing with orders of magnitude only.

If, then, in the equation obtained in the last section, we set

e=8,

and according to the Stefan-Boltzmann law

E = col*,

where v denotes the volume in ¢m and ¢ the constant of this law, then

we must obtain for 3{v a value of the order of magnitude of the wavelength
of the maximal radiation energy that corresponds to the temperature in
question.

One obtains

where we have used for & the value obtained from the kinetic theory of
gases, and 7.06 x 105 for c.
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If Am is the wavelength of the energy maximum of the radiation, then
experiment yields

,‘m:o_'%?g N [29]

One can see that both the kind of dependence on the temperature and the
order of magnitude of Am can be correctly determined from the general
molecular theory of heat, and considering the broad generality of our assump-
tions, I believe that this agreement must not be ascribed to chance. [30]

Bern, 27 March 1904. (Received on 29 March 1904)
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Doc. 6
Review of G. BELLUZZ0, "Principles of Graphic Thermodynamics"
("Principi di termodinamica grafica," Il Nuovo Cimento 8 (1904):
196-222, 241-263)
[Beiblatler zu den Annalen der Physik 29 (1905): 235]

This article, which is obviously meant for engineers, is divided into
four sections, the first of which treats graphically the changes of state of
arbitrary fluids. Thus, the familiar areal construction of the work performed
(L) by the body, of the energy increase (AF), and of the heat absorbed (§)
are given in the pv-plane in §3, while in §1 and §5 the increase of entropy
for an arbitrary change of state is presented as an area with ¢ and T (the
absolute temperature), and with € and 1/T, respectively, as coordinates.
This is followed by the thecory of cyclic processes and the definition of
reversibility and irreversibility of the processes. A process is considered
to be reversible or irreversible, respectively, depending on whether the
pressure exerted on the fluid during the process does or does not equal the
inner pressure of the fluid; this stipulation, which, by the way, is
irrelevant for what follows, does not make sense, because then the principle
of the equality of action and reaction would not be satisfied in any
irreversible process. The second section of the article contains the
application of the theory to ideal gases; examined are the changes of state at
constant volume, constant pressure, and constant temperature, as well as the
adiabatic and polytropic change of state. The last section deals with the
efflux of gases through pipes; the hypothesis of Saint-Venant and Wantzel is
replaced by (already known) thecoretical considerations. The third and fourth
sections of the article contain the theory of the saturated and the
superheated water vapor, which are treated in a corresponding way, with
special consideration given to the theory of the efflux of water vapor through
pipes and to the theory of improving the efficiency of steam engines by
superheating. For the equation of state for water vapor, p(v+const.) =
const. T is used, following Battelli and Tumlirz.
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Doc. 7
Review of A. FLIEGNER, "On Clausius's Law of Entropy" ("Uber den
Clausius'schen Entropiesatz," Naturforschende Gesellschaft in Zirich.
Vierteljahrsschrift 48 (1903): 1-48)
[Beiblitter zu den Annalen der Physik 29 (1905): 236]

The author examines the entropy changes of a system during a process
presumed to be strictly discontinuous (discontinuous expansion of a fluid) and
concludes from his calculations that the entropy decreases at the beginning of
the sudden expansion. Considerations concerning irreversible chemical
processes lead the author to the conclusion that the equation d@/T < dS
holds only for exothermic but not for endothermic processes. Similarly, the
equation is not supposed to hold for cooling mixtures. It is therefore
understandable that the author closes with the following sentence: "Thus, the
question of whether the entropy of the universe does change at all, and if it
does, then in which sense, cannot yet be answered at all at present, and will
probably remain undecided forever."

Doc. 8
Review of W. McFadden ORR, "On Clausius' Theorem for Irreversible Cycles,
and on the Increcase of Entropy" (Philosophical Nagazine and Journal of
Science 8 (Series 6) (1904): 509-527)
[Beiblatier zu den Annalen der Physik 29 (1905): 237)]

The author shows that in the Vorlesungen @ber Thermodynamik [Treatise on
Thermodynamics] Planck applies the concepts "reversible" and "irreversible" in
a sense somevhat different from that in which he defines them. Then he
advances a series of objections that may be raised against various ways of
representing the foundations of thermodynamics; especially noteworthy among
these objections is that by Bertrand, i.e., that the pressure, temperature,
and entropy are defined only for the case that at least sufficiently small

(1]

]

[2]

[3]
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parts of a system can be regarded as being in equilibrium; a similar objection
is raised with respect to the heat supplied.

Doc. 9
Review of G. H. BRYAN, "The Law of Degradation of Energy as the Fundamental
Principle of Thermodynamics" ("Das Gesetz von der Entwertung der Energie
als Fundamentalprinzip der Thermodynamik," in Meyer, S., ed., Festschrift.
Ludwig Boltzmann gewidmet zum sechzigsien Geburtistage 20. Februar 1904.
(Leipzig: J.A. Barth, 1904): 123-136)
[Beiblitter zu den Annalen der Physik 29 (1905): 237]

The author starts out from the energy principle as well as the principle

(11 of the decrease of free energy. The free energy (available energy) of a
system is defined as the maximal mechanical work that the system can perform
during changes compatible with the external conditions. This is followed by
the definition of heat supplied to the system. Then the concept of thermal
equilibrium, the second law, the concept of absolute temperature, and the
concept of energy are developed from the stated fundamental principles in an
elegant way, and, finally, the equations of thermodynamic equilibrium are
derived.
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Doc. 10
Review of N. N. SCHILLER, "Some Concerns Regarding the Theory of Entropy
Increase Due to the Diffusion of Gases Where the Initial Pressures of the
Latter Are Equal" ("Einige Bedenken betreffend die Theorie der

Entropievermehrung durch Diffusion der Gase bei einander gleichen
Anfangsspannungen der letzteren," in Meyer, S., ed., Festschrift. Ludwig

Boltzmann gewidmel zum Sechzigsten Geburisiage 20. Februar 1904.

{Leipzig: J.A. Barth, 1904): 350-366)
[Beiblatier zuv den Annalen der Physsk 29 (1905): 237)

First it is shown that a homogeneous gas can be reduced isothermally to
an n-time smaller volume without supply of work and heat if one assumes the
existence of walls that are permeable by a part of the mass of a gas but not
by the rest of the mass of the gas; according to the author, this assumption
does not contain any contradiction. Then it is demonstrated that the
expression for the entropy of a system consisting of spatially separated gases
of equal temperature and pressure has the form

§ = [2 milli]lg v+ fO) ;

the entropy of the system after diffusion can be represented by the same
formula. From this it is concluded that the entropy is the same before and
after diffusion. The author arrives at the same result by a line of reasoning
that cannot be reproduced here. In this line of reasoning one operates with a
surface that separates a chemically homogeneous gas into two parts such that
in thermal and mechanical equilibrium the gas pressure in the two parts is
different; it is (implicitly) assumed that during the passing of the gas
through this surface no work is transferred to the gas by the latter.

[1]

(2]

[3]
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Doc. 11
Review of J. J. WEYRAUCH, "On the Specific Heats of Superheated Water Vapor"
("Uber die spezifischen Wirmen des iiberhitzten Wasserdampfes," Zeitschrift
[11 des Vereines deutscher Ingenieure 48 (1904): 24-28, 50-54. Reprint, 9 pp.)
[Beiblatter zu den Annalen der Physik 29 (1905): 240]

Determinations made thus far of the specific heat ¢_ are presented and
(21 compared (I). Equations of state for water vapor suitable for practical
3] application are presented and discussed (II) and, using those by Zeuner, ¢
and <, for saturated steam (ITI) and ¢, and <, for arbitrarily super-
heated steam are derived thermodynamically. Then the total heat and the steam
heat are determined (V). In (VI) and (VII) there follow the fundamental
equations of the theory of heat for superheated steam, their application to
special cases, and several numerical examples.

Doc. 12
Review of J. H. van't HOFF, "The Influence of the Changes in Specific Heat
on the Work of Conversion" ("Einfluss der Anderungen der spezifischen
Warme auf die Umwandlungsarbeit," in Meyer, S., ed., Festschrift. Ludwig
Doltzmann gewidmet zum sechzigsien Geburistage 20. Februar 1904. (Leipzig:
J.A. Barth, 1904): 233-241)
[Beiblitier zu den Annalen der Physik 29 (1905): 240]

The author shows by way of thermodynamics that the work of conversion F
(supplied to the surroundings) of a system 4 into a system B (e.g., by
melting) in isothermal conversion can be represented in the form

E=F +AT- ST 1g T.
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(4 is a constant, T the absolute temperature, § = S) - SB the difference
between the specific heats, which are assumed to be independent of 7. For
reasons of analogy (because during isothermal expansion of a gas F = AT = 2T [1]
1g (vﬂ/vl)), AT 1is regarded as determined by change of concentration.

The equation is applied to experiments of Richards, who for conversions  [2]
of the kind

Mg + ZnS0,.2q = Zn + MgS0,.aq

(where the initial ZnS0, and the MgS0, formed have the same
concentration) by the electric method found that

gg = - kS,

vwhere &k 1is approximately the same for all conversions examined. Omitting
the term A7, the author obtains from the above equation

¥
& s1+11--675. (31
Mean values of observations yielded: (4]
Reacti d ; d
eaction T /(-5 Reaction il /(-8)
Mg + ZnS0, 5 Zn + NiS0, 8
Mg + CuS0, 5.4 Fe + CuS0, 7.5
Mg + NiSO, 5.9 Ni + CuSO0, 7
Mg + FeS0, 6.3 Zn + CuS0, 7.4
Zn + FeSU4 7.3 Fe + NiSU4 7.1

The equation for F, applied to fusion as well as to conversion of
allotropic elements and polymorphic compounds (again neglecting the term A7)
further yields the proposition: The form which is stable at the higher
temperature (e.g., liquid) has the higher specific heat. This conclusion is
almost always confirmed by experiment. Finally, it is concluded from the



[5]
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equation that the Thomson-Berthelot rule must be valid at low temperatures,
but that at higher temperatures the term -S57 lg T may cause deviations when

Sk > Sb.

Doc. 13
Review of A. GIAMMARCO, "A Case of Corresponding States in Thermodynamics"
("Un caso di corrispondenza in termodinamica," Il Nuove Cimento 5 (5)

[1} [2] (1903): 377-391)

[3]

[Beiblatter zu den Annalen der Physik 29 (1905): 246]

If one has a liquid (volume #) in a closed cylindrical tube and above
it its saturated vapor (volume v'), and one plots u/v' as a function of the
absolute temperature 7 in orthogonal coordinates, one obtains, depending on
the amount of the enclosed substance, a curve that has a maximum (v/v')max,
or a curve that is convex toward the abscissa, or one (as the limiting case)
that approaches the critical temperature linearly. The author investigated
ether, alcohol and chloroform in this way and finds that the above maxima
(”/"')max lie on a straight line. According to the law of corresponding
states, two temperatures 7 and 7' at which two different substances have
the same (v/v')max must be corresponding temperatures (the method for the
determination of corresponding temperatures), hence 771; = T'/it. Using the
(absolute) critical temperatures of ether (467°), alcohol (517°), chloroform
(541°) (Bureau des Longitudes, 1902), the author finds from his observations:
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Corresp. abs. temperatures L0 P ;%
Ether Alcohol Chloroform | Ether Alcohol Chloroform

387  428.07 447.09 0.320 0.320 0.330 0.828
391 432.8 452.8 0.340 0.340 0.350 0.837
394 435.8 456 0.355 0.356 0.360 0.843
404 447 467.9 0.395 0.400 0.409 0.865
414 456.5 478 0.440 0.440 0.448 0.883
423 468.2 489.6 0.490 0.490 0.495 0.905
427 472.7 494 .4 0.510 0.510 0.511 0.914
437 485.3 505.8 0.556 0.556 0.556 0.935
458 506.6 530 0.655 0.652 0.652 0.981
467 517 541 0.695 0.698 0.698 1

Examining the curve that constitutes the limiting case, the author finds
that the disappearance of the meniscus during heating and its appearance
during cooling occur at the same temperature (the critical temperature).

[4]
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Doc. 14
ON A HEURISTIC POINT OF VIEW CONCERNING THE PRODUCTION
AND TRANSFORMATION OF LIGHT
by A. Einstein
[Annalen der Physik 17 (1905): 132-148]

There exists a profound formal difference between the theoretical
conceptions physicists have formed about gases and other ponderable bodies,
and Maxwell's theory of electromagnetic processes in so-called empty space.
¥While we conceive of the state of a body as being completely determined by the
positions and velocities of a very large but nevertheless finite number of
atoms and electrons, we use continuous spatial functions to determine the
electromagnetic state of a space, so that a [inite number of quantities cannot
be considered as sufficient for the complete description of the
electromagnetic state of a space. According to Maxwell's theory, energy is to
be considered as a continuous spatial function for all purely electromagnetic
phenomena, hence also for light, while according to the current conceptions of
physicists the energy of a ponderable body is to be described as a sum
extending over the atoms and electrons. The energy of a ponderable body
cannot be broken up into arbitrarily many, arbitrarily small parts, while
according to Maxwell's theory (or, more generally, according to any wave
theory) the energy of a light ray emitted from a point source of light spreads
continuously over a steadily increasing volume.

The wave theory of light, which operates with continuous spatial func-
tions, has proved itself splendidly in describing purely optical phenomena and
will probably never be replaced by another theory. One should keep in mind,
however, that optical observations apply to time averages and not to momentary
values, and it is conceivable that despite the complete confirmation of the
theories of diffraction, reflection, refraction, dispersion, etc., by exper-
iment, the theory of light, which operates with continuous spatial functions,
may lead to contradictions with experience when it is applied to the phenomena
of production and transformation of light.

Indeed, it seems to me that the observations regarding "black-body
radiation," photoluminescence, production of cathode rays by ultraviolet
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light, and other groups of phenomena associated with the production or con-
version of light can be understood better if one assumes that the energy of
light is discontinuously distributed in space. According to the assumption to
be contemplated here, when a light ray is spreading from a point, the energy
is not distributed continuously over ever-increasing spaces, but consists of a
finite number of energy quanta that are localized in points in space, move
without dividing, and can be absorbed or generated only as a whole.

In this paper I wish to communicate my train of thought and present the
facts that led me to this course, in the hope that the point of view to be
elaborated may prove of use to some researchers in their investigations.

§1. On a difficully encountered in the theory of "black-body radiation”

We shall begin by taking the standpoint of Maxwell's theory and the
electron theory and consider the following case. Consider a space enclosed by
completely reflecting walls containing a number of gas molecules and electrons
that move freely and exert conservative forces on each other when they come
very close to each other, i.e., they can collide like gas molecules according
to the kinetic theory of gases.! Suppose, further, that a number of electrons
are bound to points in space which are very far from each other, by forces
that are directed toward these points and are proportional to the elongations
from the points. These electrons, too, shall enter into conservative
interactions with the free molecules and electrons when the latter come very
close to them. We call the electrons bound to the points in space
"resonators"; they emit and absorb electromagnetic waves of definite periods.

According to the present view about the origin of light, the radiation
in the space considered, found for the case of dynamic equilibrium on the
basis of Maxwell's theory, must be identical with "black-body radiation" — at
least if one assumes that resonators of all the relevant frequencies are
present.

This assumption is equivalent to the assumption that the mean kinetic
energies of gas molecules and electrons are equal to each other at thermal
equilibrium. As we know, Mr. Drude used the latter assumption to derive the
ratio of thermal and electric conductivities of the metals theoretically.

(5]
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[8]

[9]

(6]
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For the time being, we disregard the radiation emitted and absorbed by
the resonators and look for the condition for dynamic equilibrium
corresponding to the interaction (collisions) of molecules and electrons. For
such an equilibrium, the kinetic theory of gases provides the condition that
the mean kinetic energy of a resonator electron must be equal to the mean
kinetic energy of the progressive motion of a gas molecule. If we resolve the
motion of the resonator electron into three mutually perpendicular oscillatory
motions, we find for the mean value F of the energy of such a linear
oscillatory motion

E=5T,

==

where R denotes the universal gas constant, N the number of "real
molecules" in one gram-equivalent, and T the absolute temperature, for
because of the equality of the time averages of the resonator's kinetic and
potential energies, the emergy £ is 2/3 times as large as the kinetic emergy
of a free monoatomic gas molecule. If due to some factor--in our case, due to
radiation--the energy of a resonator were to have a time average larger or
smaller than £, the collisions with the free electrons and molecules would
lead to an energy transfer to the gas or an energy absorption from the gas
that is, on average, different from zero. Thus, in the case we are consider-
ing, dynamic equilibrium is possible only if the mean energy of every
resonator equals £.

We now apply similar reasoning to the interaction between the resonators
and the radiation present in the space. Mr. Planck has derived the condition
for the dynamic equilibrium in this case! using the assumption that

1. Planck, 4an. d. Phys. 1 (1900): 99.
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the radiation may be considered as the most disordered process imaginable.?
He found

N I3
by = gm2 Py - [14]

E; is here the mean energy of a resonator with the proper frequency v (per
oscillation component), [ the velocity of light, » the frequency, arnd
pydu the energy per unit volume of that part of the radiation whose frequency
lies between v and v + dv.

If, on the whole, the radiation energy of frequency v does not con-
tinually decrease or increase, we must have

Rr_ 3 _ _ L3
NT—E-EU-WPV;

_ R 8n?
pV—N—IrT. [15]

2This assumption can be formulated as follows. We expand the Z-component of [12]
the electrical force (Z) at an arbitrary point of the space considered in a
time interval between ¢ =0 and ¢ =T (where T shall denote a time
period that is very large relative to all pertinent oscillation periods) in a
Fourier series

V=0

Z= 2 A” sin(2xv % + ay) i

v=1
where Ay 20 and 0 < e, <2r. If one imagines that at the same point in
space such an expansion is made arbitrarily often at randomly chosen initial
points of time, then one will obtain different sets of values for the
quantities A” and a,. For the frequency of occurrence of the various

combinations of values of the quantities A” and a, there will exist, then,
(statistical) probabilities dF of the form

dF = f(ddy. . .ay0y...)dAd4,. . dayda,. ..
The radiation is in the most disordered state imaginable when

f(l!l,lz.--al,ﬂ’z..-) = Fl(ll)pz(lz)n-.fl(al).fg(az)--. »

i.e., when the probability of a specific value of one of the quantities 4 or

a 1is independent of the values taken by the other quantities 4 and a, re- [13]
spectively. Hence, the more closely fulfilled the condition that the individ-

ual pairs of quantities AV and a, depend on the emission and absorption

processes of particular groups of resonators, the closer to a "most disordered
state imaginable" the radiation is to be viewed in our case.



[16]

[17]
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[20]
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This relation, obtained as the condition of dynamic equilibrium, not only
fails to agree with experience but it also states that in our model a definite
distribution of energy between ether and matter is out of the question, since
the wider the chosen range of the resonators' frequencies, the larger the
radiation energy of the space, and we obtain in the limit

R 8r
| pav =573 T I Vv = o .
0 14 Nl 0

82. On Planck’s determination of ihe elemeniary quanta

We now wish to show that Mr. Planck's determination of the elementary
quanta is to some extent independent of his theory of "black-body radiation."

Planck's formula! for [ which has been sufficient to account for all
observations made so far, reads

py = gu :
e -1
vhere
o =6.10 x 10736
f = 4.866 x 10711 |

For large values of T/v, i.e., for large wavelengths and radiation densities,
this formula reduces in the limit to

Py, = % 2T .

One can see that this formula agrees with that derived from the Maxwellian
theory and the electron theory in §1. By equating the coefficients of the two
formulas, we obtain

M. Planck, 4an. d. Phys. 4 (1901): 561.
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R8r _a
NI~ B
or
N=B8R 617« 10m,

i.e., one atom of hydrogen weighs 1/N gram = 1.62 x 102¢ g. This is exactly
the value found by Mr. Planck, which shows satisfactory agreement with values
found for this quantity by other methods. [21]
Ve therefore arrive at the following conclusion: the greater the energy
density and the wavelength of radiation, the more useful the theoretical
principles we have been using prove to be; however, these principles fail
completely in the case of small wavelengths and small radiation densities.
In the following, we shall consider "black-body radiation” in connection
with experience without basing it on any model for the production and
propagation of radiation.

§3. UOn the entropy of radiation

The following consideration is contained in a famous study by Mr. Wien
and shall be presented here only for the sake of completeness. (22]
Consider radiation that occupies a volume w». We assume that the
observable properties of this radiation are completely determined when the
radiation density p(v) is given for all frequencies.! Since radiations of
different frequencies are to be viewed as separable from each other without
expenditure of work and without supply of heat, the entropy of radiation can
be represented in the form

S=w Jm wlp,v)dv ,
0

where ¢ is a function of the variables p and ». One can reduce ¢ to a
function of a single variable by formulating the assertion that adiabatic

IThis assumption is arbitrary. Naturally, we will maintain this simplest
assumption as long as the experimental results do not force us to abandon it.
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compression of radiation between reflecting walls does not change its entropy.
However, we shall not enter into this, but will immediately investigate how
the function ¢ can be obtained from the black-body radiation law.

In the case of "black-body radiation," p is such a function of v
that the entropy is a maximum at a given energy, i.e.,

0,

5 J'; el

é Jm pdv
0

From this it follows that for every choice of &p as function of v

J:[-j,’f- Aépav = 0 .

if

il
(=]

where ) is independent of ». Thus for black-body radiation dp/dp is
independent of v.

The following equation applies when the temperature of black-body
radiation of volume v = 1 increases by d7:

ds = rq; gf ey

V=l

or, since dyp/dp is independent of v,

dszgspeds.

Since dF equals the heat added, and the process is reversible, we also have

_1 5
ds = 7 dk .
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Comparison yields
%Q 21
p " T-

This is the law of black-body radiation. Thus, one can determine the law of
black-body radiation from the function ¢, and, vice versa, the function ¢
can be determined by integrating the former, considering that ¢ vanishes
for p = 0.

§84. Limiting law for the entropy of monochromatic rediation
at low radiation density

Though the existing observations of "black-body radiation" show that the
law

-8 %

p=aBe

postulated by Mr. W. Wien for "black-body radiation" is not strictly valid,
the law has been fully confirmed by experiment for large values of v/7. Ve
shall base our calculations on this formula, but will keep in mind that our
results are valid within certain limits only.

First of all, this formula yields

1_ 1
7= % 85
and next, using the relation found in the preceding section,

oloww) = - f {1gﬁ, i 1] .

Now consider radiation of energy F whose frequency lies between » and
v+dv. Let the radiation occupy volumew. The entropy of this radiation is

S = vp(p,v)dv = - BE; {lg 50_53317 - 1] :

f23]

[24]

[25]
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[27]

28]
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If we restrict ourselves to investigating the dependence of the entropy on the
volume occupied by the radiation and denote the entropy of radiation by S
when the latter occupies the volume %4, we obtain

This equation shows that the entropy of a monochromatic radiation of
sufficiently low density varies with the volume according to the same law as
the entropy of an ideal gas or that of a dilute solution. The equation just
found shall be interpreted in the following on the basis of the principle
introduced into physics by Mr. Boltzmann, according to which the entropy of a
system is a function of the probability of its state.

85. Holecular-theoretical investigation of the dependence of the eatropy of
gases and dilute solutions on the volume

In calculating the entropy by molecular-theoretical methods, the word
"probability" is often used in a sense that does not coincide with the
definition of probability used in the probability calculus. In particular,
the "cases of equal probability" are often stated hypothetically when the
theoretical models applied are sufficiently definite to permit a deduction
instead of a hypothetical statement. I will show in a separate paper that,
when dealing with thermal processes, it is completely sufficient to use the
so-called "statistical probability," and I hope that this will remove a
logical difficulty that still hinders the implementation of Boltzmann's
principle. Here, however, I shall only give its general formulation and its
application to very special cases.

If it makes sense to talk about the probability of a state of a systenm,
and if, further, each entropy increase can be conceived as a tramnsition to a
more probable state, then the entropy S1 of a system is a function of the
probability ¥, of its instantaneous state. Therefore, if we have two
systems S1 and 6é that do not interact with each other, we can put
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1]

Sl
Sy

(P2(”2) .

If these two systems are viewed as a single system of entropy § and
probability ¥, we have

8§ = Sl + Sé = (¥)
and

V=V

;- ¥

g -

The last relation tells us that the states of the two systems are mutually
independent events.
From these equations it follows that

‘P(yl-”z) = (pl(”l) it 802“”2)

and from this we get, finally,

wl(ﬂa) = @ lg(ﬂi) + const.
¢b(bb) = 1g(ﬁb) + const.
@(¥) = € 1g(K) + const.

The quantity € is thus a universal constant; it follows from the kinetic
theory of gases that its value is #/N, where the meaning of the constants

R and N is the same as above. If S, denotes the entropy in some initial
state of a system considered, and ¥ the relative probability of a state
having the entropy S, we obtain, in general,

S-%=F1¥.

First, we deal with the following special case. Let a volume v,
contain a number (n) of movable points (e.g., molecules), which shall be the
object of our consideration. The space may also contain any number of movable
points of whatever kind. No assumptions shall be made about the law governing
the motion of the points in the space except that, with regard to this motion,

[30]
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no part of the space (and no direction) shall be distinguished from the
others. The number of the (first-mentioned) movable points shall be so small
that the effects of the points on each other can be disregarded.

This system, which might be, for example, an ideal gas or a diluted
solution, possesses a certain entropy S§;. Let us consider a part of the
volume v, of magnitude v and let all n movable points be transferred
into the volume v without any other change in the system. It is obvious
that this state has a different value of entropy (S), and we now wish to
determine the entropy difference with the aid of Boltzmann's principle.

We ask: How great is the probability of the last-mentioned state rela-
tive to the original one? Or: How great is the probability that at a
randomly chosen instant of time all =z independently movable points in a
given volume v, will be contained (by chance) in volume o7

Obviously, for this probability, which is a "statistical probability,"
one obtains the value

¥ = [JL]n H
Yo

from this, by applying Boltzmann's principle, one obtains

-5 afff])

It is noteworthy that the derivation of this equation, from which the
Boyle-Gay-Lussac law and the identical law of osmotic pressure can easily be
obtained by thermodynamics,! does not require any assumptions about the law
governing the motion of the molecules.

1If £ is the energy of the system, we obtain

- d(E - 18) = pdv = TS = R B L,
hence v
pv =R % T.
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§6. Interpretation of the ezpression for the dependexce of the entropy of
monochromatic radiation on volume according to Boltzmann’s principle

In §4 we found the following expression for the dependence of the
entropy of monochromatic radiation on volume:

If we write this formula in the form

N
s-%:%m[ﬁ B

Yo
and compare it with the general formula expressing the Boltzmann principle

S-5-=%1g¥,

we arrive at the following conclusion:
1f monochromatic radiation of frequency v and energy £ is enclosed
{by reflecting walls) in the volume %, the probability that at a randomly
chosen instant the entire radiation energy will be contained in the portion v
of the volume v, is
N
-2
Yo
From this we further conclude:
Monochromatic radiation of low density (within the range of validity of
Wien's radiation formula) behaves thermodynamically as if it consisted of
mutually independent energy quanta of magnitude RAv/N.

We also wish to compare the mean value of the energy quanta of "black-
body radiation" with the mean kinetic energy of the center-of-mass motion of a

=

molecule at the same temperature. The latter is %(R/N)T, while the mean
value of the energy quantum obtained on the basis of the Wien formula is



(32]
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v
r au3e_ %r dv .
g i =3§T.

J: W%F avde dv

If, with regard to the dependence of its entropy on volume, a mono-
chromatic radiation (of sufficiently low density) behaves like a discontinuous
medium consisting of energy quanta of magnitude RfAv/N, then it seems
reasonable to investigate whether the laws of generation and conversion of
light are also so constituted as if light consisted of such cnergy quanta. We
will now consider this question.

§87. On Stokes’ rule

Let monochromatic light be converted by photoluminescence to light of
another frequency, and let us assume in accordance with the result just
obtained that both the producing and the produced light consist of energy
quanta of magnitude (R/N)fv, where v denotes the pertinent frequency. The
conversion process is then to be interpreted as follows. Each producing
energy quantum of frequency v is absorbed and—at least at a sufficiently
Jow distribution density of the producing energy quanta—by itself gives rise
to the generation of a light quantum of frequency v,; possibly the absorption
of the producing light quantum might also be accompanied by the simultaneous
generation of light quanta of frequencies Vg Vg €LC., as well as of energy
of some other kind (e.g., hcat). It makes no diffcrence by what kind of
intermediary processes this end result is mediated. If the photoluminescent
substance is not to be regarded as a permanent source of energy, then,
according to the cnergy principle, the energy of a produced energy quantum
cannot be greater than that of a producing light quantum; hence we must have

2 R
N By < brg

A

or

[{7N

1/2 Ul .
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This is the well-known Stokes' rule.

It should be especially emphasized that, according to our conception, at
weak illumination the produced amount of light must be proportional to the
intensity of the exciting light, because each exciting energy quantum will
induce an elementary process of the kind indicated above, independent of the
action of the other exciting energy quanta. In particular, no lower limit
will exist for the intensity of the exciting light below which the light would [34]
be unable to act as an exciter of light.

According to the conception of the phenomena expounded, deviations from
Stokes' rule are conceivable in the following cases: [35]

1. When the number of simultaneously converting emergy quanta per unit
volume is so large that an energy quantum of the light produced could obtain
its energy from several producing quanta;

2. When the producing (or produced) light does not have the same energy
properties that obtain for "black-body radiation” within the range of validity
of Wien's law as, for example, when the exciting light is produced by a body
of such high temperature that Wien's law is no longer valid for the pertinent
wavelength.

The latter pessibility deserves special attention, for according to the
conception expounded above it is not impossible that even in great dilutions
the energetic behavior of a "non-Wien radiation" differs from that of a
"black-body radiation" that is within the range of validity of Wien's law.

§88. n the generation of cathode rays by illumination of solid bodies

The usual conception, that the energy of light is continuously dis-
tributed over the space through which it travels, meets with especially great
difficulties when one attempls to explain the photoelectric phenomena; these
difficulties are presented in a pioneering work by Mr. Lenard.! (36]
According to the conception that the exciting light consists of energy
quanta of energy (B/N)fv, the production of cathode rays by light can be
conceived in the following way. The body's surface layer is penetrated by

P, Lenard, 4nn. d. Phys. 8 (1902): 169 and 170. [37]
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energy quanta whose energy is converted at least partially to kinetic energy
of electrons. The simplest possibility is that a light quantum transfers its
entire energy to a single electron; we will assume that this can occur.
However, we will not exclude the possibility that the electrons absorb only a
part of the energy of the light quanta. An electron provided with kinetic
energy in the interior of the body will have lost a part of its kinetic energy
by the time it reaches the surface. In addition, it will have to be assumed
that in leaving the body, each electron has to do some work P

(characteristic for the body). The greatest perpendicular velocity on leaving
the body will be that of electrons located directly on the surface and excited
perpendicular to it. The kinetic energy of such electrons is

% fv - P .

If the body is charged to the positive potential I and is surrounded
by conductors of zero potential, and if N is just sufficient to prevent a
loss of electricity of the body, we must have

lle = % fv - P,
where ¢ denotes the electric mass of the electron, or
HE:”ﬂV"Pl’

where E denotes the charge of one gram-equivalent of a univalent ion and P!
is the potential of this quantity of negative electricity with respect to the
body.!

If one sets F = 9.6 x 103, then N.10%8 1is the potential in volts that
the body acquires during irradiation in the vacuum.

To see whether the relation derived agrees with experience in order of
magnitude, we put P' =0, v =1.03 x 105 (which corresponds to the limit

1If one assumes that the release of the individual electron from a neutral
molecule by light must be accompanied by the expenditure of some work, one
does not have to change anything in the above relation; but then P' is to
be considered as the sum of two summands.
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of the solar spectrum toward the ultraviolet) and f = 4.866 x 101, We [421]
obtain 1.107 = 4.3 volt, a result that agrees in order of magnitude with the
results of Mr. Lenard.!

If the formula derived is correct, then I, presented as a function of
the frequency of the exciting light in Cartesian coordinates, must be a
straight line whose slope is independent of the nature of the substance [44]
investigated.

As far as 1 can see, our conception does not conflict with the proper-
ties of the photoelectric effect observed by Mr. Lenard. If each energy
quantum of the exciting light transmits its energy to electrons independent of
all others, then the velocity distribution of the electrons, i.e., the quality
of the cathode rays produced, will be independent of the intensity of the
exciting light; on the other hand, under otherwise identical circumstances,
the number of electrons leaving the body will be proportional to the intemsity
of the exciting light.?2

Remarks similar to those regarding the expected deviations from Stokes'
rule apply to the expected limits of validity of the laws mentioned above.

In the foregoing it has been assumed that the energy of at least some of
the energy quanta of the producing light is transmitted completely to one
single electron each. If this obvious assumption is not made, instead of the
above equation one obtains the following one:

IE + P' < R .

For the cathode luminescence, which constitutes the inverse process of

that discussed above, one obtains by a consideration analogous to that above  [43]
E+ P> Ry
For the substances investigated by Mr. Lenard, PE is always considerably [46]

larger than Rfv because the potential difference the cathode rays must

P. Lenard, Aan. d. Phys. 8 (1902): 165 and 184, Table I, Fig. 2. [43]
?P. Lenard, loc. cit., p. 150 and pp. 166-168.
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traverse in order to produce light that is just visible amounts to several
hundred volts in some cases, and to thousands of volts in others.! We must
therefore assume that the kinetic energy of one electron is used for the
production of many quanta of light energy.

§9. On the ionization of gases by ultraviolet light

We will have to assume that in the ionization of a gas by ultraviolet
light one quantum of light energy is used for the ionization of one molecule
of gas. From this it follows that the work of ionization (i.e., the work
theoretically required for ionization) of one molecule cannot be greater than
the energy of one effective quantum of light absorbed. If J denotes the
(theoretical) ionization work per gram-equivalent, we must have

Rpv 2J .

However, according to measurements by Lenard, the largest effective wavelength
for air is about 1.9 x 1075cm, hence

Bfv = 6.4 x 102 erg > J .

An upper limit for the work of ionization can also be obtained from the
ionization potentials in rarefied gases. According to J. Stark? the smallest
measured ionization potential (at platinum anodes) for air is about 10 volts.3
Thus one obtains 9.6 x 1012 as the upper limit for J, which is almost equal
to the value we have just found. There is still another consequence, whose
verification by experiment seems to me of great importance. [f each absorbed
quantum of light energy ionizes one molecule, then the following relation

1P, Lenard, 4Ann. d. Phys. 12 (1903): 469.

2J. Stark, Die Elekirizitit in Gasen, p. 57. Leipzig, 1902

3Ia the interior of the gases the ionization potential of negative ions is
five tinmes larger, however.
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must hold between the quantity of light absorbed [ and the number j of
gram-molecules ionized by it:

J'=F/L;,—,- (51}

If our conception corresponds to reality, this relation must apply to all
gases that (at the relevant frequency) display no noticeable absorption that
is not accompanied by ionization.

Bern, 17 March 1905. (Received on 18 March 1905)
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A NEV DETERMINATION OF MOLECULAR DIMENSIONS

The earliest determinations of real sizes of molecules were made
possible by the kinetic theory of gases, whereas the physical phenomena
observed in liquids have thus far not served for the determination of
molecular sizes. This is no doubt due to the fact that it has not yet been
possible to overcome the obstacles that impede the development of a detailed
molecular-kinetic theory of liquids. It will be shown in this paper that the
size of molecules of substances dissolved in an undissociated dilute solution
can be obtained from the internal friction of the solution and the pure
solvent and from the diffusion of the dissolved substance within the solvent
if the volume of the molecule of the dissolved substance is large compared
with the volume of the molecule of the solvent. This is because, with respect
t0 its mobility in the solvent and its effect on the internal friction of the
latter, such a molecule will behave approximately as a solid body suspended in
a solvent, and it will be permissible to apply to the motion of the solvent in
the immediate vicinity of a molecule the hydrodynamic equations in which the
liquid is considered to be homogeneous and hence its molecular structure is
not taken into consideration. For the shape of the solid body that shall
represent the dissolved molecule, we will choose the spherical shape.

§1. On the influence on the motion of a liquid exercised by a very small
sphere suspended in it

Let us base our consideration on an incompressible homogeneous liquid
with a coefficient of viscosity k, whose velocity components u, v, w are
given as functions of the coordinates £, y, z and of the time. At an
arbitrary point =y, y¢» 2y, the functions u, v, w are developed as
functions of % - zg5, ¥ - ¥o» 2 - %, according to Taylor's theorem, and
around this point there is demarcated a region ¢ that is so small that
within it only the linear terms of this development must be taken into
consideration. As is well known, the motion of the liquid contained in &
can then be considered as a superposition of three motions, i.e.,

[5)
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1. A parallel displacement of all liquid particles without a change in
their relative position;

2. A rotation of the liquid without a change in the relative position
of the liquid particles:

3. A dilatational motion in three mutually perpendicular directions
(the principal axes of dilatation).

Let us now assume that in the region § there is a spherical rigid body
whose center shall lie at the point =2y, y5» 2y and whose dimensions shall be
very small compared with those of the region €. We further assume that the
motion under consideration is so slow that the kinetic energy of the sphere as
well as that of the liquid can be neglected. We also assume that the velocity
components of a surface element of the sphere coincide with the corresponding
velocity components of the adjacent liquid particles, i.e., that the
transition layer (imagined to be continuous) also displays everywhere a
coefficient of viscosity that is not infinitesimally small.

It is obvious that the sphere simply takes part in the partial motions 1
and 2, without modifying the motion of the neighboring particles, since the
liquid moves like a rigid body in these partial motions and since we neglected
the effects of inertia.

However, motion 3 does get modified by the presence of the sphere, and
our next task will be to investigate the effect of the sphere on this motion
of the liquid. If we refer motion 3 to a coordinate system whose axes are
parallel to the principal axes of dilatation and put

z—x():{,
Yy-Y% =7,
z-2=0(»

we can describe the above motion, if the sphere is not present, by the equa-
tions
u0=lf,

(1) vy = By ,

Wy oc H



DoC. 15 107

A, B, ¢ are constants which because of the incompressibility of the liquid
satisfy the condition

(2) A+B+(0=0.

If, now, a rigid sphere of radius P is located at point 4, ¥o, 2p, the
motion of the liquid around it will change. We will, for convenience, call P
"finite" and the values of £, 7, (, for which the liquid motion is no longer
noticeably modified by the sphere, "infinitely large."”

Due to the symmetry of the motion of the liquid, it is clear that the
sphere can perform neither a translation nor a rotation during the motion
considered, and we obtain the boundary conditions (8]

s=v=w=0 for p=P?,
where we have put

p=J+ g2+ {ZT>0.

Here u, v, w denote the velocity components of the motion now considered
(modified by the sphere). If we put

u=Af + o
By + I
¢ + v

(3)

the velocities s vy Uy would have to vanish at infinity, since at
infinity the motion represented in equations (3) should reduce to that
represented by equations (1).
The functions u, v, v have to satisfy the equations of hydrodynamics
including internal friction and neglecting inertia. Thus the following
equations will hold!: [9]

1G. Kirchhoff, Vorlesungen uber Hechanik. 26.Vorl. [Lectures on Mechanics. [10]
Lecture 26].



[11]

{12]

{13)

[14]

[15]

108 MOLECULAR DIMENSIONS

) § dp _
" 3% = kAy 3% = kAv 3% = Aw,
bu  bv . bw _
Eremtre-0

where A denotes the operator

and p the hydrostatic pressure.

Since equations (1) are solutions of equations (4) and the latter are
linear, according to (3) the quantities 4ys vy, Wy MUSt also satisfy
equations (4). I determined Uy Vys Uy and p by a method given in §4 of
the Kirchhoff lectures mentioned above! and found

"From equations (4) it follows that Ap = 0. If we take p 1in keeping with
this condition and determine a function ¥ that satisfies the equation

1
AV=Ep,
then equations (4) are satisfied if one puts

u = %% +u', v= %% +9'y, w= g% + u'
and chooses u', »', w' such that Aux' =0, Av' = 0, Aw' = 0, and
1 1 1

Now, if one puts

1
521
£=2C—p
§¢?
and in accordance with this
1
521
_ 6 p a 2 2
V_c3zé}+b6_£_2_+i[gz-2 -52_]
and 61
8 '

then the constants @, b, ¢ can be determined such that # = v =w =0 for
p = P. By superposing three such solutions, we get the solution given in
equations (5) and (5a).
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ilr Jl
el 71, 5 200
p = - gkP34 + 8 + 0 + comnst. , 16
. { 52 &n? e
8D
= A€ - 3}34 f& v [17]
(5) ‘
_ 5 _ oD
v = Bﬂ — 31’3” b”g 3"17 »
W= - gmc I—)(s' -
where ]
s2|1
_ 415 62 1
1
52 gl
2
(5a) +B%P36ﬂ +%P5—5—ﬂ]
(1
s2|1
5 62 1
+06‘P352g+6-15—6z€1] .
It can easily be proved that equations (5) are solutions of equations (4).
Since
r i -2
A¢ =0, A ) 0, Ap = 2
and '
7 1803
s - - 3 [ } 0
ve get
chu:—kb—g{AD}——k&.—[ m&,g gmz—t} ]
However, according to the first of equations (5), the last of the expressions
we obtained is identical to g% In the same way, it can be shown that the [18]

second and third of equations (4) are satisfied. Further, we get



[19]

[20]
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1 1 1
52|11 52| 52|11
g%+g-%+g.‘§=(d+ﬂ+(})+%P3|A~6£€l+114&[,§l+0~b—£€”—AI).

But since according to equation (5a)

: 521 52[1 52[1
AD = 3118 4 + B m + ,

it follows that the last of equations (4) is satisfied as well. As far as the
boundary conditions are concerned, at infinitely large p our equations for
u, v, w reduce to equations (1). By inserting the value of D from equation
(5a) into the second of equations (5), we get

©)  w=de -5 euee e o)+ § 5 e ps oy - Bag

We see that u wvanishes for p = P. For reasons of symmetry the same holds
for v and w. We have now demonstrated that equations (5) satisfy equations
(4) as well as the boundary conditions of the problem.

It also can be dcmonstrated that equations (5) are the only solution of
equations (4) compatible with the boundary conditions of our problem. Ve
shall only indicate the proof here. Assume that in a finite space the
velocity components u, v, w of a liquid satisfy equations (4). If there
existed yet another solution U, V, ¥ of equations (4) in which U=, V=v,
¥ = w at the boundarics of the space in question, then (J-u, V-9, ¥-w)
would be a solution of equations (4) in which the velocity components vanish
at the boundary of the space. Thus no mechanical work is supplied to the
liquid in the space under consideration. Since we neglected the kinetic
cnergy of the liquid, it follows that in this space the work converted to heat
is also zero. This leads to the conclusion that in the entire space we must
have u = Uy V= 0, 0= 0y if the space is at least partly bounded by
stationary walls. By passing to the limit this result can also be cxtended to
the case that the space under consideration is infinite as in the case
considered above. This way one can show that the solution found above is the
only solution of the problem.
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We now place a sphere of radius R around point 2z, yg,» 29, with R
being infinitely large compared with P, and calculate the energy that is
converted to heat (in unit time) in the liquid inside the sphere. This energy
¥ 1is equal to the work mechanically supplied to the liquid. If Xn, Yn, Zn
denote the components of the pressure exerted on the surface of the sphere of
radius R, we have

V= J (Xhu + Yiv + an)ds %

where the integral is to be extended over the surface of the sphere of radius
R. Ve have here

L=t [xg§+xqg+,rc ,%] , (21]
yﬂ:-[r§§+rng+y(,§],
=t mieny. (22]
where
It = p - 5% %% ¥ =2y - —k[n gﬂ]
Ihp=p-2 5;, ""‘f"“"k[b'z 25-(]
Z(:p—2k%‘g, xu=r§=-k[§—;‘}+g§].

The expressions for u, v, v become simpler if we take into account that for
p = R the terms with the factor P5/p5 vanish in comparison with those with
the factor P3/p3. We have to put

w=dg - pUC BP0 23]
(62) vey - §p BB OC)
2 2 2
6'(—%1’3““ +gg + 0(?) )

For p we obtain from the first of equations (5) by similar neglect of terms

s
]
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[25]

[26]

[27]

[28]

[29]
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p= -5k P 4 2"g 2460, const,

First we obtain

X¢ = 2kA + 10kP %ﬁf - ospps L2UE "pﬁ'”z* o
Iy = + 10kP3 ig,’,l - 95kp "2“52*,15?2* B,
X = + 10kP3 igé + 25kP 42“52*?}“”42) .

and from this

(A€2+ B2+ (2

: £
X, = 2k & - 104kP f, + 95k .

With the aid of the expressions for Yﬁ and Zn derived by cyclic permu-
tation, and neglecting all terms that contain the ratio P/p at a power
higher than the third, we obtain

Xnu + Y"v + an + %? (4282 + P92 + C2(?)

—10k£§u?§2+.+.)+20k§§u¢2+.+.)2.

If ve integrate over the sphere and take into account that

J ds = 4kr ,

L et
'y
]
59
»
I

- J 12ds = J (ds = Axhe
J £ds = I 7ids = I (4ds = %xﬂﬁ ,
J 72(2ds = J (%%s = J £rPds = %Nﬂﬁ '
J (4€2 + B2 + C(2)%ds = f%zﬂ6(42 + P+ ),

we obtain
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Q) v = Sk - Semke - 2k(V - @) [31]

vhere we have put

6 =42 + B2 + (2, [32]
%133 =¥
and
%TFB =& .

If the suspended sphere were not present (& = 0), we would obtain for the
energy consumed in the volume V¥

(7a) Wy = 262k .

Thus, the presence of the sphere decreases the energy consumed by 2824%. It

is noteworthy that the effect of the suspended sphere on the quantity of [33]
energy consumed is exactly the same as it would be if the presence of the

sphere would not modify the motion of the liquid around it at all.

§2. Calculation of the coefficient of viscosity of a liquid in which very
many irregulerly distribuled small spheres are suspended

In the previous section we have considered the case where in a region
G, of the order of magnitude defined earlier, there is suspended a sphere that
is very small compared with that region, and we have investigated how this
sphere affects the motion of the liquid. We are now going to assume that the
region ¢ contains infinitely many randomly distributed spheres of equal
radius, and that this radius is so small that the combined volume of all the
spheres is very small compared with the region ¢. Let the number of spheres
per unit volume be =2, where, up to negligibly small terms, = is constant
throughout the liquid.

Again, we start off from the motion of a homogeneous liquid without
suspended spheres and consider again the most general motion of dilatation.
If no spheres are present, an appropriate choice of the coordinate system will
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permit us to represent the velocity components uy, vy, wy, at the arbitrary
point =z, y, z of the region ¢ Dby the equations

u = 4z ,
v = By »
wy = Cz ,
where
F+B+C=0.

(341 A sphere suspended at point =z, y, 2z will affect this motion in the manner
evident from equation (6). Since we choose the average distance between
neighboring spheres to be very large compared with the radius, and since
consequently the additional velocity components arising from all the suspended
spheres are very small compared with w,, 75, wy, we obtain for the velocity
components @, v, w 1in the liquid, when taking into consideration the
suspended spheres and neglecting terms of higher orders,

P3 & (462 + B2+ ((2)
B 5 v Sy v v
u = dz- 2{753 pz
5 ps SUEH B+ C0) B0 4G,
T A e Vo
P3 oy (A€2+ Bp2+ C(2)
_ 5 v''u v v
v = By- z {7 ;Z I3
(8) s ps 7, (AE2+ B2+ 0C2) 5 By
DA A T R
P (€2 B2+ OC2)
5 vy v v
[35] w=(z-
2 [7 ﬁz oy
s s GUE B0 P,
T A e ¥
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vhere the sum is to be extended over all spheres of the region G and where
we have put

I—Iu,

N,=¥- Y, Py=lv*t Tyt
Cu =% =8, «

Caal
X
1}

T, ¥, 2, are the coordinates of the centers of the spheres. Furthermore,

from equations (7) and (7a) we conclude that, up to infinitesimally small
quantities of higher order, the presence of each sphere results in a decrease

of heat production by 262k per unit time and that the energy converted to [36]

heat in the region € has the value

¥ = 26% - 20629
per unit volume, or

(7b) ¥=268%(1 - ¢) ,

where ¢ denotes the fraction of the volume that is occupied by the spheres.

Equation (7b) gives the impression that the coefficient of viscosity of [37]
the inhomogeneous mixture of liquid and suspended spheres (from now on briefly
called "mixture") under investigation is smaller than the coefficient of
viscosity k of the liquid. However, this is not so, since 4, B, { are not
the values of the principal dilatations of the liquid motion represented by
equations (8); we will call the principal dilatations of the mixture 4*, B*,
¢*. For reasons of symmetry, it follows that the principal dilatation
directions of the mixture are parallel to the directions of the principal
dilatations 4, B, (, i.e., to the coordinate axes. If we write equations (8)
in the form

u = Az + 2 8,
v =By + 2 v,
z=02+ 2 v,

we obtain



[38]

[39]
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bu bu
é
L [3¥Jx=o bk z [35£]z=0= ol 2 [EE§JI=0 .

If we exclude the immediate surroundings of the individual spheres from
consideration, we can omit the second and third terms of the expressions for
%, v, v and thus obtain for z =y =2=0:

pP3 z, (Az2 + ﬂy2 + CkQ)

5
v = - I »
v 2 s rg
() 5 P ¥, (112 + By2 + 6%2)
v = -5 g
v 2 ry rg
5 (Az2 + By2 + Cz’)
by =-3 ?7 rg

where we have put

"

T, |zL + yz + 23 >0 .
We extend the summation over the volume of a sphere X of very large radius
R whose center lies in the coordinate origin. Further, if we imagine the

irregularly distributed spheres as being uniformly distributed and replace the
sum by an integral, we obtain

. bu,
F=4-1 jK 35; dz dy dz, ,
v
=d-s[L24s,
%

where the last integral i1s to be extended over the surface of the sphere KX.
Taking into account (9), we find

A*

4 - § Rg z§(4zg + Byg + Czf)ds ,

i

4~ 03 Pod = 401 - ) .
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Analogously,
B*
c*

B(l "P) 1)
(1 - ) .

n

n

If we put
§%2 = f*2 4 pF2 4 (*2

then we have, neglecting infinitesimally small terms of higher order,

6*2 = §2(1 - 2¢) .
We found for the development of heat per unit time and volume

P = 28%(1 - o) .
If k* denotes the coefficient of viscosity of the mixture, we have

be = 28%2* |
With neglect of infinitesimal quantities of higher order, the last three
equations yield
¥ = k(1 + o) .

Thus we obtain the following result:

If very small rigid spheres are suspended in a liquid, the coefficient
of internal friction increases by a fraction that is equal to the total volume
of the spheres suspended in unit volume, provided that this total volume is
very small.

§3. On the volume of a dissolved substance whose molecular volume is
large compared with that of the solvent

Consider a dilute solution of a substance that does not dissociate in
the solution. A molecule of the dissolved substance shall be large compared
with a molecule of the solvent and shall be considered as a rigid sphere of

[40]

[41]

[42]

[43]

[44]



[45]

[46]

[47]

[481]

[49]
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radius P. In that case we can apply the result obtained in §2. If F&*
denotes the coefficient of viscosity of the solution and k£ that of the pure
solvent, we have

%; =1+¢,

where ¢ 1is the total volume of the molecules per unit volume of the
solution.

We wish to calculate ¢ for a 1/ aqueous solution of sugar. According
tc Burkhard's observations (Landolt and Bérnstein Tables), £*/k = 1.0245 (at
20°C) for a 1% aqueous sugar solution, hence ¢ = 0.0245 for (almost exactly)
0.01 g of sugar. Thus, one gram of sugar dissolved in water has the same
effect on the coefficient of viscosity as do small suspended rigid spheres of
a total volume of 2.45 cm3. This consideration neglects the effect exerted on
the internal friction of the solvent by the osmotic pressure resulting from
the dissolved sugar.

