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PREFACE 

This volume contains the translat ions of all documents in Volume 2 of 
The Collected Papers of Albert Eins tein, all of which were originally written 
in German. It is not sel f-contained and should be read in conjunct ion with 
t he documentary edit ion and its editorial apparatus. All editorial headnotes 
and footnotes have been omitted, as have the introductory mat erials and the 
bibliography. However, we used the bibl iography to check the references cited 
in the documents and, especially, to correct and complete the titl es and 
bibliographic data given by Einst ein in his reviews of books and articles . In 
this volume we have included the editorial footnote numbers, which appear in 
brackets in the margin and correspond to the footnotes in the documentary 
edition. We have not corrected any misprints or ot her errors (including those 
in the formulas ) if the editors have commented on them. Misspellings of names 
of persons have been routinely corrected. 

Although some of the documents have been translated before, we have 
provided new translations here rather than attempt to use any "best" existing 
translat ion. 

The purpose of t he translat ion project, in accordance with the agreement 
bet ween Princeton University Press and the National Science Foundation, is to 
provide " a careful, accurate translation that is as close to the German 
or iginal as possible while st ill producing readable English. " This is, 
therefore, not a "literary" translation but should allow readers who are not 
fl uent in German to make a scholarly evaluat ion of the content of the 
documents while also obtaining an appreciation of their flavor. 

Many technical expressions used in the original documents are out dated 
(see the editorial comments in Volume 2); whenever possible, we have not 
rep laced them with the modern Engl ish versions but have used the expressions 
employed in tile technical literature of the t ime, if known, or else we 
1>rovided a literal translation. In particular, we ret ained the term "electric 
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mass" frequent ly used by Einstein for elect ric charge. All formulas were 
i ncluded in a form as similar to those in the original documents as was 
possibl e with our word processor . We kept the standard German notation used 
at t he t ime, representing vectors by German (Fractur) l etters and vector 
products by [ ];for example, we kept [<EiJ] for t he vector denoted in 
current l i terat ure by EK H or EK Il. 

We are indebted t o John Stachel, the Editor of Vol ume 2, and Robert 
Schul mann, Associate Edi tor, as well as Walter Lippincott, Di rector, and Alice 
Calapr ice, Senior Ed i tor, of Princeton University Press, for their help and 
encouragement. We also wish t o t hank Marjorie Zabierek for her part in 
preparing t he f inal typescript. 

Anna Beck, Translator 
Peter Havas , Consultant 
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Doc. 1 
CONCLUSIONS DRAWN FROM THE PHENOMENA OF CAPILLARITY 

by Albert Einstein 
[Annalen der Phys ik 4 (1901) : 513-523] 

If we denot e by 1 the amount of mechanical work that we have to supply 
t o a l iquid in order to increase the free surface by one unit , then 1 is not 
the total energy increase of the system, as the fo l lowing cyclic process wi l l 
show . Let there be a certain amount of liquid of (absolute) temperature T1 
and surface area 01. We now increase isothermal ly the surface o1 to 02, 
increase (at constant surface area} t he t emperature to T2, t hen reduce the 
surface to 01 and cool the liquid to r1 again. If one assumes t hat no 
heat i s suppl i ed to the body other t han t hat received on account of its speci­
fic heat, t hen the total heat supplied to t he substance during the cycl ic 
process wil l be equal to t he total heat withdrawn. According to the principle 
of conservation of energy, t he t otal mechanical work supplied must then also 
be zero . 

Hence the following equation holds : 

or 

However, this contradicts experience . 
We have, then, no other choice but to assume that t he change in t he sur­

face is associated with an exchange of heat as well, and that t he surface has 
a specif ic heat of its own . If we denote by U the energy, by S the en­
tropy of the unit surface of the liquid, by s t he specific heat of t he 
surface , and by w0 the heat necessary t o form a uni t surface, expressed in 
mechanical units , then the quant ities 

dU = s.0.dT+ {1 + w0}d0 
and 

dS = ~+ ,- d0 

will be t otal di fferentials. Hence we wi ll have 

[ 1] 

[2 ] 
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[3] 

PHENOMENA OP CAPILLARITY 

b(s.O) _ 8{1j~o) --;m- - , 

From these equat ions i t fo l lows that 

This i s , however, the total energy necessary t o form a unit surface . 
Further, we fo rm 

The experimental studi es have shown t hat 1 can be represented with 
(41 very good approximation as a linear funct ion of temperature , i. e . : 

The energy necessary t o form a uni t surface of a l iquid is independent 
of t he temperature. 

I t also fo l lows t hat 

(5 ) hence : no heat content should be ascr ibed to the surface as such; rather, the 
energy of t he surface i s of potential nature. It can be seen already that the 
quantity 

i s more suited for sto ichiometric invest igations t han is the hitherto used r 
at boi ling t mperature . The fact that the energy requi red for the format ion 
of a un it surface barely varies with the t emperature t eaches us also that the 
conf igurat ion of mol~cules in the surface layer will not vary with t emperature 
(apart from changes of t he order of magn it ude of t hermal expansion ). 

To f i nd a stoichiometric relationship for the quant ity 
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I proceeded from the simpl est assumpt ions about the nature of molecular 
at traction forces and examined their consequences regarding their agreement 

3 

with experiment . In this I was guided by the analogy with gravitational [6] 

forces. 
Let thus the relative potential of two mol ecules be of the form 

where c i s a constant characteristic of the molecule in question , and ip( r ) 
i s a f unction of t hei r distance t hat does not depend on t he nature of t he 
molecules. We assume f urther that [71 

n n 

½ l l cacp ip(ra, p) 
o=l P=l 

is t he corresponding express ion for n molecu les. In the special case in 
which al l molecules are alike, this expression becomes 

n n 

½c2 l l ip(ro,p) . 
a=l /J= l 

We furt her make the addit ional assumption t hat the potential of the molecular 
forces has the same magnitude it would have if the matter were homogeneously 
distributed in space; this is, however, an assumption which we should expect 
to be only approximately correct. Us ing it , the above expression converts to 

where N is the number of molecul es per unit volume . If the molecule of our 
liquid cons ists of several atoms , then i t shall be poss ible to put, in analogy 
with gravitational forces , c = Ec

0
, where the c

0
's denote t he values 

characteristic for the atoms of the elements. If one also puts 1/N = v, 
where v denotes t he molecular volume, one obtains the final formula 

[8] 
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[ 10] 

4 PHENOMENA OF CAPILLARITY 

(Ee )2 

p = p - ½ ~ II dT. dr' cp( rd d i) . w V T, T 

If we now also assume that the density of the l iquid i s constant up to 
i t s surface, wh ich i s made plaus ible by the fact t hat the energy of the 
surface is i ndependent of temperature, then we are able to calculate the 
pot ential energy per unit volume in the interior of t he liqu id, and that per 
uni t surface . 

I. e . , if we put 

½ f~..., J;..., C..., dxdydz .,pUx2+y2+z2] a K, 

then the potential energy per uni t volume is 

(Ee )2 

p = p - K~ 
oo v ,t. 

If we imagine a l iquid of volume r and surface S, we obtain by 
int egrat ion 

where t he const ant K' denotes 

x'=l y' =l z '=O x=w y=w z=w 

I I I I I I dx .dy .dz. dx'. dy' .dz' 
x'=O y'=O z'=-w x=-w y=-w z=O 

cp[J (x-x 1 )2+( y- y1 )2+(z-z 1 P] 
Since not hing is known about cp , we naturally do not get any 

rel at ionship between K and K'. 

One should keep in mind , t o begin wi t h, that we cannot know whether or 
not t he molecule of t he liquid contains the n-fold mass of the gas molecule, 
but it foll ows from our derivat ion that this does not change our expression 
for t he potent ial energy of the liquid. Based on the assumpt ions we have j ust 
made, we obtain the following expression for the potent ial energy of t he 
surface : 
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or 

(Ee )2 

P = K'----:;fJ-=1- T*, 

Ec0 = v J 1 - T * . ~ . 
Since the quantity on the right can be calculated from R. Schiff's 

observat ions for many substances at the boiling temperature, we have ample 
mater ial for the det ermination of the quantit ies c

0
. I t ook all the dat a 

5 

[ 11] 

from W. Ostwald ' s book on general chemistry. First, I present here the data [ 12) 

that I used for the calculat ion of c
0 

for C, H, and O by the least 
squares method . The column with the heading Ec

0 
(calc ) gives the Ec

0 
as 

determined from chemical formulas using the c
0 

t hus obtained . Isomeric 
compounds were combined into one value, because their values on the left-hand 
side did not differ significantly from each other . The unit was chosen 
arbitrarily because it i s not poss ible to determine the absolute value of c

0 
since K' is unknown . 

I found: 
CO = 46,8. 

Formula Ec
0 

Ec
0 

(calc) Name of the compound 

8bo~6 
510 524 Limonene 
140 145 Formic acid 

C2fl402 193 197 Acetic ac id 
Ca11602 250 249 Propanoic acid 
C411s0ij 309 301 But yric acid and i sobutyric ar id 
Csll10 2 365 352 Valerianic (pentanoic) acid 
C41160ij 350 350 Acetic anhydride 
C5H1~ 4 505 501 Ethyl oxalat e 
Calls 0 494 520 Methyl benzoate 
C9H10 2 553 562 Ethyl benzoate 
C6H1~03 471 454 Ethyl-acetoacetate (diacetic ether ) 
C1Hs 422 419 Anisole 
CaH1oO 479 470 Phenetole and methyl cresolate 
CaH1~02 519 517 Dimethyl resorcinol 
C5H4 0 345 362 Furfural 
CsH\o 348 305 Val eraldehyde 
C10I 140 587 574 d-carvone 

I t can be seen that in almost all cases the deviations barely exceed the 
experiment al errors and do not show any trend. 
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After t hat I separately calculated t he values for Cl , Dr, and J; t hese 
determinations are of course l ess reliable . I found: 

cCl = 60 , cllr = 152, CJ= 198. 

I present t he data in t he same way as above: 

Formula Ec
0 

Eca ( calc) Name of the compound 

CGII5Cl 385 379 Chloro benzene 
C7117Cl 438 434 Chloro toluene 
C7H7Cl 450 434 Benzyl chloride 
C3H50Cl 270 270 Epichlorohydr in 
C2011Cl3 358 335 Chloral 
C71150Cl 462 484 Benzoyl chloride 
C1HGCl 2 492 495 Benzylidene chloride 
Br2 217 304 Bromine 
C2H50r 251 254 Ethyl bromide 
C3117Dr 311 306 Propy l bromide 
Cil7llr 311 306 Isopropyl bromide 
C3115Br 302 309 Allyl bromide 
Cil50r 353 354 Isobutyl bromide 
C5111liDr 425 410 Isoamyl bromide 
CGlls r 411 474 Bromo benzene 
C71170r 421 526 o-Bromo tol uene 
C2114Br2 345 409 Ethy lene bromide 
C3116Br2 395 461 Propylene bromide 
C2Il5J 288 300 Ethyl i od ide 
C3Il7J 343 352 Propyl iodide 
C3ll1J 357 352 Isopropyl iodide 
C3ll5J 338 355 Ally 1 iodide 
C4ll9J 428 403 Isobutyl iodide 
C5lluJ 464. 455 Tsoamyl iod ide 

I t seems t o me t hat t he l arger deviations from our theory occur for 
those compounds that have rel atively l arge mol ecular masses and small 
molecular vol umes. 

Based on our assumptions , we found that the expression for the potential 
energy per unit volume is 

(Ee )2 
p = p - K~ 

oo V" ' 

wher e K denot es a defin ite quant i t y, which we , however, are not able t o 
calculate because i t is only def ined completely by the choi ce of t he c

0
's. 
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We can therefore set K = 1 and thereby obt ain a definition for t he absolute 
values of the c 's . If we take th is into account from now on, we obtain t he 

0 
follow ing express ion for the magnitude of the potential pertaining to one 
equivalent (molecule): 

(Ee )2 

p = p - K--o- ' 
oo V 

where, of course, Pm denotes another constant. We could now equate the 
second member of the right-hand side of this equat ion to t he difference 
D J - Avd, where D i s the molecular heat of evaporat ion (heat of m m 
evaporation x molecular mass ) , J the mechanical equivalent of one calorie, 
A the atmospheric pressure in absolute units , anrl vd the molecular volume 
of the vapor - if the potent ial energy of t he vapor were zero and if at t he (13) 

boiling point the content in kinetic energy would not change during the 
transit ion from the liquid to the gaseous state . The f i rst of these 
assumptions seems to me absolutely safe. However, since we have nei ther a 
basis for the second assumption nor a possibility to estimate the quantity in 
quest ion, we have no other choice but to use the above quant i ty itself for the 
calculat ion. 

In the first column of the following table I entered the quantiti es [14) 

~ in thermal units, with D~ denot ing the heat of evaporation minus the 
external work of evaporation (in thermal units) . In the second column I 
entered the quantit i es Ec

0
, as obtained from capi l larity experiments; the 

th i rd column contains the quot ients of the two values. I someric compounds are 
once again combined into a singl e l ine. 
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Name of t he compound Formula ~ Ec
0 

(calc) Quot ient 

Isobutyl propanoate C1H1402 
Isoarny l acetate II 

1157 456 2.54 

Propyl acetate II 

Isobut yl isobutyrate C8H1602 
Propyl valPrat e II 

Isobutyl butyrate II 

1257 510 2.47 

Isoamyl propanoatc II 

Isoamyl isobutyrate C9H1s02 
Isobuty] valerat e II 

1367 559 2.45 

Isoamyl valerate C1~H1002 
Benzene c6 6 
Toluene C7H8 
Et hyl benzene CsH10 
m-Xylene II 

1464 611 2.51 
795 310 2.57 
902 372 2.48 

1005 424 2.37 

Propyl benzene C9H12 
Mes i tylene II 

1122 475 2.36 

Cymene C10Hlf 
Ethy l formate C3H6 2 
Methyl acet ate II 

1213 527 2.30 
719 249 2.89 

Ethyl acetate C4Hs02 
Methy 1 propanoatc II 

837 301 2.78 

Propyl fo rmate II 

Methyl i sobutyrat e C5H1002 
Isobutyl formate II 

882 353 2.50 

Ethyl propanoate II 

Propy l acetat e II 

Met hyl butyrate II 

Ethyl isobutyrate C6H1202 
Met hyl valerate II 

971 405 2.40 

l sobut yl acetat e II 

Ethyl butyrate II 

Propyl propanoate II 

Isoamyl formate II 

Even though t he quot ient in the fifth column is by no means a const ant , 
but is , on the contrary, clear ly dependent on t he constitution of the 
compounds , we can nevertheless use t he mat erial on hand to obtain the fact or, 
or at least its order of magni tude, with which we must multiply our c

0
's t o 

obtain them in thP absolute unit we had chosen . The mean value of t he 
mul tiplier looked for is 

2.51 X ~4 . 17 X 10 7 = 1.62 X 104 . 

Since t he fo regoing discuss ion shows that the kinetic condi t ions of t he 
molecules change during evaporat ion (at l east if our expression for t he 



DOC. 1 

potential energy is correct ) , I decided to obtain the absolute quantity c
0 

in one more way. I proceeded from the follow ing idea : 
If we compress a liquid i sothermally and i ts heat cont ent does not 

9 

change in the process. as we now wish to assume, then the heat re leased during ( 16] 

compression equals the sum of the work of compression and the work done by the 
molecular forces . We can t herefore calculate the latter work if we can find 
the amount of heat released dur ing compression . This we can do wi th t he help 
of Carnot ' s principle. 

Let the state of the liquid be determined by the pressure p in 
absolute units and by the absolute temperature T; if the value of the heat 
suppl ied to the substance during an infinitesimal ly smal l change of state is 
dQ in absolute units. and the mechanical work done on the substance is dA, 
and if we put 

dQ = Xdp + S.dT, 

dA = - p. dv = - p { ~ dp + * dTJ 

= p.v.Kdp - p.v.odT, 

then the condition that dQ/ T and dQ + dA must be total differentials 
yields the equations 

and 
J[~ = ~[~ 

J <X + pK ) = -/t<S - po) ; 

here, as can be seen, X denotes the heat, in mechanical units. suppl ied to 
the substance during i sothermal compression produced by pressure p = 1, S 
is the specific heat at constant pressure, K is the coefficient of compres­
s ibility, and a is the coeffic ient of thermal expansion. From these 
equations, we find 

One has to remember that for any phenomena involving compression of 
liquids, the atmospheric pressure, to which our bodies are usually subject ed, 

[17) 

( 18 ) 

[ 19) 
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[ 21] 

[ 22 ) 
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can be considered unhesitatingly as infinitesimally smal l i likewise , compres­
sions in our exper iments are very nearly proportional t o the compress ion 
forces appl i ed . Thus , the phenomena proceed as if the compression forces were 
infinitesimal ly small. If t his is t aken into account, then our equation 
reduces to 

X.dp = - T.o .dp. 

If we now apply the assumption that the kinetic energy of the system 
does not change in i sothermal compress i on , we obtain t he equat ion 

X.dp + work of compress ion+ work of the molecular forces= 0. 

If P is t he pot ent ial of the molecular forces , t hen the last -ment ioned 
work i s 

BP lJv av • op • dp 

If one inserts herein our expression for the magnitude of the potential 
of t he molecular f orces and t akes i nto account that the work of compression i s 
of the order dp2 , one obtains , neglecting this quantit y wh ich is 
infinitesimally smal l of second order, 

Ta (:Eca.)2 
If, = vr 

where K denot es the compress ib i l i ty coefficient in absolute unit s. We thus 
obt ain once more a means for the determinat ion of the looked- for proportional ­
i ty coefficient f or the quantities c

0
. I took t he a and K values for the 

[23 ] t emperature of ice from Landolt and Bornstein's tables . This yields t he 
following values for the factor sought: 

Xyl ene 1. 71 X 104 Et hyl alcohol 1. 70 X 104 

Cymene 1. 71 X 104 Methyl alcohol 1. 74 X 104 

Turpentine oil 1.73 X 104 Propyl alcohol 1. 82 X 104 

Ethyl ether 1.70 X 104 Amyl alcohol 2.00 X 104 
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First of all, it should be noted that the two coefficients obt ained by 
different methods show qui te satisfact ory agreement even though they have been 
derived from totally different phenomena . The last table shows a very satis- ( 24] 

factory agreement of the values; only the higher alcohols show deviat ions. 
This is to be expected, because from the deviations of alcohols from (25] 

Mendeleev ' s thermal expansion l aw and from R. Schiff' s stoichiometr ic law of (26] 

capil larity, it has already been concl uded earl ier that in these compounds 
temperature changes are associated wi th changes in t he size of t he molecules 
of t he l iquid. Hence it i s to be expected that such molecular changes should 
also arise dur i ng i sothermal compression, so that for such compounds at t he 
same temperature the heat content wil l be a function of volume. 

In summary, we may state that our basic assumption stood t he test : To 
each atom corresponds a mol ecular attract ion f ield that i s independent of the 
temperature and of t he way in which the atom is chemical ly bound to other 
atoms. 

Final ly, it should also be point ed out that the constants c generally a 
increase with increased atomic weight, but not always , and not in a propor-
tional way. The question of whether and how our forces are related to gravi­
tational forces must therefore be left completely open for t he time being. It (27] 

should also be added that the introduction of the function <p(r ) , which i s 
taken to be independent of the nature of the molecules, should be understood 
as an approximate assumpt ion, and so should the replacement of sums by int e- ( 28] 

grals ; i n fact, as the example of water shows, our t heory does not seem to (29] 

hold for substances with small atomic volumes. Only extensive special 
investigations can be expected to bring answers to these questions. 

Zurich, 13 December 1900. (Received on 16 December 1900) 
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Doc. 2 
ON THE THERMODYNAMIC THEORY Of' THE DIFFERENCE IN POTENTIALS l3ETWEEN METALS 

AND FULLY DISSOCIATED SOLUTIONS OF TIIEIR SALTS AND ON AN ELECfRICAL 
METHOD FOR INVESTIGATING MOLECULAR FORCES 

§1. 

Ily A. Einstein 
[Annalen der Pliysik 8 (1902): 798-814] 

A hypothe t ical extension of the second law of the 
mechanical theory of heat 

The second law of the mechanical t heory of heat can be applied to such 
physical systems wh i ch are capab le of pass i ng , wi t h any dt>sired approximat ion , 
through rever sible cyclic processes. In accordance with the derivation of 
th is l aw from the impossibili ty of converti ng latent heat into mechanical 
energy, it is here necessary to assume that those processes are realizable . 
However , i n an important application of the mechanical t heory of heat , namely 
the mixing of t wo or more gases by means of semipermeable membranes, i t i s 
doubtful whether t his postulate i s sat i sf ied. The thermodynamic theory of 
dissociation of gases and the theory of dilu t e solut ions are based on the 

(l ] assumption t hat this process i s realizable. 
As i s we l l known , the assumption t o be introduced is as follows: For 

any two gases A and /J it should be poss ible to produce t wo part itions such 
t hat one is permeable fo r A but not for B. while t he other i s permeable for 
/J but not fo r A. If the mixture consists of more than two components , then 
t his assumption becomes even more complicated and improbable. Since the 
results of the t heory have been completely confi rmed by experiment despite the 
fact that we worked with processes whose real izabilit y could indeed be 
doubted, the question arises whether t he second law could not be appl ied to 
ideal processes of a certain kind without contradicting experience. 

In this sense, on the basis of t he exper i ence obtained , we cert ainly can 
advance the proposition : One remains in agreement wit h experi Pnce if one 
extends t he second law to physical mixtures whose individual components are 
restricted to certain subspaces by conservative forces acting in certain 
planes . We shall hypothetically generalize this propos it ion t o t he following: 
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One remains in agreement with experience when one applies the second l aw 
to physical mixtures whose indiv idual component s are acted upon by arbit rary 
conservative forces. (2 ) 

In the following we will always make use of t his hypothes is , even when 
this does not seem absolutely necessary. 

§2 . On the dependence of the electric potent ial di ffe rence of a comple te ly 
dissoci ated salt solut i on and an el ectrode cons i sting of the solut e me tal 

on the concent rat ion of the so lution and the hydros tatic pressure 

Let a solut ion of a completely dissociated salt be cont ained in a 
cylindrical vessel whose axis coincides with the z-axis of a Cartesian 
coordinate system. Let vdo be the number of gram-molecules of t he salt 
dissolved in the vol ume element do , vm do the number of metal ions , and (3) 

vs do t he number of acid ions , where vm and vs are integral multiples of 
v, so that we have the fol lowing equations: 

vm = nm•v ' 
vs = ns·v. 

Further, l et n.v.E.do be the magnit ude nf t he total posit ive electric charge 
of t he ions in do, and hence also, up to the infin ites i mally small , t he 
magnitude of the negative charge. Here n is the sum of valencies of the 
molecule' s met al ions , and £ t he amount of electricity required for t he 
electrolyt i c separation of one gram-molecul e of a univalent ion. (4) 

These equations are certainly valid, since the number of excess ions of 
one kind can be neglected . 

We shall f urther assume that t he metal and acid ions are acted upon by 
an external conservat ive force whose potential per ion has t he magnitude P [SJ m 
and Ps' respectively. Furt hermore, we neglect the var iabi lity of t he density 
of t he solvent with t he pressure and density of t he dissol ved salt, and assume 
that a conservative force, whose potent ial per gram-equ ivalent of the solvent 
has t he magnitude P0 , act s upon the parts of the sol vent; there shal l be 
v0do gram-molecules of solvent in do . 

Suppose t hat all force functions depend solely on t he z-coordi nate, and 
t hat t he syst em is in electr ical, thermal, and mechanical equilibrium. Then 
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the quantit ies concent ration v, el ectric potent ial r, osmotic pressures of 
t he two ion types Pm and p

8
, and hydrostatic pressure Po will be func ­

t ions of z only. 
At each location of t he electrolyte, each of the two types of electrons 

must t hen be in equi librium separately, wh ich is expressed by the equat ions 

where 

1 
V 

V 

dPm d 
nm az - nE Tz = 0 

dPs d 
nE -:r-=z:r = 0 ns az + az 

Pm = v·nm•RT , 
Ps = v•ns•llT, 

and where R is a constant common to all ionic species . Hence t he equations 
take t he form 

I
n RT w1 

v + 
dPm 

E d1. 
m z nm Tz + n az = O, 

(1) 

n
8
RT dJ!{ + 

dPS 
E d-x 

ns Tz - n az = O . 

If Pm and Ps are known for al l z. and v and :r for a part icular z, 

then equations ( 1) yield v and r as funct ions of z. Also, the condit ion 
that t he solution as a whole i s in equilibr ium would r esul t in an equation for 
t he determination of the hydrostatic pressure p0 , which need not be written 

[6 ] down. We only note that the reason t hat dp0 i s independent of dv and dr 
i s t hat we are free t o postulate arbitrary conservative forces that act on the 
molecules of t he solvent . 

We now imagine that electrodes made of the solute metal and occupying a 
vanishingly small part of the cross section of the cylindr ic vessel are placed 
in the solution at z = z1 and z = z2. The solut ion and the electrodes to­
gether form a physical system. wh ich we t ake through the fo llow ing revers ible 
isothermal cyclic process: 

1st partial process: We pass t he amount of elect ric ity n£ infinitely 
slowly through the solution, using the electrode at z = z1 as anode, and 
that at z = z2 as cathode. 
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2nd partial process : The amount of di ssolved metal that has thus been 
moved electrolyt ical ly from z1 to z2 we now move back mechan ical ly 
infinitely s l owly from z2 to z1. 

First of all, it is evident that the process i s strictly revers ible, 
since all steps are imagined to proceed inf init ely slowly, i .e. , the process 
is compounded of (ideal) states of equilibrium. For such a process the second 
law requires that the total amount of heat supplied to the system during the 
cyclic process shall van ish. In conjunction with the s<>cond law, the first. 
law requires that the sum of all other energies supplied to the system during 
the cyclic process shall vanish. 

During the first partial process the amount of electric work supplied is 

where n2 and n1 denote the electric potent ials of the electrodes. 
During the second partial process 

is supplied, where K is the force acting in the positive z-direction that 
is required for the nm metal ions that are to be moved, and which are now in 
t he metallic state, to keep them at rest at an arbitrary location z. It is 
easily seen that the following equation will hold for K: 

Here vm denotes the volume of one metal ion in the metall ic state. Hence 
the above work takes on the val ue 

Iz1 K.dz = - Jz2[nm !-zm + n v dpo]dz 
az mm Tz 

Z2 Z1 
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where the second index denotes the coordinate of the el ectrode. 
We obtain, hence , t he equat ion 

(2 ) 

If the electric potent ial s in t he cross sect ions of the electrodes 
i nside the solut ion are denoted by :r1 and 1'2 , i ntegrat ion of t he first 
equation (1 ) yields 

- n.£{:r2 - :r1) = n [P - P ] + n RTlog[~ ] , m m2 m1 m v 1 

where v1 and v2 r efer again to the cross sect ions of the electrodes . 
Adding these equat ions , one obtains 

(3 ) 

Since the v' s and Po are completely i ndependent of each other, th is 
equation represents the dependence of the potential difference AIT between 
metal and sol ution on concentrat ion and hydrostat ic pressure. It should be 
noted that the postulated forces no longer appear in t he result . If t hey were 
to appear, the hypot hesis posited in §1 would have been carried ad absurdum. 
The equat ion obtained can be resolved into t wo equations, namely : 

at const ant pressure, 

at constant concentration. 

ThP final formula (3) cou ld have also been obt ained without t hP hypothesi s 
proposed in §t had the external forces been identifi ed with terrestrial 
grav ity. However, in t hat cas<' v an<l p would not be independent of each 
other and the resolut ion i nto equat ions (4) would not be permi tted. 
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It should also be briefly noted that the Nernst theory of electric 
forces inside dissociated electrolytes, taken in conjunction with the fi rst of 
equations (4), makes it possible to calculate the electromotive force of the 
concentration cell . Thus one arrives at a result that has already been tested 
repeatedly ruid that ti l l now has been derived from special assumptions . (7) 

§3 . Un the dependence of the quantity till on the nature of the acid 

Ye shall consider the following ideal state of equi librium: Let us 
again have a cylindric vessel . Parts I and II shal l each contain a completely 
di ssociated sal t solution; the two salts shall have an ident ical metal ion 
(same metal and same electric charge) but a different nrid ion . Between the 
two parts there shall be a connect ing space V whicb contains both salts 

~. aa~ 

in solution. Upon the acid ions in V shal l act forces whose potentials 
p

5
c1> and f

8
C2) depend only on z, and these forces shall bring about that 

only infinitesimal ly few ac id ions of the first and of the second type get 
into II and 1, respectively . Furthermore, f

8
C1> and P

8
<2> shall be chosen 

such that the metal ion concentration in the two parts I and II be the same . 
Also, let Po = Po . 

I 2 
If there are per unit volume vm<u and vm12 > metal ions that correspond 

to the first and second type of salt, respectively, then 

(1) 

where the subscripts refer to space I and II, respectively . 
However, the condition for the equilibrium of the metal ions in V 

yields 
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dlog(v< 1> + v<2>) d1r 
- RT m dz m - {E Tz = 0 

where { denotes t he valency of the metal ion. 
Integrating over V and t aking equat ions (1) into account, we obtain 

(2 ) 

Next we imagine t hat electrodes made of t he solute metal are instal led in I 
and II, and construct t he follow ing ideal cyclic process : 

1st partial process : We send an amount of elect ricity {£ infinitely 
s lowly t hrough t he syst em , taking the electrode in las anode , and t he other 
as cathode . 

2nd partial process : The metal thus transport ed electrolytical ly from 
z = z

1 
to z = z

2
, which has t he mass of one gram-equ ivalent, i s now returned 

mechanical ly to the electrode in z = z1. 
By applying t he two laws of t he mechanical theory of heat, one again 

reaches t he conclusion t hat the sum of mechanical and electr ical energy 
supplied to the system during the cycl ic process van ishes. Since, as one Cd.fl 

readily see, t he second st ep does not require any energy, one obtains the 
equation 

(3 ) 

where rr2 and n1 again denote the pot ent ial s of the electrodes . By 
subtracting equations (3) and (2) , one obtains 

a.nd hence the following t heorem : 
The potential difference between a metal and a complet ely dissociated 

solution of a sal t of t his metal in a given solvent i s independent of the 
nature of the electronegative component, and depends solely on the 
concentration of the metal ions. It is assumed, however, that the metal ion 
of t hese sal ts is charged with t he same amount of electricity. 
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Before we turn to the study of the dependency of (~IT) on the nature of 
the solvent, we shal l br ief ly develop the theory of conservative molecular 
forces in l iquids . I shall borrow the notat ion from a previous art icle on 
this topic, 1 which shal l at the same time temporarily j ust i fy the hypotheses I 
am going to introduce. 

To each molecule of a liquid or a substance dissolved in a liquid shal l 
be assigned a certain constant c, so that the express ion for the relat ive 
potential of molecular forces of two molecules, which shal l be characterized 
by t he indices . .. 1 and ... 2. will be 

(a) P = P - c c <;?( r) , 
m 1 2 

where <;?(r) i s a funct ion of distance common to all molecular species . 
These forces shall s imply superpose, so that the expression for the relat ive 
potential of n molecules shal l have the form 

(b) 
o=n P=n 

Const. - ½ l I cacp <;?( rap) 
o=l P=l 

Should all molecules be ident ical, we wou ld obtain the express ion 

(c) 
o=n P=n 

Const . - ½c2 I l <;?(rap> 
o=l P=l 

Further, if the laws of interaction and distribution of the mol ecules 
are so constituted that it is permissibl e to convert the sums into integrals , 
then this express ion becomes 

1A. Einstein, Ann. d. Physik 4 (1901) : 513. (9] 
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Here N denotes t he number of molecules per unit volume. If N0 denotes the 
number of molecules in one gram-equivalent, then N0/N = v is the molecular 

[8] volume of t he l i qu id , and if we assume that the investigation involves one 
gram-equivalent and neglect t he effect of the l iquid surface, our express ion 
becomes 

We shall now choose the unit for c such t hat this express ion reduces to 

(d) 

By this choice one obt ains absolute units for the quantities c. It has been 
shown in the prev iously cit ed art icle that one remains in agreement with 
experience if one sets c = Ec

0
, where the quantit ies c

0 
refer to t he atoms 

compos ing the molecule . 
We now want to calculat e the relative at traction potential of a gram­

molecule of an ion with respect to its solvent, whi l e making the express 
assumption that the at traction fields of t he sol vent molecules do not act upon 
the electric charges of the ions. Methods to be developed later will provide 
the means by which to decide whether th is assumption i s permissible . 

If cj is the molecular constant of t he ion and c1 that of the 
solvent, then the potential of one molecule of t he ion with respect to the 
solvent has the form 

Const . - l cjcl.c.p(r) = const. - cj. clNl J dr. c.p(r0 ,d7 ) , 

f, 

where Nl denotes t he number of solvent molecules per unit volume. Since 
N0/ Nl = vl ' this expression becomes 
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However, s ince a gram-equivalent contai ns N0 molecules of the ion , we obtain 
for the rel ative pot ent ial of one gram-equivalent of the ion: 

Introducing t he solvent concentrat ion 1/v f, = vi' one obt ains the form 

(e) 

If the solvent i s a mixture of several liquids , which we shall dist inguish 
from each other by indices, we obtain 

where t he vf, denote the number of gram-molecules o-f t he individual 
components of the solvent per uni t volume. The formula (e') holds 
approximately also if the quant i ties ve vary with pos it ion . 

§5. On the depe,idence of th e el ect r ic pot entia l di ffe renc e 
ex isting bet ween a metal and a compl etel y dissociat ed solut i o,i 

of a sal t of this meta l on tlie nature of t ile sol ·ven t 

Let a cylindric vessel again be divided , as in §3 , i nto spaces I and II 
and t he connecting space V. Space J shall cont ain a first solvent, fl a. 

second one , and V a mixture of bot h, and fo rces t hat prevent diffusion shall 
act on the solvents in space V. The vessel shall contain a completely 
dissociated dissolved salt. In V, on it s anions t here shall act forces whose 
potenti al shall be cal led P

8 
and which shall be chosen such that the salt be 

of the same concentration in I and II . llle now establish t he condition for the 
equilibrium of the metal ions. We again t ake t he z-axis parallel to the 
cylinder axis from J t o II. 

The force of electric origin that acts on one gram-equ ivalent will be 

n E ,fa-
- nm Tz 
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The force exerted on the equivalent by osmotic pressure i s 

_ RT d log v 
dz 

The effect of molecular forces on the equivalent is 

where the superscripts refer to the sol vents. The equilibrium condition 
sought is t hen 

- .!... E ~ - RT d fog 11 
+ -#::{2c c 0 > v<..0 + 2cmc~2 > 11 ~2>} = 0 . 

nm az dz az m l t <- <-

If one int egrates over V and t akes int o account that v i s the same in J 
and II, and that according to our assumpt ion vi 1> and v12 > vanish, one 
obtains 

where the superscripts refer to spaces I and 11, respect ively . 
We now imagine that electrodes made up of the dissolved metal are placed 

into I and II, and construct a cycl ic process by sending an amount of elec-

tricity .!... E through the system and then return ing the transported metal 
nm 

mechanically, which does not require any work i f we assume that the hydro-
static pressure i s t he same in 1 and II . Appl icat ion of the two laws of t he 
theory of heat yields 

Subtract ion of the two results gives 
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If each of the two solvents is a mixture of several nonconducting 
liquids, one obtains somewhat more generally 

where now v1 denotes the number of gram-molecules of a component of the 
solvent in a volume element of the mixed solvent. 

Hence the potential difference MI depends on the nature of the sol ­
vent . This dependence can be used as a basis for a method of exploring the 
molecular forces. 

§6. A method for the determination of the constant c for 
metal ions and solvents 

23 

Let two completely dissociated salt solutions undergo diffusion in a 
cylindrical vessel; these salts shall be indicat ed by subscripts. The solvent 
shall be the same throughout the vessel and shall be indicated by the super­
script. The vessel shall again be divided into spaces I and II and the 
connecting space Y. Space I shall contain only the first salt, and II only 
the second salt; diffusion of the two salts shall take place in space Y. 
Into spaces I and 11 there shal l be introduced electrodes cons isting of the 
respective metal solute and having electric potentials n1 and n2•, 
respectively; onto the second electrode shall be soldered a piece of the f i rst 
electrode metal, whose potential is n2. Furthermore, we denote the el ectric 
potentials in the interior of the unmixed solutions in I and JI by 7 1 and 
72. Ye then have 

If one produces exactly the same arrangement exc~pt for us ing a 
different solvent, which shall be denoted by the superscript <2>, one 
obtains: 
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Subt racting these two expressions and t aking into account the results found in 
§5 , one obtains 

(Il2 - Ill ) ( 2> - (IT2 - Il l) cu = 

{< •2 - •1>'" - <•2 - •1> '" } - j {[c:•m]; [c:•t}-{c}2lv}" - c}"v}") . 

The extens ion required if the sol vents are mixtures i s easily obt ained 
as i n §5. 

The values of the left -hand side of t his equation are obtained directly 
from experim<'nt. The determination of t he f i rst term of t he right -hand s ide 
will be dealt wHh in the next paragraph; for the time being , let it on ly be 
said t hat this t erm can be calculat ed f rom the concentrations used and the 
molecu lar conductivities of t he respective ions for t he respective solvent , 
provided the arrangement has been suitably chosen. Thus the equat ion makes it 
possible to calculate t he second tffm on the right-hand s ide. 

This we util ize to determine t he constant c for the metal ions and t o 
test our hypotheses . We always use the same two solvents in a series of 
experiments of the kind descr ibed . Then for the whole experimental series the 
quantity 

[ 10 ) Hence , if onf' puts n1/nm
1 

= £1, etc . , t o be equal t he valency of t he 
f irst etc. metal ion , the l ast t erm calculated of the right-hand side wi ll be 
a relative m£'asure for t he quantity 

If one thus examines the combinations of all electrode metals pair by 
pair, one obtains the quantities 
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in relat i ve measure . 
One obtains in this same measure the quantities cm/t separately by 

carrying out an analogous invest igation with a metal in such a way that the 
sal t s and electrodes in/ and II contain the same metal, but that t, i .e., 
the val ency (electrical charge) of the metal ion, is different on the two 
s ides. The val ue of the quanti ties cm in th is measure can then be obt ained 
for the individual metal s. A series of such experiments thus leads to the 
rat ios of the em's, i.e . , the constant s for the molecular attract ion of metal 
ions . This series of em's must be i ndependent of the nature of the sal t s 
used, and the ratios of the em' s thus obtained must be independent of the 
nature of thP t wo solvents on which we based the investigat ion . A fu rther 
requi rement must be that cm must prove to be independf"nt of the electrical 
charge (valency) displayed by the ion. If this is the case, the above 
assumpt ion that the molecu lar forces do not act upon thf" electrical charges is 
correct. 

I f one wishes t o determine the absolute value of t he quantities c at 
m 

least approximately, one can do so by taking the approximat e value of k for 
both sol vents from the results of the previously cited paper using the formula 
c = Ec

0
. It has to be noted here, of course, that just for t he two l iquids 

most obviously suggesting themselves as solvents, namely water and alcohol, it 
has not been poss ible to demonstrate the valid i ty of the law of attraction 
from t he phenomena of capil larity, evaporation, and compress ibil ity. 

Our results could equal ly well serve as a bas is for studying the solvent 
constants c1, however, by basing the investigation on two metal ions and 
varyi ng the solvent, so t hat then the quantity 

i s t o be considered as constant . By also us ing mixtures for solvents , the 
invest igation might be extended to al l electrically noncondnctive liquids. 
From such experiments it is poss ible to calculate relative val ues of the 

[ 11] 
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quantities c
0 

t hat pertain to the at oms constituting the liquid molecules. 
Th is, too, opens ample possibilities for testing the theory inasmuch as the 
c

0 
can be arbitrarily overdetermined . Here, too, the resul t must be 

independent of the choice of the metal ions . 

Al l that now remains is to study the diffus ion process in the space Y 
in greater detail . Let the variable quantities depend on z only, where the 
z-ax.is of the Cartesian coordinate system we have chosen coinc ides with the 
direction of t he axis of our vessel. vm

1
' v81, vm

2
' and vs

2 
shall be the 

z-dependent concentrat ions (gram-equivalents per unit volume) of the four 
ionic species, f £, -f E, f E, - f

8 
E their electric charges , and r the 

~ ~ ~ 2 
electric potent ial. Since no substantial electric charges occur anywhere, we 
have for all z approximately 

In add ition, for each ionic species we obtain an equation whi ch states 
that the i ncrease per unit t ime in t he number of ions of a certain kind 
present in one volume element equals the difference between the number of 
molecules enter ing and the number of molecules leaving that volume element 
during the same time period: 

v a {a/;m, + f v E Dr] = a;mt' , 
m1 • oz z m1 m1 oz 

1121 <Pl v .4: {a/;s, + f v E Dr] = 
0

; st1 , 
S1 uz Z St S1 OZ 
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where v with the corresponding subscript denotes the constant velocity 
imparted by a unit mechanical force to one gram-equivalent of the 
corresponding ion in the solution . 

In conjunction with the boundary conditions, these four equations 
completel y determine the process taking place, since they permit the 
determination of the five quantities 

ih iJv iJ11
8 ____Ei ~ 

az' at at 
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uniquely for all times . The general treatment of the problem would entail 
great diff i culties, however, especially since equations (P) are not linear in 
the unknowns. However, we are only interested in the determination of T2 - J"1. 
We therefore multiply the equations (P) successively by fmi' - f

81
, tm

2
' - f

82
, 

and obtain, when taking into account (o) , 

In view of the fact that 

iJv 
_!!!i 

Dz ' 
av 
~ 

Bz Dz 

vanish wherever diffusion does not take place, integration of this equat ion 
with respect to z yields 

cp = 0 . 

Since time is to be considered as constant, we may write 

(13] 

[ 14 ] 
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I n general, the expression on the r ight is not a total differential , 
which means that 6Il i s determined not only by t he concentrations in 
diff us ion-free r egions but al so by the character of the diffusion process . 
However , one can make the integration poss ible by applying an art if ice in the 
arrangement . 

We imagine that spare V i s divided into t hree parts , space (1) , space 
(2), and space (3), and that these are separated from each ot her by two 
part it ions before the start of t he experiment . Let ( 1) be connected wit h I 
and (3) with II, and let the two sal ts be s imultaneously dissolved in (2 ), at 
concent rat ions t hat shall be exactly the same as in I and II, respecti vcly. 
Thus , befo re t he exper iment, (1 ) and I cont ain only t he first salt in solu­
t ion , IT and (3) only t he second, and (2) a mi xture of both. The concen­
t ration is everywhere constant . At t h~ start of t he experiment the parti tions 
are removed and immediately t hereaft er the potent ial di fference between t hP 
two electrodes is measured . For t his t ime i t is poss ible to integrate over 
t he diffus ing l ayers , because vm and II in t he first diffusing layer, 

l St 
and II and 11

52 
in the second, are constant. The integrat ion yields 

fll2 

RT[ "m, 
- V [1 + 

V f 2 II + V ( 2 II l 
:f2 - :fl = s 1 lg m1 m1 m1 s1 s1 s1 

+ vs/s1 V f: 2 II + V f: 2 V vm/- m1 m2 m2 m2 S2 S2 S2 

V - vm2 

[ 

V ( 2 V + 
V ( 2 V ] } m2 lg 1 + m2 m2 m, S2 S '}. S2 . 

V f + 
v,':l2 C S2 V f 2 V + V t: 2 II 

m2 m2 m1 mt m1 S1 St St 

The method can be s impl i f ied if it is poss ible to choose the same acid 
ion of t he samP concentration in I and II. If in this case I i s connect ed 
directly with space II, onC' has to put for the st art of the diffus ion process: 

o(v + V ) 
81 S2 = 0; II + V V const . 

az S1 S2 s 

Similarly, accord ing to assumpt ion: 

f S1 = ( = 
S2 t s and vs. VS2 vs 
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Equat ion (1) t hen becomes 

(1 ' ) 

Of the equat ions (2) , the f irst and the third remain unchanged, and the 
second and t he fourt h yield, by addition, 

If the derivat ives with respect to time are eliminated by means of 
equation (1 1

) from t he equat ions (2) thus modif ied, one obtains , as prP­
viously, an expression for dr , that i s a total differential . Integrat ing, 
one gets 

where the numerical indices now refer to the integration limi ts . Due to the 
relations 

we obtain even more simply 

In conclus ion, I feel the need to apologize for outlining here a skimpy 
plan for a laborious investigat ion without contributing anything to its 
experimental solut ion ; but I am not in the pos i tion to do so. Al l the same, 
th is work will have achieved its goal if it motivates a researcher to tackl e 

[1 5 ] 

the probl em of molecular forces from this direct ion. [161 

Bern, Apri l 1902 . (Received on 30 April 1902) 
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Doc . 3 
KINETIC THEORY OF THERMAL EQUILIBRIUM AND OF THE SECOND LAW 

OF THERMODYNAMICS 
by A. Einstein 

[Annalen der Ph ysik 9 (1902) : 417-433] 

Great as the achievements of t he kinetic theory of heat have been in t he 
domain of gas theory, t he sci ence of mechanics has not yet been able to pro­
duce an adequate fo undation for the general theory of heat , for one has not 
yet succeeded in deriving the laws of thermal equilibrium and t he second l aw 
of thermodynamics us ing only the equat ions of mechanics and the probabi lity 
calculus , t hough Maxwell ' s and Bol tzmann ' s theor ies came close t o this goal. 

[l ] The purpose of the foll owing considerations i s to close this gap. At the same 
time, t hey will yield an extension of the second law that i s of importance for 

[2] the applicat ion of thermodynamics . They wi l l also yield the mat hemat ical 
expression for ent ropy from the standpoint of mechanics. 

§1 . Mechan ical model fo r a physical sys t em 

Let us imagine an arbitrary physi cal system that can be represented by a 
mechanical system whose st ate i s uniquely determined by a very large number of 

[3 ] coordinates p1 . .. pn and the corresponding velocit ies 

Let their energy E consist of two additive terms , the potential energy V 
and the kinetic energy l . The former shall be a funct ion of the coordinates 
alone , and the latt er shal l be a quadratic function of 
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whose coefficients are arbitrary funct ions of the p's. Two kinds of external 
forces shall act upon the masses of the system. One kind of force shal l be 
derivable from a potential Ya and shal l represent external condit ions (grav­
i ty, effect of rigid walls without thermal effects. et c. ); their potential may 
cont ain time explicitly, but its derivat ive with respect to time should be 
very small. The other forces shall not be derivable from a potential and 
shall vary rapidly. They have to be conceived as the forces that produce the 
influx of heat . If such forces do not act, but Ya depends explicitly on 
time, then we are deal i ng with an adiabatic process . 

Also, instead of velocities we will introduce linear functions of them, 
t he momenta q1, . .. • qn' as the system's state variables, wh i ch are defined by 
n equations of the form 

where l should be conceived as a function of the Pi•···•Pn and Pt•· · ·•P~-

§£. On the distr i but ion of possible states between N identical adiabat i c 
stat i onarr srs tems, when the energy contents are almost identical. 

Imagine infinitely many (N) systems of the same kind whose energy 
content is continuously distributed between definite, very s l ight ly differing 
values E and E+ bE. External forces that cannot be derived from a poten- [4] 

tial shall not be present, and Ya shall not contain t he time explicit l y, so 
that t he system will be a conservative one. We examine the distribution of 
states, which we assume to be stationary. 

We make the assumption that except for the energy E = L + Y + 1' . , or a [S 1 a i 
function of th is quantity, for the individual system, there does not exist any 
function of the state variables p and q which remains constant in time; we [6] 

shall henceforth cons ider only systems that satisfy this condi tion. Our 
assumption is equivalent to the assumption that the distribut ion of states of 
our systems is determined by the value of E and is spontaneously established 
from any arbitrary initial values of the state variables that satisfy our 
condit ion regarding the value of energy. I .e., if there would exist for the 
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(7 ) system an addit ional condit ion of t he kind ip(p1 , . .. ,qn ) = const . that 

(8) 

cannot be reduced to the form ip(E) = const . , then it would obv iously be 
possibl e to choose initial condi tions such that each of the N systems could 
have an arbitrarily prescribed value for ip . However, s ince t hese values do 
not vary with t i me, it fo l lows, e .g. , that for a given value of E any 
arb i trary value might be ass igned to ~ip. extended over all syst ems , t hrough 
appropriate selection of in itial condi t ions . On the other hand, D.p is 
un iquely calculable by the distribut ion of states , so t hat other dist ri but ions 
of states correspond to other values of D.p . It is t hus clear that the exis­
tence of a second such integral ip would necessarily have t he consequence 
that the state distribution would not be determined by E alone but would 
necessari ly have to depend on the initial state of the systems. 

If 9 denotes an infinitesimally smal l region of al l state variables 

Pt •·· ·Pn• q1, ... qn' which i s chosen such that E(p1 . . . qn) lies between E 

and £+ 6£ when the state var iables belong to t he region g, t hen the 
distribution of stat es is characterized by an equation of t he form 

where dN denotes the number of systems whose state variables belong to the 
region 9 at a given time. The equation expresses the condi t ion t hat the 
distribution i s stationary . 

We now choose such an inf initesimal region C. The number of systems 
whose state variables belong to the region C at a given t jme t = 0 is then 

where the capi tal lett ers ind icat e t hat t he dependent variables pertain t o 
t ime t = 0. 

We now let elapse some arb itrary t ime t . If the system possessed the 
specific state variables P1, . .. qn at t ime t = 0, then it will possess the 
specif ic state variables p1, ... ,qn at time t = t. Systems whose state 
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variables belonged to the region C at t = O, and these systems only, will 
belong to a specific region g at time t = t, so that the fo l l owing equat ion 
applies 

However, for each such system Liouville's theorem holds , which has the form 

From the last three equations it fo l lows that 

Thus , , is an invariant of the system, which from the above must have the 
form ;( p1, ... qn ) = r*(£) . However, for al l systems considered, ¢*(£) 

differs onl y infinites imally from ¢*(£) = const .• and our equation of stat e 
will then simply be 

where A i s a quantity independent of the p's and q' s . 

§S . On the (stationary) probability of the states of a sys tem S that is 
mechanically linked wi th a system E whose energy is relat ivel y infini te 

We again cons ider an infinite number (N) of mechanical systems whose 
energy shall lie between two inf inites imally different limits E and E+ cE. 
Let each such mechan ical system be, again, a mechanical link between a system 

[9] 

S with state variables p1, ... qn and a system E wit h stat e variables [11] 

""t• · · ·Xn · The express ion for the total energy of both systems shall be con-
stituted such that those terms of the energy that accrue through 

1Cf . L. Boltzmann, Castheori e (Theory of gases] , Part 2, §32 and §37. [10] 
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act ion of t he masses of one partial system on the masses of the other partial 
system are negligible in compar ison wi th the energy E of the partial system 

[ 12 J S. Fur ther, the energy JI of the partial system E shall be infinitely 
l arge compared with E. Up to t he infinites imal ly smal l of higher order, one 
might then put 

E = H + E. 

We now choose a r egion g that is infinitesimal ly smal l in al l state var-
iabl es p

1 
... qn' r

1 
... xn and is so const i tuted that E l ies bet ween the 

const ant values E and E + 6E. The number dN of systems whose state 
variables belong to t he region g i s then according to the results of the 
preceding sect ion 

We note now that we are free to replace A with any continuous function of 
the energy that assumes the value A for E = E, as t his will only 
infinitesimally change our resul t . For this funct ion we choose A' .e-2hE, 

where h denotes a const ant which i s arbitrary for the t ime being, and which 
we will specify soon. We wr ite , then, 

We now ask: How many systems are in states in wh ich p1 is bet ween 
p

1 
+ dp

1
, and, respect i vely, p

2 
between p

2 
+ dp

2 
.. . qn between qn and 

qn + dqn, but x1 . .. xn have arbitrary val ues compatible with the condit ions 
of our system? If we cal l this number dN' , we obt ain 

d'N' A' -2hEd d J -2h/ld d = e Pi •. • qn e r1 ... Xn • 

The integration extends over those values of t he state variables for which H 

lies between E- E and E- E+ 6.E. Ye now claim that the value of h can 
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be chosen in one and only one such way that the integral in our equation 
becomes i ndependent of £. 

35 

It is obvious that the integral J e-2h8dr1 ... dxn' for which the l imits 

of int egration may be determined by the limits E and E + aE, will for a {14 ] 

specif ic 6E be a function of E alone; let us call the latter x(E) . The 
int egral in the expression for dN' can then be written in the form 

x(E - £) 

Since E is infinitesimally small compared with E, this can be written, up 
to quantities wh ich are infinitesimal ly small of higher order, in the form 

x(E - E) = x(E) - Ex'(E) 

The necessary and suffic ient condi tion for this integral to be independent of 
E is hence 

x' (E) = o. 
But t hen we can put 

- 2hE x(E) = e .w(E) , 

where w(E) = J dr1 ... dxn' extended over all values of the variables whose 
energy function lies between E and E+ 6E. 

Hence the condition found for h assumes the form 

-2hE - { w' (E)} e .w(E) . - 2h + -_- = 0, 
w(E) 

or 

h = ½ w' (E) . 
w(E) 

Thus , there always exists one and only one value for h that satisf ies 
the condi tions found. Further, since w(E) and w'(E) are al ways posi tive, 
as shal l be shown in the next section, h is also always a pos itive quantity . 
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If we choose h in t hi s way, the integral reduces to a quantity inde­
pendent of £, so that we obtain the fol l owing express ion for the number of 
syst ems whose variables p1 . . . qn l ie within the indicated limits : 

dN' A" -2h£ d d = e • Pt • • • qn 

Thus , also for a different meaning of A", this is the expression for the 
probability that the state variables of a system mechan ical ly linked with a 
system of relat ively infin ite energy l ie between infinitesimally close l imits 

[ 16) when the state has become stationary. 

§4. Proof that the quant i ty h is posi tive 

Let cp( x) be a homogeneous quadrat ic funct ion of t he var iables 
x1 . . . xn. We cons ider the quant ity z = J dx1 ... dxn' where the limits of 
integration shall be determined by t he condition t hat cp( x ) lies between a 
certain val ue y and y+ fl, where fl is a constant . We assert t hat z , 
which i s a funct ion of y only, always increases wit h increasing y wh en 
n > 2. 

If we introduce the new variables x1 = ax1 ... xn = ox~, where 
o = const., t hen we have 

Furt her, we obt ain cp(x) = o2cp( x' ) . 
Hence, t he limi t s of integration of the integral obtained for cp(x ') 

are 

.1L and y /J. 
-+-

o 2 o2 o2 

Further, i f we assume that /J. is infinitesimally small, we obt ain 

[ 17 ) Here y' l ies between t he limits 
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.1L and JL + A . 
o2 o2 

The above equation may also be written as 

) n-2 [y] z(y = o z 
02 

. 

Hence, if we choose o to be positive and n > 2, we wil l always have 

which is what had to be proved. 

where 

We use this result to prove that h is positive. 
We had found 

and E lies between E and E+ 6E. By definition, w(E) is necessarily 
posit ive, hence we have only to show that w1 (E) too is always posit ive . 

37 

'We choose E1 and E2 such that E2 > E1 and prove that w{E2) > w(E1) 
and resolve w( E1) into infinitely many summands of the form 

In the integral indicated, t he p' s have def inite values, which are such that 
V ~ E1. The l imits of integration of the integral are characterized by L 

lying between E1 - Y and E1 + 6E - V. 
To each such infinitesimally small summand corresponds a term out of 

w(E2) of magnitude 

[18) 
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where the p's and dp 's have the same values as in d[w(E1)] , but L l ies 

between t he limits E2 - V and E2 - V + 6E. 
Thus , according to the proposit ion just proved, 

Consequent ly, 

where E has to be extended over all corresponding regions of t he p' s. 
However, 

if the summation s ign extends over all p's, so that 

Further, we have 

since the region of the p's , wh ich is determined by the equation 

includes al l of the region defined by the equat ion 

§5. On the t emperature equ i l i brium 

~e now choose a system S of a specific const itution and call it a 
thermometer. Let it interact mechanically with the system E whose energy is 
relatively infinit ely l arge . If the state of the ent ire system i s stat ionary, 
the state of the thermometer will be defined by the equat ion 
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where dV is the probability that the values of the state var iables of the 
thermometer lie with in the limits indicated. The constants A and h are 
related by the equation 

where the integration extends over al l possibl e values of the state variables. 
The quantity h thus completely determines the state of the thermometer . We 
call h the temperature function, noting that , according to the aforesaid, 
each quant i ty H observable on the system S must be a function of h 

alone, as long as Y
0 

remains unchanged, which we have assumed. The quant ity 
h, however, depends only on the state of the system E (§3), i .e., it does 
not depend on the way in which E is thermally connected with S. From th is 
we immediately obtain the theorem: If a system E is connected wi th two 
infinitesimally small thermometers S and S' , the same value of h obtains 
for both thermometers . If S and S' are identical systems, t hen t hey wi l l 
also have identical values of the observable quantity H. 

Ye now i ntroduce only ident ical thermometers S and call H the 
observable measure of temperature. We thus arrive at the theorem: The 
measure of temperature B that is observable on S i s independent of the way 
in which E is mechanically connected with S; the quantity H determines 
h, which in turn determines the energy E of the system E, and this in turn 
determines its state according to our assumption . 