Let us remember that 1 g of solid sugar has a volume of 0.61 cm3. This
same volume is also found for the specific volume s of sugar in solution if
onc considers the sugar solution as a mizture of water and sugar in dissolved
form. T.e., the density of a 1% aqueous sugar solution (referred to water of
the same temperature) at 17.5° is 1.00388. Hence we have (neglecting the
difference between the density of water at 4° and at 17.5°)

mtlm-s-gZ‘ 0.99 + 0.01 s ,

and thus
s = 0.61.

Thus, while the sugar solution behaves as a mixture of water and solid
sugar with respect to its demsity, the effect on internal friction is four
times larger than that which would result from the suspension of the same
amount of sugar. It seems to me that from the point of view of the molccular
theory, this result can hardly be interpreted otherwise than by assuming that
the sugar molecule in the solution impedes the mobility of the water in its
immediate vicinity, so that an amount of water whose volume is about three
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times larger than the volume of the sugar molecule is attached to the sugar [50]
molecule.

Hence we may say that a dissolved molecule of sugar (i.e., the molecule
together with the water held by it) behaves in the hydrodynamic sense as a
sphere with a volume of 2.45-342/N cm3, where 342 is the molecular weight of [51]
sugar and N is the number of real molecules in one gram-molecule.

§4. On the diffusion of an undissociated substance in a liquid solution

Let us consider a solution of the kind considered in §3. If a force K
acts upon the molecule, which we consider as a sphere of radius P, the
molecule will move with a velocity w, which is determined by P and the
coefficient of viscosity k& of the solvent, since we have the equation!

(1) w=gho .

We use this relation to calculate the coefficient of diffusion of an undis-
sociated solution. If p denotes the osmotic pressure of the dissolved

substance, which is to be regarded as the only motion-producing force in the

dilute solution under consideration, then the force acting in the direction of

the JX-axis on the dissolved substance per unit volume of the solution equals
-6pféz. If there are p grams in a unit volume, and m is the molecular [53]
weight of the dissolved substance and ¥ the number of real molecules in one
gram-molecule, then (p/m)-¥ 1is the number of (real) molecules in the unit

volume, and the force exerted on the molecule by virtue of the concentration
gradient is

5
(2) rr:-ﬂ”'”g.

If the solution is sufficiently diluted, the osmotic pressure is given by the
equation

1G. Kirchhoff, Vorlesungen uber Hechanik. 26.Vorl. [Lectures on Mechanics, (52}
Lecture 26], equation (22).
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(3) p= % T,

vhere T is the absolute temperature and R = 8.31-107. From equations (1),
(2) and (3) we obtain for the migration velocity of the dissolved substance

_ AT 11§
V=GR TP b
Finally, the amount of substance passing per unit time through a unit
cross section in the direction of the f-axis is

T 1
(4) 0=
Hence we obtain for the coefficient of diffusion 2

D= RT 1 )
6k ~ NP

Thus, from the coefficient of diffusion and the coefficient of viscosity of
the solvent we can calculate the product of the number ¥ of real molecules
in one gram-molecule and the hydrodynamically effective molecular radius P.

In this derivation the osmotic pressure has been treated as a force
acting on the individual molecules, which obviously does not agree with the
point of view of the kinetic molecular theory, since according to the latter
the osmotic pressure in the case under consideration has to be conceived as an
apparent force only. However. this difficulty disappears when one considers
that the (apparent) osmotic forces which correspond to the concentration
differences in the solution may be kept in (dynamic) equilibrium with numeric-
ally equal forces acting on the individual molecules in the opposite direc-
tion, which can easily be realized on the basis of thermodynamics.

The osmotic force acting on the unit mass - L] gg can be counter-

balanced by the force -r, (exerted on the individual dissolved molecules) if

18 _
"% I’z =0 .
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Thus, if one imagines that the dissolved substance per unit mass 1is
acted upon by two force systems Pz and —l’z that balance each other, then
—PI counterbalances the osmotic pressure and only the force PI, which is
numerically equal to the osmotic pressure, remains as the cause of motion.
The difficulty mentioned above has thus been eliminated.!

§85. Determination of the molecular dimensions with the help of the
relations oblained

We found in §3

%; =l+p=1+1n - % B, [57]

where a 1is the number of dissolved molecules per unit volume and P is the
hydrodynamically effective radius of the molecule. If we take into account
that

B_p
T m

¥

where p denotes the mass of the dissolved substance per unit volume and m
its molecular weight, we obtain

_ 3 m(k* [58]
””“-z;p[r 1]'
On the other hand, we found in §4 that

_ RT 1
M=k D -

These two equations enable us to calculate separately the quantities P and
¥, of which N must turn out to be independent of the nature of the solvent,
the dissolved substance, and the temperature, if our theory corresponds to the
facts.

1A detailed presentation of this line of reasoning can be found in Ann. d. [56]
Phys. 17 (1905): 549.
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Ve will carry out the calculation for an aqueous solution of sugar.
From the data on the internal friction of the sugar solution cited earlier, it
{follows that for 20°C
NP3 = 200 .

According to experiments of Graham (calculated by Stefan), the
coefficient of diffusion of sugar in water is 0.384 at 9.5°C, if the day is
chosen as the unit of time. The viscosity of water at 9.5° is 0.0135. Ve
will insert these data in our formula for the coefficient of diffusion, even
though they have been obtained using 10% solutions, and a strict validity of
our formula cannot be expected at such high concentrations. We obtain

NP = 2.08-1016 |

Neglecting the diffcrences between the values of P at 9.5° and 20°,
the values found for NP3 and NP yicld

P=99x10%cm,
N=2.1x 1023 ,

The value found for ¥ shows satisfactory agreement in its order of
magnitude with values found for this quantity by other methods.

Bern, 30 April 1905.
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Doc. 16
ON THE MOVEMENT OF SMALL PARTICLES SUSPENDED IN STATIONARY
LIQUIDS REQUIRED BY THE MOLECULAR-KINETIC THEORY OF HEAT
by A. Einstein
[Annalen der Physik 17 (1905): 549-560]

It will be shown in this paper that, according to the molecular-kinetic
theory of heat, bodies of microscopically visible size suspended in liquids
must, as a result of thermal molecular motions, perform motions of such
magnitude that these motions can easily be detected by a microscope. It is
possible that the motions to be discussed here are identical with the
so-called "Brownian molecular motion"; however, the data available to me on
the latter are so imprecise that I could not form a definite opinion on this
matter.

If it is really possible to observe the motion to be discussed here,
along with the laws it is expected to obey, then classical thermodynamics can
no longer be viewed as strictly valid even for microscopically distinguishable
spaces, and an exact determination of the real size of atoms becomes possible.
Conversely, if the prediction of this motion were to be proved wrong, this
fact would provide a weighty argument against the molecular-kinetic conception
of heat.

§1. On the osmotic pressure attributable to suspended particles

Let 2z gram-molecules of a nonelectrolyte be dissolved in the partial
volume F* of a liquid of total volume V. If the volume F* is separated
from the pure solvent by a wall that is permeable to the solvent but not to
the dissolved substance, then this wall is subjected to the so-called osmotic
pressure, which at sufficiently large values of F*/z satisfies the equation

pV* = RTz.

1]

[2]

[31



[4]
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But if instead of the dissolved substance, the partial volume F* of
the liquid contains small suspended bodies that likewise cannot pass through
the solvent-permeable wall, then according to the classical theory of thermo-
dynamics we should not expect—at least if we neglect the force of gravity,
which does not interest us here—that a force be exerted on the wall; because
according to the customary conception, the "free energy" of the system does
not seem to depend on the position of the wall and of the suspended bodies,
but only on the total masses and properties of the suspended substance, the
liquid, and the wall, as well as on the pressure and temperature. To be sure,
the energy and entropy of the interfaces (capillary forces) should also be
considered in the calculation of the free energy: but we can disregard them
since the changes in the position of the wall and the suspended bodies
considered here shall proceed without changes in the size and condition of the
contact surfaces.

But from the standpoint of the molecular-kinetic theory of heat we are
led to a different conception. According to this theory, a dissolved molecule
differs from a suspended body in size alone, and it is difficult to see why
suspended bodies should not produce the same osmotic pressure as an equal
number of dissolved molecules. We will have to assume that the suspended
bodies perform an irregular, even though very slow, motion in the liquid due
to the liquid's molecular motion; if prevented by the wall from leaving the
volume F*, they will exert forces upon the wall exactly as dissolved
molecules do. Thus, if = suspended bodies are present in the volume V¥,
i.e., /¥ =v in the unit volume, and if the separation between neighboring
bodies is sufficiently large, there will correspond to them an osmotic
pressure p of magnitude

_RT'n _ RT,
o

where ¥ denotes the number of true molecules per gram-molecule. It shall be
shown in the next section that the molecular-kinetic theory of heat does
indeed lead to this broader conception of osmotic pressure.
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§2. Osmolic pressure from the standpoint of lhe
molecular-kinetic theory of heat!

1f PyPy---Py are state variables of a physical system that determine
completely the system's instantaneous state (e.g., the coordinates and
velocity components of all the atoms of the system), and if the complete
system of the equations of change of these variables is given in the form

dp,,
T = (Pyeepp) (v = 1,2,...0),

dy
where 2 353 = 0, then the entropy of the system is given by the expression [6]
v
_ _F
S = g + 2 g J e T dpy...dp,. (71

Here T denotes the absolute temperature, F the energy of the physical

system, and £ the energy as a function of the py's. The integral is to be
extended over all combinations of values of ?, congistent with the condi-

tions of the problem. « is connected with the constant N mentioned above [8]
by the relation 2«N = R. We therefore get for the free energy F

N
F:—%Tlgje T ip,...dpp = - B 1 8.

Let us now imagine a liquid enclosed in the volume F; let the partial
volume F* of F contain n dissociated molecules or suspended bodies,
which are retained in the volume F* by a semipermeable wall; this will
affect the integration limits of the integral B entering the expressions for
S and F. Let the total volume of the dissolved molecules or suspended bodies

1Tn this section it is assumed that the reader is familiar with the author's

papers on the foundations of thermodynamics (cf. 4nn. d. Phys. 9 (1902): 417

and 11 (1903): 120). Knowledge of the papers cited and of this section of [5]
the present paper is not essential for the understanding of the present

paper's results.
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be small compared with F¥. In accordance with the theory mentioned, this
system shall be completely described by the state variables PPy

Even if the molecular picture were established down to the smallest
detail, the calculation of the integal B would be so difficult as to make an
exact calculation of F all but inconceivable. However, here we only have to
know how F dcpends on the size of the volume F* in which all the dissolved
molecules or suspended bodies (hereafter briefly called "particles") are
contained.

Let us denote by Iy Yy 2y the rectangular coordinates of the center
of gravity of the first particle, by Tos Ygr 29 those of the second, etc.,
2 Ynr %y those of the last particle, and assign to the centers of
gravity of the particles the infinitesimally small parallelepiped-shaped

and by =z

regions dzldyldz1, dzzdy2dz2...dxndyndzn, all of which shall lie in ¥F*. We
now seek the value of the integral occurring in the expression for F, with
the restriction that the centers of gravity of the particles shall lie in the
regions just assigned to them. In any case, this integral can be put into the
form

df = dzldyl...dzn.J,

where J 1is independent of dxldyl. etc., as well as of F*, i.e., of the
position of the semipermeable wall. But J is also independent of the
particular choice of the posilions of the center-of-gravity regions and of the
value of V*, as we will show immediately. For if a second system of infin-
itesimally small regions were assigned to the centers of gravity of the
particles and denoted by dridyidzi, drédyédzé...dz;dy; dz;, and if these
regions differed from the originally assigned ones by their position alone,
but not by their size, and if, likewise, all of them were contained in F¥*, we
would similarly have

dB' = dzidyi...dz;.J',
where
dzldyl...dzn = dzidyi...dz;.
Hence,

a _J
ar - J
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But from the molecular theory of heat, presented in the papers cited!,
it can easily be deduced that dB/B and dB'/B are equal to the probabili-
ties that at an arbitrarily chosen moment the centers of gravity of the
particles will be found in the regions (dzl...dzn) and (dzi...dz;),
respectively. If the motions of the individual particles are (in sufficient
approximation) independent of each other, and the liquid is homogeneous and no
forces act upon the particles, then the probabilities corresponding to the two
systems of regions must be the same if the size of the regions is the same, so
that we have

dp _ dp'
T B

But it follows from this equation and the one preceding it that
J =7,

This proves that J does not depend on either F* or Tys Yp--- 2y
Integrating, we get

B = J szl...dzu = Jr",
and from that

T
F=- %r {lg J + n 1g I*}
and

R A & A 22 (1o

This consideration demonstrates that the existence of osmotic pressure
is a consequence of the molecular-kinetic theory of heat, and that, according
to this theory, at great dilutions numerically equal quantities of dissolved
molecules and suspended particles behave completely identically with regard to
osmotic pressure.

'A. Binstein, 4an. d. Phys. 11 (1903): 170. (1
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83. Theory of diffusion of small suspended spheres

Suppose that suspended particles are randomly distributed in a liquid.
We wish to investigate their state of dynamic equilibrium under the assumption
that a force K, which depends on the position but not on the time, acts on
the individual particles. For the sake of simplicity, we will assume that the
force is everywhere in the direction of the J-axis.

If the number of suspended particles per unit volume is v, then in the
case of thermodynamic equilibrium » is such a function of 2z that the
variation of the free energy vanishes for an arbitrary virtual displacement
8z of the suspended substance. Thus

oF = &F - 178§ = 0.

Let us assume that the liquid has a cross section 1 perpendicular to the
K-axis, and that it is bounded by the planes z =0 and =z = £. We then have

¢
8= - Jo Kvbzds

and

L 14

- v 00z _ R ov
6S-J'Olt?vaz—dz--wjoa§6:cdz.

Hence, the equilibrium condition sought is

(1) kBl g
or

Kv - gg = 0.

The last equation states that the force K& is balanced by the forces of
osmotic pressure.

Ve use equation (1) to determine the coefficient of diffusion of the
suspended substance. The state of dynamic equilibrium that we have just
considered can be conceived as a superposition of two processes proceeding in
opposite directions, namely,
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1. a motion of the suspended substance under the influence of the force
K which is exerted on each suspended particle,

2. a process of diffusion, which is to be conceived as the result of
the random motions of the particles due to thermal molecular motion.

1f the suspended particles are of spherical shape (where /7P is the
radius of the sphere) and the coefficient of friction of the liquid is k,
then the force K& imparts to the individual particle the velocity!

K
and

vk
67kP

particles pass through the unit cross section per unit time.
Further, if D denotes the coefficient of diffusion of the suspended
substance and g the mass of a particle, then

-0 Qé%!l gram

dv
DG

or

particles will pass through the unit cross section per unit time due to
diffusion. Since there should be dynamic equilibrium, we must have

vk dv _
(2) kP D=0

From the two conditions (1) and (2) found for dynamic equilibrium we can
calculate the coefficient of diffusion. We obtain

- k1
- W 6xkP

ICf., e.g., G. Kirchhoff, "Vorlesungen uber Hechanik" [Lectures on Mechanics], [15]
Lecture 26, §4.
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Thus, apart from universal constants and the absolute temperature, the
coefficient of diffusion of the suspended substance depends only on the
coefficient of friction of the liquid and the size of the suspended particles.

§4. UOn the random motion of parlicles suspended in e liquid
and their relation to diffusion

We shall now turn to a closer examination of the random motions which,
caused by thermal molecular motion, give rise to the diffusion investigated in
the last section.

Obviously, we must assume that each individual particle performs a
motion that is independent of the motions of all the other particles;
similarly, the motions of one and the same particle in different time
intervals will have to be conceived as mutually independent processes so long
as we think of these time intervals as chosen not to be too small.

¥We now introduce into the consideration a time interval 7, which shall
be very small compared with observable time intervals but still so large that
the motions performed by a particle during two consecutive time intervals 7
may be considered as mutually independent events.

Suppose, now, that a total of n particles is present in a liquid. In a
time interval 7, the JX-coordinates of the individual particles will increase
by A, where A has a different (positive or negative) value for each
particle. A certain frequency law will hold for A: the number dan of
particles experiencing a displacement lying between A and A+ dA in the
time interval 7 will be expressed by an equation of the form

dn = np(A)dA,
where

Em o(A)dA = 1,

and ¢ differs from zero for very small values of A only, and satisfies
the condition

p(8) = p(-A).
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Now we investigate how the coefficient of diffusion depends on ¢,
restricting ourselves again to the case that the number » of particles per
unit volume depends only on z and ¢.

Let v = f(z,t) be the number of particles per unit volume; we then
calculate the distribution of the particles at time ¢+ 7 from their
distribution at time ¢. From the definition of the function ¢(A) we can
easily obtain the number of particles found at time ¢+ 7 between two planes
perpendicular to the f-axis with abscissas =z and z+ dz. We obtain

’ flz + A)p(A)dA.

=00

flz,t + 7)dz = dz. JA

But since 7 1is very small, we can put

flz,t + 1) = f(z,8) + 7 g{ .

Further, we expand f(z + A,{) in powers of A:

flz + 8s0) = f(z,0) + 8 QL0 DL BLE8) o g,

We can perform this expansion under the integral since only very small values
of A contribute anything to the latter. We obtain

+00 +00 +00
f+ %.‘r = f. @(A)dA + %j Ap(A)dA + g;l_{ -A2ilp(A)dA...
& LB ™

On the right-hand side, the second, fourth, etc., terms vanish since p(z) =
¢(-z), while among the first, third, fifth, etc., terms, each subsequent term
is very small compared with the one preceding it. From this equation we get,
by taking into account that

00

J e(A)dh = 1,

=
putting

1 r: —A;go(A)dA =D,

[17]
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and only considering the first and third term of the right-hand side:

(1) d-08f.

This is the familiar differential equation for diffusion, and /7 can be
recognized as the diffusion coefficient.

Another important consideration can be linked to this development. We
assumed that all the individual particles are referred to the same coordinate
system. However, this is not necessary since the motions of the individual
particles are mutually independent. We will now refer the motion of each
particle to a coordinate system whose origin coincides at time ¢ = 0 with
the position of the center of gravity of the particle in question, with the
difference that f(z.!)dz now denotes the number of particles whose
X-coordinate has ¢ncreesed between the times ¢ =0 and ¢ = ¢ by a quantity
lying between z and =z + dz. Thus, the function f varies according to
equation (1) in this case as well. Further, it is obvious that for z 2 0 and
t = 0 we must have

+00
flact] =0 and j Flz )z = n.

The problem, which coincides with the problem of diffusion from one point
(neglecting the interaction between the diffusing particles), is now
completely determined mathematically; its solution is

z‘?
Y/
fz,0) = 2 &
{0 [T

The frequency distribution of the changes of position occurring in the
arbitrary time { is thus the same as the distribution of random errors,
which was to be expected. What is of importance, however, is how the constant
in the exponent is related to the coefficient of diffusion. With the help of
this equation we now calculate the displacement Ax in the direction of the
f-axis that a particle experiences on the average, or, to be more precise, the
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square root of the arithmetic mean of the squares of displacements in the
direction of the f-axis; we get

The mean displacement is thus proportional to the square root of time.
It can easily be shown that the square root of the mean of the squares of the

total displacements of the particles has the value AIIE.

§5. Formula for the mean displacement of suspended particles.
A new method of determining the true size of atoms

In §3 we found the following value for the coefficient of diffusion D of
a substance suspended in a liquid in the form of small spheres of radius P:

o iE 1
- N 6rkP

Further, we found in §4 that the mean value of the displacements of the
particles in the direction of the Xf-axis in time (¢ equals

Az = {201

Ag = {7‘J7T 3%?? :

This equation shows how Az must depend on 7T, k, and P.

We now wish to calculate the magnitude of Ax for one second if N is
taken to be 6-1023 in accordance with the results of the kinetic theory of [20]
gases; water at 17°C (k = 1.35-102) shall be chosen as the liquid, and the [21]
diameter of the particles shall be 0.001 mm. We obtain (22]

Eliminating D, we get
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Az = 8-10% cm = 0.8 micron.

Thus, the mean displacement in 1 min. would be about 6 micromns.
Conversely, the relation found can be used for the determination of N.
We obtain

N_ t'ﬂT
_xgmp.

Let us hope that a researcher will soon succeed in solving the problem
posed here, which is of such importance in the theory of heat!

Bern, May 1905. (Received on 11 May 1905)
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Doc. 17
Review of K. F. SLOTTE, "On the Heat of Fusion" ("Uber die Schmelzwirme,"
Finska Vetenskaps-Societeten. Ofversigt af Forhandlingar 47, no. 7
(1904): 1-8)
[Beiblitter zu den Annalen der Physik 29 (1905): 623]

The author bases himself on a relation between the heat of fusion £,
the (absolute) melting temperature 1&, and the specific heat at constant
temperature c¢_, which he had derived earlier by elementary considerations
based on molecular theory, and which is expressed approximately by the formula
¢ = 0.382¢ Tl‘ This formula proves to be valid with rough approximation for [
elements as well as for compounds. A few substances for which the formula
does not hold even approximately (sulfur, phosphorus) are also presented.
Incidentally, it should be noted that up to the numerical value of the
constant, the relation presented, extended to the solid aggregation state, is
a consequence of the law of corresponding states. Finally, a molecular-
theoretical consideration, which shall not be presented here, leads the author
to the view that one obtains the best agreement of the theory with experience
when one ascribes linear harmonic oscillations to the atoms of simple solids. [2]

Doc. 18
Review of K. F. SLOTTE, "Conclusions Drawn from a Thermodynamic Equation"
("Folgerungen aus einer thermodynamischen Gleichung," Finska
Vetenskaps-Societeten. Dfversigt af Forhandlingar 47, no. 8 (1904): 1-3)
[Beiblatter zu den Annalen der Physik 29 (1905): 629]

Several conclusions regarding the behavior of bodies near the absolute
zero of the temperature are drawn from the familiar equation

(&, - 1#, g
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under the totally unexplained assumption that (dﬂ/dv)T has finite values at

infinitesimally small values of T.

Doc. 19
Review of M. E. MATHIAS, "The Constant a of Rectilinear Diameters and the
Laws of Corresponding States" ("La constante a4 des diamétres rectilignes
et les lois des ¢tats correspondents (2e mémoire)," Journal de Physique
theorique et appliquée 4 (Series 4) (1905): 77-91)
[Beiblatier zu den Annalen der Physik 29 (1905): 634]

If y denotes a function of the density of a liquid and its saturated
vapor that depends linearly on the temperature, which has already been
examined by the author in previous articles (J. de Phys. (3) 8 (1899): 407,
and ibid. (3) 2 (1893): 5), then the relation g = A(1+a{1+m]) holds, where
A dcnotes the critical density, m the temperature, with the critical temp-
erature taken as the unit, and @ a constant. If the law of corresponding
states were strictly fulfilled, e would have to be a universal constant.
Based on experimental data on 37 substances it is shown that this is not the
case. While for the majority of the examined substances @ deviates only
little from unity, this quantity has considerably smaller values for gases
difficult to liquefy, the value for hydrogen being 0.236. The author finds
novw that even though the quantity & = af{# (8 = absolute critical temper-
ature) is not a universal constant either, it has nevertheless almost the same
value for substances of similar chemical constitution; he proposes that
substances be divided into "series" (substances with almost equal &) and
"groups" (substances with approximately equal a).
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Doc. 20
Review of M. PLANCK, "On Clausius' Theorem for Irreversible Cycles and on
the Increase of Entropy" (Philosophical Magazine and Journal of Science 9
(Series 6) (1905): 167-168)
[Beiblitter zu den Annalen der Physik 29 (1905): 635]

In response to some objections raised by Mr. Orr (Bezbl. 29, p. 237)
against the treatment of the fundamental laws of thermodynamics presented by
the author, the author explains that he used the expressions "reversible" and
"irreversible" in the same sense as Clausius. He denies that he applied the
above concepts in a way that differed from that in which he defined them. The
author admits that one cannot talk about the temperature and density of any
small parts of a tumultuously moving gas, and about their entropy, unless one
vants to make use of the kinetic theory of gases. Finally, he finds that the
line of proof proposed by Mr. Orr coincides in principle with that presented
by Lord Kelvin and that it contains circular reasoning.

Doc. 21
Review of E. BUCKINGHAM, "On Certain Difficulties Which are Encountered
in the Study of Thermodynamics" (Philosophical Hagazine and Journal of
Science 9 (Series 6) (1905): 208-214)
[Beiblitter zu den Annalen der Physik 29 (1905): 635]

The author starts from an article by Mr. Orr (Beibl. 29, p. 237) and
expresses his agreement with the results of the critical considerations
contained in that article. Further, he gives expression to his conviction
that it is impossible to derive the Clausius inequality j d@/T < 0 from the

second law—as formulated by Lord Kelvin—without further assumptions. The
article also contains some critical remarks on Mr. Orr's paper.

(1]

[2]

[3]

[4]

[1]
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Doc. 22
Review of P. LANGEVIN, "On a Fundamental Formula of the Kinetic Theory"
("Sur une formule fondamentale de la théorie cinétique," Academie des
Scicnces (Paris). Comptes rendus 140 (1905): 35-38)
[Beiblattier zu den Annalen der Physik 29 (1905): 640]

The author reports that, assuming arbitrary laws of action between
molecules as well as external forces acting upon the molecules, he has solved
exactly the problem of diffusion of two gases by the Maxwell-Kirchhoff method,
requiring only a graphic integration. For the case that the molecules are
elastic spheres which are only infinitesimally deformable, and that external
forces do not act on the molecules, the author obtains for the diffusion of
one gas (molecular mass ml) in the other gas (molecular mass m)

p-—3

o y| Xhmm
1602H EITE;

Here I denotes the diffusion constant, ¢ the sum of the radii of two
unlike molecules, & the number of molecules "a" per unit volume, 4
three-quarters of the reciprocal of the mean value of the energy of the
translational motion of one molecule. Boltzmann found by the Clausius
approximation method

2
b= —=— |
3ro2M{zh(m+ my)

The two formulas differ especially strongly when m and m; are very

different. It is further reported that at constant pressure the diffusion
coefficient varies as 13/2 +2/n when two unlike molecules repel each other
with a force that is inversely proportional to the =2 + 1st power of the
distance between the centers of the molecules. The author has also applied
the theory to changes in position of electric charges in gases. He found that



DoC. 22 139

the assumption of polarizing forces exerted by the electrical particle on the
neutral molecules does not suffice for the explanation of their small mobil-

ity, but that, in dry air and at normal temperature, one must ascribe to the
negative ions a diameter about twice as large, and to positive ions one about
three times as large as that ascribed to the neutral molecules. For flames,

the author finds that it is to be concluded from the empirical results that

the mass of the negative electricity carriers is about a thousand times

smaller than that of the positive ones, and that the mass of the latter equals
that of the hydrogen atom; hence, the former corresponds to cathode rays, the
latter to Goldstein rays. (7]
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Doc. 23
ON THE ELECTRODYNAMICS OF MOVING BODIES
by A. Einstein
[dnnalen der Physik 17 (1905): 891-921]

It is well known that Maxwell's electrodynamics—as usually understood
at present—mwhen applied to moving bodies, leads to asymmetries that do not
seem to attach to the phenomena. Let us recall, for example, the electro-
dynamic interaction between a magnet and a conductor. The observable phenome-
non depends here only on the relative motion of conductor and magnet, while
according to the customary conception the two cases, in which, respectively,
either the one or the other of the two bodies is the one in motion, are to be
strictly differentiated from each other. For if the magnet is in motion and
the conductor is at rest, there arises in the surroundings of the magnet an
electric field endowed with a certain energy value that produces a current in
the places where parts of the conductor are located. But if the magnet is at
rest and the conductor is in motion, no electric field arises in the
surroundings of the magnet, while in the conductor an electromotive force will
arise, to which in itself there does not correspond any energy, but which,
provided that the relative motion in the two cases considered is the same,
gives rise to electrical currents that have the same magnitude and the same
course as those produced by the electric forces in the first-mentioned case.

Examples of a similar kind, and the failure of attempts to detect a
motion of the earth relative to the "light medium", lecad to the conjecture
that not only in mechanics, but in electrodynamics as well, the phenomena do
not have any properties corresponding to the concept of absolute rest, but
that in all coordinate systems in which the mechanical equations are valid,
also the same electrodynamic and optical laws are valid, as has already been
shown for quantities of the first order. We shall raise this conjecture
(vhose content will be called "the principle of relativity" hereafter) to the
status of a postulate and shall introduce, in addition, the postulate, only
seemingly incompatible with the former one, that in empty space light is
alvays propagated with a definite velocity F which is independent of the
state of motion of the emitting body. These two postulates suffice for
arriving at a simple and consistent electrodynamics of moving bodies on the
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basis of Maxwell's theory for bodies at rest. The introduction of a "light

ether" will prove superfluous, inasmuch as in accordance with the concept to [6]

be developed here, no "space at absolute rest" endowed with special properties

will be introduced, nor will a velocity vector be assigned to a point of empty

space at which electromagnetic processes are taking place. [71
Like every other electrodynamics, the theory to be developed is based on

the kinematics of the rigid body, since assertions of each and any theory

concern the relations between rigid bodies (coordinate systems), clocks, and

electromagnetic processes. Insufficient regard for this circumstance is at

the root of the difficulties with which the electrodynamics of moving bodies

must presently grapple.

I. Kinemalic Pari
§1. Definition of simulianeity

Consider a coordinate system in which the Newtonian mechanical equations
are valid. To distinguish it verbally from the coordinate systems that will (8]
be introduced later on, and to visualize it more precisely, we will designate
this system as the "system at rest."

If a material point is at rest relative to this coordinate system, its
position relative to the latter can be determined by means of rigid measuring
rods using the methods of Euclidean geometry and can be expressed in Cartesian
coordinates.

If we want to describe the motion of a material point, we give the
values of its coordinates as a function of time. However, we should keep in
mind that for such a mathematical description to have physical meaning, we
first have to clarify what is to be understood here by "time." We have to
bear in mind that all our propositions involving time are always propositions
about simultaneous events. If, for example, I say that "the train arrives
here at 7 o'clock," that means, more or less, “"the pointing of the small hand
of my clock to 7 and the arrival of the train are simultaneous events."!

lYe shall not discuss here the imprecision that is inherent in the concept of
simultaneity of two events taking place at (approximately) the same location
and that also must be surmounted by an abstraction.
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It might seem that all difficulties involved in the definition of "time"
could be overcome by my substituting "position of the small hand of my clock"
for "time." Such a definition is indeed sufficient if time has to be defined
exclusively for the place at which the clock is located; but the definition
becomes insufficent as soon as series of events occurring at different
locations have to be linked temporally, or—what amounts to the same—events
occurring at places remote from the clock have to be evaluated temporally.

To be sure, we could content ourselves with evaluating the time of the
events by stationing an observer with the clock at the coordinate origin, and
having him assign the corresponding clock-hand position to each light signal
that attests to an event to be evaluated and reaches him through empty space.
But as we know from experience, such an assignment has the drawback that it is
not independent of the position of the observer equipped with the clock. VWe
arrive at a far more practical arrangement by the following consideration.

If there is a clock at point 4 of space, then an observer located at 4
can evaluate the time of the events in the immediate vicinity of 4 by finding
the clock-hand positions that are simultaneous with these events. If there is
also a clock at point F—we should add, "a clock of exactly the same consti-
tution as that at 4"—then the time of the events in the immediate vicinity
of B can likewise be evaluated by an observer located at B. But it is not
possible to compare the time of an event at 4 with one at # without a further
stipulation; thus far we have only defined an "4-time" and a "B-time" but not
a "time" common to 4 and #. The latter can now be determined by establishing
by definiiion that the "time" neceded for the light to travel from 4 to B is
equal to the "time" it needs to travel from B to 4. For, suppose a ray of
light leaves from 4 toward B at "4-time" ty> is reflected from B toward £ at
"B-time" tys and arrives back at 4 at "A-time" th. The two clocks are
synchronous by definition if

tB = tl = th = tB.

We assume that it is possible for this definition of synchronism to be
free of contradictions, and to be so for arbitrarily many points, and that the
following relations are therefore generally valid:
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1. If the clock in B is synchronous with the clock in 4, then the clock
in 4 is synchronous with the clock in &.

2. If the clock in 4 is synchronous with the clock in B as well as with
the clock in €, then the clocks in § and € are also synchronous relative to
each other.

With the help of some physical (thought) experiments, we have thus laid
down what is to be understood by synchronous clocks at rest that are situated
at different places, and have obviously obtained thereby a definition of
"synchronous" and of "time." The "time" of an event is the reading obtained
simultaneously with the event from a clock at rest that is located at the
place of the event and that for all time determinations is in synchrony with a
specified clock at rest.

Based on experience, we also postulate that the quantity

278

Al =
-y

is a universal constant (the velocity of light in empty space).

It is essential that we have defined time by means of clocks at rest in
a system at rest; because it belongs to the system at rest, we designate the
time just defined as "the time of the system at rest."

§2. On the relativity of lengths and times

The considerations that follow are based on the principle of relativity

and the principle of the constancy of the velocity of light, two principles

that we define as follows: [11]
1. The laws governing the changes of the state of any physical system

do not depend on which one of two coordinate systems in uniform translationmal

motion relative to each other these changes of the state are referred to. [12]
2. Each ray of light moves in the coordinate system "at rest" with the

definite velocity F independent of whether this ray of light is emitted by a

body at rest or a body in motion. Here, [13]
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... _ light path
velocity = time interval °’

vhere "time interval" should be understood in the sense of the definition in
§1.

Let there be given a rigid rod at rest; its length, measured by a
measuring rod that is also at rest, shall be £. We now imagine that the axis
of the rod is placed along the f-axis of the coordinate system at rest, and
that the rod is then set in uniform parallel translational motion (velocity #)
along the X-axis in the direction of increasing z. We now seck to determine
the length of the moving rod, which we imagine to be obtained by the following
two operations:

(a) The observer co-moves with the above-mentioned measuring rod and
the rod to be measured, and measures the length of the rod directly, by
applying the measuring rod exactly as if the rod to be measured, the observer,
and the measuring rod were at rest.

(b) Using clocks at rest that are set up in the system at rest and are
synchronous in the sense of §1, the observer determines the points of the
system at rest at which the beginning and the end of the rod to be measured
are found at some given time ¢. The distance between these two points,
measured by the rod used before, which in the present case 1s at rest, 1s also
a length, which can be designated as the "length of the rod."

According to the principle of relativity, the length to be found in
operation (a), which we shall call "the length of the rod in the moving
system," must equal the length ¢ of the rod at rest.

We will determine the length to be found in operation (b), which we
shall call "the length of the (moving) rod in the system at rest," on the
basis of our two principles, and will find it to be different from £.

The commonly used kinematics tacitly assumes that the lengths determined
by the two methods mentioned are exactly idemtical, or, in other words, that
in the time epoch ¢ a moving rigid body is totally replaceable, as far as
geometry is concerned, by the same body when it is af rest? in a particular
position.

Further, we imagine that the two ends (4 and B) of the rod are equipped
with clocks that are synchronous with the clocks of the system at rest, i.e.,
whose rcadings always correspond to the "time of the system at rest" at the
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locations they happen to occupy; hence, these clocks are "synchronous in the
system at rest."

We further imagine that each clock has an observer co-moving with it,
and that these observers apply to the two clocks the criterion for synchronism
formulated in §1. Suppose a ray of light starts out from 4 at time! Ly is
reflected from B at time tp, and arrives back at 4 at time tk. Taking
into account the principle of the constancy of the velocity of light, we find
that

ty ~ &y = "B
B 4~V -
and
oo o T
4 B V+uv>
where /B denotes the length of the moving rod, measured in the system at
rest. The observers co-moving with the moving rod would thus find that the
two clocks do not run synchronously while the observers in the system at rest
would declare them synchronous.

Thus we see that we must not ascribe absolute meaning to the concept of
simultaneity; instead, two events that are simultaneous when observed from
some particular coordinate system can no longer be considered simultaneous
when observed from a system that is moving relative to that system.

8§3. Theory of transformation of coordinates and time from e sysiem at
rest to a system in uniform translational motion relative to 21

Let there be given two coordinate systems in the space "at rest," i.e.,
two systems of three mutually perpendicular rigid material lines issuing from
one point. Let the JX-axes of the two systems coincide and their F- and
Z-axes be parallel. EFEach system shall be supplied with a rigid measuring rod
and a number of clocks, and the two measuring rods and all the clocks of the
two systems should be exactly alike.

"Time" here means both "time of the system at rest" and "the position of the
hands of the moving clock located at the place in question."
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The origin of one of the two systems (k) shall now be imparted a (con-
stant) velocity v in the direction of increasing z of the other system
(K), which is at rest, and this velocity shall also be imparted to the
coordinate axes, the corresponding measuring rod, and the clocks. To each
time ¢ of the system at rest K there corresponds then a definite position
of the axes of the moving system, and for reasons of symmetry we may right-
fully assume that the motion of & can be such that at time ¢ ("#" always
denotes a time of the system at rest) the axes of the moving system are
parallel to the axes of the system at rest.

¥e now imagine the space to be measured both from the system at rest K
by means of the mecasuring rod at rest and from the moving system £ by means
of the measuring rod moving along with it, and that the coordinates =z, y, 2
and &, 7, ( are obtained in this way. Further, by means of the clocks at
rest in the system at rest and using light signals in the manner described in
81, the time ¢ of the system at rest is determined for all its points where
there is a clock; likewise, the time 7 of the moving system is determined
for all the points of the moving system having clocks that are at rest
relative to this system, applying the method of light signals described in §1
between the points containing these clocks.

To every system of values =, y, z, ¢ that determines completely the
place and time of an event in the system at rest, there corresponds a system
of values &, 7, (, 7 that fixes this event relative to the system £k, and
the problem to be solved is to find the system of cquations connecting these
quantities.

First of all, it is clear that these equations must be linear because of
the properties of homogeneity that we attribute to space and time.

If we put z' = z- vt, then it is clear that a point at rest in the
system k has a definite, time-independent system of values z', y, 2
belonging to it. We first determine 7 as a function of =z', y, z, and (.
To this end, we must express in equations that 7 is in fact the aggregate of
the readings of the clocks at rest in the system k&, which have been
synchronized according to the rule given in §1.

Suppose that at time Ty @ light ray is sent from the origin of the
system k along the Jf-axis to ' and is reflected from there at time T
toward the origin, where it arrives at time Tgi we then must have
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§ g+ =1
or, if we write out the arguments of the function 7 and apply the principle
of the constancy of the velocity of light in the system at rest,

%[T(O,O,O,t) + T[O;Oso'{t N 7”%l5 * Vﬁglﬁ]]] i

- z'
= T[,’L",0,0yt + M}'
From this we get, if ' 1is chosen infinitesimally small,

-1 1 Y _8r 1 9
200 - " V+0dt " F" " V-071"
or
ar . v ar _ 0
gt TV -2 d
It should be noted that, instead of the coordinate origin, we could have
chosen any other point as the starting point of the light ray, and the
equation just derived therefore holds for all values of =z', y, z.
Analogous reasoning—applied to the H and 7 axes—yields, if we
consider that light always propagates along these axes with the velocity

{77=v% wvhen observed from the system at rest,

or _
a =0
a7 _
=0

These equations yield, since 7 is a linear function,

T = a[t - ,g-g—zp x'].

where @ 1is a function ¢(v) as yet unknown, and where we assume for
brevity that at the origin of k we have ¢ =0 when 7 = 0.
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Using this result, we can easily determine the quantities &, 7, ( by
expressing in equations that (as demanded by the principle of the constancy of
the velocity of light in conjunction with the principle of relativity) light
propagates with velocity ¥ also when measured in the moving system. For a
light ray emitted at time 7 = 0 in the direction of increasing ¢, we will
bave

§ = I,
or

¢=dlt- gty

But as measured in the system at rest, the light ray propagates with velocity
¥V - v relative to the origin of k, so that

Substituting this value of ¢ in the equation for ¢, we obtain

f=aV2_—V2v5Z'.

Analogously, by considering light rays moving along the two other axes, we get

n=Vr= aV[t g 77—¥—7¢ z']

where
—¥ -y Y= 0
T =
hence
v
n=—"1¥Y
{77 =92
and
fme b
J77 =2

If we substitute for z' its value, we obtain
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-
1l

w(v)ﬂ[t -7 z],

¢ = p(v)B(z - vit),
7 = w(v)y,
¢ = ¢lv)z,
where
f=—>1

v
1~ [p

and ¢ 1s a function of v that is as yet unknown. If no assumptions are

made regarding the initial position of the moving system and the zero point of
7, then an additive constant must be attached to the right-hand sides of these

equations.

Now we have to prove that every light ray measured in the moving system
propagates with the velocity ¥, if it does so, as we have assumed, in the
system at rest; for we have not yet provided the proof that the principle of
the constancy of the velocity of light is compatible with the relativity
principle.

Suppose that at time ¢ = 7 = 0 a spherical wave is emitted from the
coordinate origin, which is at that time common to the two systems, and that
this wave propagates in the system K with the velocity V. Hence, if
(z,y,2) 1is a point just reached by this wave, we will have

22 + g2 + 22 = P2,

Ve transform these equations using our transformation equations, and,
after a simple calculation, obtain

2+ 92 + (2= 1272,
Thus, the wave under consideration is a spherical wave of propagation

velocity ¥ also when it is observed in the moving system. This proves that
our two fundamental principles are compatible.

[15]
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The transformation equations we have derived also contain an unknown
function ¢ of v, which we now wish to determine.

To this end we introduce a third coordinate system X', which relative
to the system % 1is in parallel-translational motion parallel to the axis E
such that its origin moves along the Z-axis with velocity -w». Let all three
coordinate origins coincide at time ¢ = 0, and let the time ¢' of the
system A’ be zero at ¢ =z =y =2 = 0. Ve denote the coordinates measured
in the system K' by z',y'.2' and, by twofold application of our
transformation equations, we get

t' = ol-0f-0)r + 35 €] = plop-o)t,
z' = p(-0)B(-0){¢ + vr} = plv)e(-v)z,
y' = p(-v)y = p(v)p(-v)y,
z' = p(-v)( = @(v)p(-v)z.

Since the relations between z',y',2z' and z,y,2 do not contain the
time 1, the systems K and K' are at rest relative to cach other, and it
is clear that the transformation from K to K' must be the identity
transformation. Hence,

p(v)p(-v) = 1.

Let us now explore the meaning of ¢(v). We shall focus on that portion of
the f-axis of the system £ that lies between ¢ =0, 7 =0, ( = 0, and
£E=0, 7=2¢, ( =0. This portion of the H-axis is a rod that moves
perpendicular to its axis with a velocity v relative to the system £ and
whose ends possess in £ the coordinates

|

I
@
-~

<
—
1
<
«
.
&
—
1
=]

and
Tg = vly Yy = 0, 79 = 0.
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The length of the rod, measured in K, is thus {/p(v); this establishes the
meaning of the function ¢. For reasons of symmetry it is obvious that the
length of a rod measured in the system at rest and moving perpendicular to its
own axis can depend only on its velocity and not on the direction and sense of
its motion. Thus, the length of the moving rod measured in the system at rest
does not change when v 1is replaced by -v. From this we arrive at

g 1
() = p(-v)’
or
w(v) = p(-v).

It follows from this relation and the one found before that ¢(v) nust

equal 1, so that the transformation equations obtained become [16]
T = ﬂ[t - %7 z],
£ = Bz - vt),
=19
(=2
where
p=11-1yp

§4. The physical meaning of the equations obfained concerning
moving rTigid bodies and moving clocks

We consider a rigid sphere! of radius £ that is at rest relative to [171
the moving system £ and whose center lies at the origin of k. The equation
of the surface of this sphere, which moves with velocity v relative to the
system k, is

T.e., a body possessing the shape of a sphere when investigated at rest.
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2+ g2+ (2= R
Expressed in =z, y, z, the equation of this surface at time ¢ =0 is

z2
7

A rigid body that has a spherical shape when measured in the state of rest
thus in the state of motion—observed from a system at rest—has the shape of
an ellipsoid of revolution with axes

+ 42+ 22 = R

Thus, while the Y and Z dimensions of the sphere (and hence also of
every rigid body, whatever its shape) do not appear to be altered by motion,
the X dimension appears to be contracted in the ratio 1 : {1 - (2/7)?,
i.e., the greater the value of w, the greater the contraction. At v =V,
all moving objects—observed from the system "at rest"—shrink into plane
structures. For superluminal velocities our considerations become meaning-
less; we shall see in the considerations that follow that in our theory the
velocity of light physically plays the part of infinitely great velocities.

It is clear that the same results apply for bodies at rest in a system
"at rest" that are observed from a uniformly moving system.

We further imagine that one of the clocks that is able to indicate
time ¢ when at rest relative to the system at rest and time 7 when at rest
relative to the system in motion, is placed in the origin of k and set such
that it indicates the time 7. What is the rate of this clock when observed
from the system at rest?

The quantitics =z, t, and 7, which refer to the position of this clock,
are obviously related by the equations

and
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z = vt.

r=1tl1- % =q - [1 = |1 - |§ ]t.

which shows that the clock (observed in the system at rest) is retarded each
second by (1 - {1 - v/¥Z) sec or, with quantities of the fourth and higher
orders neglected, by #(v/F)? sec.

This yields the following peculiar consequence: If at the points A4
and B of K there are located clocks at rest which, observed in a system at
rest, are synchronized, and if the clock in 4 1is transported to B along
the connecting line with velocity v, then upon arrival of this clock at #&
the two clocks will no longer be synchronized; instead, the clock that has
been transported from 4 to B will lag 4142/)? sec (up to quantities of
the fourth and higher orders) behind the clock that has been in B from the
outset, if ¢ 1is the time needed by the clock to travel from 4 to B.

¥We see at once that this result holds even when the clock moves from A4
to B along any arbitrary polygonal line, and even when the points 4 and B
coincide. (18]

If we assume that the result proved for a polygonal line holds also for
a continuously curved line, then we arrive at the following proposition: If
there are two synchronous clocks in 4, and one of them is moved along a
closed curve with constant velocity until it has returned to 4, which takes,
say, t sec, then this clock will lag on its arrival at 4 $t{v/¥)? sec
behind the clock that has not been moved. From this we conclude that a (19}
balance-wheel clock that is located at the Earth's equator must be very
slightly slower than an absolutely identical clock, subjected to otherwise
identical conditions, that is located at one of the Farth's poles.

Ve thus have

§5. The addition theorem of velocities

In the system & moving with velocity v along the X-axis of the
system K let there be a point moving according to the equation
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£ = weTs
n = wnT‘
(=0,

where ll)g and w,,} denote constants.

We seek the motion of the point relative to the system K. Introducing
the quantities =z, gy, z, [ into the equations of motion of the point by means
of the transformation equations derived in §3, we obtain

Wy + v
I—‘-"‘g‘—‘—t;
o
1+
712
_i 0
y= P wnl'
1+VZ£
z =0,

Thus, according to our theory, the law of the parallelogram of velocities
holds only in first approximation. We put

n = ] ]

2 - & 2
w wz wn

and
2y
[20] a = arctg o, ;

o should then be considered as the angle between the velocities o and w.
After a simple calculation, we obtain
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vw Sin al?

(v2 + w? + 2vw cos a) -

1+‘UIDCOS&

It is noteworthy that v and w enter the expression for the resultant velocity
in a symmetric fashion. If » too has the direction of the Jf-axis (E-axis),
we obtain

It follows from this equation that the composition of two velocities that are
smaller than V always results in a velocity that is smaller than V. For if
weput v=VF-k,and w=V -1, vhere ¥ and ) are positive and smaller

than V¥, ve get
2V - k - A

V=7 =——"5
2V—I€‘A+T

< V.

It follows further that the velocity of light ¥ cannot be changed by
compounding it with a "subluminal velocity." For this case we get

l’.:!/+ -7

1+

S

es

For the case that » and w» have the same direction, the formula for 7
could also have been obtained by compounding two transformations according to
§3. If in addition to the systems X and &k, which figure in §3, we also
introduce a third coordinate system k', which moves parallel to k& and whose
origin moves with velocity w along the axis =, we obtain relations between
the quantities =z, y, 2z, ¢ and the corresponding quantities of k' that
differ from those found in §3 only insofar as "¢" is being replaced by the

quantity
v+ w
1+

»
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from this we see that such parallel transformations form a group—as they
[21]  indeed must.
We have now derived the required propositions of the kinematics that
corresponds to our two principles, and will now proceed to show their
application in electrodynamics.

Ii. Flectrodynamic Pari
§6. Transformation of the Mazwell-Hertz equations for emply space.
On the nature of the eleclromotive forces thal arise upon molion

in a magnetic field

Let the Maxwell-Hertz equations for empty space be valid for the system
[22] at rest K, so that we have

10Y _oN o4 19 _aY 9z
Vot~ 0y 9z Vot~ 9z dy°
1Y 9oL N 104 07 oX
Yot~ 9z 9z Vot~ 9z 9z °
197 _ t?ll il 19V _03X oy
V3 a9y Vot~ dy 0z

where (X,Y,Z) denotes the vector of the electric force and (L,H,¥) that of
the magnetic force.

1f we apply the transformations derived in §3 to these equations in that
we refer the electromagnetic processes to the coordinate system introduced
there, which moves with velocity v, we obtain the following equations:

wply-Yrvl
%7% = [ 67)7] [”;7 ]
LBY - da/v



pac. 23 157

wfz ey 0 wHya 4

1 !
14 Jar - J¢ n
(]
. _aﬂ[y-%/v]_aﬂ[z+vﬂ]
¥ ar B lg 7 ’
1ap[1+.‘,’,z]_aﬂJZ+§y]_aI
7 p il ac
1aﬂ|1v-{’,y_m _aﬂ|y-{',1v|
14 T 7] ’
vhere
ﬂz 1
r

The relativity principle demands that the Maxwell-Hertz equations for
empty space also be valid in the system k if they are valid in the system
K, i.e., that the vectors of the electric and the magnetic force ((X',}',Z')
and (I',K',N')) of the moving system &k, which are defined in this system by
their ponderomotive effects on the electric and magnetic masses, respectively,
satisfy the equations

1 aX' _ aN‘ . a”‘ 1 (ﬂ' - 0}" _ (72'
VaT_ B 77;_ az— B 7.37'— - EZ— ah_ ’
1 3Y' — aL' (7”' 1 (7" . (72' 31'
V?T_ . 3—( - az— ' Paf_ - BZ_ B az—- Y
1 aZ' _ (?" (ﬂ' 1 3”' _ 31' 3]’"
737'— - az—_ i ?-ﬂ— E 73’1'_ - -637_ N a’c— B

Obviously, the two systems of equations found for the system &k must
express exactly the same thing, since both are equivalent to the Maxwell-Hertz
equations for the system K. Further, since the equations of the two systems
coincide apart from the symbols representing the vectors, it follows that the
functions occurring in the systems of equations at corresponding places must
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coincide up to a possibly wv-dependent factor ¢(v), which is common to all
functions of one system of equations and is independent of &, #, {, and 7.
The following relations will therefore be valid:

Xl

1

$(v) X, I' = p(v)l,

Y'

]

B[ - 44, o= spln s $ 7,
r=¢wmp+%ﬂ, M=¢uwh-%4.

If we now invert this sysiem of equations, first, by solving the
equations just oblained and, second, by applying lhe equations to the inverse
transformation (from k£ to K) which is characterized by the velocity -v, we
obtain, if we take into account that the two systems of equations so obtained
must be identical,

P(v).¥(-v) = 1.

Further, it follows for reasons of symmetry! that

#lv) = 9(-v);
thus
(o) =1,
and our equations take the form
/r' =X1 Vi -"'-L)
ro=plr-44. ¥ = 8[r+ 43,
p:ﬂV+%ﬂ, M:ﬂh-%@.

f, e.g., Y =Y=Z=10L=H#=0 and N # 0, then it is clear for reasons of
symmetry that if v changes its sign without changing its numerical value,
then F¥' too must change its sign without changing its numecrical value.
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By way of interpreting these equations, we shall add the following: Imagine a
pointlike quantity of electricity whose magnitude, measured in the system at
rest K, is "one," i.e., which, when at rest in the system at rest, exerts a [23]
force of 1 dyne on an equal quantity of electricity at a distance of 1 cnm.
According to the principle of relativity this electric mass is also of
magnitude "one" if measured in a moving system. If this quantity of
electricity is at rest relative to the system at rest, the vector (4,F,Z)
equals the force exerted on it by definition. If this quantity of electricity
is at rest relative to the moving system (at least at the instant considered),
the force exerted on it, and measured in the moving system, will equal the
vector ({',Y',Z'). Hence, the first three of the above equations can be
expressed in words in the following two ways:

1. If a pointlike unit electric pole is in motion in an electromagnetic
field, there will act on it, in addition to the electric force, an "electro-
motive force" which, if we neglect terms multiplied by the second and higher [24]
powers of /¥, equals the vector product of the velocity of motion of the
unit pole and the magnetic force, divided by the velocity of light. (01d mode
of expression.)