From what we have proved it follows immed iately that if two systems E1 
and E2 are mechan ically linked, then they cannot form a system that is in a 
stationary state unless the two thermometers S connected to them have equal 
measures of temperature or , what amounts to the same, if they themselves have 
equal temperature functions . Since the state of the systems E1 and E2 is 
completely defined by the quantities h1 and h2 or B1 and u2, it fol lows 
that the temperature equilibrium can be determined on ly by the conditions 
h1 = h2 or B1 = B2. 

It now only remains to be shown that two systems t hat have t he same 
temperature function h (or the same measure of temperature H) can be 
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mechanically connected into one single system that has the same temperature 
function. 

Let two mechanical systems t 1 and t 2 be merged into one system, but 
in such a way that the energy t erms that contain state variables of both 
systems be inf initesimal ly small. Let ~l as well as t 2 be connected with 
an infinit es imal ly small t hermometer S. The readings n1 and n2 of t he 
latter are cert ainly identical up to the infinitesimally smal l because t hey 
refer only t o di fferent locat ions with in a s ingle stationary state. The sam~ 
is of course true of the quant i ties h1 and h2. We now imagine that the 
energy terms common to bot h systems decrease infinitel y slowly toward zero . 
Thereby the quantities H and h as well as the distributions of state of 
t he two systems change infini t esimally because t hey are determined by t he 
energy alone. If then t he complete mechanical separation of E1 and E2 is 
carried out. the relat ions 

continue to hold al l the same . and the distr ibut ion of states changes inf in­
[ 20 ) itesimal ly . H1 and h1, however, wi l l now pertain only to E1, and H2 and 

h2 only t o t 2. Our process i s str ictly revers ibl e. as it cons i sts of a 
sequence of stationary stat es . Ye t hus obtain t he theorem: 

Two systems hav ing t he same t emperature function h can be merged into 
a single system having t he t emperature function h such t hat their 
distribut ion of states changes infin itesimal ly . 

Equali t y of the quanti ties h i s t hus the necessary and suffic ient 
condit ion for t he stat ionary combinat ion (thermal equilibrium) of two systems. 
From this follows immediately: If the systems E1 and E2, as well as E1 
and Ea • can be combined in a stat ionary fashion mechanical ly (in thermal 
equi librium), t hen so can E2 and Ea . 

I would l ike to not e here that unti l now we have made use of t he assump­
t ion that our systems are mechanical only inasmuch as we applied Liouvil le 's 
theorem and the energy principle . Probably t he basic laws of the theory of 
heat can be developed for systems t hat are def ined in a much more general way. 
We wi l l not att empt to do this here, but wil l rely on the equations of 
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mechan ics. We will not deal here with the important quest ion as to how far 
t he train of t hought can be separated from the model employed and generalized . 

§6. On tlie mechanical meaning of tlie quantit y h1 

The kinet ic energy l of a syst em is a homogeneous quadratic f unction 
of the quant i ties q. It is always possible to introduce variables r by a 
linear subst itut ion such t hat the kinetic energy will appear in the form ( 21 ] 

and that 

when t he int egral is extended over corresponding infinitesi mally small 
regions. The quant i ties r are called momentoids by Boltzmann. The mean 
kinetic energy corresponding to one momentoid when the system together wi th 
one of much larger energy forms a single system, assumes the form 

Thus , t he mean kinetic energy is the same for all momentoids of a system 
and is equal to 

1 l u = n, 

where L denotes the kinet ic energy of the system. 

1Cf. L. Bol tzmann, Cas tlieorie, Part 2, §§33, 34, 42 . 

(22] 

[24] 

[23] 
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§7. Ideal gases . Absolute temperature 

The t heory we developed contains as a special case Maxwell's di stribu­
tion of states fo r ideal gases. I.e . , if in §3 we under stand by the system S 

one gas molecule and by :E the tot ality of all the ot hers , t hen t he expres­
sion for t he probability t hat t he values of t he variables p1 .. ·Pn of S lie 
in a region g t hat i s infin it es imally small with respect to all variables 
wi ll be 

A -2hE I di/ = e dp1 . . . dq . 
g n 

One can also immediately realize f rom the expression for t he quant i ty h 

found in §4 that , up to t he infinit esimally smal l , t he quantity h wi ll be 
the same for a gas molecule of another type occuring in the syst em , s ince t he 
systems :E determin ing h are ident ical for the two molecules up t o the 
infini t esimally small . This establ ishes t he general ized Maxwellian 
distr ibution of states for ideal gases. -

Further, it follows immed iately that t he mean kinet ic energy of mot ion 
of t he center of gravit y of a gas molecule occurr ing in a syst em S has t he 

value ¾ h because it cor responds t o three momento ids. The kinetic t heory of 
gases t eaches us t hat this quanti ty is proport ional to the gas pressure at 
constant vol ume . If, by defin it ion, this is t aken t o be proport ional to t he 
absolute temperature , one obt ains a rel ationship of the f orm 

1 = ,.,. 1 = ½ w(E) • 
ifli w' (E) 

[ 25 ] where K. denotes a un iversal constant. and w the function introduced in §3. 

§8. The second law of the theory of heat as a consequence 
of the mechanical theory 

We cons ider a given phys ical syst em S as a mechan ica] system wit h 
coord inates Pi ··· Pn · As st ate variables of t he syst em we further introduce 
t he quantities 
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dp1 dpn 
- p ' - p' at - 1 • • ·ar - n 

P1 ... Pn shall be the external forces tend ing to increase the coordinates of 
the system. Y. shall be the potential energy of the system. L its kinetic 

i 
energy, which is a homogeneous quadratic function of the p~s. For such a 
system Lagrange's equations of motion assume the form 

(v = 1, . . v = n) . 

The external forces consist of two kinds of forces . The first kind, ,tt ), 
are the forces that represent the conditions of the system and can be derived 
from a potential that is a function of Pt · ·•Pn only {adiabatic walls, 
gravity, etc . ) : 

Since we have to consider processes which consist of states that infinitely 
approximate stationary states, we have to assume that even though Ya 
explicitly contains the time, the partial derivatives of the quant i ties 
oVafOpv with respect to time are infinitesimally small . 

The second kind of forces, Pt2) = "v' shall not be derivable from a 
potential that depends on the Pv only. The forces n represent the forces 
that mediate the influx of heat. 

If one puts Ya + ri = Y, equations (1 ) become 

n = 8( Y-L) + d { at } 
V --w;- ,IT oii;; • 

The work supplied to the system by the forces nv during the time dt 

represents then the amount of heat dq absorbed during dt by the system S, 
which we will measure in mechanical units. 

[26] 

[27] 
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(28 ] 

However, since 

(29 ] 

and, further, 

[30 ] 

we have 

(31] dQ = l Jk dpv + dl 

Since , further 

[ 32] 1, 1 L 
= 4iJi = nK. • 

we wi ll have 

[33] (1 ) 

We will now concern ourselves with the express ion 

This represents the increase of pot ential energy in the system t hat would t ake 
place during t ime dt if Y were not expl icitly dependent on time . The t ime 
element dt shall be chosen so large that the sum indicat ed above can be 
replaced by i t s average value for infinitely many systems S of equal temper­
ature , and at the same time so small that the expl ici t changes of h and Y 

[34 ] wi th time be infini tesimally smal l . 
Suppose that infinitely many systems S in a st at ionary state, all of 

which have identical h and Ya' change to new stat ionary systems which are 
characterized by val ues h+ 8h, Y+ 81' common to al l. Generally, "811 shall 
denote the change of a quantity during trans it ion of the system to a new 
state; the symbol "d" shall no longer denote the change with time but di ffer ­
ent ials of defin i te int egrals . -
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The number of systems whose state variables lie in the infinites imally 
small region g before the change is given by the formula 

here we are free to choose the arbitrary constant in V for each given h 
and V such that A wil l equal unity . We shal l do this to simplify t he 

a 
calculat ion and shal l cal l th is more precisely defined function Y-. . 

It can easily be seen that the value of the quant i ty we seek will be 

(2 ) 

where the integrat ion should extend over all values of the variables, because 
this express ion represents the increase of the mean potential energy of the 
system that would t ake effect i f t he distribution of st at es would change in 
conformity with 6J"I' and 6h, but V would not change explicitly. 

Further, we obtain 

(3 ) 

Here and in the fol l owing the int egrations have to be extended over al l pos­
s ible values of the variables. Further, it should be kept in mind that the 
number of systems under consideration does not change . This yi elds the 
equat ion 

or 

or 

(4) 4K: I - 2h( Y"+l ) 1: -N e u(hY)dp1 .. . dqn + 4Kl6h = 0 . 

(35 ] 

[36 ] 

( 37} 



[38 ] 

[39 ) 
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Y and Z denote t he mean values of t he potent ial and kinet ic energies 
of the N systems . Adding (3) and (4), one obtains 

or, because 

h = !!_ , 
4l 

6h = - ~ - 6L, 
4L2 

If we substit ute t his f ormula in (1) , we obt ain 

Thus , dQ/ T i s a complete different ial . Since 

l i = nK 

one may also set 

Thus , apart from an arbitrary addit ive const ant , '£'F / T is t he express ion for 
the ent ropy of the system , where we have put I:"" = ~ + L. The second law thus 
appears as a necessary consequence of t he mechanistic wor l d picture. 

§9 . Calcula t ion of the ent ropy 

The expression f = E"' /T that we obtained for the ent ropy f only 
appears t o be simpl e , because E"' remains t o be calculated from t he 
conditions of t he mechanical syst em. I.e . , we have 

E"'- = E + E0 , 
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where E is given directly, but £0 has to be determined as a function of E 
and • h from the condition 

I -2h(E-E0 )d d _ N e P1 •·· qn - • 

In this way, one obtains 

+ canst. 

In the expression thus obtained, the arbitrary constant that has to be added 
to the quantity E does not affect the result, and the third term, denoted 
"canst. , 11 is independent of V and T. 

The expression for the entropy f is strange, because it depends solely 
on E and T, but no longer reveals the special form of E as the sum of 
potential and kinetic energy. This fact suggests that our resu l ts are more 
general than the mechanica] model used, the more so as the express ion for h 

[40] 

[41] 

found in §3 shows the same property . [42 ] 

§10. Extension of the second law 

No assumptions had to be made about the nature of the forces that corre­
spond to the potential Va' not even that such forces occur in nature. Thus , 
t he mechanical theory of heat requires that we arrive at correct results if we 
apply Carnot's principle to ideal processes, which can be produced from the 
observed processes by intrnducing arbitrarily chosen Va's. Of course, the 
resul ts obtained from the theoretical consideration of those processes have a 
real meaning only when the ideal auxi l iary forces Va no longer appear in 
them. [43] 

Bern, June 1902. (Received on 26 June 1902) 
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Doc . 4 
A THEORY OF THE FOUNDATIONS OF THERMODYNAmcs 

by A. Einstein 
[Annalen der Physik 11 (1903): 170-187] 

(1) In a recently publi shed paper I showed t hat the l aws of t hermal equi -
librium and the concept of ent ropy can be derived with the help of the kinet ic 
theory of heat . The question that then arises natural ly i s whether t he 
kinetic theory i s real ly necessary for the derivation of t he above foundat ions 
of the theory of heat, or whether perhaps assumpt ions of a more general nature 
may suffice . In th is article it shall be demonstrated that the latter is t he 

[2) case, and it shall be shown by what kind of reasoning one can reach t he goal. 

§1 . On a general mathemat i cal representation of the processes 
i n isolated physical sys t ems 

Let the stat e of some physical system t hat we consider be un iquely 
determined by very many (n) scal ar quant ities p1,p2 . . . pn, wh ich we call 

[3 ) stat e variab les . The change of t he system in a t ime element dt is then 
determined by the changes dp1,dp2 ... dpn t hat the st ate variables undergo 
during that time element . 

Let the system be isolated, i.e., t he system cons idered should not 
interact with ot her syst ems. It i s then clear that the state of t he system at 
a given instant of time un iquely determines the change of the system in the 
next t ime element dt, i.e., the quantit ies dp1 ,dp2 .. . dpn . This statement i s 
equivalent t o a system of equations of the form 

( 1) 
dp . 
Ti = cpi( pl • • ·Pn ) (i = 1 . .. i = n) , 

where t he cp' s are un ique funct ions of their arguments . 
In general, for such a system of linear differential equations there 

does not exist an inte_gral of the form 
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which does not contain the t ime explicitly. However, for a system of 
equations that represents the changes of a physical system closed to t he 
outs ide, we must assume that at least one such equat ion exists , namely the 
energy equation 

At the same t i me, we assume that no further integral of this kind that i s 
independent of the above equation is present. 

§2. On the stationary distr ibution of state of infinitely 
many isolated phys ical systems of almost equal energies 

49 

Experience shows that after a certain t ime an i solated syst em assumes a 
state in wh i ch no perceptible quantity of the system undergoes any further 
changes with time; we call this stat e the stat ionary state . Hence it wi l l 
obviously be necessary for the functions t.pi to fulfill a certain condition 
so that equations (1) may represent such a physical system . 

If we now assume that a perceptible quant ity i s always represent ed by a 
t ime average of a certain function of the state variables p1 . . . pn' and that 
these state variables p1 . . . pn keep on assuming the same systems of values 
with al ways the same unchanging frequency, then it necessari l y follows from 
this condition, which we shall elevate to a postulate, that the averages of 
al l functions of the quantities Pt···Pn must be constant; hence, in 
accordance with the above, all perceptible quantities must also be constant. 

We wil l specify this postulate precisely . Starting at an arbitrary 
point of time and throughout time T, we consider a physical system t hat is 
represented by equat ions (1) and has the energy £. If we imagine having 
chosen some arbitrary region r of the state var iables Pi · · ·Pn• then at a 
given instant of t ime T the values of the variables p1 . .. pn wil l lie 
within t he chosen region r or outside it; hence, during a fract ion of the 
time T, which we shall call r, they will lie in t he chosen region r. Our 
condition then reads as follows : If Pi ···Pn are stat e variables of a 

[4] 
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physi cal system, i. e . , of a system that assumes a stationary st ate, then for 
each region r t he quantity r/ T has a def inite limiting value fo r T = w. 

For any infi nitesimally small region this l imiting value is infini t es imally 
small. 

1'hc following consideration can be based on th is postulate. Let t here 
be very many (N) independent physical systems , all of which arc represented 
by t he same system of cquat ions ( 1). 'We select an arbitrary instant t and 
inquire after t he distr ibut ion of the possible states among t hese N systems , 
assuming t hat the energy E of all systems lies bet ween t"" and the 
infinitesimally close value r + 6V. From the postulat e int roduced above, 
i t follows immediat ely that t he probabi l ity t hat t he stat e variables of a 
system randomly selected from among N syst ems will lie wi t hin the region r 
at t ime t has the value 

1. T Im 7 = const. 
T = w 

The number of systems whose st ate var iables l ie wi th in t he reg ion r at time 
is thus 

N• 1. T Im 7j', 
T = ro 

i.e . , a quant ity independen t of t ime . If g denot es a region of t he coordi ­
nates Pi ···Pn that i s infinitesimally small in al l variables , t hen t he 
number of syst ems whosP stat e var iables fill up an arbitrar ily chosen 
inf ini tesimal ly smal l region g at an arbitrary time will be 

(2 ) 

The function f i s obt ained by express ing in symbols t he condition t hat 
t he dist ribution of states expressed by equation (2) is a stat ionary one. 
Speci f ical l y, the region g shal l hf> chosen such t hat p1 shall l ie bet ween 
the definite val ues p1 and p1 + dp1, p2 between p2 and p2 + dp2, .. . pn 
between pn and pn + dpn ; t hPn we have at t he t ime t 
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where the subscr ipt of dN denotes the time . Taking into account equation 
(1), one obtains furthermore at time t + dt and t he same region of t he state 
variables 

However, s i nce dNt = dNt+dt' because t he distribution i s stat ionary, we have 

This yields 

, O<pv _ \ B(log t) . _ \ B(log t) . dpv _ d(log l ) 
- l ~ - l llp V <P V - l llp V dt - d t ' 

where d(log l )/ dt denotes the change of t he function log l with respect to 
t ime for an individual system, taking into account the changes with time of 
the quantities Pv· 

One obtains further 

v=n a -J dt 2 !f- + ; (E) 

f = e v=l v = e-m+t,(E) 

The unknown function ¢ is the time- independent integration constant which 
may depend on the variables Pi · · ·Pn• but can contain them, according to t he 
assumptions made in §1, only in the combination in wh i ch t hey appear in the 
energy E. 

However, since t,(E) = ¢( £"') = const. for all N systems considered, 
the expression for c reduces in our case to 

V=n {J 

-I dt l ::-
v=l v l = const . e 

According to the above we now have 

const. e-m 

[6 ] 
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For t he sake of simpl ic ity we now i ntroduce new state variables for the 
system considered; they shal l be denoted by 7v. We then have 

where t he symbol D denot es the f unctional determinant . - We now want t o 
choose t he new coordinates such that 

This equat ion can be satisf i ed in infinitely many ways , e.g., by setting 

Using t he new variables , we t hus obtain 

[7] Henceforth we wil l always suppose t hat such variables have been introduced. 

§9 . On the dis tribution of state of a s ys tem i n contact 
wi th a sys tem of relatively infi nitely la rge energy. 

We now assume that each of the N isolated systems i s composed of two 
partial systems ~ and u in int eraction. Let the state of the partial 
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system E be determi ned by the values of the variables D1 . . . DA, and that of 
t he system u by the values of the var iables x1 . . . xl . Further, let the 
energy £, which for each system shal l lie between the values er- and c/1", 
i. e . , shal1 equal r up to the inf inites imally small, be composed of two 
terms , of which the first, H, shal l be determined only by the values of the 
state variables of t, and the second, n, only by the state variabl es of u, 
so that, except for the relatively infinitesimally small, one has 

E = R+1J . 

Two systems in interaction wh i ch satisfy this condition wi l l be called two 
systems in contact . We al so assume that fJ is infin i tesimal ly smal l compared 
wi th //. 

For the number dN1 of the N-systems whose state var iables rr1 .. . nA 
and x1 ... r1 lie between n1 and n1 + dn1, n2 and n2 + dn2, . . . DA and 
DA+ dilA, and r1 and r1 + dr1, r2 and r2 + dr2, . . . rt and r1 + dri, we 
get the express ion 

where C can be a f unct ion of £ = H + q. 
However, since according to the above assumpt ion the energy of each of 

the systems cons idered up to t he infinites imal ly small has the value r, wP 

can replace C by const . e-2h/1" = const .e-2h(H+f] ) without causing any 
changes in the resul t, where h is a constant still to be def ined prec isely. 
Hence, the expression for dN1 becomes 

The number of systems whose state variables r lie between the indi ­
cated limits, while the values of the variables n are not subjected to any 
restrictive condition, may t hus be represented in the form 

(81 
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where the integral is to be extended over all values of Il to which 
correspond values of the energy // ly ing between E"' - 1J and V + 6c+"- - 'l · 

Had t he integration been carried out, we would have found t he distribution of 
the stat e of t he systems u. Th is i s i n fact poss ible. 

We put 

where t he integral on thP l eft -hand s ide is to be extended over al l values of 
the variables for which // lies between the defin i te values £ and I,' + 6V. 
The i ntegral t hat appears in the expression dN2 t hen assumes t he form 

x<E"' - 1J ) , 

or, s ince 1J i s infini tesimally smal l compared with L~, 

x(C" ) - x '( C" )·TJ . 

Thus , if h ran be chosen such that x '( E"' ) = 0, the i ntegral reduces 
to a quanti t y that i s independent of the state of u. 

I t i s poss ible to put , up to the inf ini t es imally smal l , 

-2h£ I -2hE x(E) = e dl11 ... dll~ = e -w(E) , 

[9] where t he int egration limits are the same as above, and where w denot es a 
new funct ion of £. 

The condition for h now assumes t he form 

x '( l"") ,, -2hE"'·{w' (£.f< ) - 2hw( E"')} = O 

consequently : 

If h is chosen in t his way, t he expression for dN2 will assume t he form 
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(3) 

With suitable choice of the constant this expression represents the proba- (10] 

bility that the state variables of a system in contact with another syst em of 
relatively infinitely large energy will lie within the indicated limits. The 
quantity h depends only on the state of the above system E of relativel y 
infinitely large energy . 

§4. On absolute temperature and thermal equilibri um 

Thus , the state of the system u depends only on the quantity h, and (11 ] 

the latter only on the state of the system I:. We cal l the quantity 
1/ 4hK- = T the absolute temperature of the system I:, where K- denotes a 
un iversal constant. [ 12) 

If we call the system u "thermometer, " then we can i mmediately advance 
the fol l ow i ng proposit ions: 

1. The state of the thermometer depends only on the absolute tempera­
ture of the system I:, and not on the kind of contact of the systems I: and u. 

2. If i n case of contact two systems I:1 and I:2 impart the same 
state to a thermometer u, then they have the same absolute temperature and 
wi l l also impart the same state to another thermometer u' in case of 
contact. 

Further, suppose t wo systems I:1 and I:2 are in contact and I:1 i s 
also in contact with a thermometer u. The distribution of states of u 
depends then only on the energy of th<' syst em (I:1 + I:2) , i. e . , on th<> quan­
tity h1,2· If the interact ion between I:1 and I:2 is imagi n<'d t o decrease 
infinitely slowly, t his does not change the expression for t he energy n1,2 
of the system (I:1 + I:2). which can be read i ly seen from our defin ition of 
contact and the expression for the quantity h that we formulated in the last 
sect ion . Finally, if the interaction had ceased completely, t he di str ibution 
of states of u, which does not change during the separation of I:1 and I:2, 
will now depend on I:1, i .e., on the quantity h1, where the index denotes 
association with the system I:1 alone. Hence we have 
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By an analogous line of drgument, one could have obt ained 

hence 

or, in words : If one separat es two systems E1 and E2 in contact which 
fo rm an isolated system (E1 + E2) of absolute t emperature T, t hen the now 

[13] isolated systems E1 and E2 wi l l have the same t emperature after separa­
t ion . We imagine a given system in contact with an ideal gas. This gas shall 
be complet ely descri babl e in t erms of t he kinetic theory of gases. As t he 
system u we consider a s i ngle monoatomi c gas molecu l e of mass µ whose 
state shall be completely determined by its orthogonal coordinates x, y, z 
and t he velocities {, n, ( . In accordance with §3, we obtain for the 
probabili t y that t he state variab les of t his molecule lie bet ween the limits 

[14] 

x and x + dx, ... ( and ( + d( t he well -known Maxwellian expression 

By integration, one obtains from this for the mean kinetic energy of this 
molecule 

However, the kinet ic theory of gases teaches t hat at constant vol ume of 
the gas t his quantity is proport ional to the pressure exerted by t he gas . The 
lat t er is by defin it ion proportional t o the quant ity designated in physics as 
absolute temperature . Thus t he quanti t y we designated as absolute temperature 
i s nothing else but the t empcraturr of a system mf'asured by t he gas 
t hermometer . 
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§5 . On infinit ely slow processes 

Until now we have only considered systems that are in a stationary 
state. Now we are also going to investigat e changes of stationary states, 
though only those that proceed so slowly that the distribution of stat es 
existing at an arbitrary instant differs onl y infinitesimal ly from the 
stationary distribution; or, more precisely, t hat, up to the infinitesimal ly 
smal l, the probability that the state variables l i e in a certain region C 
can be represented at any moment by the formula found above . We call such a 
change an infinites imal ly slow process. 

If the funct ions <pv (equat ion (1)) and the energy E of a system are 
specified, then, accord i ng to the above, its stationary state distribution i s 
also specifi ed . An infin i tely slow process will thus be specif i ed ei t her by a 
changing £, or by the funct ions cpv containing the t ime explicitl y, or by 
bot h circumstances s imult aneously, but in such a way t hat the corresponding 
differential quotients with respect to time are very small. 

We assumed that t he state variables of an isolated system change accord­
ing to equations (1). However, conversely, i f there exist s a system of 
equat ions (1 ) according to which the state variables of a system are changing , 
this system does not al ways have to be an i solated one. For it can happen 
that a system under cons ideration is influenced by other systems in such a way 
that th is influence depends only on such functions of the variabl e coordinates 
of the influencing systems which do not change when the distribution of states 
of the influencing system i s constant . In this case the change of the coordi­
nates Pv of the system cons idered can also be represented by a system having 
the form of equations (1). However, the functions i.pv wi l l then depend not 
only on t he physical nature of the system in quest ion, but also on certain 
constants that are defined through the influencing systems and their distribu-
tions of states. 
call adiabatic. 

This kind of i nfluence on the system under consideration we 
It i s easy to see that as long as the di stribut ions of state 

of the adiabatically influencing systems do not change, there exist s an energy 
equation for the equat ions (1) in this case as wel l. I f the states of the 
ad iabatical ly influencing systems do change, then the funct ions cpv of the [15) 

systems cons idered change explicit ly with time, with equat ions (1 ) maintaining 
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their validity at all times . Such a. change of the distribution of states of 
the system under cons ideration we cal l an adiabat ic onP. 

We now consider a second kind of changes of the state of a system E. 
Consider a syst em t hat can be influenced adi abat ically . WE' assume that at 
time t = 0 the syst em E enters into such an interaction with a system P 
of a di fferent t emperature that we called "in contact" above, and we remove 
t he syst em P after the t ime necessary for the equalizat ion of the 
temperat ures of E and P. The energy of E has t hen changed . The 
equations (1) of E are inval id during t he process but valid before and aft er 
it, while the fun ct ions cp v are t he samP before and after t he process . Such 

[16] a process we cal1 11 i sopycnic" and the energy supplied to E, "heat suppl ied." 
It is evident that, up to the inf initesimal ly smal l, it is possible to 

construct each inf initely slow process f rom a succession of infini t esimal ly 
smal l ad iabatic and isopycnic processes , so t hat in order to get a general 
overv iew we have to study the latter ones only. 

§6. On th e concept of en tropy 

Let t here be a phys ical system whose instantaneous state shall be 
completel y det ermined by t he values of t hP stat e var iables Pi··· Pn • Let t his 
system undergo a small , inf initely slow process , in which t he syst ems that 
influence thi s syst em adiabatically experience an infin i t esimally small change 
of state, and energy i s being suppli ed to the system considered by systems in 
contact. We take account of the adiabat ical ly inf luencing systems by 
st ipulat ing t hat in addit ion t o the p1 ... pn' t he energy E of t he system 
considered shall also depend on some parameters J1,J2 . .. , whose values shall 
be determined by t he distr ibutions of st ates of the systems that influence 
adiabatical l y the system considered. In purely ad iabat ic processes there 
holds at any instant a syst em of equations ( 1) whose funct ions cpv depend 
not only on th~ coordinates pv but al so on the s lowly changing quanti ties 
J; for ad iahat.ic processes t oo, there wi l l hold at any instant t he energy 
equation, whose form is 

~ at 
l ~ cpv = O • 

II 
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We now investigate the energy increase of t he system dur ing an arbitrary 
infinit esimal ly smal l, infin i tely slow process . 

For each time element dt of the process we have 

(4) \' IJl' \' IJE 
dE = l oX d). + l 1fii";, dpv • 
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For an infinites imally smal l isopycnic process, all d). van ish in each timP 
element, and thus the fi rst term of the right -hand side vanishes too. 
However, since according to the previous section, in an isopycnic process dE 
i s to be considered as heat supplied, for such a process the heat suppl ied dQ 

is represented by the express ion 

However, for an adiabatic process , during wh ich equations (1) are always 
valid, we have, according to the energy equation, 

On the other hand, according to the previous section, dQ = 0 for an 
adiabatic process, so that one can put 

' IJE dQ =lop dpv 
II 

for an adiabatic process as well . Hence, this equation must be considered as 
valid for any arbitrary process during each t ime element . Thus equation (4) 
becomes 

(4 I ) dE = l Md). + dQ. 

This expression represents the energy change of the system occur ring during 
t he whole i nfinitesimal ly smal l process at changed values of d). and dQ as 
well . 
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At the beginn ing and t he end of t he process , t he distribut ion of states 
of t he system considered is stationary, and when the system is i n contact with 
a system of rel at ively infinit ely large energy before and after t he process , 
t his assumption having formal s ign if icance only , this distribution is defined 
by the equat ion having the form 

d/1 -2hE d d = const. e • p1 ... p
11 

c-2hE d d 
e • P1 •• • Pn ' 

where dV denot es the probabi lity that the val ues of the system' s state 
variables lie with in t he limits indicated at any arbitrar ily chosen moment . 
The const ant c is defined by t he equat ion 

(5 ) J c-2hE d d 1 e • P1 .. . Pn = , 

where t he integrat ion has t o be extended over al l values of t he variables. 
Specif ically, if equation (5) holds before the process under 

cons ideration, then af t erwards we have 

(5 I) 

and t he t wo last equat ions yield 

or, since the expression in parentheses can be t aken as a constant during 
integration because t he system's energy E never differs markedly from a 
fixed average val ue before and aft er the process , and taking into account 
equation (5 ), 

(5") de - 2Edh - 2h l M d~ = 0 

However , accordi ng t o equation (4 1
) we have 
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-2hdE + 2h l Md~+ 2hdQ = 0, 

and by adding these two equat ions one obtains 

2h ·dQ = d(2hE - c) , 

or, s ince 1/4h = K. T, 

This equation states that dQ/ T is a total differential of a quantity that we 
wi ll cal l the entropy S of the system. Tak ing into account equation (5) , 
one obtains 

where the integrat ion has to be extended over al l values of the variables . 

§7. On the probab i l i ty of distribut ions of states 

In order to derive the second law in its most general form, we have to 
i nvestigate the probabil i ty of distributions of states. 

lrle consider a very large number (N) of i solated systems , all of wh ich 
can be represented by the same system of equations (1) , and whose energies 
coincide up to the infin itesi mally small. The distribution of states of these 
N systems can then be represented by an equation of the form 

{2 I) 

where in general f depends explicitly on the state variabl es p1 . . . pn and 
also on t i me . Here the function f completely characterizes the distribut ion 
of states. 

It fo l lows from §2 that when the distribut ion of states i s constant, 
which, according to our assumpt ions , i s always the case at very l arge values 
of t, we must have f = const., so that for a stat ionary distribution of 
states we wi l l have 
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From th is it follows immediately t hat t he expression for the probabili ty 
dfl for t he values of the state variables of a. system randomly chosen from 
among t he N syst ems to lie in t he infinitesimally small region 9 of the 
state var iables located within the assumed energy limits is given by 

Thi s proposition can al so be formulat ed as follows : If the whole per t inent 
region of state variables that is det ermined by the assumed energy limi t s i s 
divided into € partial regions 91.92 ... 9€ such t hat 

and i f one denotes by v1, v2, et c., the probabil ities that t he values of the 
state variables of the arbit rarily chosen syst em lie wi th in 91 ,92.. . at a 
certain instant, t hen 

The probabil ity that at a given moment the system considered will belong to a 
specific region from among t hese g1 . .. g1 regions is thus just as great as 
t he probability t hat i t will belong to any other of t hese r egions . 

The probability that , at a randomly chosen t ime, f l of l'/ systems 
considered wil l belong to the region g1, f 2 t o region g2, .. . tf to region 
91,• is hence 

or also, s i nce f1,t2 ... fn are to be thought of as very large numbers: 

t=l 
log fl = const. - l f l og t . 

f=l 
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If f, i s suff iciently large , one can put wi thout noticeable error 

log fr = const. - J f l og f dp1 ... dpn . 

In t his equation V denotes the probability that a given distribution of 
states , which is expressed by t he numbers t: 1,t:2 . . . fl, or , else, by a speci fic 
funct ion f of p1 ··· Pn according to equation {2'), prevails at a given 
t ime. 

If in this equation f were const ant, i .e . , independent of the pv' s 

within the energy l imits cons idered, then the distribution of states con­
si dered would be stat ionary, and, as can easily be proved, t he expression for 
t he probability f of the distr ibution of st ates wou ld be a maximum. If f 

depends on the values of t he pv ' s, t hen it can be shown that t he expression 
for log V for t he distribution of states considered does not have a~ 
extremum, i .e . , that there exist distributions of states differing 
infin it esimally from the considered one for which fr i s larger. 

If we follow the N systems considered for an arb i trary t ime i nterval, 
t he distribution of states , and t hus also V, will cont inual ly change wi t h 
time, and we will have to assume that always more probable distributions of 
st ates will follow upon improbabl e ones , i. e . , t hat II increases unti l t he 
distribut ion of states has become constant and f a maximum. 

I t will be shown in the following sections that the second law of 
t hermodynam ics can be deduced from this proposition . 

First of all, we have 

where the function f determines the distr i bution of states of the N 
systems at a certain time t, t he function f 1 determines t he distribut ion of 
states at a certain later t ime t', and the integration on both sides i s t o be 
extended over all values of the variables. Further, if the quant i t i es log t: 
and log t: 1 of the individual systems from among the N systems do not 
differ markedly from each ot her, then, since 

[17] 
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J (dp1 ... dpn = J f ' dp1 .. . dpn = N, 

the last equat ion becomes 

(6) - log ( 1 ~ - log ( . 

§8. Appl icat ion of the results obtained to a part i cular case 

We consider a fini t e number of physical systems u1,u2 . .. that together 
form an isolated syst em , which we shall call total system. The systems 
u1,u2 ... shall not interact marked ly with each other thermally, but t hey 
might affect each other adiabat ical l y. The distribution of states of each of 
the systems u1 ,u2 . . . , which we shall call part ial systems , shall be station­
ary up to the infinites imal l y smal l . The absolute t emperatures of the part ial 
systems may be arbitrary and different from each other . 

The distribut ion of states of the system u1 wi l l not be markedly 
different from the di stribut ion of states t hat wou ld hold if u1 were in 
cont act wit h a physical system of the same temperature. We can t herefore 
represent its distribution of states by the equation 

where the indices (1) indicat e aff iliat ion with the part ial system u1. 
Analogous equat ions hold for the other partial systems. Since the 

instantaneous values of the state variables of the individual part ial systems 
are independent of those of the other systems , we obtain for t he distribution 
of states of the total system an equat ion of t he form 

[ 18] (7 ) 

where t he summat ion is to be extended over all systems , and the integration 
over the arbitrary region 9, which is infinitesimal ly small in all the 
variables of the total system . 
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Ye now assume that after some time the partial systems u1,u2 . . . enter 
into some arbitrary interaction with each other, but that during that process 
the total system always remains an isolated one . After the lapse of a certain 
time there shal l arise a state of the total system in which the partial 
systems u1,u2 . . . do not affect each other thermally and, up to the 
infinitesimally small, exist in a stationary state. 

Then an equat ion completely analogous to that holding before the process 
wil l hold for the distribution of states of the total system: 

(7 ' ) 

We now cons ider N such total systems . Up to the inf inites imally smal l , 
equation (7) shall hold for each of these systems at t ime t, and equation 
(7' ) at time t' . Then the distribution of states of the N total systems 
considered at times t and t' wil l be given by the equat ions 

To these two distributions of states we now apply the resul ts of the prev ious 
section . Neither the 

nor the 

~(c ' - 2h ' E' ) 
E' = N•el v v v 

for the individual systems among the N systems are here markedly different, 
so that we can apply equation (6), which yields 

l (2h'£' - c ') ~ l (2h£ - c) , 
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or, noting that according to §6 t he quantities 2/i1 E1 - c1, 2li2E2 - c2, . . . are 
identical with t he entropies s1,s2 .. . of the partial syst ems up to a 
un iversal constant , 

(8) 

i .e., t he sum of the cntrnpies of the part ial systems of an i solated syst em 
after some ar bitrary process is equal t o or larger t han t he sum of the 
entropies of the par tial systems befo re the process. 

§9. /Jeriva t ion of llll' second law 

Let there be an iso lated total system whose partial systems shall be 
called /I, JI , and E1 ,E2.... Let t he system II, which we shall call heat 
reser voir , have an energy t hat is in-finitely large compared with the system 
JI (engine). Simi larly, the energy of the systems E1,E2 .. . , wh ich interact 
adiabatically with each other, shall be infinit ely large compared wi th that of 
JI. We assume that all the partial systems JI, II, E1, E2... are in a stat ion­
ary st ate . 

Suppose that the engine It passes through a cyclic process dur ing which 
i t changes the di str ibutions of states o-f t he syst Pms E1,E2 ... infi nitely 
slowly through ad iabatic influence, i. e. , perfonns work, and receives the 
amount of hrat Q from the system fl. The rec iprocal adiabatic influence of 
the systems E1,E2 ... at t he end of the process will t hen differ from that 
before the process. We say that t he engine J/ has convert ed the amount of 
heat Q into worl<. 

We now calculate the increase in ent ropy of t he individual partial 
systems during t he process considered. Accordi ng to the result s of §6 t he 
entropy increase of t he heat reservoir II equals -Q/ 1' if T denotes the 
absolute temperature. The entropy of JI is the same before and af ter the 
process because the system f/ has undergone a cyclic process. The systems 
E1 ,E2... do not change thei r entropies during the process at all because 
these systems only exper ience an adiabatic infl uence that is infinitely sl ow. 
Hence t he ent ropy increase S' - S of t he total syst em has the value 
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S' - S = - j . 

Since according to the results of the last section this quant ity S' - S is 
always ~ 0, it follows that 

This equation expresses the impossibility of the existence of a perpetuum 
mobile of t he second kind. 

Bern, January 1903. (Received on 26 January 1903) 
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Doc. 5 
ON THE GENERAL MOLECULAR THEORY OF HEAT 

by A. Einstein 
[Annalen der Physik 14 (1904): 354-362] 

In t he foll owing T present a few addenda t o an article I published last 
year. 1 

When I refer to t he "general molecular t heory of heat," I mean a theory 
that i s essentially based on the assumpt ions put forth in §1 of the article 
cited. In order t o avo id unnecessary repet itions, I assume t hat the reader i s 
familiar wit h that article and use the same notations I have used there . 

First , I derive an express ion for the entropy of a syst em , which i s 
[ 2] completely analogous to the express ion found by Boltzmann for ideal gases and 
[3] assumed by Pl anck in his t heory of rad iat ion. Then I give a simple derivation 

of t he second l aw. After t hat I exam ine t he meaning of a universal constant, 
[4 ] which plays an import ant role in the general molecular theory of heat. I 

conclude with an application of the t heory t o black-body radiation , wh ich 
yields a most int erest ing relationship between t he above-mentioned universal 

[ S] constant , which is determined by the magnitudes of t he element ary quant a of 
matter and electricity, and the order of magnitude of t he radiation wave­
lengths , without recourse t o special hypotheses . 

§1. On the express ion for ent ropy 

For a system t hat can absorb energy only in the form of heat, or, in 
other words, for a system not affected adiabat ically by other systems , t he 
fo l lowing equation holds between the absol ute t emperature T and the energy 
E, accord ing to §3 and §4, loc.c it.: 

[1] 1A. Einste in, Ann. d. Phys . 11 (1903) : 170. 
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(1) 

where K denotes an absolut e constant and w is defined (s l ightly 
differently than in the articl e cited) by the equation 
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The integral on the right i s to be extended over all values of t he state 
variables that completely and uniquely define the instantaneous state of t he 
syst em, and to which correspond val ues of the energy that l i e between E and 
E + 6£. 

From equation (1) it fo l lows that 

S = J f = 2Klog [w(E)] . 

Omitting the arbitrary integrat ion constant, the expression thus represents 
the entropy of the system. This expression for the entropy of a system holds 
not only for systems that experience purely thermal changes of state, but also 

[6] 

[7] 

for systems that pass through arbitrary adiabatic and isopycnic changes of [8] 

st ate. 
The proof can be deduced from the last equation of §6, loc. cit.; I omit 

it because here I do not intend to present any application of the l aw in its 
general signif icance. 

§2. Deri vation of the second law 

If a system is located in an environment of a given constant temperature 
10 and is in thermal interaction ("contact") with this environment, then, as 
experience shows, it too assumes the temperature T0 and maintains this temp­
erature T0 for all times. 

However, according to t he molecular theory of heat, this l aw does not 
hold strictly, but rather in a certain approximation - even t hough this 
approximat ion is very good for all systems access ible t o direct investigat ion. 
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I f the system cons idered has been in t hat env i ronment for an inf initely long 
t ime , the probabi lity W that the value of the system's energy lies between 
the limits E and £+ 1 at an arbitrarily chosen instant (§3, loc . cit. ) 

will be 

where C is a constant. This value is different from zero for every £ but 
has a maximum for a certai n I, and - at least for all systems access ibl e to 
direct investigat ion - is very smal l for any npprec iably larger or smaller 
E. We call t he system 11beat reservoir" and assert in brief: the above 
expression represents the probab ilit y that thf' energy of the heat reservoir in 
question wil l have the value £ in the environment mentioned . Using the 
resul t of t he previous sect ion, we can also write 

1-(s - £] 
It' = Ce2" "'T; , 

where S denotes the entropy of the heat reservo i r. 
Let t here bP a number of heat reservoirs , all of them in the environment 

{10 ] at temperat ure T0 • The probabil ity that the energy of the first reservoir 
wi ll have the valuf' £1, t he serond the value £2 ... , and the last the value 
El, is , then, in an eas ily understood notation, 

{ 11 ] (a) 

Let these reservoirs enter into interact ion with an engine that passes 
through a cyclic process. Assume that during this process no heat exchange 
takes place eit her b<>tween the heat reservoir and the environment. or between 
the engine and thP environment. After the process cons idered, let the 
energies and entro1>i es of the systems be, respect ively, 



DOC. 5 71 

and 

The probability of the tot al state of the heat reservoir defined by t hese [ 12] 

values will be 

(b ) 

Neither t he state of the environment nor thr state of the engin£' has 
changed during the process , because the latter underwent a cyclic process. 

If we now assume that less probable states never follow the more 
probable ones , we have 

W' ~w. 

But we also have, according to the energy principle, 

If we t ake this into account, t hen i t fol l ows from equations (a) and (b) that 

[13] 

S. On the meaning of the constant K i n the kinet ic theory of atoms [l4] 

Let us consider a physical system whose instantaneousstate i s completely 
determined by t he values of the state variables 
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If the system considered is in "contact" with a system of relatively 
inf initely large energy and of abso lute t emperature 10 , then its di stribut ion 
of states i s determined by the equation 

In this equat ion K. is a universal constant whose meaning shall now be 
examined . 

On the basis of the kinet ic t heory of atoms , one arrives at an inter­
pretation of this const ant in t he following way, familiar from Boltzmann' s 

[15) works on the theory of gases. 
Let t he Pv' s be t he ort hogonal coord inates x1 y1 z1 ,x2y2 . . . ,xnynzn, and 

{1~1(1,{2q2 ... ,{nqn(n the veloc it ies of the ind iv idual atoms (cons idered to 
be pointlike) of the system. One can choose these state variables because 

[1 6) they satisfy the condi tion l Or.pvf 8pv = 0 ( loc. cit . , §2 ). One has then : 

nm 
E = t (x1·· ·zn) + l f({i + n! + (!) , 

1 

where the first summand denotes the potent ial energy and the second the 
kinetic energy of t he system. Let now an infinitesimal ly small region 
dx1 .. . dzn be given . We fi nd the mean value of t he quantity 

corresponding to this region: 
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This quantity i s thus independent of the choice of the region and the choice 
of the atom, and hence is in general the mean value for the atom at t he 
absolute temperature 10 . The quantity 3K equals the quotient of the mean 
kinetic energy of an atom and the absolute temperature . 1 

Further, the constant K is closely connected with the number N of 
true molecul es contained in one molecule as the chemists understand it 
(equivalent we ight based on 1 g hydrogen as unit). 

I t is well known that for such a quant i ty of an ideal gas, and with gram 
and centimeter used as units, we have 

pv = BT, where B = 8.31 x 107 . 

Accord ing to t he kinetic theory of gases, however, 

2 -
pv = '3 NL , 

(17 ] 

(19] 

1Cf . L. Bol t zmann, Yorl . uber Castheorie [Lectures on the theory of gases] (18] 

£ (1898): §42. 
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where l denot es t he mean value of the kinetic energy of motion of the center 
of gravity of a molecule . If one also takes int o account t hat 

l, = l, 
V 

one obtains 

Hence t he constant 211: equals t he quot ient of the constant R and t he number 
of molecul es contained in one equivalent. 

[ 20] If. i n accordance w .i th O. E. Meyer. one sets N = 6 .4 x 1023 , one gets 
( 21 ] l'i, = 6. 5 )( 10-11. 

(22 ] 

§4 . Th e general s ign i f i cance of the const an t K 

Let a given system be in contact with a system of rel at i vel y infinitely 
large energy and temperature T. The probability dll t hat t he value of i ts 
energy wi ll lie between £ and £ + d£ at an arbitrari l y chosen instant is 

E 

dll = C; 2
K

1wEdE 

For t he mean value £ of E one obtains 

Since , f urther , 

we get 

Different iation of t his equation with r espect to T yields 
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This equation states that the mean value of the bracketed expression vanishes, 
and hence 

d£ - --
2K'f2 aT = P. - El 

In general, the inst antaneous value E of the energy differs from £ by a 
certain amount, wh ich we call "energy fluctuation" ; we put 

lt'e then obt ain 

r> _ - ...... dE ,:,- EE = £~ = 21,,P. aT 

The quantity ~ is a measure of the thermal stabil i ty of the system; the 

larger the ~, the less this stability. 
Thus the absolute constant K determi nes the thermal stabi lity of t he 

system . The rel ationship just found is interesting because it no longer 
contains any quantity reminiscent of the assumptions on which the theory is 
based. 

The magnitudes of '?',?,etc. can be calculated by successive differ­
entiat ions wi thout any difficulty . 

§5. Appl ication to radiat ion 

The last-found equat ion would allow an exact determination of the uni ­
versal constant K if it were possible to determine the mean val ue of t he 
square of the energy fluct uation of a system; however, at the present state of 
our knowledge this is not the case. In fact, there i s only a single ki nd 

[23) 

[24) 

[25) 



[26) 

[27 ] 
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of physical system f or which we can surm ise from experience t hat it possesses 
energy fl uct uation: th is is empty space f i l lPd wi th t emperature radiat ion . 

That i s , if the l inear dimensions of a space fi l led with temperat ure 
radiation are very large in comparison with the wavelength corresponding to 
the maximum energy of t he radiation at the t emperature in quest ion, t hen the 
mean energy fluct uation wil l obviously be very small in comparison with t he 
mean radiation energy of that space. In contrast, if the radiat ion space i s 
of the same order of magnitude as t hat wavelength, then the energy f l uctuation 
will be of t he same order of magni tude as t he energy of t he radiation of the 
radiat ion space . 

Of course, one can object that we are not permitted to assert that a 
radiation space should be viewed as a sys t em of the kind we have assumed, not 
even if t he appl icabi lity of t he general molecular theory is conceded. 
Perhaps one wou ld have t o assume , fo r example, t hat the boundar ies of the 
space vary with i t s elect romagnet ic states . However, t hese circumstances need 
not be considered, as we are dealing with orders of magn i tude only . 

If, then , in the equation obt ained in the last section, we set 

and according to t he Stefan-Boltzmann law 

E = cvT4 , 

where v denotes the volume in cm3 and c the constant of this law, then 

we must obtain for 3,fv a value of the order of magnitude of the wavelength 
of the maximal radiation energy that corresponds to t he temperature in 
quest ion. 

One obtains 

where we have used for K t he val ue obta ined from t he kinetic theory of 
[28] gases, and 7 .06 x 10-15 for c. 
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If Jm i s the wavelength of the energy max imum of the rad iation, then 
experiment yields 

One can see that both the kind of dependence on the temperature and the 
order of magnitude of Jm can be correctly determined from the general 
molecular theory of heat, and cons ider ing the broad general ity of our assump­
t ions, I believe that th is agreement must not be ascribed to chance. 

Bern , 27 March 1904 . (Received on 29 March 1904) 

[29) 

(30) 
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Doc . 6 
Rev iew of G. DELI,UZZO, "Principles of Graphic Thermodynamics" 

("Pr incipi di t ermod inamica grafica, " Il Nuo vo Cimento 8 (1904 ): 
196-222, 241-263) 

[Deiblatt er zu den Annalen der Physik 29 (1905 ): 235] 

This article , which is obviously meant for engineers , i s divided into 
four sections , t he fi r st of which treat s graphically the changes of state of 
arbitrary fluids. Thus , the fam i l iar areal const ruction of t he work performed 
(l ) by t he body, of the energy increase (6£) , and of t he heat absorbed {C) 
are given in the pv-plane in §3, while in §1 and §5 t he increase of entropy 
for an arbitrary change of state is presented as an area with G and T (the 
absolute t emperature) , and wi t h C and 1/ T, respectively, as coordinates. 
Th is i s followed by the theory of cyclic processes and t he def inition of 
reversibility and irreversibilit y of the processes . A process is considered 
to be reversible or irrevers ib le, respectively, drpending on whether the 
pressure exerted on the fluid duri ng t he process does or does not equal the 
i nner pressure of the fl uid; th is stipu lat ion, which , by the way, is 
irrelevant for what fo llows , does not make sense , because then the principle 
of t he equalit y of action and reaction would not be satisfied in any 
i rreversible process . Thr second section of the article contains t he 
application of the theory to ideal gases; examined are the changes of state at 
constant volume , const ant pressure, and constant temperature, as well as t he 
adiabatic and polyt ropic cha.nge of state. fhe last section deal s with the 
efflux of gases through pipes; t he hypot hesis of Saint-Venant and Wantzel i s 

[l] replaced by (already known) theoret ical considerat ions . The t hird and fourth 
sect ions of t he article contain t he t heory of the saturated and the 
superheated water vapor, which are t reated in a corresponding way, with 
special cons ideration given to t he theory of t he efflux of water vapor through 
pipes and to t he t heory of improving the efficiency of steam engines by 
superheating. For the equat ion of stat e for wat er vapor, p ( v+ const .) = 

[ 2 ] const. T i s used, following Battell i and Tumlirz. 
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Doc. 7 
Revi ew of A. FLIEGNER, "On Claus ius's Law of Entropy" ("Uber den 

Claus ius' schen Entropi esatz, " Na turf orschende Cese l lschaf t in Zu ri ch . 
Yierte l jahrsschrift 48 (1903) : 1-48) 

[Beiblat t er zu den Anna len der Physik 29 (1905): 236] 

The aut hor examines t he entropy changes of a system during a process 
presumed t o be st r ictly discont inuous (di scontinuous mcpansion of a fl uid) and 
concludes f rom his calculations t hat the entropy decreases at t he beginning of 
the sudden expansion. Cons iderations concerning i rrevers ible chemical 
processes l ead t he author to t he conclusion t hat t he equat ion dQ/ T S dS 
holds only for exother mic but not for endothermic processes. Similarly, the 
equation i s not supposed to hold for cool ing mixtures. It i s t herefore 
underst andabl e t hat the aut hor closes wi th t he following sentence: "Thus , t he 
question of whether the entropy of the universe does change at al l, and if it 
does , then in which sense , cannot yet be answered at all at present , and wi ll 
probably remain undecided forever." [ l] 

Doc. 8 
Review of W. McFadden ORR , "On Clausius' Theorem for Irrevers ible Cycles , 

and on the Tncrcase of Entropy" (Philosoph ica l Jfagazine and Journal of 
Science 8 (Series 6) (1904): 509-527) 

[Beib la t t er zu den Annalen der Physik 29 (1905): 237] 

The author shows t hat in t he Vorlesungen uber The rmodynamik [Treatise on 
Tliermodynamics] Planck appl ies the concepts "revers ible" and "irreversible" in [ l] 

a sense somewhat different from that in which he defines them. Then he 
advances a series of objections t hat may be raised against various ways of (2 ) 

representing the foundations of t hermodynamics ; especially notewortl1y among 
t hese objections i s t hat by Bertrand , i. e . , that t he pressure, temperat ure, [3] 

and entropy a.re defi ned only for t he case tl1at at least suff icieutly small 
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parts of a system can be regarded as being in equilibrium; a simi lar objection 
i s raised with respect to the heat supplied. 

Doc . 9 
Review of G. H. BRYAN, "The Law of Degradation of Energy as the Fundamental 
Pr inciple of Thermodynamics" ("Das Gesetz von der Entwertung der EnPrgie 
als Fundament alprinzip der Thermodynamik, 11 in lleyer , S. , ed . , Fes tschrif t. 

Ludwig Boltzmann gewidme t zum sechzigsten Ceburts tage 20 . Februar 1904 . 
(Leipzig: J.A. Barth, 1904) : 123- 136) 

[Be i blatter zu den Annalen der Phys ik 29 (1905 ): 237] 

The author starts out f rom the energy principle as wel l as the principle 
[ 1] of t he decrease of free energy. The free energy (available energy) of a 

system is defined as the max imal mechanical work that the system can perform 
during changes compatible with the ext ernal conditions. This is fol lowed by 
the defin ition of heat supplied to the system. Then the concept of t hermal 
equilibrium, t he second law, the concept of absolute temperature, and the 
concept of energy arP developed from the st ated fundamental principles in an 
elegant way, and, finally, the equations of thermodynamic equilibrium are 
der ived. 
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Doc. 10 
Review of N. N. SCHILLER, "Some Concerns Regarding the Theory of Entropy 
Increase Due to the Diffusion of Gases Where the Initial Pressures of the 

Latter Are Equal" ("Einige Bedenken betreffend die Theorie der 
Entropievermehrung durch Diffusion der Gase bei einander gleichen 

Anfangsspannungen der letzteren, 11 in Meyer, S., ed., Festschrif t. Ludwig 
Boltzmann gewidmet zum sechzigsten Ceburtstage 20. februar 1904. 

(Leipzig: J.A. Barth, 1904): 350-366) 
[Beiblatter zu den Annalen der Physik 29 (1905) : 237] 

First it is shown that a homogeneous gas can be reduced isothermally to 
an n-time smaller volume wi thout supply of work and heat if one assumes the 
existence of wal l s that are permeable by a part of the mass of a gas but not 
by the rest of the mass of the gas; according to the author, this assumption [I] 

does not contain any contradiction. Then it is demonstrated that the 
expression for the entropy of a system consisting of spatially separated gases 
of equal temperature and pressure has the form 

the entropy of the system after diffusion can be represented by the same 
formula. From this it is concluded that the entropy is the same before and 

[2) 

after diffusion . The author arrives at the same result by a line of reasoning [3] 

that cannot be reproduced here. In this line of reasoning one operates with a 
surface that separates a chemically homogeneous gas into two parts such that 
in thermal and mechanical equilibrium the gas pressure in the two parts is 
different; it is (implicitly) assumed that during the passing of the gas 
through this surface no work is transferred to the gas by the latter. 
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Doc . 11 

Review of J . J. WEYRA UCH , "On t he Specific Heats of Superheated Water Vapor" 
("Uber die spezif ischen Warmen des iiberhitzten Wasserdampfes ," Zeit schri f t 

[l] des Vereines deut scher Ingeni eure 48 (1904 ): 21-28, 50-54. Reprint , 9 pp. ) 
[Beibla tt er zu den Anna len der Ph ysik 29 (1905) : 240] 

Determinat ions made thus far of the specific heat cp are presented and 
[2] compared (I). Equations of state for water vapor sui t able for practical 
[3) application are presented and discussed (II ) and, using t hose by Zeuner, cp 

and cv for sat urated steam (I II) and cp and cv for arbi t rarily super­
heated steam are der ived t hermodynamical ly . Then t he total heat and the steam 
heat are det ermined (V). In (VI) and (VII) there follow the fundamental 
equat ions of the theory of heat for superheated steam , t he ir application to 
special cases , and several numerical examp les. 

Doc. 12 
Review of J . IL van't HOFF, "fhe Influence of t he Changes in Specif ic Heat 

on the Work of Conversion" ("Einfluss der Anderungen der spezifi schen 
Warme auf die Umwandlungsarbeit, 11 in Meyer, S. , ed., Fest schrift. Ludwig 

Bolt zmann gewidmet zum sechzigst en Geburts tage 20. Februar 1904 . (Leipzig: 
J .A . Barth, 1904) : 233-241) 

[Beiblatt er zu den Anna l en der Phys ik 29 (1905 ): 240] 

The author shows by way of t hermodynamics t hat the work of convers ion E 
(supplied to the surroundings) of a syst em A into a system B (e .g., by 
melt ing) in isothermal convers ion can be represented in t he form 

£ = Eo + AT - ST lg T. 
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(A i s a constant, T the absol ute temperature, S = SA - S0 the difference 
between the specific heats , wh ich are assumed to be independent of T. For 
reasons of analogy (because during isothermal expansion of a gas E = AT = 2T [ l] 

lg ( v 0/ v A)) , AT is regarded as determined by change of concentration . 
The equation is applied to experiments of Richards, who for convers ions [2 ] 

of the kind 

\lg+ ZnSO4.aq = Zn + MgSO4.aq 

(where the initial ZnSO4 and the .MgSO4 formed have the same 
concentration) by the electric method found that 

dE n =- KS, 

where K is approximately t he same for all convers ions examined . Omitt ing 
the term AT, the author obt ains from t he above equat ion 

dE al = - S( 1 + lg T) - 6. 7 S . 