2. If a pointlike unit electric pole is in motion in an electromagnetic
field, the force acting on it equals the electric force present at the
location of the unit pole, which is obtained by transforming the field to a
coordinate system that is at rest relative to the unit electric pole. (New
mode of expression.)

Analogous propositions apply for "magnetomotive forces." We can see [25]
that in the theory developed, the electromotive force merely plays the role of
an auxiliary concept, whose introduction is due to the circumstance that the
electric and magnetic forces do not have an existence independent of the state
of motion of the coordinate system.

It is further clear that the asymmetry mentioned in the Introduction [26]
vhen considering the currents produced by the relative motion of a magnet and
a conductor, disappears. Questions as to the "seat" of the electrodynamic
electromotive forces (unipolar machines) also become pointless. [27]}
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§7. Theory of Doppler’s principle and of aberration

Imagine in the system X, very far from the coordinate origin, a source
of electrodynamic waves, which in a part of space containing the coordinate
origin is represented with sufficient accuracy by the equations

X= Xb sin ¢, L = LO sin ¢,

Y:}’Osin¢, ﬂ:losin¢’ ¢=w[,_az+b%+cz]

7= Zb sin ¢, N = Nb sin ¢.

Here (Xb,lb,Zb) and (Lo.ﬂb,Nb) are the vectors determining the amplitude
of the wave train, and a.b,c are the direction cosines of the wave normals.

We ask, what characterizes these waves when investigated by an observer
who is at rest in the moving system k7 — Applying the transformation
equations for electric and magnetic forces found in §6 and those for coordi-
nates and time found in §3, we obtain directly

I = Xy sin ¢, t' = Ly sin 4,
¥ = ﬂ[ro - -t,}lt’o]sin 4, p - ﬂ[ﬂo N %’,zo]sin 4
7 - ﬂ[ZO + %,yo]sin 4, ¥ = ﬂ[NO -2 ro]sin ¢

F. w‘[t _8'E +b'p+ ! ]’

where we have put

v

g' = c 5
1-a %

b = b _ ..
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From the equation for w' it follows that if an observer moves with
velocity o relative to an infinitely distant source of light of frequency
v, such that the connecting line "light source - observer" forms an angle ¢
with the observer's velocity, where this velocity is referred to a coordinate
system that is at rest relative to the light source, then v¢', the frequency
of the light perceived by the observer, is given by the equation

1-cos g L
PRl = ol 4
-7

This is Doppler's principle for arbitrary velocities. For ¢ = 0 the
equation takes the simple form

We see that, contrary to the usual conception, when v = -, then » = o. [28]
If ¢' denotes the angle between the wave normal (the direction of the

ray) in the moving system and the connecting line "light source - observer,"

the equation for o' takes the form (29]

v
cos -
1 - 7 Cos ¢

This equation expresses the law of aberration in its most general form. If
¢ = 7f2, the equation takes the simple form

cos ' = - % .



[30]

[31]
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It remains now to find the amplitude of the waves the way it appears in
the moving system. If 4 and 4' denote the electric or magnetic force in
the system at rest and in motion, respectively, we get

which for ¢ = 0 simplifies to

1_'U
pre=p 1.
1+7

It follows from the equations derived above that to an observer
approaching a light source with velocity ¥, this source would appear to have
infinite intensity.

88. Transformation of the energy of light rays.
Theory of the radiation pressure ezerted on perfect mirrors.

Since 42/8r equals the energy of light per unit volume, according to
the principle of relativity we have to consider 4'2?/8z as the light energy
in the moving system. Hence 4'2/4?2 would be the ratio of the energy of a
given light complex "measured in motion" and the same energy "measured at
rest," if the volume of a light complex were the same whether measured in K
or k. However, this is not the case. If a,b,c are the direction cosines of
the wave normal of the light in the system at rest, then the surface elements
of the spherical surface

(z - Vat)2 + (y - Vb1)2 + (z - Vet)? = B2,
which moves with the velocity of light, are not traversed by any energy; we

may therefore say that this surface permanently encloses the same light
complex. We ask for the quantity of energy enclosed by this surface as
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observed in the system k, i.e., the energy of the light complex relative to
the system k.

Observed in the moving system, the spherical surface is an ellipsoidal
surface whose equation at time 7 =0 is

CROTRIIT T

If § denotes the volume of the sphere and §' that of the ellipsoid, then a
simple calculation shows that

-

1= % cos '

s
T =

If the energy of the light enclosed by the surface under consideration is
denoted by £ when measured in the system at rest and by £' when measured
in the moving system, we obtain

E 5,35'_1—-1,)7COS¢
Az -
&4 S

’

ey
1

t-

which for ¢ = 0 reduces to the simpler formula

|17
P 1+%‘

It is noteworthy that the energy and the frequency of a light complex
vary with the observer's state of motion according to the same law.
Let the coordinate plane ¢ = 0 be a completely reflecting surface at
which the plane waves considered in the last section are getting reflected. We
ask for the light pressure exerted on the reflecting surface and the direc-
tion, frequency, and intensity of the light after reflection. (32}
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Let the incident light be defined by the quantities 4, cos ¢, and »
(referred to the system K). Observed from £k, the correspondirg quantities
are

41_11~%c03cp

v

1=y

' cosw-%
Ccos y =1' _%-C-O-S_—SO’
1~'"cos<p

v

1-17

Referring the process to the system k, we get for the reflected light

AII - Al’

"o ]
cos ¢" = ~ cos ',

v = o',

Finally, by transforming back to the system at rest K, we get for the
reflected light

v " ¥ v)?
Am:l{”1+7cos<p =41 27003<,p+ [7]

B N
- cos " + L1+[J2J cos w—?%
cos¢-1+7ws¢ 1—27cos¢+[§’7]r'
l1+}’,cos " 1 -2%cos<p+ [%}2 fasi]

v = " = v 7T
B t- [f)
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The energy (measured in the system at rest) striking the unit surface of
the mirror per unit time is obviously A2/8x(V cos ¢ - v). The energy leaving
the unit surface of the mirror per unit time is 4"2/8x(-Vcos ¢” + v).
According to the energy principle, the difference of these two expressions is
the work done by the light pressure per unit time. Equating this work with
P-v, wvhere P 1is the pressure of light, we obtain

_— e 7
% 1- |2
3

In first approximation, in agreement with experience and with other theories,
ve get

P=2 é; cos? ¢ .

All problems in the optics of moving bodies can be solved by the method
employed here. The essential point is that the electric and magnetic forces
of light, which is influenced by a moving body, are transformed to a coordi-
nate system that is at rest relative to that body. This reduces every problem
in the optics of moving bodies to a series of problems in the optics of bodies
at rest.

§89. Transformation of the Nazwell-Hertz equations when conveclion
currents are taken inlo consideralion

Ve start from the equations

o * 3 3_ ¥z Vot~ 9 9y’
V{uyp+37"3§_3_z’ Vat 9z 0z

1 a7\ _ oK _dlL 10N _
7{"z"+ﬁ]'%_3§’ V9t~ 9y =

[34]

[35]



(36]
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where
denotes the 4r-fold density of electricity and (uz,uy,uz) the electricity's
velocity vector. If the electric masses are conceived as permanently bound to
small, rigid bodies (ions, electrons), then these equations constitute the
electromagnetic foundation of Lorentz's electrodynamics and optics of moving
bodies.

If, using the transformation equations presented in §3 and §6, we
transform these equations, which should be valid in system KX, to system &k,
we get the equations

1 Y G A ) 13 9y ar
V{"é”*ﬁr—}'?ﬁ" a Var ~ 9 "Iy
1{u |+8Y'}_6L'_0N' 108 87" X
T\ ter|aC "o vor ~ o i
1{ ,+az']_au'_au 108 _ oK 3y
[ANY T 9 T dp vor ~ g " a
where
ux-v_
vy U
¥ =
_"L:u .zax'+ar'+az'_ﬂ[1_”"z]
TR I FEeE e e T m)f
A - 7]
U
z
e uc .
it - o]

Since—as follows from the addition theorem of velocities (§5)—the vector
(uf,uﬂ,ui) is actually the velocity of the electric masses measured in the

system ve have thus demonstrated that with our kinematic principles taken
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as a basis, the electrodynamic foundation of Lorentz's theory of the electro-
dynamics of moving bodies agrees with the principle of relativity.

Let me also briefly add that the following important proposition can
easily be deduced from the equations we have derived: If an electrically
charged body moves arbitrarily in space without change of its charge, observed
from a coordinate system moving with the body, then its charge will also
remain constant when observed from the system "at rest" A.

§10. Dynamics of the (slowly accelerated) electron

In an electromagnetic field let a pointlike particle endowed with an
electric charge € (called "electron" in what follows) be in motion; about
its law of motion we assume only the following:

If the electron is at rest during a particular epoch, its motion in the
next element of time will occur according to the equations

2

B dtz: CX,
2

1 5;% = ¢f,
2

vhere z,y,z denote the coordinates of the electron and p its mass, as long
as the electron moves slowly.

Further, let the electron's velocity in some given time cpoch be w. We
seek to find the law by which the electron is moving in the next element of
time.

Without affecting the genmerality of the conmsideration, we can and will
assume that at the moment when we focus on it, the electron is at the
coordinate origin, and is moving with velocity v along the JX-axis of the
coordinate system K. It is then obvious that at the instant indicated
(¢t = 0), the electron is at rest relative to the coordinate system % that
moves with constant velocity v parallel to the JX-axis.

[37]

(38]
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From the above assumption combined with the relativity principle it is
clear that, viewed from the system £k, the electron will move during the
immediately following time (for small values of ¢) according to the equations

7 g;é = el',
B 5;@ = el
7 5;§ = €Z',

where the symbols &, , (, 7, X', V', 7' refer to the system k. If we also
stipulate that for ¢ =z =y = 2 =0 we should have 7 = £ =9 = ( = 0, then
the transformation equations of §§3 and 6 will be valid, so that we get

r=ft -4l

£ = flz - 1), r-r

7= r o= pglr- 44,
(== - plz+ 4.

With the help of these equations we transform the above equations of
[39] motion from system k to system K and obtain

d?z el
iz " pE

(A) gH-c5lr-34.
fi-sh b
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Following the usual approach, we now seek to determine the "longi-
tudinal" and "transverse" masses of the moving electron. We write the
equations (A) in the form

pﬂ3§:—g’r‘= eX = el

pﬂ'-’%%g=eﬂ [Y—%N] = €)',
yﬂ’%—‘;:eﬂ [Z+-7,);ll] = eZ',

and note first that X', e¥', ¢Z' are the components of the ponderomotive
force exerted on the electron, as observed in a system co-moving at this
instant with the electron at the latter's speed. (This force could be
measured, for example, by a spring balance at rest in the last-mentioned
system.) If we simply call this force "the force exerted on the electron,"
and maintain the equation

Numerical value of mass x numerical value of acceleration =

numerical value of force,

stipulating, in addition, that the accelerations be measured in the system at
rest K, we obtain from the above equations

Longitudinal mass

Transverse mass

S [ S
m 3
(- 1)
T2 -
-y
0f course, with a different definition of force and acceleration we

would obtain different numerical values for the masses; this shows that we

must proceed with great caution when comparing different theories of the
motion of the electron.

[40]

[41]

f42]
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It should be noted that these results concerning mass are also valid for
ponderable material points, since a ponderable material point can be made into
an electron (in our sense) by adding to it an arbitrerily small electric
charge.

We now determine the kinetic energy of the electron. If an electron
starts out from the origin of the system X with an initial velocity 0 and is
moving continually along the JX-axis under the influence of an electrostatic
force X, then it is clear that the energy drawn from the electrostatic field
has the value [eXdz. Since the electron is supposed to accelerate slowly and
will therefore emit no energy in the form of radiation, the cnergy taken from
the electrostatic field must be equated with the energy of motion ¥ of the
electron. Bearing in mind that the first of equations (4) holds during the
entire process of motion considered, we obtain therefore

V=jeXdz=rﬂ3vdv:pW——1———-l.
0 1- %

Thus, ¥ becomes infinitely large when v = V. As in our previous
results, superluminary velocities have no possibility of existence.

This expression for kinetic energy too must be valid for ponderable
masses as well by virtue of the argument presented above.

Let us now enumerate those properties of the motion of the electron that
result from the system of equations (A) and are accessible to experiment.

1. It follows from the second equation of the system of equations (A)
that an electric force Y and a magnetic force N have an equally strong
deflective effect on an electron moving with velocity v if ¥ = N.v/F. Thus
we sce that according to our theory we can determine the velocity of the
electron for any arbitrary velocity from the ratio of the magnetic deflection
Am to the electric deflection Ae by applying the law

4
m_u
7; 7
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This relation can be checked experimentally since the velocity of the
electron can also be measured directly, e.g., using rapidly oscillating
clectric and magnetic fields.

2. It follows from the derivation for the kinetic energy of the
electron that the potential difference traversed by the electron and the
velocity ¢ attained by it must be related by the equation

P=JXdz=%V2[1—-l].
] v
Y

3. Ve calculate the radius of curvature £ of the path when a magnetic
force N, which acts perpendicular to the velocity of the electron, is present
(as the only deflecting force). From the second of equations (A) we obtain

or

These three relations are a complete expression of the laws by which the [46]
electron must move according to the theory presented here.

In conclusion, let me note that my friend and colleague M. Besso [47]
steadfastly stood by me in my work on the problem here discussed, and that I

am indebted to him for many a valuable suggestion.

Bern, June 1905. (Received on 30 June 1905)
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Doc. 24
DOES THE INERTIA OF A BODY DEPEND UPON ITS ENERGY CONTENT?
by A. Einstein
[Annalen der Physik 18 (1905): 639-641]

The results of an electrodynamic investigation published by me recently
in this journal! lead to a very interesting conclusion, which shall be derived
here.

There I based myself upon the Maxwell-Hertz equations for empty space
along with Maxwell's expression for the electromagnetic energy of space, and
also on the following principle:

The laws governing the changes of state of physical systems do not
depend on which one of two coordinate systems moving in uniform parallel
translation relative to each other these changes of state are referred to
(principle of relativity).

Based on these fundamental principles?, I derived the following result,
among others (loc. cit., §8):

Let a system of plane waves of light, referred to the coordinate system
(z,y,2), possess the energy ¢; let the direction of the ray (the wave normal)
form the angle ¢ with the =z-axis of the system. If we introduce a new
coordinate system (£,%,(), which is uniformly parallel-translated with
respect to the system (z,y,z), and whose origin is moving along the gz-axis
with velocity v, then the above-mentioned quantity of light—measured in the
system (&,7,()—possesses the energy

1-%cos @
e —1 7,

|/
vhere FV denotes the velocity of light. We will make use of this result in
the following.

1A, Einstein, Ann. d. Phys. 17 (1905): 891.

2The principle of the constancy of the velocity of light used there is of
course contained in Maxwell's equations.
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Let there be a body at rest in the system (z,y,z), whose energy,
referred to the system (z,y,z), is Eb. The energy of the body with respect
to the system (£,%,(), which is moving with velocity w» as above, shall be
ﬂb.

Let this body simultaneously emit plane waves of light of energy I/2
(measured relative to (z,y,2)) in a direction forming an angle ¢ with the
z-axis and an equal amount of light in the opposite direction. All the while,
the body shall stay at rest with respect to the system (z,y,2z). This process
must satisfy the energy principle, and this must be true (according to the
principle of relativity) with respect to both coordinate systems. If £, and
Hi denote the energy of the body after the emission of light, as measured
relative to the system (z,y,z) and (£,7,(), respectively, we obtain, using
the relation indicated above,

_ L L
£0-51+[§+2],
1 - pcos 1 + pcos
L 78 ¥ FLOS Y P2
Hy = H + |3 t3 i
R 1 - (Y 1- |3
4 7 13

Subtracting, we get from these equations

(By - Bg) - (B - B =1 {—2— -1
e

The two differences of the form X - E occurring in this expression have a
simple physical meaning. # and £ are the energy values of the same body,
referred to two coordinate systems in relative motion, the body being at rest
in one of the systems (system (z,y,z)). Hence it is clear that the differ-
ence # - F can differ from the body's kinetic energy K with respect to the
other system (system (£,%,()) solely by an additive constant ¢, which

depends on the choice of the arbitrary additive constants of the energies If
and F. Ve can therefore put



[2]

[3]

[4]
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ﬂb - By = kb + C
1 - 6& = Kl + C,

since ( does not change during the emission of light. Thus, we get

The kinetic energy of the body with respect to (&,%,() decreases as a result
of the emission of light by an amount that is independent of the body's
characteristics. Furthermore, the difference Kb - K& depends on the
velocity exactly like the kinetic energy of the electron (loc. cit., §10).
Neglecting quantities of the fourth and higher orders, we can put

2
Ky - Ky = 5

From this equation it follows directly:

If a body releases the energy [ in the form of radiation, its mass
decreases by I/F2. Since obviously here it is inessential that the energy
withdrawn from the body happens to turn into energy of radiation rather than
into some other kind of energy, we are led to the more general conclusion:

The mass of a body is a measure of its energy content; if the energy
changes by [, the mass changes in the same sense by [/9-1020, if the energy
is measured in ergs and the mass in grams.

Perhaps it will prove possible to test this theory using bodies whose
energy content is variable to a high degree (e.g., salts of radium).

If the theory agrees with the facts, then radiation transmits inertia
between emitting and absorbing bodies.

Bern, September 1905. (Received on 27 September 1905)
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Doc. 25
Review of H. BIRVEN, Fundamentals of the Nechanical Theory of Heat
(Grundzige der mechanischen Warmetheorie. Stuttgart and Berlin:
F. Grub, 1905. 128 pp. 2.80 marks)
[Beiblatter zu den Annalen der Physik 29 (1905): 950]

This booklet contains a concise, elementary exposition of the thermo-
dynamics of gases and vapors as well as its application in the theory of the
steam engine and refrigerating engines. Even though the booklet displays some
inaccuracy with respect to the fundamental definitions and expositions (cf.,
e.g., the definition of entropy, p. 50), it will probably stand in good stead (1]

to many an engineering student facing his exam with fragmentary college
notebooks. [2]

Doc. 26
Review of A. PONSOT, "Heat in the Displacement of the Equilibrium of
a Capillary System" ("Chaleur dans le déplacement de 1'équilibre d'un
systéme capillaire," 4cadémie des Sciences (Paris). Comples rendus 140
(1905): 1176-1179)
[Beiblatter zu den Annalen der Physik 29 (1905): 952]

The author examines the foundations of the thermodynamic theory of
capillarity and finds in them a not exactly correct assumption; nothing is

said about the order of magnitude of the inaccuracies that arise from this [1]
assumption.
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Doc. 27
Review of K. BOHLIN, "On Impact Considered as the Basis of the Kinetic
Theories of Gas Pressure and of Universal Gravitation" ("Sur le choc,
considéré comme fondement des théories cinétiques de la pression des gaz
et de la gravitation universelle,"
Arkiv for Netematik, Astromomi ockh Fysik 1 (1904): 522-540)
[Beiblatter zu den Annalen der Physik 29 (1905): 952]

Starting from the remark that repulsive forces between particles are
introduced into the kinetic theory of gases as well as into the dynamic theory
[1] of gravitation for the sole purpose of explaining collisions, the author seeks
[2] to avoid the introduction of repulsive forces altogether. lle tries to ascribe
the impact exclusively to the action of attractive forces between the
corpuscles that constitute the colliding bodies. In doing so, he takes the
position that every attractive force is to be explained (kinetically) by the
effect of the impact of relatively infinitesimally swmall corpuscles, and every
impact by the attraction of relatively infinitesimally small corpuscles.
Thus, corpuscles of infinitely many orders of magnitudes are introduced to
explain the elementary properties of matter.
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Doc. 28
Review of G. MESLIN, "On the Constant in Mariotte and Gay-Lussac's Law"
("Sur la constante de la loi de Mariotte et Gay-Lussac," Journal de
physique theorique et appliquée 4 (Series 4) (1905): 252-256)
[Besblatter zu den Annalen der Physik 29 (1905): 1114]

It is shown that the quotient of the above constant and the mechanical [1]
equivalent of heat, which has a value slightly different from 2, is inde-
pendent of the choice of the units for mass, lemgth, and time, but that
nevertheless no physical meaning is to be ascribed to the numerical value of
this quotient because it depends on the choice of the unit of molecular
weight. [2]

Doc. 29
Review of A. FLIEGNER, "The Efflux of Hot Water from Container Orifices"
("Das Ausstromen heissen Wassers aus Gefassmiindungen," Schweizerische
Bauzeitung 45 (1905): 282-285, 306-308)
[Beiblatter zu den Annalen der Physik 29 (1905): 1115]

According to Zeuner and Lorenz, the deviation of Pulin and Bonnin's 1]
experimental results concerning the efflux velocity of water under the [2]
pressure of its steam is to be ascribed to a sort of evaporation delay. In
contrast, the author takes the point of view that the lack of agreement
between the experiments and the theory is to be ascribed to the fact that in
the above-mentioned experiments, due to temperature differences within the
water container, the water reaching the point of outflow has a somewhat lower
temperature than that corresponding to the vapor pressure in the container.

In addition, an experiment is cited in which the above source of error was
avoided and in which the result was in agreement with the theory.



[1]

178 REVIEW OF WEYRAUCH I

Doc. 30
Review of J. J. WEYRAUCH, 4n Outline of the Theory of Heai. Kith
Numerous Ezamples and Applications. Part 1 (CGrundriss der
Varmetheorie. Nit zahlreichen Beispielen und Anwendungen. Stuttgart:
K. Wittwer, 1905. 131 pp.)
[Beiblatier zu den Annalen der Physik 29 (1905): 1152]

This book is based on lectures the author pave at the Stuttgart Techni-
cal University and contains in the main the theory of the basic laws of
thermodynamics and, subsequent to that, in a clear and comprehensive presen-
tation, the theories of the various heat engines. The book is very well
suited for private study since much care has been devoted to the didactic
aspects in order to accomplish the above purpose. In order to present the
theory in a compact and clear form, as well as to impress the abstract results
obtained upon the rcader's mind as vividly as possible, numerous examples and
problems are inserted between the theoretical presentations, which are by no
means restricted to applications important to the engineer. Many examples are
taken from the history of the theory of heat, especially the trains of thought
of Robert Mayer are presented in detail; the workings and ways of functioning
of "human engines" are also subjected to a detailed consideration and compared
with artificial heat engines. The seven sections of the book's first half
under consideration are titled as follows: 1. Conservation of energy. The
first law. Il. lleat and work. The second law. III. On heat engines in
general. IV. On gases. V. (n air engines. VI. On chemistry and the kinetic
theory of gases. VII. On combustion engines.— No previous knowledge of
engineering and physics is assumed, but elements of infinitesimal calculus
are. Constructional details of heat engines are entered into only insofar as
this is required for the presentation of the theories of the different engine
types and for the study of their efficiency. A table of symbols used, and a
name and subject index, are appended to the volume, so that the book can also
be profitably used as a reference work, and each of the many experimental
values given (e.g., caloric values of different fuels, efficiency of various
heat engines achieved in practice to date, etc.,) can easily be
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found. As mentioned in the introduction, the second half of the book is

expected to appear during the next year. It will contain the theory of satur- [2]
ated and superheated vapors, sections on aerostatics, aerodynamics, and solid
bodies, as well as the corresponding applications, in a presentation very

similar to that in the first half.

Doc. 31
Review of A. FLIEGNER, "On the Thermal Value of Chemical Processes"
("Uber den Wirmewert chemischer Vorginge," Nalurforschende Gesellschaft
in Zirich. Vierteljehrsschrift 50 (1905): 201-212)
[Beiblatter zu den Annalen der Physik 29 (1905): 1158]

The author overlooks the fact that the defining equation of entropy
dS = d(/T holds for reversible processes only, and as a consequence he
arrives at the result that one cannot speak of a change of a system's entropy
by a chemical process.
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Doc. 32
ON THE THEORY OF BROWNIAN MOTION
by A. Einstein
[4nnalen der Physik 19 (1906): 371-381]

Soon after the publication of my paper on the motion of particles
suspended in liquids demanded by the molecular theory of heat,! Mr. Siedentopf
(Jena) informed me that he and other physicists—Prof. Gouy (Lyon) probably
having been the first—had become convinced by direct observation that the
so-called Brownian motion is caused by the random thermal motion of the
liquid's molecules.? Not only the qualitative properties of Brownian motion
but also the order of magnitude of the paths traversed by the particles are in
full agreement with the results of the theory. I shall not compare here the
meager experimental material available to me with the results of the theory,
but shall leave this comparison to those engaged in experimental investigation
of this topic.

The present paper shall supplement my above-mentioned paper in several
points. We will derive here not only the translatory, but also the rotational
motion of suspended particles for the simplest special case when the particles
have a spherical shape. We will also establish the shortest observation times
for which the result given in the paper is still valid.

We will use here a more general method of derivation, partly to show how
Brownian motion relates to the foundations of the molecular theory of heat,
and partly to be able to derive the formulas for the translatory and for the
rotational motion by a common investigation. Let us assume that a is an
observable parameter of a physical system in thermal equilibrium and that the
system is in so-called indifferent equilibrium at every (possible) value of e.
According to classical thermodynamics, which makes a fundemental distinction
between heat and other kinds of energy, spontaneous changes of & do not take
place, but according to the molecular theory of heat they do. In the follow-
ing we will investigate what laws these changes must obey according to the

1A, Einstein, 4nn. d. Phys. 17 (1905): 549.
M. Gouy, Jour. de Phys. 7, No. 2 (1888): 561.
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latter theory. We will then have to apply these laws to the following special
cases:

1. e is the z-coordinate of the center of gravity of a spherically
shaped particle suspended in a homogeneous liquid (which is not subject to
gravitation).

2. a is the angle of rotation that determines the position of a
spherical particle suspended in a liquid and capable of rotating about a
diameter.

§1. On a case of thermodynamic equilibrium

In an environment of absolute temperature T let there be a physical
system in thermal interaction with this environment and in a state of thermal
equilibrium. This system, which hence also possesses the absolute temperature
7, shall be completely determined by the state variables Py, according
to the molecular theory of heat.! In the special cases to be considered, we
can choose for the state variables Pi---Py, the coordinates and velocity
components of all atoms constituting the system under consideration.

The probability that at a randomly chosen instant of time all state
variables p,...p, will lie in the a-fold infinitesimally small region
(dpl...dpn) is given by the equation?

(1) dw=c T dp .. .dp,.

where € denotes a constant, R the universal constant of the gas equation, N
the number of true molecules per gram-molecule, and £ the energy.

Suppose that e is an observable parameter of the system and that to
each system of values Py, there corresponds a definite value a. We
denote by 4de the probability that at a randomly chosen instant the value of
the parameter a will lie between @ and @« + da. We then have

ICf. Ann. d. Phys. 17 (1905): 549.
2foc. cit., §83 and 4.

(7]
i8]
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A
(2) fda = J e T dp,...dp,

where the integral on the right-hand side is extended over all combinations of
those state variables whose value of a lies between e and a + da.

We will confine ourselves to the case in which the nature of the problem
makes it immediately evident that all (possible) values of e have the same
probability (frequency), i.e., that the quantity A4 is independent of a.

Imagine now a second physical system that differs from the system just
considered by the sole fact that it is acted upon by a force of potential
®(a), which depends only on . If £ is the energy of the system considered
earlier, then F + & will be the energy of the system considered now, so that
we get the following relation, analogous to equation (1}):

N XL
dw' = ('e dpl...dpn.

This, in turn, yields a relation analogous to equation (2) for the
probability d¥ that at an arbitrarily chosen instant the value of a will
lie between @ and a + da:

N N
= (£+®) 1 - ¢
(1) dV:JC"e L) C'e BT 44

where 4' 1is independent of a.

This relation, which corresponds exactly to the exponential law used
frequently by Boltzmann in his investigations on the theory of gases, is
characteristic for the molecular theory of heat. It determines how much a
parameter of a system subjected to a constant external force diverges from the
value corresponding to stable equilibrium because of random molecular motion.
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§2. Ezamples of application of the equation derived in §1

We consider a body whose center of gravity can move along a straight
line (the Jf-axis of a coordinate system). The body shall be surrounded by a
gas, and there shall be thermal and mechanical equilibrium. According to the
molecular theory, the body will move back and forth along the straight line in
a random fashion due to the nonuniformity of molecular collisions, such that
none of the points of the straight line will be preferred in this motion —
provided that no forces other than those of molecular collision are exerted on
the body in the direction of the straight line. Hence, the abscissa z of
the center of gravity is a parameter of the system, which possesses the
properties stipulated above for the parameter a.

We will now introduce a force K = -¥r that acts on the body in the
direction of the straight line. According to the molecular theory the center
of gravity of the body will then also carry out random motions, but without
deviating too far from the point z = 0, whereas according to classical
thermodynamics it must be at rest at the point z = 0. According to the
molecular theory (formula I),

2

2

'??’!T’

59|

d¥ = 4'e dz

equals the probability that at a randomly chosen instant the value of the
abscissa lies between z and 2z + dz. From this we find the mean distance of
the center of gravity from the point z = 0,

z

IE :J'g, (11}

- I E
J A'e 2 d
¢ )

. _ N ¥z?
J 2e M2y
—a0

z

For Iig to be large enough to be accessible to observation, the force
that determines the body's equilibrium position must be very small. Putting

{g; = 10% ¢m as the lower limit of observability, we get ¥ = about 5-1076 [12]
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184 REVIEW OF BROWNIAN MOTION

for T = 300. Thus, for the body to perform fluctuations observable under the
microscope, the force acting on it must not exceed five millionths of a dyne
for an elongation of 1 cm.

Let us add one further theoretical remark to the equation derived.
Suppose the body under consideration carries an electric charge distributed
over a very small space, and the gas surrounding the body is so rarefied that
the body performs sinusoidal oscillations only slightly modified by the
surrounding gas. The body then radiates electric waves into space and absorbs
energy from the radiation of the surrounding space; it thus mediates an
exchange of energy between radiation and gas. We can derive the limiting law
of thermal radiation, which seems to hold for long wave lengths and high
temperatures, by formulating the condition that the body in question emits on
the average as much radiation as it absorbs. We arrive in this way! at the
following formula for the radiation density p, that corresponds to the
frequency v:

_ R 8xv?
Py=F oz I

vhere [ denotes the velocity of light.

The radiation formula given by Mr. Planck? reduces to this formula at
low frequencies and high temperatures. From the coefficient of the limiting
law we can determine the quantity N and thus arrive at Planck's dectermina-
tion of the elementary quanta. The fact that in the way indicated we do not
obtain the true law of radiation, but only a limiting law, seems to me to be
rooted in a fundamental imperfection of our physical conceptions.

We will also use formula (I) to decide how small the suspended particle
needs to be to remain permanently suspended despite the effect of gravity. We
can confine ourselves to the case that the particle has a greater specific
gravity than the liquid, since the opposite case is completely aralogous.

If v 1is the volume of the particle, p its density, o the density
of the liquid, ¢ the acceleration of gravity, and z the vertical distance
of a point from the bottom of the container, equation (I) will yield

ICf. Ann. d. Phys. 17 (1905): 519, §81 and 2.
M. Planck, 4zn. d. Phys. 1 (1900): 99.
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N
- g7 v(p-polgz
d¥ = const.e 7 dz

Thus we will then find that suspended particles can float in a liquid if, for
values of =z that do not escape observation because of their smallness, the
quantity

]A',T v(p - po)gz

does not have too high a value—provided that the particles that have reached
the bottom of the container do not adhere there due to some circumstance or
other. [19]

§39. UOn the changes in the parameter @ caused by thermal motion [20]

Now we return again to the general case discussed in §1, for which we
derived equation (I). For the sake of a simpler mode of expression and
visualization, we will now assume, however, that a very large number (s) of
identical systems of the kind described there are involved; in that case we
have to deal with numbers instead of probabilities. Equation (I) expresses
then the following:

0f N systems, there are

L
(Ia) dn = e mn da = Fla)de

systems in which the value of the parameter a lies between o and a+ do
at a randomly chosen instant.

We shall use this relation to determine the magnitude of the irregular
changes of the parameter e produced by the random thermal processes. To that
end, we express in symbols that, within the time span ¢, the function F(a)
does not change under the combined effect of the force corresponding to the
potential & and the random thermal process; here ¢ denotes a time so small
that the corresponding changes of the quantities e of the individual systems
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can be considered as infinitesimally small changes in the argument of the
function F(a).

If lengths numerically equal to a are plotted along a straight line
starting from some specified origin, then to each system there will correspond
a point (e) on this straight line. F(a) is the density of the system-
points (@) on the line. During time ¢, exactly as many system-points must
then cross an arbitrary point (ao) of the line in one direction as in the
opposite one.

Let a force corresponding to the potential @ produce a change of
magnitude

_ _p0d
Al = -l?aat

in @, where B 1is independent of a, i.e., the velocity of change of a
shall be proportional to the operating force and independent of the value of
the parameter. We will call the factor B "the mobility of the system with
respect to a."

Thus, if the external force were to operate without the quantity a
being changed by the random molecular thermal process, then

ny = ﬂ[g%]a:ao.t,r(ao)

system-points would cross the point (ao) toward the negative side during
time 1.

Let ¢(A) be the probability that, due to the random thermal process,
the parameter e of a system cxperiences during time ¢ a change whosc value
lies between A and A+ dA, where ¢(A) = ¢(-A), and ¢ is independent of
«. The number of system-points crossing the point (ao) toward the positive
side on account of the random thermal process during time ¢ 1is then

A=
By = J  Flag-d)as,

where we have put
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[ vwran = xaay.
A

The number of system-points traveling toward the negative side on account of
the random thermal process is

ng = J: Flay+ A)x(a)db.

The mathematical expression for the invariability of the function F is
thus
Ryt B9 - By = 0.

If we substitute the expressions found for s Bgs Bgs and take into account
that A is infinitesimally small, and that ¢(A) differs from zero only for
infinitesimal values of A, we obtain after simple calculation

o) 1 g -
3[%]‘!:“01?(%): + 1 P = 0.

Here

+00
B - I A26(A) dA

denotes the mean of the squares of the changes of the quantities e produced
by the irregular thermal process during time {. From this relation we
obtain, if we take into consideration equation (Ia),

(I1) JE:F%-{MZ.

Here R denotes the constant of the gas equation (8.31.-107), N the number
of true molecules in a gram-molecule (about 4-1023), B the "mobility of the
system with respect to the parameter a," 7 the absolute temperature, and ¢
the time within which the changes in e produced by the random thermal
process take place.

[21]

[22]
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84. Application of the derived equation lo Brownian motion

Using equations (II), we now calculate the mean displacement in a
particular direction (the X-direction of a coordinate system) experienced
during time { by a spherical body suspended in a liquid. To this end we
must substitute the corresponding value for B in the above equation.

If a force is exerted on a sphere of radius P that is suspended in a
liquid with a coefficient of friction k&, the sphere will move with velocity!
k/6zkP. Hence we have to put

_ 1
B—Gm,

so that—in conformity with the paper cited above—for the mean displacement
of the suspended sphere in the direction of the Jf-axis we obtain the value

Second, we consider the case when the sphere in question is pivoted in
the liquid such that it can freely rotate (without bearing friction) about one

of its diameters, and we seek to determine the mean rotation Ji% of the
sphere produced by the random thermal process during time .

If a torque D acts upon a sphere of radius P that is pivoted in a
liquid whose coefficient of friction is %, the sphere will rotate with the
angular velocity?

g = /]
= L -
Accordingly, we have to put
B_ 1
77 T

Ve thus get

R 1
Iﬁ = {7 N 47kEP3-

ICf. G. Kirchhoff, Vorles. uber Hechanik [Lectures on Mechanics]. Lecture 26.
2bid.
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Thus, the rotational motion produced by molecular motion decreases much
faster with increasing P than does translational motion.

For P =0.5 mm and water at 17°, the formula yields about 11 seconds
of arc for the angle traversed in one second on the average, and about 11
minutes of arc for that traversed in one hour. For P = 0.5 micron and water
at 17", we get about 100 degrees of arc for ¢ = 1 sec.

In the case of a freely floating suspended particle, three mutually
independent rotational motions of this kind take place.

The formula derived for IE; might be applied to other cases as well.

For example, if the reciprocal of the electric resistance of a closed circuit
is substituted for &, the formula shows how much electricity will flow on the
average through some particular cross section of the conductor during time t,
which relation is comnected again with the limiting law of black-body radia-
tion for great wave lengths and high temperatures. However, since I could not
find any additional experimentally verifiable consequences, any treatment of
further special cases seems useless to me.

§5. On the limit of validity of the formula for IEE

It is clear that formula (II) cannot be valid for arbitrarily small time
intervals. This is so because the mean velocity of the change of @& result-
ing from the thermal process,

becomes infinitely large for an infinitesimally small time interval £, which
is obviously impossible because every suspended body would then have to move
with infinitely great instantaneous velocity. The reason for this is that we
have implicitly assumed in our derivation that the process occurring during
time ¢ is to be conceived as an event that is independent of the process
occurring during the times immediately preceding it. But the shorter the

[25]

[26]

[27]
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[29]

190 REVIEW OF BROWNIAN MOTION

times { chosen, the less this assumption applies. For if at time 2z = 0 the
instantaneous value of the velocity of change were

d
=

and if in some subsequent time interval the velocity of change f were not
influenced by the random thermal process but the change of [ were determined
by the passive resistance (1/B) alone, dff/dz would obey the relation

£ is defined here by the stipulation that u(f?%/2) should be the energy that
corresponds to the velocity of change [. Thus, in the case of translational
motion of a suspended sphere, e.g., p(/?/2) would be the kinetic energy of
the sphere plus the kinetic energy of the co-moving liquid. Integrating, we
get
oz
B=ppe M.

From this result one concludes that formula (II) holds only for time
intervals that are large compared with B.

For corpuscles with a diameter of 1 micron and density p =1 in water
at room temperature, the lower limit of validity of formula (II) is about 107
seconds; this lower limit for time intervals increases as the square of the

corpuscle radius. Both facts hold true for the translational as well as the
rotational motion of particles.

Bern, December 1905. (Received on 19 December 1905)
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Doc. 33
"SUPPLEMENT" TO "A NEW DETERMINATION OF MOLECULAR DIMENSIONS"
[Appended to the version of Document 15 that was published as
an article in Annalea der Physik 19 (1906): 289-305]
[Arnalen der Phys:k 19 (1906): 305-306]

The new edition of Landolt and Bornstein's Physical-Chemical Tables
contains data that are much more useful for calculating the size of the sugar
molecule and the number XN of real molecules in a gram-molecule.

Thovert found (Tables, p. 372) that the coefficient of diffusion of
sugar in water at 18.5°C at a concentration of 0.005 mol/liter has the value
of 0.33 cm?/day. Further, from a table containing observed values obtained by
llosking (Tables, p. 81) we can find by interpolation that in a dilute sugar
solution a 1% increase in sugar content at 18.5°C corresponds to a 0.00025
increase in the coefficient of viscosity.

Based on these data, one finds

P =10.78-106 mm
and

N = 4.15-10%.

Bern, January 1906.

1]

(2]

(3]

[4]
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Doc. 34
ON THE THEORY OF LIGHT PRODUCTION AND LIGHT ABSORPTION
by A. Einstein
[Annalen der Physik 20 (1906): 199-206]

In a study published last year! I showed that the Maxwell theory of
electricity in conjunction with the theory of electrons leads to results that
contradict the evidence on black-body radiation. By a route described in that
study, I was led to the view that light of frequency v can only be absorbed
or emitted in quanta of energy (R/N)fv, where R denotes the absolute
constant of the gas equation applied to one gram-molecule, N the number of
actual molecules in one gram-molecule, f the exponential coefficient of
Wien's (and Planck's) radiation formula, and v the frequency of the light in
question. This relationship was developed for a range that corresponds to the
range of validity of Wien's radiation formula.

At that time it seemed to me that in a certain respect Planck's theory
of radiation? constituted a counterpart to my work. New considerations, which
are being reported in §1 of this paper, showed me, however, that the theore-
tical foundation on which Mr. Planck's radiation theory is based differs from
the one that would emerge from Maxwell's theory and the theory of electrons,
precisely because Planck's theory makes implicit use of the aforementioned
hypothesis of light quanta.

In §2 of this paper I shall make use of the hypothesis of light quanta
to derive a relationship between the Volta effect and photoelectric diffusion.

§1. Planck’s theory of radiation end Lhe light quanta

In §1 of my paper cited above I have shown that the molecular theory of
heat combined with the Maxwell theory of electricity and the theory of

'A. Einstein, 4nn. d. Phys. 17 (1905): 132.
M. Planck, 4nm. d. Phys. 4 (1901): 561.
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electrons lead to a formula for black-body radiation that contradicts
experience

2
w 4.

Here Py denotes the density of radiation at temperature T and at a
frequency between v and v + 1.

¥hat is the reason that Mr. Planck did not arrive at the same formula,
but obtained instead the expression

(2) =l g

Pu-—g;—“ : {s]

Mr. Planck derived! the mean energy Ey of a resonator of proper
frequency v situated in a space filled with disordered radiation as given by
the equation (71

I3
(3) Ey = g;;; P, - (8]

This reduced the problem of black-body radiation to the problem of determining

Ey as a function of temperature. The latter problem will have been solved if
one can calculate the entropy of one of many similarly constituted, mutually
interacting resonators of proper frequency v that are in dynamic
equilibrium.

Let us envision the resonators as ions that could perform rectilinear
sinusoidal vibrations about an equilibrium position. The fact that the ions
have electrical charges is irrelevant in the calculation of this entropy; we
simply have to conceive these ions as mass points (atoms) whose momentary
state is completely determined by their instantaneous deviation z from the
equilibrium position and by their instantaneous velocity dz/di = §.

WM. Planck, 4ra. d. Phys. 1 (1900): 99. [6]
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[10]

[12]

[13]

[14]
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For the distribution of states of these resonators to be uniquely
determined in thermodynamic equilibrium, one has to assume that there exists
an arbitrarily small number of freely moving molecules besides the resomnators,
which by virtue of their collisions with the ions can transmit energy from
resonator to resonator; we will not take into account these molecules in our
calculation of entropy.

We could determine EL as a function of temperature from the Maxwell-
Boltzmann distribution law and would thereby obtain the invalid radiation
formula (1). One arrives at the route taken by Mr. Planck in the following
manner.

Let Pyo---py be appropriately chosen state variables! that completely
determine the state of a physical system (e.g., in our case the values z and
£ of all the resonators). At the absolute temperature 7, the entropy § of
this system is represcnted by the equation?

; Ny
(4) 8 = g + % g J e T dpl...dpn s

where H denotes the emergy of the system at temperature 7, K denotes the
energy as a function of Pyree Py and the integral is to be extended over all
possible combinations of the values of Pys--epy

If the system consists of a very large number of molecular structures--
and the formula has meaning and validity only in this case--then only those

combinations of values of the Pre--py whose N differs very little from #
contribute significantly to the value of the integral appearing in S.3 If
this is taken into account, it is ecasily seen that, except for negligible
quantities, one can put

2 H+AH

§=x5lg dp,...dp
N P 1

»

n

'A. Einstein, A4an. d. Phys. 11 (1903): 170.
2loc. cit. §6.
3Follows from §3 and §4 loc. cil.
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where AH should be chosen very small, yet large enough to make R lg(Al)/N
a negligible quantity. § is then independent of the value of Al.

If one substitutes the variables z, and éa of the resonators instead
of dpl,...dpn in the equation and takes into account that the equation
holding for the e-th resonator is

Eb+dﬂa
J dzadfu = const. dEa

a

{because Ea is a quadratic, homogeneous function of z, and fa), one
obtains the following expression for S:

(5) s=%wgw,

where one has put

(5a) V=

If one would calculate § according to this formula, one would again
arrive at the invalid radiation formula (1). To arrive at Planck's formula, [15]
one has to postulate that, rather than assume any value whatsoever, the energy
E_ of a resonator can only assume values that are integral multiples of e,

a
where

€= % fv .

This is because, on setting AHN = ¢, one immediately sees from equation
(5a) that, except for an inconsequential factor, ¥ turns into the very
quantity that Mr. Planck named "the number of complexions." [16]
llence, we must view the following proposition as the basis underlying
Planck's theory of radiation:
The energy of an elementary resonator can only assume values that are
integral multiples of (R/N)fv; by emission and absorption, the energy of a
resonator changes by jumps of integral multiples of (R/N)fv.



[17]

18}
[19]
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However, this assumption involves yet a second one, because it contra-
dicts the theoretical basis from which equation (3) is developed. For if the
energy of a resonator can only change in jumps, then the mean energy of a
resonator in a radiation space carnot be obtained from the usual theory of
electricity, because the latter does not recognize distinguished energy values
of a resonator. Thus, the following assumption underlies Planck's theory:

Although Maxwell's theory is not applicable to elementary resonators,
nevertheless the mean energy of an elementary resonator in a radiation space
is equal to the energy calculated by means of Maxwell's theory of electricity.

This proposition would be immediately plausible if, in all those parts
of the spectrum that are relevant for observation, e¢ = (B/N)fv were small

compared with the mean energy EL of a resonator; however, this is not at all

the case, for within the range of validity of Wien's radiation formula, eﬂu/T
is large compared with 1. It is easy to prove that according to Planck's
theory of radiation, within the range of validity of Wien's radiation formula,

£ /e has the value e_ﬂy/T, thus, £, is much smaller than ¢. Therefore
only a few resonators have energies different from zero.

In my opinion the above considerations do not at all disprove Planck's
theory of radiation; rather, they seem to me to show that with his theory of
radiation Mr. Planck introduced into physics a new hypothetical element: the
hypothesis of light quanta.

82. /An expected quantitative relationship between photoeleciric
diffusion and the Volta effect

It is well known that if metals are ordered according to their photo-
electric sensitivity, one obtains the Volta electric potential series, in
which a metal is the more photosensitive the closer it is to the electro-
positive end of the electric potential series.

To a certain degree, this fact can be understood by assuming only that
the forces (which are not to be examined here) that produce the active double
layers reside on the metal-gas interface rather than on the metal-metal
interface.
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Let these forces produce an electric double layer on the surface of a
piece of metal ¥ that borders on a gas, and a corresponding potential
difference ¥ between metal and gas, taken as positive when the metal has the
higher potential.

Let Vl and Vé be the potential differences between metals ﬂi and
#, in electrostatic equilibrium if they are insulated from each other. If
the two metals are brought into contact, the electric equilibrium is disturbed
and complete! voltage equalization of the metals takes place. Thereby, simple
layers will be superposed on the aforementioned double layers at the metal-gas
interfaces; to these corresponds an electrostatic field in the air space whose
line integral equals the voltage difference.

If Vk and Vlz denote the electric potentials at points of the gas
space directiy adjacent to the metals in contact, and V' denotes the
potential in the interior of the metals, we have

T _ -
and thus

Thus, the electrostatically measurable Volta difference is numerically
equal to the difference of the potentials assumed by the metals in the gas if
they are insulated from each other.

If one ionizes the gas, the electric forces present in the gas space
will cause a migration of the ions, to which there corresponds a current in
the metals which, at the place of contact of the metals, is directed from the
metal with the higher V (less electropositive) to the metal with the lower
¥V (more electropositive).

Suppose a metal ¥ 1is insulated in a gas. Let F be its potential
difference with respect to the gas that corresponds to the double layer. In
order to move a unit of negative electricity from the metal into the gas, an
amount of work numerically equal to the potential ¥ has to be performed.
Hence, the greater the ¥, i.e., the less electropositive the metal, the more

IWe disregard the effect of thermoelectric forces.

{20]
[21]

[22]
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energy is needed for the photoelectric diffusion, i.e., the smaller the
photoelectric sensitivity of the metal.

So far we have considered the facts without making assumptions about the
nature of photoelectric diffusion. However, the hypothesis of light quanta
also yields a quantitative relationship between the Volta effect and photo-
electric diffusion. Thus, to move a negative elementary quantum (charge ¢)
from the metal into the gas, i1t has to be supplied with at least an energy
Ve. Then, a light species will be able to remove negative electricity from
the metal only when the "light quantum” of that light species has at least the
value Ve. We thus obtain

Ve

A
=
=
=

or

-~
1A

S 2y
™=
T

where 4 denotes the charge of one gram-molecule of a univalent ion.

If we now assume that some of the absorbing electrons are able to leave
the metal as soon as the energy of the light quanta exceeds Ve! — which is a
very plausible assumption — we obtain

V= % B

where v denotes the lowest photoelectrically effective frequency.

Thus, if »; and v, are the lowest light frequencies acting on the
metals ﬂi and ﬂé. the following equation will hold for the Volta potential
difference P}z of the two metals:

_ _ R
“hg =V - Yy =7 By - vy,
or, if FV;, is measured in volts:

14

19 = 4.2 x 10‘15(1/2 - yl) "

IThe thermal energy of electrons is disregarded.
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This formula contains the following, at least by and large valid,
proposition: The more electropositive a metal, the smaller the lowest light
frequency that is effective for that metal. It would be of great interest to
know whether this formula expresses the facts in a quantitative way as well.

Bern, March 1906. (Received on 13 March 1906)

[23)
[24]
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Doc. 35
THE PRINCIPLE OF CONSERVATION OF MOTION OF THE CENTER
OF GRAVITY AND THE INERTIA OF ENERGY
by A. Einstein
[Annalen der Physik 20 (1906): 627-633]

In a paper published last year! I showed that Maxwell's electromagnetic
equations in conjunction with the principle of relativity and the principle of
energy conservation led to the conclusion that the mass of a body changes with
the change in its energy content, no matter what kind of change of energy this
may be. It turned out that to an energy change of magnitude AF there must
correspond a change of mass of the same sign and of magnitude AE/I?, where V
denotes the velocity of light.

In the present paper I want to show that the above theorem is the
necessary and sufficient condition for the law of the conservation of motion
of the center of gravity to be valid (at least in first approximation) also
for systems in which not only mechanical, but also electromagnetic processes
take place. Although the simple formal considerations that have to be carried
out to prove this statement are in the main already contained in a work by H.
Poincaré?, for the sake of clarity I shall not base myself upon that work.

§1. 4 special case

Let K be a stationary rigid hollow cylinder freely {loating in space.
Let there be in 4 an arrangement for sending a certain amount § of radiat-
ing energy through the cavity to B. During the emission of this quantity of
radiation a radiation pressure acts upon the left interior wall of the tube
K, imparting to the latter a certain velocity that is directed to the left.

If the hollow cylinder's mass is #, then this velocity equals % . ; » as can
be proved easily from the laws of radiation pressure, where ¥ denotes the

1A, Einstein, 4nn. d. Phys. 18 (1905): 639.
2H. Poincaré, in Lorentz-Festschrift (1900): 252-278.
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velocity of light. X will maintain this velocity until the radiation com-
plex, whose spatial extension is very small in comparison with the cavity of
K, gets absorbed by B. The duration of the hollow cylinder's motion is
(apart from terms of higher order) equal to e/V, if e denotes the distance
from 4 to B. After absorption of the radiation complex by B, the body £
is again at rest. Durirg the radiation process under consideration, K has
shifted a distance of

S48
to the left.

In the cavity of X, let us have a body k (imagined as massless for
the sake of simplicity) next to a (likewise massless) mechanism that can move
the body %, which shall first be located in B, back and forth between B
and 4. After the amount of radiation § has been absorbed by &, this
amount. of energy shall be transferred to £, and then &k moved to 4.
Finally, the amount of energy § shall again be taken up in /4 by the hollow
cylinder X, and % shall be moved back to B again. The whole system has
now undergone a complete cyclic process, which one can imagine to be repeated
arbitrarily often.