Mean val ues of observat ions yielded : 

Reaction [#] ! (-S) Reaction [#] /(-S) 
Mg+ ZnSO4 5 Zn + NiS04 8 
}lg + CuS04 5.4 Fe + CuSO4 7. 5 

~lg + Ni SO4 5.9 Ni+ CuSO4 7 

Mg + FeSO4 6 .3 Zn+ CuSO4 7.4 

Zn+ FeSO4 7 .3 Fe+ NiSO4 7.1 

The equation for E, applied to fus ion as wel l as to conversion of 
allot ropic element s and polymorph ic compounds (again neglecting t he term AT) 
fur ther yields the proposition: The form which i s stable at the higher 
t emperature (e .g., liqu id} has the higher specif ic heat. This conclus ion i s 
almost always conf irmed by experiment. Finally, i t is concl uded from the 

[ 3] 

[4] 
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[5] equation that the Thomson-Berthelot rule must be valid at low temperatures, 
but t hat at higher t emperatures the term -ST lg T may cause deviations when 

SA> s8• 

(1] [2] 

Doc. 13 
Review of A. GIAMMARCO, "A Case of Corresponding States in Thermodynamics" 

("Un caso di corrispondenza in termodinamica, " Il Nv.ovo Cimento 5 (5 ) 
(1903): 377-391) 

[Beiblatter zv. den Annalen der Physik 29 (1905 ) : 246] 

If one has a liquid (volume v) in a closed cyl indrical tube and above 
it its saturated vapor (volume v'), and one plot s v/v ' as a funct ion of the 
absolute temperature T in orthogonal coordinates, one obtains , depending on 
the amount of the enclosed substance, a curve that has a maximum (v/v')max' 
or a curve that i s convex toward the abscissa, or one (as the limiting case) 
that approaches the critical t emperature l inearly . The author investigated 
ether, alcohol and chloroform in this way and finds that the above maxima 
(v/v ')max l ie on a straight line. Accord ing to t he law of corresponding 
states , two temperatures T and T' at whi ch two different substances have 
the same (v/v' )max must be corresponding temperatures (the method for the 
determination of corresponding temperatures) , hence T/ Tc = T'/T~ . Using the 
(absolute ) critical t emperatures of ether (467° ) , alcohol (517°) , chloroform 

[3] (541°) (Bureau des Longitudes , 1902) , the author f inds from his observations: 
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Corresp. abs . temperat ures ( Y/Y' )max T 

~ 
Ether Alcohol Chloroform Ether Alcohol Chloroform 

387° 428.07 447.09 0.320 0.320 0.330 0. 828 
391 432.8 452.8 0.340 0.340 0.350 0.837 
394 435.8 456 0.355 0.356 0.360 0.843 
404 447 467.9 0.395 0.400 0.409 0.865 
414 456 .5 478 0.440 0.440 0.448 0.883 
423 468 .2 489 .6 0.490 0.490 0.495 0.905 
427 472 .7 494.4 0.510 0.510 0.511 0.914 
437 485.3 505.8 0.556 0.556 0.556 0.935 
458 506 .6 530 0.655 0.652 0.652 0.981 
467 517 541 0.695 0.698 0.698 1 

Examining the curve that const i tutes the l imi ting case, the author f i nds 
that the disappearance of the men iscus dur ing heat ing and i ts appearance 
dur i ng cooling occur at the same temperature (the crit ical temperature ). 

C 4 l 
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Doc. 14 
ON A HEURISTIC POINT OF VIEW CONCERNmG THE PRODUCTION 

AND TRANSFORMATION OF LIGHT 
by A. Einst ein 

[Annalen de r Phys ik 17 (1905) : 132- 148] 

There exists a profound formal di fference between the t hPoret ical 
concept ions phys ic ists have formed about gases and ot her pondcrable bodies , 
and Maxwell 's t heory of electromagnetic processes in so-cal led empt y space. 
While we conceive of the stat e of a body as being completely determined by the 
pos it ions and vel ocit ies of a vPry large but nevertheless finite number of 
atoms and electrons , we use continuous spatial f unctions to determine the 
electromagnetic state of a space, so that a fin ite number of quantit ies cannot 
be cons idered as sufficient for the complete descr ipt ion of the 
el ectromagnetic state of a space . According t o \laxwell 's theory, energy i s to 
be cons idered as a cont i nuous spatial fu nct ion for al l purely electromagnetic 
phenomena, hence al so for light, while according to the current concept ions of 
phys icists t he energy of a ponderable body is to be described as a sum 

[2 ] extending over the atoms and electrons . The energy of a ponderable body 
cannot be broken up into arbitrar i ly many, arbitrarily small parts , while 
accord ing to Maxwell' s theory (or, more generally, accordi ng to any wave 
theory) the energy of a light ray emitted from a po int source of light spreads 
continuously over a steadily i ncreasing volume . 

The wave t heory of light, whi ch operates with continuous spatial f unc-
[3) t ions, bas proved itself spl end idly in describing purely opt ical phenomrna and 

will probably never be replaced by another theory . One tshould keep in mi nd, 
however, t hat opt ical observat ions apply to time averages and not t o momPnt ary 
values, and i t i s conceivable that despite the complete conf irmat ion of the 
theories of diffract ion, reflect ion, refract ion, dispersion, et c . , by exper­
iment, the theory of ligh t, wh ich operatrs with continuous spat ial fu nctions , 
may l ead to cont radict ions with experience when it is applied to t he phenomena 
of product ion and t ransformation of 1 ight . 

Indeed, it seems to me that the observations regarding "black-body 
[41 rad iation," photoluminescence, production of cathode rays by ultraviolet 
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l ight, and other groups of phenomena associated with the product ion or con-
vers ion of light can be understood bet ter if one assumes that the energy of [5] 

light is discontinuously di stributed in space. According to the assumpt ion to 
be contemplated here, when a light ray i s spreadi ng from a point, the energy 
is not di stributed continuously over ever- increasing spaces , but consists of a 
finite number of energy quanta t hat are localized in points in space, move 
wit hout div iding, and can be absorbed or generated only as a whole. 

In th is paper I wish to communi cate my train of thought and present t he 
fact s t hat led me to th is course, in t he hope that the point of vi ew to be 
elaborated may prove of use to some researcher s in t he i r investigations. 

§1 . On a difficulty encount ered in the theory of "black-body radiat ion" 

We shall begin by taking the standpoint of Maxwell 's theory and t he 
electron theory and consider the fo l lowing case. Consider a space enclosed by 
completely reflecting walls containing a number of gas molecules and el ectrons 
that move freely and exert conservative forces on each ot her when they come 
very close to each other , i .e . , t hey can col lide like gas mol ecules according 
to t he kinetic theory of gases. 1 Suppose , further, that a number of electrons 
are bound to points in space wh i ch are very far from each other, by forces 
that are directed toward these points and are proportional to t he elongations 
from t he points. These electrons, too, shall enter i nto conservative 
i nt eractions with the free mol ecules and electrons when t he latter come very 
close t o them. We call the electrons bound to the points in space 
"resonators" ; they emit a.nd absorb electromagnet ic waves of defini te periods . [71 

According to the present vi ew about the origin of light, the radiat ion 
in the space considered, f ound for the case of dynamic equilibr ium on the 
basis of Maxwell's theory, must be ident ical wi th "black-body radiation" - at [8] 

least if one assumes that resonators of all the relevant frequencies are 
present. [9 ] 

1This assumption i s equivalent to the assumption that the mean kinetic 
energies of gas molecules and electrons are equal to each other at thermal 
equilibrium . As we know, Mr . Drude used the l at ter assumption to derive t he (6] 
ratio of thermal and electric conductiv ities of the metals t heoretically. 
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For t he time being , we disregard the radiation emitted and absorbed by 
the resonators and l ook for the condition for dynamic equilibr ium 
corresponding to the int eraction (coll is ions ) of molecules and electrons . For 
such an equilibrium, the kinet ic theory of gases provides t he condi tion t hat 
t he mean kinet ic energy of a resonator electron must be equal to the mean 
kinetic energy of the progress ive mot ion of a gas molecule . If we resolve the 
mot ion of t he resonator el ectron into three mut ual ly perpendicular oscil latory 
motions , we f ind for the mean value E of the energy of such a linear 
oscil latory mot ion 

where R denotes t he universal gas constant, N t he number of "real 
[ IO] molecul es" in one gram-equivalent , and T the absolute temperature, for 

because of t he equality of the time averages of the resonator' s kinet ic and 
potential energi es , the energy E is 2/3 t imes as large as t he kinetic energy 
of a f ree mouoatomic gas molecule . If due t o some fact or-- in our case, due to 
radiat ion--the energy of a resonator were t o have a t ime averdge larger or 
smaller t han £, the coll isi ons wi t h the free electrons and molecules would 
lead to au energy transfer to t he gas or an energy absorption from t he gas 
that i s , on average, different from zero . Thus , in the case we are consider­
ing, dynamic equ i librium is poss ible only if t he mean energy of every 
resonator equals £. 

We now apply s imilar reason ing t o t he interaction between t he resonators 
and t he radiat ion present i n t he space. Mr. Planck has derived t he condition 
for the dynamic equil ibrium in th is case1 using the assumpt ion that 

[ 111 1M. Planck, Ann. d. Ph ys. l (1900) : 99. 



DOC. 14 89 

the radiation may be considered as the most disordered process imaginable. 2 

He found 

£11 is here the mean energy of a resonator with the proper frequency 11 (per 
oscil l ation component), L the velocity of l ight, 11 the frequency, and 
p11dv the energy per unit volume of that part of the radiation whose frequency 
lies between v and v + dv . 

If, on the whole, the radiation energy of frequency 11 does not con­
tinual ly decrease or increase, we must have 

!T = E= E =g,,p, 
JJ v orv~ 11 

(14] 

P _ R 8w2 T [ 15] 
II - N -,;r . 

2This assumption can be formulated as follows. Ve expand the Z-component of [12] 
the electrical force (Z) at an arbitrary point of the space considered in a 
time interval between t = 0 and t = T (where T shall denote a time 
period that is very large relative to all pertinent oscillation periods) in a 
Fourier series 

ll=oo 

Z = l A11 sin(2rv ½ + a11 ) , 
11=1 

where A
11 

~ 0 and O ~ 0
11 

~ 2r. If one imagines that at the same point in 
space such an expansion is made arbitrarily often at randomly chosen in i tial 
points of time, then one will obtain different sets of values for the 
quantities A11 and av. For the frequency of occurrence of the various 
combinations of values of the quantities A11 and av• there will exist, then, 
(statistical) probabilities dK of the form 

dK = f (A
1
A

2 
.. . o1o2 ... )dA

1
dA

2 
.. . da

1
da

2 
. .. 

The radiation is i n the most disordered state imaginable when 

i.e., when the probabi lity of a specific val ue of one of the quant i t ies A or 
a is independent of the values taken by the other quantities A and a, re- [13 ] 
spectively. Hence, the more closely fulfil l ed the condition that the individ-
ual pairs of quantities Av and av depend on the emiss ion and absorption 
processes of particular groups of resonators, the closer to a "most disordered 
state imaginabl e" the radiation js to be viewed in our case. 
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This relat ion, obtained as the condit ion of dynamic equilibrium, not only 
[ 16 ) fails t o agree with experience but it also states that in our model a defin it e 

distribution of energy betwePn ether and matter i s out of the question, since 
the wider t he chosen range of the resonators ' frequencies , the larger t he 
radiat ion energy of t he space, and we obtain in t he limit 

[ 17 ) 

[ 18] 

[20 ] 

§2. On Planck's det erminat i on of the el eme n. tary quanta 

We now wi sh to show t hat, Mr. Planck 's determination of the elementary 
quanta i s to some ext ent independent of his t heory of "black-body radiat ion." 

Planck' s formula1 for Pv• whi ch has been suff icient t o account for all 
observations made so far, reads 

where 
0 = 6 . 10 X 10-56 

fJ : 4 .866 X 10-11 . 

For large values of T/ v, i. e. , for large wavelengths and radiat ion dens ities. 
t his formula reduces in the limit to 

One can see that t hi s formula agrees wi t h that derived from t he Maxwellian 
t heory and t he electron theory in §1. By equat ing t he coeff ic ients of t he two 
formulas , we obtain 

[19 ] 1M. Planck , Ann. d. Ph ys . 4 (1901) : 561. 
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or 
N = i ~ = 6.17 x 1023, 

i. e., one atom of hydrogen weighs 1/N gram= 1.62 x 10-24 g. This is exactly 
t he value found by Mr . Planck, which shows sat isfactory agreement wi t h values 
found for this quantity by other methods . [21 ] 

We therefore arrive at the following conclusion : the greater t he energy 
density and the wavelength of radiation, the more useful the theoretical 
principles we have been using prove to be; however, these principles fail 
completely in the case of small wavel engths and small radiat ion densities. 

In the following, we shall consider "black-body radiation" in connection 
with experience without basing it on any model for the production and 
propagat ion of rad iat ion . 

§9. On the ent ropy of radiat ion 

The fol lowing consideration is contained in a famous st udy by Mr. Wien 
and shall be presented here only for the sake of complet eness. [22] 

Consider radiation that occupies a volume v. We assume that the 
observable properties of t his radiation are completely determi ned when t he 
rad iation dens ity p(v ) is given for all frequenc ies.• Since radiat ions of 
different frequenc ies are to be viewed as separabl e from each other without 
expend i ture of work and without supply of heat, the entropy of rad iation can 
be represented in the form 

S = v fo cp(p,v )dv, 

where cp i s a f unct ion of the variabl es p and v. One can reduce cp to a 
funct ion of a single variable by formulating the assertion that ad iabatic 

1This assumption i s arbitrary. Naturally, we wi l l maintain this s impl est 
assumption as long as the experiment al results do not force us t o abandon it . 
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compression of radiation between reflect ing walls does not change i ts entropy. 
However, we shal l not enter into thi s , but wil l immed iately investigate how 
the funct ion cp can be obtained from the black-body radiat ion l aw. 

In the case of "black- body rad iation, " p is such a function of 11 

that the entropy is a maximum at a given energy, i .e., 

b fo cp(p,11 )d11 = 0, 

if 

6 fo pdv = 0. 

From this it fo l lows t hat for every choice of 6p as funct ion of 11 

where ,\ i s i ndependent of 11 . Thus for black- body radiation lJcp/ lJp is 
independent of 11 . 

The fo l lowing equation appl ies when the t emperature of black-body 
rad iat i on of volume v = 1 increases by dT: 

dS = J11

=oo ~p dpdv , 
11= 0 

or, since bcp/ lJp i s independent of 11, 

dS = ~ dE 

Since dE equals the heat added, and the process is reversible , we also have 

dS = j dE 
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Comparison yields 

This is the law of black-body radiation. Thus, one can determine the law of 
black- body radiation from the function cp, and, vice versa, the funct ion cp 
can be determined by integrating the former, considering that cp vanishes 
for p = 0. 

law 

§4. Limit i ng law for the entropy of monochromatic radiation 
at low radiation density 

Though the existing observations of "black-body rad iation" show that the 

fJ 11 

p = av3 e - 1 [23] 

postulated by Mr. lt'. 'Wien for "black-body radiat ion" i s not strictly valid, 
the law has been fully confi rmed by experiment for large values of 11/T. We [24] 

shall base our calculations on thi s formula, but wi l l keep in mind that our 
results are valid within certain limits only. 

First of al l, this formula yields 

1 __ 1 l p 
1 - 7Tv gav3'' 

and next, using the relation found in the preceding section, 

t.p(p,ll ) = - fv {lg~ - t} . 

Now cons ider radiat ion of energy E whose frequency lies between 11 and 
11 + dv . Let the radiation occupy volume v. The entropy of this radiation i s 

S = vcp(p,11 )d11 = - fv {1g va!adv - 1} . (25 ] 
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If we restrict ourselves to invest igating the dependence of the entropy on the 
volume occupied by the rad iat ion and denote the entropy of radiation by S0 

when t he latter occupies t he volume v0 , we obt ain 

This equation shows that the entropy of a monochromatic radiation of 
sufficiently low dens i ty varies wi th the volume according to the same law as 

[26] the entropy of an ideal gas or t hat of a dilute solut ion . The equat ion just 
found shal l be interpreted in the fol lowing on the basis of t he principl e 
introduced into physics by Mr . Boltzmann, according to which t he ent ropy of a 

[27] system is a function of t he probability of i t s state. 

§5. Molecular- theore tical i nves t igat i on of the dep endence of the ent ropy of 
gases and di lute solutions on the volume 

In calculat ing t he ent ropy by molecular- t heoret ical methods , the word 
"probabili ty" i s often used in a sense that does not coincide with the 

[28] definit ion of probabi lity used in t he probabi l ity calculus. In particular, 
the "cases of equal probability" are often stated hypothetically when t he 
theoretical models applied are suffic ient ly definite to permit a deduction 
instead of a hypothetical statement . I wi ll show in a separate paper t hat, 
when dealing with thermal processes , it is complet ely suff icient to use the 

[29 } so-called "statist ical probab i I ity, 11 and I hope that this will remove a 
logical di ffi cul ty that st i l l hinders the implementation of Bol tzmann's 
principle . Here , however, I shall only give it s general formulation and its 
appl ication to very special cases. 

If i t makes sense t o talk about the probability of a state of a system, 
and if, further, each entropy increase can be conceived as a t rans ition to a 
more probable state, then the entropy s1 of a system is a funct ion of t he 
probabil ity r1 of its inst antaneous stat e . Therefore, if we have two 
systems s1 and s2 t hat do not interact with each other, we can put 
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81 = 'Pt ( k'l ) ' 
82 = 'P2 < k'2 ) 

If t hese two syst ems are viewed as a single system of entropy S and 
probab i lity k', we have 

and 

The last relation t el l s us that t he states of the two systems are mut ual ly 
independent events. 

From these equat ions it fol lows t hat 

and f rom th is we get, f inal ly, 

c,o1 ( V1) = C lg( v1) + const . 
ip

2
( V

2
) = C l g(V

2
) + const . 

cp( V) = C lg( V) + const . 

95 

The quant i ty C i s thus a un iversal constant; it fo l lows from the kinet ic [30] 

theory of gases that its value is R/N, where t he meaning of the constants 
R and N i s t he same as above. If S0 denotes the entropy in some in itial 
state of a system considered, and f the rel ative probabil i ty of a stat e 
l1aving t he entropy S, we obtain, in general , 

R S - S0 = N lg II . 

First, we deal with the fol l owing special case. Let a volume v0 

contain a number (n) of movable points (e.g., mol ecules ) , which shall be the 
object of our consideration. The space may also contain any number of movable 
po int s of whatever kind. No assumpti ons shall be made about the law govern ing 
the motion of the point s in the space except t hat, with regard to t his mot ion, 
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no part of the space (and no direction) shall be di stinguished from the 
others. The number of the (first -mentioned) movable points shal l be so small 
t hat the effects of the points on each other can be disregarded . 

This syst em, which might be, for example, an ideal gas or a di lut ed 
solut ion, possesses a certain entropy S0 • Let us consider a part of the 
volume v0 of magnitude v and l et all n movable points be transferred 
into the volume v without any other change in the system. It is obvious 
that this state has a different value of ent ropy (S) , and we now wish to 
det ermine the entropy difference with the aid of Boltzmann' s principl e. 

We ask: How great is the probability of t he last -mentioned state rela­
tive to the original one? Or : How great is the probabi l i ty that at a 
randomly chosen instant of time all n independent ly movabl e points in a 
given volume v0 wi l l be contained (by chance) in volume v? 

Obviously, for this probability, which i s a "statist i cal probabil ity, " 
one obtains the val ue 

from this , by applying Bol tzmann's principle, one obtains 

It i s noteworthy that the derivation of this equation, from which the 
Boyle-Gay-Lussac law and the identical law of osmotic pressure can easily be 
obtained by thermodynamics, 1 does not require any assumptions about the law 
governing the motion of the molecules . 

11£ £ is the energy of the syst em, we obtain 

hence 
- d(E - TS) = pdv = TdS = R N ~v 

pv =RN T . 



DOC. 14 

§6. Interpretation of the expression for the dependeice of the entropy of 
monochromatic radiation on volume accordi ng to Bolt zmann ' s principle 

In §4 we found the following expression for the dependence of the 
entropy of monochromatic radiation on volume: 

If we writ e this formula in the form 

and compare it with the general formula expressing the Boltzmann principle 

R S - S0 = 11 lg II , 

we arrive at the following conclus ion : 

97 

If monochromatic radiation of frequency v and energy E is enclosed 
(by reflecting walls) in the volume v0 , the probability that at a randomly 
chosen instant the entire radiation energy will be contained in the portion v 
of the volume v0 is 

From this we further conclude: 
Monochromatic radiation of l ow density (with in the range of validity of 

Wien ' s radiat ion formula) behaves thermodynamically as if i t consisted of 
mutually independent energy quanta of magnitude Rfiv/N. 

lr'e al so wish to compare the mean value of the energy quanta of "black­
body radiation" with the mean kinetic energy of the center-of-mass motion of a 

molecule at the same temperature . The latter i s i<R/N)T, while the mean 
value of the energy quantum obtained on the bas is of the Wien formu la is 
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If, with regard to the dependence of its entropy on volume , a mono­
ch romatic radiat ion (of suff icient1 y l ow dens ity) behaves like a discontinuous 
medi um cons isting of energy quanta of magn itude R[Jv/N, t hen it seems 
reasonable t o investigat e whet her t he l aws of generat ion and conversion of 
light are also so constituted as if l ight consi sted of such C'nergy quanta . WC' 
wi ll now ronsidrr this question. 

§7. Dn Stokes ' rul e 

Let monochromati c light be converted by photoluminescence t o light of 
another frequency, and let us assume in accordance wit h t he result just 
obtained that both t he producing and t he produced l ight cons ist of energy 
quanta of magnitude (R/N)Pv , where v denotes t he pertinent frequency. fhe 
conversion process is then t o be intPrprctc<l as fo llows . Each producing 
energy quant um of frequency v1 is absorbed and- at least at a suff icient ly 
l ow distribut ion density of the producing energy quanta-by itself gives r ise 
t o the generat ion of a light quant um of frequency v2; possibly the absorption 
of the produc ing light quantum might al so be accompanied by t he simultaneous 
generation of light quanta of frequenc iPs v3 , v4 , etc. , as well as of energy 
of some other kind (e.g. , heat) . It makes no difference by \./hat kind of 
intermediary processes t his end result is mediated. If the photolumincsccnt 
substance is not t o be regarded as a permanent source of energy , then , 
according t o the energy pr incipl e, t he energy of a produced energy quant um 
cannot be greater t han t hat of a producing l ight quantum ; hence we must have 

or 
ll R 
N Pv2 ~ N Pv1 , 

"2 ~ vi • 
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This i s the well-known Stokes' rule. 
I t should be especially emphasized that , according to our conception, at 

weak i l luminat ion the produced amount of light must be proportional to the 
intensity of the exciting l ight, because each exciting energy quantum wil l 
i nduce an elementary process of the kind indicated above, independent of t he 
act ion of the other exciting energy quanta. In part i cular, no lower limit 
wil l exist for t he i ntensi ty of the exciting light below which the light woul d [ 34) 

be unable to act as an excit er of l ight. 
According to the conception of the phenomena expounded, deviations from 

Stokes' rule are conceivable in the follow ing cases: [35 ) 

1. When the number of simul taneously convert ing energy quanta per un it 
volume i s so large t hat an energy quantum of the light produced could obtain 
its energy from several producing quanta; 

2. When the producing (or produced) light does not have the same energy 
propert ies that obtain for "black-body rad iation" within the range of validity 
of Wi en1s l aw as , for example, when the exciti ng light is produced by a body 
of such high temperature that Wien's l aw i s no longer val id for t he pert i nent 
wavelength. 

The latter possibi l ity deserves special at t ent ion, for according to the 
conception expounded above it is not impossible that even in great dilut ions 
the energetic behavior of a "non-Wien radiat ion" differs from that of a 
11 black- body rad iation" that is within the range of val idi ty of \Hen ' s l aw. 

§8. On the generation of cathode rays by illuminat ion of solid bodies 

The usual conception, that the energy of l ight i s continuously di s­
tribut ed over the space t hrough which it travels , meets with especially great 
difficulties when one attempts to explain the photoelectric phenomena ; these 
difficul ties are presented in a pioneering work by Mr. Lenard . 1 C 361 

According to the concept ion t hat t he exciting light consists of energy 
quanta of energy (R/ 1\')/Jv , the product ion of cathode rays by light can be 
conceived in t he following way. The body's surface l ayer i s penet rated by 

1P. Lenard, Ann. d. Phys. 8 (1902) : 169 and 170 . [ 37) 
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energy quanta whose energy is converted at least part ially to kinetic energy 
of electrons . The s implest poss ibil i ty i s that a light quantum t ransfers i ts 
entire energy to a single electron; we wil l assume that this can occur. 
However, we wil l not exclude the poss ib i lity that t he electrons absorb only a 
part of the energy of t he l ight quanta . An electron provided with kinetic 
energy in the interior of the body wi ll have lost a part of its kinetic energy 

(38) by the time it reaches the surface . In addit ion, it wi l l have to be assumed 
that in leaving t he body, each electron has to do some work P 
(characteristic for the body ) . The greatest perpendicular velocity on l eaving 
the body wil l be t hat of electrons Located direct ly on the surface and excited 
perpendicular to it . The kinetic energy of such electrons i s 

R N /311 - P • 

If the body is charged to the positive potential Il and is surrounded 
by conductors of zero pot ent ial , and if n is just suff icient to prevent a 
loss of electricity of the body, we must have 

R, 
II{ = N /311 - P , 

(39) where f denot es the electric mass of the electron, or 

DE = R{)11 - pi , 

where £ denotes the charge of one gram-equivalent of a unival ent ion and P' 
is the potential of th is quantity of negat ive elect r icity with respect to t he 
body . 1 

(41) If one sets E = 9.6 x 103 , t hen n. 10-s is t he pot ential in volts that 
t he body acquires during irradiation i n the vacuum . 

To see whet her the relation derived agrees with experience in order of 
magnitude, we put P' = O, 11 = 1.03 x 1015 (which corresponds to the limit 

11£ one assumes that the release of t he ind ividual electron from a neutral 
(40 ) molecule by light must be accompanied by t he expenditure of some work, one 

does not have to change anyt hing in the above relation; but t hen pi is to 
be considered as the sum of two summands. 
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of the solar spectrum toward the ultraviolet) and /J = 4.866 x 10-11 . We [42] 

obtain Il . 107 = 4.3 vol t, a result that agrees in order of magnitude with the 
results of Mr. Lenard. 1 

If the formula derived is correct, then Il, presented as a function of 
the frequency of the exciti ng light in Cartesian coordinates, must be a 
straight l ine whose sl ope is i ndependent of the nature of the substance [44] 

invest igated . 
As far as I can see, our conception does not confl ict with the proper­

ties of the photoel ectric effect observed by Mr. Lenard . If each energy 
quantum of the exciting light transmits its energy to electrons independent of 
al l others , then the velocit y distribut ion of the electrons , i .e . , the qual i ty 
of the cathode rays produced, wil l be independent of the intens ity of the 
exci ting light; on the other hand, under otherwise identical circumstances , 
the number of electrons leaving the body will be proport ional to the intensi t y 
of the exciting l ight .2 

Remarks similar to those regarding the expected deviations from Stokes ' 
rule appl y t o the expected limits of val idity of t he laws mentioned above. 

In the foregoing it has been assumed that the energy of at least some of 
the energy quant a of the producing light is transmitted completely to one 
single el ectron each. If this obvious assumption i s not made, instead of the 
above equation one obtains the follow ing one: 

DE + P' ~ RPv . 

For the cathode luminescence, which const i tutes the inverse process of 
that discussed above, one obtains by a considerat ion analogous to that above (45] 

TI£ + P' ~ R{Jv . 

For the substances investigated by Mr. Lenard, PE is al ways cons iderably (46] 

larger than RPv because the potential difference the cathode rays must 

1P. Lenard, Jnn. d. Phys. 8 (1902 ) : 165 and 184, Table I, Fig . 2. 
2P. Lenard, loc. cit., p. 150 and pp . 166-168. 

(43] 
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traverse in order t o produce light t hat is just visible amount s t o several 
hundred volts in some casPs. and to thousands of vol t s in ot hers . 1 We must 
therefore assume t hat the kinetic energy of one electron i s used for t he 
product ion of many quanta of light energy. 

§9. On the ionization of gases by ul t raviolet light 

We wi ll have to assume t hat in the ionization of a gas by ultraviolet 
light one quantum of light energy is used for the ion ization of one molecule 
of gas . From t his it follows that the work of ionization (i. e., t he work 
t heoretically requi red fo r ionization) of one mol ecule cannot be greater than 
the energy of one effect ive quantum of l ight absorbed. If J denotes the 
(t heoret ical) ioni~ation work per gram-equivalent, we must have 

Rf)v ~ J . 

However , according to measur ements by Lenard , t he l argest effect ivP wavelength 
(49] for ai r i s about 1. 9 x 10·5cm, hence 

Rf)v = 6.4 x 1012 erg ~ J . 

An upper Limit fo r t he work of ion ization can also be obtained from the 
ionization potentials in rarefied gases . Accord ing t o J. Stark2 t he smallest 
measured ionization pot Pntial (at plat inum anodes) for air is about 10 vo l ts. 3 

Thus one obt ains 9.6 >< 1012 as the upper limit for J, which is almost equal 
t o the value we have just f ound. ThPre i s still another consc>queucc , whose 
verification by experiment seems to mr of great importance. [f rach absorbed 
quantum of light energy ionizes one mol ecule , then the following relation 

[47 ] 1P. Lenard, Ann. d. Phys . 12 (1903): 469. 

[ SO] 2J. Stark, llie Elekt rizitat in Casen, p. 57 . Leipzig, 1902 
3Jn t he inter ior of t he gases the ionization potential of negat ive ions is 
f ive times larger, however . 
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must hold between the quantity of light absorbed l and t he number j of 
gram-molecules ionized by i t: 

103 

If our conception corresponds to real it y, thi s r elat ion must apply t o all 
gases t hat (at t he relevant frequency) displ ay no not iceable absorpt ion that 
is not accompanied by ionization. 

Dern, 17 March 1905. (Received on 18 March 1905) 

[51] 
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A NEW DETERMINATION OF MOLECULAR DIMENSIONS 

The earliest determinations of real sizes of molecu les were made 
poss ible by the kinetic theory of gases, whereas the physical phenomena 
observed in l iquids have thus far not served for the determination of 
molecular s izes. This i s no doubt due to the fact t hat it has not yet been 
possible to overcome the obstacles that impede the development of a detai l ed 
molecular-kinetic t heory of liqu ids. I t will be shown in this paper t hat the 
size of molecul es of substances dissolved in an undissociat ed di l ute solution 
can be obtained from the internal friction of the solution and the pure 
solvent and from the diffus ion of the di ssolved substance with in the solvent 
if the volume of the molecule of the dissolved substance is large compared 
with the volume of the molecule of the solvent . This is because, with respect 
to i t s mobi lity in the solvent and its effect on the internal fr ict ion of the 
latter, such a molecule wi ll behave approximat ely as a solid body suspended in 
a solvent, and it will be permissible to apply to t he motion of t he solvent in 
the immediate vicinity of a molecule the hydrodynamic equations in which the 
l iquid is considered to be homogeneous and hence its molecular structure is 
not taken into consideration . For the shape of the solid body that shall 
represent the dissol ved molecule, we will choose the spherical shape . 

§1 . On the influence on the mot ion of a liquid exercised by a very small 
sphere suspended in it 

Let us base our consideration on an incompressible homogeneous liquid 
with a coefficient of viscosity k. whose velocity components u, v, w are 
given as functions of the coordinat es x, y, z and of the time. At an 
arbitrary point x0 , y0 , z0 , the funct ions u, v, w are devel oped as 
funct ions of x - x0 , y - y0 , z - z0 according to Taylor 's t heorem, and 
around th is point there is demarcated a region C that is so smal l that 
within it only the l inear terms of this development must be taken into 
consideration . As i s well known, the motion of the liquid cont ained in C 
can then be considered as a superposit i on of three motions, i.e., 

[5 ) 
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1. A parallel di splacement of all liquid particles wit hout a change in 
their relative position; 

2. A rot ation of the liquid without a change in the relative posit ion 
of t he l iquid part icles : 

3. A dilatational motion in t hree mutually perpendicular directions 
[6] (the principal axes of di lat ation) . 

Let us now assume that in the region C thPre i s a spher ical r igid body 
whose center shall 1 iP at t he point x0 , y0 , z0 and whose dimens ions shall be 
very smal l compared with t hose of the region C. We further assume that the 
motion under cons ideration is so slow that the kinetic energy of the sphere as 
well as t hat of t he liquid can be neglected . We also assume that the velocity 
components of a surface element of t he sphere coincide with the corresponding 
velocity component s of the adjacent liquid particles , i.e . . that the 
t rans ition layer ( imagined to be continuous) also displays everywhere a 

[71 coefficient of viscos ity that is not inf inites imally smal l. 
It is obvious t hat the sphere simply takes part in the partial motions 1 

and 2, without mod ifying the motion of t he neighboring particles , s ince the 
liquid moves l ike a rigid body in t hese part ial motions and since we neglected 
t he effects of inertia . 

However, mot ion 3 does get modified by the presence of t he sphere, and 
our next task wil l be to invest igate the effect of t he sphere on this motion 
of t he liquid . If we refer mot ion 3 to a coordinate system whose axes are 
paral lel to t he principal axes of dilat ation and put 

X - Xo = { , 

11 - Yo = 1J , 

Z - Zo = ( , 

we can descr ibe the above motion, if the sphere i s not present, by the equa­
tions 

( 1) I 
"o = A{ , 

v0 = BTJ 

wo = C( 
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A. B, C are constants which because of the incompress ibi l ity of the l iquid 
satisfy the condition 

(2) A+B + C= O. 

If. now, a rigid sphere of radius P is l ocated at point x0 , y0 , z0 , the 
motion of the liquid around it will change. We will, for convenience, call P 
"finite" and the values of {, 7/, (, for which the liquid mot ion is no longer 
noticeably modified by the sphere, 11 infin itely large." 

Due to the symmetry of the motion of t he liquid, it i s clear that the 
sphere can perform neither a translation nor a rotation during the mot ion 
considered, and we obtain the boundary conditions [8 ] 

u = v = w= O for p = P , 
where we have put 

Here u, v, w denote the velocity components of the motion now considered 
(modified by the sphere). If we put 

(3) 
u =A{+ "1 , 
v = Dq + v1 , 

w = C( + w1 , 

the velocities u1, v1, w1 would have to van i sh at infinity, since at 
infinity the mot ion represented in equations (3) should reduce to that 
represented by equations (1 ). 

The functions u, v, w have to satisfy the equat ions of hydrodynamics 
including internal fr ict ion and neglecting inertia. Thus the fo l lowing 
equations will hold1: [9] 

1G. Kirchhoff, Yorlesungen ·uber .Hechan ik. 26. Vorl. [Lectures on Mechanics. [ 10) 
Lecture 26]. 
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[11 ) (4 ) { * = kb:u ~ = ktlv * = l:,.w, 

bu + bv + 8w _ 0 "5{ Mi F( - • 

where t:,. denot es the operator 

and p the hydrostatic pressure. 
Since equations (1) are solut ions of equations (4) and the latter are 

linear, according to (3) the quantities u1, v1, w1 must also satisfy 
equations (4 ). I determi ned u1, v1, w1 and p by a method given in §4 of 
the Kirchhoff lectures ment ioned above1 and found 

[ 12] 1"From equations (4) i t follows t hat llp = 0. If we take p in keeping with 
this cond ition and determine a funct ion Y that satisf ies the equation 

[13) 

(14 ] 

(15] 

1 
llV = I p , 

then equat ions (4) are sat isf ied i f one puts 

v', w = %f + w' 

and chooses u' , v' , w' such that 6u ' = 0, !:,.v ' = O, 6w' = 0, and 

Now, if one put s 

and in accordance with th is 

and 

t hen the constants a, b, c can be determined such that u = v = w = 0 for 
p = P. By superposing three such solutions , we get the solution given in 
equations (5) and (5a). 
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+ const .. 

(5 ) 

where 

(5a) 

I t can eas ily be proved t hat equat ions (5) are solutions of equat ions (4) . 
Since 

and 

we get 

fl( = o. /l ! = 0, 
p 

1 1 
6 6 {5 [J2- 5 [J2- ] 

kllu =- k F( {M } = - k F( 3 f'JA F[l + a JYJB F# + • • • . 
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However, accord ing to the f i r st of equations (5), the last of the expressions 

[16) 

[ 17) 

we obt ained is identical to ~ - In the same way, it can be shown that the [18 ] 

second and t hird of equations (4 ) are satisfied. Further, we get 
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{ 

,52 m ,52 m ,52 rn) 
~ + ~ + %i = { A + B + C} + ~f"J A a? + JJ -dfo1- + C ~ - b.D 

But since accord ing t o equat ion (5a) 

{ 
62 r~1 62 m 62 m) 

!ill = iAP3 A a? + R -dfo1- + C ~ , 

i t follows t hat the last of equat ions (4) is satisfied as wel l. As far as the 
boundary condi t ions are concerned, at infinitely large p our equat ions for 
u, v, w reduce to equat ions (1 ) . By inserting the value of O from equation 
(5a) into the second of equat ions (5 ) , we get 

[ 19] (6) 

We see t hat u vanishes for p = P. For reasons of symmet ry t he same holds 
for v and w. We have now demonstrat ed that equat ions (5) satisfy equat ions 
(4 ) as well as t he boundary conditions of t he problem. 

I t also can be demonst rated that equat ions (5) are t he on ly solution of 
equations (4 ) compatible with the boundary condit ions of our problem. We 
shall only ind icate the proof here. Assume that in a fini te space the 
velocity component s u, v, w of a liquid sat isfy equations (4) . If there 
existed yet another sol ution U, Y, II of equat ions (4) in which U= u, Y= v, 
V = w at t he boundari es of t he space in quest ion, then ( U- u, Y - v , II - w) 

would be a solut ion of equations (4) in which t he velocity components vanish 
at the boundary of the space. Thus no mechanical work i s supplied to the 
l iquid in the space under consideration. Since we negl ected thP kinetic 
energy of t he liquid, it follows that i n t his space the work converted to heat 
is also zero . This l eads to t he conclusion that in the enti re space we must 

[ 20 ] have u = u1 , v = v1, w = w1 if thC' space is at lC'ast part ly bounded by 
stationary wal l s . By passing t o t he l imit this resul t can also be extended t o 
t he case t hat t he space under considerat ion is infin ite as in the case 
considered above . Th i s way one can show t hat the solut ion found above i s the 
only solut ion of the probl em . 
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We now place a sphere of radius R around point x0• y0, z0, with R 
being infinitely large compared with P, and calculate the energy t hat is 
converted to heat (in unit time ) in the liquid ins id~ thP sphere . This energy 
K is equal to the work mechanically suppl ied to the l iquid. If Xn' Yn' Zn 
denote the components of thc> pressure exerted on the surface of t he sphere of 
r adius R, we have 

where the integral is to be extended over the surface of t he sphere of rad i us 
R. Ye have here 

where 

xn = - [xei + X11 i + X( ~] , 

Yn = - [ Y{i + Y71 i + Y( ~] , 

Zn = - [z{i + Z71 i + Z( ~] , 

X{ = p - 2k ~• 

Y11 = p - 2k ~, 

Z( = p - 2k %r, 

Y( = ZTJ = - k [~ + %W] , 

l{ = X( = -k [~ + ~ ] , 

X71 = Y{ = -k [ ~ + ~ ] 

The express ions for u, v, w become simpler if we t ake into account that for 
p = R the terms with the factor f5/p 5 vanish in comparison wi th t hose with 
the fact or f3/p3 • Ve have to put 

(6a) 

u = A { - ~ f3 { ( A (2 + ;22 + C(2 ) , 

V = B1] - ~ p3 1J(,f(2+:22+C(2 ) ' 

,o = C( - ~ P3 ((J{2 + :~2 + C(2) 

For p we obtain from the first of equations (5) by similar neglect of terms 

(21) 

(22] 

[23] 
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(25] 

[26] 

[27 ] 

[28] 

[29] 

[30] 
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p = - 5k f3 A{2 
+ B~

2 
+ C(2 

+ const . 
p 
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First we obtain 

X:t = -2kA + 10kf3 Af2 
- 25kf3 {2 (A{2 

+ 9112 + C(
2

) \ 7f1 P1 ' 

x11 = + 10kf3 ~ - 25kf3 rP( Al2 + : ~
2 

+ C(
2

) , 

X( = 

and from this 

X = 2Ak { - 10Akf3 ~ + 25kf3 {(-4<
2 

+ Bt + C(
2

) . 
n P P P 

With the aid of the expressions for Yn and Zn derived by cyclic permu­
tation, and neglecting all terms t hat contain the rat io P/ p at a power 
higher t han the third, we obtain 

f3 p3 
- lOk p7i (A2{2 +. + .) + 20k p& (A{2 +. + .)2. 

If we integrate over the sphere and t ake into account that 

we obtain 

J ds = 4Rlr , 

J {2ds = J r]2ds = J (2ds = !;irR4 • 

J {4ds = J q4ds = J (4ds = 1J"R6 , 

J 112( 2ds = J (2{ 2ds = J !21,2ds = t51iR6 , 

J (A{2 + Dr}2 + C(2 )2ds = ftd6( A2 + !fl + Cl ) , 
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(7) 

where we have put 

and 

6 = A2 + B2 + (Jl, 

4 3d3 = y 

4 3',:f'J = t . 

If the suspended sphere were not present (t = 0), we would obtain for the 
energy consumed in the volume Y 

(7a) 
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Thus, the presence of the sphere decreases the energy consumed by 262!-t. It 

(31 ] 

(32 ] 

is noteworthy that the effect of the suspended sphere on the quant i ty of (33] 

energy consumed is exact ly the same as it would be if the presence of the 
sphere would not mod i fy the motion of the liquid around it at all . 

§2. Calculation of the coeffic i ent of vi scos ity of a liquid in which very 
many i rregularly distr i buted small spheres are suspended 

In the previous section we have considered the case where in a rPgion 
C, of the order of magnitude defined earlier, there is suspended a sphere that 
is very small compared with that region. and we have investigated how this 
sphere affect s the motion of the liquid . We are now going to assume that the 
region C contains infinitely many randoml y distributed spheres of equal 
radius , and t hat this radius is so small that the combined volume of all the 
spheres is very small compared with the region C. Let the number of spheres 
per unit volume be n, where, up to negl igibly small terms, 1 is constant 
throughout the liquid. 

Again, we start off from the motion of a homogeneous liquid without 
suspended spheres and consider again the most general motion of dilatation. 
If no spheres are present, an appropriate choice of the coordinate system wi ll 
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permit us t o represent t he velocity components u0 , v0 , w0 at t he arbit rary 
point x, y, z of the region C by the equat ions 

where 

u0 = Ax • 

v0 = By , 

w0 = Cz , 

A + ll +C = O 

[34) A sphere suspended at point, x , y, z will affect t lt is motion in t he manner 
evident from equation (6). Since we choose t he average dist ance between 
neighboring spheres to be very large compared with the rad ius , and since 
consequently the additional velocity component s arising from all the suspended 
spheres are very small compared wi th u0 , v0 , w0 , we obtain for the veloci ty 
components u, v, to in t he liquid, when taking into considerat ion t he 
suspended spheres and neglect ing t erms of higher orders , 

u = Ax -
l {5 pJ {v( A{t + H1Jt + C(~ ) 

2" P{; Pv 

5 P5 {v (A{t + 81Jt + C(!) 
- 2 Pi, Pv 

ps A{ ] + V p4 p , 
V V 

(8} 

[35) w = Cz-
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where t he sum is t o be extended over all spheres of the region G and where 
we have put 

{ = X -
V xv ' 

T] = 
V 

y - Yv ' p = Jt1 + V V 
1/2 + 

V 
(2 

V 

( = 
V 

z - zv 

x, y, z are t he coordinates of the centers of the spheres. Furthermore , 
V V V 

f rom equat ions (7) and (7a) we concl ude that, up to infinitesimally small 
quantit ies of higher order, the presence of each sphere results in a decrease 
of heat production by 2fi2kt per unit time and that the energy converted to [ 36] 

heat in the region G has the value 

per unit volume, or 

(7b) II = 262k(1 - cp) , 

where cp denotes t he fract ion of the vol ume that is occupied by the spheres . 
Equation (7b ) gives t he impression that the coef fic ient of viscosity of [37] 

the inhomogeneous mixt ure of liquid and suspended spheres (from now on br iefly 
called 11 mixture 11

) under invest igation is smaller t han t he coefficient of 
viscos ity k of the l iquid. However, t his is not so, since A, B, C are not 
the values of t he principal dilatat ions of the l iquid mot ion represent ed by 
equations (8); we wil l call t he principal dilatat ions of the mixture A*, B*, 
(JI< . For reasons of symmetry, i t follows that the principal dilatation 
direct ions of the mixture are parallel to the directions of the principal 
di latations A, B, C, i.e. , to the coordinate axes . If we write equations ( 8) 
in the form 

we obt ain 

u = Ax + l "v , 

V = By+ l vv. 

z = Cz + l wv , 



[38] 

[39] 
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[c] [hu l [8u l A* = uu = A + II = A - II ox x=O l 1ix x=O l Fx;, x=O • 

If we excl ude the immed iate surroundings of t he individual spheres from 
consideration, we can omit t he second and third terms of the express ions for 
u, v , w and t hus obtain for x = y = z = 0: 

(9 ) 

where we have put 

r = ~x 1 + y2 + z2 > 0 . 
l/ II II II 

We ext end the summation over the volume of a sphere K of very l arge radius 
R whose center l ies in the coordinate origin. Further, if we imagine the 
irregularl y distr ibuted spheres as being un i fo rmly distributed and replace the 
sum by an integral, we obtain 

where the last integral is t o be extended over the surface of the sphere K. 
Taking into account (9) , we f ind 

4 = A - n ( l f31: ) A = .A ( 1 - <p) . 
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Analogously, 

If we put 

B* = B(l - <p) , 

~ = C( 1 - <p) 

then we have, neglect ing infinitesimally smal l terms of higher order, 

We found for the development of heat per unit t ime and volume 

If k* denotes the coefficient of viscosity of the mixt ure, we have 

With neglect of i nfi nites imal quantities of higher order, the last three 
equations yield 

117 

[40} 

[41] 

k* = k (1 + <p) [42] 

Thus we obtain the following result : 
If very small rigid spheres are suspended in a liquid, the coeff ic ient 

of internal friction increases by a fraction that i s equal to the tot al volume [43] 

of the spheres suspended in uni t volume, provided that this total volume is 
very small. 

§3 . On the vo lume of a dissolved substance whose mo lecular volume is (44] 

la rge compared wi th that of the solvent 

Cons ider a dilut e sol ution of a substance t hat does not dissociate i n 
the solution . A molecule of the dissolved substance shal J be l arge compared 
with a molecule of t he solvent and shall be considered as a rigid sphere of 



[45 ) 
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radius P. In t hat case we can apply the r esult obtained in §2. If k* 
denotes the coefficient of viscos ity of the solution and k that of t he pure 
solvent . we have 

k* 
1; = l +cp, 

where r.p i s the total volume of the mol ecules per unit volume of the 
solution. 

We wi sh to calculate c.p for a 17. aqueous solut ion of sugar . According 
to Burkhard' s observat ion8 (Landolt and Bornste in Tables) , k*/k = 1. 0245 (at 
20°C) for a 17. aqueous sugar solut ion , hence r.p = 0.0245 for (almost exactly ) 

[46 ) 0.01 g of sugar. Thus , one gram of sugar dissolved in water has t he same 
effect on t he coeff icient of viscosity as do 8rnall suspended rig id spheres of 

[4 7) a t otal volume of 2.45 cm3 • This considerat ion neglect s the effect exerted on 
the internal fr iction of t he solvent by t he osmot ic pressure resulting from 
t he dissol ved sugar. 

Let us r emember that 1 g of solid sugar has a volume of 0.61 cm3 . Th is 
same volume i s also found for the specif ic vol ume s of sugar in solution if 
one cons iders t he sugar solution as a mixt ure of water and sugar in dissolved 
form. I.e., the dens ity of a 1% aqueous sugar solution (referred to water of 

[48 ) t he same t emperature) at 17 .5° is 1. 00388 . Hence we have (neglect ing the 
difference between t he density of water at 1° and at 17.5°) 

1 
1.00388 = 0.99 + 0.01 s , 

and t hus 
s = 0 .61. 

Thus , "hi]e t he sugar solution h<>havcs as a mixture of water and sol id 
[49 ) sugar with respect t o it s dens it y, t he effect on internal f r ict ion is four 

times larger t han t hat which would result from the suspension of the same 
amount of sugar. It seems to me t hat from t he point of view of the molecular 
theory, th is r esul t can hardly be i nterpret ed ot herwise t han by assuming that 
the sugar molecule in t he solution impedes t he mob ili ty of t he water in its 
immediat e vicinity, so that an amount of water whose volume is about three 
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times larger than the volume of the sugar molecul e i s attached to the sugar [50] 

molecu le. 
Hence we may say that a dissolved mol ecule of sugar (i. e., the molecule 

together with the water held by it ) behaves in t he hydrodynam ic sense as a 
sphere with a volume of 2.45·342/ N cm3 , where 342 is the molecular weight of [511 

sugar and N i s the number of real molecules in one gram-molecule. 

§4. On the di ffu sion of an undissociated substance in a l i quid solut i on 

Let us consider a solution of the kind considered in §3. If a force K 
act s upon the molecule, which we cons ider as a sphere of rad ius P, the 
mol ecule wil l move with a velocity w, which is determined by P and t he 
coeffic ient of vi scosity k of the sol vent , s ince we have the equat ion1 

(1) 

'We use this relat ion to cakulate the coefficient of diffusion of an undis­
sociated solution . If p denot es t he osmotic pressure of the dissolved 
substance, which i s to be regarded as the only motion-producing force in t he 
di l ute solution under cons iderat ion, then the force act ing in t he di rect ion of 
the X-ax is on the di ssolved subst ance per unit volume of the solution equal s 
-bp/bx . If there are p grams in a uni t volume , and m i s t he molecular [53] 

weight of the dissolved substance and N the number of real molecules in one 
gram-molecule, then (p/m)•N is t he number of (real ) molecules in the unit 
volume , and the force exerted on the molecule by vi rtue of the concentration 
gradient is 

(2) 

If the solution is suffi cient ly diluted, the osmotic pressure is given by the 
equation 

1G. Ki rchhoff, Yo rlesungen uber Jfechan ik. 26.Vor l . [Lectures on Mechan ics , [52] 
Lecture 26] , equation (22 ). 
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[ 54 ] (3 ) R 
P = m pT ' 

[55 ] 

where T is the absolute t emperat ure and R = 8.31·107. From equat ions (1 ) , 
(2 ) and (3) we obtain for the migrat ion velocity of the dissolved substance 

RT 1 1 §p_ 
w = - 6rt "NP p bx • 

Finally, the amount of substance pass ing ppr unit t ime through a un it 
cross sect ion in the direct ion of the X-axi s is 

(4 ) RT 1 §p_ 
wp = - W • NP bx · 

Hence we obtain for t he coeff icient of diffusion D 

RT 1 n = 6ii1i NP 

Thus , f rom the coef ficient of di f fusion and the coeffi cient of viscos i ty of 
t he solvent we can calculate t he product of the number N of real molecules 
in one gram-molecule and t he hydrodynamically effective molecular radius P. 

ln thi s der ivation tlu• osmotic prf'ssure has hPf'n treated as a force 
acting on the individual mol ecules , wh ich obvious ly does not agree with t he 
po int of view of th<> kinet ic molecular theory , since according to t he lat ter 
the osmot ic pressure in the case under consideration has to be conceived as an 
apparent force only . However . t his dif ficulty disappears when one considers 
that the (apparent ) osmotic forces which rnrrespond to t he concentration 
di fferences in the solution may be kept i n (dynamic) equilibrium with numeric­
ally equal forces acting on the individual molecules in the opposite di rec­
tion, which can easily be real ized on the bas is of thermodynamics. 

The osmot ic force acting on the uni t mass - } ~ can be counter­
balanced by the force -Px (exerted on the indiv idual dissolved molecul es) if 

- ! §p_ - p = 0 . 
p bx x 
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Thus, if one imagines that the dissolved substance per unit mass is 
acted upon by two force systems Px and -Px that balance each other, then 
-P counterbalances the osmotic pressure and only the force P, which i s 

X X 
numerical ly equal to the osmotic pressure, remains as the cause of mot ion . 
The difficulty mentioned above has thus been eliminated . 1 

§5. Determinat ion of the molecular dimensions wi th the help of the 
re lat ions obtained 

Ye found in §3 
k* 4 
T = 1 + <P = 1 + n • 3' 'lP3 

where n is the number of dissolved molecules per unit volume and P is the 
hydrodynam ical ly effective radius of the molecule. If we take into account 
t hat 

where p denotes the mass of t he dissolved substance per unit volume and m 
its molecular weight, we obtain 

On the ot hPr hand, we found in §4 that 

Np _ RT 1 
- 6v; 7J 

These t wo equations enabl e us t o calculate separatel y the quantit ies P and 
N, of which N must turn out to be independent of the nature of the solvent , 
the dissolved substance, and t he temperature, i f our theory corresponds to the 
facts. 

[57] 

[58 ] 

1A detai led present ation of thi s line of reason ing can be found in Ann . d. [56] 
Ph ys. 17 (1905): 549. 
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We wil l carry out the calcu lat ion for an aqueous solution of sugar. 
From t he data on t he internal f riction of the sugar solut ion cited earlier , it 
fo llows that for 20° C 

[59 ] NJ~ = 200 . 

According to experiments of Graham (calculated by St efan ), the 
[60) coeff icient of diffusion of sugar in water is 0.384 at 9.5°C, i f the day is 
(61 ] chosen as t he unit of t ime. The viscosity of water at 9.5" is 0. 0135. 'We 

wi ll insert t hese data in our formu la for the coeff icient of diffusion, even 
t hough they have been obtained using 107. solutions , and a strict validity of 
our formula cannot be expected at such high concentrations . We obtain 

(62] 

[63 ] 

NP = 2.08· 1016 . 

Neglecting t he differences between t he values of P at 9.5" and 20° , 
the values found for Nf'3 and NP yield 

P = 9.9 x 10~ cm, 
f{ = 2 , 1 X 1023 , 

The value found for N shows sat isfactory agreement in i t s order of 
magnit ude wi th values found for this quanti t y by other methods . 

Bern, 30 April 1905. 
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Doc . 16 
ON THE llOVEMENT OF SMALL PARTICLES SUSPENDED IN STATIONARY 

LIQUIDS REQUIRED BY THE MOLECULAR-KINETIC THEORY OF HEAT 
by A. Einstein 

[Annalen der Physik 17 (1905): 549-560] 
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It wi l l be shown in this paper that, accord ing to the molecular -kinet ic 
theory of heat , bodies of microscopically vis ible s ize suspended in l iquids 
must, as a result of thermal molecular motions , perform mot ions of such 
magn itude that these mot ions can easily be detected by a microscope. It is 
poss ible that the motions to be discussed here are identical with the 
so-called "Brownian molecular mot ion"; however, the data available to me on 
the latter are so imprecise that I coul d not form a definite opinion on this [1] 

matter. 
If it is real ly possibl e to observe the motion to be di scussed here, 

along with the laws it is expected t o obey, then class ical t hermodynamics can 
no longer be viewed as str ictly valid even for microscopical ly di sti nguishable 
spaces , and an exact determinat ion of the real s ize of atoms becomes poss ible. 
Conversely, if the prediction of thi s motion were to be proved wrong, t his 
fact would provide a weighty argument against the molecular -kinet ic conception 
of heat . [ 2 ] 

§1. On the o5mot ic pressure attributable to suspended par t i cles 

Let z gram-molecules of a nonel ectrolyte be di ssol ved in the partial 
volume J/ll< of a liquid of total volume JI. If the volume J/ll< i s separated 
from t he pure sol vent by a wall that i s permeable to the solvent but not t o 
the dissolved subst ance, then t his wal l is subjected to the so-cal led osmot ic 
pressure, which at sufficiently large values of r / z satisfies the equat ion 

pr = RTz . [ 3] 
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But if instead of the dissol ved substance, the partial volume r+' of 
the liquid contains small suspended bodies that li kewise cannot pass through 
the solvent-permeable wal l , then according to t he class ical theory of t hermo­
dynamics we should not expect - at least if we negl ect t he force of grav i ty, 
which does not int erest us here-that a force be exert ed on t he wal l ; because 
accordi ng t o t he customary concept ion, the "free energy" of t he system does 
not seem to depend on t he position of the wall and of the suspended bodies , 
but only on the total masses and properties of t he suspended substance, t be 

[4} liquid, and the wall, as well as on t he pressure and temperature . To be sure, 
t he energy and entropy of the interfaces (capi llary forces) should also be 
considered in the calculat ion of t he free energy; but we can disregard t hem 
s ince t he changes in the position of the wall and the suspended bodies 
cons idered here shall proceed wi t hout changes in the s ize and condition of t he 
contact surfaces . 