If one assumes that the carrier body k£ remains massless even after it
has absorbed the amount of energy &, then one also has to assume that the
return transport of the amount of energy S is not associated with a change
in position of the hollow cylinder K. Thus the only outcome of the entire
cyclic process is a shift & of the whole system to the left; by repeating
the cyclic process, one can make this shift as large as desired. We thus
arrive at the result that an initially stationary system can change the
position of its center of gravity arbitrarily greatly without having external
forces acting upon it, and without undergoing any permanent change.

It is clear that the result does not contain any inner contradictions;
however, it does contradict the laws of mechanics, according to which a body
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originally at rest cannot perform a translational motion if no other bodies
act upon it.

However, if one assumes that any energy E possesses the inertia F/12,
then the contradiction with Lhe principles of mechanics disappears. For
according to this assumption the carrier body has a mass S§/F2 while it
transports the energy amount § from # to 4; and since the center of
gravity of the entirc system must be at rest during that process according to
the center-of-mass thcorem, the cylinder K undergoes during it a total shift
S' to the right, amounting to

6 =@ - f; . i y
Comparison with the result found above shows that (at least in first
approximation) § = &', i.e., that the position of the system is the same
before and after the cyclic process. This eliminates the contradiction with
the principles of mechanics.

§2. [n the principle of the conservation of the motion of
the center of gravily

We consider a system of n discrete material points with masses

Myl . .My and center of gravity coordinates Ty.--2,- With respect to
thermal and electric phenomena, these material points are not to be conceived
as elementary structures (atoms, molecules), but as bodies in the usual sense
of small dimensions, whose energy is not determined by the velocity of the
center of gravity. These masses could act on each other through electro-
magnetic processes as well as through conservative forces (i.e., gravity,
rigid connections); however, we shall assume that both the potential emergy of
the conservative forces and the kinetic energy of the motion of the center of
gravity of the masses are infinitesimally small rclative to the "internal"
energy of the masses ...

n
Assume that the Maxwell-Lorentz cquations
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« 1df_ N oN
PPV Ty Tz
u o 1dY 9L 9N
VPPTVAL TG
u 1d2 oK oL
(1) PPYVPAL T Ty [3)
1dl _av 92
Vdi =9z Gy
1df_ 97 X
Vdi T 9 0z
1dV _ o aY
Vdt " 9y =

hold in the entire space, where

oX . 9Y 0z
p:azi-w%-a—z‘

denotes the 4r-fold density of electricity.
If one adds up equations (1) after they have been successively
multiplied by

4 v 4
y Xz; T Y oo y = Nz

and integrates them over the entire space, one obtains, after a few
integrations by parts, the following equation

@) [ £ alurs oFs utyir+ 4 U - (PP ...+A’2)dr] g [ (- ar 0. W

The first term of this equation represents the energy supplied by the electro-
magnetic field to the bodies my...mg. According to our hypothesis on the
dependence of the masses on energy, the first term of the sum should therefore [5]
be equated with the expression

dm
v
12 2 T, 497 °



[6]

204 MOTION OF CENTER OF GRAVITY

since we assume according to the above that the individual material points m,
change their energy, and thereby also their mass, only by taking up electro-
magnetic energy.

If we assign to the electromagnetic field too a mass density (pe),
which differs by a factor 1/F2 f{from the energy density, then the second term
of the equation takes the form

d
12 T [J zpedr} :

If the integral in the third term of equation (2) is denoted by J, then
this equation becomes

d
(2a) E [zy 7;%q + é% [I zpedr] - 1%7 J=0.

We now have to find the meaning of the integral J. If one successively
multiplies the second, third, fifth, and sixth of equations (1) by NV, -¥/,
-Z¥V, YV, adds them and integrates over the space, one obtains, after a few
integrations by parts,

(3) %:-4:#[%{1%’,#%1{]&:-4mz,

where Ez is the algebraic sum of the Af-components of all forces exerted by
the electromagnetic field upon the masses My my. Since the corresponding
sum of all forces due to the conservative interactions vanishes, Kz is at
the same time the sum of the IX-components of all forces acting upon the
masses m,,.

Next we shall consider equation (3), which is independent of the hypo-
thesis that the mass depends on energy. If we disregard the dependence of the
masses on energy and denote the resultant of all JX-components of the forces
acting on m, by X, , we must set up the following equation of motion for

the mass m,:
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dz dz
v _d vl _ .
(4) e [”'u Tt‘] =X,
hence we also obtain
(5) H— 2 [ v TT_] 2 x,

From equation (5) and equation (3) one obtains

dz
(6) 1%7 + 2 m, 7n§ = const.

If we reintroduce the hypothesis that the quantities m, depend on
energy, and thus also on time, then we face the difficulty that the mechanical
equations for that case are no longer krown; the first equal sigp of equation
(4) thus does not hold anymore. However, one should take into consideration
that the difference

dz d?z dm dz
d v i
di [ v TT—] m, 412 7T_ TT_ 2 J i H P (ol + of + ul)dr

is of second order in the velocities. Hence, if all velocities are so small

that terms of second order may be neglected, then even if the mass m, is
variable, the equation
d dz
By _3_

certainly holds with the required accuracy. Then equations (5) and (6) hold
as well, and one obtains from equations (6) and (2a):

(2b) é% { (myzu) + j zpedr] = const.

If ¢ denotes the ZX-coordinate of the center of gravity of the ponder-
able masses and of the erergy mass of the electromagnetic field, then we have
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¢ - 2 (myzy) +4J zpedr
2 m, + J pedr

vwhere, according to the energy principle, the value of the denominator on the

7

right-hand side is independent of time.! Hence we may write equations (2b)
also in the form

(2c) %% = const.

Thus, if one ascribes the inertial mass E/F?2 to any energy £,
then—at least in first approximation—the principle of conservation of the
motion of the center of gravity also holds for systems in which electro-
magnetic processes take place.

The present investigation shows that one either has to give up the
fundamental law of mechanics, according to which a body originally at rest
cannot perform translational motion unless acted upon by external forces, or
one has to assume that a body's inertia depends on its emergy content
according to the law stated.

Bern, May 1906. (Received on 17 May 1906)

lAccording to the interpretation developed in this paper, the principle of
the constancy of mass 1s a special case of thc energy principle.
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Doc. 36
ON A METHOD FOR THE DETERMINATION OF THE RATIO OF THE TRANSVERSE
AND THE LONGITUDINAL MASS OF THE ELECTRON
by A. Einstein
[Annalen der Physik 21 (1906): 583-586]

Three quantities concerning cathode rays are accessible to precise
observation: the potential difference producing the velocity of the rays
(generating potential), the electrostatic deflection, and the magnetic [11
deflection. There exist two independent relations between these three
quantities whose knowledge at considerable ray velocities is of extraordinary
theoretical interest. One of these relations, namely that between magnetic
and electrostatic deflection, has been examined for f-rays by Mr. Kaufmann. [2]

In the following I shall point out that there exists one other relation
between these quantities that can be measured with sufficient accuracy,
namely, that between the generating potential and the electrostatic deflection
of cathode rays, or, what is the same, the ratio of the transverse to the
longitudinal electron mass as a function of the generating potential. (3]

If the square of the velocity of the electrons is very small compared
with the square of the velocity of light, the motion of the electron obeys the
equations

s;% = - ﬁt X, etc.,

where ¢€/p, denotes the ratio of the charge to the mass of the electron, =z,
¥, z the coordinates of the electron, and X, ¥, Z the components of the
electric field strength if no other forces besides the electrostatic ones act
on the electron. We assume that the electrons move with an initial velocity
zero from some starting point zj, 99, 2 (cathode). The motion is then
uniquely determined by the equations given above; it shall be given by the
equations

]
|

bt (Pl(t) »
py(t)
e3(t) .

n
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If one imagines all electrostatic force components to be multiplied
everywhere by 2, then, as can be seen easily from the above equations of
motion, the electron will move according to the equations

z = @(nt)
y= W2(ﬂt) ’
z = @y(nt) .

From this it follows that a proportional change of the field is accompanied by
a change of the electrons' velocity but not of their trajectory.

A change of trajectory evidently is produced by a proportional change of
the field only at electron velocities at which the ratio of transverse to
longitudinal mass is noticeably different from unity. If the electrostatic
field is chosen such that the cathode rays travel a strongly curved path, then
even small differences between the transverse and the longitudinal mass will
have an observable effect on the trajectory. The accompanying sketch shows an
arrangement by which the ratio of the transverse to the longtudinal mass of
the electron could be determined on the basis of the principle indicated. The
cathode rays attain their velocity between the grounded cathode XK and the

anode 4, which is attached to the positive terminal of the current source &
and which serves at the same time as a shutter, and are then introduced, via a
thin tube ¢ connected with 4, into the space between the metal cylinders
R, and R,. R, is grounded, HA, is conductively connected with ¢, i.e.,
with the positive pole of the current source, whose negative pole is grounded.
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The dimensions should be chosen such that slow cathode rays move approximately
in a circle, at a short distance from R,. The rays then enter the somewhat
conical metal tube ', which is connected by metal with £, and inside which
there is a phosphorescent screen S on which there shall fall the shadow of a
vertical wire J set up at the interior end of ¢'.

When slow cathode rays are applied, the shadow of ) on § takes up a
quite definite position (zero position). If the rays' generating potential is
increased, the shadow of the wire will shift. By inserting a battery F into
the ground connection of R; the shadow shall be returned to the zcro
position.

If N denotes the potential at which the shadow-forming rays get
deflected, then M is also the potential difference that imparts the kinetic
energy to the deflected rays. Further, if p denotes the radius of curvature
of the shadow-forming rays, then we have

Py 3 g m- (4]

llere By denotes the "transverse mass" of the electron, by that longitudi-
nal mass which is defined by the equation

. . 2
kinetic energy = Bp 3 »

and X the deflecting electric force.

If P denotes the potential of R, (potential of the positive pole of
the current source K), and p the potential of R, at which the shadow is
in the zero position, then

N="°-¢aP-p),
where a denotes a constant that depends on the dimensions of the apparatus

and is small compared with 1. Further, the quantity X is proportional to [51]
the potential difference P - p. Thus, one obtains from the above cquation
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”t P -

— = const. P_—(TLT ’

Ky o - p
or (with some permissible approximations)

;é = const.[l - (1 + ")ﬁi )

Since a can cvidently be obtained with sufficient accuracy, and P and p
can be measured accurately within a few percent, the accuracy with which one
can obtain the deviation of ”t/”e from unity is basically determined by the
accuracy with which one can set the zero position of the wire shadow. One can
easily see that the latter accuracy can be made sufficiently great that a 0.37%
deviation of the quantity ﬂt/ﬂl from unity (which corresponds to a shift of

the shadow of about 1 mm when B8 = 10 cm) can still be noticed. Tt is
especially worth mentioning that the accuracy of measurement is not signifi-
cantly affected by the unavoidable fluctuations of the potential P during
the experiment.

Finally we would like to give the relation between ”t/ﬂf and I in
first approximation, as obtained from different theories. If T is expressed
in volts, then we have

according to the theory of Bucherer:

ty n
-1 -0.0070 - A
Ky ¢ 10,000

according to the theory of Abraham:

Ei =1 -0.0084 - 1 s
ity 0,000

according to the theory of Lorentz and Einstein:

“U_y 00104 A
by 10,000

Since T am not in a position to do experimental work myself, I would be
glad if a physicist would show an interest in the method described.

Bern, August 1906. (Received on 4 August 1906)
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Doc. 37
Review of M. PLANCK, "Lectures on the theory of thermal rediation" [1]
("Vorlesungen uber die Theorie der Warmestrahlung," Leipzig:
J. A. Barth, 1906. 222 pp. 7.80 mark)
[Beiblatter zu den Annalen der Physik 30 (1906): 764-766]

In the book under comsideration the fundamental works of Kirchhoff,
W. Wien and the author have been united into a whole of marvelous clarity and [2]
unity, so that the book is superbly suited for familiarizing the reader fully
with the material—even if the area dealt with has been totally unfamiliar to
him.
In the first section (pp. 1-23) the basic concepts and terms (such as

nn nn

"emission coefficient,” "coefficient of diffusion," "reflecting surface,”

"smooth" and "rough surface," "black surface," "black body," "coefficient of

nn "o

pencil of rays," "intensity," "

" etc.) are

absorption, radiation demsity,
first defined and—insofar as they are definitiorally interrelated—Iinked
together mathematically. Then (pp. 23-48) the Clausius relation concerning [31
the ratio of radiation densities in media with different indices of refraction
as well as the Kirchhoff relation between emissivity and absorptivity are
derived. [4]
¥hile up to this point only the laws of ray optics have been employed,
the second section (pp. 49-99) employs the Maxwell theory, though exclusively
for the derivation of the radiation pressure. The magnitude of the latter, as
the author emphasizes, cannot be obtained from considerations based on energe-
tics. With the aid of the expression obtained for the radiation pressure, the [5]
Stefan-Boltzmann law and the Wien displacement law are derived, and the con-
cepts "temperature of monochromatic radiation" and "temperature of a monochro-
matic elementary pencil of rays" are defined.
The Wien displacement law yields for the energy density u in the
normal spectrum the equation u = v3p(7/v), where T denotes the absolute
temperature and v the frequency. Sections three and four of the book (pp.
100-179) contain an exposition of the author's fundamental investigations
aimed at the determination of the function ¢ that appears in the Wien
displacement law. Even though this goal could not be achieved in a purely
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deductive way, only using theoretical aids adequately supported empirically
—the author uses a hypothesis supported only by analogy—every impartial
reader will find that a high probability attaches to the result obtained.

The course of the investigation is as follows: First, the oscillation
equation of a resonator of small dimensions and small damping, located in a
radiation field, is established on the basis of Maxwell's equations. Then one
determines the mean energy of a resonator in a stationary radiation field with
the aid of the oscillation equation, and, using the second law, the
"temperature of the resonator" as [unction of the above universal function.
This reduces the problem of energy distribution in the normal spectrum to the
task of determining the entropy of a system consisting of a large number of
radiation resonators of the same frequency.

To solve the latter problem, it is first explained, based on Boltzmann's
works, that one is led to a correct determination of the entropy § if ome
puts § =k log ¥, where k£ denotes a (universal) constant and ¥ the number
of "complexions." The latter quantity represents the multiplicity of all
those possible distributions of the elementary variables that belong to the
complex of observed quantities to which the entropy S corresponds.

In order to be able to determine the quantity ¥ by counting, one must
divide the whole available region of the state variables into discrete clemen-
tary regions. In general, the result depends on the absolute magnitudes as
well as on the ratios of the magnitudes of these elementary regions. While
for the determination of the quantity ¥ of a resonator system one chooses
the magnitude ratio of the elementary regions as in a sinusoidally oscillating
structure in the theory of gases, one chooses—in contrast to the assumption
on infinitesimally small elementary regions generally used until now in the
theory of gases—the elementary regions to be of finite magnitude (= hv),
where v denotes the frequency and A a universal constant; hv has the
dimcnsion of energy. The author points repeatedly to the necessity of
introducing this universal constant A and emphasizes the importance of a
physical interpretation (not given in the book) of the latter.

From the expression for the entropy §, obtained in the way indicated,
one then derives the familiar Planck radiation formula,

& = 8rhv? 1 )
(3 phu/k-T - F
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The fourth section contains, further, Planck's dctermination of the elementary
quanta, as well as discussions of works of various authors on radiation
theory.

The last section of the book (pp. 180-222), which deals with irrever-
sible radiation processes, offers deep insight into the nature of the
irreversibility of thermal processes.

f12}
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Doc. 38
PLANCK'S THEORY OF RADIATION AND THE THEORY OF SPECIFIC HEAT
by A. Einstein
[Annalen der Physik 22( 1907): 180-190]

In two previous papers! I have shown that the interpretation of the law
of cnergy distribution of black-body radiation in terms of Boltzmann's theory
of the second law lcads to a new conception of the phenomena of light emission
and light absorption, which, even though still far from having the character
of a complete theory, is remarkable insofar as it facilitates the understand-
ing of a series of regularities. The present paper will show that the theory
of radiation—in particular Planck's theory—Ileads to a modification of the
molecular-kinetic theory of heat by which some difficulties obstructing the
implementation of that theory can be eliminated. The paper will also yield a
relationship between the thermal and optical behavior of solids.

First ve will give a derivation of the mean energy of Planck's resonator
that clearly demonstrates its relation to molecular mechanics.

To that end we use a few results of the general molecular theory of
heat.! Let the state of a system in the semse of the molecular theory be
completely determined by the (very many) variables PI,P2...P . Let the

n
molecular process proceed according to the equations

?t—"=<1>u(l’1,i’2. . » By (¢r=1,2...18),

and let the relation

(1) zm,’i=o

hold for all values of the Pv's.

IA. Einstein, 4na. d. Phys. 17 (1905): 132 and 20 (1905): 199.
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Further, let a partial system of the system of the P”'s be determined
by the variables p;...p, (which belong to the Py's), and let it be assumed
that the energy of the whole system can with good approximation be thought of
as composed of two parts, of which one (£) depends on the Py-eepy only,
while the other is independent of Py---Py Also, let F be infinitesimally
small compared with the total energy of the system.

The probability d¥ that at a randomly picked instant the py's lie in
an infinitesimally small region (dpl,dpz...dpm) is then given by the
equation!

_Fp
(2) wv=cc 1" dp...dp . (6]

llere ¢ is a function of the absolute temperature (7), AN is the number of
molecules in one gram-equivalent, £ 1is the constant of the gas equation
referring to one gram-molecule.

If one puts

dp,...dp = w(E)dE ,
Jdﬁ’ e

where the integral is to be extended over all combinations of the Py‘s to
which correspond energy values between FE and F + dF, one obtains

= N E
(3) av=ce M7 uE)dE

If one chooses as the variables Pu the center-of-mass coordinates and
velocity components of mass points (atoms, electrons) and assumes that the
accelerations depend only on the coordinates, but not on the velocities, then
one arrives at the molecular-kinetic theory of heat. The relation (1) is here
satisfied, so that equation (2) holds as well.

In particular, if one imagines that one has chosen as the system of the
py's, an elementary mass particle which can perform sinusoidal oscillations

1A. Einstein, 4nn. d. Phys. 11 (1903): 170ff. 51
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along a straight line, and denotes its instantaneous distance from the
equilibrium position and velocity by z and &, respectively, one obtains

- N i;‘
(2a) dv=ce M7 dzae

and since one has to take [dzdé = const.dE, hence w = const.!:

ey

N
(3a) d¥ = const. e 1y dF .

The mean value of the mass particle's energy is therefore

IS
=~
~

(4) E-= .

It is obvious that formula {4) can also be applied to a rectilinearly
oscillating ion. If one does so, and takes into account that, according to a
study by Planck?, the relation

o« _ I?
(8) E, = gt Py

must hold between its mean cnergy £ and the density p, of the black-body
radiation at the frequency considered there, then by eliminating £ from (4)
and (5) one arrives at Rayleigh's formula

(6) by = % §%§3 r,

which, as is well known, represents only a limiting law for large values of
T/v.

Because one has to set £ = ax? + bE2.
M. Planck, dnn. d. Phys. 1 (1900): 99.
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To arrive at Planck's theory of black-body radiation, one can proceed as
follows.! One retains equation (5), i.e., one assumes that Maxwell's theory [12]
of electricity yields the correct relationship between radiation density and
£. On the other hand, one abandons equation (4), i.e., one assumes that it is
the application of the molecular-kinetic theory which causes a conflict with
experience. However, we maintain the formulas (2) and (3) of the general
molecular theory of heat. Instead of setting

w = const.

in accordance with the molecular-kinetic theory, we set w =0 for all values
of £ that are not extremely close to 0, €, 2¢, 3¢, etc. Only between 0 and
O+a, ¢ and e+a, 2¢ and 2¢+a, etc. (where a is infinitesimally small
compared with €) shall & be different from zero, such that

c+a 2e+a
dei‘ J il = j wdf = . . . =4
0

As can be seen from equation (3), this stipulation involves the assumption
that the energy of the elementary structure under consideration assumes only
values that are infinitesimally close to 0, €, 2¢, etc.

Using the above stipulation for w, one obtains with the help of (3):

N

= - c = 2¢
JEe Ly W(B)E 0 + dee ", f2ee T €
E= = [13]
ET - f% [3 & ﬁ% 2¢ - %% €
J w(EYdE 4 + de + de + ... € -1
If one also sets € = (B/N)fv (according to the quantum hypothesis), one [14]

obtains from this

ICf. M. Planck, Vorlesungen iber die Theorie der Kirmesirahlung [Lectures on
the theory of thermal radiation]. (Leipzig: J.A. Barth, 1906? §8149, 150,
154, 160, 166. [11]
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(7) B 7o
- {%u
[ -1
as well as, with the help of (5), the Planck radiation formula,
_8r B3 3
by = N v
¢ -~ 1

Equation (7) shows the dependence of the mean energy of Planck's resonator on
the temperature.

From the above it emerges clearly in which sense the molecular-kinetic
theory of heat must be modified in order to be brought into agreement with the
distribution law of black-body radiation. For although onc has thought before
that the motion of molecules obeys the same laws that hold for the motion of
bodies in our world of sense perception (in essence, we arc only adding the
postulate of complete reversibility), we now must assume, for ions capable of
oscillating at particular frequencies which can mediate an exchange of energy
between matter and radiation, that the diversity of states they can assume is
less than for bodies within our cxperience. For we had to make the assumption
that the mechanism of cnergy transfer is such that the energy of clementary
structures can only assume the values 0, (R#/N)fv, 2(R/N)fv, etc.!

I believe that we must not content ourselves with this result. For the
question ariscs: [f the clementary structures that are to be assumed in the
theory of energy exchange between radiation and matter cannot be perceived in
terms of the current molecular-kinetic theory, are we then not obliged also to
modify the theory for the other periodically oscillating structures considered
in the molecular theory of heat? 1n my opinion the answer is not in doubt.

If Planck's radiation thcory goes to the root of the matter, then contradic-

1[1 is obvious that this assumption also has to be cxtended to bodies capable
of oscillation that consist of any number of elementary structures.
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tions between the current molecular-kinetic theory and experience must be
expected in other areas of the theory of heat as well, which can be resolved
along the lines indicated. In my opinion this is actually the case, as I
shall now attempt to show.

The simplest conception one can form about thermal motion in solids is
that its individual atoms perform sinusoidal oscillations about equilibrium
positions. With this assumption, by applying the molecular-kinetic theory
(equation (4)) while taking into account that three degrees of freedom of
motion must be assigned to each atom, one obtains for the specific heat of a
gram-equivalent of the substance

¢ = 3kn ,
or—expressed in gram-calories—
c=5%n2,

when n denotes the number of atoms in the molecule. It is well known that
this relation applies with remarkably close approximation to most elements and
to many compounds in the solid aggregation state (Dulong-Petit's law, rule of
F. Neumann and Kopp).

Hlowever, if one examines these facts a little closer, one encounters two
difficulties that seem to set narrow limits on the applicability of the
molecular theory.

1. There are elements (carbon, boron, and silicon) that in the solid
state and at ordinary temperatures have specific atomic heats much smaller
than 5.94. Furthermore, the specific heat per gram-molecule is less than
n-5.94 in all solid compounds containing oxygen, hydrogen or at least one of
the elements just mentioned.

2. Mr. Drude has shown! that the optical phenomena (dispersion) lead to
the conclusion that several elementary masses moving independently of each
other must be ascribed to each atom of a compound in that he successfully

1P, Drude, 4nn. d. Phys. 14 (1904): 677.

[17]

[18]

[19]

[20]

[21]
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per gram-equivalent. Thus, summation over all species of oscillating
elementary structures occurring in the solid substance in question yields the
following expression for the specific heat per gram-equivalent!:

e r .[62)?
(8a) c=59) T

L

The above figure? shows the value of expression (8) as a function of =z =
(7/pv). If (T/Bv) > 0.9, the contribution of the structure to the specific
molecular heat does not differ significantly from the value 5.94, which also
follows from the heretofore accepted molecular-kinetic theory; the smaller the
v, the lower the temperature at which this will already be the case. In con-
trast, if (7/fv) < 0.1, the elementary structure in question does not contri-
bute significantly to the specific heat. In between, the expression (8)
initially grows faster and then more slowly.

From what has been said it follows first of all that the electrons
capable of oscillation, which have to be postulated to explain the ultraviolet
proper frequencies, cannot significantly contribute to the specific heat at
normal temperatures (7T = 300), because the inequality (7/fv) < 0.1 becomes  [23]
the inequality A < 4.8 ¢ at T = 300. On the other hand, if the elementary
structure satisfies the condition } > 48y, then according to what has been
said above, its contribution to the specific heat must be close to 5.94 at
usual temperatures.

Since generally for infrared proper frequencies A > 4.8u, according to [24]
our conceptions these proper oscillations must contribute to the specific
heat, and the greater the A, the greater this contribution. According to
Drude's investigations. these proper frequencies are to be attributed to the [25]
ponderable atoms (atom ioms) themselves. The most obvious conclusion seems
therefore to be to consider exclusively the positive atom ions as the carriers
of heat in solids (insulators).

IThis consideration can easily be extended to anisotropic bodies.
2Cf. dashed curve.
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If the infrared proper oscillation frequencies v of a solid are known,
then according to the aforesaid its specific heat as well as its dependence on
the temperature would be completely determined by equation (8a). Pronounced
deviations from the relation ¢ = 5.94 n would have to be expected at normal
temperatures if the substance in question showed an optical infrared proper
frequency for which A < 48 p; at sufficiently low temperatures the specific
heats of all solid bodies should decrease significantly with decreasing
temperature. Further, the Dulong-Petit law as well as the more general law ¢
= 5.94 n must hold for all bodies at sufficiently high temperatures unless
new degrees of freedom of motion (electron-ions) become apparent at the
latter.

Both above-mentioned difficulties are resolved by the new interpretation
and I believe it likely that the latter will prove its validity in principle.
0f course, an cxact agreement with the facts is out of the question. During
heating, solids experience changes in molecular arrangement (e.g., changes in
volume) that are associated with changes in energy content; all solids that
conduct clectricity contain freely moving elementary masses that make a
contribution to the specific heat; the random heat oscillations have possibly
a somewhat different frequency than the proper oscillations of the elementary
structures during optical processes. Finally, the assumption that the
pertinent elementary structures have an oscillation frequency that is
independent of the energy (temperature) is undoubtedly inadmissible.

Nevertheless, it is interesting to compare our conclusions with obser-
vation. Since we are concerned with rough approximations only, we assume, in
accordance with F. Neumann-Kopp's rule, that every element contributes
equally to the molecular specific heat of all its solid compounds even if its
specific heat is abnormally small. The numerical data presented in the
following table are taken from Roskoe's textbook of chemistry. We note that
all elements with abnormally low atomic heat have low atomic weights;
according to our interpretation, this is to be expected, since, ceteris
paribus, low atomic weights correspond to high oscillation frequencies. The
last column of the table lists the values of A in microns that arc obtained
from these numbers, if one assumes that they are valid at T = 300, with the
help of the curve showing the relation between z and c.
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: Specific
Element atomic heat Acalc.
S and P 5.4 42
Fl 5 33
0 4 21
Si 3.8 20
B 2.7 15
H 2.3 13
C 1.8 12

Further, we take some data on infrared proper oscillations (metallic
reflection, residual rays) of some transparent solids from the tables of
Landolt and Bornstein; the observed A are listed in the table below as
"Aops."s the numbers under A, ;. " are taken from the above table if they [31}
refer to atoms with abnormally low specific hcat; for the others it is assumed

that A > 48 p.

Substance Aobs. Acalc.
CaFl 24; 31.6 33; >48
NaCl 51.2 >48
KC1 61.2 >48
Cal0; 6.7; 11.4; 29.4 12; 21; >48
8i0, 8.5; 9.0; 20.7 20; 21

In the table, NaCl and KC1 contain only atoms with normal specific heat;
indeed, the wavelengths of their infrared proper oscillations are larger than
48 u. The other substances contain only atoms with abnormally low specific
heats (except for Ca); indeed, the frequencies of these substances range
between 4.8 and 48 p. In general, the values of ) obtained theoretically
from specific heats are considerably larger than those observed. It is
possible that these deviations might be explained by a strong variation of the
frequency of the elementary structure with its energy. Be that as it may, the
agreement of the observed and the calculated X is remarkable both with
respect to the sequence as well as with respect to the order of magnitude.

Finally, we will also apply the theory to diamond. Its infrared proper
frequency is not known, but can be calculated on the basis of the theory
described if the molecular specific heat ¢ is known for some temperature T;
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the z corresponding to ¢ can be taken directly from the curve, and X is
then calculated from the relation (7TL/fX) = w.

I am using the experimental results of H. F. Weber, which I took from
the tables of Landolt and Bornstein (cf. the following table). For T = 331.3
we have ¢ = 1.838; according to thc theory described, from this it follows
that A = 11.0 g. Based on this value, those in the table's third column are
calculated according to the formula z = (TL/f)), (5 = 4.86-10").

T ¢ T
222.4 0.762 0.1679
262.4 1.146 0.1980
283.7 1.354 0.2141
306.4 1.582 0.2312
331.3 1.838 0.2500
358.5 2.118 0.2705
413.0 2.661 0.3117
479.2 3.280 0.3615
520.0 3.631 0.3924
879.7 5.290 0.6638

1079.7 5.387 0.8147
1258.0 5.507 0.9493

The points, whose abscissas are these values of z and whose ordinates
are the values of ¢ as obtained experimentally from Weber's observations and
listed in the table, should lie on the z,c-curve shown above. We plotted
these points—indicated by circles—in the above figure; in fact, they do
almost lie on the curve. Hence we have to assume that the elementary carriers
of heat in diamond are almost monochromatic structures.

Thus, according to the theory it is to be expected that diamond shows an
absorption maximum at A = 11 p.

Bern, November 1906. (Received on 9 November 1906)
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Doc. 39
ON THE LIMIT OF VALIDITY OF THE LAW OF THERMODYNAMIC EQUILIBRIUM AND
ON THE POSSIBILITY OF A NEW DETERMINATION OF THE ELEMENTARY QUANTA
by A. Einstein
[Annalen der Physik 22 (1907): 569-572] (11

Let the state of a physical system be determined in the thermodynamic
sense by parameters A, g, etc. (e.g., readings of a thermometer, length or
volume of a body, amount of a substance of a certain kind in one phase). If,
as we assume, the system is not interacting with other systems, then, accord-
ing to the laws of thermodynamics, equilibrium will occur at particular valucs
Ao» Mg» etc. of the parameters, for which the system's entropy § is a
maximum. However, according to the molecular theory of heat, this is not
exactly but only approximately correct; according to this theory, the value of
the parameter ) is not constant even at temperature equilibrium, but shows
irregular fluctuations, though it is very rarely much different from J,.

At first glance the theoretical examination of the statistical law that
governs these fluctuations would seem to require that certain stipulations
regarding the molecular model must be applied. However, this is not the case. [2]
Rather, essentially it is sufficient to apply the well-known Boltzmann rela-
tion connecting the entropy § with the statistical probability of a state.
As we know, this relation is

s=%gw,

where R is the constant of the gas equation and AN is the number of
molecules in one gram-equivalent.

We consider a state of the system in which the parameter ) has a value
Mo+ € differing very little from 1,. To bring the parameter A from the
value 1, to the value A along a reversible path at constant energy £, one
will have to supply some work 4 to the system and to withdraw the corre-
sponding amount of heat. According to thermodynamic relations, we have

1=JdE»JTdS.
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or, since the change in question is infinitesimally small and J dEk = 0,
4=-T(5-5) .

On the other hand, however, according to the connection between entropy and
probability of state, we have

R 4
S'S():ng [W;] B

From the last two equations it follows that

or

The result involves a certain degree of inaccuracy, because in fact one
cannot talk about the probability of a state, but only about the probability
of a state range. 1f instead of the equation found we write

_ N A
d¥ = const. e rr dr,

then the latter law is exact. The arbitrariness due to our having inserted
the differential of A rather than the differential of some function of A
into the equation will not affect our result.

We now put A = Xg+ ¢ and restrict ourselves to the case that 4 can
be developed in positive powers of ¢, and that only the first nonvanishing
term of this seriecs contributes noticeably to the value of the exponent at
such values of ¢ for which the exponential function is still noticeably
different from zero. Thus, we put 4 = ge? and obtain

d¥ = const. e L de .
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Thus, in this case there applies the law of chance errors to the
deviations €. For the mean value of the work 4 one obtains

5 A8
1=341.

flence, the mean value of the square of the fluctuation € of a para-
meter A is such that, in order to change the parameter A from Ay, to

A0 4+ J%E at constant energy of the system, the external work 4 that one
would have to apply, if thermodynamics were strictly valid, equals % % T
(i.e., one-third of the mean kinetic energy of one atom).

If one inserts the numerical values for R and A, one obtains
approximately

4 = 10767 .

We shall now apply the result obtained to a short-circuited condenser of

(electrostatically measured) capacitance c. If I;E is the mean
(electrostatic) potential difference that the condenser assumes as a result of
molecular disorder, then

1=1 7 = 1007

¥e assume that the condenser is an air condenser consisting of two

interlocking plate systems containing 30 plates each. The average distance
between each plate and the adjacent plate of the other system shall be 1 mm.

The size of the plates shall be 100 cm2. The capacitance ¢ is then about

5,000. At normal temperature one then obtains (51

2 = - &
Jpsta&. =3.4 x 109 . [6]

Measured in volts, one obtains
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I—'Q' _ -
Pyolt © 106 .

If one imagines that the two plate systems can move relative to one
other, so that they can be completely separated, one can get the capacitance
to be of order of magnitude 10 after the plates have been moved apart. If =
denotes the potential difference resulting from p due to the separation, one
obtains

[ - 106 . 5,000 - 0.0005 volt .

Thus, if the condenser is short-circuited when the plate systems are
pushed together, and the plates are pulled apart after the connection has been
broken, potential differences of the order of magnitude of one-half millivolt
will result between the plate systems.

It does not seem to me out of the question that these potential differ-
ences may be accessible to measurement. For if metal parts can be electrically
connected and separated without the occurrence of other irregular potential
differences of the same order of magnitude as those calculated above, then it
must be possible to achieve the goal by combining the above plate condenser
with a multiplier. We would then have a phenomenon akin to Brownian motion in
the domain of electricity that could be used for the determination of the
quantity N.

Bern, December 1906. (Received on 12 December 1906)
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Doc. 40
THEORETICAL REMARKS ON BROWNIAN MOTION
by A. Einstein

[Zeitschrift fir Elektrochemie und angewandte physikalische
Chemie 13 (1907): 41-48]

Prompted by Svedberg's investigation on the motion of suspended parti-
cles, published recently in the Z. f. Elektrock., I consider it appropriate to
call attention to some properties of this motion required by the molecular
theory. I hope that the following remarks will make it somewhat easier for
the physicists who study this problem experimentally to interpret their
observational data and to compare them with theory.

1. The molecular theory of heat allows the calculation of the mean value
of the instantaneous velocity a particle possesses at the absolute temperature
T, since the kinetic energy of the particle's center-of-gravity motion is
independent. of the size and nature of the particle and of the nature of its
environment, e.g., of the liquid in which the particle is suspended; this
kinetic energy is equal to that of a monoatomic gas molecule. The mean

velocity I%; of a particle of mass m is threfore determined by the equation

m

%
N

RT
'IV' »
vhere R = 8.3-107, T 1is the absolute temperature, and ¥ is the number of

real molecules in a gram-molecule (about 4-102). We shall calculate I%;, as
well as the other quantities to be considered below, for particles of
colloidal solutions of platinum studied by Mr. Svedberg. For these particles
we have to put m = 2.5-10"%5, so that we get for T = 292

I%; = |%%} = 8.6 cm/sec.

(1]

(2}

3]

[41

(5]
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2. We will now examine whether there is any chance of actually observing
this enormous velocity on a suspended particle.

If we did not know anything about the molecular theory of heat, we would
expect the following: If we imparted a velocity to a particle suspended in a
liquid by an impulse of an external force, this velocity would be rapidly used
up through the friction of the liquid. We neglect the latter's inertia and
bear in mind that the resistance experienced by the particle moving with
velocity v is 6rkPv, vhere % denotes the coefficient of viscosity of the
liquid and P the radius of the particle. We get the equation

m 5% = - 6xkPv.

This yields for the time ¢ in which the velocity decreases to one
tenth of its initial value

. m
s 0.434-6rk?P -

For the platinum particle (in water) mentioned above, we have to put
P =2.5-10%m, and 7 = 0.01, so that we get!

# = 3.3-107 seconds.

Returning to the molecular theory of heal, we must modify this analysis.
True, we must assume now as well that, due to friction, the particle loses
almost all its initial motion during the very short time . But we also must
assume that during this time the particle receives new impulses by a process
that is the reverse of internal friction, so that it retains a velocity that

on the average equals I%;. But since we must imagine that the direction and
magnitude of these impulses are (almost) independent of the initial direction
of motion and velocity of the particle, we must conclude that the velocity and

For "microscopic" particles ¥ is significantly greater since, under other-
wise equal conditions, ¢ 1is proportional to the square of the radius of the
particle.
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direction of motion had changed drastically, and in a completely irregular
manner, already in the extraordinarily short time 9.
It is therefore impossible—at least for ultramicroscopic particles—to

determine I%; by observation.

3. If we limit ourselves to the investigation of the paths, or—to be
more precise—of the changes of position, in times 7 that are substantially
greater than ¢, we will have according to the molecular theory of heat

ﬁ:ﬁlwm-ggn, [91

where A denotes the change of the particle's z-coordinate occurring during
7. As the mean velocity in the time interval 7 we can define the quantity

E_.

row

where we put for brevity

L7 7 A

But this mean velocity increases as 7 decreases; as long as 7 is large
compared with 4, the velocity does not approach any limiting value with
decreasing 7.
Since an observer operating with certain means of observation in a cer-
tain manner can never perceive paths traveled in arbitrarily short times, a
certain mean velocity will always appear to him as instantaneous velocity. [10]
But it is clear that no objective property of the motion investigated
corresponds to the velocity so obtained, at least if the theory corresponds to
the facts. [

Bern, January 1907. (Received on 22 January)
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Doc. 41
ON THE POSSIBILITY OF A NEW TEST OF THE RELATIVITY PRINCIPLE
by A. Einstein
[dnnalen der Physik 23 (1907): 197-198]

In an important paper published lasi year, Mr. J. Stark! demonstrated
that the moving positive ions of canal rays emit line spectra by identifying
the Doppler effect and following it quantitatively. He also undertook
experiments with the intention of detecting and measuring an effect of the
second order (proportioral to (w/F)2); however, the experimental arrangement,
which was not set up specifically for this purpose, was not adequate for
achieving reliable results.

1 will show here briefly that the principle of relativity in conjunction
with the principle of the constancy of the velocity of light makes it possible
to predict the above effect. As I showed in an earlier paper?, it follows
from these principles that a uniformly moving clock runs at a slower ratc as
Jjudged from a "stationary" system than as judged by a co-moving observer. TIf
v denotes the number of the clock's strokes per unit time for the observer at
rest, and vy the corresponding number for the co-moving observer, then

or to first approximation

Vo B 2

The atom ion of the canal rays that emits and absorbs radiation of certain
frequencies is thus to be conceived as a fast-moving clock, and the relation
just indicated can therefore be applied to it.

1J. Stark, dnn. d. Phys. 21 (1906): 401.
2A. Einstein, 4nn. d. Phys. 17 (1905): 903.
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However, one has to take into consideration that the {requency », (for
the co-moving observer) is unknown, so that the above relation is not acces-
sible to direct experimental verification. But, it may be assumed that v,
is also equal to the frequency emitted or absorbed by the same ion while at
rest, and this for the following reason. From the fact that one and the same
line spectrum is formed under very different conditions, we conclude that the
frequency v, does not depend on interactions between moving ions and the
stationary gas, but is a characteristic of the ion only; from this one
directly concludes with the help of the principle of relativity that »; must
equal the frequency of radiation emitted or absorbed by an ion at rest.

The equation

v-vy _  1[v]2
5 =" 7[17]

thus gives directly the second order effect sought.

The numerical values presented by Mr. Stark for the effect are more than
ten times larger than those resulting from the formula presented. It seems
likely to me that reliable results with regard to this problem can be expected
only after it has been possible to obtain (nonluminous?) canal rays in a
completely gas-free space.

Bern, March 1907. (Received on 17 March 1907)

Doc. 42
CORRECTION TO MY PAPER: "PLANCK'S THEORY OF RADIATION, ETC."
by A. Einstein
(dnnalen der Physik 22 (1907): 180-190]

In the above-cited paper, which was published in this year's January
issue, [ wrote: "According to Drude's investigations, these proper fre-
quencies are to be attributed to the ponderable atoms (atom ions) themselves.
The most obvious conclusion seems therefore to be to consider

(4]

(5]
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exclusively the positive atom ions as the carriers of heat in solids
(insulators)."

This proposition does not hold up in two respects: First, one must
assume not only positively, bul also negatively charged atom ions. Second—
and this is the essential point—Drude's investigations do not justify the
assumption that every elementary structure capable of oscillation that acts as
a carrier of heat has always an electric charge. Thus, from the existence of
an absorption region one can indeed deduce (within the limitations mentioned)
the existence of a kind of elementary structure that makes a contribution with
a characteristic temperature dependence to the specific heat; however, the
converse conclusion is not valid, because most certainly there could exist
uncharged heat carriers, i.e., such ones that are not observable optically.
This is especially to be expected with chemically not bound atoms.

The conclusion drawn from the nature of the specific heat of diamond in
the last sentence of the paper hence is also not legitimate. It should read:

"Thus, according to the thcory, it is to be expected that diamond cither
shows an absorption maximum at A = 11 g or that it has no optically demon-
strable infrared proper frequency whatsoever."

(Received on 3 March 1907)
Erratum

Vol. 22, p. 287, line 4 from the bottom in equation (2), the letter = should
be omitted.
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Doc. 43
Author's abstract of lecture
"ON THE NATURE OF THE MOVEMENTS OF MICROSCOPICALLY SMALL PARTICLES
SUSPENDED IN LIQUIDS"
[Naturforschende Gesellschaft Bern. Hitteilungen (1907)]

1038. SESSION OF 23 MARCH 1907
At 8 P.H. in the Hotel Storchen

Chairman: Mr. Ed. Fischer. Present: 20 members and guests.

1. Mr. A. Einstein speaks "On the nature of the movements of microscopically
small particles suspended in liquids."

Microscopically small inanimate particles (e.g., with diameters of the
order of magnitude 0.001 mm) suspended in liquids carry out irregular motions
that are more animated the smaller the diameter of the particle and the
viscosity of the liquid and the higher the temperature (Brownian motion).
After a brief discussion of the different attempts at explanation, a simple
formula for the distances covered by the particles is derived by the lecturer
in an elementary way with the aid of the kinetic theory of heat. (Author's
abstract)

For more on the topic, see: A4nn. d. Physik 17 (1905): 549.

Ann. d. Physik 19 (1906): 371.

1]

[2]

[3]

[4]
[5]
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Doc. 44
COMMENTS ON THE NOTE OF MR. PAUL EMRENFEST: "THE TRANSLATORY MOTLON
OF DEFORMABLE ELECTRONS AND THE AREA LAW"
by A. Einstein
[Annalen der Physik 23 (1907): 206-208]

The article referrcd to above contains the following remarks:

"In the formulation in which Mr. Einstein published it, Lorentzian
relativistic electrodynamics is rather generally viewed as a complete system.
Accordingly, it must also be able to provide purely deductively an answer to
the question posed by transferring Abraham's problem from the rigid electron
to the deformable one: Granted that there exists a deformable electron that
has some nonspherical and nonellipsoidal form when at rest. According to Mr.
Einstein, this electron undergoes the well-known Lorentz contraction during
uniform translation. Well them, is it possible for this electron to undergo
force-free uniform translation in every direction, or is it not?"

Concerning this [ have the following comments:

1. The principle of relativity, or, more exactly, the principle of
relativity together with the principle of the constancy of velocity of light,

is not to be conceived as a "complete system,"

in fact, not as a system at
all, but merely as a heuristic principle which, when considered by itself,
contains only statements about rigid bodies, clocks, and light signals. It is
only by requiring relations betwcen otherwise scemingly unrelated laws that
the theory of relativity provides additional statements.

For example, the theory of the motion of electrons arises in the follow-
ing way. One postulates the Maxwell equations for vacuwum for a system of
space-time coordinates. By applying the space-time transformation derived by
mecans of the system of relativity, one finds the transformation equations for
the electric and magnetic forces. Using the latter, and applying the space-
time transformation once again, ome arrives at the law for the acceleration of
an electron moving at arbitrary speed from the law for the acceleration of the
slowly moving elcctron (which is assumed or obtained from experience). Thus,
we are not dealing here at all with a "system” in which the individual laws
arc implicitly contained and from which they can be found by deduction alone,
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but only with a principle that (similar to the second law of the theory of

heat) permits the reduction of certain laws to others. [8}
2. Previously, when one did not rely on the principle of relativity,

but instead tried to obtain the laws of motion of electrons by electrodynamic

methods, one found it necessary to make more definite assumptions on the

distribution of electricity so that the problem is not an undetermined one.

The electricity was thought of as being distributed over a (rigid) framework. [9]

It should be noted that the laws that govern the motion of such a structure

cannot be derived from electrodynamics alone. After all, the framework is

nothing other than the introduction of forces which balance the electrodynamic

ones. If we view the framework as a rigid body (i.e., one not deformable by

external forces), the problem of the motion of the electron can be solved

deductively without arbitrariness only if the dynamics of the rigid body is

known with sufficient accuracy. [10]
If the theory of relativity is correct, we are still far from the latter

goal. For the time being, we only have the kinematics of parallel translation

and an expression for the kinetic energy of a body in parallel translation,

provided the latter does not interact with other bodies!; for the rest, both

the dynamics and the kinematics of a rigid body have at present to be

considered as unknown for the case under consideration.

Bern, 14 April 1907. (Received on 16 April 1907)

1T will soon show in an article that the latter restriction is essential. [11]
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Doc. 45
ON THE INERTIA OF ENERGY REQUIRED BY THE RELATIVITY PRINCIPLE
by A. Einstein
[Annalen der Physik 23 (1907): 371-384]

The principle of relativity, in combination with Maxwell's equations,
leads to the conclusion that the imertia of a body increcases or decreases with
its energy content in a completely determined way. That is to say, if one
observes a body that emits a certain radiation energy simultaneously in two
opposite directions, and if one examines this process from two coordinate
systems which move uniformly rclative to each other,! one of which is at rest
relative to the body, and if one applies--from both coordinate systems--the
energy principle to the process, one arrives at the result that to an increase
in the body's energy AF there must always correspond an increase in the mass
AE/12, where V denotes the velocity of light.

The circumstance that the special case discussed there necessitates an
assumption of such extraordinary generality (about the dependence of the
inertia on the energy) demands that the necessity and justification of this
assumption be examined in a more general way. FEspecially, the question
arises: Do not other special cases lead to conclusions that are incompatible
with the one mentioned above? A first step in this respect I took last year?
by showing that the above assumption resolves the contradiction between
electrodynamics and the principle of the constancy of the motion of the center
of gravity (at least as far as the terms of first order are concerned).

The general answer to the question posed is not yet possible because we
do not yet have a complete world view that would correspond to the principle
of relativity. Rather, we must limit ourselves to the special cases that we
can handle at present without arbitrariness from the standpoint of relativis-
tic electrodynamics. We are going to consider two such cases; in the first of
these, the system whose inertial mass we shall examine consists of a rigid,

1A. Einstein, Ann. d. Phys. 18 (1905): 639.
2A. Einstein, Ann. d. Phys. 20 (1906): 627.
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rigidly electrified body, and in the second case it consists of a number of
uniformly moving mass points which do not exert any forces on each other.

Before I start with the investigation, I must insert here a remark on
the presumed range of validity of Maxwell's equations for empty space so as to
meet a naturally arising objection. In earlier papers I showed that our
present electromechanical world view is not suited for explaining the entropic
properties of radiation and the laws governing the emission and absorption of
radiation and those governing the specific heat; rather, it seems to me
necessary to assume that the nature of any periodic process is such that the
conversion of energy can only proceed in certain quanta of finite magnitude
(light quanta), i.e., that the manifold of processes possible in reality is
smaller than the manifold of processes possible according to our present
theoretical views.! In particular, we would have to imagine that in a radia-
tion process the instantaneous electromagnetic state in a region of space is
completely determined by a finile number of quantities--in contrast to the
vector theory of radiation. But as long as we do not possess a picture that
corresponds to the requirements mentioned, it will be natural to use the
current. theory for all problems not concerned with entropy relations or
conversions of elementary small quantities of energy without having to fear
that we will thereby arrive at incorrect results. I can i1llustrate most
graphically how I see the present situation regarding these questions with the
following imaginary case.

Let us imagine that the molecular-kinetic theory of heat has not yet
been propounded, but that it has been demonstrated with complete certainty
that the Brownian motion (motion of particles suspended in liquids) is not due
to any external supply of energy, while it is clearly recognized that these
motions cannot be explained with the help of mechanics and thermodynamics. In
such a situation one would rightly conclude that a radical change of theore-
tical principles must take place. In spite of that, nobody would shrink from
applying the fundamental equations of mechanics and thermodynamics to handle
problems not related to instantaneous states in small regions of space. In
this sense, in my opinion, we can confidently base our considerations on
Maxwell's equations.

;gé Einstein, Ana. d. Phys. 17 (1905): 132; 20 (1906): 199; and 22 (1907):

(3]
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It seems to me to be in the nature of things that other authors might
have already elucidated part of what I am going to say. However, bearing in
mind that the problems under consideration are being treated here from a new
standpoint, 1 felt that I should be permitted to forgo a survey of the liter-
ature (which would have been very troublesome for me), especially since there
is good reason to hope that this gap will be filled by other authors, as it
was kindly done by Mr. Planck and Mr. Kaufmann for my first paper on the
principle of relativity.

81. On the kinetic energy of a rigid body in uniform translation
subjecl to external forces

We consider a rigid body that is moving in uniform translation (velocity
v) in the direction of the increasing z-coordinate of a coordinate system
(z,y,2) that is assumed to be at rest. If external forces do not act upon
it, then, according to the theory of relativity, its kinetic energy K, is
given by the equation’

Kozplﬂ[——l—-l],
h- gy

where p denotes its mass (in the conventional sense) and ¥ the velocity of
light in vacuum. We now want to show that according to the theory of relativ-
ity this expression does not hold any longer if the body is acted upon by
external forces that balance each other. To be able to deal with this case,
we must assume that these are electrodynamic forces. We therefore imagine
that the body is rigidly electrified (with continuously distributed electri-
city), and that an electromagnetic field of force is acting upon it. We
imagine that the electric density is always very low and the ficld strong, so
that the forces corresponding to the interactions between the body's electric
masses can be neglected compared with the forces the external field exerts on

1\, Einstein, 4dan. d. Phys. 17 (1905): 917(f.
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the body's electrical charges.! The energy AF transferred from the field of
force to the body between the times ¢, and ¢, is given by the expression

t
R = J ‘a1 J of £ dadydz
to

where the space integral is to be extended over the body and we have put

p=g§+%+g§.
Using the transformation equations given in the paper cited above?, we
transform this expression to the space-time system (&,7.(,7), which
corresponds to a coordinate system that is at rest with respect to the body
and whose axes are parallel Lo (z,y,z). 0One thus obtains after a simple
calculation, in a notation that corresponds exactly to that used in the paper
quoted,

AE - H por' & dtdndidr

where, as there, fJ denotes the expression
1

|1 =N
Note that according to our assumptions the forces X' cannot be arbitrary.
Rather, at all times they must be such that the body under consideration does
not experience any acceleration. The necessary (but not sufficient) condition
for this, according to a theorem of statics, is that, observed from a coordi-

nate system that moves together with the body, the sum of the f-components of
the forces acting upon the body always vanishes. One thus has for each 7

J X'p'dédnd¢ = 0 .