Ilut from t he standpoint of t he molecular-kinetic theory of heat we are 
led to a different conception. According to th is t heory, a dissolved molecule 
differs from a suspended body in s ize alone, and it is dif ficult to see why 
suspended bodi es should not pro<lucr t he same osmotic pressure as an equal 
number of dissolved molecules. Wr will have to assume that the suspended 
bodies perform an irregular, even t hough very slow, mot ion in the liqu id due 
to the l iqu id 's mo lecular mot ion; if prevented by the wall from l eaving the 
vol ume fl>!< , they will exert forces upon t he wall exact ly as dissolved 
molecu les do. Thus , i f n suspendPd bodies are present. in t he vol ume V'4', 
i .e . , n/ V = 11 in the uni t vol ume, and if t he separat ion between neighboring 
bodies i s sufficiently large, there will correspond t o them an osmotic 
pressure p of magni t ude 

RT n RT 
P = ,.- N = 7v ·11 , 

where N denotes the number of true mol ecules per gram-mol ecule. It 1:>hall be 
shown in the next sect ion that the molecular-ki netic t heory of heat does 
indeed lead t o this broader concept ion of osmot ic pressure. 
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§2. Osmotic pressure from the standpoint of the 
molecular-kinet i c theory of heat1 

If p1p2 ... pl are state variables of a physical system that determine 
compl etely the system's instantaneous state (e .g. , the coord inates and 
velocity components of al l the atoms of the system), and if the complet e 
system of the equations of change of these variables is given in the form 

iJ,p 
where l ~ = 0, then the entropy of the system is given by the expression 

Here T denotes the absolute temperature, E the energy of the physical 
system, and E the energy as a funct ion of the pv's. The integral is to be 
extended over all combinations of values of Pv consistent with the condi -

[6] 

[7] 

tions of the probl em. K is connected with the constant N mentioned above [8] 

by the relation 2KN = R. Ye therefore get for the free energy f 

EN 
R I - lT RT f = - NT lg e dp1 .. . dpl = - -W- lg B. 

Let us now imagi ne a liquid enclosed in the volume JI; let the partial 
volume r of V contain n dissociated molecules or suspended bod ies , 
which are retained in the vol ume rt: by a semipermeable wall; this will 
affect the integration limits of the integral B entering the express ions for 
S and f. Let the total volume of the dissolved molecules or suspended bod ies 

11n this section it is assumed that the reader is familiar with the author's 
papers on the foundations of thermodynamics (cf. Ann. d. Phys . 9 (1902 ) : 417 
and 11 (1903) : 120) . Knowledge of the papers cited and of this section of ( 5 ) 
the present paper is not essential for the understanding of the present 
paper's results. 
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be small compared with rt . In accordance with t he t heory mentioned, this 
system shall be complet ely described by the state variables p1 . . . pl: 

Even if the molecular pict ure wen" e8tll.blished down to the smallest 
detail , the calculation of t he integal B would be so di ff icult" as to make an 
Pxact calculation of Fall but inconceivable. However , here we only have t o 
know how F depends on t he size of t he volume fl' in wh ich all t he dissolved 
molecules or suspend<'d bodies (hrreafter briefly called "part icles") are 
contained. 

Let us denote by x1, y1, z1 the rectangul ar coord inates of the center 
of gravity of the first part icle , by x2, y2, z2 t hose of t he second, etc . , 
and by xn' Yn• zn those of the last particle, and assign to the centers of 
gravi t y of the particles t he inf initesimally small parallelepi ped-shaped 
regions dx1 dy1 dz1 , clx2dy2dz2 ... dxi yi zn , all of wh ich shall lie in fl' . We 
now seek t he value of the int egral occurring in the expression for f, with 
the rest riction that t he cent ers of gravi ty of t he part i cles shall lie in the 
r egions just assigned t o them. In any case, this integral can be put into t he 
form 

where J i s independent of dx1dy1 , etc. , as well as of Jl'I<, i.e . , of the 
position of the semipermeable wal l. But J is also independent of the 
part icular choice of the posi t i ons of t he cent er-of-gravity regions and of t he 
val ue of ft', as we wi lJ show immediately. For if a second system of infin­
i t esimally small regions were ass igned to t h<' centers of gravity of t he 
particles and denoted by dx

1 

dy
1 

dz
1

, dT
2

dy
2

dz
2 

... dx;
1
dy~ dz~, and if these 

regions differed from the orig inal ly ass igned ones by t heir posit ion alone, 
but not by their sizr, and if, l ikrwise , al l of t hem were cont ained in Jl'I<, we 
would s imilar ly have 

where 

Hence, 
dB J w = JT· 
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But from the mol ecular t heory of heat, presented in t he paper s cited1, 

it can eas ily be deduced that dB/ B and dB'/B are equal to the probabili ­
ties that at an arbitrarily chosen moment the centers of grav i ty of t he 
part icles wi ll be found in the regions (dx1 .. . dzn) and (dx1 ... dz~) , 
r espect ively. If t he motions of t he individual particles are ( in suf fic ient 
approx imation ) independent of each other, and the liquid is homogeneous and no 
fo rces act upon the parti cles , then the probabilities corresponding t o the two 
systems of regions must be the same if t he s ize of the regions i s the same, so 
that we have 

dB dB ' 
7r = o · 

Out it follows from thi s equat ion and the one preceding it t hat 

J = J' . 

This proves that J does not depend on ei t her v+' or x1• y1 ... zn. 
Int egrating, we get 

and from that 

F = - ff/- { lg J + n lg v+' } 
and 

OF RT n RT 
P = - 1JV¥ = ""P' N = T v. 

This cons iderat ion demonst rates that the existence of osmotic pressure 
is a consequence of the molecular-kinetic theory of heat, and that , according 
to t his theory, at great di l utions numerically equal quantities of dissolved 
molecules and suspended part icles behave completely ident ical ly with regard to 
osmotic pressure. 

1A. Einstein, Ann . d. Phys . 11 (1903): 170. 

[ 10] 

(9 ] 



[ 11] 

[ 12) 

[13 ) 
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§3 . Theory of diffus ion of small suspended spheres 

Suppose t hat suspended part icl es are randomly distribut ed in a liquid. 
We wish to investigat e their stat e of dynamic equilibrium under the assumption 
that a force K, which depends on the posit ion but not on t he t ime, acts on 
t he ind ividual particles . For the sake o-f s implici ty, we will assume that t he 
force is everywhere in t he direction of t he X-axi s. 

If the number of suspended particles per unit volume i s v, t hen in the 
case of t hermodynamic equilibrium vis such a f unction of x t hat the 
variation of the free energy vani shes for an arbitrary virtual displacement 
ox of the suspended substance . Thus 

6F = 6£ - 165' = 0. 

Let us assume t hat the liquid has a cross sect ion 1 perpendicular t o the 
X-axis , and that it is bounded by the planes x = 0 and x = l . We then have 

f 
6E = - Io Kv6xdx 

and 

J
l v lJ6x R Jl ov 

6S = 
0 

R N ox dx = - N 
O 

ox 6xdx . 

Hence , the equilibr i um condi tion sought is 

(1) RT ov - Kv + 7r ox = 0 
or 

Kv - ~ = 0. 

The l ast equation states that the force K is bal anced by the forces of 
osmot ic pressure. 

We use equation (1) to determine the coefficient of diffus ion of t he 
suspended substance . The state of dynamic equ ilibr ium t hat we have just 
cons idered can be conceived as a superposition of two processes proceeding in 

( 14 ] opposite directions , namely, 
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1. a motion of the suspended substance under the infl uence of t he force 
K which is exerted on each suspended particle, 

2. a process of diffusion, which is to be conceived as the result of 
the random motions of t he particles due to thermal molecular motion . 

If the suspended particles are of spherical shape (where P i s the 
radius of the sphere) and the coefficient of friction of t he liquid is k, 
then the force K imparts to the individual part icle the velocity1 

and 

K 
oifl'' 

vK 
oifP 

particles pass through the unit cross sect ion per unit time. 
Furt her, if D denotes the coefficient of di ffus ion of t he suspended 

substance and µ the mass of a particle, then 

or 
-D lJb~v) gram 

D lJv - ox 

particles will pass through the unit cross section per unit t ime due t o 
diffus ion. Since there should be dynamic equilibrium, we must have 

(2) vK _ D lJv _ 0 Dill' ox - . 

From t he two condit ions (1) and (2 ) found for dynam ic equilibr ium we can 
calculate the coefficient of diffus ion. We obtain 

D _ RT 1 
- 7r"oifP 

1Cf., e.g . , G. Kirchhoff, "Vorlesungen uber Jfechanik" [Lectures on Mechanics] , [1S ] 
Lecture 26, §4. 
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Thus , apart from universal const ants and the absolute t emperat ure, the 
coeff ic ient of diffusion of t he suspended substance depends only on the 
coeffici ent of fr ict ion of the liquid and the s ize of the suspended particles. 

§4. On th e random mo t i on of part i cl es suspended i n a liquid 

and their rel at i on lo di ffus i on 

'We shall now t urn t o a closer examination of t he random motions which , 
caused by thermal molecular motion, give ri se to the diffusion investigated in 
the last section . 

Obviously, we must assume that each individual part icle performs a 
motion t hat is independent of t he motions of all t he other part icles ; 
similarly, the mot ions of one and the same parti cle in di fferent t ime 
i ntervals wi ll have to be conceived as mutual ly independent processes so l ong 
as we t llink of t hese t ime intervals as chosen not t o be t oo smal l. 

'We now introduce into t he cons iderat ion a t ime interval T, wh ich shall 
be very small compared wi th observable time int ervals but st il l so l arge that 
t he mot ions performed by a particle during two consecutive time intervals r 

[ 16 ] may be cons idered as mut ually independent event s. 
Suppose, now, t hat a t otal of n particles is present in a liquid. In a 

t ime interval r, t he I -coordinates of t he indiv idual part icl es will increase 
by !J., where !J. has a different (positive or negative) value for each 
particl e. A cer tain f requency law will hold for !J. : the number dn of 
particles expf'r iencing a displacement Ly ing bet ween A and fl + d!J. in the 
time interval r will be expressed by an equation of the form 

dn = ncp(ll )d!J., 

where 

I: cp(A)dfl = 1, 

and cp differs from zero for very smal l values of A only, and sat isfi es 
t he condition 

cp(A) = cp(-!J. ). 
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Now we invest igate how the coeffic ient of diffusion depends on ~, 
restricting ourselves again to the case that the number v of part icles per 
uni t vol ume depends only on x and t. 

Let v = f (x, t) be the number of particles per unit volume; we then 
calculate the distr ibution of the particles at time t+ r f rom their 
distribution at t ime t. From the def inition of the function ~(A) we can 
easily obt ain the number of part icles found at time t+ T bet ween two planes 
perpendicular to the X-axis with abscissas x and x+ dx . We obtain 

f (x,t + r )dx = dx . t:: / (x + A),p(A)dl,. 

But since T i s very small, we can put 

f (x,t + r ) = f (x,t) +TM. 

Further , we expand J(x + A, t) in powers of A: 

We can perform this expans ion under the integral s ince only very small values 
of A contribute anything to the latter . Ye obtain 

On the r ight-hand side, the second, fourth, etc., terms van ish s ince ~(x) 
tp(-x) , while among the f irst, t hird, fifth, etc., terms , each subsequent term 
is very small compared with the one preceding it. From t his equation we get, 
by tak ing into account that 

J
,+oo 

_

00 

tp(fl)dA = 1, 

putting 
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and only cons idering the first and third term of the right -hand side: 

[18 ] (1) 

This is the fami l iar different ial equat ion for diffus ion, and O can be 
recognized as t he diffusion coeff icient . 

Another impor tant considerat ion can be linked to this development. We 
assumed that all t he indiv idual part icles are referred to the same coordinate 
system. However, th is i s not necessary s ince the motions of t he individual 
part icles are mutual l y independent. We wil l now refer the motion of each 
part icle to a coordinate system whose origin coinc ides at time t = 0 with 
the posit ion of the center of gravity of the particle in question, wit h the 
di fference that J(x. t) dx now denotes t he number of particles whose 
I -coordinat e has i ncreased between the times t = 0 and t = t by a quant ity 
lying between x and x + dx. Thus, t he function f varies accord ing to 
equat ion (1 ) i n t his case as well . Furt her , it i s obvious t hat for x ~ 0 and 
t = 0 we must have 

f (x, t) = 0 and J
+oo 
_

00 

f(x. t)dx = n. 

The problem, which coincides with the probl em of diffusion from one point 
(neglect ing t he interaction bet ween t he diffusing particles), i s now 
completely determined mathemat ically; i t s solution is 

x 2 

J (x , t) 
n e- m 

-----
[fi]) fl 

The frequency di st r ibut ion of t he changes of pos ition occurring in t he 
arbi trary time t is thus t he same as t he distribution of random errors, 

(19] which was to be expected . What is of importance, however , i s how the constant 
in the exponent is related to t hP coefficient of diffusion . With the help of 
th is equation we now calculate the displacement Ax in t he dirPct ion of the 
X-ax is t hat a part icle experiences on the average, or, to be more precise , the 
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square root of the ar i thmetic mean of the squares of displ acements in t he 
direction of the X-ax is ; we get 

133 

The mean displacement is thus proportional to the square root of time. 
It can easi l y be shown t hat the square root of the mean of the squares of t he 

total displacements of the particles has the value Jx-'3· 

§5. Formula for the mean displacement of suspended pa rticles . 
A nem method of det ermin ing the true s ize of atoms 

In §3 we found the fol lowing val ue for the coeffic i ent of diffusion O of 
a substance suspended in a liquid in the form of small spheres of rad ius P: 

Further, we found in §4 that the mean value of the displacements of the 
particles in the direction of the X-ax is in time t equals 

Eliminating 0, we get 

This equat ion shows how Ax must depend on T, k, and P. 
We now wish to calculate the magnitude of ~x for one second if N i s 

taken to be 6-1023 in accordance with the results of the kinetic theory of [20] 

gases; water at 17°C (k = 1.35- 10-2) shall be chosen as the liquid, and the [ 2 1] 

diameter of the particl es shal l be 0.001 mm . We obtain (221 
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~x = 8· 10-5 cm = 0. 8 micron . 

Thus , the mean displacement in 1 min . wou ld be about 6 microns. 
Conversely, the relation found can be used for the determ ination of N. 

We obt ain 
t RT 

N = J'I. 3ill' 
X 

Let us hope t hat a researcher will soon succeed in sol ving the problem 
[23] posed here, which is of such importance in t he theory of heat! 

Bern, May 1905. (Received on 11 May 1905) 
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Doc. 17 
Rev i ew of K. F. SLOTTE, "On the Heat of Fusion" ("Uber die Schmelzwarme 11 

Finska Vetenskaps-Soc i eteten . Ofversigt af Yo rhandl i ngar 47, no. 7 
(1904 ) : 1-8) 

[Be iblatter zu den Annalen der Physik 29 (1905 ) : 623] 

The author bases himself on a rel at ion between the heat of fus ion f , 
the (absolute) melting temperature T1, and the specific heat at const ant 
t emperature cp' which he had derived earlier by elementary considerations 
based on molecular theory, and whi ch i s expressed approximat ely by the formula 
i = 0.382cpT1. This formula proves to be valid with rough approximat ion for 
elements as well as for compounds . A few substances for wh i ch the formula 
does not hold even approximately (sulfur, phosphorus) are also presented. 
Incidentally, it should be noted that up to the numerical value of the 
constant, the relation presented, extended to the sol id aggregat ion st ate, i s 
a consequence of the l aw of corresponding states. Finally, a molecular­
theoretical consideration, which shall not be presented here, leads the author 
to ·the vi ew that one obtains the best agreement of the theory with experience 

[ l] 

when one ascribes l inear harmonic oscillations to the atoms of s impl e sol ids . [ 2 ] 

Doc. 18 

Review of K. F. SLOTTE, "Conclus ions Drawn from a Thermodynamic Equat ion" 
("Folgerungen aus einer thermodynamischen Gleichung, 11 Finska 

Vetenskaps-Soc ieteten . Ofvers igt af Yorhandl ingar 47, no . 8 (1904): 1-3) 
[De iblatter zu den Annalen der Physik 29 (1905) : 629] 

Several conclus ions regard ing the behavior of bod ies near t he absolut e 
zero of the temperature are drawn from the fami liar equat ion 

ll l 
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under the t otally unexplained assumption that (dQ/ dv) 1 has finite val ues at 

[ 2] infinitesimally small values of T. 

Doc . 19 

Rev iew of M. E. MATHIAS, "The Constant a of Rectilinear Diamet ers and the 
[lJ Laws of Corresponding St ates" ("La constante a des diamctres rect ilignes 

et les loi s des r t ats correspondent s (2e memoire), 11 Journal de Physique 
theorique et appliquec 4 (Series 4) (1905 ): 77-91) 

[Deibla t ter zu den Anna len der Physik 29 (1905): 634] 

[2] If 1J denotes a funct ion of t he dens ity of a l iquid and i t s saturated 
vapor that depends linearly on the t emperature, which has al ready been 
examined by t he author i n previous ar ticles (J . de Phys. (3) 8 (1899 ): 407, 

[3 ] and i bid. (3) 2 (1893) : 5) , then t he relation 11 = A( 1 + a[t + m]) holds, where 
A denotes the cri t ical density, m the temperature, with the crit ical temp­
erature t aken as the unit , and a a constant. If the law of corresponding 

[41 states were str ictly fulfi l l ed, a would have to be a universal constant. 
Based on experimental data on 37 substances it is shown that this is not the 
case. While for the majority of t he examined substances a deviat es only 
litt le f rom uni ty, this quantity has considerably smal ler values for gases 
diff icult to liquefy, the value for hydrogen be ing 0.236. The aut hor f inds 
now that even though t he quant i ty b = a/ [O (0 = absolute critical temper­
ature ) is not a universal constant either, it has nevertheless almost the same 
val ue for subst ances of similar chemical constitution; he proposes t hat 
subst ances be div ided into "ser ies" (substances wi th almost equal b) and 
"groups" (sub8t ances with approximately equal a). 
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Doc. 20 
Review of M. PLANCK, "On Claus ius' Theorem for Irrevers ible Cycles and on 
the Increase of Entropy" (Ph ilosophical Maga zi ne and Journa l of Sci ence 9 

(Series 6) (1905) : 167-168) 
(Deib la t ter zu den Annalen der Physik 29 (1905): 635] 

In response to some object ions raised by Mr. Orr (Deibl. 29, p. 237) [l ] 

against t he t reat ment of t he fundamental l aws of ther modynam ics presented by 
the author, the author explains t hat he used t he expressions "rever sible" and 
"i rrevers ible" in t he same sense as Claus ius . He denies t hat he appl ied t he [ 2] 

above concepts in a way that differed from that in which he def ined t hem . The 
author admi ts that one cannot t alk about the temperature and dens ity of any 
smal l parts of a t umult uous ly mov ing gas , and about thei r entropy, unless one 
wants t o make use of the kinetic theory of gases . Finally, he finds that the [ 3 ] 

line of proof proposed by Mr . Orr coincides in principl e with that presented 
by Lord Kelvi n and t hat it cont ains circular reasoning. [4] 

Doc. 21 
Rev i ew of E. DUCKINGHAM , "On Certain Difficult ies 'Which are Encount ered 
in the St udy of Thermodynamics" (Ph i losoph ical Magaz ine and Journa l of 

Sci ence 9 (Series 6) (1905): 208-214) 
[Be iblat ter zu den Anna l en der Physik 29 (1905): 635] 

The aut hor st art s from an art icle by Mr . Orr (Beibl. 29, p. 237) and [l ] 

expresses his agreement with the results of the crit ical considerations 
contained in t hat article . Further, he gives expression t o his conviction 
t hat it is impossibl e to derive the Clausius inequality J dQ/ T < 0 from the 

second l aw- as formulated by Lord Kelvin-wit hout further assumptions . The 
article also contains some critical remarks on Mr . Or r 's paper . 
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Doc . 22 
Rev i ew of P. LANGEVIN , 11 0n a Fundamental Formula of t he Kinetic Theory" 

("Sur une formule fondamentale de la theor ie cinetique, 11 Academie des 
Sciences (Paris ). Compt es rendus 140 (1905 ): 35-38) 

[Beibla t t er zu den Anna len der Phys ik 29 (1905): 640] 

The author reports that , assuming arbitrary laws of act ion between 
[I ] molecules as well as ext ernal forces acting upon t he molecules, he has solved 
[ 21 exactly t he problem of diffusion of two gases by t he Maxwell-Kirchhoff met hod, 
[3] requiring only a graphic integration . For the case t hat the molecu les are 

[4] 

elast ic spheres which are only infi nit esimally deformable, and that external 
forces do not act on the molecules , t he author obtains for the diffus ion of 
one gas (mol ecul ar mass m1) in the other gas (molecular mass m) 

ll = --3 __ 

16u21J d mm, 
m+ m1 

Here JJ dt=>notes the diffusion const ant, u t he sum of the rad i i of two 
unlike molecules , JI the number of molecules 11m11 per un it vol ume , h 

t hree-quar t ers of t he reciprocal of the mean value of the energy of the 
translational motion of one mol ecule . Bolt zmann found by the Clausius 

[S J approx imation method 

[6) I) = _ __ 2 __ _ 
3w2K~ :rh(m + m.) 

The two formulas differ especial ly strongly when m and m1 are very 

different . It i s fur t her reported that at constant pressure the diffus ion 
coefficient varies as 1312 + 2/ n when t wo unlike molecules repel each other 
with a force that is inversely proportional t o the n + 1st power of the 
distance between the centers of the molecules . The author has also applied 
t he theory t o changes in posit ion of electric charges in gases . He found t hat 
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the assumption of polarizing forces exerted by t he electrical particle on t he 
neutral molecules does not suffice for the explanation of their small mobil ­
ity, but that, in dry air and at normal temperature, one must ascribe to the 
negat i ve ions a diameter about twice as large, and to positive i ons one about 
three times as large as that ascribed to the neutral molecules. For flames , 
the author finds that i t is to be concluded from t he empi rical results that 
the mass of the negative electricit y carriers is about a thousand times 
smaller than that of the pos itive ones , and t hat the mass of the latter equal s 
that of the hydrogen atom; hence, the former corresponds to cathode rays , the 
l atter to Goldste in rays . [7 ] 
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Doc. 23 
ON THE ELECTRODYNAMI CS OF MOVING BODIES 

by A. Einst ein 
[Annalen de r Physik 17 (1905) : 891-921] 

I t is well known that Maxwell ' s electrodynam ics-as usually understood 
at present-when appl ied t o moving bodies, l eads to asymmetri es t hat do not 
seem t o attach to the phenomena . Let us recal l. for exampl e , the elect ro-

[! ] <lynamic interaction bet ween a magnet and a conductor . The observable phenome­
non depends here only on t he relative motion of conductor and magnet, whi le 
accordi ng to t he customary conception the t wo cases , in which, respect ivel y, 
either the one or t he other of t he t wo bodies i s t he one in motion, are to be 
strictly di fferen tiated from each ot her. For if the magnet is in mot ion and 
t he conductor is at rest , t hPre arises in t he surroundings of the magnet an 
elect r ic f ield endowed with a cert ain energy value t hat produces a cu rrent in 
the places where parts of the conductor are locat ed. Ilut if the magnet is at 
r est and the conductor is in motion , no PlPct ric fi C' ld ari ses in t he 
su rroundings of the magnet, while in the conductor an electromotive fo rce will 
arise , t o which i n i tself t here does not correspond any energy, but which, 
provided t hat the relat ive motion in t he t wo cases considered is t he same, 
gives rise to elect rical currents that have the same magnitude and the same 
course as t hose produced by t he elect r ic f orces in t he fi rst-mentioned case. 

Exampl es of a similar kind, and t he fa ilure of at t empts to detect a 
( 21 motion of t he eart h relative to the "light med ium" , lead t o the conjecture 

that not only in mechanics , but in electrodynamics as wel l, the phenomena do 
not have any properties corresponding t o the concept of absol ute rest, but 
that in all coordinate systems in which the mechanical equations are valid, 
also t he same electrodynamic and optical laws are val id, as has al ready been 

(31 shown for quantities of the fi rst order. We shall raise t his conjecture 
[4] (whose cont ent will be called "the pr inc iJ)le of rel ativity" hereaf ter) to the 

st atus of a post ul ate and shal l introduce, in addition , t he postulate , onl y 
seemingly incompatible with t he former one , t hat in empty space light i s 
always propagated with a defini t e velocity V which is independent of the 

[ 5 ) state of motion of t he emitting body. These two postulates suffice for 
arriving at a simple and cons i st ent electrodynamics of moving bodies on t he 
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basis of Maxwell's theory for bodies at rest. The introduction of a "light 
ether" will prove superfluous, inasmuch as in accordance with t he concept to [6 ] 

be developed here, no "space at absolute rest 11 endowed with special propert ies 
will be introduced, nor wi l l a veloci ty vector be assigned to a point of empt y 
space at wh ich electromagnetic processes are taking place . [7 ] 

Like every other electrodynamics, the theory to be developed i s based on 
the kinemat ics of the rigid body, since assertions of each and any theory 
concern the relations between rigid bodies (coordinate systems) , clocks, and 
electromagnet ic processes. Insuff icient regard for th is circumstance is at 
the root of the diff iculties with which the electrodynamics of moving bodies 
must presently grapple. 

I. Kinematic Part 

§1 . Definition of simu ltanei ty 

Consider a coordinat e system in which the Newt onian mechanical equations 
are valid. To distinguish i t verbally from the coordinate systems t hat will [Bl 

be introduced later on, and to visual ize it more precisely, we wil l designate 
t his system as the "system at rest. " 

If a material point i s at rest relative to t his coordinate system, i t s 
posit ion relative to the latter can be determined by means of rigid measur ing 
rods using the methods of Euclidean geometry and can be expressed in Cartesian 
coordinates . 

If we want to describe the motion of a material po int, we give the 
val ues of its coordinates as a function of time. However, we should keep in 
mind that for such a mathematical descript ion to have physical meaning, we 
first have to clarify what is to be understood here by 11 time." We have to 
bear in mind that all our proposit ions involving time are always proposit ions 
about s im~ltaneous events. If, for example, I say that "the train arrives 
here at 7 o'clock, 11 that means , more or l ess , 11 the po int ing of t he small hand 
of my clock to 7 and the arrival of the train are simul taneous events . 111 

1We shall not discuss here t he imprecis ion that is inherent in the concept of 
s imultaneity of two events tak ing place at (approximately) the same location 
and t hat also must be surmounted by an abstract ion. 
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It might seem that all difficu lt ies involved in t he definition of "time11 

coul d be overcome by my substituting "pos it ion of the small hand of my clock" 
for "time." Such a definit ion i s indeed suff icient if time has to be defined 
exclusively for the place at which t he clock is locat ed; but the def inition 
becomes insufficent as soon as 8eries of events occurring at different 
locations have to be l inked t emporally, or- what amounts to t he same----events 

[ 91 occurring at places remote from the clock have to be evaluat ed temporally. 
To be sure , we could content ourselves wit h evaluating the time of the 

events by stat ioning an observer with the clock at t he coordinate origin, and 
having him assign the corresponding clock-hand posit ion to each l ight s ignal 
t hat at tests t o an event to be eval uated and reaches him through empty space. 
But as we know from exper ience, such an assignment has t he drawback that i t is 
not independent of the posi t ion of t he observer equipped wi th the clock . We 

[ 10] arrive at a far more pract ical arrangement by the fo llowing consideration. 
If there i s a clock at point A of space, then an observer located at A 

can eval uat e t he t ime of the events in t he immed iat e vicin i ty of A by finding 
t he clock-hand pos it ions t hat are simultaneous with these events . If there is 
also a clock at point B- we should add , "a clock of exactly t he same consti ­
tution as t hat at A' "- then t he time of t he events in the immediate vicinity 
of B can likewise be evaluated by au observer located at B. But it i s not 
possible t o compare the time of an event at A wi th one at D without a further 
stipulation; t hus far we have only defi ned an "A-t ime" and a "B-t ime" but not 
a "t ime" common to A and 0. The l atter can now be determined by establishing 
by defi ni t ion t hat the "time" needed for the l ight t o t ravel from A t o Bis 
equal to t he "t ime" i t needs t o tr<1.vel from B to A. For, suppose a ray of 
light leaves from A toward B at "A-time" tA' is reflected from B t oward A at 
"B-t irne" t 0, and arrives back at A at 11A-t ime11 t1. The two clocks are 
synchronous by def init ion if 

We assume t hat it is possible for this definit ion of synchronism to be 
free of contradictions , and to be so for arb itrar i ly many points , and t hat t he 
following relat ions arc therefo re generally valid : 
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1. If the clock in B is synchronous with t he clock in A, then the clock 
in A i s synchronous with t he clock in B. 

2. If the clock in A i s synchronous with t he clock in Bas wel l as with 
t he clock in C, then t he clocks in B and C are also synchronous relative to 
each ot her. 

Wit h t he help of some physical (thought) experiments , we have thus laid 
down what i s t o be understood by synchronous clocks at rest t hat are s i t uated 
at different places, and have obviously obt ained thereby a definition of 
"synchronous" and of "time ." The "time" of an event i s the reading obtained 
simul taneously with the event from a clock at rest that is located at t he 
place of t he event and t hat for al l time determinations is in synchrony with a 
specified clock at rest . 

Based on experience, we also postulate t hat the quantity 

2TB 
t I t = y A - A 

is a universal constant (the velocity of light in empty space) . 
It is essential that we have defined time by means of clocks at 1est in 

a syst em at rest; because it belongs to the system at rest, we designate the 
t i me j ust defined as "the t ime of the system at rest. " 

§2 . On the relat iv ity of lengths and t imes 

The considerations t hat fo l low are based on t he principle of relativity 
and the pr inciple of the constancy of t he velocity of light, two pri nciples 
t hat we define as follows: (11 ] 

1. The l aws govern ing the changes of t he state of any phys ical system 
do not depend on which one of two coordinate systems in uniform translat ional 
motion relative to each other these changes of the state are referred t o. [ 12] 

2. Each ray of light moves in the coordinate system "at rest " with the 
definite velocity V independent of whether t his ray of light i s emitted by a 
body at rest or a body in motion. Here , (13] 
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. _ light path 
veloc ity - t ime int erval ' 

where "t ime interval" should be understood in the sense of the defin ition in 
§1. 

Let t here be given a rigid rod at rest ; i ts length, measured by a 
measuring rod that is also at rest, shal l be f. We now imagine t hat the axis 
of t he rod i s placed along the X-axis of the coordinate system at rest, and 
that the rod is then set in un iform paral lel translational motion (velocity v) 
along the X-axis in t he di rect ion of increas ing x. We now seek to determine 
t he length of the movi ng rod, wh ich we imagine to be obt ained by the f ol lowing 
two operations : 

(a) The observer co-moves with the above-mentioned measur i ng rod and 
t he rod to be measured, and measures the length of the rod directly, by 
applying the measur ing rod exact ly as i f the rod to be measured, the observer , 
and the measuring rod were at rest . 

(b) Using clocks at rest t hat are set up in the system at rest and are 
synchronous in the sense of §1 , the observer determines the po int s of the 
syst em at rest at wh ich the beginning and the end of the rod to be measured 
are found at some given t i me t . The distance between these two points , 
measured by the rod used before, which in t he present case i s at rest, is al so 
a l ength, which can be des ignated as the "length of the rod ." 

Accord ing t o the principle of relat ivity, the length t o be found in 
operat ion (a) , wh ich we shall call "the length of the rod in t he moving 
system," must equal the length f of the rod at rest. 

We wi ll determine the length to be found in operat ion (b) , wh ich we 
shall call "the length of the (moving) rod in the system at rest, " on the 
basis of our two princ iples , and wil l f i nd it to he di fferent from £. 

The commonly used kinemat ics tacit l y assumes that t he lengths determined 
by the t wo methods ment ioned are exactly ident ical, or, in ot her words , t hat 
in the t ime epoch t a moving rigid body is total ly replaceabl e, as far as 
geometry i s concerned, by the same body when it i s at res t in a particu lar 
position. 

Further, we imagi ne t hat t he two ends (A and D) of t he rod are equ ipped 
with clocks that are synchronous with the clocks of the syst em at rest , i.e . , 
whose readings always correspond to the "time of the system at rest " at the 
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locations they happen to occupy; hence, these clocks are "synchronous in the 
system at rest." 

We further imagine that each clock has an observer co-moving with it, 
and t hat these observers apply to the two clocks the cr i terion for synchronism 
formulated in §1. Suppose a ray of light starts out from A at t ime1 tA is 
reflected from B at t ime t 8 , and arrives back at A at time t1. Taking 
into account the principle of the constancy of the velocity of light, we f ind 
that 

and 

where rAB denotes the length of the mov ing rod, measured in the system at 
rest. The observers co-moving with the moving rod would thus find that t he 
two clocks do not run synchronously while the observers in the system at rest 
would declare them synchronous. 

Thus we see that we must not ascribe absolute meaning to the concept of 
simultaneity ; instead, two events that are simultaneous when observed from 
some part i cular coordinate system can no longer be considered s imult aneous 
when observed from a system that is moving relative to that system. 

§9. Theory of transformation of coordinates and t ime from a system at 
rest to a system in uniform translat ional motion relative to it 

Let there be given two coordinate systems in the space "at rest, " i.e., 
two syst ems of three mutual ly perpendicular r igid material lines issuing from 
one point . Let the I -axes of the two systems coincide and the i r Y- and 
Z-axes be paral lel . Each system shal l be supplied wit h a rigid measuring rod 
and a number of clocks, and the two measuring rods and al l the clocks of the 
two systems should be exactly al ike . 

1"Time" here means both "time of the system at rest" and "the posit ion of the 
hands of the moving clock located at the place in question." 
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The or igin of one of the two syst ems (k) shall now be imparted a (con­
stant ) veloci ty v in the direction of increasing x of t he other system 
(K), wh ich is at rest, and this veloc ity shall also be imparted to the 

[14) coordinate axes , t he corresponding measur ing rod, and the clocks . To each 
time t of t he system at rest K there cor responds then a defini t e posit ion 
of t he axes of the moving system) and for reasons of symmetry we may r ight ­
fully assume t hat t he motion of k can be such that at timP t ( " t " always 
denot es a time of the system at rest) t he axes of the moving system arc 
parallel t o t he axes of the system at rest . 

We now imagine t he space to be measured both from the systPm at rest K 
by means of t he measuring rod at rest and f rom the moving syst em k by means 
of t he measur ing rod moving along wi t h it , and t hat t he coordinates x, y, z 
and {, ~. ( are obtained in this way . Furt her , by means of the clocks at 
r est in t he system at rest and us ing light s ignal s in t he manner describPcl in 
§1, the time t of t he system at rest is det ermined for al l its points where 
t here i s a cl ock; likewise , t he t ime r of the moving syst em i s dPt ermined 
for all t he points of the moving system hav ing clocks that are at rest 
relative to t his system, applying the method of light s ignals described in §1 
between t he points containing t hese clocks . 

To every system of values x, y, z, t that determines completely t he 
place and time of an event in t he system at rest , t here cor responds a syst em 
of values {, q, ( , r that fixes t his event relative to the system k, and 
t he problPm to he solved is t o find the system o-f equat ions connecting t hese 
quant ities. 

First of all, it i s clear that these equations must be li near because of 
the properties of homogeneity that we attr ibutP t o space and lime. 

If we put x• = x- vl, t hen it is clear t hat a po int at rest in the 
system k has a defini te , time-independent system of values x' , y, z 
belonging t o it. We fi rst determine T as a function of x1

, y, z , and t. 
To this end, we must express in equat ions that T is in fact t he aggregate of 
the readi ngs of the clocks at rest in t he syst em k, which have been 
synchronized according t o the rule given in §1. 

Suppose that at time To a light ray is sent from the origin of t he 
system k along thP X-axis to x' and i s reflect ed from t herP at time r

1 

toward t he or igin, where it arrives at time r2• we then must have 
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or , if we write out the arguments of the function r and apply t he pr inciple 
of t he constancy of the veloc ity of light in the system at rest , 

½[r (O ,O,O,t) + r [o,o ,o,{ t + v ~•v + v !1

v}]] = 

r[x ' ,0,0, t + p : ' v] . 
From this we get, if x' is chosen inf ini tesi mal ly small , 

1 [ 1 + 1 ] ih lJr + 1 lJr 
2 ~ Y+V 7fl = lfiT" ~ 7fl ' 

or 
or v lJr 
~ + f'2 - v2 7fl = 0. 

I t should be noted t hat , instead of t he coordinate origin, we could have 
chosen any other po int as t he start ing point of the light ray, and the 
equat ion just derived t herefore holds for all val ues of x', y, z . 

Analogous reasoning-appl ied to t he H and Z axes-yields , if we 
consider that light always propagates along these axes wi th t he velocity 

~ when observPd from t he system at rest, 

{Jr 0 oy = 

ih 0 oz= . 

These equations yield, since r is a l inear funct ion, 

T = a [ t - yi ~ v2 XI ] • 

where a is a funct ion <P(v) as yet unknown, and where we assume f or 
brevity t hat at the origin of k we have t = 0 when T = 0. 
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Us ing this result, we can easily determine the quantities {, TJ, ( by 
express ing in equations t hat (as demanded by the principle of the constancy of 
the vel ocity of light in conjunction with the principle of relativity) light 
propagates with velocity V also when measured in the moving system. For a 
light ray emit t ed at t ime T = 0 in the direction of increasing {, we will 
have 

{ = VT, 

or 

But as measured in t he syst em at rest, the l ight ray propagates with velocity 
V - v relative to t he origin of k, so that 

x' 
-rr--= = t. 
r - V 

Substitut ing this value of t in the equat ion for {, we obtain 

Analogously, by considering l ight rays mov ing along the two other ax.es, we get 

where 

'IL t; x' = 0; 
F2 - v2 

hence 

1J = 
~ V'l 

V 
- v 2 

y 

and 

( = r z. 
F2 - v2 

I f we substitute for x' its value, we obtain 
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{ = <p( v)P(x - vt), 

'I/ = <p( v)y, 

( = <p( v )z, 

where 
1 {J = ----

j 1 - lrr 
and <p is a function of v t hat i s as yet unknown. If no assumptions are 
made regarding the ini tial pos ition of the moving system and t he zero point of 
r, then an additive constant must be attached to the right-hand s ides of t hese 
equat ions. 

Now we have to prove that every light ray measured in the moving system 
propagates with the velocity V, if it does so, as we have assumed, in the 
system at rest; for we have not yet provided the proof that the principle of 
t he constancy of the velocity of l ight i s compatibl e with t he relativi ty 
principle . 

Suppose that at time t = r = 0 a spherical wave is emitted from the 
coordinate origin, wh ich is at t hat time common to the two systems , and t hat 
this wave propagates in t he system K with the velocity Y. Hence, if 
(x,y,z) is a point j ust reached by t his wave, we wi ll have 

We transform these equations using our t ransformation equations, and, 
after a simple calculat ion, obtain 

Thus, the wave under considerat ion is a spherical wave of propagat ion 
velocity V also when i t is observed in the moving syst em. This proves that 
our two fundamental principles are compatible. [ 15] 
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The t ransformation equations we have derived also contain an unknown 
f unct ion <P of v, which we now wish to determine . 

To thi s end we introduce a third coordinate syst em K' , which relat ive 
to the system k is in paral le l -t ranslat ional motion parallel to the axi s S 

such that its origin moves al ong the ~-axis with velocity -v . Let all t hree 
coordinate orig ins coincide at time t = 0, and let the time t' of t he 
system A' be zero at t = x = y = z = 0. We denote t he coordinates measured 
in t he system K' by x' ,y ' , z ' and, by t wofold application of our 
transformation equations , we get 

x' = cp(-v).8(-v ){{ + vr} = cp( v)cp(-v)x, 

11 ' = cp( -v)7J = cp(v)cp(-v)y . 

z' = cp(-v) ( = cp(v) c,o(-v)z. 

Since the relations between x 1 , y' , z' and x, y, z do not contain the 
t ime t , t he syst ems K and K' are at rest relative t o each other, and i t 
i s clear t hat the transformation from K to K' must be the identity 
transformation. Hence , 

cp ( v)c,o(-v) = 1. 

Let us now explore t he mean ing of cp( v). We shall focus on that portion of 
t he //-axis of t he system k t hat lies between { = 0, ~ = 0, ( = 0, and 
{ = 0, 11 = e, ( = 0. This portion of t he //-axis is a rod that moves 
perpendicular t o its axis with a ve loci t y v rel ative to t he system K and 
whose ends possess in K the coordinates 

x1 = v t, e 
111 = ~· z1 = 0 

and 

X2 = vl , 112 = 0, Z2 = 0. 
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The length of the rod, measured in K, i s thus f / cp(v) ; t his establishes t he 
meaning of the function cp . For reasons of symmetry it is obvious that the 
length of a rod measured in the system at rest and mov i ng perpendicular to i t s 
own ax.is can depend only on its velocity and not on the direction and sense of 
its mot ion. Thus , the length of the moving rod measured in the system at rest 
does not change when v is replaced by -v. From th is we arrive at 

or 
cp(v) = cp( -v). 

I t follows from this relation and the one found before that cp(v) must 
equal 1, so that the transformat ion equations obtained become [ 16] 

where 

{ = P(x -vt), 

,, = y, 

( = z , 

§4. The physical meaning of the equations obta i ned concerning 
moving rigid bodies and moving clocks 

Ye consider a rigid sphere1 of radius R t hat is at rest relat ive to [1 7] 

the moving system k and whose center lies at the origin of k. The equat ion 
of the surface of this sphere, which moves wi th veloci ty v relative t o the 
system k, is 

11. e. , a body possessing t he shape of a sphere when investigated at rest . 
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Expressed in x , y, z, t he equation of this surface at t ime t = 0 i s 

A rigid body that has a spher ical shape when measured in the state of rest 
thus in the stat e of motion--observed from a system at rest -has t he shape of 
an ell ipsoid of revol ution with axes 

Thus , while the Y and Z dimensions of the sphere (and hence also of 
every r igid body , whatever its shape ) do not appear to be altered by motion, 
t he X dimension appears to be contracted in the ratio 1 : ~ 1 - ( v/17)2. 
i. e . , the greater t he value of v, the greater the contraction. At v = V, 

all mov i ng object s--observed from the system 11at rest"-shrink into plane 
structures. For superluminal velocities our considerations become meaning­
l ess; we shall see in t he considerations that follow that in our theory the 
veloci ty of light physically plays the part of infini t ely great velocities. 

I t i s clear t hat the same resul ts apply for bodies at rest in a syst em 
"at rest " t hat are observed f rom a un iformly moving system . 

We f urther imagine t hat one of t he clocks that is able t o indicate 
t ime t when at rest relative t o the system at rest and t ime r when at rest 
relat ive to the syst<'m in motion, is placed in thf' origin of k and set such 
that it indicates th<' time r . What is the rate of thi s clock when observed 
from t he system at rPst ? 

The quantities x, t, and r , which refer to the posi tion of t his clock, 
are obviously related by the equat ions 

and 



DOC. 23 153 

X = vt . 

Ye thus have 

which shows that the clock (observed in the system at rest) is retarded each 
second by ( 1 - ~1 - v/f'2) sPc or, with quantities of the fourth and higher 
orders neglected, by ½(v/Y)2 sec . 

This yields the fol lowing peculiar consequence: If at the points A 
and B of K there are located clocks at rest which, observed in a system at 
rest, are synchronized, and if the clock in A is transported t o B along 
the connecting line with velocity v, then upon arrival of this clock at B 
the two clocks wil l no longer be synchronized; instead, the clock that has 
been transport ed from A to D will lag ½tv2/Vl sec (up to quantit ies of 
the fourth and higher orders) behind the clock that has been in D from the 
outset, if t i s the time needed by the clock to travel from A to B. 

Ye see at once that this result holds even when the clock moves from A 
to B along any arb i trary polygonal line, and even when the points A and B 
coincide . [ 18] 

If we assume that the result proved for a polygonal line holds al so for 
a continuously curved line, then we arr ive at the following propos ition : If 
there are two synchronous clocks in A, and one of them is moved along a 
closed curve with constant velocity until it has returned to A, which takes, 
say, t sec, then this clock will lag on its arrival at A ½t(v/Y)2 sec 
behind the clock that has not been moved. From this we conclude that a [l9] 

balance-wheel clock that is located at the Earth ' s equator must be very 
slightly slower than an absolutely ident ical clock, subjected to otherwise 
idPnt ical cond itions , that i s locat ed ltt one of the Eart h's pol es. 

§5. The addit ion theorem of velocities 

In the system k moving with velocity v along the X-axis of the 
system K let there be a point mov ing according to the equation 
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( = o. 

where w{ and w1J denote ronstants. 

We seek the motion of the point relative t o t he system K. Introducing 
t he quantities x, y, z , t int o the equat ions of motion of t he point by means 
of the t ransformat ion equations derived in §3, we obt ain 

z = 0. 

Thus , accord ing t o our t heory , t he l aw of the parallelogram of velocit ies 
holds on ly in f i rst approximation . We put 

and 
w 

a = arctg .-11.. 
wx 

o should t hen be considered as the angl e between t he veloci ties v and w. 
After a simple calculation, we obtain 
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I -[vw Vin 0 1
2 

0 
= ~( v2 + w2 + 2vw cos o) _ - _ 

t + vw cos o 
fl 

It is noteworthy that v and w enter the expression for t he resul tant velocity 
in a symmetric fashion. If w too has the direct ion of the I -axis (E-axis) , 
we obtain 

0 = ~ 
t + vw 

YI 

It follows from this equation that the composition of two velocities that are 
smaller than V always result s in a velocity that is smal ler than V. For if 
we put v = Y - K, and w = Y - A, where K and A are pos itive and smaller 
than r I we get 

2V - ,c - .\ u = r ,c) < r. 
2Y - K - A + T 

It fo llows fu rther that the veloci ty of light V cannot be changed by 

compounding it with a "sub luminal velocity ." For tbis case we get 

t = V + w = Y. 
1 + ~ 

V 

For the case that v and w have the same direction, the formula for D 
could also have been obtained by compounding two transformations according to 
§3. If in addition to the systems K and k, which figure in §3, we also 
introduce a third coord inate system k', which moves paral lel t o k and whose 
origin moves wi t h velocity w along the axis 2, we obtain rdations bC'tween 
the quantities x, y, z , t and the corresponding quant ities of k' that 
differ from those found in §3 only insofar as "v" is being replacC'd hy t hf' 
quantity 

V + W 

1 + "P 
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from t his we see that such parallel transformat ions form a group-as they 
[21] indeed must . 

We have now derived the required propos itions of t he kinematics t hat 
corresponds to our two princ iples , and will now proceed t o show their 
application in electrodynamics . 

11 . Ele ct rodynamic Pa rt 

§6 . Transforma t i on of the Ha xwell -Jlert z equat ions for empty space. 

On the nature of the electromot ive forces that arise upon motion 
i n a magnetic f i eld 

Let the Maxwell-Hertz equations for empt y space be valid for the system 
[22] at rest K, so that we have 

1 l}X ON l)J{ 1 oL ar az 
1m = au -oz • 1'ot = oz - oy. 

1 ar aL aN 1 IJf az ax 
1oI = rz - rx · rn =ox - oz' 

1 aN ax ar 
1'1H = oy - TT• 

where (X,Y,Z ) denotes the vector of the electric force and (L,K,N) that of 
t he magnetic fo rce. 

1f we apply the transformat ions derived in §3 to these equations in that 
we refer the electromagnet ic processes to the coordinate systPm introduced 
t here , which moves with velocity v , we obtain the following equat ions: 

1 ax 
1' or 
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where 

1 ap[z + f •] _ ap[x ;l z] _ aL 
'1' Dr - 7fij ' 

1 IJL 
1' or 

1 apf N - 1 r] _ ax 
1 Dr - 7fij 

1 p = ----

j 1 - [,r 

157 

The relativity principle demands that the Max.well-Hertz equations for 
empty space also be valid in the system k if they are valid in the system 
K, i.e . , that the vectors of the electric and the magnetic force ((X',Y',Z') 
and (L',6' ,N') ) of the moving system k, which are defined in this system by 
their ponderomotive effects on the electric and magnet ic masses , respectively, 
satisfy the equations 

l IJN' IJX' l} Y' 
1 or = 01/ - or · 

Obviously, the two systems of equations found for the system k must 
express exactly the same thing, since both are equival ent to the Max.wel l-Hertz 
equations for the system K. Further, s ince the equations of the two systems 
coincide apart from the symbols representing the vectors, it fo l lows that the 
functions occurring in the systems of equations at corresponding places must 
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coincide up to a possibly v-dependent factor ¢(v) , which i s common t o all 
functions of one system of equations and i s independent of {, 7/, (, and r. 
Th<' fo l lowing relat ions wi 11 t herdorc be valid: 

Y' = ¢(v)P(r - 1 N] , 

Z1 = ~( v)P[z + f JI] , 

l' = '(J(v) l, 

If me now i nvert this system of equat ions, f irst , by solving the 
equat ions j us t obtained and, second, by app l ying the equat ions to the inverse 
transformation (from k to K) which is charact erized by the veloci t y -v , we 
obtain, if we take into account t hat t he two systems of equations so obtained 
nmst hr identical , 

v(v) . ¢(-v) = 1. 

Further, it fol l ows for reasons of symmetry1 that 

¢(v) p(-v); 

thus 
t(v) = 1, 

and our equations t akP the form 

X' = X, L' = L, 

y• = P[r - 1 NJ. 

Z' = P[z + r H] , 

1If , e.g . , X = Y = Z = L = JI = 0 and NI- 0, t hen it is clear for reasons of 
symmetry that if v changes its sign without changing its numerical value, 
then f ' t oo must change its sign without changing i ts numer ical value. 
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Dy way of interpreting these equations , we shal l add the f ollowing: Imagine a 
pointlike quanti t y of electricity whose magnitude, measured in the syst em at 
r est K, is "one ," i.e . , which, when at rPst in the syst em at rest, exerts a [ 23 ] 

force of 1 dyne on an equal quantity of electricity at a distance of 1 cm . 
Accord ing to the princi ple of relat iv ity th is electr ic mass is also of 
magnitude "one" if measured in a moving syst em. If th is quant ity of 
electricity i s at rest relative to t he system at rest, t he vector (X,Y,Z ) 
equals the force exerted on it by def inition. If this quantity of elect r icit y 
is at rest relative t o the moving system (at least at the instant cons idered ) , 
t he force exerted on it, and measured in the mov ing system, will equal t he 
vector (I ', f' ,Z' ) . Hence, the first three of the above equat ions can be 
expressed in words in the follow i ng two ways : 

1. If a po intlike unit elect ric pole i s in motion in an electromagnPtic 
f ield, there will act on it, in addition to the electric force, an "electro-
motive force" which, if we negl~ct terms mult iplied by t he second and higher [24 1 
powers of v/ Y, equal s the vector product of t he velocity of mot ion of the 
unit pol e and the magnetic force, divided by t he velocity of light . (Old mode 
of expression .) 

2. If a pointl ike unit electric pole is in motion in an electromagnet ic 
fie ld, the force acting on it equals the electric force present at the 
l ocation of the un it pole, which is obtained by transform ing t he f ield to a 
coordinat e system that is at rest relat ive to the unit electri c pole . (New 
mode of express ion.) 

Analogous propos i t ions apply for "magnetomot ive forces." We can see [25 ] 

that in the theory developed , the electromot ive force merely plays the role of 
an auxiliary concept, whose introduct ion is due to t he ci rcumstance that the 
electric and magnet ic forces do not have an exist ence independent of t he state 
of mot ion of the coordinate system. 

It is further clear that the asymmetry ment ioned in the Introduction (26 ] 

when considering t he current s produced by t he relative motion of a magnet and 
a conductor, disappears. Quf'stions as t o the "seat" of the electrodynamic 
electromotive forces (unipolar machines ) also become po int less . [ 27] 
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§7. Theory of Doppler's princ iple and of ab errat ion 

Imag ine in the system K, very far from the coordinate origin, a source 
of elect rodynami c waves , which in a part of space cont aining the coordinat e 
origin i s represented with sufficient accuracy by the equations 

X = x0 s in ;, 

Y = r0 s in ;, 
Z = z0 sin ;, 

L = lo sin;, 

JI = 10 sin ;, 
N = N0 sin ; . 

Here (X0, r0,Z0) and (L0,N0 ,N0) are the vectors determining the amplitude 
of the wave train, and a,b,c are the di rect ion cos ines of the wave normal s . 

We ask, what characterizes these waves when invest igated by an observer 
who i s at rest in the moving system k? - Applying the transformation 
equat ions for elect ric and magnetic forces found in §6 and those for coordi ­
nates and time found in §3, we obtain directly 

X' 

where we have put 

a' 
V a - y 

V • 
1 - a 11 

b 
b' = -P[-1 -_ -a -f] ' 

L' = 
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From the equation for w' it follows that if an observer moves with 
velocity v relative to an infinitely distant source of l ight of frequency 
11, such that the connecting line "light source - observer" forms an angle <p 

wit h the observer ' s velocity, where this velocity is referred to a coordinate 
system that is at rest relative to the light source, then 11 1

, the frequency 
of the light perceived by the observer, is given by the equation 

V 1 - cos <p J' 
11' = II ------

FW1 
This is Doppler 's pr inciple for arbitrary velocities . For cp = 0 the 
equation takes the simple form 

,., , = 11 . A V 

We see that, contrary t o the usual conception, when v = - oo, then 11 = oo. ( 28] 

If cp' denotes the angle between the wave normal {the direct ion of the 
ray) in the moving system and the connecting line "light source - observer, " 
the equation for a' takes the form (29] 

cos <p 1 = 

V cos cp - -p 
V 1 - l' cos cp 

Th i s equation expresses the law of aberration in i t s most general form . If 
<p = ~12, the equat ion takes the simple form 

cos <p 1 V -, . 
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I t remains now to find the amplitude of the waves the way it appears in 
t he moving system. If A and A' denot e the electric or magnet ic force in 
t he syst em at rest and in motion, respect ively, we get 

which for cp = 0 

2 
1 - f cos cp 

A I 2 = 12 ~------r---,-,.----~ 

1 - "f 

simpl ifies to 

1 V 

J 1 2 = J2 -=.__! 
1 + V 1i 

It follows from t he equat ions derived above that to an observer 
approaching a light source wi th velocity JI, thi s source would appear t o have 
i nf ini te int ensity . 

§8 . Trans / ormat i on of the energy of l ight rays . 

Theory of the radi at i on pressure exert ed on perfec t mirrors . 

Since A2/81: equals t he energy of light per un i t volume , accord ing to 
the principle of relativity we have to consider A. 12/ 81: as the light energy 
in the moving syst em. Hence A' 2/ A2 would be t he rat io of the energy of a 

[31) given light complex "measured in motion" and the same energy "measured at 
rest ," if the volume of a light complex were t he samf' whet her measured in K 

or k. However , this is not t he case. If a,b, c are the direction cosines of 
t he wave normal of t he light in the system at rest , t hen the surface elements 
of t he spherical surface 

(x - Va t) 2 + ( y - Vb t) 2 + (z - Vct) 2 = J(l, 

which moves with the velocity of light, are not t raversed by any energy; we 
may therefore say that th is surface permanently encloses t he same light 
complex. We ask for the quant i ty of energy enclosed by th is surface as 
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observed in the system k, i .e., the energy of the light complex relative to 
the system k. 

Observed in the mov ing system, the spherical surface is an el l ipsoidal 
surface whose equat ion at t ime r = 0 is 

If S denotes the volume of the sphere and S' that of the el lipsoid, then a 
simple calculation shows that 

If the energy of the light enclosed by the surface under consideration is 
denoted by E when measured in the system at rest and by £' when measured 
in the mov ing system, we obtain 

E' 
V 1 - -y cos cp 

1 

wh ich for cp = 0 reduces to the simpler formula 

It is noteworthy t hat the energy and the frequency of a light complex 
vary with the observer's state of mot ion according to the same law. 

Let the coordinate plane { = 0 be a completely reflect ing surface at 
which the plane waves cons idered in the last sect ion are getting reflected. We 
ask for the light pressure exerted on the reflecting surface and the di rec­
tion, frequency, and intens ity of the l ight after reflection. (32) 
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Let the incident l ight be defined by the quantities A. cos cp. and 11 

(r eferred to the system K). Observed from k, the cor responding quantities 
are 

V 1 - f cos cp 
A' = A - r----_-_--r--........... - . 

J1 - [f]2 

cos ,p' 

V cos f/J - 1' 

1 V COS !.p 
- 1' 

V 1 - f cos cp 
11 ' = 11 -----

Referr ing the process to the syst em k, we get for the reflected light 

A" = A' . 

cos !.p11 = - cos cp', 

v" = v ' . 

Finally , by transforming back to the system at rest K, we get for the 
reflected light 

V V V 2 
1 + f cos !.p

11 1 - 2 f cos cp + 1' 
A"' = A" - - -------~-- -_-- = A-- - - .--.--....... ._ 

J 1 - [1]2 1 
- f 

cos crf" = 
COS tn11 + V .,, V 

1 + f cos cp11 

2 
1 + -y cos cp - 2 "f 

V V 
- 2 f cos <p + l' 

V V V 2 
1 + l' cos !.p

11 1 - 2 l7 cos cp + l' 
11'" = v" ----- = 11 -----,.--.--....... '--

i - v 
[33] 
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The energy (measured in the system at rest) striking the unit surface of 
the mirror per unit time i s obv iously A2/8J"(V cos r.p - v) . The energy leaving 
the unit surface of the mirror per unit time i s A"'2/8J"( - Vcoscp" + v) . 
Accord ing to the energy principle. the difference of these two express ions i s 
the work done by the light pressure per uni t time . Equating this work with 
P·v, where P is the pressure of l ight, we obtain 

J2 cos 1./) 
P = 2F;i 

1 -

In first approximation, in agreement with experience and with other theories, 
we get 

_J 2 2 
P = 2 F;i cos <p. 