We introduce this assumption in order to be able to assume that the acting
forces are not subjected to any restricting conditions due to the way they
are produced.

2A. Einstein, 4nn. d. Phys. 17 (1905), §§ 3 and 6.

[6]
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Thus, if the limits for 7 in the above integral expression for AE were
independent of £,7,(, we would have Af = 0. However, this is not the case,
for from the transformation egquation

t=ﬂ[r+fg}7{]
it follows immediately that the time limits in the moving system are
Tz%l—-ﬁﬁ and r:%t-%g‘

We imagine that the integral in the expression for AF is decomposed into
three parts.
The first part shall comprise the times 7 between

%f - f& ¢ and %f s
éf and %} ,
%} and %f - ;& ¢ .

The second part vanishes because its time limits are independent of
&,7,(. The first and third parts have a definite value only if the assumption
is made that the forces acting on the body are independent of time close to

the second part betwecn

and the third between

the times ¢ = ¢3 and ¢ = ¢y, such that the electric force X' is inde-
pendent of time for all points of the rigid body between the times

T = %f = f& ¢ and 7= %f ,

T = %} and 7= éf £ ﬁ% £,

respectively. If the X' present during these two time intervals are called
Xy and X}, respectively, one obtains

and between
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Exp'
88 = [ $5 8 g dedndC + [ 5 8 T - dedndc .

If one assumes further that no forces act on the body at the start (f = ¢;),
then the second of these integrals vanishes. Taking into account that

fip'

is the ¢-component K£ of the ponderomotive force acting on the space
element, one gets

where the summation is to be extended over all mass elements of the body.

¥We thus get the following strange result. If a rigid body on which
originally no forces are acting is subjected to the influence of forces that
do not impart acceleration to the body, then these forces—observed from a
coordinate system that is moving relative to the body—perform an amount of
work AF on the body that depends only on the final distribution of forces
and the translation velocity. In accordance with the energy principle, from
this it follows immediately that the kinetic energy of a rigid body subjected
to forces is larger by AZ than the kinetic energy of the same body moving at
the same velocity but not subjected to any forces.

§82. UOn the inertia of an electrically charged rigid body

We again consider a rigid, rigidly electrified body in uniform transla-
tion (velocity o) in the direction of the increasing z-coordinate of a
"stationary" coordinate system. An external electromagnetic field of force
shall not be present. This time, however, we shall take into account the
electromagnetic field produced by the electric masses of the body. First, we
calculate the electromagnetic energy
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Eezgl;j(l?-fY?+ZZ+L2+II2+JVZ)d:cd'ydz.

To this end we use the transformation equations contained in the repeatedly
cited paper, and transform the above expression by introducing under the
integral the quantities that referred to a coordinate system moving with the
body. We then obtain

1+ (~’;v)2
r 1 1 1 1] 7!
IGZWJ‘B [X2+ 1 - (7-’) (Y2+ 12)}d6d7]dc ’

It should be noted that the value of this expression depends on the orienta-
tion of the rigid body relative to the direction of motion. Hence, if the
total kinetic energy of the electrified body consisted exclusively of the
kinetic energy K, of the body due to its ponderable mass and of the excess
of the electromagnetic energy of the moving body over the electrostatic energy
of the body when at rest, we would have arrived at a contradiction, as we can
easily see from the following.

Ve imagine that the body under consideration rotates infinitely slowly
relative to the coordinate system moving along with it, with no external
influences taking place during this motion. It is clear that this motion must
be possible without application of any force, because according to the
principle of relativity the body's laws of motion relative to the system
moving along with it are the same as the laws of motion with respect to a
"stationary" system. We now observe the uniformly moving and infinitely
slowly rotating body from the "stationary" system. Since the rotation is
supposed to be infinitely slow, it does not contribute anything to the kinetic
energy. The expression for the kinetic energy in the case under consideration
is therefore the same as it would be if no rotation but only uniform parallel
translation were to take place. However, since in the course of the motion
the body takes up different (arbitrary) positions, and the energy principle
must hold throughout the motion, it is clear that the kinetic energy of an
electrified body in translational motion cannot possibly depend on its
orientation.
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This contradiction is resolved by the results of the previous section,
i.e., the kinetic energy of the body under consideration cannot be calculated
like that of a rigid body upon which no forces are acting. On the contrary,
in accordance with §1, we must take into account that our rigid body is
subjected to forces caused by the interaction between the electric masses.
Thus, if we denote by K, the kinetic energy in the absence of electric
charges, we obtain for the body's total kinetic energy K the expression

K=K + b+ (E, - E)

where Es denotes the electrostatic energy of the body in the state of rest.
In our case we have

88 = - B4z | er (G + G+ G| deanac

from which one obtains by integration by parts, taking into consideration that
X', ¥', Z' can be derived from a potential,

AE =Y gl;J [1'2 -2 - z2|dgdndc

If one takes into account the expressions for K, and £ given in §i,
one obtains the following expression for the kinetic energy of the electrified
rigid body:

K= [p + :é] R 7 S W 1

-

This expression is, as it must be, independent of the body's orientation
relative to the direction of translation. If one compares the expression for
K with that for the energy K, of a body not charged electrically,

Ko=[1V2

+_1] ,
- @
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one realizes that the electrostatically charged body has an inertial mass that
exceeds that of the uncharged body by the electrostatic energy divided by the
square of the velocity of light. The law of the inertia of energy is thus
confirmed by our result in the special case considered.

83. Remarks comcerning the dyramics of the rigid body

From the foregoing it might seem that we are no longer far from the goal
of constructing a dynamics of the parallel translation of the rigid body that
would conform to the principle of relativity. However, one must remember that
the investigation carried out in §1 yielded the energy of a rigid body
subjected to forces only for the case that these forces are constant in time.
If at the time ¢; the forces X' depend on the time, then the work AZ, and
thus also the energy of the rigid boedy, proves to be dependent not only on
those forces that occur at ene particular time.

To illustrate the difficulty involved as drastically as possible, let us
imagine the following simple special case. We consider a rigid rod 4B which
shall be at rest relative to a coordinate system (£,7,(), with the rod axis
resting in the (-axis. At a certain time 7, let ecqual but opposite forces
P act on the rod ends for a very short time, while at all other times the rod
is not subjected to forces. It is obvious that the above action on the rod at
time 7, does not produce any motion of the rod. We now observe the very

N F

same process [rom a coordinate system whose axes are parallel to those of the
system used earlier, relative to which the rod moves in the direction 4-B
with velocity wv. However, viewed from this coordinate system, the impulses
in 4 and B do not act simultaneously; rather, the impulse in B is
delayed by £4(v/F?) time units with regard to the impulse in 4, where ¢
denotes the length of the rod (measured at rest). Thus we arrived at the
following odd-looking result. On the moving rod 4B, an impulse acts first in
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4 and some time thereafter an opposite one in B. The two impulses compen-
sate each other so that they do not modify the motion of the rod. The case
looks even more odd if we ask about the energy at a time when the impulse in
4 had already ended while that in B had not yet begun. The impulse in 4
had transferred work to the rod (since the rod was in motion); hence the
energy of the rod had to increase by this work. Yet no change has occurred
either in the velocity of the rod or in any other related quantity on which
the energy function might be made to depend. Thus there appears to be a
violation of the energy principle.

This difficulty has a very simple solution im principle. By implicitly
assuming that we can completely determine the momentary state of the rod by
the forces acting on the rod and by the rod's velocity at that moment, we
assume that an increase in the body's velocity is produced instantaneously by
a velocity-producing force acting somewhere on the body, i.e., that the
spreading of the force exerted on one point of the body over the whole body
does not require time. As we are going to show, such an assumption is not
compatible with the principle of relativity. We are therefore obviously
forced to postulate in our case that the effect of the impulse in 4 is
associated with a change of state of unknown quality in the body, which
spreads throughout it with finite velocity and produces an acceleration of the
body in a short time unless this effect is compensated by the effects of some
other forces acting upon the body within that time. Hence, if relativistic
electrodynamics is correct, we are still far from having a dynamics of the
parallel translation of the rigid body.

We will now show that not only the assumption of an insiantanevus spread
of some effect, but also, more generally, any assumption of the spreading of
an effect with a velocity greater than the velocity of light is incompatible
with the theory of relativity.

Consider a material strip extending along the z-axis of a coordinate
system (z,y,2), relative to which a certain effect shall propagate with
velocity ¥, and let there be at =z = 0 (point 4) as well as at z = +£
(point B) an observer who is at rest relative to the coordinate system
(z,y,2). By means of the above effect, the observer in 4 sends a signal to
the observer in B through the material strip, which is not at rest but is
moving in the negative z-direction with the velocity » (< F). It follows

[8]

{91
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from §5 (loc. cit.) that the signal will then be tramsmitted from 4 to &
with the velocity

¥ -
1 2]
o7

The time T that elapses between the signal emission in 4 and signal
reception in B is thus

The velocity o can assume any value smaller than F. Hence, if ¥ > V, as
we have assumed, then v can always be chosen such that 7T < 0. This result
signifies that we would have to consider as possible a transfer mechanism
vhose use would produce an effect which precedes the cause (accompanied by an
act of will, for example). Even though, in my opinion, this result does not
contain a contradiction from a purely logical point of view, it conflicts so
absolutely with the character of all our experience, that the impossibility of
the assumption ¥ > ¥V 1is sufficiently proved by this result.

84. (On the energy of a system consisting of a number of
mass points moving force-free
If one takes a look at the expression for the kinetic energy % of a

mass point {g) moving with the velocity v,

B l—1 . 1L,

Ir-
one notices that this expression has the form of a difference; i.e. we have

v

n
-1

k= | —L

Jl - (%) )]

1]
<
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If one does not ask about the kinetic emergy in particular, but simply about
the cnergy ¢ of the moving mass point, then € = k + const. While it is
most convenient to set the arbitrary comstant in this equation equal to zero
in classical mechanics, the simplest expression for ¢ in relativistic
mechanics is obtained by choosing the zero point such that the energy ¢, for
the stationary mass point equals pF2.1 0One then obtains

€ = ul? 1

- |

We will henceforth adhere to this choice of the zero point of the energy.

Ve now introduce again the two coordinate systems (z,y,z) and (&,%.()
that are always moving relative to each other. Let a mass point g move
relative to (&,7,() with a velocity w in a direction that forms the angle
¢ with the positive ¢-axis. The energy € of the mass point relative to
the system (z,y,z) can easily be determined using the relations derived in
85 (loc. cit.). Onc obtains

1+URDCOSQ

lh-gp - &

€ = puh?

If several mass points are present that have different masses, velocities, and
directions of motions, we obtain for their total energy £ the expression

R [Eurz. ! ]+ v [ﬂwcow]
- - h-@ Ch-o®

Until now we have not stipulated anything about the state of motion of the
system (&,%,{) relative to the moving masses. We can and will now stipulate

One should note that the simplifying stipulation pV2 = ¢; is also the
expression of the principle of the equivalence of mass and energy, and that
in the case of the electrified body eg is nothing other than its electro-
static energy.

[11

1
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the following conditions that uniquely determine the state of motion of
(&:7:¢):
7] nw
——j—:()s » z——g_ 09

y Z_J%L_=o :
- It - p - &

where wE, w”, wC denote the components of w. In classical mechanics this
stipulation corresponds to the condition that the momentum of motion of the
mass system relative to (&,7,() vanishes. We then obtain

L p— | - : -
- -

or, by introducing the energy £, of the system relative to the system
(&:1,0),
F= %@ . 1

- |

If this expression is compared with that for the emergy of a mass point moving
with the velocity w,

R e ——

it -5

one obtains the following result: With respect to the dependence of the
energy on the state of motion of the coordinate system to which the processes
are referred, a system of uniformly moving mass points can be replaced by a
single mass point having the mass p = Eo/F2.

Thus, a system of moving mass points—taken as a whole—has the more
inertia the faster the mass points move relative to each other. The
dependence is again given by the law cited in the Introduction.

Bern, May 1907. (Received on 14 May 1907)
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Doc. 46
Review of J. J. WEYRAUCH, 4n Outline of the Theory of Neat. FWith
Numerous Ezamples and Appliceiions. Part 2 (Grumdriss der Kirmetheorie.
Hil zehlreichen Beispielen und Anwendungen.
Stuttgart: K. Wittwer, 1907. 412 pp. 16.00 mark.) [1]
[Beiblatier zu den Annalen der Physik 31 (1907): 777]

The second volume considered here deals with saturated and superhcated
vapors, with steam engines, acrostatics, aerodynamics (motion in channels,
efflux from container orifices), and with solid bodies; together with the
first volume, the present volume is superbly suited to introduce the person
familiar with the elements of the differential and integral calculus to the
theory of heat in a way that is useful for the treatment of enginecring
problems (especially those concerned with engines). 150 problems and 250
numerical examples, interlaced with the text and mostly selected corresponding [2]
to conditions found in practice, give the student the opportunity for ample
exercise, so that he may acquire relatively easily the proficiency needed for
the reading of engineering papers and for the calculation of special problems.
In addition, the book supplies him with the necessary empirical data as well
as with numerous references to the (mostly engineering) literature. The
editing of the book is simple and clear, the application of mathematical
symbols is consistent, the table of contents is clearly arranged and complete,

so that one can get informed about specific questions without losing much
time,



[2]

[1]
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Doc. 47
ON THE RELATIVITY PRINCIPLE AND TIHE CONCLUSIONS DRAWN FROM IT
by A. Einstein
[Jahrbuch der Redioaktivitiat und Flektronik 4 (1907): 411-462]

Newton's equations of motion retain their form when one transforms to a
new system of coordinates that is in uniform translational motion relative to
the system used originally according to the equations

' =z - vt
z' =y
gl =2 .

As long as one believed that all of physics can be founded on Newton's
cquations of motion, one therefore could not doubt that the lavs of nature are
the same without regard to which of the coordinate systems moving uniformly
(without acceleration) relative to each other they are referred. lowever,
this independence from the state of motion of the system of coordinates used,
which we will call "the principle of relativity," scemed to have been suddenly
called into question by the brilliant confirmations of H. A. Lorentz's
electrodynamics of moving bodies.! That theory is built on the presupposition
of a resting, immovable, luminiferous ether; its basic equations are not such
that they transform to equations of the same form when the above
transformation equations are applied.

After the acceptance of that theory, one had to expect that one would
succeed in demonstrating an effect of the terrestrial motion relative to the
luminiferous ether on optical phenomena. [t is true that in the study cited
Lorentz proved that in optical experiments, as a consequence of his basic
assumptions, an effect of that relative motion on the ray path is not to be
expected as long as the calculation is limited to terms in which the ratio

1. A. Lorentz, Persuch eincer Theorie der elektrischen und oplischen
Erscheinungen in beweglen Korpern. [Attempt at a theory of electric and
optical phenomena in moving bodies] Leiden, 1895. Reprinted Leipzig, 1906.
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v/c of the relative velocity to the velocity of light in vacuum appears in
the first power. But the negative result of Michelson and Morley's experi-
ment! showed that in a particular case an effect of the second order
(proportional to v2%/c?) was not present either, even though it should have
shown up in the experiment according to the fundamentals of the Lorentz
theory.
It is well known that this contradiction between theory and experiment
was formally removed by the postulate of H. A. Lorentz and FitzGerald, [4]
according to which moving bodies experience a certain contraction in the
direction of their motion. However, this ad hoc postulate seemed to be only
an artificial means of saving the theory: Michelson and Morley's experiment
had actually shown that phenomena agree with the principle of relativity even
where this was not to be expected from the Lorentz theory. It seemed
therefore as if Lorentz's theory should be abandoned and replaced by a theory
whose foundations correspond to the principle of relativity, because such a
theory would readily predict the negative result of the Michelson and Morley
experiment. [5]
Surprisingly, however, it turned out that a sufficiently sharpened
conception of time was all that was needed to overcome the difficulty
discussed. One had only to realize that an auxiliary quantity introduced by
H. A. Lorentz and named by him "local time" could be defined as "time" in [6]
general. If one adheres to this definition of time, the basic equations of
Lorentz's theory correspond to the principle of relativity, provided that the
above transformation equations are replaced by ones that correspond to the new
conception of time. H. A. Lorentz's and FitzGerald's hypothesis appears then
as a compelling consequence of the theory. Only the conception of a lumini-
ferous ether as the carrier of the electric and magnetic forces does not fit
into the theory described here; for electromagnetic forces appear here not as
states of some substance, but rather as independently existing things that are
similar to ponderable matter and share with it the feature of inertia. (71
The following is an attempt to summarize the studies that have resulted
to date from the merger of the H. A. Lorentz theory and the principle of
relativity.

1A. A. Michelson and E. W. Morley, dmer. J. of Science 34, (1887): 333. [31]
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The first two parts of the paper deal with the kinematic foundations as
well as with their application to the fundamental cquations of the Maxwell-
Lorentz theory, and are based on the studies! by H. A. Lorentz (Fersl. Kon.
Akad. v. Ket., Amsterdem (1904)) and A. Einstein (4an. d. Phys. 16 (1905)).

In the first section, in which only the kinematic foundations of the
theory are applied, I also discuss some optical problems (Doppler's principle,
aberration, dragging of light by moving bodies); I was made aware of the
possibility of such a mode of treatment by an oral communication and a paper
by Mr. M. Laue (4nn. d. Phys. 23 (1907): 989), as well as a paper (though in
need of correction) by Mr. J. Laub (4na. d. Phys. 32 (1907)).

In the third part I develop the dynamics of the material point (elec-
tron). In the derivation of the equations of motion I used the same method as
in my paper cited earlier. Force is defined as in Planck's study. The
reformulations of the equations of motion of material points, which so clearly
demonstrate the analogy between these equations of motion and those of
classical mechanics, are also taken from that study.

The fourth part deals with the general inferences regarding the energy
and momentum of physical systems to which one is led by the theory of
relativity. These have been developed in the original studies,

A. Einstein, 4an. d. Phys. 18 (1905): 639 and Ann. d. Phys. 23 (1907):

371, as well as M. Planck, Sitzungsber. d. Kgl. Preuss. Adkad. d.

Fissensch. XXIX (1907),
but are here derived in a new way, which, it secms to me, shows especially
clearly the rclationship between the above application and the foundations of
the theory. 1T also discuss here the dependence of entropy and temperature on
the state of motion; as far as entropy is concerned, I kept completely to the
Planck study cited, and the temperature of moving bodies I defined as did Mr.
Mosengeil in his study on moving black-body radiation.?

The most important result of the fourth part is that concerning the
inertial mass of the enmergy. This result suggests the question whether energy
also possesses heavy (gravitational) mass. A further question suggesting

IE. Cohn's studies on the subject are also pertinent, but I did not make use
of them here.

%urd von Mosengeil, Ann. d. Phys. 22 (1907): 867.
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itself is whether the principle of relativity is limited to monaccelerated
moving systems. In order not to leave this question totally undiscussed, I
added to the present paper a fifth part that contains a novel consideration,
based on the principle of relativity, on acceleration and gravitation.

I. KINEMATIC PART

81. Principle of constancy of the velocity of light.
Definition of time. Principle of relativity.

To be able to describe a physical process, we must be able to evaluate
the changes taking place at the individual points of the space as functions of
position and time.

To determine the position of a process of infinitesimally short duration
that occurs in a space element (point event) we need a Cartesian system of
coordinates, i.e., three mutually perpendicular rigid rods rigidly connected
with each other, and a rigid unit measuring rod.! Geometry permits us to
determine the position of a point, i.e., the location of a point event, by
means of three numbers (coordinates =z, y, z).?2 To evaluate the time of a
point event, we use a clock that is at rest relative to the coordinate system
and in whose immediate vicinity the point event takes place. The time of the
point event is defined by the simultaneous clock reading.

Imagine that clocks at rest with respect to the coordinate system are
arranged at many points. Let all these clocks be equivalent, i.e., the
difference between the readings of two such clocks shall remain unchanged if
they are arranged next to each other. If these clocks are imagined to be set
in some manner, then the totality of the clocks, provided they are arranged
sufficiently closely, will permit the temporal evaluation of any point event,
say by using the nearest clock.

IInstead of speaking of "rigid" bodies, we could equally well speak, here,
as well as further on, of solid bodies not subjected to deforming forces.

“For this one also needs auxiliary rods (rulers, compasses).

[16]
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However, the totality of these clock readings does not yet give us the
"time" as we need it for physical purposes. For this we also need a rule
according to which these clocks will be set relative to each other.

Ve now assume that the clocks can be edjustied in such a way that the
propagation velocily of every light ray in vacuum—measured by means of these
clocks—becomes everywhere equal to a universal comstant ¢, provided that the
coordinate system is not accelerated. If 4 and B are two points at rest
relative to the coordinate system, which are equipped with clocks and are
separated by a distance r, while iy is the reading of the clock in 4 at
the moment when a ray of light propagating through the vacuum in the direction
AB reaches the point 4, and lp is the reading of the clock at F at the
moment the ray reaches J#, then we should always have

.
T =€,
tp - 4y

whatever the motion of the light source emitting the light ray or the motion
of other bodies may be.

It is by no mcans self-evident that the assumption made here, which we
will call "the principle of the constancy of the velocity of light," is
actually realized in nature, but—at least for a coordinate system in a
certain state of motion—it is made plausible by the confirmation of the
Lorentz theory!, which is based on the assumption of an ether that is
absolutely at rest, through experiment?.

The aggregate of the readings of all clocks synchronized according to
the above, which may be imagined as being arranged in the individual points of
space at rest with respect to the coordinate system, we call the time belong-
ing to the coordinate system used, or, in short, the time of that system.

The coordinate system used, together with the unit measuring rod and the
clocks that serve for the determination of the time of the system, we call
"reference system S." Suppose that the physical laws are ascertained with

H. A. Lorentz, Versuch einer Theorie der elekirischen und optischen
Erscheinungen in bewegten Korpern {Attempt at a theory of electrical and
optical phenomena in moving bodies|. Leiden, 1895.

21t 1is of special relevance that this theory furnished the drag coefficient
(Fizeau's experiment) in accordance with experience.
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respect to the reference system S that is at first at rest relative to the
sun. Let then the reference system S be accelerated by some external cause
for awhile, and, finally, let it return to a nonaccelerated state. What will
the physical laws look like when the processes are referred to the system §
that is now in another state of motion?

We now make the simplest possible assumption, which is also suggested by
the Michelson and Morley experiment: 7The physical laws are independent of the
state of motion of the reference system, at least if the system is not
accelerated.

In the ensuing considerations, we will base ourselves on this assump-
tion, which we call "the principle of relativity," as well as on the principle
of the constancy of the velocity of light set forth above.

§2. General remarks concerning space and lime

1. We consider a number of rigid bodies in nonaccelerated motion with
equal velocities (i.e., at rest relative to each other). In accordance with
the principle of relativity, we conclude that the laws according to which
these bodies can be grouped in space relative to each other do not change with
the change of these bodies' common state of motion. From this it follows that
the laws of geometry determine the possible arrangements of rigid bodies in
nonaccelerated motion always in the same way, independent of their common
state of motion. Assertions about the shape of a body in nonaccelerated
motion therefore have a direct meaning. The shape of a body in the sense
indicated we will call its "geometric shape." The latter obviously does not
depend on the state of motion of a reference system.

2. According to the definition of time given in §1, a statement on time
has a meaning only with reference to a reference system in a specific state of
motion. It may therefore be surmised (and will be shown in what follows) that
two spatially distant point events that are simultaneous with respect to a
reference system § are in general not simultaneous with respect to a
reference system S§' whose state of motion is different.

3. Suppose a body consisting of material points P moves in some manner
relative to a reference system S. At time ¢ of §, each material point P

[19]

[20]
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occupies a certain position in §, i.e., coincides with a certain point 1I
that is at rest relative to §. The totality of positions of points I
relative to the coordinate system S we call position, and the totality of
the interrelations of positions of points P we call the kinematic shape of
the body with respect to § for the time ¢. If the body is at rest relative
to 5, its kinematic shape is identical with the geometric one.

It is clear that observers who are at rest relative to a reference
system § can ascertain only the kinematic shape with respect to S of a
body that is in motion relative to S, but not its geometric shape.

In the following, we will usually not distinguish explicitly between
geometric and kinematic shape; a statement of geometric nature refers to
kinematic or geometric shape, respectively, depending on whether the latter
refers to a reference system § or not.

83. Transformation of coordinates and time

Let § and S' be equivalent reference systems, i.e., these systems
shall have unit measuring rods of the same length and clocks running at the
same rate when these objects are compared with each other in a state of
relative rest. It is then obvious that all physical laws that hold with
respect to S will hold in exactly the same form for §' too, if § and S
are at rest relative to each other. The principle of relativity requires such
total equivalence also if §' is in uniform translational motion with respect
to S. Hence, specifically, the velocity of light in vacuum must have the
same numerical value with respect to both systems.

Let a point event be determined by the variables =z, y, 2z, { with
respect to S, and by the variables z', y', z', {' with respect to S',
where § and §' are moving without acceleration and relative to each other.
We seck the equations that relate the former to the latter variables.

Right off, we can state about these equations that they must be linear
with respect to these variables because this is required by the homogeneity
properties of space and time. Specifically, from this it follows that the
coordinate plancs of S' are uniformly moving planes with respect to §; yet
in general these planes will not be perpendicular to each other. However, if
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we choose the position of the z'-axis in such a way that it has, with
reference to §, the same direction as the translational motion of §' has
with reference to S, then it follows for reasons of symmetry that the
S-referred coordinate planes of §' must be mutually perpendicular. We can
and will choose the positions of the two coordinate systems in such a way that
the z-axis of § and the z'-axis of §' coincide at all times, and that
the S-referred y'-axis of §' be parallel to the y-axis of S§. Further, we
shall choose the instant at which the coordinate origins coincide as the
starting time in both systems; the linear transformation equations sought are
then homogeneous.

From the now known position of the coordinate planes of §' relative to
§, we immediately conclude that the following pairs of equations are equiva-
lent:

g' =0 and z-9t=0
y' =0 and y=0
z' =0 and z=0

Three of the transformation equations sought thus have the form:

z' = a(z - vt)
I=by
izl =izl .

Since the propagation velocity of light in empty space is ¢ with
respect to both reference systems, the two equations

i

72 + y2 + 22 c2{2
and

2 + y'2 4 2'2 = (2¢'2

must be equivalent. From this and the expressions for z', y', z' just found
we conclude after a simple calculation that the transformation equations must
be of the form
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= w(v)-ﬂ-P - %
z' = ¢(v)-f-(z - vt)
y' = elv)y
z' = plv)-z,
where
g = 1

v
1-¢z

Now we will determine the function of v, which has not yet been
determined. If we introduce a third system, §", which is equivalent to §
and S', is moving with the velocity -v relative to S§’, and is oriented
relative to §' in the same way §' 1is oriented relative to §, we obtain,
by twofold application of the equations we have just found,

t" = p(v)-p(-v)-1
" = p(v)-p(-v) -z
" = @lv)-p(-v)-y
2" = p(v)-p(-v)-2z .

Since the coordinate origins of § and §" coincide permanently, the
axes have identical directions and the systems are "equivalent," this
substitution is the identity,! so that

plv)-p(-v) =1 .

Further, since the relation between gy and 9%' cannot depend on the
sign of v, we have

w(v) = o(-v) .

Thus,? ¢(v) = 1, and the transformation equations read

IThis conclusion is based on the physical assumption that the length of a
measuring rod or the rate of a clock do not undergo any permanent changes
if these objects are set in motion and then brought to rest again.

2p(v) = -1 1s obviously out of the question.



DOC. 47 261

1! = ﬂ[t - g& aﬂ
z!' = f(z - vt)
v =y i
2=z,
where
8= 1

If we solve equations (1) for =z, y, z, and £, we obtain the same
equations, except that the "primed" quantities are replaced by the corre-
sponding "unprimed" omes, and vice versa, and that v 1is replaced by -v.
This also follows directly from the principle of relativity and from the fact
that, relative to S', § performs a parallel translation with velocity -v
in the direction of the JX'-axis.

In general, according to the principle of relativity each correct rela-
tion between "primed" (defined with respect to S') and "unprimed" (defined
with respect to S§) quantities or between quantities of only one of these
kinds yields again a correct relation if the unprimed symbols are replaced by
the corresponding primed symbols, or vice versa, and if » is replaced by -v.

84. Inferences from the traasformation equations concerning
~igid bodies and clocks

1. Let a body be at rest relative to §°. Let =', %', z' and z',
¥2's 2,' be the coordinates of two material points of the body with respect
to S'. In accordance with the transformation equations just derived, the
following relations hold between the =z, 3, 2, and =3, ¥3, zp coordinates
of these points relative to the reference system § at all times ¢t of S

[22]
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|l - %7 (2" = z")

Iy — Iy =
V2- = - (2)
Zg -z = 2" - 2"

The kinematic shape of a body undergoing uniform translational motion
thus always depends on its velocity relative to the reference system;
actually, the body's kinematic shape differs from its geometric shape only by
a contraction in the direction of the relative motion in the ratio of

1: ll - %7. A relative motion of reference systems with superlightvelocity
is not compatible with our principles.

2. In the coordinate origin of S' let there be set up a clock at rest
which runs v, times faster than the clocks used for measuring the time in §
and S', i.e., this clock shall complete »; periods during the time a clock
at rest relative to it, of the type used for measuring time in § and §',
increases its reading by one unit. How fast does the first clock run as
observed from system &7

The clock considered completes one period in the time epochs t; = 5%,
where =2 runs through the integers, and z' = 0 for the clock at all times.
Using the first two transformation equations, one obtains for the time epochs

tn in which the clock, as viewed from §, completes onc period:

_pt = B
tn = ﬂtn = n

Vo

Thus, observed from the system S, the clock completes v= bo_ vo(1 - %7
periods per unit time; or: the rate of a clock moving uniformly with velocity

v relative to a reference system is slower in the ratio 1 : |1 - gy, as
observed from this system, than that of the same clock when at rest relative
to that system.
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The formula wv= uo|1 - %7 permits a very interesting application. Mr.
J. Stark showed last year! that the ions constituting canal rays emit line
spectra by observing a shift in spectral lines which he interpreted as a
Doppler effect.
Since the oscillation process that corresponds to a spectral line is to
be considered an intra-atomic process whose frequency is determined by the ion
alone, we may consider such an ion as a clock of a certain frequency v,
which can be determined, for example, by investigating the light emitted by
identically constituted ions which are at rest relative to the observer. The
above consideration shows, then, that the effect of motion on the light
frequency that is to be ascertained by the observer is not completely given by
the Doppler effect. The motion also reduces the (apparent) proper frequency
of the emitting ions in accordance with the relation given above.? [24]

85. The addition theorem of velocities

Let a point move uniformly relative to the system §' according to the
equations

| L]
z' = uzt

|=ult|
V=1

| B— 1yt
z = uzt

If z', y', 2', 1' are replaced by their expressions in =z, y, z, t
with the help of transformation equations (1), one obtains =z, y, z as
functions of ¢, and thus also the point's velocity components . wy, u,
with respect to §. Ve thus get

1J. Stark, 4an. d. Phys. 21 (1906): 401. [23]
2Cf. §6, equation (4a).
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g, =1—— g (3)

=11
[25] O u "z .

]

The law of the parallelogram of velocities thus holds only in first
approximation. If we set
"2

2 4+ 42 + 42
u? “y <

u'?

2 + u'2 4+ 42
z y T %

and denote by e the angle between the z'-axis (v) and the point's
direction of motion relative to S' (w'), we will have

(v2 + 4'2 + 20u' cos a) - [ -2

T
1+ v cCOS a

vu' sin 0]2
[26] U = 3

If the two velocities (v and ') have the same direction, we have

. L. u'
vu
1+?2—

It follows from this equation that the addition of two velocities
smaller than ¢ always results in a velocity smaller than ¢; i.e., if one
sets v=¢ -k, u' =¢- ), wvhere £ and )X are positive and smaller than
¢, then

¥ =c ———29—1—5—:-A—EI <ec.
2¢c -k - )X+ -
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It follows further that the addition of the light velocity ¢ and a
"sublightvelocity" yields again the light velocity c.

The addition theorem of velocities also yields the interesting
conclusion that there cannot exist an effect that can be used for arbitrary
signaling and that is propagated faster than light in vacuum. For example,
let there be a material strip stretched along the z-axis of §, relative to
which a certain effect (viewed from the material strip) propagates with
velocity #, and let there be two observers, one in the point z = 0 (point
4) and one in the point 2z = A (point B) of the 2z-axis, who are at rest
relative to §. Let the observer in 4 send a signal by means of the
above-mentioned effect to the observer in B through the material strip,
which shall not be at rest but shall be moving in the segative z-direction
with velocity o (< ¢). As a consequence of the first of equations (3), the

signal will then be transmitted from 4 to # with velocity —!EL%E. The
time T necessary for this is then 1-=
[ 4]
1 -
Tt S,
V-

The velocity v can assume any value smaller than ¢. Hence, if, as we
have assumed, ¥ > ¢, one can always choose v such that T < 0. This result
means that we would have to consider as possible a transfer mechanism whereby
the achieved effect would precede the cause. Even though this result, in my
opinion, does not contain any contradiction from a purely logical point of
view, it conflicts with the character of all our experience to such an extent
that this seems sufficient to prove the impossibility of the assumption ¥> c.

§6. Adpplication of the transformation equations to some problems in oplics

Suppose the light vector of a plane light wave propagated in vacuum is
proportional to

sin w[t - £x_+_£”él+_z‘£]

with respect to the system S, and to

(27]

[28]

[29]

[30]
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1 | 1 | 1,1
sin w‘[t' _lz e p g . ]
with respect to §'. The transformation equations developed in §3 require the

following relations between the quantities w, £, m, # and o', €', m', 8':

o' =wﬁ[1 -zﬁ]
v

' =

‘ l'fn% (4)
LI
) ﬂl;f%

' =

! ﬂl—l%

We will interpret the formula for w' 1in two different ways, depending on
vhether we consider the observer as moving and the (infinitely distant) source
of light at rest, or vice versa.

1. If an observer is moving with velocity v relative to an infinitely
distant source of light of frequency v in such a way that the connecting
line "source of light - observer” forms an angle ¢ with the observer's
velocity as referred 10 a coordinate system at rest relative to the source of
light, then the frequency »' of the source of light perceived by the
observer is given by the equation

2. If a source of light of frequency v; relative to a co-moving
system moves such that the connecting line "source of light - observer" forms
an angle ¢ with the velocity of the light source as referred to a system at
rest relative to the observer, then the frequency » of the source of light
perceived by the observer is given by the equation
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vy t—— s (4a)
1 - cosp ¢

The last two equations express Doppler's principle in its general form;
the last equation shows how the observable frequency of the light emitted (or
absorbed) by canal rays depends on the velocity of motion of the ions that
form the rays and on the direction of sighting.

If the angles between the wave normal (ray direction) and the direction [32]
of relative motion of S§' with respect to § (i.e., with the z- and
z'-axis, respectively) are called ¢ and ¢', respectively, the equation for
£' takes the form
cos ¢ - %

cos ' = ——= .
1 - cos ¥

This equation shows the effect of the relative motion of the observer on the
apparent location of an infinitely distant source of light (aberration).

In addition we will also examine how fast light is propagated in a
medium that is moving in the direction of the light ray. Let the medium be at
rest relative to the system §', and let the light vector be proportional to

sin w'[t' - %;]

or to
sin w[t - %q s

respectively, depending on whether the process is referred to §' or &.
The transformation equations yield

w=ﬂw‘[1 +-})r]

o i )



{33]

[34]
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Here F' should be viewed as a function of w' known from the optics of
stationary bodies. Dividing these equations, one obtains

V- V' +o )
1+-—'22
¢
This equation could also have been obtained directly by applying the addition
theorem for velocities.! If ¥' 1s to be considered as known, the last
equation solves the problem completely. lowever, if only the frequency (w)
referred to the "stationary" system § is to be considered as known, as for
cxample in the well-known experiment by Fizeau, then the two foregoing
equations have to be used in conjunction with the relation between «' and
V' in order to determinc the three unknowns o', V', and V.
Further, if ¢ or ¢' is the group velocity referred to § or §',
respectively, then, according to the addition theorem for velocities,

gL B
1+—(.7?—)
Since the relation between €' and w' can be obtained from the optics
of stationary bodies,? and w' can be calculated from w according to the
foregoing, the group velocity & can be calculated even if only the frequency
of light relative to § and the body's velocity of motion are given.

ICF. M. Laue, Ann. d. Phys. 23 (1907): 989.
2Because ' = ————jZLayr—.
LI A i
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II. ELECTRODYNAMIC PART
87. Transformation of the Nazwell-Lorenlz equatlions

We start from the equations

1 X aN o
z[%ﬂ*m}ﬂrm‘

1 aY| _ oL _ N
E[ﬁyp-}fm]:%-% (5)

2 (6)

In these equations,

(X,Y,Z) is the vector of electric field strength,
(L.H.¥) is the vector of magnetic field strength,

p = gg + g% + g% is the 4r-fold electric density,

(uz,uy.uz) is the velocity vector of electricity.

These equations, together with the assumption that the electrical masses
are unchangeably attached to small rigid bodies (ions, electrons), form the
basis of Lorentz's electrodynamics and optics of moving bodies.

If these equations, which shall hold with respect to the system S, are
transformed by means of the transformation equations (1) to the moving system
§’, which is moving relative to § as in the previous considerations, then
the following equations are obtained:

[35]
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where we have put

1 . axty _av ay'
z[“'zp *W]‘W“W
1 : | _ an aN'
c["ﬂ'+w] ol T
1 az' o' aL'
z[“'f’”w}wzr“a?

(5')

(6')

(7a)

(7b)

(8)
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IF

u; = " (9)
o[- &)
5! = ____EE____
z U
o - &)
The equations obtained have the same form as equations (5) and (6). On
the other hand, it follows from the principle of relativity that the electro-
dynamic processes obey the same laws when they are related to §' as when
they are related to §. From this we conclude that X', ¥', Z' and I', ¥',
N', respectively, are nothing else but the components of the S'-related
electric and magnetic field strength.! Furthermore, inversion of equations
(3) shows that the quantities u;, ul, u; in equations (9) equal the
S'-related velocity components of the electricity, and hence p' is the
S'-related density of electricity. Thus the electrodynamic basis of the
Maxwell-Lorentz theory agrees with the principle of relativity.
Regarding the interpretation of equations (7a) we note the following. [37]
Imagine a pointlike quantity of electricity that is at rest relative to §
and is of magnitude "one" with respect to S, 1.e., exerts a force of 1 dyne
on an equal quantity of electricity located at a distance of 1 cm and at rest
with respect to S. According to the principle of relativity, this electric
mass also equals "one" when it is at rest relative to §' and is examined
from §'.2 If this quantity of electricity is at rest relative to .5, then
(X.¥,Z) 1is by definition equal to the force acting upon it, which could be
measured, for example, by a spring balance at rest relative to S§. The vector
(X',¥',2') has the analogous mearing with regard to S§'.

/

'Though the agreement between the equations found and equations (5) and (6)

leaves open the possibility that the quantities ', etc., differ by a

constant factor from the §'-referred field strengths, it is easy to show

by a method very similar to that employed in §3 for the function ¢(v) that

this factor must equal 1. [36]

2This conclusion rests further on the assumption that the magnitude of an
electric mass does not depend on the prehistory of its motion.
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According to equations (7a) and (7b), electric or magnetic field
strengths do not have an existence per se, since it may depend on the choice
of the coordinate system whether an electric or magnetic field strength is or
is not present at a location (more exactly: spatial-temporal environment of a
point event). Further, if one introduces a reference system that is at rest
with respect to the electric mass, one sees that the "electromotive" forces
introduced hitherto that act upon an electric mass moving in a magnetic field
are nothing else but "electric" forces. This makes the questions as to the
seat of those electromotive forces (in unipolar machines) pointless, since the
answer varies depending on the choice of the state of motion of the reference
system used.

The meaning of equation (8) can be seen from the following: Let an
electrically charged body be at rest relative to S'. Tts total charge «c'

with respect to §' is then J g% dz'dy'dz'. How large is its total charge
¢ at some time ¢ of §7

It follows from the last three of equations (1) that the following
relation holds for constant (:

dz'dy'dz' = fdzdydz .

In our case equation (8) reads

p' = %;p-

From these two cquations it follows that we must have

Equation (8) thus states that the electric mass is a quantity that is
independent of the state of motion of the reference system. Thus, if the
charge of some body in motion is constant from the standpoint of a reference
system moving with it, then it is also constant with respect to any other
reference system.

With the help of equations (1), (7), (8), and (9), all problems involv-
ing the electrodynamics and optics of moving bodies in which only velocities,
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but not accelerations, play an essential role can be reduced to a series of
problems involving the electrodynamics or optics of stationary bodies.

We shall illustrate the application of the equations developed here by
one additional simple example. Let a plane light wave traveling through
vacuum be described by the following equations with respect to S:

X=X sin & I =1L, sin &
Y=Tysin® K=k sind o=oft - Erm e ) (39]
Z = 7y sin & Z =N sin &

We ask about the constitution of this wave when referred to the system S§'.
Application of the transformation equations (1) and (7) yields

XI' = I sin &' L' = Ly sin @'
= [i[}’o o) No]sin 3 ¥ - /3[:10 + & Zo}sin 3
7 - ﬂ[zo + %Io]sin 3 M- ﬂ[ﬂo - 2 Yo]sin 3
B - w'[t' _ 'z + m;y' + n'z'] . (40)

From the requirement that the functions X', etc., must satisfy equations (5')
and (6'), it follows that the wave normal, electric force, and magnetic force
are mutually perpendicular with respect to §' as well, and that the latter
two are equal. The relations following from the identity & = &' were dis-
cussed in §6; only the amplitude and state of polarization of the wave
relative to §' remain to be determined here.

We choose the J-F-plane parallel to the wave normal and deal first with
the case in which the electric vibration is parallel to the Z-axis. In that
case we have to set
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=0 Ly = - 4 sin ¢
V=0 My = - 4 cos g
ZO:I‘ .'0=0,

where ¢ dcenotes the angle between the wave normal and the X-axis. From
the above it follows that

=0 L' = - 4 sin ¢ sin &'
¥ =0 N = ﬂ[- cos ¢ + %ﬂd sin @'
AR ﬂ[l - % oS ¢JA sin &' N =0.

Thus, if 4' denotes the amplitude of the wave with respect to §', we will
have
1-2cosp
=4 — . (10)
1 -2
cZ

The same relation obviously holds for the special case that the maegnetic force
is perpendicular to the direction of relative motion and the wave normal.
Since the general case can be constructed from these two special cases by
superposition, it follows that relation (10) is valid in general if a new
refercence system §' is introduced, and that the angle between the plane of
polarization and a plane parallel to the wave normal and to the direction of
the relative motion is the same in the two reference systems.

IT1. MECHANICS OF THE MATERIAL POINT (ELECTRON)

§8. Derivation of the equations of motion of the (slowly acceleraled)
material point, or electron

Let a particle endowed with an electric charge € (which we shall call
"electron” in the following) move in an electromagnetic field, and let us
assume the following about the law of motion of this particle:
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If at a given point of time the electron is at rest relative to a
(nonaccelerated) reference system S', its motion relative to §' will
proceed according to the following equations in the next instant of time:

d?z)

b gz = &
a2y}

b = ¢l
e

d?z}

S AL

where z{ , y,» 2y denote the coordinates of the electron with respect to
S', and p is a constant which we call the mass of the electron.

We introduce a system §, relative to which §' 1is in motion as in our
preceding analyses, and transform our equations of motion using the transfor-
mation equations (1) and (7a).

In our case, the former will read

= ﬂ[t - o ab]
zd = flzg ~ 1)

f
Yo = Yo
Z6=Z0.

Setting dzy _ Iy, etc., we obtain from these equations
1 0

dz'  Blzp - v)
73 = ———— . etc.,
ot - &)

vio . i ’Ufl'?o
[1 - ?T]ZO + (Z’o - v)-c,—

4 [dz!
PR 3
=B » etc. [42]

e %
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Inserting these expressions into the above equations after having put iz, = v,
g0 = 0, z; = 0, while at the same time substituting X', ¥', 7' by means if
equations (7a), one gets

wiz, = eX
ubiio = [V - 2 1]
phig = e[Z+%I] .

These equations are the equations of motion of the electron for the case when
Tp= v Jo = 0, 25 = 0 at the instant in question. On the left-hand sides,
then, © may be replaced by the velocity ¢ defined by the equation

q= |3 + ¥§ + %

:

and on the right-hand sides v may be replaced by &,.- Further, we add in
the appropriate places the terms obtained from %‘1 ¥ and - %‘1 N by cyclic

permutation, which vanish in the particular case under consideration.
Omitting the subscript in x5, etc., we obtain the following equations, which
in the particular case under consideration are equivalent to the equations
given above:

d | K v
dat g

- %;j
d 73]

=K (11)

di y

- !cl,!_
d | # l
di =K,

1- 4]

where we have put
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(12)

e
1
~™
A,
~
+
o e
[
1
YL S .
—s =

N’!
]
™
———
Ny
+
olN
L 3
]
okt
b~
[ S

These equations do not change their form with the introduction of a new
coordinate system with differently directed axes, which is relatively at rest.
Hence they are valid in general and not only when § = z = 0.

The vector (KQ’XQ’K}) shall be called the force acting on the material

point. If g2 1is vanishingly small compared with ¢2, then according to
equations (11) K&,Ky,Kz reduce to the force components according to Newton's
definition. 1In the next section it will be shown that in other respects, too,
that vector plays the same role in relativity mechanics as the force does in
classical mechanics.

We shall maintain equations (11) also in the case that the force exerted
on the mass point is not of electromagnetic nature. In the latter case equa-
tions (11) do not have a physical content but are rather to be understood as
defining equations of the force.

89. MNotion of the mass poini and the principles of mechanics

If equations (5) and (6) are successively multiplied by f;. g; oo 4%,

and integrated over a space on whose boundaries the field strengths vanish,
one obtains

dE
J Lluy+ wl + v 2o+ g£ = 0, (13)
where

se=“81;(p+rz+zz)+§;(52+m+m]dw
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is the electromagnetic energy of the space under consideration. According to
the energy principle, the first term of equation (13) equals the energy
delivered by the electromagnetic field to the carrier of the electric masses
per unit time. If electric masses are rigidly bound to a material point
(electron), then their part in the above term equals the expression

e(Xz + Yy + 2z) ,

vhere (1,V,7) denotes the ezxiernal electric field strength, i.e., the field
strength minus that part which is due to the charge of the electron itself.
Using equations (12), this expression becomes

Kzi + Ky@ + sz ;

Thus the vector (Kz,Ky,Kz) denoted as "force" in the last paragraph has the
same relation to the work performed as in Newtonian mechanics.

Thus, if one successively multiplies equations (11) by Z, ¥, %, then
adds and integrates over time, this must yield the kinetic energy of the
material point (electron). One obtains

[ o+ kv xpde = 2Ly const. (14)

g

By this we have demonstrated that the equations of motion (11) are in accord
with the energy principle. We will now show that they are also in accord with
the principle of conservation of momentum.

Successively multiplying the second and third of equations (5) and the

second and third of equations (6) by é%, ig, i%, g%, adding them and

integrating over a space at whose boundaries the field strengths vanish, we
obtain

?dﬁU L~ Zﬂ)dw} + J &[x + Zcﬁ N - "?z- H]dm -0 (15)

or, according to equations (12).
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a‘.’?U e (W - zx)dw] + K= 0 . (152)

If the electric masses are bound to freely moving material points
(electrons), this equation becomes by virtue of (11)

%U T (W - Z)do + 2] B _q . (15b)  [45]

e

In combination with the equations obtained by cyclic permutation, this
equation expresses the principle of conservation of momentum in the case

considered here. Thus the quantity ¢ = s plays the role of the [46)
momentum of the material point, and in accordance with equations (11) we have

%% = K,

as in classical mechanics. The possibility of introducing a momentum of the
material point is based on the fact that in the equations of motion the force,
i.e., the second term of equation (15), can be represented as a time
derivative.

Further, one sees immediately that our equations of motion of the
material point can be given the form of Lagrange's equations of motion; for,
according to equations (11), we have

d [0
—| = K, , etc.
m[a;’] T

H= -pc? |1 - %7 + const. [47]

The equations of motion can also be represented in the form of Hamilton's
principle

vhere we have put

t
Jl(dll+1)dt=0,
to



(48]

[491]

280 THE RELATIVITY PRINCIPLE

where the time ¢ and the initial and final position remain unvaried, and
where 4 denotes the virtual work

A= Kiﬂz + Kyay + k?ﬂz .

Finally, we establish Hamilton's canonical equations of motion. This is done
by introducing the "momentum coordinates" (components of the momentum) ¢, 7,
{, setting as above

If one considers the kinetic energy I as a function of ¢, 7, (., and sets
£ + 72 + (2 = p2, onc obtains

L= pc2|1 + ﬁgzy + const. ,

and Hamilton's equations of motion become

%% =K, 5% - Ky g% = X,

dz _ dl 53 F gé gg - g%
Lt~ dy [ :

810. On the possibility of an experimental lest of lhe theory
of motion of lhe material point. Keufmann’s investigalion

A prospect of comparison with experience of the results derived in the
last section exists only where the moving electrically charged mass points
possess velocities whose square is not negligible compared to ¢2. This
condition is satisfied in the cases of the faster cathode rays and the elec-
tron rays (f-rays) emitted by radioactive substances.

There are three quantities for electron rays whosc mutual relationships
can be the subject of a more detailed experimental investigation, i.e., the
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generating potential or the kinetic energy of the rays, the deflectability by
an electric field, and the deflectability by a magnetic field.
According to (14), the generating potential N is given by the formula

2
Ile = p c -1

g

To calculate the two other quantities, we use the last of equations (11) for
the case when the motion is momentarily parallel to the JX-axis; denoting the
absolute value of the electron's charge by €, one obtains

- g%g = 5 II_j_gz [Z + % tq :

If Z and K are the only deflecting field components, and hence the bending

takes place in the AZ-plane, the radius of curvature R of the trajectory is
2 2
given by %F = [gig]. Hence, if the electric and magnetic deflectability are

defined as the quantities Ae = % : Z and Am = % : ¥ respectively for the
case that only one deflecting electric or only one magnetic field component is
present, one has

o2
A_.fjl-%f
e B ¢

[ o2
4 =E£ :1 L %7
mop cq

In the case of cathode rays all three quantities I, Ae, and 4 are
possible candidates for measurement; however, no investigations with
sufficiently fast cathode rays have yet been performed. In the case of
f-rays, only the quantities Ae and Am are (in practice) accessible to
observation. Mr. W. Kaufmann ascertained the relation betwecn Am and Ae
for f-rays emitted by a radiuym bromide granule with admirable care.!

Y. Kaufmann, "Uber die Konstitution des Elektrons" [On the constitution of
the electron]. Ann. d. Phys. 19 (1906). Both figures are taken from
Kaufmann's paper.

[50]

(51]

[52]
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Fig. 1 (actual size)

His apparatus, whose main parts are depicted in their actual size in
Fig. 1, consisted essentially of a lightproof brass casing # placed within
an evacuated glass vessel, with a radium granule placed in a small well @ in
the floor 4 of the casing. The [-rays emanating from the radium pass
through the gap between two condenser plates #P; and P,, cross the diaphragnm
D, whose diameter is 0.2 mm, and then fall on the photographic plate. The
rays were deflected both by an clectric field formed between the condenser
plates P, and P, and by a magnetic field of the same direction (produced
by a large permanent magnet), perpendicular to that direction so thatl rays of
the same velocity marked a point, and the aggregate of the particles of
different velocities marked a curve on the plate.
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gl
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|
L Y T 3 ¥ 3
Fig. 2.
Fig. 2 shows this curve! which, up to the scale for the abscissa and [54]

ordinate, represents the relation between Am (abscissa) and Ae {(ordinate).
The little crosses above the curve indicate the curve calculated according to

the theory of relativity, if the value of £ is taken as 1.878 - 107. [56]
In view of the difficulties involved in the experiment one would be
inclined to consider the agreement as satisfactory. However, the deviations
are systematic and considerably beyond the limits of error of Kaufmann's
experiment. That the calculations of Mr. Kaufmann are error-free is shown by
the fact that, using another method of calculation, Mr. Planck arrived at
results that are in full agreement with those of Mr. Kaufmann.?
Only after a more diverse body of observations becomes available will it
be possible to decide with confidence whether the systematic deviations are
due to a not yet recognized source of errors or to the circumstance that the
foundations of the theory of relativity do not correspond to the facts. [58]

'The units given in the graph denote millimeters on the photographic plate.
The plotted curve is not exactly the one observed, but rather the curve
"reduced to infinitesimally small deflections." [55]

2Cf. M. Planck, Verhandl. d. Deutschen Phys. Ges. VIIL, no. 20 (1906); IX,
no. 14 (1907). (571
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It should also be mentioned that Abraham's! and Bucherer's? theories of
the motion of the electron yield curves that are significantly closer to the
observed curve than the curve obtained from the theory of relativity.