All problems in the optics of moving bodies can be solved by the method 
employed here. The essent ial point is that the electric and magnet i c forces 
of light. which i s influenced by a moving body, are transformed to a coordi­
nate system that is at rest relative to that body. This reduces every problem 
in the optics of moving bodies to a series of problems in the optics of bod ies 
at rest . 

§9. Transformation of the Maxwell -Hertz equations when convection 
currents are taken i nto consideration 

~e start from the equations 

1 { ax} aN a, J' Uxfl + 7fl = Qy - OZ ' 

1 { Ofl DL ON 
1 "·l + otJ = oz - ox • 

1 { DZ} DK DL 1 "zP + 7ft = ox - oy ' 

1 8L ar DZ 
rol = oz - Ty• 

1 DJ/ DZ ax 
1ol = ox - oz, 

(34] 

[ 35 ] 
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where 
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p - ox + 0 }' + oz - rx ry oz 

denotes the 4r-fo ld dens ity of electricity and (ux,uy,u z) the electricity's 
velocity vector . I f t he electri c masses are conceived as permanently bound to 

[ 36] smal l, rigid bodies ( ions , electrons ) , then these equat ions constitute the 
elect romagnetic foundation of Lorentz ' s el ectrodynamics and opt ics of mov ing 
bodies. 

If, using t he transformat ion equations presented in §3 and §6, we 
transform these equations , which should be val id in system K, to system k, 
we get the equations 

1 at • al" az1 

Y or = or - 01/' 

1 { 1 iJY1
} _ DL' iJN' 

11 "rf + or - o( - a(' 
1 iJJ/1 iJZ' lJX 1 

ror = or- -°'' 
1 { OZ'} 81' Ol ' "P "(P' + OT = 7f( - oi,' 

1 iJN' iJX' iJY' 
V OT = 07J - a(' 

where 

UX - V 
u{, 

"xv 
1 - 7"I 

"'!I. 
"TJ , 

P[ 1 "xv] - 172 

1 iJX ' OY' iJZ' [ vux] 
p = ~ + 01/ + o( = p 1 - -,n-- p • 

"z 
;:: u, • 

11(1 uxv] - yr 

Since- as fo l lows f rom the addit ion theorem of velocities (§5)-the vector 
(u{'"n'"() is actually the ve loci t y of the electric masses measured in the 
system k, we have thus demonstrated that with our kinematic princi ples taken 
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as a basis, the electrodynamic foundation of Lorentz ' s theory of the el ectro­
dynamics of moving bodies agrees with the principle of relativity. 

Let me also briefly add that t he following important proposition can 
easily be deduced from t he equat ions we have der ived: If an electr ical ly 
charged body moves arbitrarily in space without change of i t s charge, observed 
from a coordinate syst em moving with the body, then its charge wil l also 
remain constant when observed from the system II at rest '' K. 

§1 0. Dynamics of the (slowly accelerat ed} electron 

In an electromagnet ic field let a point l ike particle endowed with an 
electric charge f (called "electron" in what follows) he in motion; about 
i t s law of motion we assume only the fo l lowing: 

If the electron i s at rest during a particular epoch, its motion in the 
next element of time wil l occur according to the equations 

d2x 
µ aI'l = £X, 

ft¥2 
µ = £Y, 

d2 z 
µ w = f.Z, 

where x,y,z denote t he coordinates of the electron and µ its mass , as long 
as t he electron moves s lowly. 

Further, let the electron' s velocity in some given t ime epoch be v. We 
seek t o find the law by whi ch t he electron is moving in t he next el ement of 
time . 

Wi t hout affect ing the general ity of the consideration, we can and will 
assume that at the moment when we focus on it, the electron is at the 
coordinate origin, and is moving with vel ocity v along the X-axis of the 

(37] 

coordinat e system K. It i s then obvious that at the instant indicated [38] 

(t = O) , the electron is at rest relative to the coordinat e system k that 
moves with constant velocity v paral l el to the X-axis . 
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From the above assumption combined with the relat ivi ty principle it is 
clear that, viewed from the system k, the electron wi l l move during the 
immediatel y follow ing time (f or small values of t ) according to the equations 

µ ~ = f.Z'' 

where the symbols {, 1/, (, r, l ' , Y' , Z1 refer to the system k . If we also 
stipulat e that for t = x = y = z = 0 we should have r = { = ~ = ( = 0, then 
the t ransformat ion equat ions of §§3 and 6 wil l be valid, so that we get 

T = P[ t - fl x] , 

{ = P( x - vt), X' = X, 

1/ = y, f l = P[r - f N] , 

( = Z , Z' = P[z + 1 1] . 

Wit h the help of these equations we transform t he above equations of 
[39] motion from system k to system K and obtain 

(A ) 
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Following the usual approach, we now seek to determine the "longi-
tudi nal" and "transverse" masses of the moving electron . We write the [40] 

equations (A) in the form 

µ/fl ~ = ef) [ z + 1 x] = EZ' , 

and note first that el' , eY', eZ' are the components of t he ponderomotive 
force exerted on the electron, as observed in a system co-mov ing at this 
instant with the electron at the latter's speed . (This force could be 
measured, for example, by a spring balance at rest in the last -mentioned 
system.) If we simply call this force "the force exerted on the electron," 
and maintain the equation 

Numer ical value of mass x numerical value of acceleration = 
numerical value of force, 

stipulating, in add ition, that the accelerations be measured in the system at 
r est K, we obtain from the above equations 

Longi tudinal mass= 

Transverse mass 

Of course, with a different definition of force and accelerat i on we 
would obtain different numerical values for the masses; this shows that we 

[41] 

must proceed with great caution when comparing different theories of the [42 ] 

motion of the electron . 



[43] 
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I t should be noted that t hese results concerning mass are also valid for 
ponderable mater ial points, since a ponderable mater ial point can be made into 
an electron (in our sense) by adding to it an arb i t rarily smal l electri c 
charge . 

We now determine t he kinetic energy of t he electron. If an electron 
starts out from the origin of the system K wit h an initial velocity O and is 
moving conti nually along the X-axis under t he influence of an electrostatic 
force X, t hen it is clear that t he energy drawn from the electrostatic field 
has the value Jf.ldx. Since t he el ectron is supposed to accelerate slowly and 
wi ll t herefore emi t no Pn<'Tgy in t he form of radiat ion, t he energy taken from 
the electrostatic field must be equated with t he energy of mot ion II of t he 
electron. Bear ing in mind that t he first of equat ions (A ) holds during the 
entire process of motion considered, we obtain therefore 

II = J lXdx = J
11 

{)
3vdv = µJl2 [ 

1 
- 1]. 

0 j1 - [1)2 
Thus, II becomes infinitely large when v = Y. As in our prev ious 

[44] results , superluminary velocit ies have no possibility of existence . 
This express ion for kinet ic energy t oo must be val id for ponderable 

masses as well by virtue of t he argument presented above . 
Let us now enumertlte those properties of t he mot ion of the electron t hat 

result f rom the system of equations (A) and are access ible to experiment . 
1. It fol l ows f rom t he second equation of the system of equations (A) 

t hat an electric force Y and a magnetic force N have an equally strong 
deflective effect on an electron moving with veloci t y v if Y = N.v/Y. Thus 
we sc<3 t hat accord ing to our theory we oon det ermine t he velocity of t he 

[45) elect ron for any arbitrary velocity f rom the ratio of t he magnet ic def lection 
Am t o t he electri c deflection Ae by applying the l aw 

A m V 
T = v· 

e 
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This relation can be checked experimental l y since the velocity of the 
electron can al so be measured di rectly, e.g., using rapid ly oscillating 
electric and magnet ic fields . 

2. It follows from the derivation for the kinetic Pnergy of the 
electron that the potential difference traversed by the electron and t he 
velocity v attained by it must be related by the equation 

P = J Xdx = ~ V2[ 
1 

- 1] . 
f J 1 - [vr 

3. We calculate the radius of curvature R of the pat h when a magnetic 
force N, which acts perpendicular to the velocity of the electron, i s present 
(as the only deflecting force) . From the second of equations (A) we obtain 

~ _ v2 _ f V Nj 
- dt2 - "Ji - µ 1' • 1 -

or 

These three relations are a complete express ion of the laws by which t he [46 ] 

electron must move arcording to the theory presented here. 

In conclusion, let me note that my friend and colleague M. Besso [47] 

steadfastly stood by me i n my work on the problem here discussed, and t hat I 
am indebted to him for many a valuable suggestion. 

Bern, June 1905. (Recei ved on 30 June 1905 ) 
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Doc . 24 
DOES THE INERTIA OF A BODY DEPEND UPON ITS ENERGY CONTE~T? 

by A. Einstein 
[Annalen der Physik 18 (1905 ): 639-641] 

The results of an electrodynamic invest igat ion published by me recently 
in t his journal 1 lead t o a very int erest ing concl usion, which shall be derived 
here. 

There I based myself upon the Maxwel l-Hertz equations for empty space 
al ong with Maxwell's expression for the electromagnet ic energy of space, and 
also on the following principle : 

The laws governing t he changes of state of physical systems do not 
depend on which one of two coord inate systems mov i ng in uniform paral lel 
translat ion relat ive to each ot her t hese changes of state are referred to 
(principle of relativ i ty ). 

Based on these fundamental principles2, I der ived the follow ing result, 
among others (Zoe . ci t . , §8): 

Let a system of plane waves of l ight, referred to t he coordinate system 
(x,y, z) , possess the energy l; l et the direction of the ray (the wave normal ) 
form the angl e c.p with the x-axis of the system. If we introduce a new 
coordinate system ({,ij,( ) , whi ch i s un iformly paral lel -translated with 
respect to the system (x,y, z) , and whose origin is moving along the x-axis 
with veloci ty v, t hen the above-ment ioned quant i ty of light-measured in the 
system ({,ij,()-possesses the energy 

V 1 - l' cos c.p 
l* = l----

11 - [f]2 
where r denotes the veloc ity of l ight. We wi ll make use of th is result in 
the fo llowing . 

[I] 1A. Einstein, Ann . d. Ph ys. 17 (1905): 891 . 
2The pr incipl e of t he constancy of the veloci ty of l ight used t here is of 
course contained in Maxwell' s equat ions . 
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Let there be a body at rest in the system (x,y,z }, whose energy, 
referred to the system (x,y,z ) , is £0. The energy of the body with respect 
to the system ({,~.(), wh ich is mov ing with velocity v as above, shall be 

Ho. 
Let this body simultaneously emit plane waves of light of energy L/ 2 

(measured relative to (x,y,z)) in a direction forming an angle r.p wi th the 
x-axis and an equal amount of l ight in the opposite direct ion . Al l the while, 
the body shall stay at rest with respect to the system (x,y,z ) . This process 
must satisfy the energy principle, and this must be true (according to t he 
principle of relativity ) with respect to both coordinate systems . If E1 and 
H1 denote the energy of the body after the emission of light, as measured 
relative to the system (x,y, z ) and ({.~,() , respectively, we obtain, using 
the relation indicated above, 

Subtracting, we get from these equations 

The two differences of the form H - E occurring in this expression have a 
s imple physical meaning . H and £ are the energy values of the same body, 
referred to two coordinate systems in relative motion, the body being at rest 
in one of the systems (system (x,y,z)). Hence it i s clear that t he differ­
ence 8 - E can differ from the body ' s kinetic energy K wi th respect to the 
other system (system ( {,ij,()) solely by an additive constant C, whi ch 
depends on the choice of t he arbi trary additive constants of the energies ll 

and £. Ye can therefore put 



[2] 
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since C does not change during t he emission of light. Thus , we get 

The kinet ic energy of the body wi th respect t o ( {,n,() decreases as a resul t 
of the emission of light by an amount t hat is independent of the body ' s 
characteristics. Furthermore, t he difference K0 - K1 depends on the 
vel ocity exactly l ike t he kinetic energy of t he el ectron ( loc. ci t., §10). 

Neglect ing quantities of the fourth and higher orders , we can put 

From t his equat ion i t follows directly: 
If a body releases the energy L in the form of radiat ion, its mass 

decreases by L/ Vl . Since obviously here it is inessent ial t hat the energy 
withdrawn from t he body happens t o turn into energy of radiat ion rather than 
into some other kind of energy, we are l ed to t he more general concl usion : 

The mass of a body is a measure of its energy content; if the energy 
changes by L, the mass changes in t he same sense by l / 9 • 1020 , if t he energy 

[3) i s measured in ergs and t he mass in grams . 
Perhaps it wil l prove poss ible to test this t heory using bodies whose 

energy content i s variable to a high degree (e.g. , sal t s of radium). 
If the theory agrees with the facts , t hen rad iation transmits inertia 

[4] between emitting and absorbing bodies . 

Bern, September 1905 . (Received on 27 September 1905 ) 
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Doc . 25 
Review of H. BIRVEN, Fundamenta ls of the Kechan i ca l Th eory of Heat 

(Crundzuge der mechanischen lfa rmetheorie. Stuttgart and Berlin: 
F. Grub, 1905 . 128 pp . 2.80 marks ) 

[Be i blatt er zu den Annalen der Phys ik 29 (1905): 950) 

This booklet contains a conci se, elementary exposition of the thermo­
dynamics of gases and vapors as well as its application in the theory of the 
steam engine and refr igerating engines. Even though the booklet di splays some 
inaccuracy with respect t o the fundamental definit ions and exposit ions (cf. , 
e .g., t he definition of entropy, p. 50 ) , it will probably stand in good st ead [ 1] 

to many an engineering student fac ing his exam wit h fragmentary college 
not ebooks. [2] 

Doc. 26 
Review of A. PONSOT, "Heat i n t he Displacement of the Equilibrium of 
a Capi llary System" ("Chaleur dans le deplacement de l ' equilibre d' un 
systeme capillaire, 11 Academie de.<; Sciences (Paris) . Compt es rendus 140 

(1905}: 1176-1179) 
[Beiblatter zu den Annalen der Ph ys ik 29 (1905 ) : 952] 

The author examines the foundations of the thermodynamic theory of 
capillarity and finds in them a not exactly correct assumption; nothing is 
said about the order of magnitude of the inaccuracies that ar ise f rom t his l l] 

assumption . 
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Doc . 27 
Review of K. BOHLIN, "On Impact Considered as the Bas is of t he Kinetic 
Theories of Gas Pressure and of Universal Gravi tat ion" ("Sur le choc , 

cons idere comme fondement des theor i es cinet iques de la pression des gaz 
et de l a gravitat ion universelle, " 

Arkiv f or Hatema tik, As tronomi och Fysik 1 (1904 ) : 522-540) 
[Dei blatter zu den Anna l en der Physik 29 (1905) : 952] 

Star t i ng from the remark t hat repul s ive forces between particles are 
introduced into the kinet ic theory of gases as well as into t he dynamic theory 

[ l] of gravi t ation for the sole purpose of explain ing collis ions , the aut hor seeks 
[2 ] t o avoid t he introduct ion of repulsive forces altogether. Ile tries to ascribe 

t he impact exclusively to t he act ion of at tractive forces between the 
corpuscles t hat constitute the coll iding bodies. In doi ng so, he t akes t he 
posi t ion t hat every attract ive force is to be explained (kinetically) by t he 
effect of the impact of relat ively infinites imally small corpuscles , and every 
impact by the attract ion of relatively inf initesimal ly smal l corpuscles. 
Thus , corpuscl es of inf in i tely many orders of magnitudes are introduced to 
explain t he elementary propert ies of matter. 
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Doc. 28 
Review of G. MESLIN, "On the Constant in Mariotte and Gay-Lussac's Law" 

("Sur la constante de la loi de Mariotte et Gay-Lussac, " Journal de 
physique theorique et appl i quee 4 (Series 4) (1905): 252-256) 

[Beiblatter zu den Annalen der Phvsik 29 (1905 ) : 1114) 

I t is shown that the quotient of the above constant and the mechanical [l] 

equivalent of heat, which has a value slightly different from 2, is inde-
pendent of t he choice of the units for mass , length , and t ime, but that 
nevertheless no physical meaning is to be ascribed to the numerical value of 
thi s quotient because it depends on the choice of the unit of molecular 
we ight . [21 

Doc. 29 
Review of A. FLIEGNER. "The Efflux of Hot Vater from Container Orif ices" 

("Das Ausstromen heissE>n Wassers aus Gefassmiindungen," Schweizerische 
Bauzeit ung 45 (1905) : 282-285, 306-308) 

[Beiblatter zu den Annalen der Physik 29 (1905): 1115] 

According to Zeuner and Lorenz, the deviation of Pulin and Bonnin' s [l ] 

experimental results concerning the efflux velocity of water under the [ 2 ] 

pressure of its steam is to be ascribed to a sort of evaporation delay . In 
contrast, the author takes the point of view that the l ack of agreement 
between the experiments and the theory is to be ascribed to t he fact that in 
the above-mentioned experiments, due to temperature differences within t he 
water container, the water reaching the point of outflow has a somewhat lower 
temperature than that corresponding to the vapor pressure in the container . 
In addition, an experi ment is cited in which the above source of error was 
avoided and in which the result was in agreement with the theory . 
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Doc. 30 
Review of J. J. WEYRAUCH, An Outl ine of the Theory of lleat. llith 

/l'ume rous l'xamples and Appl ica t ions . Ptlr l 1 (Crundriss der 
lrarn,etheorie . Ni t zahlreichen Beispiel en und Anwendungen. Stuttgart : 

K. Wittwer , 1905. 131 pp.) 
[Beibla t ter zu de n Annal en der Physik 29 (1905): 1152] 

Th is book is bas<>d on lectures t he author gave at the Stuttgart Teclmi­
cal Univer sity and contains in t he main the t heory of t he bas ic l aws of 
thermodynamics and, subsequent to that , in a clear and comprehensive presen­
tat ion , the tlH'ories of t he various heat engines. The book is very well 
suited for private study since much care has been devoted to t he didact ic 
aspects in order t o accomplish the above purpose. In ord~r t o present t he 
theory in a compact and clear form , as well as to impress t he abstract r esul ts 
obtained upon t he reader's mind as vivid ly as possible , numerous examples and 
probl ems are inserted bet ween the theoretical presentations , which are by no 
means restricted t o applications important to t he engin<>er. Many examples arc 
taken from t he hist ory of the theory of heat, especially t he trains of thought 
of Robert May<>r are presPnted in det ail ; t he workings and ways of f unctioning 

[ I ] of "human engines" are also subj ected t o a detailed consideration and compared 
with artificial heat engines. Thf' seven sect ions of tlH' book's fi rst half 
under considHat ion arc ti t l ed as follows: I. Conservat ion of energy. The 
first law. II. Heat and work. The second l aw . III. On heat engines in 
general. IV. On gases . V. Dn air engines. VI. On chemistry and the kinetic 
t lwory of gases. VII. On combustion engines .- No previous knowl edge of 
engineer ing and physics is assumed, but r l ements of infinitesimal calculus 
are. Constructional detai l s of heat eng ines are entered into only insofar as 
t his is requ i r ed for t he presentat ion of t he t heor ies of the di fferent engine 
t ypes and for t he study of t hei r eff iciency. A t able of symbo ls used, and a 
name and subject index, are appended t o t he volume , so that the book can also 
be profi tably used as a refer ence work, and each of t he many experimental 
values gi ven (e .g. , caloric val ues of different fuel s , efficiency of various 
heat engines achi eved in pract ice t o date, etc. , } can easily be 
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found. As mentioned in the introduction, the second half of the book is 
expected to appear during the next year. I t wi ll contain the theory of satur- l2l 
ated and superheated vapors , sections on aerostat ics , aerodynamics , and solid 
bodies, as well as the corresponding appl ications, in a presentation very 
s imilar to t hat in the first half . 

Doc . 31 
Review of A. FLIEGNER, "On the Thermal Val ue of Chemical Processes" 

( "Uber den Warmewert chemischer Vorgange," Na tu rf orschende Cesel lschaf t 
i n Zuri ch. Viertel jahrsschri ft 50 (1905): 201 -212) 

[Be i blatter zu den Annal en der Phys ik 29 (1905): 1158] 

The author overlooks the fact that the def in ing equation of ent ropy 
dS = dQ/ T holds for revers ible processes only, and as a consequence he 
arrives at the result t hat one cannot speak of a change of a system's ent ropy 
by a chemical process. 
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Doc . 32 
ON THE THEORY OF BROWNIAN MOTION 

by A. Einstein 
[Annalen der Physik 19 (1906): 371-381] 

Soon after the publ icat ion of my paper on the motion of particles 
(2] suspended in liquids demanded by the molecular t heory of heat, 1 Mr . Siedentopf 
[3 ] (Jena) informed me that he and other physicists- Prof . Gouy (Lyon) probably 

havi ng been the f i rst - had become convinced by direct observation that the 
so-called Brownian motion i s caused by t he random t hermal motion of the 
liqu id' s mol ecules. 2 Not only the qualitative properties of Brownian motion 
but also the order of magnitude of the paths traversed by the particles are in 
ful l agreement wi th t he results of the theory. I shall not compare here the 
meager experimental material available to me wi t h the resu l ts of the theory, 
but shal l leave t his comparison t o those engaged in experiment al invest igation 

[Sl of th is topic. 
The present paper shall supplement my above-mentioned paper in several 

po ints. We wi l l derive here not only the t ranslatory, but also the rotat ionaJ 
motion of suspended part icles for the simplest special case when the particles 

[6 ] have a spherical shape. We will also establish the shortest observat ion times 
f or which t he resul t given in the paper is stil l valid. 

We wi ll use here a more general method of der ivat ion, partly to show how 
Brownian motion relates to the foundations of the molecular theory of heat, 
and part l y t o be abl e to der ive the formu las for the translatory and for the 
rotat ional motion by a common investigat ion. Let us assume that o is an 
observable parameter of a phys ical syst em in thermal equ i librium and that the 
system i s in so-cal l ed indifferent equilibrium at every (poss ible ) value of o. 
According to class ical thermodynamics , which makes a fundamental distinct ion 
between heat and other kinds of Pnergy, spontaneous changes of o do not take 
place, but according to the molecular theory of heat they do. In the follow­
ing we will investigat e what l aws t hese changes must obey according to t he 

lll 1A. Einstein, Ann . d. Phys . 17 (1905): 549. 
[4] 2M. Gouy, Jour. de Ph ys. 7, No. 2 (1888 ) : 561. 
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latter theory . Ye will then have to apply these laws to the following special 
cases: 

1. o i s the x-coordinate of the center of gravity of a spherically 
shaped particle suspended in a homogeneous liquid (which is not subject to 
gravitation). 

2. a is the angle of rotation that det ermines t he pos it ion of a 
spherical particle suspended in a liquid and capable of rotating about a 
diameter. 

§1. On a case of thermodynamic equilibri um 

In an environment of absolute temperature T let there be a physical 
system in thermal interaction with this environment and in a state of t hermal 
equilibrium. This system, which hence also possesses the absolute temperature 
T, shall be completely determined by the state variables p1 .. ·Pn according 
to the molecular theory of heat. 1 In the special cases to be considered, we 
can choose for the state variables Pi· ··Pn the coordinates and velocity 
components of all atoms consti t uting the system under cons iderat ion. 

The probability that at a randomly chosen instant of time all state 
variabl es p1 .. . pn wil] lie in the a-fold inf initesimally small region 
(dp1 ... dpn) is given by the equation2 

(1 ) 

where C denotes a constant, R the universal constant of the gas equat ion, N 
the number of true molecules per gram-molecule , and E t he energy. 

Suppose that a is an observable parameter of the system and that to 
each system of values Pi · · ·Pn there corresponds a def inite val ue o. We 
denote by Ada the probability that at a randomly chosen inst ant the value of 
the parameter o wi l l lie between o and a+ do. We then have 

1Cf . Ann . d. Phys. 17 (1905): 5'19. [ 7] 

2Loc. cit., §§3 and 4. [8) 
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(2) 

where the integral on t he right -hand side is extended over all combinat ions of 
those state variables whose value of o lies between a and o + da . 

We will confine ourselves to the case in which t he nature of the problem 
makes i t immediatel y evident t hat all (possibl e) values of a have the same 

[9] probabili ty (frequency), i. e. , t hat the quant ity A is independent of o. 
Imagine now a second physical system that di ffers from t he system j ust 

cons idered by the sole fact t hat i t is acted upon by a force of pot ential 
l (o), wh ich depends onl y on o. If E is the energy of t he system considered 
earlier, t hen £ + I will be the energy of t he system consi dered now, so t hat 
we get the following relation, analogous to equat ion (1 ): 

This , in t urn, yields a relation analogous to equation (2) for t he 
probability dll t hat at an arbitrarily chosen inst ant the val ue of a wi 11 
li e between o and o + do : 

(I) 

where A' i s independent of o. 
Th is relat ion, which corresponds exactly to t he exponential law used 

f requent ly by Bol t zmann in hi s i nvest igations on the t heory of gases , is 
[10) characteristic for the molecular t heory of heat . I t determines how much a 

parameter of a system subjected t o a constant external force diverges from the 
value corresponding to stable Pquilibr ium because of random molecular motion. 
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§2 . Examples of appl ication of the equat ion der ived i n §1 

We cons ider a body whosP center of gravity can move along a straight 
line (the X-axis of a coordinate system) . The body shall be surrounded by a 
gas , and there shal l be thermal and mechanical equilibrium. Accord ing to t he 
molecular theory, the body will move back and forth along t he straight line in 
a random fashion due to the nonuniformity of molecular col lisions, such that 
none of the points of t he straight line will be preferred in this motion -
provided that no forces other than those of molecular coll is ion are exerted on 
the body in the direction of t he straight line. Hence, the abscissa x of 
the center of gravity is a parameter of the system, which possesses the 
properties stipulated above for the parameter o. 

We wi ll now introduce a force K = - Ix that acts on the body in t he 
direction of the straight l ine. According to the molecular theory the center 
of gravity of the body wi l l then also carry out random mot ions , but without 
deviating too far f rom the point x = 0, whereas according to cl ass ical 
thermodynamics it must be at rest at the point x = 0. Accord ing to thP 
molecular theory (formula I ) , 

N x2 
- 7i1f,, -

dlr = A' e n 1 2 dx 

equals the probability that at a randomly chosen instant the value of the 
abscissa l ies bet ween x and x + dx. From this we find the mean di stance of 
the center of grav i ty from t he point x = 0, 

N J/x2 f00 

x2A' e - 7fT 2 dx 

-oo N kx2 = rZ J:: A'e- T{T 2 dx 

For ~ to be large enough to be accessible to observation, the force 
that determines the body' s equ il ibrium posit ion must be very smal l. Putting 

[ ll] 

~ = 10-4 cm as the lower limit of observabil i ty, we get N = about 5-10-6 [12] 
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for T = 300 . Thus , for the body to perform fluctuat ions observable under the 
microscope , t he force acting on it must not exceed five millionths of a dyne 

[ 13] for an elongation of 1 cm . 
Let us add one fu rt her t heoretical remark to the equation derived. 

[ 14 ] Suppose the body under cons ideration carries an elect ric charge distributed 
over a very small space , and t he gas surrounding the body is so rarefied that 
the body performs sinusoidal osci llations only slight ly modified by t he 
surround ing gas . The body t hen radiates electric waves into space and absorbs 
energy from t he rad iation of the surrounding space; it thus mediates an 
exchange of energy between radiation and gas . We can der ive the l imi ting law 
of t hermal radiat ion , which seems to hold for l ong wave lengths and high 
t emperat ures , by formulating t he condit ion that t he body in quest ion emits on 
t he average as much radiation as i t absorbs. We arrive in this way1 at the 
fo l lowing fo rmula for t he radiation dens ity Pv that. corresponds t o the 
frequency v: 

P 
_ R 8w 2 

V - N -,;r T, 

where l denotes t he velocity of l ight. 
The radiation fo rmu la given by Mr. Planrk2 r educes to t his fo rmula at 

l ow f requencies and high t cmpPratures. From t he coef f icient of the l imit ing 
law we can determ ine t he quanti ty N and thus arrive at Planck' s determina­

[ 17 ) tion of t he elementary quanta. The fact that in the way indi cated we do not 
obta in t hr t rue law of radiation, but only a limi ting l aw, seems to me to be 

fl8) rooted in a f undamental imperfection of our phys ical conceptions. 
We wil l al so use formula (I ) to decide how 8mal l t he suspended particle 

needs to he to rPmain permanent ly suspended despite t he effect of gravi ty . We 
can conf ine ourselves t o t he case t hat the particle has a great er speci f ic 
gravity t han t he l iquid, since the opposite case i s complet ely anal ogous. 

If v is the vol ume of t he part icle , p i t s dens ity, Po the density 
of the liqu id, g the accel erat ion of gravity, and x the ver t ical distance 
of a po int from t he bottom of t he conta iner , equation (1 ) will yield 

[ 15] 1Cf. Ann. d. Ph.ys. 17 (1905): 519, §§1 and 2 . 

[1 6) 2\J. Planck, Atzn . d. Phys . 1 (1900 ): 99 . 
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N 
- 7{T v( p - Po} gx 

dV = const. e dx . 

Thus we will then find that suspended particles can float in a liquid if, for 
val ues of x that do not escape observation because of their smallness , the 
quantity 

N 
7{T v( p - Po)gx 

does not have t oo high a value-provided that the part icles that have reached 
the bot tom of the container do not adhere there due to some ci rcumstance or 
other . [19] 

§9. On the changes in the parameter a caused by thermal motion [20 ] 

Now we return again t o the general case discussed in §1, for which we 
derived equation (I). For the sake of a s impl er mode of expression and 
visualization, we wi l l now assume, however, that a very large number (n) of 
identical systems of the kind described there are involved; in that case we 
have to deal with numbers instead of probabilit ies . Equation (I) expresses 
then the fol l owing : 

Of N systems , there are 

(Ia) 
N t 

dn = cpe - "][1' da = F(a)da 

systems in which the value of the parameter o lies between a and a+ da 

at a randomly chosen instant. 
We shall use this relat ion to determine the magnitude of the irregular 

changes of the parameter a produced by the random thermal processes. To t hat 
end, we express in symbols t hat, within the time span t, the function f (a) 
does not change under t he combined effect of t he force corresponding to the 
potential t and the random thermal process; here t denotes a time so small 
t hat the cor responding changes of the quant ities a of the individual systems 
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can be considered as infin itesimal ly small changes i n the argument of t he 
function f (a) . 

If lengths numerically equal to a are plotted along a straight line 
starting from some specif ied or igin, then to each system there wi ll correspond 
a po int (a) on t his straight line . f (a) is the density of the system­
points (a) on the line. During t ime t, exact ly as many syst em-points must 
t hen cross an arbitrary point (o0) of t he line in one direction as in t he 
opposite one. 

Let a force cor responding t o t he potent ial I produce a change of 
magnitude 

in a, where B is independent of a, i .e., the velocity of change of a 
shall be proportional to t he operat ing fo rce and independent of the val ue of 
t he parameter. We will call the factor B "the mobility of the system with 
respect t o a. " 

Thus, i f t he ext ernal force were to operate without the quantity o 
being changed by the random molecular thermal process , then 

system-points would cross t he point (o0) toward the negat ive side during 
t imr t. 

Let ~(A) be t he probabilit y that , due to the random t hermal process , 
the parameter a of a syst em experiences during time t a change whose value 
lies between A and A+ dA, where ¢(A) = ~( -A) , and fJ is independent of 
a. The number of system-points cross ing the point (o0) toward t he posit ive 
side on account of t hr random t hermal process during t ime t is then 

fl=oo 
n2 = J F(a0 - A)x (A) dA , 

A=O 

where we have put 
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The number of system-points traveling toward the negat ive s ide on account of 
the random thermal process is 

The mathematical expression for the invariability of the function f is 
thus 

If we substitute the expressions found for n1, n2, n3, and take into account 
that A is infin i tes imally small, and that ¢(A ) differs from zero only for 
infinitesimal values of A, we obtain after simple calculation 

Here 

denotes the mean of the squares of the changes of the quantities o produced 
by t he irregular thermal process during time t . From this relation we 
obtain, if we take into considerat ion equation (Ia), 

(II) 

Here R denotes the constant of the gas equation (8 .31 · 107) , N t he number 

[21) 

of true molecules in a gram-molecule (about 4 -1023), B the 11 mobility of the [22] 

system with respect to the paramctrr 0, 11 T thr absolute temperature, and t 
the time wi t hin which the changes in o produced by the random thermal 
process takr place . 
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§4. Appl i ca tion of the derived equat ion to Brownian mot i on 

Using equations (II), we now calculate the mean displacement in a 
particular direction (the %-direction of a coordinat e system) experienced 
dur ing t ime t by a spherical body suspended in a liquid. To this end we 
must substitute the cor respondi ng val ue for R in t he above equation. 

If a force i s exerted on a sphere of radi us P that is suspended in a 
liquid with a coefficient of friction k, t he sphere wil l move with velocity1 

K/ 6rkP. Hence we have to put 

so that- in conformity wi th the paper cited above- for t he mean di splacement 
of t he suspended sphere in t he di rection of the X-axis we obt ain the value 

Second, we cons ider t he case when t he sphere in quest ion is pivoted in 
t he liquid such t hat i t can free ly rotate (wi t hout bearing fri ction) about one 

of its diameters , and we srek to determine t he mean rotation ~ of the 
sphere produced by the nrndom thermal process during time t. 

If a t orque D acts upon a sphere of rad ius P that i s pivoted in a 
l iquid whose coefficient of frict ion i s k, the sphere will rotate wi t h t he 
angular velocity2 

Accordingly, we have to put 

We thus get 

[23] 1Cf. G. Kirchhoff, Vories . ube1· J/e chan ik [Lectures on fechan ics] . Lecture 26. 
2ib id. 
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Thus, the rotational mot ion produced by molecular motion decreases much 
faster with increasing P than does translational motion. 

For P = 0.5 mm and water at 17° , the formula yields about 11 seconds 
of arc for the angle traversed in one second on the average, and about 11 
minutes of arc for that traversed in one hour. For P = 0.5 micron and water 
at 17n, we get about 100 degrees of arc for t = 1 sec . [25 ] 

In the case of a free ly floating suspended part icle, three mutually 
independent rotational motions of this kind take place . 

The formula der ived for~ might be applied to other cases as wel l. 
For exampl e, if the reciprocal of the electric resistance of a closed circuit 
i s substituted for B, the formula shows how much elect ricity will flow on t he 
average through some particular cross section of the conductor during time t, 
which relation i s connected again with the l imiting law of black-body rad ia-
tion for great wave lengths and high temperatures . However, since I could not (26) 

find any additional experimentally verifiable consequences, any treatment of 
further special cases seems useless to me. 

§5. On the limit of validi ty of the formula for~ 

lt is clear that formula (II ) cannot be valid for arbitrarily smal l time 
intervals. This is so because the mean veloci ty of the change of a result ­
ing from the thermal process , 

becomes inf initely large for an infin ites imal ly smal l time interval t, wh ich 
is obviously impossible because every suspended body would then have to move 
with inf ini tely great instantaneous velocity . The reason for th is is that we 
have implicitly assumed in our derivation that the process occurring duri ng 
time t i s to be conceived as an event t hat i s independent of the process 
occurring during the t imes immediately preceding it. But the shorter the 

[ 27 ) 
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times t chosen, the less th is assumption applies . For if at t ime z = 0 the 
instantaneous value of the velocity of change were 

da p 
al = 0 ' 

and if in some subsequent time interval the velocity of change P were not 
influenced by the random t hermal process but the change of P were determined 
by the passive resistance (1/B) alone, dP/dz would obey t he relation 

µ i s defined here by t he st ipulat ion that µ, {/fl/ 2) shou ld be the energy t hat 
corresponds t o the velocit y of change p. Thus , i n t he case of trans lational 
mot ion of a suspended sphere , e .g. , µ (02/ 2) would be the kinetic energy of 
the sphere plus the kinetic energy of the co-mov ing liquid. Int egrat ing, we 
get 

From this result one concludes t hat formula (I I) hol ds only for time 
[29 ] i nterval s that are large compared wi th B. 

For corpuscles with a diameter of 1 micron and density p = 1 in water 
at room temperature, t he lower l imit of validity of formula (II ) i s about 10-1 

seconds ; t hi s lower l imit for t ime intervals increases as the square of t he 
corpuscle radius. Bot h facts hold true for the translational as well as the 
rotational motion of particles. 

Rem , December 1905. (Rf'ceived on 19 December 1905) 
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Doc . 33 
11SUPPLEMENT11 TO 11 A NEW DETERMINATION OF MOLECULAR DIMENSIONS" 
[Appended to the vers ion of Document 15 that was published as 

an article in Annalen der Physik 19 (1906): 289-305] 
[Annalen der Phys ik 19 (1 906) : 305-306] 

191 

The new ed i t ion of Landolt and Bornstein ' s Physical-Chemical Tables [ 1] 

contains dat a that are much more useful for calculating the si ze of the sugar 
molecule and the number N of real molecules in a gram- molecule. 

Thovert found (Tables, p. 372 ) t hat the coeffic i ent of diffus ion of (2 ] 

sugar in water at 18 .5°C at a concentration of 0.005 mol / liter has the value 
of 0.33 cm2/ day. Further, from a table containing observed values obtained by 
Hosking (Tables , p. 81 ) we can f ind by interpolation that in a dilute sugar [ 3] 

solution a 17. increase in sugar content at 18.5°C corresponds to a 0.00025 
increase in the coeffic ient of viscos ity . (41 

Based on these data, one finds 

P = 0. 78 -10-6 mm 

and 
N = 4.15·1023. 

Bern, January 1906. 
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Doc. 34 
ON THE THEORY OF LIGHT PRODUCT ION AND LIGHT ABSORPTION 

by A. Einstein 
[Annalen de r Ph ysik 20 (1906) : 199-206] 

In a st udy publ ished last year1 I showed that t he Maxwell theory of 
[ 2] electricity in conjunct ion with the theory of electrons leads to results t hat 

contradict the evidence on black-body radiat ion . By a route descr ibed in t hat 
study , I was l ed t o t he view t hat light of frequency v can only be absorbed 
or emitted in quanta of energy (R/N)f]v , where R denotes the absolute 
constant of the gas equation applied to one gram-molecule , N t he number of 
actual molecules in one gram-molecule. /J the exponential coeff i cient of 
lHcn's (and Planck's) radiation formula, and v t he frequency of t he l ight in 
question. This relationship was developed for a range that corresponds t o the 

[ 3 ) range of validity of Wien's radiation formu la. 
At t hat time it seemed t o me that in a certain respect Planck's theory 

of radiation2 consti t uted a count erpart t o my work. New considerations , which 
are being reported in §1 of this paper, showed me , however, that t he theore­
t i cal foundation on which Mr . Planck's radiation t heory i s based differs from 
the one t hat would emerge from Maxwell 's theory and the theory of electrons , 
precisely because Planck's t heory makes implicit use of t he aforement ioned 
hypothesis of l ight quanta. 

In §2 of t his paper I shall make use of the hypothesis of light quanta 
t o der ive a relat ionship between t he Volta effect and photoelectric diffusion. 

§1. Planck's theory of radiat ion and the l ight quanta 

In §1 of my paper cited above I have shown t hat the mol ecular t heory of 
heat combjned with t he Maxwell t heory of electr icity and tlle t heory of 

[l] 1A. Ejnstein, Ann . d. Pliys. 17 (1905): 132 . 

[4 1 2~1. Planck , Ann . d. Phys. 4 (1901): 561. 
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electrons lead to a formula for black-body radiation that contr adicts 
experience 

(1 ) 

193 

Here p
11 

denotes the density of radiat ion at t emperat ure T and at a 
frequency between 11 and v + 1. 

What is t he reason t hat Mr . Planck did not arr ive at t he same fo rmula, 
but obtained instead the expression 

(2 ) 0113 

P11 = -7¥..,.,.11--

e - 1 

? 

Mr. Planck derived1 t he mean energy E
11 

of a resonator of proper 
frequency v situated in a space fil l ed with disordered radiation as given by 
t he equation 

(3) E = ..2._p . 
v 8w2 v 

This reduced the problem of bl ack-body rad iation t o the problem of determining 

£
11 

as a function of t emperature . The latter problem will have been solved if 
one can calculate t he entropy of one of many similarly const itut ed, mut ually 
interacting resonators of proper frequency v that are in dynamic 
equilibrium. 

Let us envision the resonators as ions that could perform rect ilinear 
s inusoidal vibrations about an equilibrium position . The fact that t he ions 
have el ectrical charges is irrelevant in t he calculat ion of t his entropy ; we 
simply have to conce ive these ions as mass po ints (at oms) whose momentary 
st ate i s completely determined by their instantaneous deviation x from t he 
equi librium posit ion and by thei r i nstantaneous velocit y dx/ dt = {. 

1\1. Planck, Ann . d. Phys. 1 (1900) : 99 . 

[5 ] 

[7] 

[8] 

[6] 
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For the di st ribution of states of these resonators to be un iquely 
determined in thermodynamic equilibri um , one has to assume t hat there exist s 
an arbitrar i l y small number of freely mov ing molecules besides the resonators , 
which by virtue of thei r collis ions with t he ions can transmit energy from 

[9] resonator to resonator ; we wil l not take into account these molecules in our 
calculation of entropy. 

We could determine Ev as a funct ion of t emperature from the Maxwell ­
[ 10 ) Bol tzmann distribut ion l aw and would thereby obtain the invalid radiat ion 

formula (1). One arr ives at t he route taken by Mr . Planck in the following 
manner . 

Let p1, .. ·Pn be appropriately chosen state variables• that completely 
determine t he st at e of a physical system (e.g . , in our case the values x and 
{ of all t he resonators ). At t he absolute temperature T, the entropy S of 
thi s syst em is r epresented by the equation2 

[12] (4) 

where ll denot es the energy of t he syst em at temperature T, H denotes the 
energy as a function of p1, ... pn' and the integral is t o be extended over all 
poss ible comb inations of the values of Pi• ·· •Pn · 

If t he system consist s of a very large number of molecular st ruct ures-­
and t he formula has meaning and valid i ty only in this case--then on ly t hose 

[ 13 ] combinations of values of t he p1 .. ·Pn whose ll differs very l itt le from ll 
contr ibute signif icantly to the value of the int egral appearing in S.3 I f 

t his is taken into account, it is eas ily seen t hat, except fo r negligible 
quant it ies , one can put 

[11 } 1A. Einstein, Ann. d. Ph ys. 11 {1903): 170. 
2foc . ci t. §6. 
3Follows from §3 and §4 Zoe. ci t. 
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where M should be chosen very smal l , yet large enough t o make R lg(AH) / N 
a negl igible quantity. S is then independent of the value of All. 

If one subst itutes the variables xa and !a of t he resonators instead 
of dp1, . . . dpn in the equation and takes into account that the equation 
holding for the a-th resonator is 

(because £
0 

is a quadrat ic , homogeneous function of x
0 

and {
0

) , one 
obtains the following express ion for S: 

(5) fl S = N lg II , 

where one has put 

(5a) 

If one would calculate S according to t his formu la, one would again 
arrive at the invalid rad iation formula (1) . To arrive at Planck's formula, [ 15 ] 

one has to postulat e t hat , rather t han assume any val ue what soever, the energy 
£

0 
of a resonator can only assume values that are integral mult iples of c, 

where 
R 

t = N {Jv • 

This i s because, on setting AH = c, one immediately sees from equation 
(5a) t hat, except for an inconsequential factor, I' turns into the very 
quantity t hat Afr. Planck named "t he number of complexions ." [ l6] 

Hence, we must view the following proposition as the bas is under lying 
Planck' s theory of rad iation: 

The energy of an elementary resonator can only assume values t hat are 
integral mul t i pl es of (R/N)f)v; by emiss ion and absorption, the energy of a 
resonator changes by jumps of integral mul tiples of (R/N)f)v . 
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However, th is assumpt ion involves yet a second one, because it contra­
dicts the theoretical bas is from which equation (3) is developed. For if the 
energy of a resonator can only change in jumps, then the mean energy of a 
resonator in a rad iat ion space cannot be obt ained from the usual theory of 
electricity, because the latter does not recognize distinguished energy values 
of a resonator . Thus , the following assumption underlies Planck's theory : 

Al though Maxwell 's theory i s not appl icable to el ementary resonators , 
nevertheless the mean energy of an elementary resonator in a rad iation space 

[ 17 ) is equal t o the energy calculated by means of Maxwel l ' s theory of electricity . 
This proposi tion wou ld be immediately pl ausible i f, in al l those parts 

of t he spectrum that are relevant for observation, f = (R/N)Pv were smal l 

compared with the mean energy Ev of a resonator ; however, this is not at all 

t he case, for wi thin t he range of validity of Wien's rad iat ion formula, ePv/ T 
i s large compar ed with 1. It is easy to prove that according to Planck ' s 
theory of radiat ion, wi th in the range of valid i ty of Yien's rad iation formula, 

Evft has the value e-Pv/ T, t hus , Ev i s much smaller than f . Therefore 
only a few resonators have energies different from zero . 

In my opinion the above considerat ions do not at al l disprove Planck's 
theory of rad iation; rat her, t hey seem to me to show that with his theory of 
radiat ion Mr . Planck introduced into physics a new hypot hetical element: t he 
hypot hesis of l ight quanta. 

§2. An expected quant i tat i ve relationship between photoelectric 
di ffusion and the Volta effect 

I t is well known that if metals are ordered according to their photo­
el ectric sens i tivity, one obtains the Volta electric potential series , in 

( 18 ) wh ich a metal is the more photosensi tive the closer it i s to the electro­
[ 19] posit ive end of the electr ic potential series. 

To a certain degree, this fact can be understood by assuming only that 
the forces (which are not to be examined here ) that produce the active double 
l ayer s reside on the metal-gas inter face rather t han on the metal-metal 
int erface. 
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Let these forces produce an electr ic double l ayer on the surface of a 
piece of metal M that borders on a gas, and a corresponding potential 
difference r between metal and gas, taken as pos itive when the metal has the 
higher potential. 

Let Y1 and r2 be the potential differences between metal s H1 and 
ll2 in el ectrostatic equilibrium if they are insulated from each other. If 
the two metals are brought into contact, the electric equi l ibrium is disturbed 
and complete1 voltage equalization of the metals takes place . Thereby, s impl e 
layers will be superposed on the aforementioned double layers at the met al-gas 
interfaces ; to these corresponds an electrostat ic field in the air space whose 
line integral equals the vol tage difference. 

If r,e and f',e
2 

denote the electric potent ials at point s of t he gas 
space directly adjacent to the met als in contact, and V' denotes the 
potential in the int erior of the metals, we have 

and thus 

Thus, the electrostatically measurabl e Volta difference i s numerically 
equal to the difference of the potentials assumed by the metals in the gas i f 
they are insulated from each other . 

If one ionizes the gas , the electric forces present in the gas space 
will cause a migration of the ions , to which there corresponds a current in 
the metals which, at the place of contact of the metals , is directed from the 
metal with the higher Y (less electropos itive) to the met al with the lower [20] 

V (more electroposit ive ). (21] 

Suppose a metal 6 i s insulated in a gas . Let · Y be its potential 
difference with respect to t he gas that corresponds to the double layer. In 
order to move a unit of negative electricity from the metal into the gas , an 
amount of work numerical ly equal to the potential V has to be performed. 
Hence, the greater the V, i .e . , the less electroposi t ive the metal, the more (22] 

1Ye disregard the effect of thermoelectric forces. 
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energy i s needed for the photoel ectr ic diffus ion, i.e., the smal ler the 
photoelectr ic sensi tivit y of the metal . 

So far we have considered the fact s without making assumptions about the 
nature of photoelectr ic diffusion . However, the hypothesis of light quanta 
also yiel ds a quanti t ative relat ionship between t he Volta effect and photo­
electr ic diffusion. Thus , t o move a negative elementary quantum (charge c) 
from t he metal i nto t he gas , i t has t o be supplied with at. least an energy 
11£ . Then , a l ight species will be able to remove negative electric ity from 
the metal only when the "light quantum" of that light species has at least the 
value 11£ . We t hus obtain 

or 
R V ~ 1 /311 , 

where A denotes the charge of one gram-molecule of a univalent ion. 
If we now assume that some of the absorbing elect rons are abl e to leave 

t he metal as soon as the energy of t he l ight quanta exceeds V£ 1 - wh ich is a 
very plausibl e assumption - we obtain 

R 11 = 1 {)11 , 

where II denotes the lowPst photoelectrical ly effective frequency. 
Thus, if 111 and 112 are the l owest light frequencies act ing on t he 

metals K1 and 12, the fol lowing equation wil l hold for the Vol ta potential 
difference 1112 of t he two metals: 

or, if V12 is measured in vo l ts : 

1The thermal energy of electrons i s di sregarded. 
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This formula contains the fol lowing, at l east by and large valid, 
propos ition: The more electropos itive a metal, the smal ler the lowest light 
frequency that i s effective for that met al. It would be of great interest to [23] 

know whether th is formula expresses the facts in a quant itative way as well. [24] 

Bern, March 1906. (Received on 13 March 1906) 
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Doc . 35 
THE PRINCIPLE OF CONSERVATION Of' MOTION Of' THE CENTER 

OF GRAVITY AND THE INERTIA OF ENERGY 
by A. Einstein 

[Anna len der Phys ik 20 (1906): 627-633] 

In a paper published l ast year• I showed that Maxwell' s el ectromagnet ic 
equations in conjunct ion with the principle of relativity and the principle of 
energy conservat ion l ed to t he conclus ion that the mass of a body changes wi t h 
the change in its energy content. no matter what kind of change of energy this 
may be . It turned out that to an energy change of magnitude A£ there must 
correspond a change of mass of the same sign and of magni tude AE/ Vl. where I' 

denotes the veloc i ty of l ight . 
In t he present paper I want t o show that the above theorem i s the 

necessary and sufficient condit ion for the law of the conservation of motion 
of the center of gravity to be valid (at least in first approximation) also 
for systems in which not only mechan ical . but also electromagnetic processes 
take place . Although t he s imple formal considerations that have to be carri ed 
out t o prove th is statement are in the main al ready contained in a work by H. 
Poincare2 • for t he sake of clarity I shal l not base myself upon that work . 

§1. A special case 

Let K be a stationary rigid hollow cylinder freely fl oating in space. 
Let there be in A an arrangement for sending a certain amount S of radiat ­
ing energy t hrough t he cavity t o B. During the emission of this quantity of 
radiat ion a radiation pressure acts upon the left interior wal l of the tube 
K, imparting to t hP latter a certain velocity that i s directed to t he left. 

If the hol low cyl inder 1s mass is JI, then this veloci t y equals } • i, as can 
be proved easi ly from the laws of radiation pressure, where I' denotes the 

[ l] 1A. Einstein, Ann . d. Phys. 18 (1905 ) : 639. 
[2] 2H. Po incare, in Lorentz-Festschrift (1900) : 252-278. 
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velocity of light. K will maintain this velocity until the rad iation com­
plex, whose spatial extension is very small in comparison with the cavity of 
K, gets absorbed by B. The durat ion of the hollow cylinder's motion is 
(apart from terms of higher order ) equal to o/ f, if o denotes the di stance 
from A to B. After absorption of the rad iation complex by B, the body K 

is again at rest . Dur ing the radiation process under cons ideration, K has 
sh ifted a distance of 

to the left. 

~ 1 s 0 
v = -y1 · 1 

In the cavity of K, let us have a body k (imagined as massless for 
the sake of s implicity) next to a (likewise massless) mechanism that can move 
the body k, which shall first be located in B, back and forth between B 

and A. After the amount of radiation S has been absorbed by B, this 
amount of energy shal l be transferred to k, and then k moved to A. 
Finally, the amount of energy S shall again be taken up in .A by the hollow 
cylinder K, and k shall be moved back to B again. The whole system has 
now undergone a complete cyclic process, which one can imagine to be repeated 
arbitrarily often . 

If one assumes that the carrier body k remains massl ess even after it 
has absorbed the amount of energy S, then one also has to assume that the 
return t ransport of the amount of energy S is not associated with a change 
in position of the hollow cylinder K. Thus the only outcome of the entire 
cyclic process i s a shift 6 of the whole system to the left; by repeating 
the cyclic process, one can make this shift as large as des ired. Ye thus 
arrive at the result that an initially stationary system can change the 
pos i tion of its center of grav i ty arbitrar ily greatly without having external 
forces acting upon it, and without undergoing any permanent change. 

It is clear that the result does not contain any inner contradictions; 
however, it does contradict the laws of mechanics, according to which a body 
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originally at rest cannot perform a translational motion if no other bodies 
act upon it . 

However, if one assumes t hat any energy E possesses the inertia E/ JfJ., 

then the contradict ion with the pr incipl es of mechanics disappears. For 
according t o thi s assumption the carrier body has a mass S/ J/2 while i t 
transports the energy amount S from B to A; and since t he center of 
grav ity of the ent ire system must be at rest during that process according to 
t he center-of -mass theorem, t he cyl inder K undergoes during it a tot al sh i ft 
S' to the right, amounting t o 

£ 1 s 1 
u = a • l7'1 J 

Compar ison with t he rrsult found above shows that (at least in first 
approximation) 6 = 6' , i.e., that the posit ion of the system is the same 
before and after the cyclic process . This eliminates the cont radiction with 
the principles of mrchani cs. 

§£. On the principle of the conservation of the motion of 

the center of gravi ty 

We cons ider a system of n discrete material points with masses 
m1,m2 ... mn and center of gravi t y coord inates x1 ... zn. With respect to 
thermal and electric phenomena, these material po ints are not to be conceived 
as elementary structures (at oms , molecules ), but as bod ies i n t he usual sense 
of small dimensions , whose energy i s not determined by the velocity of the 
center of gravity . These masses cou ld act on each other through electro­
magnet ic processes as well as through conservative forces (i. e . , grav i ty, 
r igid connections) ; however , we shall assume that both the potent ial energy of 
the conservat ive forces and t he kinet ic enrrgy of the motion of the center of 
gravity of the masses are infinitesimally small relative to the "internal" 
energy of the masses m1 ... mn . 

Assume that the \laxwell -Lorentz equat ions 
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(1 ) 

u 1 dX BN BM 
Ji p + 1' al = oy - oz • 
u 1 dY BL BN 
1' p + 1' al = oz - ox 
u 1 dZ {}N {}L 
-yP+fal = ox - oy 

1 dL ar az 
fal = oz - oy. 
1 dJI az ax 
1al = ox - oz• 
1 dN ax ar 
1' al = oy - ox 

hold in the entire space, where 

_ ax+ ar + az 
p - ox oii oz 

denotes the 4r-fold dens ity of electricity. 
If one adds up equations (1 ) after they have been success ively 

mult iplied by 
r Y r ifi Xx. 47r Yx • . • 4i Nx 

and integrates them over the entire space, one obtains, after a few 
integrat ions by part s, the fo l lowing equation 
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[3 ] 

(2) J f. x(uX + vY + wZ)dr+ ,A {J x • ih,(P+ Y' ... + N' )dr}- f, J ( YN - ZH)dr = O. [4] 

The f i r st term of this equation represents the energy suppl ied by the elect ro­
magnetic fie l d to the bod ies m1 ... mn. According to our hypothesis on the 
dependence of t he masses on energy, the first term of t he sum should therefore (5] 

be equated with the expression 



[6] 
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since we assume according to the above that the individual material points mv 
change their energy , and t hereby also the i r mass , on l y by taking up electro­
magnetic energy . 

If we assign to t he electromagnetic fie ld too a mass density (pe ) , 
which differs by a fact or 1 / Jl2 from the energy density, then t he second term 
of the equat ion takes the form 

If the integral in the t hi rd term of equat ion (2) is denot ed by J, then 
t his equation becomes 

(2a) 

We now have t o f ind t he meaning of the integral J . If one successively 
mult ipl ies the second, t hird, f i fth, and sixth of equat ions (1) by NV, -IV, 
-ZV, YV, adds t hem and integrates over the space, one obtains , af t er a few 
integrations by parts , 

(3) 

where Rx is the algebraic sum of the I -components of al l forces exerted by 
t he electromagnetic fie ld upon the masses m1 ... mn . Since the correspond ing 
sum of al l forces due t o the conservat ive interactions vani shes, Rx is at 
the same time the sum of the I -components of all forces act ing upon the 
masses mv. 

Next we shall consider equation (3) , which is independent of the hypo­
thesis that t he mass depends on energy. If we di sregard the dependence of the 
masses on energy and denot e the resul tant of all I -components of the forces 
acting on mv by Xv, we must set up the fol l owing equat ion of motion for 
the mass mv : 
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(4 ) 

hence we also obtain 

(5) 

From equation (5) and equation (3) one obtains 

(6 ) 
J dx11 4i17 + I m11 aT = const . 

If we re introduce the hypothes is that the quantities m11 depend on 
energy, and thus also on time, then we face the difficulty that the mechanical 
equations for that case are no longer known; the first equal sign of equation 
(4) thus does not hold anymore . However, one should take into cons iderat ion 
that the difference 

is of second order in the velocities. Hence, if al l velocities are so small 
that terms of second order may be neglected, then even if t he mass m11 is 
variable, the equation 

certainly holds with the required accuracy . Then equations (5) and (6 ) hold 
as well , and one obtains from equat ions (6) and (2a): 

(2b) 

If { denotes t he I -coord inate of the center of gravity of the ponder­
able masses and of the energy mass of the electromagnetic field, then we have 
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where, according to t he energy principle, t he value of t he denominator on the 
right-hand side is independent of t ime. 1 Hence we may wri t e equat ions (2b) 
also in t he form 

(2c) # = const . 