Hlowever, the probability that their thcories are correct is rather small, in
my opinion, because their basic assumptions concerning the dimensions of the
moving electron are not suggested by theoretical systems that encompass larger
complexes of phenomena.

IV. ON THE MECHANICS AND THERMODYNAMICS OF SYSTEMS
§11. On the dependence of mass upon energy

We consider a physical system surrounded by a casing impenetrable to
radiation. Suppose that the system floats freely in space and is not
subjected to any other forces except the cffects of electric and magnetic
forces of the surrounding space. Through the latter, energy may be trans-
ferred to the system in the form of work and heat, and this energy may undergo
conversions of some sort in the interior of the system. [In accordance with
(13), the energy absorbed by the system is given by the following expressions
when referred to the system §:

[ dE = J d J Lo, + Y v 20 )do
where (Xa,Ya,Za) denotes the field vector of the external field (which is
not included in the system) and i% the electric density in the casing. We
transform this expression by inverting equations (7a), (8), and (9), taking
into account that according to equations (1) the functional determinant

Nz 'z )
x)ylz’t

M. Abraham, 6oti{. Nechr. 1902.

2A. II. Bucherer, Math. Finfihrung in die Elektronentheorie [Mathematical

introduction to the electron theory}, Leipzig, 1904, p. 58.
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equals one. We thus obtain

J dE = B ” £ (X! + W¥L 4 a2 o' dt!
u'
Z

ul
+ By ” %[Xé Y I"z]dw'dt',

or, since the energy principle must hold with regard to §' as well, in
easily comprehensible notation

dE = BdE' + ﬁvj [EA1dt . (16)

We shall now apply this equation to the case that the system under
consideration moves uniformly such that as a whole it is at rest relative to
the reference system S§'. Then, provided that the parts of the system move so
slowly relative to §' that the squares of the velocities relative to §'
are negligible compared with ¢2, we can apply the principles of Newtonian
mechanics with regard to S§'. Thus, according to the center-of-mass theorem,
the system under consideration (or, more accurately, its center of gravity)
can remain at rest permanently only if for each ¢'

EK; =0.

Nevertheless, the second term on the right-hand side of equation (16) does not
necessarily vanish, because the integration over time is to be performed
between two specific values of ¢ and not of 1{'.

However, if at the beginning and end of the time span considered no
external forces act upon the system of bodies, that term vanishes and we
obtain simply

dE = §-dE' .

First of all, we conclude from this equation that the energy of a (uni-
formly) moving system not affected by external forces is a function of two
variables, i.e., the energy £, of the system relative to a reference system
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moving with it,! and the translational velocity ¢ of the system, and we

obtain
-
0
[ %
From this it follows that
E= —L— R+ olo) .

&

where (q) 1is a function of ¢ that is unknown for the time being. The
case that FE; equals 0, i.e., that the energy of the moving system is a
function of the velocity ¢ alone, has already been examined in §§ 8 and 9.
From equation (14) it follows immediately that we have to put

Thus we obtain
E:[ﬂ-}%&]i', (163)

vhere the integration constant has been omitted. A comparison of this
expression for F with the expression for the kinetic energy of the material
point contained in equation (14) shows that the two expressions have the same
form; with regard to the dependence of the energy on the translational velo-
city, the physical system under consideration behaves like a material point of
mass K, where ¥ depends on the system's energy content £, according to
the formula

¥=p+ %é . (17)

This result is of extraordinary theoretical importance because the
inertial mass and the energy of a physical system appear in it as things of

Here, as well as in the following, we use a symbol with the subscript "0" to

indicate that the quantity in question refers to a reference system that is at
rest relative to the physical system considered. Since the system considered

is at rest relative to §' , we can replace E' by £, here.
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the same kind. With respect to inertia, a mass g 1is equivalent to an energy
content of magnitude pc2. Since we can arbitrarily assign the zero-point of
E,, we are not even able to distinguish between a system's "actual" and
"apparent” mass without arbitrariness. It seems far more natural to consider
any inertial mass as a reserve of emergy.
According to our result, the law of the constancy of mass applies to a
single physical system only when its energy remains constant; it is then
equivalent to the energy principle. To be sure, the changes experienced by
the mass of physical systems during the familiar physical processes are always
immeasurably small. For example, the decrease in mass of a system that gives
off 1000 gram-calories amounts to 4.6 x 10" gram.
The radioactive decay of a substance is accompanied by the release of
enormous amounts of energy; is the reduction of mass in such a process not
large enough to be detectable?
Mr. Planck writes about this: "According to J. Precht! 1 gram-atom of [63]
radium, if surrounded by a sufficiently thick layer of lead, releases
134.4 x 225 = 30,240 gram-calories per hour. According to (17) this amounts
to a decrease in mass of [65]

.419.105
§92287%%%31£L gr = 1.41 x 106 mg

per hour or 0.012 mg per year. Of course, this amount is still so tiny,
especially in view of the high atomic weight of radium, that it may well be
outside the experimentally accessible range for the time being." The obvious
question arises whether it would not be possible to reach one's goal by using
an indirect method. If ¥ is the atomic weight of the disintegrating atom,
and m, my, etc., are the atomic weights of the end products of radiocactive
disintegration, then we must have

K- Im=

U=

where f denotes the energy produced during the disintegration of one gram-
atom; this can be calculated if the energy developed per unit time during

1J. Precht, 4Ann. d. Phys. 21 (1906): 599. [64]
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stationary disintegration and the average disintegration constant of the atom
are known. Whether the method can be successfully applied depends primarily

on whether there are radioactive reactions for which QL{YEE is not too
small compared to 1. In the above-mentioned case of radium one obtains--if
its lifetime is taken to be 2600 years--approximately

¥ - %m _12-10°6-2600 _
T = ———2'50—-— = 0.00012 .

Thus, if the lifetime of radium has been ascertained with fair accuracy, we
could check our relations if we knew the atomic weights involved with an
accuracy of five places. This, of course, is impossible. However, it is
possible that radioactive processes will be detected in which a significantly
higher percentage of the mass of the original atom will be converted into the
energy of a variety of radiations than in the case of radium. At least it
seems reasonable to imagine that the energy produced during the disintegration
of an atom varies at least as much from substance to substance as does the
rate of disintegration.

It has been tacitly assumed above that such a change in mass can be
measured by the instrument we usually use for measuring masses, i.e., by the
balance, and hence that the relationship

¥=yp+ %g

holds not only for the inertial mass but also for the gravitational mass, or,
in other words, that a system's inertia and weight are strictly proportional
under all circumstances. We would also have to assume, for example, that
radiation enclosed in a cavity possesses not only inertia but also weight.

But this proportionality between the inertial and gravitational mass holds
without exception for all bodies with the accuracy obtained so far, so that we
must assume its general validity until it is proven otherwise. We are going
to find a new argument in support of this assumption in the last section of
this paper.
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§12. [Energy and momentum of a moving system

As in the previous section, we once again consider a system that floats
freely in space and is enveloped by a casing impervious to radiation. We
again denote the field strengths of the external electromagnetic field which
mediates the energy exchange with other systems by Xa, Ya, Zﬁ, etc. We can
apply to this external field the reasoning that led us to formula (15), so
that we obtain

%U L EE - Zaln)dw] . J £ [xa N Ec!l N -z la]dw =0 .

Ve shall now assume that the principle of conservation of momentum is
universally valid. In that case it must be possible to represent the part of
the second term of this equation that extends over the casing of the system as
the time derivative of a quantity G;, which is completely determined by the
instantaneous state of the system and which we denote as the JX-component of
the momentum of the system. We wish now to find the transformation law of the
quantity 6;. Applying the transformation equations (1), (7), (8), and (9),
we obtain in exactly the same way as in the previous section the relation

Jdﬂz . HJJ%[X; g fil/v; - u—%l"z]dw'-dt’

" g’; J j O (Xtul + Vyul + Zyul)do-dt!
or

d6, = f L db' + ﬂJ {EK1}d1" (18)

Again, let the body move without acceleration, so that it is permanently at
rest with respect to S'. Then we have again

EK; =0.

Although the limits of the time integral depend on z', the second term
on the right-hand side of the equation vanishes again if the body is not

[69]
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exposed to external forces before and after the change under consideration.
We then have

. v '
dGz =p oz daF' .
From this it follows that the momentum of a system not exposed to external
forces is a function of only two variables, namely, the energy £, of the
system relative to a reference system moving along with it, and the trans-
lation velocity ¢ of the latter. We have

% _

v o .
1-%[2
This implies

(70} 6= —L_. [59 . ¢(q)] :

where ¥(g) is an as yet unknown function of g¢. Since ¢(g) is in fact the
momentum if the latter is determined by the velocity alone, we conclude from
formula (15b) that

We thus obtain

r::-L[,HEg} . (18a)

[-&0

The only difference between this expression and the expression for the

momentum of the material point is that x4 has been replaced by [p + %@] in
accordance with the result of the previous section.

[71] We will now determine the energy and momentum of a body at rest relative
to § if the body is subjected to permanent external forces. FEven though in
that case we again have
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for each t', the integral

J [2K!]dt"

that appears in equations (16) and (18) does not vanish, because it has to be
extended over two definite values of { rather than of ¢'. Since inversion
of the first of equations (1) yields

t = ﬂ[t' + g% z'] 3

the limits of integration over {' are given by

%} - g& z' and %f - ﬁ% z',

vhere ¢, and {, are independent of z', y', 2'. Hence the limits of the
time integration with respect to §' depend on the position of the points at
which the forces are applied. We split the above integral into three
integrals:

i 1 i VT

F e

J[zlr'z]dt' - +[ +j :
i VT i t
e o F

The second of these integrals vanishes because it has constant time
limits. If in addition the forces K; can change arbitrarily fast, the other
two integrals cannot be evaluated; then we cannot talk at all about the energy

or momentum of the system while applying the principles used here.! However,
if those forces change very little during time intervals of the order of

1
magnitude %§~, we can put

ICf. A. Einstein, 4nn. d. Phys. 23 (1907), §2.

[72]
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7 7

J (BAL)dt' = BK) J dt' = sk
t vz t vz'
v A T

After similar evaluation of the third integral ome obtains

J (BRL)dt" = - d{f’g zz'x;] .

Now the energy and momentum can be calculated from equations (16) and (18)
without difficulty. One obtains

@
E- [,Hig] 2wk (16b)

% %

[ﬂ . £ - 2(60K06)] , o

1 V)
<
-z
where Koé denotes the component in the direction of motion of a force
evaluated in a co-moving reference system and &, denotes the distance,
measured in the same system, between the point of application of that force
and a plane perpendicular to the direction of motion.
If, as we shall assume henceforth, the external force consists of a

pressure p, which is independent of the direction and always acts
perpendicularly to the surface of the system, we will have in particular

2(60]{06) = —poVo ’ (19)

where F; is the volume of a system evaluated in the co-moving reference
system. FEquations (16b) and (18b) then take the form
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Ey 2 1
E- [,H?‘,] <.  polo (16c)
% [ &
6= —L [u+ argeh) (18¢c)

§13. The volume and pressure of a moving system.

Equations of motion

To determine the state of the system under consideration, we have used
the quantities £y, pg» Vo, which are defined with respect to a reference

system that moves along with the physical system.

However, instead of these

quantities we can also use the corresponding quantities that are defined with
respect to the same reference system as the momentum &. To do this, we must
examine how the volume and pressure change with the introduction of a new

reference system.

Let a body be at rest with respect to the reference system §'. Let V'
be its volume with respect to §', and F its volume with respect to §. It
follows immediately from equations (2) that

or

J dz-dy-dz = |1 - %7 J dz'-dy'-dz'

r=[1-%-r.

If we replace V' by ¥, and v by ¢ in accordance with the
notation used, we will get

V=|1-§.§.VO.

(20)

To obtain the transformation equations for the pressure forces, we must start

from the transformation equations that apply to forces in general.
defined the moving forces in §8 in such a way that they can be replaced by the

Since we

(75}
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force effects of electromagnetic fields on electric masses, we can now

restrict ourselves to determining the transformation equations of the latter.!
Let the quantity of electricity ¢ be at rest with respect to §'. In

accordance with equations (12), the force acting upon it is then given by the

equations
Ki = e k} = X'
- _v (- '
l(y-e[Y cIV] K - et
l(z=c[Z+%ll] K =2

From these equations and equations (7a) it follows that

K. =K,

' = 4.
K, =8k, (21)
K; = ﬂ-Kz .

These equations allow the calculation of forces if they are known with respect
to a co-moving reference system.

We now consider a pressure force acting on a surface element s' that
is at rest relative to S':

K, = p's'-cos ' = p'-s,
K; =p'-s'-cos m' = p'-sé
K; =p'+s'-cosa' =p's!,

IThis circumstance also justifies the procedure used in the preceding investi-
gations, in which we introduced only interactions of a purely eleciromagnetic
nalure between the system considered and its surroundings. The results are
valid in general.
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where €', m', n' denote the direction cosines of the normal (directed toward

the interior of the body), and s;. s;, and s; the projections of s'. From

equations (2) it follows that

n
I

S

T~ °z
'= .

sy = B3y
L .

s, = /] 8,

where 8,5 8 are projections of the surface element with respect to .

¥ %
For the components Ki, Kb, K; of the pressure forces with respect to S, we

therefore obtain from the last three systems of equations

K:C

e —
Kz =p's, =p'-s, =p's cos £
-8, = p'-s-cos m
£k =1p- 1 s' =p'-s_=p'-s-cosn
TRy TRPS; TP S,

vhere s is the magnitude of the surface element, and ¢, m, n denote the
direction cosines of its normal with respect to §. We thus obtain the result
that the pressure p' with respect to the co-moving system can be replaced
with respect to another reference system by a pressure that has the same
magnitude and is also perpendicular to the surface element. In our notation
we thus have

P =Ppo - (22)

Equations (16c), (29), and (22) enable us to determine the state of a
physical system using the quantities F, V, p, which are defined with respect
to the same system as the system's momentum & and velocity ¢, instead of
using quantities Ky, ¥y, po referred to the co-moving reference system.
E.g., if to a co-moving observer the state of the system under
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consideration is completely determined by two variables (¥, and £, i.e.,
if the system's equation of state can be considered as a relation between pg,
Vo and £, then, with the help of the above-mentioned equations, the
equation of state can be brought to the form

w(q,P,V,E) =0.

Similarly, equation (18c) can be brought to the form
F v
(76] ¢ = q[u » 2 ] (18d)

which, in combination with the equations expressing the principle of
conservation of momentum
d6

T _
-5 E b K&, ete.,

completely determines the translational motion of the system as a whole, if in

addition to the quantities E Kz’ etc. one also knows F, p, and ¥ as
functions of time, or if instead of the last three functions one knows three
equivalent data regarding the conditions under which the motion of the system
is taking place.

[77) §14. [Ezamples

Let the system under consideration consist of electromagnetic radiation,
which is enclosed in a massless hollow body whose walls balance the radiation
pressure. If no external forces act upon the hollow body, we may apply
equations (16a) and (18a) to the entire system (including the hollow body).

We will then have
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where £, denotes the energy of the radiation with respect to a co-moving
reference system.

However, if the walls of the hollow body are completely flexible and
extensible, so that the radiation pressure exerted from within must be
balanced by external forces exerted by bodies not belonging to the system
considered, one has to apply equations (16c) and (18c¢) and insert into them
the well-known value of the radiation pressure

Po=gd
so that one obtains
T
1_1__%;
-
¢ = g 37 i

Next we consider the case of an electrically charged massless body. If
external forces do not act upon the body, we can once again apply formulas
(16a) and (18a). Denoting the electrical energy relative to a co-moving
reference system by £y, we get

(78]

(791
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P

g
N
¢-_9q9 37

A part of these values is to be allotted to the electromagnetic field,
and the rest to the massless body that is subjected to forces due to its
charge.!

815. The entropy end temperature of moving systems

0f the variables that determine the state of a system, we have thus far
only used pressure, volume, energy, velocity, and momentum, but have not yet
dealt with thermal quantities. The reason for this was that for a system's
motion it is irrelevant what kind of energy is supplied, so that we had no
reason to distinguish between heat and mechanical work. However, we now want
to introduce thermal quantities as well.

Let the state of a moving system be completely determined by the
quantities ¢, ¥, and E. Obviously, in the case of such a system we have to
consider as the heat supplied d{ the total energy increase minus the work
produced by the pressure and that spent on increasing the momentum, so that we
have

df = dE + pdV - qdf . (23)

After having so defined the heat supplied for a moving system, we can intro-
duce the absolute temperature T and the entropy # of the moving system by
considering reversible cyclic processes in the same way it is done in text-
books of thermodynamics. For reversible processes the equation

ICf. A. Einstein, Ann. d. Phys. 23 (1907): 373-379.
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g = Tdy (24)

is valid here too.
We now have to derive the equations relating the quantities df}, 5, T
and the corresponding quantities df}y, 79, Ty which refer to a co-moving
reference system. As far as entropy is concerned, I am repeating here the
reasoning of Mr. Planck,! noting that the "primed" and "unprimed" reference
systems should be understood as the reference systems S' and S.
"Let us imagine that the body is brought by some reversible, adiabatic
process from a state in which it is at rest with respect to the unprimed
system into a second state, in which it is at rest with respect to the primed
reference system. If the body's entropy for the unprimed system in the
initial state is denoted by #; and in the final state by 7,, then, because
of the reversibility and adiabatic nature of the process, #; = #,. But the
process is reversible and adiabatic for the primed reference system as well,
hence we will also have nj = p}."
"Now, if 7] were not equal to g, but, say, #{ > 7, this would mean
the following: The entropy of a body is larger for the reference system for [84]
which it is in motion than for the reference system for which it is at rest.
But this proposition would also require that 75 > 7,, because in the latter
state the body is at rest for the primed reference system while in motion for  [85]
the unprimed one. However, these two inequalities conflict with the two
equalities established. Similarly, one cannot have 7| > 7,; consequently [86]
n}{ = 7, and, in general, 7' =7, i.e., the entropy of the body does not
depend on the choice of the reference system."
Using our notation, we must therefore put

7 = 7g- (25)

If we now introduce the quantities £, py, and ¥, on the right-hand
side of equation (23) by means of equations (16c), (18c), (20), and (22), we
obtain

M. Planck, "Zur Dynamik bewegter Systeme” [On the dynamics of moving [83]
systems]. Sitzungsber. d. kgl. Preuss. Akad. d. Kissensch. (1907).
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aq = b -%;(d%<+mﬂ%)
w=do 1% (26)

Further, since according to (24) the two equations

or

dq = Tdy
dfy = Todng

1

hold, one finally obtains, taking into account (25) and (26),

%:h-g. (27)

Thus, the temperature of a moving system is always lower with respect to a
reference system that is in motion relative to it than with respect to a
reference system that is at rest relative to it.

§16. The dynamics of systems and the principle of least action

In his treatise "On the dynamics of moving systems," Mr. Planck starts
out from the principle of least action (and from the transformation equations
for the pressure and temperature of black-body radiation)! and arrives at
results that are idemtical with those established here. The question arises,
therefore, as to how the foundations of his study and the present one are
related.

We started from the energy principle and the principle of conservation
of momentum. If the components of the resultant of the forces acting upon the
system are called I}, F&, Fz
principles we used for reversible processes and a system whose state is
defined by the variables ¢, ¥, T :

» we can formulate in the following way the

M. Planck, "Zur Dynamik bewegter Systeme" [On the dynamics of moving
systems]. Siizungsber. d. kgl. Preuss. dkad. d. Fissensch. (1907).
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dE = i;dx + I@dy + l}dz - pdV + 1dS (28)
dGz
FZ’ = Wik etc. (29)

Keeping in mind that

I&dz = i&i dt = zd€ = d(iG&) - szi , etc.
and
Tdg = d(Tp) - 7dT ,

one obtains from the above equations the relation

d(-E + Tp + ¢6) = szi + Gydg + szé + pdV + 9dT .

Since the right-hand side of this equation must also be a total
differential, and taking into account (29), it follows that

d [d d(d d [
=\ =F = =F =l =F
W[@ﬂ % “[aﬂ v ”[aZJ .

H i
T Hen.
But these are the equations derivable by means of the principle of least
action which Mr. Planck had used as his starting point.

V. PRINCIPLE OF RELATIVITY AND GRAVITATION
§17. Adecelerated reference sysiem and gravitational field

So far we have applied the principle of relativity, i.e., the assumption
that the physical laws are independent of the state of motion of the reference
system, only to nonsccelerated reference systems. Is it conceivable that the
principle of relativity also applies to systems that are accelerated relative
to each other?

[90]

[91]

f92]
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While this 1is not the place for a detailed discussion of this question,
it will occur to anybody who has been following the applications of the
principle of relativity. Therefore I will not refrain from taking a stand on
this question here.

Ve consider two systems ¥, and Y, in motion. Let X, be accelerated
in the direction of its JX-axis, and let 7 be the (temporally constant)
magnitude of that acceleration. ¥, shall be at rest, but it shall be located
in a homogeneous gravitational field that imparts to all objects an
acceleration -7 in the direction of the JX-axis.

As far as we know, the physical laws with respect to %; do not differ
from those with respect to X,; this is based on the fact that all bodies are
equally accelerated in the gravitational field. At our present state of
experience we have thus no reason to assume that the systems X; and 3,
differ from each other in any respect, and in the discussion that follows, we
shall therefore assume the complete physical equivalence of a gravitational
field and a corresponding acceleration of the reference system.

This assumption extends the principle of relativity to the uniformly
accelerated translational motion of the refercnce system. The heuristic value
of this assumption rests on the fact that it permits the replacement of a
homogeneous gravitational field by a uniformly accelerated reference system,
the latter case being to some extent accessible to theoretical treatment.

§18. Space and time in a uniformly accelerated reference system

Ve first consider a body whose individual material points, at a given
time ¢ of the nonaccelerated reference system S, possess no velocity
relative to §, but a certain acceleration. What is the influence of this
acceleration 4 on the shape of the body with respect to S7

If such an influence is present, it will consist of a constant-ratio
dilatation in the direction of acceleration and possibly in the two directions
perpendicular to it, since an effect of another kind is impossible for reasons
of symmetry. The acceleration-caused dilatations (if such exist at all) must
be even functions of 7; hence they can be neglected if one restricts oneself
to the case in which 7 is so small that terms of the second or higher power
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in 4 may be neglected. Since we are going to restrict ourselves to that
case, we do not have to assume that the acceleration has any influence on the
shape of the body.

We now consider a reference system X that is uniformly accelerated
relative to the nonaccelerated system § in the direction of the latter's
X-axis. The clocks and measuring rods of X, examined at rest, shall be
identical with the clocks and measuring rods of §. The coordinate origin of
¥ shall move along the JX-axis of S, and the axes of T shall be
perpetually parallel to those of S. At any moment there exists a
nonaccelerated reference system S' whose coordinate axes coincide with the
coordinate axes of X at the moment in question {at a given time ' of
§'). If the coordinates of a point event occurring at this time ' are ¢,
9, ( with respect to ¥, we will have

5 = ¢
y'h=n
2! =

because in accordance with what we said above, we are not to assume that
acceleration affects the shape of the measuring instruments used for measuring
& 1, (. Ve shall also imagine that the clocks of X are set at time ¢' of
§' such that their readings at that moment equal {'. What about the rate of
the clocks in the next time element 77

First of all, we have to bear in mind that a specific effect of
acceleration on the rate of the clocks of ¥ need not be taken into account,
since it would have to be of the order 92. Furthermore, since the effect of
the velocity attained during 7 on the rate of the clocks is negligible, and
the distances traveled by the clocks during the time 7 relative to those
traveled by S' are also of the order 72, i.e., negligible, the readings of
the clocks of ¥ may be fully replaced by readings of the clocks of S' for
the time element 7.

From the foregoing it follows that, relative to Z, light in vacuum is
propagated during the time element 7 with the universal velocity ¢ if we
define simultaneity in the system S' which is momentarily at rest relative

[95]
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to ¥, and if the clocks and measuring rods we use for measuring the time and
length are identical with those used for the measurement of time and space in
nonaccelerated systems. Thus the principle of constancy of the velocity of
light can be used here too to define simultaneity if onme restricts oneself to
very short light paths.

Ve now imagine that the clocks of £ are adjusted, in the way
described, at that time ¢ =0 of § at which ¥ is instantaneously at rest
relative to S. The totality of readings of the clocks of ¥ adjusted in
this way is called the "local time" ¢ of the system E. It is immediately
evident that the physical meaning of the local time ¢ is as follows. If one
usces the local time ¢ for the temporal evaluation of processes occurring in
the individual space elements of X, then the laws obeyed by these processes
cannot depend on the position of these space elements, i.e., on their coordi-
nates, if not only the clocks, but also the other measuring tools used in the
various space elements are identical.

However, we must not simply refer to the local time o as the "time" of
¥, because according to the definition given above, two point events occurring
at different points of X are not simultaneous when their local times ¢ are
equal. For if at time ¢ = 0 two clocks of ¥ are synchronous with respect
to § and are subjected to the same motions, then they remain forever
synchronous with respect to §. However, for this reason, in accordance with
84, they do not run synchronously with respect to a reference system S
instantaneously at rest relative to ¥ but in motion rclative to §, and
hence according to our definition they do not run synchronously with respect
to X either.

¥We now define the "time" 7 of the system ¥ as the totality of those
readings of the clock situated at the coordinate origin of X which are,
according to the above definition, simultaneous with the events which are to
be temporally evaluated.!

We shall now determines the relation between the time 7 and the local
time ¢ of a point event. It follows from the first of equations (1) that

Thus the symbol "7" is used here in a different sense than above.
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two events are simultaneous with respect to S', and thus also with respect to
z, if

v v
tl"c_le'—'tz‘zfzzQ

where the subscripts refer to the one or to the other point event, respec-
tively. We shall first confine ourselves to the consideration of times that
are so short! that all terms containing the second or higher power of 7 or
v can be omitted; taking (1) and (29) into account, we then have to put

T -3 =) -2y =6 -§
tl':al tz—_-ﬂ'z
v=9t =197,

so that we obtain from the above equation

gy - 0y = %; (& - &) -

If wve move the first point event to the coordinate origin, so that ¢, = 7
and ¢ = 0, we obtain, omitting the subscript for the second point event,

= 1[1 + %5] . (30)

This equation holds first of all if 7 and ¢ 1lie below certain
limits. It is obvious that it holds for arbitrarily large 7 if the acceler-
ation 7 1is constant with respect to I, because the relation between ¢ and
7 must then be linear. Equation (30) does not hold for arbitrarily large ¢.
From the fact that the choice of the coordinate origin must not affect the
relation, one must conclude that, strictly speaking, equation (30) should be
replaced by the equation

#

o= 7€

Nevertheless, we shall maintain formula (30).

In accordance with (1), we thereby also assume a certain restriction with
respect to the values of ¢ = z'.

(98]

[99]
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According to §17, equation (30) is also applicable to a coordinate
system in which a homogeneous gravitational field is acting. In that case we
have to put & = 7£, where & is the gravitational potential, so that we
obtain

= r[l + g%] . (30a)

We have defined two kinds of times for 2. Which of the two definitions
do we have to use in the various cases? Let us assume that at two locations
of different gravitational potentials (7€) there exists one physical system
cach, and we want to compare their physical quantities. To do this, the most
natural procedure might be as follows: First we take our measuring tools to
the first physical system and carry out our measurements there; then we take
our measuring tools to the second system to carry out the same measurement
here. If the two sets of measurements give the same results, we shall denote
the two physical systems as "equal." The measuring tools include a clock with
which we measure local times ¢. From this it follows that to define the
physical quantities at some position of the gravitational field, it is natural
to use the time o¢.

However, if we deal with a phenomenon in which objects situated at posi-
tions with different gravitational potentials must be considered simultan-
eously, we have to use the time 7 1in those terms in which time occurs
explicitly (i.e., not only in the definition of physical quantities), because
otherwise the simultaneity of the events would not be expressed by the equal-
ity of the time values of the two events. Since in the definition of the time
7 a clock situated in an arbitrarily chosen position is used, but not an
arbitrarily chosen instant, when using time 7 the laws of nature can vary
with position but not with time.

§19. The effect of the gravitaiional field on clocks

If a clock showing local time is located in a point P of gravitational
potential &, then, according to (30a), its reading will be (1 + g%) times

greater than the time 7, i.e., it runs (1 + g%) times faster than an
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identical clock located at the coordinate origin. Suppose an observer located
somewhere in space perceives the indications of the two clocks in a certain
way, e.g., optically. As the time A7 that elapses between the instants at
which a clock indication occurs and at which this indication is perceived by
the observer is independent of 7, for an observer situated somewhere in space

the clock in point P runs (1 + g;) times faster than the clock at the
coordinate origin. In this sense we may say that the process occurring in the
clock, and, more generally, any physical process, proceeds faster the greater
the gravitational potential at the position of the process taking place.

There exist "clocks" that are present at locations of different gravita-
tional potentials and whose rates can be controlled with great precision;
these are the producers of spectral lines. It can be concluded from the
aforesaid! that the wave length of light coming from the sun's surface, which
originates from such a producer, is larger by about one part in two millionth
than that of light produced by the same substance on earth.

§20. The effect of gravitalion on electromagnetic phenomena

If we refer an electromagnetic process at some point of time to a non-
accelerated reference system §' that is instantaneously at rest relative to
the reference system £ accelerated as above, then the following equations
will hold according to (5) and (6):

1 ] ]
and
19" _ay a7 te
¢ T T T gy ete

In accordance with the above, we may readily equate the S'-referred
quantities p', u', X', L', z', etc., with the corresponding ZE-referred

While assuming that equation (30a) holds for an inhomogemeous gravitational
field as well.

[100]
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quantities p, u, X, I, &, etc., if we limit ourselves to an infinitesimally
short period! that is infinitesimally close to the time of relative rest of
S§' and X. Further, we have to replace ¢' by the local time ¢. However,
we must not simply put

a _4d
ot " 9r

because a point which is at rest relative to I, and to which equatiomns
transformed to ¥ should refer, changes its velocity relative to §' during
the time element di' = de, to which change, according to equations (7a) and
{7b), there corresponds a temporal change of the X-related field component.
Hence we have to put

[ ) { ' _ al
A b v
ar' _ ay o' _ oK
I T Faiel A
' 0z aN' N
il A i A R

Hence the X-referred electromagnetic equations are

i ay al  oN
= [pu7J i % Aq o
1 7 7. _ N dL
c["“c*T c"]-az @

cle-t9-%-%
it -5-%

This restriction does not affect the range of validity of our results because
inherently the laws to be derived cannot depend on the time.



DOC. 47 309

We multiply these equations by [1 + ] and put for the sake of brevity
= X[l 5 ]. ¥k = Y[ 15] ,» etc.
p* = p[l + %5] :

Neglecting terms of the second power in 49, we obtain the equations

1 on*
e 5 - 57 - ?ﬂ
tlorn ) - 31a)
1 N aL*
z[*g*m‘] v
190* _or _ or
cdr - ac " an
14 a7*r  9x*
i 2l 2l o (32a)
G Y ) G
¢ T 9

These equations show first of all how the gravitational field affects the
static and stationary phenomena. The same laws hold as in the gravitation-
free field, except that the field components 1, etc. are replaced by
X[l + %5], etc., and p is replaced by p|1 + %5].

Furthermore, to follow the development of nonstationary states, we make
use of the time 7 in the terms differentiated with respect to time as well

as in the definition of the velocity of electricity, i.e., we put according to
(30)

2 - [1 + %5] a (101]

and

w£=[1+c] . [102]



[103]

[104]

[105]

[106]

[107]

310 THE RELATIVITY PRINCIPLE

We thus obtain

1 [p*wg + %;er] = %’:]: - _3&'? etc. (31b)
c[l L ]
and
A %Yg - %%" ete. (32b)
e

These equations too have the same form as the corresponding equations of
the nonaccelerated or gravitation-free space; however, ¢ 1is here replaced by

the value
&
('{1 +%§] = C[I +27]

From this it follows that those light rays that do not propagate along the
£-axis are bent by the gravitational field; it can casily be seen that the

change of direction amounts to ig-sin ¢ per cm light path, where ¢
denotes the angle between the direction of gravity and that of the light ray.
With the help of these equations and the equations relating the field
strength and the electric current of one point, which are known from the
optics of bodies at rest, we can calculate the effect of the gravitational
field on optical phenomena in bodies at rest. One has to bear in mind,
however, that the above-mentioncd equations from the optics of bodies at rest
hold for the local time o. Unfortunately, the effect of the terrestrial
gravitational field is so small according to our theory (because of the

smallness of %%) that there is no prospect of a comparison of the results of
the theory with experience.

If we successively multiply equations (3la) and (32a) by %; ----- Ir
and integrate over infinite space, we obtain, using our earlier notation,

J [1+%§]2{%m+ u, Vs uZ)duHI [1 " %5]2 e perw o= 0.

i%(ul + uny + u,4) is the energy N, supplied to the matter per unit
volume and unit local time ¢ if this encrgy is measured by measuring tools
situated at the corresponding location. Hence, according to (30),
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7, = q”[l + %é] is the (similarly measured) energy supplied to the matter per

unit volume and unit local time 7; 81;(X2+ Y2...+N2) 1is the electromagnetic
energy ¢ per unit volume, measured the same way. I[f we take into account

that according to (30) we have to set H(?; = [1 = %é]ﬂa?’ we obtain

j[l+%§]ﬂfdu+%“[l+%§]edw]=0.

This equation expresses the principle of conservation of energy and
contains a very remarkable result. An energy, or energy input, that, measured
locally, has the value F = edw or F = g dwdr, respectively, contributes to
the energy integral, in addition to the value F that corresponds to its

magnitude, also a value {7 7€ = EL; ® that corresponds to its position.
Thus, to each energy £ in the gravitational field there corresponds an
energy of position that equals the potential energy of a "ponderable" mass of

magnitude ZET

Thus the proposition derived in §11, that to an amount of energy £
there corresponds a mass of magnitude El’:;, holds not only for the inertial but

also for the gravitational mass, if the assumption introduced in §17 is
correct.

(Received on 4 December 1907)
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Doc. 48
A NEW ELECTROSTATIC METHOD FOR TIE MEASUREMENT
OF SMALL QUANTITIES OF ELECTRICITY
by A. Einstein
[(Physikalische Zeitschrift 9 (1908): 216-217]

As we know, electric potentials as low as about 10© volts can be
measured by sensitive electrostatic quadrant electrometers if a sufficiently
great auxiliary potential is supplied to the needle. However, an increase in
this auxiliary potential results in a decrease, rather than increase, in the
sensitivity of the instrument if one measures gquanlities of electriciiy. The
higher the potential of the needle, the smaller the deflection caused by a
given quantity of electricity. TIf the absolute value of the potential of the
needle is large compared with the potential difference between the quadrants,
then the deflection depends only on the product of the potential and the
quantity of electricity supplied, and thus on the electric emergy supplied,
and the cnergy required for the deflection must be taken from the energy of
the system being measured. This circumstance determines thie limit actually
achicvable of the sensitivity of the quadrant elcectrometer and of analogous
instruments when measuring quantities of clectricity or energy, respectively.

Hlowever, it is possible to construct measuring instruments in which the
cnergy required for deflection is not taken from the system being measured,
but from an auxiliary source, so that it will be possible to excced the actual
sensitivity limit mentioned above. In the following, 1 describe the scheme of
an induction machine with which, in my opinion, this goal can be achieved.

Let 4; and 4} (Fig. 1) be two fixed conductors, along which shall
slide two rigidly connccted metal leaflets &, fastened, for example, to a
small wheel. The leaflets have two contact pins b, which are within the
range of fixed contact springs &, and K}, respectively. Let K, be
grounded and Ky conductively comnccted with 4j.

4; shall be kept permanently at a positive potential P;. When the
leaflet that is just passing touches KX, the electric charge on 4; induces
an opposite electric charge -e on b. O0Once this leaflet is opposite 4}, so
that it touches K], it delivers negative electricity to 4}. In such a way
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Fig. 1

cach passing leaflet will change the quantity of electricity on 4} until a
stationary state has been reached. If P; denotes the absolute value of the
ncgative potential of 4] in the stationary state, then we must have

Py
G

where a; is the transformation ratio, a constant independent of P,. If 4
and 4} are leaflet-shaped, @; will be a proper fraction. But if 4, and
4} are shaped like bows, which at the instants of contact formation surround
the leaflets J on both sides, we can easily arrange that ¢, > 1, e.g., ¢ =
10. This is what we will assume in the following.

Let us envisage several such elements connected in series according to
the accompanying scheme (Fig. 2). The secondary conductor 4§ of the first
element shall be connected with the primary one 4, of the second element,
the sccondary conductor 43 of the second element with the primary one 43
of the third element, etc. The secondary conductor of the last element shall
be connected to an electrometer V.

If one imagines a certain potential P; supplied to the primary conduc-
tor 4, then a stationary state of the whole arrangement will be established
after a certain time. The following equation will then hold for it:
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Fig. 2

Py = P} = Pioay
1,2 = Pl} = P2'02 = [)l'al‘(lz
p:‘; = P3‘ﬂa = [’1'01'02'83.

If there are n elements, all of them with the same transmission ratio a,
then we will have

One can see that the energy that has to be supplied to the mobile system
of the electrometer is taken from the mechanical energy imparted to the
leaflets Z, and not from the system to be measured, which is connected to the
leaflet 4. The scusitivity of the procedure is limited only by the external
sources of error, since a" can be made arbitrarily large by increasing n.

0f course, the whole arrangement can be made to be bipolar. In that
case each element getvs two primary and two secondary conductors.
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Since an increase in the sensitivity of electrostatic methods of
measurement is of importance for the study of radioactivity, I hope that some [5]
physicist will become interested in this matter. I would gladly inform him [6]
about my further considerations on this subject. I was led to the plan
presented herein by thinking about how the spontaneous charging of conductors!
required by the molecular theory of heat, which is analogous to Brownian
motion, can be detected and measured. I hope that, with the plan described, I
have brought this problem too one step closer to its solution.

Bern, 13 February 1908. (Received on 15 February 1908)

1A. Einstein, 4nn. d. Phys. 22 (1907): 569.
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Doc. 49
CORRECTIONS TO THE PAPER: "ON THE RELATIVITY PRINCIPLE
AND THE CONCLUSIONS DRAWN FROM ITM™
by A. Einstein
[Jahrbuch der Radioaktivitdt und Elektronik 5 (1908): 93-99]

During the proofreading of the article cited I missed unfortunately
several crrors that have to be corrected because they impede the reading of
[21 the article.
Formula 15b (p. 435) should read

dl qu—c(m' L Zdl)dw] Pn—BE g

The factor % in the second formula on p. 451 is in error: the formula

should read

Y
s

Formula 28 on p. 453 should read

dF = dez + f}dy + F}dz - pdV + Tdy .

A few lines further on, the subscript in Gz should be added. In the
penultimate line on p. 455 it should read "rcplaceable" instcad of "usable."
[Translator's note: This correction does not apply to the translated ver-
sion.]

On p. 451 it should read

[1] This Jehrbuch 4 (1907): 411.
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J _ I}
a?-[“%é]%
w€ = [1 + %é] u£ .
On p. 462 the subscripts in the quantities “f and u, have to be

added. Also, in about the middle of this page a mistake in sign should be
corrected: the equation should read

Mg = ﬂT[l N %5}

and

A letter by Mr. Planck induced me to add the following supplementary
remark so as to prevent a misunderstanding that could arise easily:

In the section "Principle of relativity and gravitation", a reference
system at rest situated in a temporally constant, homogeneous gravitational
field is treated as physically equivalent to a uniformly accelerated,
gravitation-free reference system. The concept "uniformly accelerated" needs
further clarification.

If—as in our case—one considers a rectilinear motion (of the system

L), the acceleration is given by the expression 5%, where v denotes the

velocity. According to the kinematics in use up to now, %% is independent
of the state of motion of the (nonaccelerated) reference system, so that one
might speak directly of (instantaneous) acceleration when the motion in a

certain time element is given. According to the kinematics used by us, g%
does depend on the state of motion of the (nonaccelerated) reference system.
But among all the values of acceleration that can be so obtained for a certain
motion epoch, that one is distinguished which corresponds to a reference
system with respect to which the body considered has the velocity » = 0. It
is this value of acceleration which has to remain constant in our "uniformly
accelerated" system. The relation v = 4t used on p. 457 thus holds only in
first approximation; however, this is sufficient, because only terms linear
in t and 7, respectively, have to be taken into account in these
considerations.

{Received on 3 March 1908)
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Doc. 50
ELEMENTARY THEORY OF BROWNIAN! MOTION
by A. Einstein
[Zeitschrift fur Elektrochemie und wngewandte
physikalishe Chemie 14 (1908): 235-239]

In a conversation, Professor R. Lorenz pointed out to me that many
chemists would welcome au elementary theory of Brownian motion. Responding to
his request, I present in the following a simple theory of this phenomenon.
The train of thought to be conveyed, in brief, is as follows: First we
investigate how the process of diffusion in an undissociated dilute solution
depends on the distribution of the osmotic pressure in the solution and on the
mobility of the dissolved matter relative to the solvent. For the case that a
molecule of the dissolved matter is large compared with a molecule of the
solvent we thus obtain an expression for the coefficient of diffusion in which
no quantities appear which depend on the nature of the solvent other than the
viscosity of the solvent and the diameter of the dissolved molecules.

Then we attribute the process of diffusion to the random motions of the
dissolved molecules and find out how the mean magnitude of these random
motions of the dissolved molecules can be calculated from the coefficient of
diffusion, i.e., according to the result mentioned above, from the viscosity
of the solvent and the size of the dissolved molecules. The result thus
obtained is then valid not only for true dissolved molecules but also for any
small corpuscules suspended in the liguid.

§1. Diffusion and osmotic pressure
Let the cylindric vessel Z (Fig. 93) be filled with a dilute solution.

Let, further, the interior of Z be divided in two parts 4 and B by the
movable piston K, which constitutes a semipermeable wall. If the concentration

1By Brownian motion we understand the irregular motion performed by micro-
scopically small particles suspended in a liquid. Cf., e.g., The Svedberg,
Zeitsch. f. Elektrochemie 12 (1906): pp. 47 and 51.
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of the solution is higher in 4 than in &, then an external force, directed
to the left, must be applied to the piston to maintain it in equilibrium, and
this force is equal to the difference between the two osmotic pressures
exerted by the dissolved substance on the piston from the left and from the
right, respectively. If this external pressure is not applied to the piston,
the latter will move to the right under the influence of the greater osmotic
pressure exerted by the solution in 4 until the concentrations in 4 and &

z
Fal

A— |—B

K

Fig. 93

no longer differ. This consideration demonstrates that it is precisely the
forces of osmotic pressure which cause the equalization of concentrations in
diffusion; because we can prevent diffusion, i.e., the equalization of concen-
trations, by counterbalancing the osmotic differences, which correspond to
differences in concentrations, with external forces acting on semipermeable
walls. It has been known for a long time that osmotic pressure can be
considered as the motive force in processes of diffusion. As we know, Nernst
used this as the basis for his investigation on the comnection between ionic
mobility, the coefficient of diffusion, and the EMF in concentration cells.

Let diffusion take place along the cylinder's axis inside the cylinder
Z (Fig. 94), whose cross section shall be = 1. Let us first examine the
osmotic forces causing the diffusional motion of the dissolved substance
contained between the infinitesimally close planes F and E'. From the
left, the force of osmotic pressure p acts on the lamina's boundary surface
E, and from the right, the pressure p' acts on the boundary surface E'; the
resultant of the pressure forces is therefore

p-p.

[4]
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We will denote the distance of the surface £ from the left end of the
vessel by =z, and the distance of the surface £' from the same end of the
vessel by 2z + dz; then dz also equals the volume of the liquid lamina
considered. Since p - p' is the osmotic pressure acting on the volume dz of

the dissolved substance,
A’_%_L_ 97__2_ _’12

is the osmotic force acting on the dissolved substance contained in the unit
volume. Since, further, the osmotic pressure is given by the equation

p = Rlv,

wvhere £ denotes the constant of the gas equation (8.31-107), T the
absolute temperature, and v the number of dissolved gram-molecules per unit
volume, we get, finally, the following expression for the osmotic force K
acting on the dissolved substance per unit volume

(1) K:-lz[gg.

To be able to calculate the diffusional motions that these motive forces
can produce, we must also know how great a resistance is offered by the sol-
vent to the motion of the dissolved substance. If a motive force % acts on
a molecule, it imparts to it a proportional velocity o according to the
equation
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(2) v= &,

where & is a constant which we will call the frictional resistance of the
molecule. In general, this frictional resistance cannot be determined by
theoretical methods. But if we are allowed to regard the molecule approxi-
mately as a sphere that is large compared with a molecule of the solvent, then
ve can determine the frictional resistance of the dissolved molecule by the
methods of ordinary hydrodynamics, in which the molecular constitution of the
liquid is not taken into account. Within the limits of validity of ordinary
hydrodynamics, a sphere moving in a liquid obeys equation (2), where we put

(3) R = 6x7p.

ere 75 denotes the coefficient of viscosity of the liquid, and p the
radius of the sphere. If we can assume that the molecules of a dissolved
substance are approximately spherical and large compared with the molecules of
the solvent, then equation (3) may be applied to the individual dissolved
molecules.

Now we can calculate the amount of dissolved substance diffusing through
a cross section of the cylinder per unit time. The unit volume contains v
gram-molecules, which amounts to »N real molecules, where N denotes the
number of real molecules in one gram-molecule. If a force K is distributed
over these w»N molecules contained in the unit volume, it will impart a
velocity to them that is v# times smaller than the velocity it would be able
to impart to a single molecule if it acted upon the latter alone. Taking into
account equation (2), we get therefore for the velocity v that the force &
can impart to wvN molecules

1K
‘U—'I;N s

In the case considered, K is equal to the osmotic force exerted on the
vN molecules contained in the unit volume, which we determined before, so
that we get from this, using equation (1},
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The left-hand side contains the product of the concentration v of the
dissolved substance and the velocity with which the dissolved substance is
moved along by the process of diffusion. This product represents therefore
the quantity of the dissolved substance (in gram-molecules) transported per
second through unit cross section by diffusion. The factor of g% on the

right-hand side of this equation is therefore! nothing other than the
coefficient of diffusion /J of the solution considered. Hence, we have in
general

and, in case the diffusing molecules can be considered as spherical and large
compared with the molecules of the solvent, we have according to equation (3)

(52) p=4 i

Thus, in the case just mentioned, the coefficient of diffusion does not
depend on any constants characteristic for the substances in question other
than the viscosity of the solvent 5 and the radius p of the molecule.?

1Tt should be noted that the numerical value of the coefficient of diffusion
is independent of the choice of the unit for the concentration.

2This equation permits the approximate determination of the radius of (large)
molecules from the coefficient of diffusion if the latter is know, since

_ AT 1
P=%aN7" D>

vhere we have to put £ = 8.31-107 and N = 6-1023. To be sure, the value of
¥ has a margin of uncertainty of about 50%. This relationship might be of
significance for the determination of the approximate size of molecules in
colloidal solutions.
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§2. Diffusion end random motion of molecules

The molecular theory of heat affords yet another standpoint from which
the process of diffusion can be viewed. The process of random motion, which
is what the heat content of a substance must be considered to be, will cause
the individual molecules of a liquid to change their position in the most
random manner imaginable. This, as it were, haphazard meandering of the
molecules of the dissolved substance in a solution will have as a consequence
that the initial nonuniform distribution of concentration will gradually give
way to a uniform one.

We will now consider this process in somewhat greater detail, limiting
ourselves again to the case considered in §1, where only diffusion in one sin-
gle direction, namely in the direction of the axis (z-axis) of the cylinder 7
has to be taken into account. We imagine that we know the =z-coordinates of
all dissolved molecules at a certain time £, and also at time ¢ + 7, where 7
denotes a time interval so short that the concentrations in our solution
change very little during it. During this time 7, the z-coordinate of the
first dissolved molecule will change by a certain quantity 4; on account of
the random thermal motion, that of the second molecule will change by A,,
etc. These displacements 4;, 4,, etc., will be in part negative (directed to
the left) and in part positive (directed to the right). Furthermore, the
magnitude of these displacements will vary from molecule to molecule. Dut
since we assume, as before, that the solution is dilute, this displacement is
determined only by the surrounding solvent, while the rest of the dissolved
molecules has no appreciable effect; for that reason, these displacements A
will on the wverage be of equal magnitude in parts of the solution having
differing concentrations, and will be just as often positive as negative.

¥e now want to see how much of the substance diffuses through the unit
cross section of our solution during time 7 if we know the magnitude of the
displacements A in the direction of the cylinder axis experienced on the
average by the dissolved molecules. To simplify this consideration, we will
assume that all molecules undergo an equally large displacement A, with half
of the molecules undergoing the displacement +A, (i.e., to the right), and
the other half the displacement -A (i.e., to the left). We thus replace the
individual displacements A;, Ay, etc., by their mean value A.

(8]
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According to our simplifying assumption, the plane F of our cylinder
(Fig. 95) [on p. 320] can be crossed during time 7 from left to right only
by those dissolved molecules which prior to interval 7 were located left of
F, at a distance from F smaller than A. These molecules are all located
between the planes §, and £ (Fig. 95). But since only half of these
molecules experience the displacement +4A, only half of them will cross the
planc F. But one-half of the dissolved substance contained between { and
E amounts, in gram-molecules, to

% vy A,

where v, denotes the mean concentration in the volume @F, i.e., the
concentration in the midplane #,. Since the cross section equals 1, A
represents the volume enclosed between { and £, which, when multiplied by
the mean concentration, gives the dissolved substance contained in this volume
in gram-molecules.

By an analogous consideration we find that the amount of dissolved
substance crossing £ from right to left during time 7 equals

% v, A,

where vy denotes the concentration in the midplane /#,. The amount of
substance diffusing through F from left to right during time 7 1is
obviously equal to the difference of these two values, and hence equals

(G) %A(Vl = Vz).

vy and v, are the concentrations in two cross scctions separated by
the very small distance A. If we again denote a cross section's distance
from the left end of the cylinder by =z, we will have according to the
definition of the differential quotient
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Vo - VU dv
e

VI‘V-z:‘A%’

and from this

so that the amount of substance diffusing during 7 through £ equals

(6a) - %A’é’% .

The amount of substance, expressed in gram-molecules, diffusing through
F in unit time hence equals

142 dy
27 dz -

VWith this we have obtained a second value for the coefficient of
diffusion D. We have

2

(7) p=5%,

where A denotes the path travelled on the average! by a dissolved molecule
during time 7 in the direction of the z-axis.

Solving (7) for A, we obtain

(7a) A =20 7.

§3. Notion of individual molecules. Brounian motion

If we equate the values for the diffusion coefficient in equations (5)
and (7), we obtain by solving for A

'To be more precise, A equals the square root of the mean of the squares of
the individual displacements Aj, A3, etc. For greater accuracy, we should
therefore write JAZ instead of A.

[10]

{91
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(8) a= [HE

We see from this formula that the path travelled on the average by a
molecule is not proportional to the time!, but to the square root of the time.
This is due to the fact that the paths travelled in two consecutive time units
are not always to be added, but just as frequently are to be subtracted. The
displacement experienced on the average by a molecule on account of random
molecular motion can be calculated according to equation (7a) from the
cocfficient of diffusion, or according to equation (8) from the force of
resistance R offered to a forced motion proceeding with velocity v = 1.

If the dissolved molecule is spherical and large compared with the
molecule of the solvent, we can substitute for T in equation (8) the value
given in equation (3), so that we get

(8a) A:J’%T-gxl”ﬁﬁ.

This equation permits us to calculate the displacement average? A from
the temperature 7, the viscosity of the solvent 7, and the molecular
radius p.

But according to the molecular-kinetic concept, there exists no
fundamental difference between a dissolved molecule and a suspended corpuscle.
We must therefore consider equation (8a) to be valid for any kind of suspended
spherical particles as well.

Ve now calculate the path A travelled on the average by a particle
with a diameter of 1 micron in 1 second in a particular direction in water at
room temperature. We put

R = 8.31-107, 7 = 0.0135,
T = 290, p = 0.5-10,
N = 6-103, 7 = 1.

10f. A. Einstein, Zeitsch. f. Flektrochemie 6 (1907).
2To be more precise, the square root of the mean value of A2,
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We obtain
A=0.8-10% cm = 0.8 micron.

This number has an uncertainty of % 25/ due to the low accuracy with
which ¥ 1is known.

It is of interest to compare the mean proper motion of the microscopic
particles we just calculated with that of dissolved molecules or ions. For an
undissociated dissolved substance whose coefficient of diffusion is known, &
can be calculated from equation (7a). For sugar at room temperature we have
D= 2123%366 . From this we get from equation (7a) for 7 =1

A = 27.6 micron.

From the number N and the molecular volume of solid sugar we can
conclude that the diameter of a molecule of sugar is of the order of magnitude
of a thousandth of a micron, i.e., about one thousand times smaller than the
diameter of the suspended particle considered before. According to equation
(8a), we can therefore expect A to be about {1000 times larger for sugar
than for the particle with a diameter of 1 micron. As we have now seen, this
is indeed approximately correct.

For ions, A ["A" added by the translator] can be determined from their
migration velocity ¢ from equation (8). £ equals the quantity of electri-
city in coulombs that would flow through 1 cm? per second at a concentration
v =1 of the ion in question and at a potential gradient of 1 volt per
centimeter. In this imaginary process, the velocity v of the motion of the
ions (in centimeter/second) is obviously given by the equation

£ = v-96,000.

Further, since 1 volt contains 10® electromagnetic units, and the charge
of a (univalent) ion equals 91%99 electromagnetic units, the force & exerted

on one ion in the process imagined will be

k - 108'9:600
==xF -

(13]

[14]

[15]

[16]

(17]

[18]
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Substituting this value of % and the value of v obtained from the
previously found equation,

in equation (2), we get

ot - k _ 108:9,600-96,000
A==~ &8 -

With the usual definition of £, this formula holds for polyvalent ions
as well. Substituting this value for S in equation (8), we get

A = 4.25-105 [?T7 .
The formula yields for room temperature and 7 = 1

[19] lon ¢ A in microns
H 300 125
K 65 58
Diisoamylammonium ion Cjglg,N 24 35

Received on 1 April
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Doc. 51
ON THE FUNDAMENTAL ELECTROMAGNETIC EQUATIONS FOR MOVING BODIES
by A. Einstein and J. Laub
[Annalen der Physik 26 (1908): 532-540]

In a recently published study! Mr. Minkowski has presented the funda-
mental equations for the electromagnetic processes in moving bodies. In view
of the fact that this study makes rather great demands on the rcader in its
mathematical aspects, we do not consider it superfluous to derive here these
important equations in an elementary way, which, is, by the way, essentially
in agreement with that of Minkowski.

§1. Derivation of the fundemental equetions for moving bodies

The route to be taken is as follows: We introduce two coordinate
systems K and K', both of which are nonaccelerated but in relative motion.
If the space contains matter at rest relative to £', then the laws of the
electrodynamics of bodies at rest, described by the Maxwell-Hertz equations,
will hold with respect to K'. If we transform these equations to the system
K, we directly obtain the electrodynamic equations of moving bodies for the
case that the velocity of the matter is spatially and temporally comstant.
Obviously, the equations so obtained hold at least in first approximation also
in the case when the distribution of velocity of the matter is arbitrary.
This assumption is also partly justified by the fact that the result obtained
in this way is strictly valid in the case of a number of bodies moving with
different uniform velocities that are separated from each other by vacuum
interspaces.

When referred to the system £', the vector of the electric force will
be denoted by €', that of the magnetic force by $H', that of the dielectric
displacement by D', that of the magnetic induction by *B', that of the

M. Minkowski, Gottinger Nachr. 1908.

[2]

(11
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electric current by s'; p' shall denote the electric density. For the
reference system £K' there shall hold the Maxwell-llertz equations:

(1) curl' §' = %[g’i—)'r + 5'] s
(2) crl' ¢ = - 1 8B
(3) div' D' = p'

(4) div' B' = 0 .

Let us consider a second orthogonal reference system K whose axes are
permanently parallel to those of £'. Let the origin of A' move in the
positive direction of the =z-axis of K with constant velocity wv. As we
know, according to the theory of relativity the following transformation
equations! will then hold for every point event, provided the starting time
point has becen suitably chosen:

' = f(z - vt)
,’l/'=y. ﬂ= 1
2=z, 1‘27

3t =[3[t -'cl)zl'] .

where =z, y, 2, ¢t denote the space and time coordinates in the system K. If
one carries out the transformations, one obtains the equations

(1a) curl § = '}:'[Ua% + s] ,
(2a) curl@:—%%,
(3a) divdD=p,

{31 . Einstein, 4an. d. Phys. 17 (1905): 902.
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div8 =0,

where one has put

poC. 51
(4a)
(6)

(7)

and

(8)

[5]

— -&m =N

= w w
L] i i

v B 0

(9)
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To obtain the expressions for the primed quantities as functions of the
unprimed ones, one has to interchange the primed and unprimed quantities and
to replace » by -v.

The equations (1a) to (4a), which describe the electromagnetic processes
relative to the system K, have the same form as the equations (1) to (4). We
will therefore use the same terminology for the quantities

¢, D, H B, p, s
as for the corresponding quaniities relative to the system K'. Thus €, D,
5, B, p, 5 are the electric force, the dielectric displacement, the magnetic
force, the magnetic induction, the electric densily, the electric current with
respect to K.

For vacuum the transformation equations (6) and (7) reduce to the
equations for electric and magnetic forces found earlier.!

It is clear that by repeated application of transformations of the kind
that we have just performed one must always arrive at equations of the same
forn as the original equations (1) to (4), and that for such transformations
equations (6) to (9) apply, since formally the transformation did not make use
of the fact that the matter was at rest relative to the original system K'.

We assume that the transformed equations (la) to (4a) are also valid if
the velocity of the matter is spatially and temporally variable, which will be
correct in the first approximation.

It is remarkable that the boundary conditions for the vectors ¢, D, %,
B at the boundary of two media are the same as for bodies at rest. This
follows directly from equations (1a) to (4a).

Just like equations (1) to (4), equations (1a) to (4a) hold quite
generally for inhomogeneous and anisotropic bodies. They do not completely
determine the electromagnetic processes, however. Rather, relations that
express the vectors D, B, and s as functions of € and % need to be
given in addition. We will now give such equations for the case that the
matter is isotropic. If we first consider the case when all matter is at rest
relative to X', then the following equations hold with respect to A£':

1{. Einstein, loc. cit., p. 909.
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(10) D' = ¢,
(11) B = ﬂﬁ‘ ’
(12) s' = o€ ,

where ¢ = dielectric constant, g = permeability, and ¢ = electrical
conductivity are to be regarded as known functions of =z', y', z', t'. By
transforming (10) to (12) to X by means of inversion of our transformation
equations (6) to (9), one obtains the relations holding for the system £:

TJI:sz.
e v
(10a) 'Dy—zﬁz—c[éy C‘Bz],
) B v
’Dz+zﬁy-e[ﬁz+z‘3y].
By =k 5y
v _ v
(11a) ‘By+—EGz-p[ﬁy+E©Z].
Ve . v
E8‘2-361/_”[‘63: cgy]’
ﬂ[sz—gp]=0€:c. (8]
: v
(12a) 5, - ofe, cssz],
sz:a/}[@z+—93y]

If the velocity of the matter is not parallel to the f-axis, but is
determined by the vector v instead, one obtains the vectorial relations that
are analogous to equations (10a) to (12a):
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(13)

where the subscript v signifies that the component has to be taken in the
direction of v, and the subscript © that the components have to be taken in
the directions © perpendicular to v.

§2. On the electromagnetic behavior of moving dielectrics.
Kilson’s ezperiment

In the following section we will use a simple special case to show how
moving dielectrics behave according to the theory of relativity and how the
results differ from those obtained by the Lorentz theory.

Let S be a prismatic strip of a homogeneous, isotropic nonconductor,
indicated in its cross section (cf. figure), that extends to infinity perpen-
dicularly to the plane of the paper in both directions and that moves with the

Y
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constant velocity v away from the observer toward the plane of the paper
between the condenser plates 4; and 4,. The dimension of the strip §
perpendicular to the plates 4 shall be infinitesimally small compared to its
dimension parallel to the plates and to the dimensions of the plates 4; also,
the gap between S and the plates /4 (henceforth called gap in brief) shall
be negligible compared to the thickness of §. We refer the system of body
under consideration to a coordinate system that is at rest relative to the
plates 4 and vhose positive X-direction shall coincide with the direction
of motion, while its Y- and Z-axes, respectively, are parallel and perpen-
dicular to the plates 4. We will examine the electromagnetic behavior of the
picce of the strip located between the plates 4 if the electromagnetic state
is stationary.

We imagine a closcd surface that just encloses the effective part of the
condenser plates together with that of the piece of the strip lying between
them. Since no moving true charges nor electric conduction currents exist
within this surface, the equations (cf. equations (1la) to (4a))

curl $ =0,

curl ¢ =0 ,
apply. Thus, within this space the electric as well as the magnetic force is
derivable from a potential. Hence we immediately know the distribution of the
vectors & and $ if the distribution of the free electric and magnetic
density, respectively, is known. We shall limit ourselves to consideration of
the case in which the maguetic force $ is parallel to the VY-axis, and the
electric force € is parallel to the Z-axis. We are justified in doing
this, as well as in assuming that the pertinent fields both within the strip
and within the gap are honogeneous, due to the conditions stipulated earlier
regarding the orders of magnitudes of the dimensions of the system under
consideration. We also conclude inmediately that the magnetic masses at the
ends of the strip cross section make only a vanishingly small contribution to
the magnetic field.! Equations (13) then yield the following relations for
the interior of the strip:

IThis is also evident from the fact that, without essential change of the
conditions, we could give the condenser plates and the strip a circular
cylindric shape, in which case, for reasons of symmetry, free magnctic masses
could not arise at all.
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v . v
®Z+-c—ﬁy-e[@z+c‘3y],
v e )

B +EGZ-p[ny+-E’DZ] .

These equations can also be written in the following form:

H

2 2
[1 - €p %,]‘By %(eu = )&, = u[l ~ %]ﬁy s

(1)

i

[1 - g;]foz c[l - %;]ez + Yep - 1D, -
Concerning the interpretation of (1) we remark the following: The

dielectric displacement ﬁ)z experiences no jump at the surface of the strip,
hence it equals the charge of the condenser plates (more exactly, of the plate
4,) per unit area. Further, sz 6 equals the potential difference between
the condenser plates 4; and 4, if § denotes the separation of the plates,
because if one imagines that the strip is separated by an infinitely narrow
slit running parallel to the XZ-plane, then € equals the electric force in
the slit on account of the boundary conditions holding for that vector.

Next we consider the case that no magnetic field excited from the out-
side is present, i.e., according to the above, that in the space considered
the magnetic field strength vanishes. Then equations (1) will have the
following form:

2
[1 - € %g]ﬂy B %(ep - I)Gz s

1]

1 Po - ef1 - Lle

[ = Eﬂ 2 E[ B 34 7"

Since we must have w < ¢, the coefficients of Gz in the last two equations
must be positive if ex-1 > 0. In contrast, the coefficients of B, and
132 are larger, equal to, or smaller than zero, respectively, depending on

whether the velocity of the strip is smaller, equal to, or larger than c/feu,
i.e., than the velocity of the electromagnetic waves in the strip medium.
llence, if GZ has a fixed value, i.e., if one applies a fixed potential
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difference to the condenser plates, and varies the strip velocity from lower
to higher values, then at first both the charge of the condenser plates, which
is proportional to the vector D, and the magnetic induction B in the

strip will increase. When v reaches the value c¢/{eu, both the condenser's
charge and the magnetic induction become infinitely large. Hence, in this
case even an arbitrarily small applied potential difference would destroy the

strip. For all v > ¢/{ex there result negative values for D and B.
Thus, in the last case a potential difference applied to the condenser plates
would charge the condenser in the sense opposite to the potential difference.

Finally, we consider the case of the presence of a magnetic field ﬁg/
excited from the outside. We then have the equation

v? _ v? ]
[1 - €l ?z]’i)z = e[l - Fz]ez + —C-(ep - l)f,wy 3

which yields a relation between Gz and D, at a given % . If one
restricts oneself to quantities of the first order in wv/c, one has

(2) D, = €€, + %(ep - l)ﬁy )

while Lorentz's theory leads to the expression

= Ve -

(3) CDZ = er + c(e l)pﬁy s (11}
As we know, the latter equation has been experimentally tested by H. A.
Vilson (Wilson effect). OUne sees that (2) and (3) differ in terms of first [12]

order. If we would have a dielectric body of considerable permeability, it
would be possible to decide experimentally between eguations (2) and (3). [13]

If one connects the plates 4; and 4, by a conductor, a charge of
magnitude @Z per unit area is generated on the condenser plates; one
obtains it from equation (2) by taking into account that for connected

condenser plates, Gz = 0. One gets

v
Dz = -c-(cp - 1)3')y .
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If one comnccts the condenser plates 4; and 4, with an electrometer of
infinitesimally small capacity, then Dz = 0, and one obtains for the
potential difference (GZ.E) the equation

= ¢ v -
0= c&z + c(qu l)ﬁy 2

Bern, 29 April 1908. (Received on 2 May 1908)
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Doc. 52
ON THE PONDEROMOTIVE FORCES EXERTED ON BODIES AT REST
IN THE ELECTROMAGNETIC FIELD
by A. Einstein and J. Laub
[4nnalen der Physik 26 (1908): 541-550]

In a recently published study! Mr. Minkowski presented an expression for
the ponderomotive forces of electromagnetic origin that act on arbitrarily
moving bodies. If one specializes Minkowski's expressions to isotropic, [2]
homogeneous bodies at rest, one obtains for the X-component of the force
acting on a unit volume

(1) Kz = pE, + sy%z - sZ‘EBy ) [3]
where p denotes the electric density, s the electric conduction current,

¢ the electric field strength, and ®8 the magnetic induction. This expres-
sion seems to us not to be in agreement with the electron-theoretical picture
for the following reasons: While a body traversed by an electric current
(conduction current) experiences a force in the magnetic field, according to
equation (1) this would not be the case if the body in the magnetic field were
permeated by a polarization current (dD/dt) instead of a conduction
current. Thus, according to Minkowski there exists here a difference in
principle between a displacement current and a conduction current such that a
conductor cannot be considered as a dielectric with an infinitely large
dielectric constant.

In view of this state of affairs, it seems to us that it would be of
interest to derive the ponderomotive forces for arbitrary magnetizable bodies
on the basis of the electron theory. We present here such a derivation,
though restricting ourselves to bodies at rest.

. Minkowski, (ott. Nachr. (1908), p. 45. [1]
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§1. Forces that do not depend on the velocities of elementary particles

In this derivation we will consistently base ourselves on the standpoint
of the electron theory!; hence we put

(2) D

¢ + P,

(3) B=5H+19,

where 9 denotes the electric and £ the magnetic polarization vector. We
think of electric and magnetic polarizations, respectively, as consisting of
spatial displacements of electric and magnetic mass particles of dipoles that
are bound to equilibrium positions. In addition, we also assume the presence
of mobile electric particles not bound to dipoles (conduction electrons). Let
Maxwell's equations for empty space be valid in the space between the above
particles, and let, as in Lorentz, the interaciions between metier and elec-
tromagnetic field be exclusively brought about by these particles. Accord-
ingly, we assume that the forces cxerted by the electromagnetic field on the
volume element of the matter equal the resultant of the ponderomotive forces
exerted by this field on all elementary electric and magnetic particles in the
volume element considered. By a volume element of the matter we always
understand a space so large that it contains a very large number of electric
and magnetic particles. The boundaries of a volume element must always be
imagined as drawn such that the boundary surface does not cut through any
electric or magnetic dipoles.

First we calculate that force acting on a dipole which is due to the
field strength & not being exactly the same at the locations of the elemen-
tary masses of the dipole. If p denotes the vector of the dipole moment,
one obtains the following expression for the X-component of the force sought:

ae o o€,

_ T 4 r
fe =P Tz * P Ty t P T

However, we stick to the dual treatment of electric and magnetic phenomena
for the sake of a simpler presentation.
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If one imagines that the above expression is formed for and summed over all
dipoles in the unit volume, one obtains, taking into account the relation

Yr=%.
the equation
aez 3@2 3@$
(4) Big = [mz-g?+q3y-@‘+“l3zw]-

1f the algebraic sum of the positive and negative conduction electrons
does not vanish, then the expression (4) contains an additional term, which we
shall now calculate. The X-component of the ponderomotive force acting on a
conduction electron of electric mass e is eez. If one sums over all
conduction electrons of the unit volume, one obtains

(5) 321=(‘31,28.
If one imagines that the matter in the unit volume is enclosed by a surface

that does not cut through any dipole, one obtains in accordance with Causs's
law and the definition of the displacement vector D

) e

i

diV‘D,
so that

i

» Q‘.z div © .
The X-component of the force exerted by the electric field strength on the
unit volume of the matter therefore equals

&

(7@1_ aez LI
+q3y—5-§-+ﬁ3z?7+@xdiv®.

(6) Ve =0t~V uw

T

In an analogous way, taking into account the relation

div B = 0,
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we obtain for the X-compouent of the force imparted by the magnetic field
strength

(7) 3,

mr "

dﬁz Hﬁz Dﬁz
[’%W*Qy‘ﬁ“?zw

It should be noted that the derivation of the expressions (6) and (7)
does not require any assumptions about the relation connecting the field
strengths € and £ with the polarization vectors P and £9.

In the case of anisotropic bodies, the electric and magnetic ficld
strengths, respectively, do not impart only a force, but also force couples
that act on the matter. The torque sought can easily be obtained for the
individual dipoles and summation over all electric and magnetic dipoles in the
unit volume. 0One obtains

(8) L= {[%e + [Q9]} .

Formula (6) yields those ponderomotive forces that play a role in electro-
static problems. We want to transform this cquation, applied in the case of
isotropic bodies, in such a way that it allows a comparison with the expres-
sion for ponderomotive forces used in electrostatics. If we put

m:(f"l)e’

equation (6) becomes

5, =€, divD - tel 1l ne.
The first two terms of this expression are identical with those familiar from
clectrostatics. As one can see, the third term is derivable from a potential.
If the forces involved act upon a body in the vacuum, this term docs not con-
tribute anything on intcgration over the body. However, if the ponderomotive
forces involved act on liquids, then the part of the force corresponding to
the third term is compensated by a pressure distribution in the liquid when in
equilibrium.
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§2. Forces that depend on the velocities of the elementary particles

We now turn to the part of the ponderomotive force that is produced by
the velocities of motion of the elementary charges.

We start from the Biot-Savart law. According to experience, the force
that acts on a unit volume of a volume element traversed by a current and
located in a magnetic field is

1 sy

if the matter traversed by the current is not magnetically polarizable. As
far as we know, for the interior of a magnetically polarizable body that force
has so far been set equall! to

D sm)

where B denotes the magnetic induction. We will now show that the force
acting on the current-carrying volume element is alse obtained in the case
where the current-traversed matter is megnetically polarizable if the volume
force

9) 5, = 1 9]
is added to the force expressed by equation (7). We will first illustrate
this by a simple example.

Let the infinitely thin strip S, plotted in its cross section, stretch
to infinity in both directions perpendicular to the plane of the paper.
Assume that it consists of magnetically polarizable material and is located in
a homogeneous magnetic field Hes whose direction is indicted by the arrows
(cf. figure). We ask for the force acting on the material strip if the latter
is traversed by a current i.

+++++++ A+

1ICf., e.g.,also M. Abraham, Theorie der Elektrizitat 2 (1905): 319.

(8]

[71
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Experience shows that this force is independent of the magnetic perme-
ability of the material of the conductor, and from this it has been concluded
that it is not the field strength $, but the magnetic induction QSi. that is
relevant for the ponderomotive force, Lecause in the interior of the strip the
magnetic induction QBi is equal to the force Sia acting outside the strip
independent of the value of the strip's permeability, while for a given
external field the force in the interior of the strip depends on p. However,
this argument is not conclusive, because the ponderomotive force comnsidered is
not the only one acting on our material strip, since the external field 9,
induccs magnetic layers of demsity! ‘50(1 - 1/p) on the top and bottom sides
of the material strip, the layer being negative on the top, and positive on
the bottom. Each of these layers is acted on by a force which is produced by
the current flowing through the strip; this magnetic force has a strength of
i/2b  per unit length of the strip? and its direction on the top differs from
that on the bottom. The ponderomotive forces so obtained add up, so that we
get the ponderomotive force (1 - 1/u)ﬁaL It seems that this force has not
been taken into consideration up to now.

The total force exerted per unit length of our strip is, them, equal to
the sum of the force just calculated and the force £ exerted by the magnetic
field on the strip's volume elements due to the current flow. Since
experience shows that the total ponderomotive force acting on the unit length
is if%’ we have the equation

(1 - Dis, « & = i,
or
if
Iiz—;ﬂ:if)i.
This shows that for the calculation of the ponderomotive force R, which is
acting on the current-traversed volume elements, it is the field strength 53i
and not the induction Q3i that is respomnsible.

ISince the density is

7 ]
2Strictly speaking, based on the results of the previous section, we should
have introduced volume forces instead of the above forces acting on the
surface layers, but this is of no consequence.

P _ 1
0, =%, - 95;=9,0-3) .
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To eliminate all doubt, we will discuss one more example which shows
that the principle of equality of action and reaction requires the Arsatz we
have chosen.

We envision a cylindric conductor surrounded by empty space and
traversed by the current s, which stretches to infinity along the JX-axis of
a coordinate system in both directions. The material constants of the
conductor, as well as the field vectors considered in the following, shall be
independent of z, but shall be functions of y and 2. The conductor shall
be a magnetically hard body and shall have a magnetization perpendicular to
the Kf-axis. We assume that no external field acts on the conductor, and thus
the magnetic force £ vanishes far from the conductor.

It is clear that no ponderomotive force acts on the conductor as a
vhole, because no reaction opposing such an action can be specified. We now
want to show that the above force indeed vanishes given the dasatz we have
chosen. In accordance with equations (7) and (9), the entire force acting on
the unit length of our conductor in the direction of the Z-axis can be
presented in the form

(10) 1= [, a— s 0 B——]df [Lsm08

vhere df denotes a surface element of the FYZ-plane. Ve assume that all
pertinent quantities are continuous on the surface of the conductor. First we
consider the first integral of equation (10). We have

o e T S S

If one substitutes the right-hand side of this equation in our integral, then
the first two terms vanish on integration over the ¥Z-plane because the forces
vanish at infinity. Taking into consideration that

divs=0,

the third term can be transformed so that our integral assumes the form
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[ 5.ft + 7

Now we have

9

05, 9, 99, 052
a7 - A b o T

9 fJz 1 &5% . : : .
However, the two terms ——3%—— t 5Ty vanish on integration. Using

Maxwell's equations, the term - ﬁy 7ﬁf can be transformed to

1 tiks)
T ﬁy S Yoz

so that finally we can write equation (10) as

19 [ }df+1jsxﬁydf

The last integral equals zero, bccause the forces vanish at infinity. —
Thus having ascertained the force that acts on matter traversed by a

conduction current, we obtain the force that acts on a body permeated by a

polarization current by noting that from the standpoint of the theory of

=
]

electrons the polarization current and the conduction current are completely
cquivalent with regard to electrodynamic action.

By taking into account the duality of magnetic and electric phenomena,
one also obtains the force exerted on a body permeated by a magnetic
polarization current in the electric field. In this way we obtain the
following equations as an overall expression for the forces that depend on the
velocity of the eclementary particles:

(11) 5, = 2ls] + H{FB o] + e 57 .
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§3. Fquality of aclion and reaction

Adding equations (6), (7), and (11), one obtains the overall expression
for the JX-component of the ponderomotive force acting on the matter per unit

volume in the form

_ e, oe, o,
3x=ezdlvg+mx—(??+my7?+mz?7

09, 09, 0,
AN AR R S M

1, 1 1[, 09
+ glsh], + z[g‘tn‘ ﬁ]; z[‘f m‘]z
This equation can also be written as

Sz = Gz div ¢ + %[sﬁ]z + %[g—? ﬁ]z + bx div 9 + .1.[@3 .3?]1

0(‘—]3:5(’33_) (7(5131/@1) 3(‘32@_1)
* " dy dz

M H) D H) HAQH)
T yx IET 14
Y0z YTy YT 92 T 77N -
If one makes use of Maxwell's equations to replace

1 a0 1 0B
E[O’ + W] and E W

by curl $ and curl €, respectively, a simple transformation yiclds

ds
__Z 1 Z
(12) gx“_:?z—*'ﬂj/l+?z—'3777t”

91
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vhere we have put!

'ra: e %(GZ + B+ Gz,Dz bl ﬁz%z’
- Xy = (‘E:C@y + 'ﬁz%y’
Xz A @zgz o ﬁz‘Bz’
| @, = c[@ﬁ]z .

Corresponding equations hold for the other two components of the
ponderomotive force.

By integrating (12) over the infinite space, one obtains the equation

% 1 dgz
(14) [sur=-% o 7E.
if the field vectors vanish at infinity. This equations states that on

introduction of the electromagnetic momentum our ponderomotive forces satisfy
the law of equality of action and reaction.

Bern, 7 May 1908. (Received on 13 May 1908)

IGeheimrat Wien kindly drew our attention to the fact that H. A. Lorentz had
alrcady presented the ponderomotive forces for nonmagnetizable bodies in this
form. Enzyklopadie der mathemaiischen ¥issenscheften 5, p.247.
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Doc. 53
CORRECTION TO THE PAPER: "ON THE FUNDAMENTAL
ELECTROMAGNETIC EQUATIONS FOR MOVING BODIES"
by A. Einstein and J. Laub
[dnnalen der Physik 27 (1908): 232]

Two errors had slipped into the paper published under the above title in
this journal (26, p. 532, 1908): [1]
p. 534, formula (8) should read

instead of

and the first of the formulas (9),

s, = Bls; + vp')
instead of
- Yo
5, + P ¥<

Likewise, the first of formulas (12a) and the third of
formulas (13) should read

Bls, - vp) = o€,

and

Blst - [olp) = a{@ . %[093]]0.

(Received on 24 August 1908)
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Doc. 54
REMARKS ON OUR PAPER: "ON THE FUNDAMENTAL ELECTROMAGNEIIC
EQUATIONS FOR MOVING BODIES"
by A. Einstein and J. Laub
[Annalen der Physik, 28 (1908): 445-447]

Mr. Laue was kind cnough to call our attention to an inaccuracy in our
paper cited in the title.! We say there (Ann. d. Phys. 26(1908): 535):

"It is remarkable that the boundary conditions for the vectors €, D,
$H, B at the boundary of two media are the same as for bodies at rest. This
follows directly from equations (1a) to (4a)."

Apart from the fact that equatioms (3a) and (4a) are irrelevant for the
derivation of the boundary conditions, this statement is correct only if the
component of the motion normal to the boundary surface vanishes, which is
actually the case in the problem trcated in §2 of the paper quoted. The
boundary conditions of the general case are most easily found in the following
way, which corresponds to the one taken by lleinrich Hertz.

If the boundary surface, or, more exactly, the infinitely thin boundary
transition shell, moves in some arbitrary manner, then, in a point situated in
it and instantaneously at rest, the quantities determining the electromagnetic
field will in general vary discontinuously, infinitely fast, with time; how-
ever, these changes will be continuous for a point moving with the matter.
Thus, the application of the operator

g+ (oW
to a scalar or to a vector will not lead to infinitely large values even in
the boundary surface. If we then write equation (1a)? in the form

% [g? + (nV)’D] +s5=curl H+ %(DV)'D

Tn his letter Mr. Laue gave the correct boundary conditions and pointed out
a different derivation of them.

2loc. cit.
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and assume that the current density s is finite even in the boundary layer,
then the left-hand side of this equation is finite in the boundary layer. The
same holds therefore for the right-hand side of the equation.

For an easy interpretation of this result we imagine that the coordinate
system is oriented in such a way that a given infinitesimally small portion of
the boundary surface, which we now wish to consider, is parallel to the
YZ-plane. It is then clear that the derivatives of all quantities with
respect to y and 2z remain finite in the above portion of the boundary
surface. llence the totality of those terms on the right-hand side of the
above equation that contain differentiations with respect to z must also
yield something finite. DBy simple expansion of the right-hand side and
neglecting the terms differentiated with respect to y and 2, one arrives at
the result that the expressions

remain finite in the boundary layer. If we also assume that the velocity
components of the boundary surface do not experience any jump, then it follows
from this that the expressions
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have the same value on both sides of the boundary surface (FZ-plane). Since
i)z and the components of © are continuous, we can replace the last two
expressions by

We get rid of the dependence on the special choice of the position of
the coordinate axes relative to the bouadary surface element considered by
writing the result using the notation of vector analysis. If the subscripts
n and @, respectively, denote the components of the pertinent vector in the
direction of and perpendicular to the normal of the surface of discontinuity,
then it follows that

1Dn,

b

n

must be continuous at the boundary surface.
In the same way one concludes from equation {(2a)! that the components

are continuous.

Bern and Wiirzburg, November 1908. (Received on 6 December 1909)

oc. cit.
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Addendum. If there is a layer of true electricity (J p d7) of surface

density 7 on the boundary surface uncer consideration, then s becones
infinite. In that case

curl H + %(DA)'D -5 [4]

is finite in the boundary layer, where s can be replaced by (v/c¢)p. The
above boundary conditions are obtained for this case too, except that the
first of those is to be replaced by

13n2 - i)nl =% .

(Received on 19 January 1909)

Doc 55
COMMENT ON THE PAPER OF D. MIRIMANOFF "ON THE FUNDAMENTAL
EQUATIONS. . ."
by A. Einstein
[dnnalen der Physik 28 (1909): 885-888]

1. The system of differential equations and transformation equations
presented in this paper! does not differ from that of Minkowski in any way, 2]
or, rather, differs oaly insofar as the vector usually denoted by %

(magnetic force) was denoted by the author by

Q=5 P .

I.e., with the introduction of £, as the author himself shows, the [3]
differential equation (I) becomes identical with the corresponding equation of

). Mirimanoff, 4an. d. Phys. 28 (1909): 192. [1]
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Minkowski, while the remaining three differential equations do not contain
and already have the form of the correspouding equations of Minkowski.

Indeed, the author says himself that his vectors ¢, D, Q, and B transform
like the vectors usually denoted by ¢, D, 9, B.

2. Similarly, the relations between the vectors containing material
constants (e, g and ¢) do not differ from Minkowski's corresponding relations.
I.e., the author starts from the postulate that for a coordinate system
instantaneously at rest relative to the system point under consideration, the
equations

D = €C, H 8, J=sC

=1

U
should hold; if one bears in mind that the (author's) vector $ is identical
with the vector 22 for to = 0, and tlat 0 plays exactly the same role in
the author's differential equations and in his transformation equations as m
does in Minkowski's equations (usually denoted by $), then one realizes that
these equations, too, agree with Minkowski's corresponding equations, except
that the notation £ is replaced by the notation £.

3. Thus, it has been shown that Mirimanoff's quantity £ plays the
same role in all his equations as the quantity usually denoted by 5 and
called "magnetic force" or "magnetic field strength." Nevertheless,
Mirimanoff's equations would have a different content than those of Minkowski
if by definition the quantity £ of Mirimanoff would have a different physi-
cal meaning than the quantity usually denoted by %.

In order to reach a conclusion in that matter, we first ask for the
mcaning of the vectors €&, D, $H, B i. Minkowski's equations

curlf3=—i—%%)+|,
) curl@:—%%,

div D = p,

div B =0 .

One has to admit that these vectors have not yet been expressly defined for
the case that the velocity w of matter differs from zero; only for the case
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that to vanishes do we possess definitions on which (ideal) measurements of
these quantities could be based, and here I have in mind those definitions
that are well known from the electrodynamics of bodies at rest. Therefore, if
upon using Minkowski's equations we find that in a certain volume element of
the body moving with velocity tv the field vectors at a certain time have
certain (vector) values €&, D, 9, B, then we must first transform these
field vectors to a reference system that is at rest with respect to the volume
element in question. Only the vectors ¢', D', ', B' thus obtained have a
definite physical meaning which is known from the electrodynamics of bodies at
rest.

Thus, Minkowski's differential equations by themselves do not have any
content at the points in which to # 0; however,they do so when taken together
with Minkowski's transformation equations and with the stipulation that for
the case to = 0 the definitions of the electrodynamics of bodies at rest
must be valid for the field vectors.

We now have to ask: Is Mirimanoff's vector £ defined in a different
way from the vector we have denoted by $? This is not the case, for the
following reasons:

1. The same differential equations and transformation equations hold
for Mirimanoff's field vectors €, D, 2, B as for the vectors €, D, H, B
of Minkowski's equations (A).

2. MNirimanoff's vector £ as well as the vector £ of (A) are
defined only for the case w = 0. Ilowever, in that case, because of
Mirimanoff's equation

Q=% - Lo,

one has to put 2 = $H = field strength; in exactly the same way, in the case
w = 0, the vector % of equations (A) is equivalent to the field strength in
the sense of the electrodynamics of bodies at rest.

It follows from these two arguments that Mirimanoff's vector £ and
the vector $ of (A) are completely equivalent.

4. In order to compare his results regarding Wilson's arrangement with
those obtained by Mr. Laub and me, the author should have carried his consid-
erations far enough to arrive at relations between defined quantities, i.e.,
quantities accessible to observation at least in principle. For this purpose

[4]
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[6]

(71

(8]
{9}
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he would only have had to apply the bovidary conditions corresponding to his
system of equations. According to what we said above, he would have had to
come to the same conclusions as we did, since his theory is identical with
Minkowski's.

In conclusion, I would also like to point to the importance of the
recently published paper by Ph. Frank,! which, by taking into account the
Lorentz contraction, restores the agreement between Lorentz's treatment, based
on the electron theory, and Minkowski's treatment of the electrodynamics of
moving bodies.The advantage of the treatment based on the electron theory
consists, on the one hand, in providing a graphic interpretation of the field
vectors and, on the other hand, in dispensing with the arbitrary assumption
that the derivatives of the velocity of matter do not appear in the
differential equations.

Bern, January 1909. (Received on 22 January 1909)

IPh. Frank, 4nn. d. Phys. 27 (1908): 1059.
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Doc. 56
ON THE PRESENT STATUS OF THE RADIATION PROBLEM
by A. Einstein
[Physikalische Zeitschrift 10 (1909): 185-193]

This journal has recently publisled expressions of opinion by
Messcrs. 1. A. Lorentz!, Jeans?, and Ritz3 which offer good insight into the [4]
present status of this extremely important problem. In the belief that it
would be of benefit if all those who have seriously thought about this matter
would communicate their views, even if they have not been able to arrive at a
final result, I would like to communicete the following.

1. The simplest form in which we can express the laws of electro-
dynamics established so far is that presented by the Maxwell-Lorentz partial
differential equations. In contrast to Mr. Ritz3, I regard the forms
containing retarded functions as merely auxiliary wmathematical forms. The [5]
reason I see myself compelled to take this view is first of all that those
forms do not subsume the energy principle, while I believe that we should
adhere to the strict validity of the energy principle until we shall have
found important reasons for renouncing this guiding star. It is certainly
true that Maxwell's equations for empty space, taken by themselves, do not say
anything, that they only represent an intermediary construct; but, as is well
known, exactly the same could be said sbout Newton's equations of motion, as
well as about any theory that needs to be supplemented by other theories in
order to yield a picture for a complex of phenomena. What distinguishes the
Maxwell-Lorentz differential equations from the forms that contain retarded
functions is the circumstance that they yield an expression for the energy and
the nonentum of the system under consideration for any instant of time,
relative to any unaccelerated coordinate system. With a theory that operates
with retarded forces it is not possible to describe the instantaneous state of
a system at all without using earlier states of the system for this
description.

Ui. A. Lorentz, Phys. Zeit. 9 (1908): 562-563. [1]
2J. Il. Jeans, Phys. Zeit. 9 (1908): 853-855. [2]
3W. Ritz, Phys. Zeit. 9 (1908): 903-907. [3]
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For example, if a light source 4 had emitted a light complex toward the
screen B, but it has not yet reached the screen &, then, according to
theories operating with retarded forces, the light complex is represented by
nothing except the processes that have taken place in the emitting body during
the preceding emission. Energy and momentum—-if one does not want to renounce
these quantities altogether—-must then be represented as time integrals.

To be sure, Mr. Ritz claims that experience forces us to abandon these
differential equations and introduce the retarded potentials. However, his
arguments do not seem valid to me.

If one puts with Ritz

w[(z'.y',z'.t . Z]
fi = . J - dz',dy',dz'

ir r

and

ol(z' y',2' .t + L
f2 = al_ﬂ: J [ T C] dz';dy')dz' )

then f, as well as f, are solutions of the equation
1 2
i gfé ~-Af=plzy2z1t),
kence

fs = aify + aofy

is also a solution if @, + @ = 1. But it is not true that the solution f3
is a more gemeral solution than f; and that one specializes the theory by
putting @, =1, a; = 0. Putting

f(:hy.z,l) = f] s

amounts to calculating the electromagnetic effect at the point z,y,z from
those motions and configurations of the electric quantities that took place
prior to the instant ¢. Putting

f(z)?]lz’” = fz ’
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we are determining the above electromaguetic effects from the motions and
configurations that take place after the instant ¢.

In the first case the electric field is calculated from the totality of
the processes producing it, and in the second case from the totality of the
processes absorbing it. If the whole process occurs in a (finite) space
bounded on all sides, then it can be represented in the form

f =.ﬂ

as well as in the form

f=1f.

If we consider a field that is emitted from the finite into the infinite, we
can, naturally, use only the form

J=fis

precisely because the totality of the absorbing processes is mot taken into
consideration. But here we are dealing with a misleading paradox of the
infinite. Both kinds of represcntation can always be used, regardless of how
distant the absorbing bodies are imagined to be. Thus, one cannot conclude
that the solution f = f; is more special than the solution a,fy + a.fs,
where a; + ap = 1.

That a body does not "receive energy from infinity unless another body
loses a corresponding quantity of energy" cannot be brought up as an argument
either, in my opinion. First of all, if we want to stick to experience, we
cannot speak of infinity but only of spaces lying outside the space consid-
ered. Furthermore, it is no more permissible to infer irreversibility of the
electromagnetic elementary processes from the nonobservability of such a
process than it is permissible to infer irreversibility of the elementary
processes of atomic motion from the second law of thermodynamics.

2. Jeans' interpretation can be disputed on the grounds that it might
not be permissible to apply the general results of statistical mechanics to
cavities filled with radiation. llowever, the law deduced by Jeans can also be
arrived at in the following way!'.

ICf. A. Einstein, 4nn. d. Phys. 17 (1905): 133-136.

(6]

(7]

(81

[9]
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According to Maxwell's theory, an ion capable of oscillating about an
equilibrium position in the direction of the f-axis will, on the average,
emit and absorb equal amounts of energy per unit time only if the following

relation holds between the mean oscillation encrgy F; and the encrgy density
of the radiation p, at the proper frequency v of the oscillator:

_ g8
[10] EL = 8k Py (I)

where ¢ denotes the specd of light. If the oscillating ion can also
interact with gas molecules (or, generally, with a system that can be
described by means of the molecular theory), then we must necessarily have,
according to the statistical theory of heat,

RT
F; = (I1)

(R = gas constant, & = number of atoms in one gram-atom, T = absolute
temperature), if, on the average, no energy is transferred by the oscillator
from the gas to the radiation spacel.

From these two equations we arrive at

b, = %%g 27, (II1)

i.e., exactly the same law that has also been found by Messrs. Jeans and H. A.
[12] Lorentz2.
3. There can be no doubt, in my opinion, that our current theoretical
views inevitably lead to the law propounded by Mr. Jeans. However, we can
consider it as almost equally well established that formula (III) is not

. Planck, 4an. d. Phys. 1 (1900): 99. M. Planck, Vorlesungen uber die
(11] éheorie der Farmestrahlung [Lectures on the theory of thermal radiation],
hapter 3.

21t should be explicitly noted that this equation is an inevitable consequence
of the statistical theory of heat. The attempt, on p. 178 of the book by
[13] Planck just cited, to question the %eneral validity of Equation II, is based,
it seems to me, only on a gap in Boltzmann's considerations, which has been
[14]  filled in the meantime by Gibbs' investigations.



DOC. 56 361

compatible with the facts. Why, after all, do solids emit visible light only
above a fixed, rather sharply defined temperature? Why are ultraviolet rays
not swarming everywhere if they are indeed constantly being produced at
ordinary temperatures? Illow is it possible to store highly semnsitive
photographic plates in cassettes for a long time if they comstantly produce
short-wave rays? For further arguments I refer to §166 of Planck's repeatedly [15}
cited work. Thus, we will indeed have to say that experience forces us to [16]
reject either equation (I), required by the electromagnetic theory, or
equation (II), required by statistical mechanics, or both equations.
4. Ve must now ask ourselves how Planck's radiation theory relates to
the theory which is indicated under 2., and which is based on our currently
accepted theoretical foundations. In my opinion the answer to this question
is made harder by the fact that Planck's presentation of his own theory
suffers from a certain logical imperfection. I will now try to explain this
briefly.
a) If one adopts the standpoint that the irreversibility of the
processes in nature is only apparent, and that the irreversible process
consists in a transition to a more probable state, then one must first give a
definition of the probability ¥ of a state. The only definition worthy of
consideration, in my opinion, would be the following. [17]
Let 11.12...4[ be all the states a closed system at a certain energy
content can assume, or, more accurately, all the states that we can distin-
guish in such a system with the help of certain auxiliary means. According to [18]
the classical theory, after a certain time the system will assume one particu-
lar state (e.g., Aﬁ) and then remain in this state (thermodynamic equilib-
rium). However, according to the statistical theory the system will keep
assuming, in an irregular sequence, all these states Al...de.l If the system
is observed over a very long time period #, there will be a certain portion
7, of this time such that during 7, and during 7, only, the system

occupies the state 4,. [The quantity] 7 /6 will have a definite limiting [20]
value, which we call the probability # of the state Ay under considera-
tion.

That only this last interpretation is tenable follows immediately from the
properties of Brownian motion. [19]
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[22]

[23]

[25]

(24]
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Proceeding from this definition, ome can show that the entropy § must
satisfy the equation

§= % lg ¥ + const.,

vhere the constant is the same for all states of the same energy.

b) Neither Mr. Boltzmann nor Mr. Planck gave a definition of 4.

They put purely formally ¥ = number of complexions of the state under
consideration.

If one now demands that these complexions be equally probable, where the
probability of the complexion is defined in the same way that we have defined
the probability of the state under (a), one will obtain precisely the defini-
tion for the probability of a state given under (a); however, the logically
unnecessary element "complexion" has been used in the definition.

Even though the indicated relation between § and # is valid only if
the probability of a complexion is defined in the manner indicated or in a
manner equivalent to it, neither Mr. Boltzmann nor Mr. Planck has defined the
probability of a complexion. But Mr. Boltzmann did clearly realize that the
molecular-theoretical picture he had chosen dictated his choice of complexions
in a quite definite manner; he discussed this on pages 404 and 405 of his
paper "Uber die Beziehung..." ["On the relation..."] that appeared in the
Fiener Sitzungsberichie in 1877.1 Similarly, Mr. Planck would have had no
frecdom in the choice of complexions in the resonator theory of radiation. [He
could have been permitted to postulate the pair of equations

R
and
¥ = number of complexions

only if he had appended the condition that the complexions must be chosen such
that in the theoretical model chosen by him they had been found to be equally
probable on the basis of statistical comsiderations. In this way he would
have arrived at the formula defended by Jeans. Though every physicist must

ICf. L. Boltzman, Vorlesungen iber Gastheorie (Lectures on the theory of
gases), Vol. I, p. 40, lines 9-23.
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rejoice that Mr. Planck disregarded these requirements in such a fortunate
manner, it should not be forgotten that the Planck radiation formula is
incompatible with the theoretical foundation from which Mr. Planck started
out.

5. It is simple to see the way in which one could modify the founda-
tions of the Planck theory in order to have the Planck radiation formula truly
result from the theoretical foundations. I will not present the pertinent
derivations here but will rather just refer to my papers on this subject.!

The result is as follows: One arrives at the Planck radiation formula if one

1. adheres to equation (I) between resonator energy and radiation
pressure, which Planck derived from Maxwell's theory?;

2. modifies the statistical theory of heat by the following
assumption: A structure that is capable of carrying out
oscillations with the frequency v, and which, due to its
possession of an electric charge, is capable of converting
radiation energy into energy of matter and vice versa, cannot
assume oscillation states of any arbitrary energy, but rather
only such oscillation states whose energy is a multiple of
h-v. Here k 1is the constant so designated by Planck, which
appears in his radiation equation. [28]

6. Since the modification of the foundations of Planck's theory just
described necessarily leads to very profound changes in our physical theories,
it is very important to search for the simplest possible, mutually independent
interpretations of Planck's radiation formula as well as of the radiation law
in general, insofar as the latter may be assumed to be known. Two considera-
tions on this matter, which are distinguished by their simplicity, shall be
briefly described below.

Until now, the equation S = % lg ¥ has been applied mainly to calcu-
late the quantity ¥ on the basis of a more or less complete theory, and then
to calculate the entropy from #. However, this equation can also be applied
conversely, using empirically obtained entropy values Sy to obtain the

'A. Einstein, Ann. d. Phys. 20 (1906) and Aan. d. Phys. 22 (1907), §1. [26]

2This amounts to the same as assuming that the electromagnetic theory of
radiation at least yields correct time averages. This, however, can hardly
be doubted, given the utility of this theory in optics. [27]
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statistical probability of the individual states AV of an isolated system.
A theory yielding values for the probability of a state that differ from those
obtained in this way must obviously be rejected.

A consideration of the kind indicated for determining certain statisti-
cal properties of heat radiation enclosed in a cavity had already been carried
out by me in an earlier paper,! in which I first presented the theory of light
quanta. However, since at that time I started out from Wien's radiation

formula, which is valid only in the limit (for small values of %), I shall
present here a similar consideration which provides a simple interpretation of
the content of Planck's radiation formula.

Let ¥ and v be two interconnected spaces bounded by diffusely, com-
pletely reflecting walls. Let a heat radiation with the frequency range dv
be enclosed in these spaces. I shall be the radiation energy existing
instantaneously in ¥, and 7 the radiation energy existing instantaneously
in wv. After some time the proportion [My: 5y = F : v will then hold
permanently, within some approximation. At an arbitrarily chosen instant of
time, # will deviate from 7, according to a statistical law that is
obtained directly from the relation between § and ¥ if onc changes over to
the differentials,

.5
dF = const. e dy .

If ¥ and o denote the entropy of the radiation in the two respective
spaces, and if we set 3 = 1, + ¢, we have

dp = de
and
S=%+0=%+ 09+ [4&23%_21] €+ % [d2 E€+ £ ] €2 ...
0
Because ’

Unn. d. Phys. 17 (1905): 132-148.
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if one assumes that ¥ 1is very large compared with v,the second equation
reduces to

§ = const. + % [5%%] €2+ ....
0

If we content ourselves with the first nonvanishing term of the series, thus
causing an error that is the smaller the greater the value of v compared
with the cube of the radiation wavelength, we obtain

1N dza 2
-yl e,

d¥ = const. - e

From this we obtain for the mean value ¢ of the square of the energy
fluctuation of the radiation occurring in v

€2 = 1 5
N |d2%e
E 1de? .

If the radiation formula is known, we can calculate ¢ from it.! If one
considers Planck's radiation formula as an expression of experience, one
obtains, after a simple calculation,

3

R c 2
€ = N [Vhﬂo M T2 ﬂ%_] :

We have thus arrived at an casily interpretable expression for the mean value
of the fluctuations of the radiation energy present in v, We shall now show
that the current theory of radiation is incompatible with this result.
According to the current theory, the fluctuations are due solely to the
circunstance that the infinitely many rays traversing the space, which
constitute the radiation present in v, interfere with one another and thus
provide a momentary energy that is sometimes greater, sometimes smaller than

the sum of the energies that the individual rays would provide if they were

1ICf., e.g., Planck's repeatedly cited book, Equation (230).

[32]

[33]

{34]

[36]

[35]
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not interfering with each other at all. We could thus exactly determine the
quantity €2 by a consideration that is mathcmatically somewhat complicated.
We shall content ourselves here with a simple dimensional consideration. The
following conditions must be satisfied:

1. The magnitude of the mean fluctuation depends only on A (wave-
length), dA, o, and v, where o denotes the radiation density related to
the wavelengths (od} = pdv).

2. Since the radiation energies of adjacent wavelength ranges and
volumes! are simply additive, and the corresponding fluctuations are indepen-
dent of each other, at a given A and p, € must be proportional to the
quantities diA and w.

3. € has the dimension of the square of an energy.

The expression for €2 is thereby completely determined up to a
numerical factor (of order of magnitude 1). In this way one arrives at the
cxpression  o2A%4vd), which upon introduction of the variables used above
reduces to the second term of the formula for €? just developed. But we
would have obtained solely this second term for €2 had we started out with
the Jeans formula. One would then also have to put ;& equal to a constant

of order of magnitude 1, which corresponds to Planck's determination of the
clementary quantum?. Thus, the first term of the above expression for €2,
which for the visible radiation surrounding us everywhere makes a far greater
contribution than the second one, is mnot compatible with the current theory.
If one would put, with Plauck, %% = 1, then the first term, if present

alone, would yield a fluctuation of the radiation energy equal to that
produced if the radiation consisted of point quanta of energy hv moving
independently of each other. This can be shown by a simple calculation. One
should remember that the contribution of the first term to the average percent

fluctuation of energy
€2
g

I0nly if these are large enough, of course.
By carrying out the interference consideration indicated above, one would

e B
obtain W= 1.
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is the greater the smaller the energy 7, and that the magnitude of this
percent fluctuation yielded by the first term is independent of the size of
the space v over which the radiation is distributed; I mention this in order
to show how fundamentally different the actual statistical properties of
radiation are from those to be expected on the basis of our current theory,
which is based on linear, homogeneous differential equations. [41]

7. In the foregoing we have calculated the fluctuations of the energy
distribution in order to obtain information on the nature of thermal radia-
tion. In what follows we shall briefly show how one can obtain analogous
results by calculating the fluctuations of the radiation pressure, due to
fluctuations of the momentum. [42]

Let a cavity surrounded on all sides by matter of absolute temperature
T contain a mirror that can move freely in the direction perpendicular to its
normall. If we imagine it to be moving with a certain velocity from the
outset, then, due to this motion, more radiation will be reflected at its
front than at its back; hence, the radiation pressure acting on the front will
be greater than that acting on the back. Thus, due to its motion relative to
the cavity radiation, the mirror will be acted upon by a force comparable to
friction, which little by little would have to consume the momentum if there
did not exist a cause of motion exactly compensating on the average for the
momentum lost through the above-mentioned frictional force. To the irregular
fluctuations of the energy of a radiation space studied above, there also
correspond irregular fluctuations of the momentum, or irregular fluctuations
of the pressure forces exerted by the radiation on the mirror, which would
have to set the mirror in motion even if it had originally been at rest. The
mean speed of the motion of the mirror has then to be determined from the
entropy-probability relation, and the law of the above-mentioned frictional
forces from the radiation law, which is assumed to be known. From these two
results one then calculates the effect of the pressure fluctuations, which in
turn makes it possible to draw conclusions concerning the constitution of the
radiation or—more precisely—concerning the elementary processes of the
reflection of the radiation from the mirror.