Thus , i f one ascribes the inert ial mass E/ Vl to any energy E, 
then- at l east in fi rst approximation- t he principle of conservation of the 
mot ion of the center of grav ity also holds for systems in which electro­
magnetic processes take place . 

The present investigation shows that one either has to give up the 
f undamental law of mechan ics . according t o wh ich a body original ly at r est 
cannot perform translat ional mot ion un l ess acted upon by external forces, or 
one has to assume that a body 's inertia dcp~nds on its energy content 
according to t he law st ated. 

Bern, \fay 1906. (Received on 17 \fay 1906) 

1According t o the interpret at ion developed in t hi s paper . t he principl e of 
t he const ancy of mass is a special case of t he energy pri ncipl e. 
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Doc. 36 
ON A METHOD FOR THE DETERMINATION OF THE RATIO OF THE TRANSVERSE 

A~D THE LONGITUDINAL AIASS OF THE ELECTRON 
by A. Einste in 

[Annalen der Physik 21 (1906): 583-586] 

Three quantit ies concerning cathode rays are access ibl e to precise 
observat ion: t he pot ent ial difference producing the velocity of the rays 
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(generating potent ial ) , the electrostatic defl ection, and the magnet ic [I] 

deflection. There exist two independent rel ations between t hese t hree 
quantities whose knowledge at considerable ray velocit ies is of extraordinary 
t heoretical interest . One of these relations, namely that between magnetic 
and electrostat ic deflection, has been exami ned for P- rays by Mr . Kaufmann. [2] 

In the following I shall po int out that there exist s one other relation 
between t hese quant i t ies t hat can be measured with suff ic ient accuracy, 
namely, that between the generating potential and t he electrostatic deflect ion 
of cathode rays, or, what is the same, the ratio of the transverse to the 
longitudinal electron mass as a f unct ion of the generating potent ial . (3] 

If the square of the velocity of the electrons is very small compared 
wi t h t he square of the veloci ty of light, t he motion of the electron obeys the 
equations 

d2x t W = - µo X, etc . , 

where t /µ0 denotes the ratio of the charge to the mass of t he electron, x, 
y, z the coord inates of the electron, and X, Y, Z the components of the 
el ectric field strength if no ot her forces besides the el ectrostat ic ones act 
on t he electron. We assume that the el ectrons move with an initial velocity 
zero from some starting po int x0 , y0 , z0 (cat hode). The motion i s then 
uniquely determined by the equations given above; it shall be given by the 
equations 

X = cp1(t), 

y = <P2(0 , 

z=cp3(t) . 
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If one imagines all electrostatic force components to be mult iplied 
everywhere by n2 , then, as can be seen easily from the above equat ions of 
mot ion, the electron will move according to the equations 

X = <,01(nt) , 

'JI = <,02(nt) , 

z = <p3(nt ) 

From th is it fol l ows t hat a proportional change of the f ield is accompanied by 
a change of the electrons ' velocity but not of thei r t rajectory . 

A change of t rajectory evidently i s produced by a proport ional change of 
the fie ld only at electron veloc ities at wh i ch t he rat io of t ransverse to 
longitudinal mass i s not iceably different from unity. If the electrostatic 
f ield is chosen such t hat the cathode rays travel a strongly curved path, then 
even small differences between the transverse and the longitudinal mass will 
have an observable effect on the trajectory . The accompanyi ng sketch shows an 
arrangement by which the rat io of the transverse to the longtudinal mass of 
t he el ectron could be determined on the basis of the principle indicated. The 
cathode rays attain their velocity between the grounded cat hode K and t he 

r:::::zz:, 

vK 

anode A, wh ich i s at tached to t he positive terminal of the current source H 
and which serves al the same time as a shutter, and are then introduced, via a 
thin tube t connected with A, into the space bet ween t he met al cylinders 
R1 and R2 . R1 is grounded, R2 is conductively connected with t, i .e. , 
with the positive pole of the current source, whose negative pol e is grounded. 
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The dimensions should be chosen such that sl ow cathode rays move approx imately 
in a circle, at a short distance from R2. The rays then enter t he somewhat 
conical metal t ube t • , which is connected by metal with R2 and inside which 
there is a phosphorescent screen S on which there shal l fal l t he 8hadow of a 
vert ical wire D set up at the interior end of t '. 

When sl ow cat hode rays are applied, the shadow of I) on S takes up a 
quite def inite posit ion (zero posit ion ). If the rays' generating potent ial is 
increased, the shadow of t ht- wirP will shift . By inserting a battery /J into 
the ground connect ion of R1 the shadow shal l be returned to the zero 
position. 

If n denotes t he potential at which the shadow-forming rays get 
deflect ed, t hen n is also the potential difference t hat impart s t he kinet ic 
energy to the deflected rays . Furt her, if p denotes the radius of curvature 
of the shadow-forming rays , t hen we have 

Here µt denotes the "transverse mass" of the electron, µ£ that longitudi­
nal mass which is def ined by the equation 

2 
kinetic energy = µl T, 

and X the deflecting electric force. 
If P denot es the potrntial of R2 (potent ial of the posit ive pole of 

t he current source JI) , and p the potent ial of 81 at wh ich the shadow is 
in t he zero pos ition, t hen 

n = P - a(P - p) , 

where o denotes a constant that depends on the dimensions of t he apparat us 

[ 4 ] 

and is small compared with 1. Further, the quanti t y X is proportional to (S] 

the potent ial difference P - p. Thus , one obtains from t he above equation 
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canst. p - P 
P - a(P - p) • 

or (with some permiss ible approximat ions) 

µ l [ - = canst . 1 - (1 
µ,.e 

Since o can cv ident ly be obtained with suffici ent accuracy, and P and p 

can he measured accurately within a few percent, the accuracy with which one 
can obtain the drviat ion of Jt tfµe from un i ty is basically detrrmined by t he 
accuracy with which one can set t he zero posi tion of t he wire shadow . One can 
<'asily sre that t he latter accuracy can be madP suffic ient ly great that a 0.3% 
deviation of t he quant ity 11/JLe from un ity (wh ich corresponds t o a shift of 

the shado" of about 1 mm when 7fS = 10 cm) can st ill be not ic<'d . It is 
especially worth ment ion ing that the accuracy of measurement is not s ignifi -

[6] cantly affected by t l1e unavo idab le fl uctuat ions of t he potential P during 
t he experiment . 

[7] 

[8] 

[9] 

Finally we would I ike t o give the relation bet ween JttfJti and Il in 
f i rst approx imation , as obt ained from different theories. If Il is expressed 
in vol t s , then we have 

accor<linp; to the theory of llucherer: 

µ t " µe = 1 - 0.0010 nr;mm , 
accord ing to the theory of Abraham: 

µ t = 1 - o. oos4. T7'1""'7v"v',n. 
P. f IV,VVV 

according to the theory of Lorent z and Einstein: 

µt " - = 1 - 0 . 0104 • 11f.omY, 
µf 

Since Tam not in a position t o <lo exper imental work myself , I would be 
[10 ) glad if a physic ist would show an interest in the method described . 

Bern, August 1906. (Received on 4 August 1906) 
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Doc . 37 
Review of M. PLANCK, " Lectures on the theory of thermal radiat i on" [l] 

(" Vo rlcsungcn uber di e Th eorie der Ya rmes tralil ung, " Leipzig: 
J . A. Barth, 1906. 222 pp. 7.80 mark) 

[Deib latter zu den Annalen der Physik 30 (1906): 761 -766] 

In the book under cons ideration the fundamental works of Ki rchhoff, 
W. Wien and the author have been united into a who le of marvelous clarity and [2] 

unity, so that the book is i:rnperbly suited for familiarizing the reader fully 
with t he material-even if the area deal t with has been t otal ly un famil iar to 
him. 

In the first section (pp . 1-23 ) the basic conc<'pts and terms (such as 
11emission coefficient, " "coPff iciPnt of diffusion, " "reflPcti ng surfacP , 11 

"smooth" and "rough surface," "black surface," "black body, " "coefficient of 
absorption, " "pencil of rays , " "intensity," "radiation dens i t y," etc.) are 
f irst def ined and-insofar as they are definit ionall y intcrrPlated-linkcd 
t ogether mathematically. Then (pp . 23-48) the Clausius relation concerni ng [3] 

t he ratio of rad iation dens ities in media with different i ndices of refracti on 
as well as the Ki rchhoff relat ion between emiss ivity and absorptivity are 
derived . 

While up to this po int only the laws of ray optics have been emp loyed, 
the second section (pp. 49 -99) employs the llaxwell t heory, though exclusively 
for the derivation of the radiation pressure. The magni t ude of the latter, as 
t he author emphasizes , cannot be obtained from considerat ions based on energe-

(4 ] 

t i cs. with t he aid of the express ion obtained for t he radiation pressure, the [5 ] 

Stefan-Boltzmann law and t he Yicn displacement law are der ived, and the con-
cepts "temperat ure of monochromatic radiat ion" and "temperature of a monochro-
matic el ementary pencil of rays" are defined. 

The Wien displacement law yields for the energy dens i t y u in the 
normal spectrum the equation u = v3<p( T/ v) , where T denotes t he absolute 
temperature and v t he frequency. Sect ions three and fou r of the book (pp . 
100-179) contain an exposition of the author's fundamental invest igati ons 
aimed at t he determinat ion of t he function <p t hat appear s in the Wien 
displacement law . Even though this goal could not be achieved in a purely 
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[6] deduct ive way, onl y using theorrtical aids adequately supportPd Pmp i r ically 
[7] --the author uses a hypothes is supported only by analogy-every impartial 

reader will f ind t hat a high probability attaches t o the result obtained. 
The course of the investigation is as follows: First , the osc i llation 

ec1uation of a resonator of small dimens ions and small damping, located in a 
radiation field, is c>stablishC'd on the bas is of Maxwell's equations. Then one 
determines t hP mean enerp;y of a resonator in a stationary radiation fi eld with 
t he aid of t he osci llati on equat ion, and , using the second law, the 
"temperature of the resonator" as functi on of t he above universal function. 

[8 ] This reduces the problem of energy distribut ion in the normal spectrum to the 
t ask of determi ning the entropy of a syst em consisting of a large number of 
radiat ion resonators of the same frequency. 

To solve t he latter problem, i t i s fi rst explained, based on Boltzmann's 
[9) works , t hat one is led to a correct det ermination of the entropy S if one 

puts S = k log fl, where k denotes a (un iversal) const ant and fl t he number 
of "complexions." The latter quanti ty r epresents the multip licit y of all 
those possible distr ibutions of the elementary variables that belong to the 
comp1ex of observed quantit.ics t o which the ent ropy S corrPsponds. 

In order to be able to determine the quanti t y V by counting, one must 
div ide t he whole available r rgion of the state variables int o discret e elemen­
tary regions. ln general, t he result depends on the absol ute magnitudes as 

[10 ] well as on t he ratios of the magnitudes of t hese elementary regions. Whi le 
-for the dcterm inat ion of the quanti ty V of a resonator system one chooses 
the magnitude ratio of the elementary regions as in a s i nusoidally oscillating 
structure in the theory of gases , one chooses-in contrast to the assumption 
on infinitesimally small el ement ary regions generally used until now in the 

[11] theory of gases- the el rmen tary regions to be of finite magnitude (= hv) , 

where v denotes the frequency and h a un iversal constant; hv has the 
dimension of energy. The author point s repeatedly to the necessity of 
i ntroduci ng th is universal constant h and emphasizes the importance o-f a 
physical interpretation (not given i n t he book ) of the lat t er . 

From t he express ion fo r the entropy S, obt a ined in the way indicated, 
one then derives the familiar Planck radiation formula, 

8-xhv3 
u =--

(JJ 
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The four t h section contains , fur ther , Planck' s determination of the elementary 
quanta , as well as discussions of works of various authors on radiation 
t heory. {12] 

The l ast sect ion of the book (pp. 180-222) , which deal s wi t h i r rever -
sible radiation processes , offe rs deep insight into t he nature of t he 
i rreversibilit y of thermal processes. 
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Doc. 38 
PLANCK'S THEORY OF RADIATION AND THE THEORY OF SPECIFIC HEAf 

by A. Einstein 
[Anna le n der Pltys ik 22 ( 1907): 180-190] 

In t wo pr<'vious papers1 I have shown that t he interpret ation of t he la\ol 
of energy distribution of black-body radiation in t erms of Boltzmann's t heory 
of t he second law leads to a n<'w concepti on of the phenomena of l ight emission 
and l ight absorption, \olh ich , even though st ill far from having t he charact er 
of a complete theory, is remarkable insofar as it faci l i t ates t he understand­
ing of a series of regular ities. The present paper will show that the theory 
of radiation- in part icular Planck' s theory- leads t o a modification of t he 
molecular-kinetic t heory of heat by which some difficulties obstructing tbe 
h 1pl ement ation of that. t heory can be eliminated. The pape1 will also yield a 

[2] relationship between t bc thermal and optical bel1avior of solids. 

First we will give a derivation of t he mean Pnergy of Planck's resonat or 
that clear l y demonstrates its rPlat ion t o molecular mechanics. 

To t hat encl we use a few results of t he general molecular t heory of 
[ 3] heat. 1 Let t he state of a syst em in t he sense of the molecular theory be 

complet ely det ermined by the (very many) variables P1 ,P2 .. . Pn. Let the 
molecular process proceed accord ing t o the equations 

(v = 1, 2 ... n) , 

and l et thr relat ion 

[4 ] (1) 

hold for all val ues of thr P v' s. 

(I ] 1A. Einst ein , Ann. d. Phys. 17 (1905): 132 and 20 (1905): 199. 



DOC . 38 215 

Further, l et a part ial system of the system of the P v' s be determined 
by the variables p1 .. ·Pn (which belong to the P v' s) , and l et it be assumed 
that the energy of the whole system can wit h good approximation be thought of 
as composed of two parts . of wh ich one (£) depends on t he p1 . .. pm onl y. 
while the other i s independent of Pt .. · Pm· Also, l et E be infin i tesimally 
small compared with t he tot al energy of the system. 

The probabi lity di/ t hat at a randomly picked instant t he Pv' s l ie in 
an infini tes imally small region ( dp1 ,dp2 ... dpm) is t hen given by t he 
equation1 

(2) 

Here C is a funct ion of the absolute t emperature (T) , N is the number of 
molecules in one gram-equivalent , R is t he constant of the gas equation 
referr ing to one gram-molecu le . 

If one puts 

I dp1 . . . dp = w( E)dE, 
dE m 

where t he integral is t o be extended over al l combinations of t he Pv' s to 
wh i ch correspond energy values between E and E + dE, one obtains 

(3) 
N E 

di/ = Ce - 7fl w(E)dE 

If one chooses as the variables Pv the center-of-mass coordinat es and 
velocity components of mass points (atoms , electrons) and assumes that the 
accelerat ions depend only on t he coordinates , but not on t he velocit ies , t hen 
one arr ives at the molecu lar-kinet ic theory of heat . The relat ion (1) is here 
satisfied , so that equation (2) ho lds as wel l . 

In part icular , i f one imagi nes that one has chosen as t he syst em of t he 
pµ' s , an elementary mass particle whi ch can per form sinusoidal oscillations 

1A. Einstein, Ann . d. Ph ys. 11 (1903): 170ff. 

[6] 

[5] 



[8 ] 

[91 
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along a st raight Line, and denotes its instantaneous di stance from t he 
equilibrium posi t ion and velocity by x and {, respectively, one obtains 

(:la) 

and since one has to takP Jdxd{ = const . di:, hence w = const . 1: 

N E 
(3a) d!' = const . e- 7fi dE 

The mean value of t he mass particle 's energy i s therefore 

(-1) £ = 

- !!_ E 
[ Er RT dE - llT 

N - 1v 

I - nE 
C dE 

It is obvious that formula (4) can also he applfrd to a r rctilinearly 
oscil l ating ion. lf one docs so, and takes into account t hat, according to a 
study by Planck2 , t he re lation 

(5) 

must hold between i t s mean energy £ and t he dens ity p11 of t he black-body 
radiation at the frequC'ncy considcrPd t here, t hen by eliminat ing £ from ( 1) 

and (5) one arr ives at Ray leigh's formula 

(6) ll 8w 2 
P11 = N -yr T • 

wh ich , as is well known, represent s only a limit ing law fo r large values of 
[10) T/ 11 . 

1Ilccausc one has to set E = a:c2 + b( 2. 

[ 7] 2\1. Planck , ,1 n1i. d. Phys. 1 ( 1900) : 99 . 
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To arrive at Planck' s t heory of black-body radiat ion, one can proceed as 
fo llows. 1 One retains equation (5), i.e., one assumes that Maxwell's theory ( 12] 

of electricity yields t he correct relationsh ip between rad iation densi t y and 
£. On t he other hand , one abandons equat ion (4), i. e. , one assumes that it is 
the appl ication of the molecular-ki netic theory which causes a conflict with 
experience . However, we mai ntain t he formu las (2) and (3) of t he general 
molecular theory of heat . Instead of sett ing 

w = const . 

in accordance with t he molecular-kinet ic theory, we set w = 0 for al l values 
o-f E t hat are not extremely close to 0, £, 2£, 3f, et c . Only between O and 
0 + a, £ and £+ a, 2f and 2 f + a, etc. (where a i s infinitesimally small 
compared with d shall w be different from zero, such t hat 

Ia J c+a J2c+o 
wdE = wd£ = wdE = . . . = A 

0 f 2c 

As can be seen from equation (3) , this stipulat ion involves t he assumpt ion 
t hat t he energy of the elementary structure under consideration assumes only 
values t hat are infini t esimally close to 0, £, 2£, etc. 

Using the above stipulation for w. one obt ains wit h t he help of (3): 

N E N N 2 
[ Ee- 7[T w( E)dE _ 0 + Afe- 7fT c + A.2ce- 7[T f 

N - ----N~---~N~----

I 
- ]ff E - 7f! f - 1ft 2l 

e w( E) dE A + A e + A e + . . . 

N - 1Pl' ( 
e - 1 

[ 13 ] 

If one also sets f (R/ N)f)v (according to the quantum hypothesis) , one ( 14] 

obtai ns from this 

1Cf. M. Planck, l'o rles ungen uber die Theori e der lla rmes trahlung [Lectures on 
the theory of t hermal rad iation]. (Leipzig: J .A. Barth, 1906), §§149, 150, 
154 , 160 , 166 . [ 11) 
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( 15) (7) 

ll 
li {Jv 

£ = --,-,---

el!; - 1 

as we] 1 as , with t hf' help of ( 5) , the Pl anck racH at ion formu la , 

8;r 
Pv = TJ 

!J1l v3 

N /!,ft 
e - 1 

Equation (7) shows the dependrnce of the mean energy of Planck's resonator on 
the temperature. 

From the above i t emerges clcad y in which sense the mol<'cular-kinetic 
theory of heat must be modif ied i n order to be brought int o agreement with the 
dist ribution law of bl ack-body radiation. For although one has though t be-fore 
that the motion of molecules obeys the same l aws that hold for t he motion of 
bodies in our world of sense perception (in essenr c, wP arc only adding t he 
postu late of complete rC'versib ility ), we now must assume' , for ions capable of 
oscillating at particu lar frequencies which can med iate an exchange of energy 
bctwC'en matt<'r and radiation , t hat t he div<'rs i t y of state's they can assume i s 

[ 16] less than for bod ies wi tldn our experience. for we had t o make the assumption 
t hat the rncclrnnism o-f C'n<'rgy t ransfrr is such that t. hc energy of C'lement ary 
structures ran on ly assume th<' values 0, (ll / N)/3v, 2(/l/N){Jv , f'Lc. 1 

I h<' l ieve that we must not ron tC'nt oursf'lves wi t h this resu l t . For t he 
quest ion arises: ff thP clemf'ntary strurt.u res that arr to be assumed in thr 
t heory of energy exchange between radiation and matter cannot be perceived in 
t erms of the cu1Tf'nt mo]ecular-ki netic theory , ar<' WP then not obliged also to 
mod ify the theory for the other period ically oscillating st ructures considered 
i n the mokcular theory o-f heat ? l n my opinion the answer is not in doubt. 
If Planck's radiati on theory goes t o the root of the matter , t hen contrnclic-

1H is obvious that this assumption also has to LP extended to bodies capable 
of oscillation that cons ist of any number of element ary strnctures . 
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tions between the curr ent molecular -kinetic t heory and experience must be 
expected in other areas of the t heory of heat as well . wh ich can be resolved 
al ong t he lines indicated. In my opinion this is actual ly t he case . as I 
shall now attempt t o show. 

The simplest conception one can form about t hermal motion in solids is 
that its ind ividual atoms perform sinusoidal oscillations about equ i libri um 
positions. With this assumption, by appl ying t he molecular-kinetic theory [ 17) 

(equation (4)) whi le t aking into account t hat t hree degrees of f reedom of 
motion must be assigned to each atom , one obtains for t he specif ic heat of a 
gram-equivalent of t he substance 

c = 3Rn, 

or-expressed in gram-calories-

C 5.94 n , 

when n denotes the number of atoms in t he molecule. I t is well known that 
this relation applies with remarkably close approximation to most el ements and 
t o many compounds in t he solid aggregat ion state (Dulong-Petit's law, rule of 
F. ~eumann and Kopp ) . [ 18 ) 

However, if one examines t hese facts a Litt le closer. one encounters two 
diff iculties that seem to set narrow limits on the app l icabil i ty of the 
molecu lar theory. 

1. There are elements (carbon, boron, and sil icon) t hat in the solid 
state and at ordinary temperatures have specific atomic heat s much smaller 
than 5.94. Furthermore , the specif ic heat per gram-molecule is less than [19] 

n • 5 . 94 i n all solid compounds containing oxygen, hydrogen or at least one of 
t he element s j ust mentioned. [20] 

2. \Ir. Drude has shown1 that t he optical phenomena (dispers ion) l ead t o 
the conclusion that several elementary masses moving independently of Pach 
other must be ascr ibed t o each atom of a compound in t hat he succe~rniully 

1P. Drude, Ann. d. Phys . 14 (1904) : 677. [21) 
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r ela ted the infrared prnper frequencies t o oscillations of atoms (atom ions) 
----------- ----- --- -- -- · --- - ----- - -- -- ----------- -------

[ 22 J ancft1i'c u1frav'i8let 0 propcr-frcqucnc'ics--to the osciiiations oi cicctrons. Thi s 

prnws a seeond s i~?l_~f-~c_n:n!·_ d}lF~~!,\t f~L tt~t m~}X~¥,!~L;N!m~½E_ q~~~9'._. of _ 
heat . becaui:ie-·the--8I>ec-ifi:C- heaf -woul<f have to exceed significant ly the val ue 

5.tM "'• si nce the number o f mohi l e mass points per molecule is l ar grr than 1.lw 
- - - - -- - - - - ---- - -- ----- -

lat ter's number of atoms. 

U sed on t he above one s~~l! !_~_ n'?_t _~_here the fo_U~\fJl_lg_:_ If we c~~~-~t yc_ 
of the carriers of heat in solids as period ically oscillating structures whose 
fri,quC'ncy ls indcpcn<l cnt of t.h~ir osci llAt.ion energy. tl).('_11.ac_c.onliJ)g __ tQ" 

Planck's theory of radiation we should not expect t he value of t he specific 

The enerll,y of N su~~!1_,_el~•~~-~!~!'l--c~tn~~t!lr~-~- · lll~cl;~!!r~~-)n"gr ~r,:fr~--Lo1tn! :c_ 
hence has t he value 

5.!Jt 4v ' 
C - 1 

so t hat each such osci llat ing elementary st ructure contribut es to t he specific 

(8) 5.94 
_°r . [0:r 
r Pf .1 2 

LC .ij 

1 ·-~r--.,7, -~---:---'-~'-------;---4-~--! 

:; -· --~-~· 
0.1 ~ ~~~--~;:;---;;o.;-;:~--;6,-;_~- ---;;o.~6·- ----;:a:-::-1- -=u:-=-~43~__,j~o 
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per gram-equival ent . Thus , summation over all species of oscillat ing 
elementary structures occurring in t he sol id substance in question yields the 

fol l ow ing expression for the spec if ic h~pr:igram-equivalent 1
: 

( 8a) c == 5 . 94 l . 
[e V - t r 

The above figure2 shows the value of expression (8) as a funct ion of x == 

( T//Jv) . If ( T/(Jv ) > 0.9 , t he contribution of the structure to t he specific 
molecu lar heat does not differ signif icantly f rom the value 5.94, which also 
follows from the heretofore accept ed mol ecular-kinetic theory ; the small er t hP 
v, the lower the temperat ure at which this will already be the case. Jn con­
trast, if ( T/fiv ) < 0. 1, the element ary struct ure in question does not cont ri ­
bute sign ificantly to the specif ic heat . In bet ween , the expression (8) 
init ially grows faster and t hen more slowly . 

From what has been said i t follows f i rst of all t hat t he electrons 
capable of oscillation, which have to be postulated to explain the ultraviolet 
proper frequencies , cannot significantly cont ribute to the specifi c heat at 
normal temperatures ( T = 300) , because the inequali ty ( T/ Pv) < 0.1 becomes [23] 

the inequali ty A< 4.8 µ at T = 300. On t he ot her hand, if t he elementary 
st ructure satisfies the condition A > 48µ, t hen according to what has been 
said above, its cont r ibution to the specif ic heat must be close t o 5.91 at 
usual t emperatures . 

Since generally for infrared proper frequencies A> 4. 8µ, according to [24] 

our conceptions these proper oscillations must contr ibut e t o the specific 
heat , and the greater the A, t he greater t his cont ribution. According t o 
Drude's invest igations , these proper frequencies are t o be attributed to t he [25] 

ponderabl e atoms (atom ions) t hemselves. The most obv ious conclus ion seems 
t herefore to be to consider exclusively t he positive atom ions as t he carriers 
of heat in solids (insulators) . 

1Th is consideration can easi ly be extended to anisotropic bodies . 
2Cf. dashed curve. 
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If the infrared proper osd llat ion f requencies II of a sol id are knm.;n , 
then according to t hr aforesaid its specif ic heat as well as its dependence on 

[26] t he temperat ure would be compktf' ly drtcrmined by equation (8a). Pronounced 
deviations from the relation c = 5. 94 n would have t o be expect ed at normal 
t emperaturPs if the substancP in quest ion showed an opt ical infrared propPr 
frequency for which ,\ < 48 µ; at suffic ient ly low temperatures the specifi c 
heats of al l so lid bodiPs should decrease s ignif icant ly with dPcrPasing 

[27] t emperature. [•'urther , t he Dulong-Petit law as well as t he more general law c 

= 5.94 n must hold for all bodies at suffic iently high t emperatures unless 
new degrees of freedom of mot ion (elect ron-ions) become apparent at t hP 

[ 28 J lat t er. 
Roth above-ment ioned di ff icu l ties are resolved by t he new interpretat ion 

and I believe it l i kely that t he latter wi ll prove i t s validity in principle . 
Of course, an exact agreement with t he fact s is out of the question. During 

[29 ) heating , sol ids experience changes in molecular arrangement (e .g . , changes in 
vo l ume) t hat are assuciatrd with changes in energy content; all sol ids that 
conduct electricity contain freely moving elementary masses t hat make a 
contribut ion t o the specific heat; the random h<'at oscillations have possibly 
a somewhat different frequency than t he proper oscillations of the elementary 
st ruct urPs during optical processes. Finally, t he assumption that the 
pert inent elementary struct ures have an oscil lat ion frequency t hat is 
independent of t he energy (temperature) is undoubt edly inadmissible . 

Nevert heless , it is int erest ing t o compare our conclusions with obser­
vat ion. Since we are concerned wi t h rough approximat ions only, we assume , in 
accordance with ~,. Nf'umann- Kopp's rul e , that every element contributes 
equally t o the molecu lar specif ic beat of all its solid compounds even if its 
specif ic heat is abnormally small. 'fhP numerical data prPscnt Pd in the 

(30] foll ow ing t able are t aken from Roskoc' s textbook of chemistry. \\'e not e t hat 
a11 e1 Pments wi t h abnorma1ly low atomic heat have low atomic wP ight s; 
according t o our interpretation , t his is to be expect ed, since, cetcri s 
paribus , low at omic we ights corr(>spond to high osc illation frequenc ies. Th<> 
last co lumn of t hP table lists t hP val ues of ,\ in microns t hat arc obtained 
from t hese numbers , if one assumes t hat t hey arc val id at T = 300 , with t he 
help of t he curve showing t he relation between x and c. 
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Element Speci f ic 
,\calc . atomi c heat 

s and p 5.4 42 
Fl 5 33 
0 4 21 
Si 3.8 20 
B 2.7 15 
H 2.3 13 
C 1.8 12 

Furt her, we t ake some dat a on infrared proper osci llations (metall ic 
reflection, res idual rays) of some t ransparent solids from t.hc tables of 
Landolt and Bornstein; t he observed ,\ are list ed in the t able bf'low as 
",\obs."• the numbers under "\a1c. " are t aken from t he above table if t hey [31] 

refer to atoms with abnormally low specific heat ; fo r the ot hers it is assum<'d 
t hat ,\ > 48 µ. 

Substance 

CaFl 
NaCl 
KCl 
CaC03 
Si02 

,\obs. 

21; 31.6 
51.2 
61.2 

6 . 7; 11. 4 ; 29 .4 
8.5; 9.0; 20 .7 

"calc. 
33; >48 

>48 
>48 

12; 21; >48 
20; 21 

In the table, NaCl and KCl contain only atoms with normal specific heat ; 
indeed, t he wave lengths of t heir infrared proper oscillations are l arger t han 
48 µ. The other substances contain only atoms with abnormally low specific 
heats (except for Ca); indeed, t he frequencies of these substances range 
between 4.8 and 48 µ . In general. the values of ,\ obtained theoretically 
from specific heat s are cons iderably 1arger t han those observed. It i s 
poss ible that t hese dev iations might be explained by a strong var iation of the 
frequency of the elementary structure with its energy . Be t hat as it may, the 
agreement of the observed and the calculated ,\ is remarkable bot h with 
respect to the sequence as well as with respect t o t he order of magnitude. 

Finally, we will also apply the theory t o diamond. Its i nfrared proper 
frequency is not known , but can be calculated on the basis of the t heory 
described i f t he molecu lar specific heat c i s known for some t emperature T; 
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the x correspond ing t o c can be t aken di rectly from the curve , and A is 
then calculated from the re lat ion ( TL/ f)A) = x. 

I am using the exper imental resu l ts of II. F. Weber , which I t ook from 
[321 the t ab les of Landol t and Bornstein (cf. the fo llow ing tabl e). For· T = 331 .3 

we have c = l. 838 ; accordjng to t he theory described, from this it foll ows 
t hat A = 11.0 µ. nased on t his val ue , those in t he table's third column arc 
calculated accord ing t o the formula x = (1'l/f}A) , (/J = 4. 86· 10-11 ). 

[33) 

T C X 

222.4 0.762 0. 1679 
262.4 1.146 0.1980 
283.7 1.354 0. 2141 
306.4 1.582 0.2312 
331.3 1.838 0.2500 
358.5 2.1 18 0. 2705 
413.0 2.661 0. 3117 
479.2 3.280 0. 361!i 
520. 0 3 .6:H 0. 3924 
879.7 5.290 0. 6638 

1079.7 5. 387 0.81 47 
1258. 0 5.507 0.9493 

The points , whose abscissas arf' these values of x and whose ordinates 
arc t he values of c as obt ained experiment ally from Wf'b<'r 1 s obscrvaUons and 

l isted in the table, should lie on the x,c-curvc shown above. We plotted 
these points- indicated by circles-in th<' above figure; in fart , t hey do 
almost lie on the curve. Hence we have to assume t hat t he elementary carr iers 
of heat i n diamond a.rP almost monochromatic struct11rPs . 

Thus , accordi ng to the theory it is to he expected t hat diamond shows an 
[ 34 ] absorpt ion maxi mum at A = 11 /t. 

Uern, November 1906. (Rece ived on 9 November 1906) 
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Doc . 39 
ON THE LIMIT OF VALIDITY OF THE LAW OF THER~fODYNAMIC EijUILIIlRIUM AND 

O~ THE POSSIBILITY OF A NEW DETERMINATION OF THE ELEMENTARY QUANTA 
by A. Einstein 

[Annalen der Physik 22 (1907): 569-572] 
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Let the state of a physical system be determined in the thermodynamic 
sense by parameters .,\,µ,etc . (e.g., readings of a thermometer, length or 
volume of a body, amount of a substance of a certain kind in one phase) . If, 
as we assume, the system is not interact ing with other systems , then, accord­
ing to the laws of thermodynam ics, equil ibrium wil l occur at particular values 
Ao, µ0 • etc . of the parameters, for which the system ' s entropy S is a 
maximum. However, according to the molecular theory of heat , th is is not 
exact ly but only approximately correct ; according to this theory, the value of 
the parameter .,\ is not constant even at temperat ure equilibrium , but shows 
i rregular fluctuations, though it is very rarely much different from A0 • 

[ l ] 

At first glance the theoret ical examinat ion of the stati st ical l aw that 
governs these fluctuat ions would seem to require that certain st ipulat ions 
regarding t he molecular modPl must be applied . However, this is not t he case. [ 2] 

Rather, essential ly it is suffic ient to apply the well -known Boltzmann rela-
tion connect ing the entropy S with the statistical probability of a state. 
As we know, this relation is 

R S = N lg II , 

where R i s the constant of the gas equation and N is t hP number of 
molecules in one gram-equivalent . 

We consider a state of the system in wh ich t he parameter A has a value 
,\0 + t differ ing very littl<> from A0 • To bring the parameter .,\ from t he 
value ,\0 to the value .,\ along a reversible path at constant energy E, one 
will have t o supply some work I to t he system and to withdraw the corre­
sponding amount of heat. According to thermodynam ic relations, we have' 

A = I dE - I TdS • 
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or, s ince t he change in questi on i s infi nit esimally small and J dE = O, 

A = - T(S- So) 

On t he ot her hand, however , according t o t he connection between entropy and 

probabi l i ty of stat e, we have 

From the last two equations it follows that 

A = RT lg II - -n- To 
or 

N 

fl = 
- 7['f A 

ll0e 

The resul t i nvolves a cf'rtain degree of inaccuracy, because in fact one 
cannot talk about t he probability of a s tate, but only about the probabilit y 

[3 ] of a stat e range . If inst ead of t he equat ion found we wri te 

N A 
di/ = const. e- 7[T dA , 

then t he l at t er law i s exact . The ar bitrariness due to our having i nserted 
the dif ferential of J rather t han the different ial of some funct ion of A 

[4] int o t he equat ion will not affect our resul t. 
We now put .,\ = .,\0 + c an<l rest r i ct ourselves to the case t ltat A can 

be df'veloped iu posit ive powers of t, and that only the f i rst nonvanish ing 
t erm of t his ser ies contr ibutes not iceably to t he value of the exponent at 
such values of f fo r which t he exponf'nt ial f unction is st ill not iceably 
different from zero. fhus , we put A = a£2 and obtain 

N - 7[T a t:2 
di/ = const . e de 
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Thus, in this case t here applies t he law of chance errors to the 
deviat ions £. For t he mean value of the work A one obtains 
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Hence, t he mean val ue of the square of the fluctuat ion £ of a para­
meter A i s such that, in order t o change the parameter A from Ao to 

Ao+~ at constant energy of the system , t he ext ernal work A that one 

would have to apply, if thermodynamics were strictly valid, equals ½ i T 
( i .e . , one-third of t he mean kinetic energy of one atom). 

If one inserts the numerical values for R and N, one obtains 
approx imately 

il = 10-161 . 

Ye shall now apply the result obtained t o a short -circuited condenser of 

(electrost atically measured ) capacitance c. If W is th~ mean 
(electrostatic ) potential di fference t hat the condenser assumes as a result of 
molecular di sorder, t hen 

1 = ½ cpl = 10-161 . 

We assume that the condenser is an air condenser cons ist ing of t wo 
i nt erlocking plate systems contain ing 30 plates each. The average distance 
between each pl ate and the adjacent plate of the other syst em shall be 1 mm . 
The s ize of t he plates shal l be 100 cm2 . The capac itance c i s then about 
5, 000. At normal temperature one then obtains [S] 

~ 3 4 X 10-9 • [6 ] ~Pstat. = • 

~easured in volts , one obtains 
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r-;-- - 10-6 
~P~olt - • 

If one imagines that the two pl at e systems can move relative to one 
other, so t hat they can be comp letely separated , one can get the capaci t ancP 
t o be of order of magni tude 10 af t er the plates have been moved apart . If ,,. 
denotes t he potential difference result ing from p dur to the separation, one 
obtains 

J;i = 10-6 • 5iioo = 0.0005 volt . 

Thus , i f the condenser is short-circuited when the plate syst ems are 
pushed toget her , and the plates are pulled apart after t he connection has been 
broken, potential differences of t he order of magnitude of one-half millivolt 
will resul t between the plate systems . 

It does not sef'm t o me out of t he quest ion that t hese potential diffor -
[8] ences may be accessi bl e t o measurement . For if mrtal parts can be electrically 

connected and separated without the occurrence of other i rregular potent ial 
differencrs of t he same order of magn itude as t hose calcu lat ed above, then it 
must be poss ible t o achieve the goal by combin ing t he above plate condenser 

[9] with a multiplier . We would then have a phenomPnon akin to Brownian motion in 
t he domai n of electric i ty t hat could be used for the determination of t he 
quantity N. 

llcrn, December 1906. (Received on 12 December 1906) 
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THEORETICAL REMARKS ON BROWNIAN MOTI ON 

by A. Einstein 

[Zeitschri ft fu r Elekt rochemi e und angewandte phys ikalische 
Chemie 13 (1907): 41 -48] 
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Prompted by Svedberg 's investigation on t he motion of suspended parti -
cles , published recent ly in the Z. f. El ektroch., I cons ider it appropr iate t o ( 1) 

call attention to some properties of this motion requ ired by the molecular 
theory. I hope that the following remarks wil l make it somewhat easier for 
t he phys icists who study t his problem experimentally to interpret their 
observat ional data and to compare them with theory . [2] 

1. The molecular t heory of heat allows the calculation of the mean value 
of t he instantaneous veloci ty a particle possesses at the absolute temperature 
T, since the kinet ic energy of the particle ' s center-of -gravity mot ion is 
independent of the size and nature of the part icle and of t he nature of i ts 
environment , e .g. , of the liqu id in which the particle i s suspended; t his 
kinetic energy i s equal t o t hat of a monoatomic gas molecul e . The mean 

velocity~ of a particle of mass m i s threfore determined by t he equat ion 

where R = 8. 3 • 107 , T i s the absolute t emperature, and N i s the number of 

[3] 

r eal molecules in a gram-molecule (about 4· 1023 ) . We shal l calculate ~ , as [4] 

well as the other quantit i es to be cons idered below, for particles of 
collo idal solutions of plat i num studied by Mr. Svedberg. For these part icles (5 ] 

we have to put m = 2. 5 • 10-15 , so that we get for T = 292 

~ = J~ = 8.6 cm/sec. [6) 
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2. We wil l now examine whet]wr thPre is any chance of act ually observing 
this enormous velocity on a suspended particle. 

If we did not know anything about t he molecul ar theory of heat , we would 
expect t he fo llowing: If we i mpart ed a velocit y to a part icle suspended in a 
liquid by an impul se of an external force, t his velocity would be rapidly used 
up t hrough the fr iction of t he liquid. We neglect the latter 's inertia and 
bear i n mind t hat t he resistance expPrienced by t he part icle moving wit h 
veloci ty v is 6irkP1,, where k denotes t he coeff icient of viscos i t y of t he 
liquid and P t he radius of the particle. We get t he equation 

m %7 = - 6-KkPv. 

This yields for t he time v i n wh ich t he velocity decreases t o one 
tenth of its ini tial val ue 

{) = o. 43.f. Girkl' • 

For thP pl atinum par t icle (in wat er ) ment ioned above , we have t o put 
[ BJ P = 2.5 · 10-6cm , and 1J = 0.01, so t hat we get 1 

,0 = 3. 3 • 10-1 seconds. 

Retu rning to the molecular t heory of heat , "e must modi fy t his analys is. 
True , we must assumP now as well t hat , due t o fri ction , t hr part i cl e loses 
almost all i t s init ial mot ion duri ng the very short t ime v. Rut we also must 
assume that during t his time th<' part icle receives new impulses by a process 
that is t he reverse of intrrnal fr ict ion, so t hat i t retains a velocity that 

on the average equal s ~- Ilut s ince we must imagine that t hf' direction and 
magnitude of t hese impulsPs are {al most ) independent of the initial direct ion 
of motion and velocity of t he particle , we must conclude t hat the ve locity and 

1For "microscopic" particles {) i s s igni fi cantly great er since , under ot her ­
wise equal condit ions , {) is proportional t o t he square of the radius of t he 
part i cle. 
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direct ion of motion had changed drastically, and in a completely irregular 
manner, already in the extraordinarily short time iJ . 
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It i s therefore impossible-at least for ultrdIIlicroscopic particles-to 

determine ~ by observation. 
3. If we limit ourselves to the invest igat ion of the paths , or- to be 

more precise--of the changes of position, in times r that are substant ial l y 
greater than {J, we will have according to the molecu lar theory of heat 

where ,\x denotes t he change of t he particle 's x-coordinate occurring during 
r . As t he mean velocity in the t ime interval r we can def i ne the quantity 

where we put for brevity 

But th i s mean velocity increases as r decreases; as long as r is large 
compared with {J, the velocity does not approach any limit ing value wi th 
decreasing r . 

Since an observer operat ing with certain means of observation in a cer­
tain manner can never perceive paths traveled in arbitrari ly short times , a 

[9 ] 

certain mean ve loc i t y wil l always appear to him as instantaneous veloci t y. [ JO] 

But i t is clear that no objective property of the mot ion investigat ed 
corresponds to t he velocity so obtained, at least if the theory corresponds to 
the facts. [ 11 l 

Bern, January 1907 . (Received on 22 January) 
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Doc . 41 
ON THE POSSIUILITY OF A NEW TEST OF THE RELATIVITY PRINCIPLE 

by A. Einstein 
[Anna len der Pltysik 23 (1907): 197- 198] 

In an import ant papf'r published last year, Mr . J. St ark1 demonstrated 
that t he movi ng pos i tive ions of canal rays emit line spectra by identify ing 
t.hP Dopplf'r effpct and followi ng it quant itatively. lie also undertook 
experiment s with the intention of detecting a.nd measuring an effect of the 
second order (proportional to (v/ 1') 2 ); however , t he experimental arrangemPnt , 
which was not set up specifically for t his purpose , was not adequate for 
achieving rel iable resu lts. 

1 will show here briefly t hat the principle of relat ivi ty in conjunct ion 
with the pri nci pl e of t he constancy of t he veloc ity of light makes it possible 
to predict the above effect . As I showed in an earl ier paper2 , it follows 
from these principles t hat a uni formly mov ing clock runs at a sl ower rate as 
judged from a "stationary" syst<'m t han as judged by a co-mov ing observer. If 
v denot es t he number of t he clock' s strokes per un i t time for t he observer at 
rest, and v0 the corresponding number for the co-moving obsrrver, then 

or to first approximation 

The atom ion of t he canal rays that emits and absorbs rad iation of cert ain 
frequencies is thus t o be conceived as a fast-moving clock, and t he relat ion 
j u8t indicated Ccl.n t her<'fo re be applied to it. 

(l] 1J . Stark, Ann. d. Ph 71s . 21 (1906): 401. 
(2) 2A. Einste in, Ann . d. Phys . 17 (1905 ) : 903. 



DOC. 42 233 

However, one has to t ake into cons ideration that the frequency v0 (fo r 
t he co-moving observer) is unknown, so that the above relat ion i s not acces­
sible to direct experimental veri f icat ion. Dut, it may be assumed that v0 

i s also equal to t he frequency emitt ed or absorbed by the same ion while at 
r est, and this for the following reason . From the fact t hat one and t he same 
line spectrum is formed under very di fferent condit ions , we conclude that t he 
frequency v0 does not depend on interactions between moving ions and t he 
stationary gas , but is a characteristic of the ion only; from th is one 
di rect ly concludes with t he help of the principle of relativity t hat v0 must 
equal t he frequency of rad iat ion emitt ed or absorbed by an ion at rest . 

The equation 

t hus gives di rectly the second order effect sought. 
The numerical values present ed by Mr. Stark for the effect are more t han 

ten times larger t han those resulting from the formula presented. It seems [4] 

likely to me t hat reliable resul ts with regard to t his problem can be expected 
only after it has been poss ible t o obtain (nonluminous?) canal rays in a 
completely gas- free space. 

Bern , March 1907. (Received on 17 March 1907) 

Doc. 42 
CORRECTION TO AIY PAPER : "PLANCK'S THEORY OF RADIATION, ETC." 

by A. Einstein 
[Anna len der Phys ik 22 (1907): 180-190] 

In the above-cited paper, which was publ ished in this year 's January 
issue, I wrot e : "According t o Drude 1 s investigat ions, these proper fre­
quenc ies are to be att ributed to t he ponderable atoms (atom ions ) themsel ves. 
The most obvious conclus ion seems therefore to be to consider 

(SJ 
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exclusively the positive atom ions as t he carriers of heat in solids 
[ 1] (insulators). 11 

This proposition does not hold up in t wo respect s: Fir st, one must 
assume not only posi tively, but al so negatively charged atom ions. Second­
and t his i s t he essential point-Drude's invest igat ions do not j ust ify the 
assumption that every element ary struct ure capable of osc il lation t hat act s as 
a carrier of 11eat has always an el ectric charge. Thus , from the exi st ence of 

( 2 ] an absorption region one can indeed deduce (wi t hin the limitations men t ioned) 
the exi stence of a kind of elementary structure t hat makes a contribut ion with 

[3] a characteristic temperat ure dependence t o the specific heat; however , the 
conver se conclus ion is not val id, because most certa inly there could exist 
uncharged heat carriers, i .e. , such ones thti.t are not observable opt ically. 
This is especially to be expect ed with chemically not bound atoms. 

The conclus ion drawn from t he nature of t he specific heat of diamond in 
the last sentence of t he paper hence is al so not legitimate . It should read : 

"Thus , according to the theory , it is t o be expected that diamond either 
shows an absorption ma.ximum at ,\ = 11 µ or t hat it has no opt ically demon­

[ 4] strablc infrared proper -frequency whatsoever. " 

(Received on 3 March 1907) 

Erratum 
Vol. 22 . p. 287, line 4 from the bottom in equat ion (2 ), t he l etter 'ii" should 
be omit ted. 
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Doc. 43 
Author ' s abstract of l ecture 

"ON THE NATURE OF THE MOVEMENTS OF MICROSCOPICALLY S~fALL PARTICLES 
SUSPENDED IN LIQUIDS" 

[Naturfo rschende Cesell schaft Bern. Kitteilungen (1907) ] 

1038. SESSION OF 23 MARCH 1907 
At 8 P.H. in the Hotel Storchen 

Chairman: Mr. Ed. Fischer. Present: 20 members and guests. 

235 

1. Mr . A. Einstein speaks "On the nature of the movements of microscopically 
small particles suspended in liquids ." 
Microscopically smal l inanimate particles (e .g. , with diameters of t he 

[l] 

[2] 

order of magni t ude 0.001 mm) suspended in l iquids carry out i rregular mot ions [3] 

that are more an imated t he smaller the diameter of the particle and the 
viscosity of the liquid and the higher the temperature (Brownian motion) . 
After a brief discuss ion of t he different attempts at explanation, a s imple (4 ] 

formula for the distances covered by the particles i s der ived by the l ecturer [SJ 

in an elementary way wi th the aid of the kinet ic theory of heat. (Aut hor 's 
abstract ) [6] 

For more on the topic, see : Ann . d. Physik 17 (1 905) : 549. (7] 

Ann. d. Physik 19 (1906): 371. 
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Doc. 44 
CO\llIENTS ON THE NOTE OF MIL PAUL EHRENFEST: 11 fllE TRANSLATORY MOTION 

[ 1 J OF DEFORMABLE ELECTRONS AND TIIE AREA LAW" 
by A. Einst ein 

[Annal en der Physik 23 (1 907) : 206-208] 

The art i cle referred t.o above contains the following r<'ffiarks: 
"In the formulation in which Mr . Einstein published it , Lorentz ian 

[2] relativistic electrodynamics is rather generally viewed as a complete syst em. 
Accordingly, i t must also be ab le t o provide purely deductively an answer to 

[3] the question posed by transferring Abraham's problem from the rig id electron 
to the deformabl e one: Granted that there ex ists a deformable el ect ron that 

( 4) has some nonspher ical and nonellipsoidal form when at rest . According to Mr . 
Einstein, this electron undergoes the well-known Lorent z contraction dur ing 
uniform translation. Well then , is i t possible for this elect ron t o undergo 

[5 ] force-free uniform t ranslation in every direction , or i s it not?" 
Concerni ng this [ have the follow ing comments: 
1. The princip le of r elativity, or, more exactly, t he principle of 

rel ativity together with the principle of the constancy of vel oc i ty of l ight . 
is not· t o be conceived as a "complete syst em , 11 in fact , not as a system at 
al l , but merely as a heuristic princi ple which , when considerc<l by i t seH , 
contains only st at ements about r igid bodi es , clocks , and light s ignals. It is 
only by requiring relations between otl1erw ise seemingly unrelat ed laws that 

(6) t he t lH'ory of relat iv ity provides addit ional stat ements. 
For example , the th<'ory of the motion of electrons arises in the follow­

ing way. Dne post ulates the Maxwd l equations for vacuum for a system of 
space-t ime coordinates. Dy applying t he space-t ime t ransformation derived by 
means of t he system of re lat ivi ty, one finds t he t ransformation equations for 
t he electric an<l magnC'tic forces. Using the latter , and app lying the space­
time t ransformation once again, oue arrives at t he l aw for the accelerat ion of 
an electron mov ing at arbi trary speed from t l!e law for the accelerat ion of the 

(7] s l ow ly mov ing electron (which is assumed or obt ained f rom experience) . Thus, 
we are not dealing here at all with a "system" in which the i ndividual l aws 
arc implici tly contained and from wh irh t hey can be found by deduct ion alone , 
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but only wit h a principle that (s imi lar to the second law of the theory of 
heat ) permits t he reduction of cert ain laws t o others . [BJ 

2. Previousl y, when one did not rely on t he principle of rel ativ i ty, 
but instead tri ed to obt ain the l aws of mot ion of electrons by electrodynamic 
methods , one found i t necessary to make more definite assumpt ions on the 
distribut ion of el ectr icity so t hat the problem is not ar1 undetermined one. 
The el ectr icity was thought of as bei ng distributed over a (rigid) framework . [9] 

I t should be noted that t he l aws that govern the mot ion of such a struct ure 
cannot be derived from electrodynamics alone. After al l, the framework i s 
nothing other than the introduct ion of forces which balance t he electrodynamic 
ones . If we view t he framework as a rigid body (i. e . , one not deformable by 
external forces ), the probl em of the motion of t he electron can be solved 
deduct ively wit hout arb itrariness only if the dynamics of t he rigid body is 
known wi th suff icient accuracy . 

If the theory of rel at ivity is correct, we are still far from the latter 
goal. For the time being, we only have the kinematics of parallel translat ion 
and an expression for the kinet ic energy of a body in parallel translat ion, 
provided t he latt er docs not interact with other bodies1; for t he rest, both 
t he dynamics and the kinematics of a r igid body have at present to be 
cons idered as unknown for t he case under cons iderat ion . 

Bern, 14 Apr il 1907. (Recei ved on 16 Apri l 1907) 

[10) 

11 will soon show in an art icle that t he l atter rest rict ion is essential. ( 111 
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Doc . 45 
ON THI~ INERTIA OF ENERGY REQUIRED BY THE RELATIVITY PRINCI PLE 

by A. Einstein 
[An nalen der Physik 23 (1907): 371-384] 

The principle of relativity, in combination wi th Maxwell' s equat ions , 
leads t o the conclusion t hat t he iner t ia of a body increases or decreases with 
its energy content in a completely determined way. That i s lo say, if one 
observes a body t hat emits a certain radiation energy simul taneously in two 
oppos ite directions , an<l if one examines t hi s process from two coordinat e 
systems which move uni fo rmly relat ive to each other, 1 one of which i s at rest 
relative t o the body , and if one appl ies--from both coordinate systems--the 
energy princip le to the process, one arrives at the result t hat to an increase 
i n t he body's energy !J.E there must al ways correspond an increase in the mass 
!J.E/ V2, where I' denotes the veloc i ty of l ight . 

The ci r cumstance that the spec ial case discussed there necessitates an 
assumption of such ext raordinary general ity (about t he dependence of the 
inertia on t he energy) demands t hat the necess it y and j ustificat ion of this 
assumption bP examined in a morP general way . Especially, the quest ion 
arises : Do not other special cases l ead to conclus ions that are incompatible 
wi th the one mentioned above? A first st ep in t his respect I took last year2 

by showing that the above assumption resolves t he contradiction between 
elect rodynamics and t he pr inciple of the const ancy of the mot ion of the center 
of gravity (at l east as far as the t erms of f irst order are concerned). 

1he general answer t o the quest.ion posed i s not yet possible because we 
do not yet have a complete world view that would correspond to the princ iple 
of relativity. Rather , we must limi t ourselves to the special cases that we 
can handle at present wi t hout arbitrari ness from the standpo int of relativis­
tic electrodynamics. We are go ing to consider t wo such cases ; in the first of 
these, the system whose inertial mass we shall exam ine consi sts of a rigid, 

[ l] 1A. Einst ein , Ann. d. Ph ys . l8 (1905): 639 . 
[2 ) 2A. Einstei n, Ann. d. Phys. 20 (1906) : 627 . 
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rigidly electrif ied body , and in t he second case it consist s of a number of 
uniformly moving mass po ints wh ich do not exert any forces on each other . 

Before I start with the investigat ion, I must insert here a remark on 
the presumed range of valid i ty of Maxwell ' s equations for empty space so as to 
meet a natural ly arising object ion. In earlier papers I showed that our 
present electromechanical world view is not suited for explaining t he entropic 
propert ies of radiation and the laws governing the em ission and absorption of 
radiation and those governing the specif ic heat; rather, it seems to me 
necessary to assume t hat t he nat ure of any period ic process is such that the 
convers i on of energy can only proceed in cert a in quanta of fin ite magnitude 
(l ight quanta) , i.e. , that the manifo ld of processes possible in real ity is 
smal ler t han t he manifo ld of proces es possibl e accordi ng t o our present 
theoreticaJ views. 1 In particul ar, we would have t o imagine that in a radia­
tion process t he instantaneous electromagnet ic stat e in a region of space is 
completely determined by a f inite number of quantit ies-- in contrast to t he 
vector t heory of rad iation . But as l ong as we do not possess a picture that 
corresponds to the requirements mentioned, it wi ll be natural t o use t he 
current theory for all problems not concerned with entropy relations or 
conversions of elementary small quantit ies of energy without having t o fear 
t hat we wi l l thereby arrive at incorrect results. I can ill ustrat e most 
graphical ly how I see t he present situation regarding these quest ions with t he 
following imaginary case. 

Let us imagine t hat the mol ecular -kinetic theory of heat has not yet 
been propounded, but that i t has been demonstrat ed with complete certainty 
that the Brownian motion (motion of particl es suspended in liquids ) is not due 
to any ext ernal supply of energy, whi le it is clearly recognized t hat these 
mot ions cannot be explained with the help of mechanics and thermodynamics . In 
such a situation one would right ly conclude t hat a radical change of t heore­
t ical principles must take place . In spite of that, nobody would shrink from 
applying t he fundamental equations of mechan ics and thermodynamics t o handle 
problems not related to instantaneous st at es in small regions of space. In 
this sense, i n my opinion, we can confident ly base our cons iderations on 
Maxwell's equat ions . 

1A. Einstein, Ann. d. Phys . 17 (1905): 132; 20 (1906): 199; and 22 (1907): [3] 
180. 
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I t seems t o me t o be in the nature of t hings that other aut hors might 
have already elucidated part of what I am going to say . However, bear ing in 
mind t hat the problems under considerat ion are being treated here from a new 
standpoint, I fe lt t hat I shoul d be permitted to forgo a survey of t he l iter­
at ure (which would have been very troublesome fo r me) , especially s ince t here 
is good reason to hope t hat th is gap will be fill ed by other authors , as it 
was kindly done by Mr. Planck and Mr. Kaufmann for my fi rst paper on the 

[4 ] principle of relativity. 

§J. On the ki netic energy of a rigid body in un iform translat ion 
sub j ect to external f orces 

We cons ider a rigid body t hat is mov ing in uniform t rans lati on (v<'locity 
v) in the di rect ion of the increasing x-coordinatc of a coordinate system 
(x , y,z ) that is assumed to be at rest . If ext Prnal fo rces do not act upon 
it, t hen, according t o the theory of re lativity, its kinetic energy K0 is 
given by the <'quat.ion1 

where µ denotes i ts mass (in t he convent ional sense) and V the veloc ity of 
light in vacuum . ·we now want to show that according to t he theory of relativ­
i ty t his express ion does not hold any longer if t he body is acted upon by 
ext ernal forces that balance each other. To be able to deal wit.h t his case, 
we must assume t hat these are electrodynami c forces. We t herefore imagine 
that t he body is rigid ly electri f ied (with conti nuously dist r ibuted electr i ­
ci ty ) , and that an electromagnetic field of force i s acting upon it. We 
imagine that the electric density i s always very low and t he fi eld st rong, so 
that t he forces corresponding to t he interactions bet ween the body's electric 
masses can be neglect ed compared with the forces t he external fie ld exerts on 

[5) 1A. Einstein , Ann. d. Ph ys. 17 (1905): 917f f. 
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the body's electrical charges . 1 The energy AE transferred from the f ield of 
force to the body between the times t 0 and t1 is given by the express ion 

AE = J::dt J vI f, dxdydz, 

where t.he space integral i s to be extended over the body and we have put 

_ ax+ ar + az P- oz oy oz 

Using the transformat ion equations given in the paper cited above2 • we 
transform this express ion to the space-time system ({,q.(,T), which 
corresponds to a coordinate system that is at rest with respect to the body 
and whose axes are paral lel to (x.y.z). One t hus obtains after a s imple 
calculation. in a notation that corresponds exactly to that used in the paper 
quot ed , 

AE = II PvX' ~ d{dqd(dT , 

where, as there. P denotes the expression 
1 

Note that according to our assumptions the forces X' cannot be arbit rary . 
Rather. at al l times they must be such that the body under consideration does 
not experience any acceleration . The necessary (but not sufficient) condi tion 
for th is , according to a theorem of stat ics. is that. observed from a coordi­
nate system that moves together with the body. the sum of the I -components of 
the forces act ing upon the body always vanishes. One t hus has for each T 

I X'p ' d{dqd( = 0. 

1We introduce this assumption in order to be able to assume that t he acting 
forces are not subjected to any restricting conditions due to the way t hey 
are produced . 

2A. Einstein, Ann. d. Phys . 17 (1905) , §§ 3 and 6. [6 ] 
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Thus , if the limits for r in t he above int egral express ion for AE were 
independent of {, 1/ , ( , we would have f:.E = 0. However , t his i s not t he case , 
fo r from t he transfo rmation rqnat.ion 

it follows immediately t hat t he t imf' limits in the moving systPm are 

and - lJ._ V ~ • 
T - J} - Jn"':. 

We imagine that t hf' integral in t he express ion for 11E is decomposf'd into 
three part s. 

Thr f i r st part shal l compr ise the times r between 

t he second part between 

711 and 

and the thi rd between 

and 

The second part van ishes because i ts t imP limits arr independent of 
{, 1J ,( . The first and t hird parts have a def inite value only i f the assumption 
is made t hat t he forces acting on t he body are indepf'ndent of time close to 
t he t imes t = t0 and t = t1 , such t hat t he electric force X' is .inde­
pendent of t ime for al l point s of the rigid body bet ween t he t imes 

and t 
7 = 1 ' 

and between 

r = j and r = j - f'l { , 

r espectivel y. If t he X' present during t hese two time interval s are called 
X~ and X~, respectively, one obtains 
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If one assumes further that no forces act on the body at the start ( t = t0), 

t hen the second of these integrals vanishes. Taking into account that 

X~p• 
4r d{dqd( 

is the {-component K{ of the ponderomot ive force act ing on the space 
element, one gets 

where the summation is to be extended over al l mass elements of the body . 
We thus get the following strange resul t. If a rigid body on which 

originally no forces are act ing i s subjected to the influence of forces that 
do not impart acceleration to the body, t hen these forces-observed from a 
coordinate system t hat is moving relat ive to the body- perform an amount of 
work AE on the body that depends only on the f i nal distribut ion of forces 
and the translation velocity. In accordance with the energy pr inciple, from 
this it fol lows immediately that the kinetic energy of a rigid body subjected 
to forces is larger by A£ than the kinetic energy of the same body movi ng at 
t he same veloci t y but not subjected to any forces. 

§2. On the inertia of an electrically charged rigid body 

~e again cons ider a rigid, rigidly electrif ied body in uniform t ransla­
tion (velocity v) in the direction of the increasing x-coordinate of a 
"stat ionary" coord inate system. An external electromagnetic field of force 
shal l not be present. This time, however, we shall take into account the 
elect romagnetic fie ld produced by the electric masses of the body. First, wr 
calcul ate t he electromagnetic energy 
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Ee = i 1r J (P + fl + Z2 + l2 + J/2 + ,Vl )dxdydz . 

To t his end we use the t ransformation equations contained in the repeat ed ly 
cited paper, and transform t he above express ion by introducing under the 
integral t hf' quantit ies that referred t o a coordinate system moving wit h the 
body . We then obtain 

2 
1 + ( V) 

E = 81 J 711 [x •2 + l' 2 (f'2 + z•2>] d{d11d( . 
e i- t - Cf) 

It should be noted that the value of this express ion depends on the orient a­
tion of t he rigid body relat ive to the direction of motion. Hence, if the 
t otal kinetic energy of the el ectrified body cons isted exclusively of the 
kinet ic energy K0 of the body due t o its ponderable mass and of the excess 
of the el ectromagnetic energy of the moving body over t he electrostatic energy 
of the body when at r est, we would have arrived at a contradiction, as we can 
eas i l y see from t he follow ing. 

We imagine that the body under considerat ion rotates infin i tely s lowly 
relative to the coordinate syst em mov ing along with it , wit h no external 
inf luences taking place during t his mot ion . It is clear that this mot ion must 
be possible wi t hout application of any force, because according to t he 
principle of relativity t he body's laws of motion relat ive to the system 
moving along with it are the same as t he laws of mot ion with respect to a 
"st ationary" syst<'m . We now observe the uniform ly moving and infinitely 
slowly rotating body from t he "st at ionary" syst em . Since t he rotation is 
supposed to be infinitely slow, it does not contribut e anyt hing to the kinetic 
energy. The expression for the kinetic energy in the case under considerat ion 
is therefore the same as it would he i f no rotation but on ly uniform parallel 
translation were to t ake place. However, s ince in the course of the mot ion 
the body t akes up di fferent (arbitrary) posi tions , and the energy principle 
must, hold throughout the motion, i t i s clear that the kinetic energy of an 
elect rified body in trans lational motion cannot possibly depend on its 
ori entat ion. 
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This contradiction i s resolved by the results of the previous section , 
i.e., the kinetic energy of thP body under consideration cannot be calculated 
like that of a rigid body upon which no forces are acting . On the contrary, 
in accordance with §1, we must take into account that our rigid body is 
subjected to forces caused by the interaction between the elect ric masses . 
Thus , if we denot e by K0 the kinetic energy in the absence of electric 
charges, we obtain for the body ' s total kinetic energy K the expression 

where E8 denotes the electrostatic energy of the body in the state of rest . 
In our case we have 

v2 1 J (OX' iJY' OZ'] A£ = - -rz p 4i {X ' of + 01/ + 7f[ d{d1Jd( , 

from which one obtains by integration by parts, t aking into consideration t hat 
X' , f ' , Z' can be der ived from a potential , 

If one t akes into account the express ions for K0 and P given in §t, 
one obtains the following express ion for the kinet ic energy of the electrified 
rigid body: 

This expression is, as it must be , independent of the body' s or ientat ion 
relative to the direction of translation. If one compares the express ion for 
K with that for t he energy K0 of a body not charged electrically , 
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one realizes t hat t he electrostatically charged body has an inert ial mass that 
exceeds that of t he uncharged body by the electrostatic energy divided by the 
square of the velocity of 1 ight. The l aw of the inertia of energy is thus 
conf i rmed by our result in the special case cons idered. 

§9 . Remarks conrern ing the dynamics of the rig id body 

From t he foregoing it might seem that we are no longer far f rom t he goa] 
of constructing a dynamics of t he paral l el translat ion of t he rigid body t hat 

[7 ] would conform to the principle of rel ativity . However, one must remember that 
the investigat ion carr ied out in §1 yi (l lded the energy of a r igid body 
subjected to forces only for t he case that t hese forces are constant in t ime. 
If at t he t imf' t 1 the forces X' depend on t he t ime, t hen the work !J.E, and 
thus also the energy of t he rigid body, proves t o be dependent not only on 
t hose forces t hat occur at one part icu lar time. 

To il lustrate t he difficul ty involved as drastical ly as possi ble, let us 
imagine the follow ing simple special case. We cons ider a rigid rod AD which 
shal l be at rest relative t o a coord inate system {~.~. () , with t he rod ax is 
resting in the ( -axis. At a cert ain t ime To l et equal but oppos i te fo rces 
P act on the rod ends for a v<'ry short t ime, while' at al l ot her times t he rod 
i s not subjected t o forces . It is obvious that the above action on the rod at 
t ime To docs not produce any motion of the rod . We now observe the very 

A B 

V 

same process from a coordinate syst em whose axes are paral lel t o t hose of the 
system used earl ier, relati ve to wh ich t he rod moves in t he direction A-D 
with velocity v. However , vi ewed from this coordinat e system , t he impulses 
in A and /J do not act s imultaneously; rather, the impul se in /J is 
delayed by f f) (v/ Jl2 ) t ime units wi t h regard to t he impulse in A, where f, 

denotes the l ength of the rod (measured at rest ) . Thus we arrived at t he 
fo llolol ing odd- looking result . On the moving rod AB, an impulse act s fi rst in 



DOC. 45 247 

A and some time thereafter an oppos ite one in B. The two impul ses compen­
sat e each other so that they do not modify the mot ion of the rod. The case 
looks even more odd if we ask about the energy at a time when the impul se in 
A had already ended wh ile that i n B had not yet begun. The impulse in A 
had transferred work to the rod (since the rod was in mot ion) ; hence the 
energy of the rod had to increase by this work. Yet no change has occur red 
ei ther in the veloci t y of the rod or in any other related quant ity on which 
the energy function might be made to depend. Thus there appears to be a 
violat ion of the energy principl e . 

This di fficulty has a very s imple solution i n princ ipl e. Uy impli citly 
assuming that we can completely determi ne the moment ary state of t he rod by 
the forces acting on the rod and by the rod's velocity at that moment , we 
assume that an increase in the body' s velocity is produced instantaneously by 
a veloci ty-producing force acting somewhere on the body, i. e., t hat the 
spreading of the force exerted on one point of the body over t he whole body 
does not require t ime . As we are going to show, such an assumpt ion i s not 
compatible with the principle of relat ivity. We are therefore obviously 
forced to postulate in our case t hat the effect of the impulse in A is 
associated with a change of state of unknown qual ity in the body, which 
spreads throughout it with finite velocity and produces an acceleration of t he 
body in a short t ime unless t his effect i s compensated by the effects of some 
other forces act ing upon t he body within that t ime. Hence , if relati vistic 
electrodynamics is correct, we are sti l l f ar from having a dynamics of the 
parallel translation of the rigid body . [8 ] 

Ye wi l l now show t hat not only t he assumption of an instantaneous spread 
of some effect, but also, more generally, any assumption of the spreading of 
an effect with a velocity greater than the velocity of l ight i s incompat ible 
with the theory of relativit y. 

Consider a material strip extending along the x-axis of a coord inat e 
system (x,y, z) , relat ive to which a certain effect shal l propagate wi t h 
velocity II, and let there be at x = 0 (point A) as well 8S at x = +l 

(point D) an observer who is at rest relative t o the coordinate system 
(x,y, z). By means of t he above effect, t he observer in A sends a signal t o 
t he observer in B through the material strip, which i s not at rest but is 
moving in t he negative x-direction with t he velocity v ( < V) . I t follows 

[9 ] 
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from §5 ( loc. ci t ~) t hat the s ignal will t hen be t ransm itt ed from A to D 

with the ve loc i ty 
II - V 

1 - ~ 

The t ime T t hat elapses bet ween the s ignal emiss ion in A and s ignal 
reception in B is t hus 

The veloc ity v can assume any val ue smaller than Y. Hence, if II > Y, as 
we have assumed , then v can al ways be chosen such that T < 0. This resul t 
s ignif ies that we would have to consider as poss ibl e a t ransfer mechan ism 
whose use would produce an effect which precedes the cause (accompanied by an 
act of will , for example ). Even t hough, in my opinion, this result does not 
cont ain a contrad ict ion f rom a purely l og ical point of view, it conflicts so 
absolutely with the character of all our exper ience, t hat the impossibility of 

( 101 the assumption II> V i s sufficiently proved by this result . 

§4. On th e energy of a sys t em consis t i ng of a number of 
mass po i nts moving fo rce- free 

If one t akes a l ook at the express ion for the kinet ic energy k of a 
mass point (µ) moving with the velocit y v. 

k = µVl { 
1 

- 1} 
J V 2 i - < r ) 

one not ices that th is expression has the form of a difference; i. e . we have 

V = V 

k = µVl ----• 
' -v 2 
~ 1 - ( 17) V = 0 
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If one does not ask about the kinetic energy in particular, but s imply about 
the energy £ of t he moving mass point, then £ = k + const . Whi le it is 
most convenient to set the arbitrary constant iri thi s equation equal to zero 
in classical mechanics , the s implest express ion for c in relativi st ic 
mechanics is obt ained by choosing the zero point such that the energy £0 for 
the stationary mass point equal s µY2 .1 One then obtains 

We wil l henceforth adhere to this choice of the zero point of the energy . 
We now introduce again the two coordinate systems (x,y,z) and ({ ,7/,0 

that are al ways moving relative to each other . Let a mass point µ move 
relative to ({,7/,() wi th a veloc i ty w in a direction that forms the angle 
<p with the pos itive {-axis . The energy C: of the mass point relative to 
the system (x,y,z) can eas ily be determined us ing the relations derived in 
§5 ( loc . cit.). One obtains 

l + vw cos r.p 
y2 

( = µYl --------

J 1 - (~) J 1 - (~) 

If several mass po ints are present that have different masses, velocities , and 
directions of motions , we obtain for their total energy £ t he express ion 

{
l /LWCOS I.{) ] 

~ w 2 1 - C-p) 

Until now we have not stipulated anyth ing about t he state of motion of the 
system ({,7/,0 relative to the movi ng masses. We can and will now stipulate 

10ne should note that the simplifying st ipulat ion µV 2 = fo is also the 
expression of thP principle of the equivalence of mass and energy, and that 
in the case of the electrified body e: 0 i s nothing other than its electro- [11] 
static energy. 
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the following conditions t hat uniquely det ermine the state of motion of 
({,7J,0 : 

= 0 . = 0 ' 

where we' w
11

, w( denote the components of w. In classical mechanics thi s 
st i pulation cor responds to t he condit ion t hat the momentum of motion of t he 
mass system rel ative to ({, 1/ , 0 vanishes. We then obtain 

I V 2 
~ 1 - (-p) 

or, by introducing the cnPrgy E0 of t he system relative to the syst em 
( { , 1} , () ' 

If t hi s expression i s compared wit h t hat for t he energy of a mass point moving 
wi t h t he velocity v, 

one obtains the following result: With respect to t he dependence of t he 
energy on the state of motion of the coordinate syst em to whi ch t he processes 
are refer red , a syst em of uniformly moving mass points can be replaced by a 
s ingle mass point. having t he mass µ = £0/ 1'1 . 

Thus , a systPm of mov ing mass points-t aken as a whol e- has t he more 
inertia t he fastE'r t he mass points move relati ve to each other. The 
dependence is again given by t he law cited in the Introduction . 

Dern , May 1907. (Received on 14 May 1907) 
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Doc. 46 
Review of J . J . WEYRAUCH , An Outl ine of the Th eory of /feat. lli th 

Numerous l xamples and Applicat i ons . Part 2 (Cru,idriss de r Vii rme theori e. 
Hi t zah lreichen Be ispi el en und Anwendungen . 

Stuttgart: K. Wittwer, 1907. 412 pp. 16. 00 mark.) 
[lleib latter zu den Annalen der Ph ysik 31 (1907): 777] 

'fhe second volume considered here deals with saturated and superheated 
vapors , with steam engines , acrostat ics , aerodynamics (motion in channels , 
efflux from cont ainer orifi ces) , and with solid bodies ; t ogether with the 
first volume , the present volume is superbly suited to int roduce t he person 
fam i liar wi t h t he element s of t he di fferent ial and integral calculus t o t he 
t heory of heat i n a way that is useful for t he treat ment of engineering 
problems (especially t hose concerned with engines) . 150 problems and 250 

[ l] 

numerical examples , interlaced wi t h t he t ext and mostly selected corresponding [ 2] 

to conditions f ound in practice, give the student t he opportunity for ample 
exercise, so that he may acquire relatively eas ily t he proficiency needed for 
t he reading of engineer ing paper s and for the calculation of special problems. 
In addit ion , t he book suppl ies him wi th t he necessary empirical dat a as well 
as with numerous references t o t he (mostly engineer ing) l it erature . The 
editing of the book is simple and clear, the application of mathematical 
symbols is cons istent , t he t able of contents is clearly arranged and complete, 
so that one can get informed about specific quest ions without losing much 
time. 
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Doc. 47 
ON THE RELATIVITY PRINCIPLE Nf\D TIIE CONCLUSIONS DRAWN FROM IT 

by A. Einstein 
[Jah rbuch der Radioakt ivitit und Clek tronik 4 (1907): 411-462] 

Newton ' s equat ions of motion ret a in thei r form when one transforms to a 
new system of coordinatC's t hat i s in uniform t rans lat ional mot ion relative to 
the system used origi nally according to the equations 

x' x - vt 

x' = y 

z' = z 

As long as one bel i eved thai all of physics can be founded on Newt on's 
equations of motion , one therefore could not doubt t hat t he l aws of nature are 
t he same wi thout regard t o whi ch of the coord inate systems moving uniformly 
(without acceleration) relat ive t o each other they are ref erred. However , 
t his independence from t he state of mot ion of the syst em of coordinates used, 
which we wi ll call "t he princi ple of re lativi t y, " seemed to have been suddenly 
called into quest ion Ly the brilliant confirmati ons of II. A. Lorentz' s 
electrodynamics of moving ho<lies. 1 That tlwory is buil t on the presupposi t ion 
of a resting , innnovab l P, luminiferous ether; i ts basic equations are not such 
that they t ram,form t o equations of the same form when t he above 
transformation equations are applie<l . 

Af ter the acceptance of that theory, one had to expect that one would 
succeed in demonstrating an effect of t he terrestrial motion relative to the 
luminiferous ether on optical phenomena. [ti s true t hat in the study ci t ed 

[2] Lor entz pcovcd that in optical experiment s, as a consequence of his basic 
assumptions, an effect of t hat relative motion on the ray path is not to be 
expected as long as t he calculation is l imited t o t erms in whi ch the rat io 

[ l ] 111. A. Lorf'ntz , Versucli eincr Theorie dcr elek t risr/icn und optisclicn 
Ersc/1ei nungen i n beweglen J."orpern. (Attempt, at a t.hcory of electric and 

opt ical phenomena in moving bodies] Leiden, 18!)5. Rep rinted Leipzig , 1906 . 
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v/ c of t he relative velocity t o the velocit y of light in vacuum appears in 
t he first power . But the negative result of Michelson and Morley ' s experi ­
ment1 showed that in a part icular case an effect of the second order 
(proport ional to v2/ c2 ) was not present either, even though i t should have 
shown up in the experiment according t o the fundamentals of the Lorentz 
theory. 

It is well known that t his contradict ion between theory and experiment 
was formally removed by the postulat e of H. A. Lorentz and Fi tzGerald. (4] 

according to which mov ing bodies exper ience a certain contraction in the 
direct ion of t heir motion. However, t his ad hoc postulate seemed to be only 
an artificial means of saving the theory: Michelson and Mor ley 's experiment 
had actually shown that phenomena agree with the pr inc iple of relativity even 
where th is was not to be expected from the Lorentz t heory. It seemed 
therefore as if Lorentz 's theory should be abandoned and r eplaced by a theory 
whose foundations correspond to the principle of relativity, because such a 
theory would readily predict the negat ive result of t he Michelson and Morley 
experiment. (5] 

Surprisingly, however, i t turned out that a suffi ciently sharpened 
conception of t ime was all that was needed to overcome the diff iculty 
discussed . One had only t o realize that an auxi l iary quantity introduced by 
H. A. Lorentz and named by him "local t ime" could be defined as "time11 in (6 ] 

general . If one adheres to this definition of time, t he bas ic equations of 
Lorentz's theory correspond to the principle of rel ativity, provided that the 
above transformation equat ions are replaced by ones that correspond to the new 
conception of time. H. A. Lorentz's and FitzGerald's hypothes i s appears then 
as a compelling consequence of the theory. Only the conception of a lumin i-
f erous ether as the carrier of t he electric and magnetic forces does not f it 
into the theory described here; for electromagnetic forces appear here not as 
states of some substance, but rat her as independent ly existing things t hat are 
s imilar to ponderabl e matter and share with it the feature of iner tia. [ 7] 

The fo l lowing i s an attempt t o summarize t he studies that have resulted 
to dat e from the merger of the H. A. Lorentz theory and the principle of 
relativity. 

1A. A. Michel son and E.W. Morl ey, Amer. J. of Science 34, (1887) : 333. [3] 
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The f i r st t wo parts of the paper deal with t he kinematic foundations as 
wel l as with t heir applicat ion to t he fundamental equat ions of the Maxwell­
Lorentz t heory, and are based on the studies1 by H. A. Lorentz (Vers l. Kon. 

[ 9 ] Akad. v. Vet . , Ams te r dam (1904) ) and A. Einstein (Ann . d. Phys. 16 (1905)). 

[ 10 ] 

[ 11 ] 

[12] 
[ 13 ] 

In the f i rst sect ion, in which only the kinemati c foundat ions of t he 
theory are appli ed, I also discuss some opt ical problems (Doppler ' s principle, 
aberration, dragging of light by moving bodies ); I was made aware of the 
possibi lity of such a mode of t reat ment by an oral communication and a paper 
by Mr. M. Laue (Ann . d. Pl,ys. 23 (1907): 989) , as well as a paper (though in 
need of correction) by Mr . J. Laub (Ann. d. Pliys. 32 (1907)) . 

In t he t hird part I develop the dynamics of t he material point (elec­
tron) . In t he derivation of the equat ions of mot ion I used t he same method as 
in my paper cited ear lier. Force is def ined as in Planck's st udy . The 
reformu lations of t he equations of mot ion of material po ints , which so clearly 
demonst rate the analogy between these equat ions of motion and those of 
class ical mechanics , are also taken f rom that study. 

The fourt h part deals wit h t he general inferences r egard ing the energy 
and momentum of phys ical systems t o which one i s led by the t heory of 
relativ i ty . These have been developed in the original studies , 

(14 ] A. Einste in, Ann. d. !hys. 18 (1905): 639 and Ann . d. Phys. 23 (1907) : 
371 , as well as M. Planck, Si tzungsber. d. Kg l. Preuss . Akad. d. 

Vissensch. XXIX (1907) , 
but are here derived in a new way, which, i t seems to me, shows especial ly 
clearl y t he relationship between t he above applicat ion and t he foundations of 
the t heory . I also di scuss here t he dependence of ent ropy and temperature on 
the stat e of motion; as far as entropy is concerned, I kept compl etely to the 
Planck study cited, and t J1e temperature of moving bodies I defined as did Mr. 
Mosengei l in his study on moving black-body rad iation .2 

The most important result of the fourth part is that concerning t he 
inertial mass of the energy . Th is resul t suggests the question whet her energy 
also possesses heavy (grav itational) mass. A further question suggesting 

[8 ] 1E. Cohn' s studies on t he subject are al so per t inent, but I did not make use 
of t hem here . 

[ 15) 2Kurd von Mosengei l, Ann. d. P/igs . 22 (1907) : 867 . 
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i t self i s whether the pri nc iple of relativity is limited t o nonaccel erat ed 
moving systems. In order not to leave this question total ly undiscussed, I 
added to the present paper a fifth part t hat contains a novel cons ideration, 
based on the principle of relativ ity, on accel eration and gravitat ion . 

I . KINE~ATIC PART 

§1. Principle of cons tancy of the velocity of light. 
Definition of t ime. Pri nc iple of relat ivi ty. 

To be able to describe a physical process, we must be able t o evaluate 
t he changes tak ing place at the individual points of t he space as functions of 
position and t ime. 

To determine the pos it ion of a process of infin itesimal l y short duration 
that occurs in a space element (point event ) we need a Cartesian system of 
coordinates, i .e., three mut ually perpendicular rigid rods r igidly connected 
with each other, and a r igid un it measuring rod. 1 Geometry permits us to 
determine the position of a point, i.e., the locat ion of a point event , by 
means of t hree numbers (coordinates x, y, z) .2 To evaluate the time of a 
point event, we use a clock that is at rest relative to the coordinate system 
and in whose immediate vicinity the point event takes place. The time of t he 
point event is defined by the s imultaneous clock read ing . 

Imagine that clocks at rest with respect to t he coordinate syst em are 
arranged at many points. Let al l these clocks be equ ivalent , i .e., t he 
difference between the readings of two such clocks shal ] remain unchanged if 
t hey are arranged next to each other . If these clocks are imagined t o be set 
in some manner, then the totality of the clocks, provided they are arranged 
suff icient ly closely, will permi t the temporal evaluat ion of any point event, 
say by us ing the nearest clock. 

1Instead of speaking of "rigid11 bodies , we could equally well speak, here, 
as well as furt her on, of sol id bodies not subjected to deforming forces. ( 16] 

2For this one also needs auxiliary rods (rulers, compasses) . 



[ 17 ] 

[18] 
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However, the totality of these clock readings does not yet give us the 
"t ime" as we need it for physical purposes . For t his we also need a ru le 
according t o which t hese clocks wil l be set relative to each other. 

We now assume that the clocks can be adj ust ed in such a way that the 
propagation veloci ty of every l igh t ray i n vacuum-measured by means of these 
clocks-becomes everywhere equal to a un iversal cons tant c, prov ided that the 
coordinate system i s not accelerat ed. If A and B are t wo points at rest 
relative t o the coordinate system, which are equ ipped with clocks and are 
separated by a distance r, wh ile tA is the read ing of the clock in A at 
t he moment \.ihen a ray of light propagating t hrough the vacuum in the di rection 
AD reaches the po int A, and t0 is t he r eading of the clock at B at the 
moment t he ray reaches R, then we should always have 

C ' 

whatever t he motion of the light source emitt ing the light ray or the mot ion 
of other bodies may be . 

It is by no means self-evident t hat the assumption made here, which \.JC 

will call "t he princ ipl e of the constancy of the velocity of light, " is 
actually reali zed in nature , but - at l east for a coordinate system in a 
certain state of mot ion-it is made plaus ible by the confirmation of the 
Lorentz t hcory1, which is based on t he assumption of an ether that is 
absolutely at rest, through experiment2 . 

The aggregate of t he readings of al l clocks synchronized according to 
the above, wh ich may be imagined as being arranged in t he individual points of 
space at rest with respect to t he coord inate syst em , we call t he t ime belong­
ing to the coordinate system used, or, in short, t he ti me of t hat syst em. 

The coord inate system used, together with t he unit mPasuring rod and the 
clocks that serve for the det ermi nat ion of t he time of the system , we call 
"reference system S." Suppose that the physical laws are ascert ained with 

1H. A. Lorentz , Versuch einer Th eorie der elekt rischen und opt ischrn 
Erscheinungen in bewegt en Ko rpern fAt tempt at a theory of electrical and 
optical phenomena in moving bodies. Leiden , 1895. 

2It i s of special relevance that this theory fu rn ished t he drag coefficient 
(Fizeau's experiment) in accordance with exper ience. 
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respect to the reference system S that is at first at rest relative t o the 
sun. Let then the reference system S be accelerated by some external cause 
for awhile, and, finally, let it return to a nonaccelerated state . What will 
the physical l aws look like when the processes are referred to the system S 
that i s now in another state of motion? 

We now make the simplest poss ible assumption, which i s also suggested by 
the Michelson and Morl ey experiment : The phys ical laws are i ndependent of the [19] 

state of mot i on of the ref erence sys tem, at leas t if the syst em is not 
accel erat ed. 

In t he ensuing considerations , we will base ourselves on t his assump­
tion , which we call "the principle of relativity, " as well as on the pr inciple 
of the constancy of the velocity of l ight set forth above. 

§2. General remarks concerning space and t ime 

1. We consider a number of rigid bodies in nonaccelerat ed mot ion with 
equal velocities (i .e., at rest relative to each other) . In accordance wi th 
t he principle of relativity, we conclude that t he l aws according to wh ich 
t hese bodies can be grouped in space relat ive t o each other do not change with 
the change of these bod ies ' common state of motion . From th is it follows t hat 
the l aws of geomet ry determine the poss ible arrangements of rigid bodies i n 
nonaccelerated motion always in the same way, independent of t he ir common 
st at e of motion. Assertions about the shape of a body in nonaccelerated 
motion therefore have a di rect meaning . The shape of a body in the sense 
ind i cated we will call its "geometric shape. " The latter obviously docs not ( 20] 

depend on the state of motion of a reference system. 
2. According to t he defini tion of time given in §1, a statement on t ime 

bas a meaning only with reference to a reference system in a specif ic stat e of 
mot ion. I t may t herefore be surmised (and will be shown i n what foll ows) that 
t wo spat ially distant point events that are simultaneous with respect t o a 
r eference system S are in general not simultaneous with respect to a 
reference system S' whose st ate of mot ion i s di fferent . 

3. Suppose a body consist ing of material points P moves in some manner 
relat ive to a reference system S. At time t of S, each material point P 
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occupies a certain pos i tion i n S, i.e . , coincides with a certain point Il 
t hat is at rest relat ive to S. The totality of pos it ions of points Il 
relative to the coord inate system S we cal l posit ion, and the totality of 
t he inter relat ions of posit ions of po ints P we call the kinematic shape of 
the body wi th respect to S for the time t. If t he body is at rest relat ive 
t o S, its kinematic shape is ident ical wi th the geometric one . 

It is clear t hat observers who are at rest re lat ive to a reference 
system S can ascert ain only the ki nemat i c shape wi t h respect to S of a 
body that is in motion relative t o S, hut not its geometric shape. 

In the following , we will usually not distinguish explicit l y between 
geometr ic and kinematic shape ; a stat ement of geometric nature refers to 
kinemat ic or g<'ometr i c shape, respect ively, depend ing on whether the latt er 
refers t o a reference syst em S or not. 

§3 . Transformation of coordi nates and t ime 

Let S and S1 he equ ivalent ref Prence systems , i.e . , t hese systems 
shall have unit measuring rods of t he same length and clocks running at the 
same rat e when these objects are compared wi t h each other in a state of 
rel ative rest. It is then obv ious t hat all phys ical laws t hat hold with 
respect to S wi l l hold in exactly t he same form for S' t oo, i f S and S' 
are at rest relat ive t o each other. The pr inc iple of relat ivity requi res such 
total equivalence also if S1 i s in uniform trans lat ional motion with respect 
to S. Hence, specif ically, t he velocity of light in vacuum must have the 
same numerical value with respect to both systems. 

Let a point event be det ermi ned by t he var iables x, y. z , l wi th 
respect to S, and by t he variables x 1

, y ' , z' , t ' witb respect to S1
, 

where S and S' arc moving wi t hout accelerat ion and relative to each other. 
We seek the equations that relate the former t o t he latter var iables. 

Right of-f , we can state about t hese equations t hat they must he linear 
with respf'ct to t hese variabl f's because th is is required by the homogene ity 
properties of space and t ime . Specif ically, from th is it follows that the 
coord inat e planes of S' are uni form ly mov ing planes with respect to S; yet 
in general t hese planes wi l l not be perpend icular to each other . However , if 
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we choose the pos it ion of the x'-axis in such a way that it has , with 
reference to S, t he same direction as the translational motion of S' has 
with reference to S, t hen it follows for reasons of symmetry that the 
S- referred coordinat e planes of S' must be mutual ly perpendicular . We can 
and wil l choose the pos it ions of the two coordinate syst ems in such a way that 
the x-axis of S and the x'-axis of S' coincide at al l t imes, and t hat 
the S- referred y'-axis of S' be parallel t o t he y-ax is of S. Further, we 
shal l choose the instant at wh ich the coordinate or igins coinc ide as the 
start ing time in both systems ; the linear transformation equations sought are 
t hen homogeneous . 

From the now known posit ion of the coordinate planes of S' relative to 
S, we immediately conclude that t he fo l lowing pai r s of equations are equiva­
lent : 

x' = 0 and X - v t = 0 
y' = 0 and y = 0 
z' = 0 and z = 0 

Three of the transformation equations sought thus have the form: 

x' o(x - vt) 
y' by 
z ' CZ 

Since the propagat ion velocity of light in empty space is c with 
respect to both reference systems , the two equations 

x2 + y2 + z2 = c2 t2 

and 
x' 2 + y' 2 + z' 2 = c2 t ' 2 

must be equival ent. From this and the express ions for x', y', z ' j ust found 
we conclude after a simple cal cu lation t hat the transformat ion equations must 
be of t he form 
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t' = <p(v)·P · r t - -f,ix] 
X 1 = <p( V) • ,8 • t X - Vt) 

y' = <p( v) • y 

Z 1 = <p( V) • Z , 

where 

p = 1 

J1 - * 

THE RELATIVITY PRINCIPLE 

Now we will determine t he funct ion of v, which has not yet been 
determined. If we introduce a third system, S11

, which is equivalent t o S 
and S' , is moving with the velocity -v relative to S' , and i s ori ented 
relative to S' in t he same way S' i s or ient ed relative to S, we obt ain , 
by twofold applicat ion of the equat ions we have just found, 

t II = <p(v) ·<p(-v)·t 

x" = <p(v)·<p(-v) ·x 

y" = <p(v) ·<p(-v)· y 

z" = <p( v) ·<p(-v) • z 

Since the coordinate origins of S and S" coincide permanently, t he 
axes have identical direct ions and the systems are "equivalent, " t his 
substitution is the identi ty, 1 so t hat 

<p(v) ·<p(-v) = 1 . 

Fur t her, since the> relation bet ween y and y' cannot depend on t he 
s ign of v, we have 

<p(v ) = <p(-v) . 

Thus ,2 <p(v) = 1, and t he trc1nsformat io11 equations read 

1This conclusion is based on t he physical assumption t hat the length of a 
measur ing rod or the rate of a clock do not unMrgo any permanent changes 
if t hese objects are set in mot ion and then brought to rest again. 

2<p(v) = -1 i s obviously out of the quest ion . 
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t ' =P[t -*x] 
x' = P( x - v t) 

y• = y 
(1) 

z' = z , 

where 
1 P=--. 

j1 - ~ 

If we solve equat ions (1) for x, y, z, and t , we obta in t he same 
equat ions , except that t he 11primed11 quantities are replaced by the corre­
sponding "unpr imed" ones , and vice versa, and t hat v i s replaced by - v. 
This also follows direct ly from t he pr inciple of rel at iv ity and from t hf' fact 
t hat, relat ive to S' , S performs a parallel trans lation wi th veloc ity -v 
in t he direction of t he X' -axi s. [ 22] 

In general, according t o t he principle of rel at ivity each cor rect r ela­
tion bet ween "primed" (defined with respect to S') and "unprimed" (defined 
wi t h respect t o S) quantit ies or between quant ities of only one of these 
kinds yields again a correct relation if t he unprimed symbol s are replaced by 
t he corresponding pr imed symbols, or vice ver sa, and if v i s r eplaced by -v . 

§4. Inf erences f rom th e transf ormat ion equat ions concerni ng 
~igid bodies and clocks 

1. Let a body be at rest relat ive t o s ,. Let x
1

' , y
1

' , z
1

1 and x
2

' , 

y2 ' , z2 ' be t he coordinates of two material points of t he body with respect 
t o S'. In accordance wi th t he t ransformat ion equations just derived, t he 
f ol l owing re1 ations hold between t he x1, y1, z1 and x2, y2, z2 coordinates 
of t hese po ints relative t o the r eference system S at all t imes t of S: 
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X2 - X1 = j 1 - * ( x2
1 - X1 I) 

1'2 - Y1 'J/2' - Y11 (2) 

Z2 - Z1 z2' Z1' 

The ki nematic shape of a body undergoing un i form t rans lational mot ion 
t hus al ways depends on its velocity rel ative to t he reference syst em ; 
act ually, t he body' s kinemat ic shape differs from its geomet ric shape only by 
a contraction in t he direction of t he relat ive mot ion in t he rat io of 

1 : J1 - *· A relative motion of reference syst ems with supcrlightvelocity 
i s not compat ible wi th our pr inciples . 

2. In t he coordinate or igin of S' let there be set up a clock at rest 
wh ich runs 110 t imes fast er than the clocks used for measuring t he t ime in S 

and S' . i.e. , t his clock shall complete v0 periods during the t ime a clock 
at r est r elat ive to it, of t he type used for measur ing time in S and S1, 
increases its reading by one un it. How fast does the fi rst clock run as 
observed from syst em S? 

The clock considered completes one period in t he t ime epochs t' = ..!!.., 
n v0 

where n runs through the integers, and x' = 0 for t he clock at all t imes. 
Using t he first two t ransformation equations , one obt ains fo r the t ime epochs 
tn in wh ich t he clock, as viewed from S, compl etes one period: 

t =Pt' = .fL n . n n v0 

Thus, observed from the system S, t he clock comp letes 11 = 7f = v0j 1 - ~ 
per iods per unit timP; or : the rate of a clock mov ing un iformly with veloc ity 

v r elative to a reference syst em is slower in the rat io 1 : j 1 - * • as 
observed from this syst em , than t hat of the same clock "W hPn at rest relat ive 
to t hat system. 
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The formula v = v0j 1 - * permits a very interesting application. Mr. 
J . Stark showed last year1 t hat t he ions consti t uting canal rays emi t line 
spectra by observing a shift in spectral lines which hP interpreted as a 
Doppler effect. 

Since t11e oscillation process t hat corresponds to a spect ral l inP is to 
be considered an intra-atomic process whose frequency is determined by the ion 
alone, we may consider such an ion as a clock of a cert ain frequency v0, 

which can be det ermined, for exampl e, by i nvest igating th(' light emitted by 
identically constituted ions which are at rest relat ive to the observer. The 
above cons ideration shows, then, that t he effect of motion on t he l ight 
frequency that i s to be ascertained by the observer is not completely given by 
the Doppler effect. The motion also reduces the (apparent ) proper frequency 
of t he emitting ions in accordance' with the relation given above. 2 

§5. The addition theorem of velocit ies 

Let a point move uniformly relative to t he syst em S1 according t o the 
equations 

x ' = 

y' = 

u' t' 
X 

u' t ' 
11 

z ' = u' t' z • 

If x', y', z' , t ' are replaced by their expressions in x, y , z , 
wit h the help of transformat ion equations (1), one obtains x, y, z as 
functions oft, and thus also the point's velocity component s wx' w'/1, wz 
with respect to S. We thus get 

1J . St11.rk, Ann . d. Pli ys . 21 (1906): 401. 
2Cf. §6. equation (4a) . 

[24) 

[ 23) 



[25] 

( 26 ] 
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(3) 

The law of t he parallelogram of velocities thus holds only in first 
approximation . If we set 

u2 = u 2 + u2 + u2 
X y Z 

u'2 = u '2 + u' 2 + u '2 
X y Z 

and denot e by o the angle between the x' -axi s ( v) and t he po int's 
direction of mot ion re lat ivP to S1 (w' ) , we wil1 have 

J [vu' sin 0 1 2 u = ( v2 + u ' 2 + 2vu' cos a) - _ c2 _ 

vu' cos o 
1 + c2 

If t he two velocit ies (v and u' ) have t he same direct ion, we have 

u = V+ U 1 

vu' • 
1 + ~ 

It follows from t h is equation that t he addit ion of two velocities 
smal ler than c 
sets v = c - k, 
c, then 

always results in a velocity smaller than c; i. e . , if one 
u' = c - ,\, where k and ,\ are positive and smaller t han 

., = c __ 2_c_ - _k_-_.A ____ ,. k,{ < C. 
2c - k - ,\ + -

C 
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It follows further t hat the addition of the light velocity c and a 
11 subl ightvelocity11 yields again the light velocity c. 
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The add i t ion theorem of velocities also yields the interest ing 
conclus ion t hat there cannot exist an effect t hat can be used for arb i trary 
s ignaling and that i s propagated faster than light in vacuum. For example, ( 27] 

l et t here be a material strip stretched along the x-axis of S, relative to 
wh ich a certain effect (viewed from the material strip ) propagates with 
velocity II, and let there be t wo observers , one in t he point x = 0 (point 
.J ) and one in the point x = A (point B) of the x-axis , who are at rest 
relative t o S. Let the observer in A send a signal by means of the 
above-ment ioned effect to the observer in B t hrough the material strip, 
wh ich shal l not be at rest but shal l be moving in t he negative x-d irection 
wi t h velocity v (< c) . As a consequence of the f i rst of equations (3) , t he 

signal wi l l then be transmitted from A to B with velocity 
1

11 - Pv· The 
time T necessary for this is then - c2" 

1 llv 
T = f - c2" 
~ 

The velocity v can assume any value smaller than c. Hence, if, as we 
have assumed, V > c, one can always choose v such that T < 0. This result 
means that we would have to consider as possible a transfer mechanism whereby 
the achieved effect would precede the cause. Even though this result, in my 
op inion , does not contain any contradiction from a purely logical point of 
view, i t conflicts with the character of all our experience to such an extent 
that thi s seems suf ficient to prove the imposs ibi lity of the assumpt ion II> c. 

[28] 

§6. Appl i cation of the t ransformation equat ions to some problems in optics [29] 

Suppose the l ight vector of a plane light wave propagated in vacuum is 
proport ional to 

with respect to the system S, and to 

[30] 



266 THE RELATIVITY PRINCIPLE 

s in w'[ t ' - l ' x + m'~' + n•z ' ] 

with respect t o S'. The transformat ion equat ions developed in §3 require t he 
following relat ions between the quant ities w, l, m, n and w' , f', m' , n': 

w' wP[ 1 - tf] 
l - J!. 

f ' - C 
- 1 - t :!!. 

C (4) 
m' = m 

P[1 - t~] 
n' n 

= 
P[1 tf] 

We wi ll interpret the formul a for w' in t wo different ways , depending on 
whet her we consider t he observer as moving and the (inf in itely distant ) source 
of light at rest, or vice versa. 

[31 ] 1 . If an observer is moving with veloci ty v relat ive to an infin itely 
dist ant source of light of frequency v in such a way that the connect ing 
line "source of light - observer" forms an angle cp with t he observer's 
velocity as referred to a coordinat e system at rest r elat ive to t he source of 
light , t hen t he frequency v1 of the source of light perceived by the 
observer i s given by t he equation 

1 - cos ~ 
11 1 = v -----

j1 -* 
2. If a source of light of frequency v0 relat ive to a co-moving 

system moves such t hat the connect ing line "source of light - observer" forms 
an angle cp with t he velocit y of the light source as referred to a syst em at 
rest relative to t he observer, then t he frequency v of the source of light 
perceived by the observer i s given by t he equat ion 
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11 = llo Fl 
1 - cos cp E 

C 
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(4a) 

The l ast two equations express Doppler's principle in its general form; 
t he last equat ion shows how t he observable frequency of t he light emitted (or 
absorbed ) by canal rays depends on the velocit y of motion of the ions that 
form the rays and on the direction of sighting. 

If t he angles bet ween the wave normal (ray di rection) and the di rection ( 32] 

of relat ive motion of S' with respect to S (i.e . , with the x- and 
x' -axis, respectively) are cal led cp and cp' , respectively, the equation for 
l' t akes the form 

cos cp' 
V 

COS <p - C 

1 - cos cp'IJ. 
C 

This equation shows the effect of the relative mot ion of the observer on the 
apparent location of an infinite ly distant source of light (aberration) . 

In add i t ion we will also examine how fast light i s propagated in a 
medium that i s moving in the direct ion of the light ray. Let the medium be at 
rest relative to the system S' , and let the light vector be proport ional to 

or to 
sin w'[t' - t ] 

sin w( t - r] , 
respectively, depending on whether the process is referred to S' or S. 

The transformation equations yield 

w w' [ I'' v] 1 =Pyr1+cr. 
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Here JI ' should be vi ewed as a function of w' known from the opt ics of 
stationary bodies. Div iding t hese equations , one obt ains 

V = V' + V 

V' v 
1 + cT" 

Th is equat ion could al so have been obtained direct ly by applying t he addit ion 
theorem f or veloc i ties. 1 I f V' i s to be considered as known, the l ast 
equation sol ves the problem completel y. However, if only t he frequency (w) 

refer red t o the "stat ionary" system S i s to be cons idered as known, as for 
example in the well -known cxpf'rimcnt by Fizeau , t lwn the two foregoing 
equations have t o be used in conjunction with thP relation bet wef'n w' and 
V' in order to determine the three unknowns w' , V', and V. 

Further , if C or C' is t hf' group velocity referred t o S or S' , 
r espectively, then, according t o t he addition theorem for veloci t i es , 

C= (] ' + V 
C'v 

1 + 7 

Since the relation between C' and w' can be obtained from the optics 
of stationary bod ies ,2 and w' 
foregoing, the group veloc ity 

can be calculated from w according to t he 
C can be calculated even if only the f requency 

of light relat ive t o S and t he body's veloc i ty of mot ion are gi ven. 

[33 ] 1Cf. M. Laue, Ann . d. Phy8. 23 (1907): 989. 

[ 34] 2Ilccause C' ;:: V' 
1 + 1 dP' yr c[wT 
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II. ELECTRODYNAMI C PART 

§7. Transformat ion of the laxwell -Lorent z equations 

We start from the equations 

In these equat ions , 

1 { ax) aN ax c ":I + 1H = oy - oz 

¼{•r M} = ~ -M 
1 { iJZ} lJN l)L c "zP + 1H = 1fx - oy 

1 ol iJY IJZ ,1H =oz - oy 

1 ON oz ax 
c1H =ox - oz 
1 DN ax DY c 7H = oy - ox 

(X,Y,Z) i s the vector of electric fi eld strength, 
(L,N.N) is the vector of magnetic fi eld strength. 

p = M + * + ¥z is the 4~-fold elect ric densi ty, 
(ux•"y•"z ) i s the velocity vector of electric ity . 
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(5) 

(6) 

These equations, toget her with t he assumption that the electrical masses 
are unchangeably attached to small rigid bodies (ions , electrons) , fo rm the 
basi s of Lorentz's electrodynamics and optics of moving bodies. 

If these equations , wh ich shal l ho ld wi th respect t o the system S, are 
transformed by means of the transformation equations (1) to t he mov ing system 
S' , wh ich is moving relat ive t o S as in the previous cons iderations , t hen 
the follow ing equations are obtained: 

[35] 
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where we have put 

p' 

1 { , , iJX' } 8N' i}lf' c ":;1 + 7flT = oy'" - 7JiT" 

1 { , , /}f' } /}L' 8N' c uyp + lftT = 7JiT - 7fiT" 

! {u' p' lJZ'] hl/
1 

BL ' 
C Z + lffT = lfiT - ozT" 

1 aL I ar• azi c 7flT = oz:r - 1fijT 

1 iJr' az' ax' c 7flT = F - 7JiT" 

1 8N' lJX' lJY' 
cW = lfiT" - F 

X' = X 

f ' = P[ Y - ~N] 

Z' = ,1[z + ~1] 

l' = L 

11' = P[.r + ~z] 
N' = P[N - ~r] 

THE RELATIVITY PRINCIPLE 

(5 I) 

(6') 

(7a) 

(7b) 

lJ,f' iJJ' ' iJZ ' [ 
= 7fiT" + 7JyT + 1JzT" = p 1 

vu] -cf p (8) 
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U - V 
u' = X 

X uxv 
1 - c'I' 

u' = " 11 (9) 
y P[1 uxv] 

-7 

u' "x 
z 

P[ 1 
ttxv] 

- c'I' 

The equations obtained have the same form as equations (5) and (6) . On 
t he other hand, it fol lows from t he principle of relativi ty that the electro­
dynamic processes obey t he same laws when they are related to S' as when 
they are related t o S. From t his we conclude t hat X' • Y' , Z' and L 1 

, JI' , 

N', respect i vely, are nothing else but t he components of the S'-rel ated 
el ect ric and magnetic f ield strengt h. 1 Furthermore, inversion of equat ions 
(3) shows that the quant it i es u~, u~, u~ in equations (9) equal the 
S'-related velocity components of the el ectricity, and hence p' i s the 
S'-related density of electricit y. Thus t he el ectrodynamic basi s of t he 
Maxwell-Lorentz theory agrees with the principle of relativity . 

Regard ing the interpretat ion of equations (7a) we note the fol lowing. [37 ] 

Imagi ne a pointlike quanti ty of electricity that is at rest relative to S 
and is of magnitude "one" with respect to S, i .e., exerts a force of 1 dyne 
on an equal quantity of electric ity located at a distance of 1 cm and at rest 
wi th respect to S. According to the princ iple of relativity, this electric 
mass also equals "one" when it is at rest relative to S' and is examined 
from S' .2 If th is quant ity of electrici t y is at rest re lative t o S, then 
(X,f,Z) i s by definition equal to t he force acting upon i t, which could be 
measured, for exampl e, by a spring balance at rest relat i ve to S. The vector 
(X', f ' ,Z' ) has t he anal ogous meaning with regard t o S' . 

1Though the agreement between the equat ions found and equations (5) and (6 ) 
leaves open t he possibility that the quantities .f ' , etc., differ by a 
constant fac t or f rom the S'-referred field strengths , it i s easy t o show 
by a method very s imilar to that employed in §3 for the function <p(v ) that 
this factor must equal 1. (36] 

2Thi s conclusion rests furt her on the assumption t hat t he magnitude of an 
electric mass does not depend on the prehistory of its motion . 
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According to equations (7a) and (7b), electr ic or magnetic field 
strengths do not have an existence per se , since it may depend on t he choice 
of t he coordinate system whether an el ectric or magnet ic f ield strength is or 
i s not present at a locat ion (more exact l y: spatial- temporal environment of a 
po int event ). Further, if one introduces a reference system that is at rest 
with respect to the electric mass , one sees that t he "elect romot ive" forces 
introduced hithert o that act upon an electric mass moving in a magnet ic fi eld 
are nothing else but "electric" forces . This makes t he questions as to t he 
seat of t hose electromotive forces (i n unipolar machines) pointless , since t he 
answer varies depending on t he choice of the st ate of mot ion of the reference 
syst em used . 

(38 ] The mean ing of equation (8) can be seen from the followi ng : Let an 
electrically charged body be at rest relative to S' . Its total charge c 1 

with respect t o S' i s then J ~ dx ' dy1dz 1
• How large is its total charge 

£ at some t ime t of S ? 
It follows from t he last t hree of equations (1) t hat t.he following 

relation holds for const ant l : 

dx'dy' dz' = Pdxdydz. 

In our case equati on (8) reads 

P
l 1 

= 7JP · 

From these two equations it follows that we must have 

Equation (8) t hus states t hat the electr ic mass is a quant ity t hat is 
independent of the stat e of motion of t he reference system. Thus , if the 
charge of some body in motion is constant from the standpoint of a reference 
syst em moving with it, then i t is also constant with respect t o any other 
reference syst em . 

Wi th the help of equations (1) . (7) , (8), and (9) , all problems involv­
ing the electrodynamics and optics of moving bodies in wh i ch only velocities , 
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but not accelerat ions, play an essential role can be reduced to a series of 
problems involving the electrodynamics or optics of stationary bodies. 

We shall illustrate the application of the equations developed here by 
one additional simple example. Let a plane light wave traveling through 
vacuum be described by the following equations with respect to S: 

X = X0 sin t L = L0 sin t 

Y = Y0 sin t I = 10 sin t 

Z = Z0 sin t Z = N0 sin t 

We ask about the constitut ion of this wave when referred to the system S1
• 

Applicat ion of t he transformation equations (1) and (7) yields 

x• = X0 sin t • l' = l 0 sin t ' 

y• = P[Yo - i N0)sin t ' JI' = P[Ho + i z0)sin t• 

Z' = P[zo + i 10) sin t' N' = P[No - ~ ro) sin t' 

From the requ i rement that the funct ions 1 1
, etc., must satisfy equations (5 ' ) 

and (61) , it follows that the wave normal, electric force, and magnetic force 
are mutually perpendicular with respect to S' as wel l , and t hat the l atter 
two are equal . The relations following from the identity t = t' were dis­
cussed in §6; only the amplitude and state of polarization of the wave 
relative to S' remain to be determined here . 

We choose the X- f-plane paral lel to the wave normal and deal first with 
the case in which the electric vibration is parallel to the Z-axis. In t hat 
case we have to set 

(39 ] 

[40] 
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Xo = 0 

Y0 = 0 

Z0 = A 

THE RELATIVITY PRINCIPLE 

L0 = - A sin <p 

10 = - A cos <p 

N0 = 0, 

where <p denot es t he angle between the wave normal and t he X-axis. From 
the above i t follows t hat 

X' = 0 L' = - A s in <p s in 11 ' 

Y' = 0 N' = 11 [- cos <p + ~] A sin ~1 

Z' = 11[1 - ~ cos <p]A sin t' N' = 0 

Thus , if A' denotes the ampli tude of t he wave with respect to S' , we wi ll 
have 

1 - ~ cos <p 
11 1 = A __ c __ _ 

j1 -~ 
(10) 

The same relation obviously holds for the special case that the magnet ic force 
is perpend icular to t he di rect ion of relat ive mot ion and the wave normal. 
Since the general case can be const ructed from these two special cases by 
superposition, it follows that relation (10 ) i s valid in general if a new 
ref erence syst em S1 is introduced, and that t he angle betwePn t he plane of 
polarizat ion and a plane parallel t o t he wave normal and to the di rect ion of 
t he relative mot ion is the same in the t wo reference systems. 

III . MECHANICS OF THE MATERIAL POINT (ELECTRON) 

§8. Derivat ion of the equat i ons of mot i on of the (s lowl y accelerated) 
[41 ] material point , or elect ron 

Let a particle endowed wi t h an electric charge f (which we shall cal l 
"electron" in the following) move in an electromagnet ic fie ld, and let us 
assume t he fo l lowing about the law of mot ion of th is particle : 
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If at a given point of t ime the elect ron is at rest relative to a 
(nonaccelerated) reference system S', its motion relat ive to S' wi 11 
proceed according to the follow ing equations in t he next instant of t ime: 

d2z' 
0 I 

µ afT"'I = tZ , 
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where xb , Yb, zb denote the coordinates of the electron wit h respect to 
S ' , and µ is a constant which we call the mass of the electron. 

We introduce a system S, relative to which S' is in motion as in our 
preced i ng analyses , and transform our equations of motion using the t ransfor­
mation equations (1) and (7a) . 

In our case, the former will read 

t 1 
= p [ t - ~ Xo] 

xb = P(x0 - vt) 

Yb = Yo 
zb = zo . 

Setting ¥/l = ±0 , etc . , we obtain from these equations 

dx ' /J ( Xo - v) 
arf = . , etc., 

• p(1 - ~] 

[ 
vx0] vx0 

1 - c2 x0 + (±o - v)cr 
1 = lJ ---- - - ----- , etc. 

[1 -~] 
[42] 
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Inserting t hese express ions into the above equat ions af t er hav ing put x0 = v, 
y0 = 0, i 0 = 0, wh ile at the same t ime subst ituting X', Y' , Z' by means if 
equations (7a) , one get s 

µP3xo = fl 

µfi"iJo = c [ Y - ~ N] 

µP:i0 = f [ z + ~ x] . 

These equations are the equations of motion of the elect ron for t he case when 
±0 = v, y0 = 0, i 0 = 0 at the instant in question. On the left-hand s ides , 
then , v may be replaced by t he velocity q defined by the equation 

and on the r ight-hand sides v may be replaced by x0 . Further, we add in 

t he appropriate places t he t erms obtained f rom ~ K and - ~ N by cyclic 

permutat ion, wh ich vani sh in the particular case under considerat ion . 
Omitting the subscript in x0 , etc., we obtain the fol lowing equations, whi ch 
in t he particular case under considerat ion are equival ent to the equat ions 
given above: 

d { µx J 
af J1 - ;; 

d { µy } 
al fi"7; 

C 

d { µi 1 
a{ fi"7; 

C 

where we have put 

= K 
X 

= K y (11) 
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(12) 

These equations do not change thei r form with the introduction of a new 
coordinate syst em with differently directed axes , which is relatively at rest. 
Hence they are valid in general and not only when y = z = 0. 

The vector (Kx,Ky,Kz) shall be called the force act ing on t he mat erial 

point. I f q2 is van ishingly small compared with c2, then according t o 
equations (11) Kx,Ky,Kz reduce to the force components according to Newton 's 

definition . ln the next section it will be shown that in other respects, too, 
that vector plays the same role in relativ ity mechanics as the force does in 
class ical mechanics. 

Ve shall maintain equations (11) also in t he case that the force exerted 
on the mass point is not of electromagnetic nature . In the latter case equa­
tions (11) do not have a physical content but are rather to be understood as 
def ining equations of t he force . 