The motions of the mirror considered here are completely analogous to the
so-called Brownian motion of suspended particles.
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Let v denote the velocity of the mirror at time ¢. Owing to the
Pvr
m

frictional force mentioned above, this velocity decreases by in the

small time interval r, where m denotes the mass of the mirror and P the
retarding force corresponding to unit velocity of the mirror. Further, we
denote by A the velocity change of the mirror during 7 corresponding to
the irregular fluctuations of the radiation pressure. The velocity of the
mirror at time ¢+7 1is

v - %} v+ A

For the condition that on the average v shall remain unchanged during 7, we
obtain

{v = %% v+ A] =2

or, if we omit relatively infinitesimal quantities and take into account that

the average value of wA obviously vanishes:

2P7
v AR i §
42 = w Y

In this equation %2 can be replaced using the equation

m? _ 1 kT
22N’

which can be derived from the entropy-probability equation. Before giving the
value of the friction constant P, we specialize the problem under considera-
tion by assuming that the mirror completely reflects the radiation of a
certain frequency range (between v and v + dv) and is completely transpar-
ent to radiation of other frequencies. By a calculation omitted here for the
sake of brevity, one obtains from a purely electrodynamic investigation the
following equation, which is valid for any arbitrary radiation distribution:

_ 3 1
P--ﬂ[p—guzg]duf,
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where p again denotes the radiation density at frequency v, and [ the
surface area of the mirror. By substituting the values obtained for v? and

P, ve get
A? T 3 1 dp
= = _N_ . Z [p = g v l/] de .

If we transform this expression using Flanck's radiation formula, we obtain

2

A 1 c3 p?
= z[hpu * & gz]dllf .

The close connection between this relation and the one derived in the
last section for the energy fluctuation (€Z) is immediately obvious,! and
exactly analogous considerations can be applied to it. Again, according to
the current theory, the expression would be reduced to the second term (fluc-
tuation due to interference). If the first term alone were present, the
fluctuations of the radiation pressure could be completely explained by the
assumption that the radiation consists of independently moving, not too
extended complexes of energy hv. In this case, too, the formula says that in
accordance with Planck's formula the effects of the two causes of fluctuation
mentioned act like fluctuations (errors) arising from mutually independent
causes (additivity of the terms of which the square of the fluctuation is
composed) .

8. In my opinion, the last two considerations conclusively show that
the constitution of radiation must be different from what we currently
believe. It is true that, as the excellent agreement of theory and experiment
in optics has proved, our current theory correctly yields the time averages,
which alone can be directly observed, but it necessarily leads to laws on
thermal properties of radiation that prove to be incompatible with experience
if one maintains the entropy-probability relation. The discrepancy between
the phenomena and the theory is the more prominent the larger v and the
smaller p. At small p the temporal fluctuations of the radiation energy of

IThat relation can be written in the form (assuming f& =1)

€ = [hpu + g;ﬁ;] vdv

[48]
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a given space or of the force of radiation pressure on a given surface are
much larger than expected from our current theory.

We have seen that Planck's radiation law can be understood if one uses
the assumption that the oscillation energy of frequency v can occur only in
quanta of magnitude hv. According to the aforesaid, it is not sufficient to
assume that radiation can only be emifted and ebsorbed in quanta of this
magnitude, i.e., that we are dealing with a property of the emitting or
absorbing matter only; considerations 6 and 7 show that the fluctuations in
the spatial distribution of the radiation and in the radiation pressure also
occur as if the radiation consisted of quanta of the indicated magnitude.
Certainly, it cannot be asserted that the quantum theory follows from Planck's
radiation law as a consequence and that other interpretations are excluded.
llowever, one can assert indeed that the quantum theory provides the simplest
interpretation of the Planck formula.

It should be emphasized that the considerations presented would in the
main in no way lose their value if it should turn out that Planck's formula is
not valid; it is precisely that part of Planck's formula which has been
adequately confirmed by experience (the Wien radiation law valid in the limit
for large %) which leads to the theory of the light quantum.

9. The experimental investigation of the consequences of the theory of
light quanta is, in my opinion, one of the most important tasks that the
experimental physics of today must solve. The results obtained so far can be
divided into three groups.

a) There are clues concerning the energy of those elementary processes
that are associated with the absorption or emission of radiation of a certain
frequency (Stokes' rule; velocity of cathode rays produced by light or X-rays;
cathode luminescence, etc). To this group also belongs the interesting use
Mr. Stark has made of the theory of light quanta to elucidate the peculiar
energy distribution in the spectrum of a spectral line emitted by canal rays.!

The method of deduction is always as follows: If one elementary process
produces another one, then the energy of the latter is not larger than that of
the former. On the other hand, the energy of one of the two elementary

13, Stark, Phys. Zeit. 9 (1908): 767.
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processes is known (of magnitude hAv) if the latter consists in the absorption
or emission of radiation of a specified frequency.

Especially interesting would be the study of exceptions to Stokes' law.
In order to explain these exceptions, one has to assume that a light quantum
is emitted only when the emission center in question has absorbed two light
quanta. The frequency of such an event, and thus also the intensity of the
emitted light having a smaller wavelength than the producing one, will in this
case have to be proportional to the square of the intensity of the exciting
light at weak irradiation (according to the law of mass action), while
according to Stokes' rule a proportionality with the first power of the
exciting light intensity is to be expected at weak irradiation.

b) If the absorption! of each light quantum brings about an elementary
process of a certain kind, then ﬁb is the number of these elementary pro-

cesses if the quantity of energy F of radiation of frequency v is
absorbed.

Thus, for example, if the quantity F of radiation of frequency v is
absorbed by a gas being ionized, then it is to be expected that ﬁ%% gram

molecules of the gas will be ionized. This relation only appears to presume
the knowledge of #; for if Planck's radiation formula is written in the form

o= a3 —ng;——— s

e -1

then 153 is the number of gram-molecules ionized.

This relation, which I have already presented in my first paper? on this
subject, has unfortunately remained unnoticed thus far.

¢) The results noted in 5 lead to a modification of the kinetic theory
of specific heat® and to certain relations between the optical and the thermal
behavior of bodies.

I0f course, the analogous consideration holds also conversely for the produc-
tion of light by elementary processes (e.g., by collisions of ions).

2fnn. d. Phys. (4)17 (1905): 132-148, §9.
3A. Einstein, 4nn. d. Phys. (4)22 (1907): 180-190 and 800.
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10. It seems difficult to set up a theoretical system that interprets
the light quanta in a complete fashion, the way our current molecular
mechanics in conjunction with the Maxwell-Lorentz theory is able to interpret
the radiation formula propounded by Mr. Jeans. That we are only dealing with
a modification of our current theory, not with its complete abolition, seems
already to be implied by the fact that Jeans' law seems to be valid in the
limit (for small %). An indication as to how this modification would prob-

ably have to be carried out is given by a dimensional consideration carried
out by Mr. Jeans a few years ago, which is extremely important, in my opinion,
and which--modified in some points--1 shall now recount in brief.

Imagine that a closed space contains an ideal gas and radiation and
ions, and that owing to their charge, the ions are able to mediate an energy
exchange between gas and radiation. In a theory of radiation linked with the
consideration of this system the following quantities can be expected to play
a role, i.e., to appear in the expression to be obtained for the radiation
density p:

a) the mean energy 7 of a molecular structure (up to an unnamed
numnerical factor equal to %;),

b) the velocity of light ¢,

c¢) the elementary quantum ¢ of electricity,

d) the frequency v.

From the dimension of p, by solely considering the dimensions of the
four quantities mentioned above, one can then determine in a simple way what
the form of the expression for p must be. Substituting the value of v

for 7, we obtain )
p =g vie)
vhere
Re? v

onC_-T’

vhere ¢ denotes a function that remains undetermined. This equation
contains the Wien displacement law, whose validity can hardly still be in
doubt. This has to be understood as a confirmation of the fact that apart
from the four quantities introduced above, no other quantities having a
dimension play a role in the radiation law.
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From this we conclude that, except for dimensionless numerical factors
that appear in theoretical developments and of gourse cangot be determined by
dimensional considerations, the coefficients %; and %ﬁ; appearing in the [64]

equation for p must be numerically equal to the coefficients appearing in
the Planck (or Wien) radiation formula. Since the above nondeterminable
dimensionless numerical factors are hardly likely to essentially change the
order of magnitude, we can put, as far as the order of magnitude! is concerned

and B-RE (65]

A%
EE

h
=

hence

=
n
|f\

_N
and k—I.

It is the second of these equation which has been used by Mr. Planck to
determine the elementary quanta of matter or electricity. Concerning the [66]
expression for £k, it should be noted that

h =6-10%7
and
€2 7.10°30
= = .
This is three decimal places off the mark. But this may be due to the fact [67]

that the dimensionless factors are not known.
The most important aspect of this derivation is that it relates the
light quantum constant £ to the elementary quantum ¢ of electricity. We
should remember that the elementary quantum e is an outsider in Maxwell-
Lorentz electrodynamics?. Outside forces must be enlisted in order to con-
struct the electron in the theory; usually, one introduces a rigid framework [69]

IThe Planck formula reads

_ 8rhi3 1
a2 VA
eE? -1
20f. Levi-Civita. "Sur le mouvement etc." [On the motion, etc.], Compies [68]

Rendus (1907).
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to prevent the electron's electrical masses from flying apart under the influ-
. . 2
ence of their electric interaction. The relation A = %T seems to me to

indicate that the same modification of the theory that will contain the ele-
mentary quantum € as a consequence will also contain the quantum structure
of radiation as a consequence. The fundamental equation of optics

lik J? 9? gt
0(¢)=31,},75§-[355§+?y-‘€+3}5€]=0

will have to be replaced by an equation in which the universal constant ¢
(probably its square) also appears in a coefficient. The equation sought (or
the system of equations sought) must be homogeneous in its dimensions. It
must remain unchanged upon application of the Lorentz transformation. It
camnot be linear and homogeneous. It must—at least if Jeans' law is really
valid in the limit of small ; —1lead to the form D(yp) = 0 for large

amplitudes in the limit.

I have not yet succeeded in finding a system of equations fulfilling
these conditions which would have looked to me suitable for the construction
of the elementary electrical quantum and the light quanta. The variety of
possibilities does not secm so great, however, for one to have to shrink from
this task.

dddendum

From what has been said above under 4. in this paper, the reader could
easily get an incorrect impression about the standpoint taken by Mr. Planck
with regard to his own theory of thermal radiation. I therefore deem it
appropriate to note the following.

In his book, Mr. Planck emphasized in several places that his tleory
should not yet be viewed as something complete and final. At the end of his
introduction, for example, he says verbatim: "I find it important, however,
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to especially emphasize also at this point the fact, as elaborated in greater
detail in the last section of the book, that the theory developed here does
not claim by any means to be fully complete, even though, as I believe, it
affords a feasible approach by which to consider the processes of energy
radiation from the same viewpoint as those of molecular motion."

The pertinent discussions in my paper should not be construed as an
objection (in the strict sense of the word) against Planck's theory, but
rather as an attempt to formulate and apply the entropy-probability principle
more rigorously than has been done till now. A more rigorous formulation of
this principle was necessary because without it the subsequent elaborations in
the paper, in which the molecular structure of radiation was inferred, would
not have been adequately substantiated. So that my conception of the prin-
ciple would not appear as chosen ad hoc, or arbitrary, I had to show why its
current formulation has not completely satisfied me.

Bern, January 1909. (Received on 23 January 1909)
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Doc. 57
ON THE PRESENT STATUS OF THE RADIATION PROBLEM
by W. Ritz and A. Einstein
[Physikaelische Zeitschrift 10 (1909): 323-324)]

To clarify the differences of opinion that came to light in our
respective publications!, we note the following.
In the special cases in which an electromagnetic process remains
restricted to a finile space, the process can be represented in the form
r 1l T r
_ _1 Qo[zlyﬂz’t'—c‘] i ; i
f=h= Iz - dz'dy'dz

as well as in the form

"w[z',y',Z',t + 1‘]
f=f5= 417? = ¢ dz'dy'dz'

and in other forms.

¥While Einstein believes that one could restrict oneself to this case
without substantially limiting the generality of the consideration, Ritz
considers this restriction not to be permissible in primciple. If one takes
this standpoint, then experience compels one to consider the representation by
means of retarded potentials as the only one possible, if one is inclined to
the view that the fact of irreversibility of radiation processes must already
find its expression in the fundamental equations. Ritz considers the restric-
tion to the form of retarded potentials as onc of the roots of the sccond law,
while Linstein believes that irreversibility is exclusively due to reasons of
probability.

Zurich, April 1909. (Received on 13 April 1909)

W. Ritz, Phys. Zevt. 9 (1908): 903-907, and A. Einstein, Phys. Zeit. 10
(1909): 185-193.
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Doc. 58
"Discussion” following lecture version of Henry Siedentopf,
"On Ultramicroscopic Images"
[Physikalische Zeitschrift 10 (1909): 779-780]

Rubens: 1 would like to ask Dr. Siedentopf whether he possibly has used
this elegant method for quantitative measurements of Brownian molecular
motion. With Mr. Perrin's procedure such experiments can be used for the
determination of Loschmidt's number.

Lecturer: I would leave this to the physicists working in the
laboratory.

Rubens: It strikes me that the method offers the great advantage that
the quantities in question can be measured in peace and quiet on a photogram.

Lecturer: Let me ask the gentlemen to take this into their own hands.
Professionally, I am so busy that I don't have time for that.

EFinstein: The main difficulty is the temperature; it cannot be kept
constant. This is also the case with the French measurements.

Seddig: The drawback just mentioned by the previous discussant and
consisting in changes in temperature of the preparation during observation due
to radiation absorption, which affect the result in an uncontrollable fashion,
was also experienced by me in similar investigations, and for this reason I
did not use continuous illumination in my attempts to follow the Brownian
molecular motion quantitatively: instead, I always passed two very short
flashes of light through the preparation to mark the instantaneous position of
the particles photographically. In fact, a method somewhat similar to the one
just described was used by The Svedberg 2 or 3 years ago; he let the colloidal
solution flow slowly through the test cuvette, and then he obtained similar
deviations from rectilinear motion, which he of course did not photograph but
rather observed through an eyepiece micrometer.

Lecturer: The Svedberg's method has the flaw that one cannot control
the interfering currents, which even get magnified. Also, he incorrectly
assumed the motion to be sinesoidal.

]

[2]
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Doc. 59
"Discussion" following lecture version of Arthur Szarvassi,
"The Theory of Electromagnetic Phenomena in Moving Bodies
and the Energy Principle”
[Physikalische Zeitschrift 10 (1909): 813]

Finstein: 1 think that a body subjected to some forces, that this body,
when observed from a relatively moving coordinate system, because of its being
subjected to forces, represents an energy. If this assumption is not made,
there will arise a violation of the energy principle. Don't you think that
this may be the basis of the example you considered? Is it clear to you what
1 nean?

Lecturer: Not completely.

Finstein: It can be shown that a moving body subjected to forces whose
resultant does not vanish, in certain cases does not get accelerated thereby.
One must therefore assume in the theory of relativity that the moving (rigid)
body subjected to forces posscsses a certain energy content; otherwise, one
gets a violation of the encrgy principle.

Lecturer: That would mean that, besides the so-called kinetic energy in
the currently accepted sense, and besides the so-called usual potential elec-
tric energy of the system, there exists an additional part of energy. Because
I made no assumption about the quantity ¢, the above part would have to be
contained in this function. After all, T did not say anything about the form
of the function ¢. The energy equation expresses the energy principle quite
generally. It is very likely that this energy quantity is contained in ¢.

Finstein: 1 cannot comment on that, because I did not enter suffi-
ciently into the spirit of this consideration.
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Doc. 60
ON THE DEVELOPMENT OF OUR VIEWS CONCERNING THE NATURE AND
CONSTITUTION OF RADIATION
by A. Einstein
{Deutsche Physikalische Cesellschaft, Verhandlungen 7 (1909): 482-500.
Also in Physikalische Zeitlschrift 10 (1909): 817-826]

(Presented at the session of the Division of Physics of the 81st Meeting of
German Scientists and Physicians in Salzburg on September 21, 1909.)
(Cf. above p. 417)

Once it had been recognized that light exhibits the phenomena of inter-
ference and diffraction, it secmed hardly doubtful any longer that light is to
be conceived as a wave motion. Since light can also propagate through vacuum,
one had to imagine that vacuum, too, contains some special kind of matter that
mediates the propagation of light waves. For the interpretation of the laws
of the propagation of light in ponderable bodies, it was necessary to assume
that this matter, which was called luminiferous ether, is present in them too,
and that in the interior of ponderable bodies as well, it is essentially the
luminiferous ether that mediates the propagation of light. The existence of
this luminiferous ether seemed beyond doubt. The first volume of the excel-
lent textbook by Chwolson, which was published in 1902, contains in the
Introduction the following sentence about the ether: "The probability of the
hypothesis on the existence of this agent borders extraordinarily closely on
certainty."

However, today we must regard the ether hypothesis as an obsolete stand-
point. It is even undeniable that there is an extensive group of facts
concerning radiation that shows that light possesses certain fundamental
properties that can be understood far more readily from the standpoint of
Newton's emission theory of light than from the standpoint of the wave theory.
It is therefore my opinion that the next stage in the development of theore-
tical physics will bring us a theory of light that can be understood as a kind
of fusion of the wave and emission theories of light. To give reasons for
this opinion and to show that a profound change in our views on the nature and
constitution of light is imperative is the purpose of the following remarks.

(1]

[2]

(3]
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The greatest progress theoretical optics has made since the introduction
of the wave theory consists doubtless in Maxwell's brilliant discovery that
light might be viewed as an clectromagnetic process. Instead of mechanical
quantities, i.e., deformation and velocity of parts of the ether, this theory
introduces into considcration the electromagnetic states of ether and matter
and thereby reduces optical problems to electromagnetic ones. The more
electromagnetic theory advanced, the more the question of whether electro-
magnetic processes can be reduced to mechanical ones retreated into the
background; one became used to considering the concepts of electric and
magnetic field strength, electric space density, etc., as elementary concepts
that are not in need of mechanistic interpretation.

The introduction of the electromagnetic theory brought about a simpli-
fication of the bases of theoretical optics and a reduction in the number of
arbitrary hypotheses. The old question about the direction of oscillation of
polarized light became moot. The difficulties with boundary conditions at the
boundary of two media were resolved by the foundation of the theory. There
was no longer a need for an arbitrary hypothesis in order to exclude* longitu-
dinal light waves. The pressure of light, which has only recently been
cstablished experimentally, and which plays such an important role in the
theory of radiation, proved to be a consequence of the theory. I will not
attempt here an exhaustive enumeration of the well-known achievements but will
rather consider a cardinal aspect in which the electromagnetic theory agrees
with or, more accurately, seems to agree with the kinetic theory.

According to Loth of these theories, light waves appear to be
cssentially an aggregate of states of a hypothetical medium, the ether, which
is present everywhere cven in the absence of radiation. It had therefore to
be assumed that the movements of this medium must influence the optical and
electromagnetic phenomena. The search for the laws governing this influence
has caused a transformation in the fundamental views about the nature of
radiation, the course of which we want to consider briefly.

The basic question that arose in this regard was the following: Does
the luminiferous ether take part in the motion of matter or does it move
inside the moving matter in a different way; or, finally, could it be possible

*Translator's note: The German text erroneously says "anzuschliessen" (to
connect) instead of "auszuschliessen" (to exclude).
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that it does not participate in the motion of matter at all but stays at rest
instead? To solve this problem, Fizeau performed an important interference
experiment based on the following consideration. Let light propagate in a
body with velocity ¥ if the body is at rest. If this body, when in motion,
completely carries along its ether, the light will, relative to the body,
propagate in the same way as if the body were at rest. Hence the propagation
velocity relative to the body will in this case also be V. However, in
absolute terms, i.e., relative to an observer not moving along with the body,
the propagation velocity of a light ray will equal the geometric sum of ¥
and the velocity of motion v of the body. If the velocities of propagation
and of motion have the same direction and the same sense, then yﬁbs simply
equals the sum of the two velocities, i.e.,

Vﬁbs =¥V+wv.

To test whether this consequence of the hypothesis of the completely
co-moving luminiferous ether is correct, Fizeau nade each of two coherent
monochromatic beams of light pass axially through one of two water-filled
tubes and then interfere with each other. When he then let both the water and
the light move axially through the tubes, in the direction of the light in omne
tube and in the opposite direction in the other tube, he obtained a shift in
the interference fringes from which he could draw a conclusion about the
effect of the velocity of the body on the absolute velocity.

It turned out, as we know, that the velocity of the body does show an
influence in the sense expected, but that this influence is smaller than the
hypothesis of complete drag would require. We have

Vﬁbs =V+av,

where a is always smaller than 1. Neglecting dispersion, we get

0=1-F.

This experiment showed that the ether is not fully carried along by
matter, i.e., that in general a relative motion of the ether with respect to

[71
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matter is taking place. But the earth is a body that in the course of the
year has velocities of varying directions with respect to the solar systenm,
and it had to be assumed that the ether in our laboratories does not com-
pletely participate in this motion of the earth, just as it did not seem to
participate completely in the motion of water in Fizeau's experiment. Thus,
we had to conclude that there exists a relative motion of the ether with
respect to our apparatuses that changes with the time of day and with the
seasons, and one had to expect that this relative motion would cause an
apparent anisotropy of space in optical experiments, i.e., that optical
phenomena depend on the orientation of the apparatuses. All kinds of
experiments have been carried out to detect such an anisotropy, but the
expected dependence on the orientation of the apparatuses could not be
established.

This contradiction was resolved for the most part by the trailblazing
work of Hl. A. Lorentz in 1895. Lorentz showed that by assuming an ether that
is at rest and does not take part in the motion of matter, one can arrive at a
theory that accounts for almost all phenomena without having to postulate
other hypotheses. In particular, explanations were obtained for the results
of the experiment of Fizeau outlined above and for the negative result of the
above-mentioned attempts to demonstrate the motion of the earth relative to
the ether. There was only one single test that seemed incompatible with
Lorentz's theory, namely the interference experiment of Michelson and Morley.

Lorentz had shown that according to his theory, apart from terms
containing as a factor the second or higher power of the ratio

velocity of the body . .
velocity of Tight ° the common translatory motion of the apparatuses has no

effect on the ray paths in optical experiments. But one already knew the
interference experiment of Michelson and Morley, which had shown that in one
special case the terms containing the second power of the ratio

velocity of the body . . :
velocity of 1ight are not observed even though this had been expected from

the standpoint of the theory of an ether at rest. In order to have this
experiment encompassed by the theory, Lorentz and FitzGerald introduced, as we
know, the assumption that all bodies, hence also those connecting the
components of the experimental arrangement of Michelson and Morley, change
their shape in a certain way when they are set in motion relative to the
ether.
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This state of affairs was extremely unsatisfactory, however. The only
theory that was workable and transparent as to its foundations was Lorentz's
theory. This theory rested on the assumption of a completely immobile ether.
The earth had to be viewed as in motion relative to this ether. However, all
attempts to prove this relative motion had ended in failure, so that one was
forced to introduce a quite peculiar hypothesis in order to understand why
this relative motion was not observable.

Michelson's experiment suggested the assumption that, relative to a
coordinate system moving along with the earth, and, more generally, relative
to any system in nonaccelerated motion, all phenomena proceed according to
exactly identical laws. Henceforth, we will call this assumption in brief
"the principle of relativity." Before we consider the question of whether it
is possible to adhere to the principle of relativity, we shall briefly discuss
what will become of the ether hypothesis if we adhere to this principle.

Taking as a basis the ether hypothesis, the experiment led to the
supposition that the ether is immobile. In that case the principle of rela-
tivity states that all laws of nature referred to a coordinate system X'
that is in uniform motion relative to the ether must be identical with the
corresponding laws referred to a coordinate system K& that is at rest
relative to it. But if this is so, then we have just as much reason to
imagine the ether at rest relative to k' as at rest relative to K. Hence
it is totally unnatural to single out one of the two coordinate systems X, X'
by introducing an ether that is at rest relative to it. From this it follows
that one can obtain a satisfactory theory only if one drops the ether hypo-
thesis. In that case the electromagnetic fields that constitute the light
will no longer appear to be states of a hypothetical medium, but rather
independent entities emitted by the sources of light, exactly as in the
Newtonian emission theory of light. Exactly as according to the latter
theory, a space not permeated by radiation and free of ponderable matter
appears to be really empty.

Upon superficial consideration, it seems impossible to reconcile the
gist of Lorentz's theory with the principle of relativity. For according to
Lorentz's theory, if a ray of light is propagated in vacuum, this always
occurs with the fixed velocity ¢ with respect to a coordinate system £ at
rest in the ether, independent of the state of motion of the emitting body.

[14]

{15]
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Ve will call this proposition the principle of the constancy of the velocity
of light. According to the addition theorem of velocities, this same ray of
light will not also propagate with the velocity ¢ with respect to a coordi-
nate system A- that is in tramslatory motion relative to the ether. The
laws of propagation of light thus seem to be different relative to the two
coordinate systems, and from this it seems to follow that the principle of
relativity is incompatible with the laws of propagation of light.

llowever, the addition theorem of velocities is based on the arbitrary
assumptions that statements concerning time as well as those concerning the
shape of moving bodies have a meaning that is independent of the state of
motion of the coordinate system used. One can see, however, that a definition
of time and of the shape of moving bodies necessitates the introduction of
clocks that are at rest with respect to the coordinate system used. The above
concepts must therefore be defined separately for each coordinate system, and
it is not a foregone conclusion that for two coordinate systems K and £'
moving relative to each other these definitions yield the same time values ¢
and ¢' for the individual events; it is equally impossible to say a priori
that every statement about the shape of the bodies valid with respect to the
coordinate system K shall also be valid with respect to the coordinate
system K' that is moving relative to K.

From this it follows that the currently used transformation equations
for the transition from one coordinate system to another one moving uniformly
relative to it are based on arbitrary assumptions. [f these are dropped, then
the foundations of the Lorentz theory, or, more generally, the principle of
the constancy of the velocity of light, turn out to be reconcilable with the
principle of relativity. One thus arrives at new equations for the transfor-
mation of coordinates, which are uniquely determined by the two principles,
and which, given the appropriate choice of the origins of coordinates and
times, are characterized by the fact that through them the equation

224 g2 + 22 - 22 = g'2 4 y'2 4 2'2 - (242
becomes an identity. Here ¢ denotes the velocity of light in vacuum; =z, ¥,

z, t are space-time coordinates with rcference to £, and z', y', 2', t'
with reference to £'.



DoC. 60 385

This path leads to the so-called theory of relativity, of whose conse-
quences I would here like to mention only one, because it brings about a
certain modification of the basic ideas of physics. It turns out that the
inertial mass of a body decreases by L/c? when the body emits the radiation
energy L. One can arrive at this in the following way.

We consider a motionless, freely floating body that emits in two oppo-
site directions the same amount of energy in the form of radiation. The body
remains at rest. If E;, denotes the energy of the body before the emission,
E, its energy after the emission, and [ the amount of radiation emitted,
then we have, according to the energy principle

Eo=E +1 .

We now observe the body, as well as the radiation it emits, from a
coordinate system relative to which the body moves with velocity wv. The
theory of relativity then provides the means for calculating the energy of the
emitted radiation with respect to the new coordinate system. The value
obtained for it is

L':L-——1 "
v
1-=

Since the principle of conservation of energy must hold for the new coordinate
system as well, one obtains, using an analogous notation,

B Bt
v
L-&

By subtraction, and omitting terms of fourth or higher order in wv/e¢, we

get
1 _(p 1L ,
(EO—EO)_(EI_E1)+§E!'7J .
However, £E§ - F, is nothing other than the kinetic energy of the body

before the emission of light, and £ - £, is nothing other than its kinetic
energy after the emission of light. If /#; denotes the mass of the body

[16]
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before the emission, and #; 1its mass after the emission, then one can put,
neglecting terms of higher than the second power,

1 1 11
g ”0?)2 = § ‘{11)2 + 7 2-2-7)2

or

L
”0=”l+’c—2'-

Thus the inertial mass of a body decreases upon emission of light. The
energy emitted must be reckoned as part of the body's mass. From this it can
be concluded further that each absorption or release of energy brings about,
respectively, an increase or decrease of the mass of the body involved.
Energy and mass appear as equivalent quantities the same way that heat and
mechanical energy do.

The theory of relativity has thus changed our views on the nature of
light insofar as it does not conceive of light as a sequence of states of a
hypothetical medium, but rather as something having an independent existence
just like matter. Furthermore, this theory shares with the corpuscular theory
of light the characteristic feature of a transfer of inertial mass from the
emitting to the absorbing body. Regarding our conception of the structure of
light, in particular of the distribution of energy in the irradiated space,
the theory of relativity did not change anything. It is nevertheless my
opinion that with respect to this aspect of the problem we are at the
threshold of not yet fully foreseeable, but nevertheless highly significant,
developments. What I shall presently say is for the most part my private
opinion or, rather, the result of considerations that have not yet been
sufficiently checked by others. If T nevertheless present these consid-
erations, this should not be attributed to excessive confidence in my own
views but rather to the hope that I may induce one or another among you to
concern himself with the problems in question.

Even without getting deeper into any theoretical consideration, one can
notice that our theory of light cannot explain certain fundamental properties
of light phenomena. Why does it depend only on the color, but not on the
intensity, of light whether a given photochemical reaction will or will not
occur? Why are short-wave rays in general chemically more effective than
long-wave ones? Why is the velocity of photoelectrically produced cathode
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rays independent of the intensity of light? Why does one need high temper-
atures, i.e., high molecular energies, if the radiation emitted by bodies is
to contain short-wave components?

The wave theory in its current form does not answer any of these
questions. In particular, it is absolutely incomprehensible why the cathode
rays produced photoelectrically or by X-rays attain such a substantial
velocity independent of radiation intensity. The appearance of such large [18]
amounts of energy on a molecular structure under the influence of a source in
which the energy is so sparsely distributed, as we must assume according to
the wave theory for light and X-rays, prompted capable physicists to resort to
a rather farfetched hypothesis. They assumed that light plays merely a
triggering role in the process, and that the molecular energies that come to
the fore are of radioactive nature. As this hypothesis has by now been more [19]
or less abandoned, I will not present any arguments against it.

The basic property of the wave theory that gives rise to these
difficulties seems to me to lie in the following. Vhile in the kinetic theory
of matter there exists an inverse process for every process in which only a
few elementary particles take part, e.g., for every molecular collision,
according to the wave theory this is not the case for elementary radiation
processes. According to the prevailing theory, an oscillating ion produces an
outwardly propagated spherical wave. The opposite process does not exist as
an elementary process. It is true that the inwardly propagated spherical wave
is mathematically possible; however, its approximate realization requires an
enormous amount of emitting elementary structures. Thus, the elementary
process of light radiation as such does not possess the character of reversi-
bility. lere, I believe, our wave theory is off the mark. Concerning this
point the Newtonian emission theory of light seems to contain more truth than
does the wave theory, since according to the former the energy imparted at
cmission to a particle of light is not scattered throughout the infinite space
but remains available for an elementary process of absorption. Keep in mind
the laws of production of secondary cathode rays by X-rays.

If primary cathode rays impinge upon a metal plate P, they produce
X-rays. If these impinge upon & second metal plate P,, cathode rays will be
produced once again, their velocity being of the same order of magnitude as
that of the primary cathode rays. As far as we know today, the velocity of [20])
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the secondary cathode rays depends neither on the distance between the plates
P, and P, upon which they impinge nor on the intensity of the primary
cathode rays, but exclusively on the velocity of the primary cathode rays.

Let us for once assume that this is strictly valid. What will happen if we
let the intensity of the primary cathode rays, or the size of the plate F
upon which they impinge, decrease to such a degree that the impinging of an
electron of the primary cathode rays can be conceived as an isolated process?
If the above is really true, then, because the velocity of the secondary rays
is independent of the intensity of the primary rays, we will have to assume
that on P, (as a result of the impinging of the above electron on F;)

either nothing is being produced or that a secondary emission of an electron
occurs on it with a velocity of the same order of magnitude as of the electron
impinging on P;. In other words, the elementary radiation process seems to
proceed such that it does not, as the wave theory would require, distribute
and scatter the energy of the primary electron in a spherical wave propagating
in all directions. Rather, it seems that at least a large part of this energy
is available at some location of P, or somewhere else. The elementary pro-
cess of radiation seems to be directed. Furthermore, one gets the impression
that the process of X-ray production ir P, and the process of secondary
cathode ray production in /P, are essentially inverse processes.

The constitution of radiation thus seems to be different from that
following from our wave theory. Tmportant clues to that effect have been
provided by the theory of temperature radiation, first and foremost by the
theory on which Mr. Planck has based his radiation formula. Since I cannot
assume that this theory is universally krown, T will briefly describe its
essential points.

The interior of a cavity of temperature 7 contains radiation whose
composition is independent of the nature of the body. The amount of radiation
in the cavity , whose frequency lies between » and v + dv, is pdv per unit
volume. The problem consists of determining p as a function of v and T.
If an electric resonator of proper frequency v, and slight attenuation is
present in the cavity, the electromagnetic theory of radiation enables us to
calculate the time average of the energy (£) of the resonator as a function of
p(vo). The problem is thereby reduced to one of determining £ as a function
of the temperature. The latter problem can in turn be reduced to the
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following. Let the cavity contain a very large number (N) of resonators of
frequency v,. How does the entropy of this system of resonators depend on
the latter's energy?

To solve this problem, Mr. Planck uses the general relation bLetween
cntropy and the probability of the state as inferred by Boltzmann from his
investigations on the theory of gases. We have, in general,

entropy = k-log ¥,

where k£ denotes a universal constant and ¥ the probebility of the state
under consideration. This probability i1s measured by the "number of

complexions,"

a number that indicates in how many different ways the state in
question can be realized. In the case of the above problem, the state of the
resonator system is defined by its total energy, so that the problem to be
solved reads: In how many different ways can the given total energy be
distributed among AN resonators? In order to determine this, Mr. Planck
divides the total energy into equal small parts of a certain magnitude .
A complexion is determined by stating how many such ¢'s belong to each reso-
nator. The number of such complexions, which yield the total energy, is
determined and set equal to ¥.

From the Wien displacement law, which can be derived thermodynamically,
Mr. Planck then concludes further that one has to set ¢ = hv, where &
denotes a number that is independent of ». This way he arrives at his

radiation formula
_ 8zhyd 1

which fully agrees with experience thus far.

It might seem that according to this derivation the Planck radiation
fornula has to be viewed as a consequence of the current electromagnetic
theory of radiation. Illowever, this is not the case, especially for the
following reason. The number of complexions just discussed could be viewed as
an expression of the multiplicity of probabilities of distribution of the
total energy among AN resonators only in case every imaginable distribution
of energy would appear, at least to some approximation, among the complexions

(23]
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used for calculating ¥. This requires that for all w»'s to which corresponds
a perceptible energy demsity p, the energy quantum e be small comparced with
the mean energy of the resonators Z. However, one finds by simple calcula-
tion that for the wavelength of 0.5 g and absolute temperature T = 1700,
¢/EF is not only not small compared to 1, but is in fact very large compared
to it. Its value is about 6.5 x 107. Thus, in the numerical example pre-
sented, we must proceed with the counting of the complexions as though the
energy of the resonators could only assume the value zero, the 6.5 x 107-fold
of its mean energy value, or a multiple of this. It is clear that if we
proceed in this manner, we use for the calculation of the entropy only a
vanishingly small part of those energy distributions that we must consider as
possible according to the foundations of the theory. Thus, according to the
foundations of the theory, the number of these complexions is not an expres-
sion for the probability of the state in Boltzmann's sense. In my opinion, to
accept Planck's theory means plainly to reject the foundations of our radia-
tion theory.

I have already tried to show that our current foundations of the radia-
tion theory must be abandoned. At any rate, there can be no question of
rejecting Planck's theory on the grounds that it does not fit these founda-
tions. This theory led to a determination of the elementary quanta that has
been splendidly confirmed by the most recent measurements of these quantities
based on the counting of e-particles. For the elementary quantum of electri-
city Rutherford and Geiger obtained on the average a value of 4.65. 10710
and Regener 4.79 - 10710, while Mr. Planck with the aid of his radiation
theory obtained from the constants of the radiation formula the intermediate
value 4.69 - 1071,

Planck's theory leads to the following conjecture. If it is really true
that a radiation resonator can only assume energy values that are a multiple
of hv, then it is logical to assume that emission and absorption of radiation
can take place only in quanta of this energy value. On the basis of this
hypothesis, the hypothesis of light quanta, one can answer the questions
raised above regarding the absorption and emission of radiation. As far as we
know, the quantitative consequences of this hypothesis of light quanta are
also being confirmed. The following question arises then. Isn't it conceiv-
able that Planck's formula is correct, but that nevertheless a derivation of
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it can be given that is not based on an assumption as horrendous-looking as
Planck's theory? Would it not be possible to replace the hypothesis of light
quanta by another assumption that would also fit the known phenomena? If it
is necessary to modify the elements of the theory, would it not be possible to
retain at least the equations for the propagation of radiation ard conceive
only the elementary processes of emission and absorption differently than they
have been until now?

To clarify these matters, we will try to proceed in the opposite direc-
tion than that taken by Mr. Planck in his radiation theory. We consider
Planck's radiation formula as correct and ask curselves whether some conclu-
sion about the constitution of radiation can be inferred from it. O0f two
considerations I have carried out in this sense, I will here outline for you
only one which, because of its clarity, seems to me especially persunasive.

Let a cavity contain an ideal gas as well as a plate made of a solid
substance that can move freely only perpendicular to its plane. Because of
the irregularity of the collisions between the gas molecules and the plate,
the latter will be set in motion such that its average kinetic energy equals
one-third of the average kinetic energy of a monoatomic gas molecule. This is
a conclusion drawn from statistical mechanics. We now assume that besides the
gas, which we may conceive as consisting of few molecules, there is also
radiation present in the cavity; let this radiation be the so-called tempera-
ture radiation having the same temperature as the gas. This will be the case
if the walls of the cavity have the definite temperature 7T, are impermeable
to radiation, and are not everywhere completely reflecting toward the cavity.
Further, we shall temporarily assume that our plate is completely reflecting
on both sides. In this state of affairs, not only the gas but also the radia-
tion will be acting upon the plate. The radiation will exert pressure on both
sides of the plate. The forces of pressure exerted on the two sides are equal
if the plate is at rest. llowever, if it 1s in motion, more radiation will be
reflected on the surface that is ahead during the motion (front surface) than
on the back surface. The backward-acting force of pressure exerted on the
front surface is thus larger than the force of pressure acting on the back.
llence, as the resultant of the two forces, there remains a force that
counteracts the motion of the plate and that increases with the velocity of
the plate. VWe will call this resultant "radiation friction" in brief.

[28]
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Assuming for an instant that the above took full account of the
mechanical effect of radiation on the plate, we arrive at the following
interpretation. Through collision with gas molecules, impulses of random
direction are imparted to the plate at random intervals. The velocity of the
plate always decreases between two such collisions because of radiation
friction, and kinetic energy of the plate is converted into radiation energy.
Consequently the energy of the gas molecules would continually be comverted
into radiation energy by mecans of the plate until all the energy had turned
into radiation energy. Hence no equilibrium could exist between gas and
radiation.

This consideration is faulty because one cannot consider the forces of
pressure exerted on the plate by radiation as constant in time and free of
random fluctuations, just like the forces of pressure exerted on the plate by
the gas. For thermal equilibrium to be possible, the fluctuations of the
radiation pressure must be such that on the average they compensate for the
velocity losses of the plate caused by radiation friction, where the average
kinetic energy of the plate equals one-third of the average kinetic energy of
a monoatomic gas molecule. If the law of radiation is known, one can calcu-
late the radiation friction, and from this one can calculate the average value
of the momenta imparted to the plate due to fluctuations of the radiation
pressure so that statistical equilibrium can exist.

This consideration becomes even more interesting if the plate is chosen
such that only radiation of the frequency interval dv 1is completely re-
flected, while radiation of other frequencies passes through without absorp-
tion; then one obtains the fluctuations of the radiation pressure for the
radiation in the frequency interval dv. 1 shall now present the result of
the calculation for this case: If A denotes the momentum transferred to the
plate during time 7 as a result of the irregular fluctuations of the
radiation pressure, onc obtains for the mean square of A the expression

A% = % [hpu + g %;]dvfr .

This expression, first of all, is conspicuous by its simplicity; there
is not likely to exist another radiation formula agreeing with experience
within the range of experimental error that presents such a simple expression
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for the statistical properties of the radiation pressure as does that of
Planck.

As far as interpretation is concerned, the first thing to note is that
the expression for the mean square of fluctuation is a sum of two terms. [29]
Thus, it appears that there exist two different, independent factors causing a
fluctuation of the radiation pressure. From the fact that A? is propor-
tional to f, we conclude that pressure fluctuations for adjacent parts of the
plate, whose linear dimensions are large comparcd with the wavelengths of the
reflection frequency, are mutually independent events.

The wave theory provides an explanation only for the second term of the
expression found for AZ2. According to the wave theory, beams of not very [30]
different directions, not very different frequencies, and not very different
states of polarization must interfere with each other, and to the totality of
these interferences, which occur in the most random fashion, there must
correspond a fluctuation of the radiation pressure. That the expression for
this fluctuation must have the form of the second term of our formula can be
seen by a simple dimensional analysis. One can see that the wave structure of
radiation indeed causes the fluctuations of radiation pressure to be expected
from it.

But how to explain the first term of the formula? This term is by no
means to be neglected; on the contrary, it alone is relevant, so to speak, in
the domain of validity of the so-called Wien radiation law. For A = 0.5 p
and T = 1700, for example, this term is about 6.5 - 107 times larger than the
second one. If radiation consisted of very small-sized complexes of energy
hv, moving through space independently of each other and reflected
independently of each other—a conception that represents the very roughest
visualization of the hypothesis of light quanta—then the momenta acting on
our plate due to fluctuations of the radiation pressure would be of the kind
represented by the first term alone.

Thus, in my opinion, the following must be concluded from the above
formula, which is, in turn, a consequence of Planck's radiation formula. In
addition to the nonuniformities in the spaiiel distribulion of the momenium of
the radiation which arise from the weve theory, there also exist other nonuni-
formities in lhe spatial disiribution of the momentum, which at low energy
densiily of the rediation have a far grealer influence then the first-menlioned
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nonuniformities. 1 shall add that another consideration concerning the
spatial distribution of the energy yields results that agree quite well with
the above consideration concerning the spatial distribution of the momentum.

As far as I know, it has not yet been possible to formulate a mathemati-
cal theory of radiation that would do justice both to the undulatory structure
and to the structure inferred from the first term of the above formula
(quantum structure). The difficulty lies mainly in the fact that the fluctu-
ation properties of radiation, as expressed by the above formula, offer few
formal clues on which to build a theory. Imagine that the diffraction and
interference phenomena are not yet known, but that one knows that the average
magnitude of the irregular fluctuations of the radiation pressure is deter-
mined by the second term of the above formula, where » is a parameter of
unknown significance that determines the color. ¥ho would have sufficient
imagination to construct the wave theory of light on such a basis?

Still, for the time being the most natural interpretation seems to me to
be that the occurcnce of electromagnetic fields of light is associated with
singular points just like the occurence of electrostatic fields according to
the electron theory. [t is not out of the question that in such a theory the
entire energy of the electromagnetic field might be viewed as localized in
these singularities, exactly like in the old theory of action at a distance.

I more or less imagine each such singular point as being surrounded by a field
of force which has essentially the character of a plane wave and whose ampli-
tude decreases with the distance from the singular point. If many such sin-
gularities are present at separations that are small compared with the dimen-
sions of the field of force of a singular point, then such fields of force
will superpose, and their totality will yield an undulatory field of force
that may differ only slightly from an undulatory field as defined by the
current electromagnetic theory of light. I am sure it need not be particu-
larly emphasized that no importance should be attached to such a picture as
long as it has not led to an exact theory. All I wanted is briefly to
indicate with its help that the two structural properties (the undulatory
structure and the quantum structure) simultaneously displayed by radiation
according to the Planck formula should not be considered as mutually
incompatible.
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Doc. 61
"Discussion" following lecture version of
"On the Development of our Views Concerning the Nature
and Constitution of Radiation" [Doc. 60]
[Physikalische Zeitschrift 10 (1909): 825-826]

Planck: While I am taking the liberty to say a few words of comment on
the lecture, I will begin by joining in the thanks of the entire audience,
which listened with the greatest of interest to Mr. Einstein's presentation
and was stimulated to further reflection even where perhaps opposition may
have emerged. Naturally, I will restrict myself to the things in which my
opinion differs from that of the lecturer. After all, most of what the
lecturer has been saying will not meet with any disagreement. I, too,
emphasize the necessity of introducing certain quanta. We cannot progress
with the radiation theory unless we divide, in a certain sense, the energy
into quanta, which are to be conceived as atoms of action. The question is
now where to look for these quanta. According to the latest considerations of
Mr. Einstein, it would be necessary to conceive the free radiation in vacuum,
and thus the light waves themselves, as atomistically constituted, and hence
to give up Maxwell's equations. This seems to me a step which in my opinion
is not yet necessary. I will not go into details, but will rather note the
following. In the latest consideration by Mr. Einstein he inferred the
fluctuations of free radiation in pure vacuum from the motion of matter. This
inference seems to me absolutely irreproachable only in the case that the
interactions between the radiation in vacuum and the motion of matter are
completely known; if this is not the case, then the bridge necessary to cross
from the motion of the mirror to the intensity of the incident light is miss-
ing. However, it seems to me that we know very little about this interaction
between the free electrical energy in vacuum and the motion of the atoms of
matter. This interaction is essentially based on the emission and absorption
of light. Essentially this is also the case for radiation pressure, at least
according to the generally accepted theory of dispersion, which also reduces
reflection to absorption and emission. However, it is just emission and
absorption which are the obscure points about which we know very little. Ve

[1]
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may know a little about absorption, but what about emission? We imagine that
it is produced by the acceleration of electrons. But this is the weakest
point in the entire theory of electrons. One imagines that the electron
possesses a certain volume and a certain finite charge density, whether due to
a volume or surface charge, one cannot manage without that; this, however,
conflicts in a certain sense with the atomistic conception of electricity.
These are not impossibilities but difficulties, and I am almost surprised that
this has not met with more opposition.

This is the point, I believe, at which the quantum theory can be
cmployed with advantage. We can stipulate the laws for large time intervals
only. But for small time intervals and great accelerations we still face a
gap vhose filling requires new hypotheses. Perhaps we may be allowed to
assume that an oscillating resonator does not have a continuously variable
encrgy, but that its energy is a simple multiple of an elementary quantum
instead. I believe that by using this theory one can arrive at a satisfactory
theory of radiation. The question is, then: How does one visualize something
like that? That is to say, one asks for a mechanical or electrodynamic model
of such a resonator. But mechanics and current electrodynamics do not provide
for discrete elements of action, and hence we cannot produce a mechanical or
electrodynamic model. Thus, mechanically this seems impossible, and we will
have to get used to that. After all, our attempts to mechanically represent
the luminiferous ether also have failed completely. There were also attempts
to conceive the electric current in a mechanistic way, and to compare it with
a stream of water, but this too had to be abandoned, and as one became used to
that, so one will have to get used to such a resonator. 0f course, this
theory would have to be worked out in much greater detail than has been done
so far; perhaps someone else will have more luck with it than I had. In any
case, I think that first of all one should attempt to transfer the whole
problem of the quantum theory to the area of imteraction between matter and
radiation energy; the processes in pure vacuum could then temporarily be
explained with the aid of the Maxwell equations.

. Ziegler: If the uratoms of matter are conceived as invisible tiny
spheres that possess unchanging speed of light, then it is possible to
describe all interactions of corpuscular states and electromagnetic phenomena,
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and this would also establish the bridge between material and nonmaterial
entities still missed by Mr. Planck.

Stark: Mr. Planck pointed out that we have no reason at the moment to
switch over to the Einstein consequence, to consider the radiation in space,
vhere it occurs detached from matter, as concentrated. I was originally also
of the opinion that for the time being we could restrict ourselves to reducing
the elementary law to a certain mode of action of the resonators. But I do
believe that there exists a phenomenon that leads to the conclusion that
electromagnetic radiation detached from matter, in space, must be considered
as concentrated. I have in mind the phenomenon that even at great distances,
up to 10 m, electromagnetic radiation that has left an X-ray tube for the
surrounding space can still achieve concentrated action on a single electron.
I believe that this phenomenon does represent a reason for considering the
question of whether the energy of electromagnetic radiation should not be
considered as concentrated even where it occurs detached from matter.

Rubens: The view represented by Mr. Einstein would seem to yield a
practical conclusion that can be tested experimentally. As we know, it is not
only the e-rays, but also the [-rays that produce a scintillating luminous
effect on the fluorescent screen. According to the view presented, the same
must also hold for 9-rays and X-rays.

Planck: The X-rays are a special case; I would not assert too much
about them. - Stark brought up something in favor of the quantum theory, and I
wish to bring up something against it; I have in mind the interferences at the
enormous phase differences of hundreds of thousands of wavelengths. Vhen a
quantum interferes with itself, it would have to have an extension of hundreds
of thousands of wavelengths. This is also a certain difficulty.

Stark: The interference phenomena can easily be pitted against the
quantum hypothesis. However, once they are treated with more benevolence
toward the quantum hypothesis, one will find an explanation for them, too —
this is my hope. As for the experimental aspect, it must be emphasized that
the experiments to which Mr. Planck alluded involve very dense radiation, so
that a very large number of quanta of the same frequency were concentrated in
the beam of light; this must be taken into account when discussing those
interference phenomena. With radiation of very low density, the interference
phenomena would most likely be different.

[2]
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Einstein: It probably wouldn't be as difficult to incorporate the
interference phenomena as one thinks, and the reasons for this are as follows:
it must not be assumed that radiations consist of noninteracting quanta; this
would make it impossible to explain the phenomena of interference. I picture
a quantum as a singularity surrounded by a large vector field. By using a
large number of quanta one can construct a vector field that does not differ
much from the kind of vector field we assume to be involved in radiations. I
can well imagine that when rays impinge upon a boundary surface, a separation
of the quanta takes place, due to interaction at the boundary surface, possi-
bly according to the phase of the resulting field at which the quanta reach
the interface. The equations for the resulting field would probably not be
very different from those in the prevailing theory. It might not be
necessary, with respect to interference, to change much in the currently
prevailing conceptions. I would like to compare this with the process of
molecularization of the carriers of the electrostatic field. The field, as
brought about by atomized electric particles, is essentially not very differ-
ent from the previous conceptions, and it 1s not out of the question that
something similar will happen in the theory of radiation. I do not see any
fundamental difficulty in the interference phenomena.
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Doc. 62
"Discussion" following lecture version of Fritz Hasenchrl,
"On the Transformation of Kinetic Emergy into Radiation" 1]
[Physikelische Zeitschrift 10 (1909): 830]

Einstein: Of course, in this case the irregular fluctuations would be
exactly such that Maxwell's distribution law would be maintained, i.e., that
the damping would be compensated by the irregular impacts. [2]

Lecturer: I am not sure that I understand you correctly. You mean, if
you think of a closed container, and particles are moving in it, that they
wouldn't be damped by radiation at all?

Finstein: That's right.

Lecturer: 1 am getting noticeable damping of motion only after a
practically infinite time.

Planck: The two gentlemen start out from different assumptions. The
lecturer considers an entirely uniform radiation intensity, while Mr. Einstein
considers radiation fluctuations, and therefore le also gets fluctuations in
the resulting effects, i.e., not a complete damping. [3]