§9. lotion of the mass point and the principles of mechanics 

If equations (5 ) and (6) are success ively mul t iplied by fr• ,b ··· fr, 
and integrated over a space on whose boundaries the f ield strengths van ish, 
one obtains 

(13) 

where 
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is the el ectromagnet ic energy of the space under considerat ion. According to 
t he energy principl e, the first term of equation (13 ) equals the energy 
delivered by the electromagnetic f ield to the carrier of the el ectric masses 
per unit time . If electric masses are r igidly bound to a material po int 
(elect ron), then their part in the above term equals the express ion 

d Xx + Yy + Zz) • 

where (X.Y,Z) denotes t he ext ernal el ectric field strengt h. i.e . , t he field 
strength minus that part which is due to the charge of t he electron itself. 
Us ing equat ions (12) , this expression becomes 

Kx+K y +K z 
X y Z 

Thus the vector (Kx,Ky,Kz) denoted as "force" in t he l ast paragraph has the 
same relation t o t he work performed as in Newtonian mechanics. 

[44] Thus , if one successively multipl ies equations (11) by x, y, z, t hen 
adds and integrat es over time , th is must yield the kinet ic energy of the 
material point (elect ron ). One obtains 

µc2 
~--- + const . 

~ C 

(14} 

By t hi s we have demonstrated t hat the equat ions of motion (11 ) are in accord 
with t he energy pri nciple. We will now show that t hey are also in accord with 
t he principle of conservati on of mom<'ntum. 

Successively mul t iplying the second and third of equations (5 ) and t he 

second and t hi rd of equations (6) by f:, 4:, 4;, f'K, adding t hem and 
int egrating over a space at whose boundaries the field st rengths vanish , we 
obtain 

(15) 

or. according to equat ions (12) ~ 
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If t he electric masses are bound to freely moving material po ints 
(electrons) , this equation becomes by vi rtue of (11) 
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(15a) 

(1 5b) 

In combination with the equations obtained by cyclic permutation, t his 
equation expresses the principle of conservation of momentum in the case 

[4S) 

considered here . Thus the quanti ty { = µx plays the role of the [46] 
I v2 
i l - c2" 

momentum of the material po int, and in accordance with equations (11 ) we have 

as in class ical mechanics. The possibility of introducing a momentum of t he 
material point i s based on the fact that in the equations of motion the force, 
i .e . , the second term of equation (15) , can be represented as a time 
derivative. 

Further, one sees immediately that our equations of motion of t he 
material point can be given the form of Lagrange 's equations of motion; for, 
according to equations (1 1), we have 

.!;.t [aJn = K , et c. 
at 8xJ X 

where we have put 

H = -µc2 j1 - ~ + const. 

The equations of mot ion can also be represented in the form of Hami lton' s 
principle 

I
t. 

( di/ + A) dt = 0 , 
to 

(4 7 ) 



[48] 

[49] 
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where the time t and the i nit ial and final pos ition remain unvaried, and 
where A denotes the virtual work 

A = K ax + K ay + K az X y Z 

Final ly, we establ ish Hamilton' s canonical equations of motion . This i s done 
by introducing t he "momentum coordinates" (component s of t he momentum) {, 1}, 
(, setting as above 

t = all = µx ' etc. 
ax~ 

C 

If one cons iders the kinet ic energy L as a funct ion of {, 1}, (, and sets 
{2 + 1}2 + (2 = p2 , one obtains 

I p2 l = µc 2 ~1 + µlcl + const. , 

and Hamilton's equations of motion become 

§10. On the possi bi l i t y of an experimen tal tes t of the theory 
of mot ion of the mat erial point. Kaufmann's investigation 

A prospect of comparison wi t h experience of the results der ived in the 
last section exists only where the movi ng electrically charged mass points 
possess velocities whose square i s not negligible compared to c2 . This 
condition is satisf i ed in t he cases of the faster cathode rays and t he elec­
tron rays (P-rays) emittc<l by radioactive substances. 

There are t hree quant i ties for electron rays whose mutual relat ionships 
can be thP subj Pct of a more detailed experimental invest igation, i.e., tlw 
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generating pot ential or the kinetic energy of the rays , the deflectab i li t y by 
an el ectric field, and the deflectahility by a magnetic field. 

According to (14), the generating potential Il is given by the formula 

To calculate the two other quantities , we use the last of equat ions (11 ) for 
the case when the motion i s momentarily parallel to t he X-axis ; denoti ng the 
absolute value of the electron's charge by l, one obtains 

I f Z and I are t he only def l ecting field component s, and hence the bending 
takes pl ace in the XZ-planc , the radius of curvature R of the trajectory is 

given by f = [~]- Hence , if the electric and magnetic deflectabi l ity are 

def ined as the quantit ies Ae = j: Z and Am = }: I respect ively for the 
case that only one defl ecting electric or only one magnetic field component i s 
present, one has 

A =f J1 -29/i 
e µ q 

A =£ jt - ~. 
m µ cq 

In the case of cathode rays all three quant ities IT, 'e• and A are 
possible candidates for measurement; however, no investigat ions wi t h 
suffic iently fast cathode rays have yet been performed . In the case of 

[50 ] 

P-rays , only t he quantit i es Ae and Am are ( in practice) access ibl e to [51 ) 

observat ion . Mr. W. Kaufmann ascertained the relation between A and A m e 
for P-rays emitted by a radium bromide granul e with admi rable care. 1 

1W. Kaufmann, 11 l1>er die Konstitution des Elektrons" [On t hP consti tution of [52] 
t he electron] . Ann. d. Ph ys. 19 (1906). Both figures are taken from 
Kaufmann's paper. 
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Fig. 1 (actual size) 

[53 ] His pparatus, whose main pa1·ts are dep icted in t heir actual s ize in 
Fig . 1. cons i sted essent ially of a lightproof brass casing fl pl aced wit hin 
an evacuated glass vessel, wi th a rad i um granule placed in a small well O in 
the floor A of t he cas ing. The /}- rays emanat ing from the rad i um pass 
through t he gap between two condenser plates P1 and P2 , cross t he diaphragm 
I) , whose diameter i s 0.2 mm , and t hen fall on t he photographic plate . The 
rays were defl ected both by an electric f ield fo rmed between the condenser 
plates P1 and P2 and by a magnetic f ield of the same direct ion (produced 
by a large permanent magnet ), perpendicu lar to that di rection so t hat. rays of 
t he same velocity marked a point , and the aggregate of the part icles of 
differen t velocit ies marked a curve on t he plate . 
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Fig . 2. 

Fig . 2 shows this curve• which, up to t he scale for the abscissa and [54] 

ordinate, represents the relation between Am (absci ssa) and Ae (ord inate ). 
The l ittle crosses above the curve indicate the curve calculated according to 

the theory of relat ivity, if t he value of ! is taken as 1.878 • 107 . [ 56 ] 

In view of the diff icult ies involved in t he experiment one would be 
inclined to consider the agreement as satisfactory. However, the deviations 
are systematic and considerably beyond the limits of error of Kaufmann 's 
experiment. That t he calculat ions of Mr. Kaufmann are error-f ree i s shown by 
the fact that, us ing another method of calculation, Mr. Planck arrived at 
resul t s that are in full agreement with those of Mr. Kauf mann.2 

Only after a more diverse body of observations becomes avai lable wi l l it 
be poss ibl e to decide wi th confidence whether t he systematic deviations are 
due to a not yet recognized source of errors or to the circumstance that the 
foundations of the t heory of relat ivity do not correspond t o the fact s. [58] 

1The units given in the graph denote mil limeters on the phot ographic plate . 
The plotted curve is not exactly the one observed, but rather the curve 
"r educed to infini tes imally small deflections ." [55 ] 

2Cf . M. Planck, Ve rhandl. d . /}eut schen Phys . Ces. VIII. no . 20 (1906); I X, 
no. 14 (1907) . [57] 
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It, should also be mentioned t hat Abraham's1 and Bucherer 's2 theories of 
the motion of the elect ron yield curves that are signif icantly cl oser t o the 
observed curve than t he curve obtained from t he t heory of relat ivity. 
However, t he probabi lity that t heir t heories are correct i s rather small, in 
my opin ion , because t hei r basic assumpt ions concerning the dimens ions of t he 
moving elect ron are not suggested by t heoretical syst ems that encompass l arger 
compl exes of phenomena. 

IV. ON THE MECHANICS AND THERMODYNAMICS OF SYSTEMS 

§1 1. On t lte dependence of mass upon energy 

We consider a phys ical syst em surrounded by a casing impenetrable t o 
rad iat ion. Suppose t hat the system float s f reely in space and is not 
subjected to any other forces except the effect s of el ect r ic and magnet ic 
forces of the surrounding space. Through the latter , energy may br t rans ­
frrred to the syst em in t hC' form of work and heat , and this energy may und<'rgo 
conversions of some sort in the interior of t he syst em. [n accordance "1ith 
(13) , the energy absorbed by the syst em is given by t hP following express ions 
when referred t o t he system S: 

where (Xa , Y
0

, Za ) denotes the field vect or of t he external f ield (which is 

not included in the syst em) and -$, the electric density in t he cas ing. We 
transform this expression by invert ing equations (7a ) , (8) , and (9) , t ak ing 
into account that according t o equations (1) t he functional detrrminant 

D(x', y•, z', t ') 
O(x,y, z, t) 

[59] 1~1. Abraham, Cu t t. Nar lir . 1902. 

[60 ) 2A. II. IluchcrPr, fot/,. Einf ulirung in die Elrk tronen theorie [Mathematical 
introduction to t he electron theory), Leipzig , 1904, p. 58. 
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equals one . We t hus obtain 

J dE = p JJ L (u 'X' + u'Y' + u'Z')dw'dt' 4i x a y a z a 
u' u' 

+ Pv II L[x• + _J/_ N' - 2 •· ]dw'dt' :iliac a ca ' 

or, s ince the energy principle must hold with regard to S' as well, in 
easily comprehens ible notation 

285 

dE = Pd£' + Pv J [EK~] dt ' (16) 

We shall now apply th is equat ion to the case that the system under 
cons ideration moves uniformly such that as a whole it is at rest relative to 
the reference system S' . Then, provided t hat the parts of the system move so 
slowly relative to S' that the squares of the velocities relat ive to S' 
are negligible compared with c2 , we can apply t he principles of Newtonian 
mechanics with regard to S'. Thus , accord ing to the center-of-mass theorem, 
the system under consideration (or, more accurately, its center of gravi ty) 
can remain at rest permanently only if for each t' 

tK' = 0 . 
X 

Neverthel ess, t he second term on the right -hand s ide of equation (16) does not 
necessar ily vanish, because the integration over time is to be performed 
between two specific val ues of t and not of t' . 

However, if at the beginning and end of the time span considered no 
external forces act upon the system of bod ies, that term vanishes and we 
obtain s imply 

dE = P·dE' . 

First of all, we conclude from this equat ion that t he energy of a {uni ­
formly) moving system not affected by external forces i s a function of two 
variables , i.e., the energy E0 of the system relative to a reference system 
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moving wi th it, 1 and the t ranslational veloci ty q of t he system, and we 
obtain 

1 

j1 -~ 
From this i t follows t hat 

E= __ 1_ Eo + <p( q) ' 

J1 -~ 
where <P(Q ) i s a function of q t hat is unknown for the t ime being . The 
case that E0 equal s O, i. e . , t hat the energy of t he moving system is a 
function of the velocity q alone , has al ready been examined in §§ 8 and 9. 
From equation (14) it follows immediate ly that we have to put 

<p( q) + canst . 

J1 -~ 
Thus we obtain 

E = [µ + ~ ] c
2 

, (16a) 

J1 -~ 
where the integration constant has been omit t ed. A comparison of this 
expression for E with the expression for the kinetic energy of the material 
po int contained in equati on (14 ) shows that the two expressions have the same 
form; with regard to the dependence of t he energy on the translational velo­
city, the phys ical system under cons ideration behaves l ike a material point of 
mass K, where K depends on t he system's energy content £0 according to 
t he fo rmula 

(17) 

This resul t is of ext raordinary theoretical importance because the 
inert ial mass and the energy of a phys ical system appear in it as things of 

1Here, as we ll as in the following, we use a symbol with t he subscr ipt 11011 t o 
indicate that t he quant ity in quest ion refers t o a reference syst em that is at 
rest relat ive to t he physical system cons idered. Since the system cons idered 
i s at rest relat ive to S' , we can replace £1 by £0 here. 
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the same kind. Yith respect to inert ia, a mass µ is equivalent t o an energy 
content of magnitude µc2. Since we can arbitrarily assign the zero-point of 
£0 , we are not even able t o distinguish between a system ' s "actual" and 
"apparent" mass without arbitrariness . It seems far more natural to consider 
any inertial mass as a reserve of energy . 

According to our result, t he law of the constancy of mass applies to a 
s ingl e physical syst em only when its energy remains constant; it is t hen 
equivalent to t he energy principle. To be sure, the changes experienced by 
the mass of physical systems during the famil iar physical processes are al ways 
immeasurably smal l. For example, t he decrease in mass of a system that gives 
off 1000 gram-calories amounts to 4.6 x 10-11 gram. 

The radioactive decay of a substance i s accompanied by the release of 
enormous amounts of energy; is the reduction of mass in such a process not 
l arge enough to be detectable? 

Mr. Planck writes about th is : "According to J . Precht1 1 gram-atom of [63] 

radium , if surrounded by a sufficiently thick layer of l ead, releases 
134.4 x 225 = 30,240 gram-calories per hour. According to (17) th is amounts 
to a decrease in mass of 

30240•419• 105 1.41 X 10·6 mg 9.1020 gr = 

per hour or 0.012 mg per year. Of course, t his amount is st il l so tiny, 
especially in view of the high atomic weight of radium, that it may well be 
outside the experimentally accessible range for the time being." The obvious 
question arises whether it would not he poss ible to reach one's goal by using 
an i nd irect method. If JI is the atomic weight of t he disintegrating atom, 
and m1, m2 , etc., are the atomi c weights of the end products of radioactive 
dis integration, then we must have 

where £ denotes the energy produced during the dis integrat ion of one gram­
atom; this can be calculated if t he energy developed per un it time dur ing 

1J. Precht, Ann. d. Phys . 21 (1906): 599 . 

[65 ] 

[64] 
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stationary disintegrat ion and the average dis integration constant of the atom 
are known. Whether the method can be successfully applied depends primarily 

h h h d. . . f h" h JI - Y.m • on wet er t ere are ra 1oact1ve reactions or w 1c --,-- 1s not t oo 
small compared to 1. In the above-mentioned case of radium one obtains-- if 
its lifetimP is t aken to be 2600 years--approx imately 

¥ - Y,m _ 12-10-6 -2600 _ O 00012 -,r- - 250 - • • 

Thus , if t he l if et ime of radi um has been ascertained with fa i r accuracy, we 
could check our relations if we knew the atomic we ights invol ved wi th an 
accuracy of f ive places. Th is , of course, i s impossi ble . However, it i s 
possible that radioact ive processes will be detect ed in which a s ignificant ly 
higher percentage of t he mass of t he original atom wil l be converted into t he 
energy of a variet y of radiations than in the case of radium. At l east it 
seems reasonable to imagine that the energy produced during the disintegration 
of an atom varies at least as much f rom substance to substance as does the 

(66 ] rate of dis integration. 
It has been tacitly assumed above that such a change in mass can be 

measured by t he instrument we usually use for measur ing masses , i .e . , by t he 
balance, and hence that the relat ionship 

holds not on ly for the inert ial mass but also for the grav i tational mass , or , 
in other words , that a system 's inert ia and weight are strictly proportional 

[6 7] under all cir cumstances . We would also have t o assume, for example, t hat 
radiat ion enclosed in a cavity possesses not only inert ia but also weight. 
But this proportionality between the inertial and gravit ational mass holds 

[68] wi t hout exception for all bodies with the accuracy obtained so far , so that we 
must assume its general validit y until it i s proven otherwise. We are go ing 
to find a new argument in support of th is assumption in the last sect ion of 
this paper. 
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§12. Energy and momentum of a mov ing system 

As in the prev ious section. we once again consider a system that fl oats 
freely in space and is enveloped by a casing impervious to radiation . We 
again denote the f ield strengths of the external electromagnetic field wh ich 
mediates the energy exchange with other systems by Ia, Ya, Za. etc . We can 
apply to this external f ield the reasoning that led us to formula (15) , so 
that we obtain 

4x [J b ( Y N - Z K ) dw] + J _p_ [x + ~ N - "z I ] dw = o . cu "tf'C a a a a 4i a c a c a 

We shall now assume that the principle of conservation of moment um is 
universally valid. In t hat case it must be poss ible to represent the part of 
the second term of this equation that extends over the casing of the syst em as 
t he time derivat ive of a quant ity Cx• which is completely determined by the 
instantaneous state of the system and which we denote as the I -component of 
the momentum of the system . We wish now to find the transformation law of the 
quant ity Cx. Apply ing t he transformat ion equat ions (1), (7), (8) , and (9), 
we obtain in exactly the same way as i n the prev ious sect ion the relat ion 

u' u' 

I dC = fJ J J L[x' + _JJ_ N' - ~ K']dw' -dt ' x fi a c a c a 

+ ~ J J L (J'u' + Y'u ' + Z'u')dw-dt ' c 4i a x a y a z 
or 

(18) 

Again, let the body move without accelerat ion, so that it is permanent ly at 
rest wi th respect to S' . Then we have again 

I:K~ = 0 . 

Although the limits of the t ime integral depend on x ' , the second t erm 
on the right-hand s ide of the equation vani shes again if t he body i s not 

(69 ] 
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exposed to external forces before and after the change under cons iderat ion. 
We then have 

From t his it follows that the momentum of a system not exposed t o external 
forces i s a function of only two variables, namely, the energy £0 of the 
system rel ative t o a ref erence system moving along with it, and the trans­
lation velocity q of the latter. We have 

ac "2I 

This impl ies 

oE;.. = • 

0 j1 -~ 

where ~( q) i s an as yet unknown function of q. Since ¢( q) is in fact the 
momentum if the latter i s determined by the veloc i ty alone, we conclude from 
formula (15b ) that 

We thus obta in 

µq 

j1 -~ 

C : p-1; G·~}- (18a) 

The only difference between this expression and the expression for the 

momentum of the material po int is that µ has been replaced by 
accordance with t he result of the previous section . 

in 

We will now det ermine the energy and momentum of a body at rest relat i ve 
t o S if t he body is subjected to permanent ext ernal forces . Even though in 
t hat case we again have 



DOC . 47 

for each t•. the integral 

tK' = 0, 
X 
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that appears in equations (16) and (18) does not vanish. because it has to be 
extended over two definite values of 
of the first of equations (1 ) yields 

rather than of t'. Since inversion 

the limi t s of integrat ion over t' are given by 

and !:.;/.. - V x' 
p c2" ' 

where t1 and t2 are independent of x' , y', z'. Hence the limits of the 
time integration with respect to S' depend on the pos ition of the po ints at 
which the forces are applied . We split the above integral into three 
int egrals : 

I [EK~] dt' 

The second of these integrals vanishes because it has const ant t ime 
limits. If in addition the forces K~ can change arbitrar ily fast, the other 
t wo integrals cannot be evaluat ed; then we cannot t alk at al l about the energy 
or moment um of the syst em while applying the principles used here . • However , 
if those forces change very litt l e duri ng t ime intervals of t he order of 

. vx• magni tude ~• we can put 

1Cf. A. Einstein, Ann. d. Phys. 23 (1907), §2. [72] 
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+J 
tKx' f dt ' = v 'Ex ' K' ~ X 

t vx' 7f - er 

After s imi lar evaluation of the thi rd integral one obt ains 

Now the energy and momentum can be calculated from equat ions (16) and (18) 
without diffi cul ty. One obtains 

(16b) 

(18b ) 

where K00 denotes the component in the direct ion of mot ion of a force 
evaluated in a co-moving reference syst em and 60 denotes the distance, 
measured in t he same system, between the point of applicat ion of that force 
and a plane perpendicular to t he direction of mot ion. 

If, as we shall assume henceforth, t he ext ernal force consi sts of a 
pressure p0 which is independent of the direction and always acts 
perpendicularly to t he surface of t he system, we wi ll have in particular 

(19) 

wher,e V0 is the volume of a syst em evaluated in t he co-moving reference 
[741 system. Equat ions (16b) and (18b) then t ake the form 
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(16c) 

(18c) 

§13. The volume and pressure of a moving system. Equat ions of mot ion (75) 

To determine the state of t he system under consideration, we have used 
the quant i ties E0 , p0 , 1'0 , which are defined with respect to a reference 
system that moves along with the physical system. However, instead of these 
quantities we can al so use the corresponding quantit i es t hat are def ined with 
respect to the same reference system as the momentum C. To do this, we must 
examine how the volume and pressure change with the introduction of a new 
reference system. 

Let a body be at rest with respect to the reference system S'. Let 1'1 

be its volume wi t h respect to S' , and I' its vol ume with respect to S. I t 
follows i mmediately from equations (2 ) that 

J dx•dy•dz = J1 - * J dx'•dy'•dz ' 

or 

I' = J 1 - * . I'' • 

If we replace I'' by 1'0 and v by q in accordance with the 
notat ion used, we will get 

I' = J 1 - ~ • l'o • (20 ) 

To obtain the transformation equations for the pressure forces , we must start 
from the transformation equations that apply to forces in general . Since we 
defined the moving forces in §8 in such a way that they can be replaced by the 
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force effects of electromagnetic fields on electric masses, we can now 
restrict ourselves to determining the transformation equations of the l atter .1 

Let t he quantity of electricity £ be at rest with respect to S'. In 
accordance wi th equations (12 ) , the force act ing upon it is then given by the 
equat ions 

K = 
X 

£1 K' = 
X 

£1' 

K = y £ [ y - ~ N] K' = y ff' 

Kz { [z + ~ 1] K' = z £Z' 

From these equations and equations (7a) i t follows that 

K' = K 
X X 

K~ = P·Ky 

x; = P•Kz -I 
(21) 

These equations allow the calculation of forces if they are known with respect 
to a co-moving reference system . 

We now consider a pressure force acting on a surface element s' that 
i s at rest relative to S1

: 

K~ = p's '·cos l' = p'· s~ 

K' = p'· s ' •cos m' = p'· s ' y y 
x; = P I • S I • COS n I = P I • S ; t 

1This circumstance also justifi es the procedure used in the preceding investi­
gat ions , in which we int roduced on ly interactions of a pu rel y electromagnetic 
nature between the system considered and its surroundings . The results are 
val id in general. 
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where i 1
, m•. n• denote the direction cosines of the normal (directed toward 

the interior of the body), and s~. s~, and s~ the proj ections of s 1
• From 

equations (2 ) it follows that 

s~ = sx 

s • = /J•s 
'II y 

s~ = /J·sz, 

where sx, sy, sz are projections of the surface element with respect to S. 

For the components Kx, KY, Kz of the pressure forces wi th respect to S, we 

therefore obtain from the last three systems of equations 

K = x• = P's • = P • • s = P' • s cos l 
X X X X 

K = ~ K1 = {p's' = p' ·s = p' · S · COS m 
y µ 'II µ V y 

K = { K' = i p's' = p' ·s = p' ·s·cos n z µ z µ z z 

where s i s the m~gnitude of the surface element, and l, m, n denote t he 
direction cosines of its normal with respect to S. We thus obtain the result 
that the pressure p' wit h respect to the co-moving system can be replaced 
with respect to another reference system by a pressure that has t he same 
magnitude and is also perpendicular to the surface element . In our notation 
we thus have 

P = Po • (22 ) 

Equations (16c) , (29) , and (22 ) enable us to det ermine the stat e of a 
physical system using the quantities E, Y, p, which are defined with respect 
to t he same syst em as the system's momentum C and velocity q, inst ead of 
using quantities E0, Y0 , Po referred to the co-moving reference system. 
E.g. , if to a co-moving observer the state of the system under 
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consideration is completely determined by two variables ( V0 and £0 ) , i. e ., 
if the system' s equation of state can be considered as a relation between Po• 
V0 and £0 , then, with the help of the above-mentioned equations , the 
equat ion of state can be brought to the form 

<p( q,p,V,E) = 0 . 

Simi larly, equation (18c) can be brought to t he form 

which, in combination wi th the equations expressing the principle of 
conservat ion of momentum 

(18d) 

completely determines the translational motion of the system as a whole, i f in 

addit ion to t he quantities l Kx• etc . one also knows £, p, and V as 
functions of time, or if instead of the l ast three functions one knows three 
equ ivalent data regard ing the conditions under which the mot ion of t he system 
is t aking place. 

§14. Examples 

Let the system under consideration consist of electromagnetic rad iat ion, 
which is enclosed in a massless hol l ow body whose wal l s balance the radiation 
pressure. If no external fo rces act upon t he hollow body, we may apply 
equat ions (16a) and (18a) to the entire system (including t he hol low body ) . 
We wil l t hen have 



DOC. 47 

£ = Ea 

j1 -~ 
C = q Eo = q .f.i , 

Jt - ~ C 

where £0 denotes the energy of the radiation with respect to a co-moving 
r eference syst em. 
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However, i f t he wal ls of the hollow body are completely flexible and 
extens ible, so that the radiation pressure exerted from within must be 
balanced by external forces exerted by bodies not belonging to the system 
cons idered, one has to apply equations (16c) and (18c) and insert into t hem 
the well -known value of the rad iation pressure 

1 £. 
Po = 3 ~ , 

so that one obtains 

Next we cons ider the case of an electrically charged massless body . If 
external forces do not act upon the body, we can once again apply formulas 
(16a) and (18a) . Denoting the electrical energy relative to a co-moving 
reference system by £0 , we get 

(78 ] 

[79 ] 
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E = __ E ...... a~ 

J1 -~ 
4 
3 Eo 

A par t of these val ues is to be allotted to the electromagnetic f ield, 
and the rest to the massless body that is subjected to forces due t o its 
charge .1 

§15. The ent ropy and temperature of moving systems 

Of the variables that determine the state of a system, we have t hus far 
only used pressure, volume, energy, velocity, and momentum , but have not yet 
dealt with thermal quantities. The reason for this was that for a system's 
motion it is i rrelevant what kind of energy is supp lied, so that we had no 
reason to distinguish between heat and mechanical work. However, we now want 
t o introduce t hermal quantities as wel l. 

Let the st ate of a moving system be completely determined by the 
quantities q, V, and £. Obviously, in the case of such a systPm we have to 
consider as thP heat suppl i ed dQ the t otal energy increase minus the work 
produced by the pressure and t hat spent on increasing the momentum , so t hat we 
have 

dQ = dE + pdV - qdQ . (23) 

After hav ing so def ined the heat supplied for a moving system, we can intro­
duce the absol ute temperature T and the entropy n of the moving system by 
considering reversible cycli c processes in the same way it is done in text ­
books of thermodynamics. For revers ible processes the equat ion 

{81] 1Cf. A. Einstein, Ann. d. Pliys. 23 (1907 ) : 373-379. 
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dQ = Td11 (24 ) 

i s valid here too. 
We now have to derive the equations relating the quantit ies dQ, 1/, T 

and the corresponding quantities dQ0 , 1/o, 10 which refer to a co-moving 
reference system. As far as entropy is concerned, I am repeating here the 
reasoning of Mr. Planck, 1 noting that the "primed" and "unprimed" reference 
systems should be understood as the reference systems S' and S. 

"Let us imagine that the body i s brought by some reversible, ad iabatic 
process from a state in which it is at rest with respect to the unprimed 
system into a second state, in which it is at rest with respect to the primed 
reference system. If the body's entropy for the unprimed system in the 
initial state is denoted by 111 and in the final state by q2 , then, because 
of the reversibil i ty and adiabatic nature of the process. 111 = 112 • But the 
process i s reversible and adiabat ic for the primed reference system as well, 
hence we will also have 1]~ = 1J!- " 

"Now, if 1J l were not equal to 1]1 but, say, 1/ l > T/t, this would mean 
the following: The entropy of a body is larger for the reference system for [84 ] 

which it is in motion than for the reference system for wh ich it is at rest . 
But this propos ition would also requi re that 1/~ > 112 , because in the latter 
state the body is at rest for the primed reference system whi l e in mot ion for (85 ] 

the unprimed one. However, these two inequalities conflict with the two 
equal ities established . Similarly, one cannot have 1/l > 1]1; consequently [86 ) 

111 = 111 and, in general, 11 ' = 1], i.e., the entropy of the body does not 
depend on the choice of the reference system. " 

Us ing our notation, we must therefore put 

1/ = 1/o· (25) 

If we now introduce the quantit i es £0, p0 , and Y0 on the right-hand 
side of equation (23) by means of equations (16c) , (18c), (20) , and (22 ) , we 
obtain 

1M. Planck, "Zur Dynamik bewegter Syst eme" [On the dynamics of moving 
systems] . Sit zungsber. d. kgl. Preuss. Jkad . d. Vissensch. (1907) . 

[83] 
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dQ = j 1 - ~ (dE0 + p0dVo) 

dQ = dQ0 • j 1 - ~ . (26 ) 

Further, s ince according t o (24 ) t he t wo equations 

dQ = Td1J 

dQo = Tod1Jo 

hold, one finally obtains , tak i ng into account (25) and (26) , 

j; =J l -~ . (27} 

Thus, the t emperature of a moving system is al ways lower with respect to a 
reference system that is in mot ion relat ive t o i t t han with respect t o a 
reference system t hat is at rest relative to i t . 

§16. 1'/ie dynami cs of systems and the princ ip le of least ac tion 

In his t reatise "On t he dynamics of moving systems ," Mr . Planck starts 
out from t he principle of least action (and from the transformat ion equations 
for the pressure and temperature of black-body rad iation )1 and arrives at 
results t hat are identical wit h t hose est abl ished here. The question arises, 
t herefore, as t o how the foundations of his study and t he present one are 
related. 

We started f rom the energy principle and t he pr inciple of conservation 
of moment um. If the component s of the resultant of the forces acting upon the 
system are called Px , FY, Pz, we can formulate in the followi ng way t he 
principles we used for reversible processes and a system whose state is 
def ined by the variab les q, V, T : 

[89 ] 1M. Planck , "Zur Oynamik bewegter Systeme 11 [On the dynamics of moving 
syst ems]. Sitztrngsber. d. kg l. Preuss. Akad. d. Vissensch. (1907). 
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dE = F dx + F dy + F dz - pdl' + TdS 

X y Z 

Keeping in mind that 

Fxdx = Fxx dt = xdC = d(xCX ) - Cxdx, et c . 
and 

Tdq = d(Tq) - qdT, 

one obtains from the above equations the relation 

d (- E + TTJ + qC) = C dx + C diJ + C dz + pdl' + 1jdT . 
X 1/ Z 

Since the right -hand side of t hi s equation must also be a total 
differential , and taking into account (29), it follows t hat 

OH or = P 

d [O!!J _ F 
at Oyj - y 

OJI 
lfT = f/ 

But these are the equations derivable by means of the principle of least 
act ion which Mr . Planck had used as his start ing point. 

V. PRINCIPLE OF RELATIVITY AND GRAVITATION 

§17 . Accelerated reference system and gravi tational f ie ld 

301 

(28) 

(29) 

So far we have applied the pr inc iple of relativity, i.e., the assumption 
that the physical laws are independent of the state of mot ion of the reference 
syst em , only to nonaccelerated reference systems. Is it conceivable that the 
principle of relat ivity also applies to systems that are accelerated relative 
to each other? 

(90] 

(9 1] 

{921 
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While this i s not t he place for a det ailed discussion of t his question, 
it will occur to anybody who has been following t he applications of the 
principle of relat ivity. Therefore I wi l l not refrain from t aking a stand on 
this question here. 

We consider two syst ems E1 and I:2 in mot ion . Let E1 be accelerated 
[93] in the direction of its X-ax is , and let 1 be the (temporal ly constant ) 

magnitude of t hat acceleration . E2 shall be at rest , but it shall be located 
in a homogeneous gravitat ional f ield that imparts t o al l object s an 
accelerat ion -1 in the direction of the X-axis. 

[94] As far as we know, t he phys ical laws with respect to I:1 do not differ 
from those with respect t o ~2; this i s based on the fact that all bod ies are 
equal ly accelerat ed in t he grav itat ional field. At our present state of 
experience we have t hus no reason t o assume that the systems I:1 and I:2 

differ from each other in any respect, and in the discussion that follows, we 
shall therefore assume t he complete physical equivalence of a gravitat ional 
fi eld and a corresponding acceleration of the reference system. 

This assumption extends the principle of relativit y t o t he uniformly 
accelerated t ranslational motion of the reference syst em. The heurist ic value 
of th is assumption rest s on the fact t hat i t permits the replacement of a 
homogeneous gravi t at ional field by a uniformly accelerated reference system, 
t he latter case being t o some ext ent accessible to t heoretical t reatment. 

§18 . Space and time in a un i fo rml y accelerat ed reference system 

We first cons ider a body whose individual material points , at a given 
time t of the nonaccelerated reference system S, possess no velocity 
relative t o S, but a certain accelerat ion. What is the influence of this 
accelerat ion 1 on the shape of t he body with respect to S? 

I f such an infl uence is present , it wi l l consist of a constant- ratio 
di latation in t he di rection of acceleration and poss ibly in t he t wo di rections 
perpendicular to it , since an effect of another ki nd i s imposs ible for reasons 
of symmetry. The acceleration-caused dilatat ions ( if such exist at all ) must 
be even functions of 1; hence they can be negl ected if one rest r icts oneself 
to the case in which "f is so small that terms of the second or higher power 
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in 1 may be neglected . Since we are going to restrict ourselves to that 
case, we do not have to assume that the accel eration has any influence on the 
shape of the body . 

We now cons ider a reference system E that is un iformly accelerated 
rel at ive to the nonaccelerat ed system S in t he direct ion of the latter 's 
X-axis . The clocks and measur ing rods of E, examined at rest, shall be 
identical with the clocks and measuring rods of S. The coordinate origin of 
E shall move along the X-axis of S, and the axes of E shal l be 
perpet ual ly parallel to t hose of S. At any moment there exist s a 
nonaccelerated reference system S' whose coordinate axes coincide with the 
coordinate axes of E at the moment in quest ion (at a given t ime t ' of 
S' ). If the coordinates of a point event occurring at th is time t' are !, 
TJ, ( with respect t o E, we will have 

x' = e) 
y' = 1/ 

z' = ( 

because in accordance wi t h what we said above, we are not to assume tl1at 
accel eration affect s t he shape of the measuring instrument s used for measuring 
{, 1/, ( . We shall also imagine that the clocks of E are set at t ime t ' of 
S' such that their read ings at that moment equal t ' . Yhat about the rate of 
the clocks in t he next time element r? 

First of al l, we have to bear in mind t hat a specif ic effect of 
acceleration on the rate of the clocks of E need not be t aken into account, 
s ince it would have to be of the order r2• Furthermore, since the effect of 
the velocity attained during r on t he rate of the clocks is negligible, and 
the di stances traveled by the clocks during the time T relat i ve to those 
traveled by S' are also of the order r2 , i .e . , negl igible , the readings of 
the clocks of E may be ful ly replaced by readings of the clocks of S' for 
the time element r . [ 95] 

From the foregoing i t fo llows that, relative to E, l ight in vacuum is 
propagated during the t ime element T with t he universal veloci t y c if we 
define s imultaneity in the system S1 which i s momentar i ly at rest relative 
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to E, and if the clocks and measuring rods we use for measuring the time and 
l ength are ident ical with t hose used for the measurement of time and space in 
nonaccelerated systems. Thus the principle of constancy of the veloc i ty of 
light can be used here too to define simultaneity if one restricts oneself to 
very short light paths . 

We now imagine t hat the clocks of E are adj usted , in the way 
descr ibed, at that time t = 0 of S at which E is inst antaneously at rest 
relat ive to S. The tot al i ty of read ings of the clocks of E adjusted in 

[96] t hi s way is called the 11 local t ime" u of the syst em E. It i s immediately 
evident that the physical meaning of t he local time u is as foll ows. If one 
uses the local time u for the t emporal evaluat ion of processes occurr ing in 
t he ind ividual space elements of E, then the laws obeyed by these processes 
cannot depend on t he posit ion of t hese space elements, i.e., on their coordi ­
nates , i f not only the clocks, but also the other measuring tool s used in the 

[97] various space element s are identical. 
However, we must not s imply refer to the local time u as the "time" of 

E, because according to the defin i tion given above, two po int events occurr ing 
at different points of E are not s imultaneous when t heir local t imes q are 
equal . For i f at time t = 0 two clocks of E are synchronous wi th respect 
t o S and are subjected to t he same motions , then they remain forever 
synchronous with respect to S. However, for this reason, in accordance with 
§4 , they do not run synchronously with respect t o a r eference system S1 

instant aneously at rest relative to E but in motion relat ive t o S, and 
hence accord ing to our defin i t ion they do not run synchronously wi th respect 
t o E ei t her . 

We now def ine t hP "t ime" r of t he syst em E as the totality of t hose 
readings of t he clock situated at the coordinate or igin of E whirh are , 
according t o t he above defin i t ion, simultaneous with t he event s which are t o 
be temporally evaluated . 1 

We shall now determinPs the re lation between t he t ime r and t hP local 
t ime u of a poi nt event . It follows from the first of equations (1 ) that 

1Thus the symbo l "r" is used here in a different sense t han above. 
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two event s are simultaneous with respect to S', and thus also with respect to 
E, if 

where the subscripts refer to the one or to the ot her point event, respec­
tively. We shall first confine ourselves to the cons ideration of times that 
are so short1 that all terms containing the second or higher power of r or 
v can be omitted; taking (1) and (29 ) into account, we then have to put [98) 

x2 - Xi = x~ - x~ = { 2 - { 1 

ti = U1 t2 = U2 

V = "(t = "(T , 

so that we obtain from the above equation 

If we move t he first point event to the coordinate origin, so that u1 = r 
and {1 = 0, we obtain, omitting the subscript for the second point event, 

(30) 

This equation holds first of all if r and { lie below certain 
limits. It is obvious that it holds for arbitrarily large T if the acceler­
ation r is constant with respect to E, because the relation between u and 
T must then be linear . Equation (30) does not hold for arbi trar i ly large {. 
From the fact that the choice of the coordinate origin must not affect the 
relation, one must conclude that, strictly speaking, equation (30) should be 
replaced by the equation 

* U = Te . 

Nevertheless, we shal l maintain formula (30). 

1In accordance with (1 ) , we thereby also assume a certain restriction with 
respect to the values of { = x' . 

(99) 
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According to §17, equation (30 ) is also applicable to a coordinate 
system in which a homogeneous gravitational fie ld i s acting. In that case we 
have t o put t = r {, where t is the gravitational potential, so that we 
obt ain 

(30a) 

We have defined two kinds of t imes for E. Which of the two defin it ions 
do we have to use in the various cases? Let us assume that at two locat ions 
of diffPrent gravitational potentials (r~) there exi st s one phys ical syst em 
each , and we want to compare their phys ical quantit i es. To do this, the most 
nat ural procedure might hr as fo l lows : First we take our measuring tools t o 
t he fi rst physical syst em and car ry out our measurements there; then we take 
our measur ing tool s t o t he second system to carry out t he same measurement 
here. If the t wo sets of measurements give the same results , we shal l denote 
t he two physical systems as "equal. " The measur ing tools include a clock wit h 
which we measure local t imes u. From this it fol lows that to define the 
phys ical quantit ies at some position of the grav i tational fi eld, it is natural 
t o usP the time u. 

However, if we deal with a phenomenon in which obj ects situated at posi­
tions with dif ferent grav itat ional potentials must be considered simultan­
eously, we have to usr the t ime r in those terms in wh i ch t ime occurs 
expli citly (i. e., not only in the definition of phys ical quant it ies) , because 
ot herwise t he simultanei t y of t he events would not be expressed by t he equal ­
i t y of the time values of the two events. Since in the definition of t he time 
r a cl ock s ituated in an arbitrarily chosen pos i tion is used, but not an 
arbitrarily chosen instant, when us ing time r the laws of nature can vary 
wi t h pos ition but not with t ime . 

§19 . The effect of the gravitational field on clocks 

If a clock showing local time i s located in a point P of gravitational 

potential t, then, according to (30a), its read ing will be (1 + ~) times 

greater than the time r, i. e., it runs (1 + tr) times faster than an 
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identical clock located at the coordinate origin. Suppose an observer locat ed 
somewhere in space perceives the indicat ions of the t wo clocks in a certain 
way. e .g .• optically . As the time ~T that elapses between the instants at 
which a clock indication occurs and at which this indication is pPrceived by 
the observer is independent of T, for an observer s i tuated somewhere in space 

the clock in point P runs (1 + i) times faster than the clock at the 
coordinate origin. In this sense we may say that the process occurring in the 
clock, and. more generally, any phys ical process , proceeds faster thP greatPr 
the gravitational potential at t he position of the process taking place. 

There exist "clocks" that are present at locat ions of different grav i ta­
tional potentials and whose rat es can be control led with great precis ion; 
these are the producers of spectral lines. It can be concl uded from the 
aforesaid 1 that the wave l ength of light coming from the sun's surface. wh i ch 
originates from such a producer, is larger by about one part in two mil lionth 
than that of l ight produced by the same subst ance on earth . (100) 

§20 . The effect of gravitation on electromagnet i c phenomena 

If we refer an electromagnetic process at some point of time to a non­
accelerated reference system S' that is instantaneously at rest relative to 
the reference system t accelerated as above, then the following equations 
will hold according to (5) and (6): 

and 

1 [ ax1] aN' a,• c p' u~ + 7flT = Ff?" - p, etc. 

1 BL I lJY' DZ' c 7flT = p - ogr, etc. 

In accordance with the above, we may readily equate the S'-referred 
quantities p1

, u', J ' , L', x', etc., with the corresponding t - referred 

1While assuming that equat ion (3Oa) holds for an inhomogeneous gravitat ional 
field as well. 
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quantit ies p, u, X, L, {, etc . , if we l imit oursel ves t o an infinitesimal ly 
short period1 that i s inf init es imally close to the time of relative rest of 
S' and E. Further, we have to replace t• by the local time u. However, 
we must not s imply put 

because a point which i s at rest rel ative to E, and to which equations 
transformed to E should ref er, changes its velocity relative to S' during 
the t ime element dt' = du, to which change, according to equations (7a) and 
(7b ) , t here corresponds a temporal change of the E-rel ated f ield component. 
Hence we have t o put 

iJ y• - iJ y + 1 N w - OU C 

Hence the E-referred electromagnet ic equations are 

1 ( iJK] iJN iJH c pu{ + ouJ = oij - o( 

i)L I iJL 
-W = 7lii 

1This restriction does not affect the range of valid i ty of our resul t s because 
inherent ly the laws t o be der ived cannot depend on the time . 
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We multiply these equations by (1 + ¾] and put for the sake of brevi ty 

r = r( 1 + ¥] , etc. 

Neglecting terms of the second power in 7, we obtain the equat ions 

! [p*ue + ~] = ~ - t 
; [p*uq + ~] = J -~ 

1 oL* ar aZF c ou = 7f[ - <hJ 

1 ar aP ar c ou = of - o[ 

(31a) 

(32a) 

These equations show first of all how the gravitat ional fie ld affect s the 
stat ic and stationary phenomena. The same l aws hold as in the gravitation­
free f ield, except that the f ield components X, etc . are r eplaced by 

1 [1 +¥] ,etc., and p is replaced by p[1 + *]· 
Furthermore, to fol l ow the development of nonst ationary states, we make 

use of t he time T in the terms different iated with respect to time as wel l 
as in the definition of t he velocity of el ect ricity, i.e., we put according to 
(30) 

and 
[ 101] 

[ 102) 



[ 103) 
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We thus obtain 
1 [ ar] aN;f< a.r 

c(t + *] 
p*w{ + OT = 01J - 7f( etc. (3th ) 

and 
1 lJL* l}~ iJP" etc. 

c(t + ¾] 
OT = 7f( = OT/ (32b) 

These equations too have the same form as the correspond ing equations of 
the nonaccelerated or gravitat ion-f ree space; however, r is here rep laced by 
t he value 

From t his it follows that those light rays that do not propagate along the 
{-axis arc bent by the gravitational f ield; it can easily be seen that the 

change of direction amounts to -l,: sin <p per cm light path, where <p 

[ 104] denotes t he angl e bet ween the di rection of gravity and that of the light ray . 
With the hel p of these equat ions and the equat ions relati ng the field 

strength and the electric current of one po int, wh i ch are known from the 
opt i cs of bodies at rest, we can calculate the effect of t he gravi tational 
field on optical phenomena in bodies at rest. On£' has to bear in mind, 
however, that t he above -mentioned equations from t he optics of bod ies at rest 
hold for the local time q _ Unfortunately, the effect of t he t errestrial 
gravitational field is so smal l according t o our t heory (because of the 

smallness of ~ ) that there is no prospect of a compar ison of the resul t s of 
( 105 ] the t heory with exper ience . 

,r N"" If we successively mul tiply equations (31a) and (32a) by 4i 4i 
and integrate over i nfinite space, we obtain, us ing our earlier notation , 

[ 107) f,:( uX + u,,r + ueZ) is the energy 1/q supp l ied to t he matter per unit 
volume and unit l ocal t ime q if t his energy is measured by measuring tools 
situated at t he corresponding locat ion. Hence, according t o (30 ) , 
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nr = ~u [1 + ¥] is the (s imi larly measured) energy supplied to t he matter per ( 108] 

unit volume and unit local time r; Jr(rz + Y2 • • • + N2) i s the electromagnetic 
energy f per unit vol ume, measured the same way. If we take into account 

that according to (30) we have to set -/u = [1 - ¾]i, we obtain 

This equation expresses the principle of conservat ion of energy and 
contains a very remarkable result. An energy, or energy input , t hat, measured 
local ly, has the value £ = fdw or £ = ~ dwdr, respect ively, contributes to 
t he energy integral, in addit ion to the value E t hat corresponds to its 

magn itude, also a value ffe 1{ = ffe t that corresponds to its posit ion. 
Thus, to each energy E in the gravitational field there corresponds an 
energy of position that equals the pot ential energy of a "ponderable" mass of 

magnitude -!,z. 
Thus the proposition derived in §11, that to an amount of energy E 

there cor responds a mass of magnitude -f,r, holds not on ly for the i ner t ial but 
also for the gravitational mass , if the assumption introduced in §17 is 
correct . 

(Received on 4 December 1907) 
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Doc . 48 
A NEW ELECTROSTATIC METH OD FOR THE MEASURE~ENT 

OF SMA LL QUANTITIES OF ELECTRI CITY 
by A. Einst ein 

[Physikalische Zeitschri f t 9 (1908): 216-21 7] 

As we know , el ectric potentials a::; low as about 10-l> volts can be 
measured by sensitive electrost at ic quadrant. electrometers if a suff i ciently 

[l ] great auxiliary potential is supplied to the needle. llowever , an increase in 
t his auxiliary potent ial rPsults in a decreasP . rather than increase , in t he 
sensit ivity of the i nstrument if one measures quantiti es of el ect ricity. The 
higher t he potent ial of the nee<lle , the smaller t he deflection caused by a 
given quanti t y of electr ici ty. Tf t he absolute value of the potent ial of the 
need le i s large compared witl1 t he pot ential difference between t he quadrants , 
t hen the deflect ion depends on ly on t he product of t he pot ent ial and t he 
quantity of el ect ricity supplied , and thus on the electr ic energy supplied . 

[2] and the energy required for the deflect ion must be t aken from the energy of 
t he system being measured. This circumstance determines t he limit actually 
achievable of the sens i tivity of the quadrant electrometer and of analogous 
inst ruments when measuring quant ities of el ectricity or energy , respect ively. 

However , it i s possible t o const ruct measuring instruments in which the 
energy required for deflection i s not t aken f rom the system being measured , 
but from an aux i liary source , so t hat i t will be possible to exceed the act ual 
sensitiv ity limit mentioned above. In the following , I describe the schemf' of 

[3] an induction machine with wh i ch, in my opinion , this goal can be ach ieved. 
Let. A1 and Al (Fig. 1) be two fixed conduct ors , along wh ich shall 

slide two rigidly connected metal leaflets /J , fastened , for example , t o a 
small wheel. The l C'a-flct s havr two contact pins b, which are within the 
rangP of f ixcd contact springs K1 and Kl, respectively. Let. K1 be 
grounded and Kl conduct ively connected wi th Al . 

A1 shal 1 be kept pcnna.ncntly at a positive potent ial P1 . When the 
leaflet that is j ust passing touches K1, the electr ic charge on A1 induces 
an opposite elect ric charge -e on b. Once t his l eafl<'t is oppos i tP Al , so 
t hat i t. touches Kl , i t delivers negative electricity to Al. In such a way 



DOC. 48 313 

-:A 
.- f 

Fig. 1 

each pass ing leafl et wi ll change t he quantity of elect ricit y on A~ until a 
stat ionary state has been reached. If Pi denot es the abso lut e value of the 
negat ive pot ential of Al in t he st at i onary st ate . t hen we must have 

where a1 is the t ransformat ion rat io, a constant independent of P1. If A1 

~rnd A~ are leaflet- shape<l , a1 will be a proper fraction. Ilut if A1 and 
A~ are shaped l ike bows , which at the instants of contact fo rmation surround 
t he leafl ets D on both s ides , we can eas ily arrange t hat "• > 1. e.g . . a1 = 

10. This i s what we will assume in t he fo llowing . 
Let us envisage several such el ements connected in sPries according t o 

the accompanying scheme (Fig. 2). The secondary conduct or A~ of t he first 
element shall be connected with t he primary one A2 of the second element , 
the secondary conductor A~ of t he second element with t he primary one A3 
of the thi rd element , etc. The secondary conductor of the last element shall 
be connect ed t o an electromet er V. 

If one imagines a certain potent ial P1 suppl ied to t he pr imary conduc­
t or A., t hen a stationary state of t he who le arrangement wi ll be est ablished 
aft er a certain t ime . The following equation wi ll t hen hold for i t : 
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.A, A', 

\ 
A:r 

l 
~.~ 
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A,1: f"1 ■ II IS r-Qr+ 

C5 \ 

Fig. :l 

P2 = Pl = P 1·ll1 

1'2 = 1'2 = P2 • t12 = 1'1 • a1 • t,1 

p~ = P3·a3 = P1 · a1 ·a2·a3. 

If there are n elements , all of t hem wit h the same tran::;mission ratio a, 
then we wi ll have 

P' p 1l n = i •a • 

One can see t hat the energy that has t o be supplied t o the mobile syst em 
of t he elect rometer is taken from the mechanical energy imparted t o t he 
leaflets /J, and not from the system t o be measured , which i s con nected to the 
leaflet .4 . l'he sensitivi ty of the procedure is 1 imited on ly by t he external 

[41 sources of error , s ince an can be made arbi trarily large by increasing ,i. 

Of course , the whole arrangement can be made to be bipolar. In that 
case each el ement geLs two pr imary and t wo secondary conductors. 
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Since an i ncrease in t he sensit ivity of elect rostat ic methods of 
measurement i s of importance for the study of radioact ivit y, I hope that some [5 ] 

physicist will become interested in this mat t er . I would gladly inform him [6] 

about my further considerations on this subject. I was led to t he plan 
presented here in by t hinking about how the spontaneous charging of conductors1 

r equired by the molecular theory of heat, wh ich is analogous to Brownian 
mot ion , can be detected and measured. I hope that, wi th the plan described , I 
have brought this problem too one step closer to its solut ion . 

Dern, 13 February 1908. (Received on 15 February 1908) 

1A. Einstein, Ann. d. Phys . 22 (1907): 569. 
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Doc . 49 
CORRECTIONS TO THE PAPER: "ON THE RELATIVITY PRINCIPLE 

AND THE CONCLUS IONS DRAWN FROM IT1" 

by A. Einstein 
[Ja hrbucli der lladioaktivi tat und Elek t ronik 5 (1908): 98-99] 

During the proofreading of t he art iclP ci t ed I missed unfortunately 
several errors t hat have t o be corrected because they impede the reading of 

(2) the art icle. 
Formula 15b {p. 435) should read 

ti [J 1 ( J'Y Zfl)dw] + I; /L.t = O . "Jt 4ic,-, 
j1 - %i 

The fact or! in the second for mula on p. 451 is in error: the formula 

should read 

Formula 28 on p. 453 should read 

A few lines further 011 , the subscript in Cx should be added. In t hP 
penul t imate line on p. 455 it should read "replaceable" instead of "usab le." 
[Translator ' s note : This correct ion does not apply to the translat ed ver ­
sion.] 

On p. 451 it should 1·cacl 

[ 1] 1This Jahrbuch 4 (1907): 411. 
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and 

On p. 462 the subscripts in the quantities u! and \ have to be 
added. Also , in about t he middle of t his page a mistake in s ign should be 
correct ed: t he equat ion shou ld read 

1/ = 7/ (1 - -¾-] . U T C 

A letter by Mr. Planck induced me to add t he fol lowing supplementary 
r emark so as t o prevent a misunderstanding that could arise easi l y: 

In t he section "Principle of relativ ity and gravitation" , a reference 
syst em at rest situated in a temporal ly constant, homogeneous gravitational 
field is t r eated as physical ly equivalent to a uniformly accelerat ed, 
gravitation-free ref erence system. The concept "uniformly accelerated" needs 
f urther clarif icat ion. 

If- as in our case-one cons iders a rect ilinear motion (of the system 

I:) , t he acceleration i s given by the express ion *• where v denotes t he 

velocity. Accord ing to the kinematics i n use up t o now, * i s independent 
of t he st ate of motion of the (nonaccelerated) reference system , so t hat one 
might speak directly of (inst antaneous) accelerat ion when the motion in a 

cer t ain time element i s given. According to t he kinemat ics used by us , * 
does depend on t he state of motion of the (nonaccelerat ed) reference system. 
Dut among all the values of acceleration that can be so obt ained for a certain 
mot ion epoch , that one i s di stingui shed which corresponds t o a reference 
syst em with respect to which t he body considered has the velocity v = 0. It 
is this value of acceleration which has t o remain constant in our "uniformly [3] 

accelerated" system. The relation v = -yt used on p. 457 thus holds only in 
f i rst approximation ; however, t his is suff icient, because only terms l inear 
in t and r, respect ively, have to be taken into account in these 
considerat ions . 

(Received on 3 March 1908) 
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Doc. 50 
ELEMENTARY THEORY OF 13llOWNIANt MOl'ION 

by A. Einstein 
[Zei t schrift f tir El ekt rocliemie utid u1igewcrndt e 

physikalz she Chemie 14 (1908): 235-239] 

[2 ] In a conversation , Professor R. Loren~ pointed out t o me t hat many 
chemists would welcome au elementary t heory of Urmmian motion . Responding to 
his request , I present in the foll owing a simple theory of this phenomenon . 
The train of t hought to be conveyed, i n bri ef, is as follows : First we 
invest igate how the process of diffusion in an undissociated dilute solution 
depends on the distribution of t he osmotic pressure in t he solution and on the 
mobility of the dissolved matt er relative to t he sol vent. For the case that a 
molecule of the dissol ved matter is large compared with a molecule of the 
solvent we thus obtain an expression for the coefficient of diffusion in which 
no quantities appear which depend on t he nature of the solvent other than the 
viscosity of the solvent and the diamet er of the di::;solvc<l mol ecules . 

Then we attribute t he process of diffusion t o the random motions of the 
dissolved molecules and f ind out how t he mean magnitude of these random 

[ 3 ] motions of t he dissolved molecules can be calculated from the coefficient of 
diffusion , i. e. , according t o t he result ment ioned above, from t he viscosity 
of the solvent and the size of t he dissolved molPcules. ThP resu l t t hus 
obtained i s t hen valid not only for true dissolved molecu les but also for any 
small corpuscul es suspended in t he liquid. 

§1. /J iff usi01i and osmo t ic pressure 

Let t he cylindric vessel Z (F ig . 93) be f i lled with a dilut e solution. 
Let , fur t her, t he int erior of Z be divided in t wo parts A and B by the 
movable piston K, which constitutes a semipermeable wall . If the concentration 

1Uy Urownian motion we underst and the i r regular motion performed by micro­
[l] scopically small particles ::;uspended in a l iquid . Cf., e.g., The Svedberg, 

Zei t sch. f . El ek t rochemi e 12 (1906): pp. 47 and 51. 
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of the ~olution is higher i n A than in B, t hen an external force, directed 
to t he left, mus t be applfrd to the piston to mainta in i t in equ i l ibrium, and 
thb force i s equal to the di fference between the two osmotic pressures 
exer ted by t he dissolved substance on the pist on from t he left and from t he 
right, respectively. If th i s external pressure i s not applied t o t he pist on , 
the lat t er wi ll move t o the right under t he influence of t he greater osmotic 
pre~sure exer ted by t he sol ution in A unt il t he concentrations in J and D 

z 

A3J-B 
/ 

I 
K 

Fig. 93 

110 l onger differ. This considerat ion demonst rat es t hat it is precise ly the 
forces of osmotic pressure wbicb cause tbe equalizat ion of concentrations in 
diffus ion; because we can prevent diffusion, i.e. , t he equalization of concen­
trat ions , by counterbalancing the osmotic differences, which correspond to 
differences in concentrations , with external fo rces acting on semipermeable 
walls. It has been known for a long time t hat osmotic pressure can be 
cons idered as the mot ive force in processes of di ffusion. As we know, Nernst 
used th is as t he bas is for his invest igation on the connection between ionic 
mobility, the coeffic ient of diffusion, and the EMF in concentrat ion cells. (4) 

Let di ffus ion take place along the cylinder 's a.xis inside t he cylinder 
Z (F ig . 94), whose cross sect ion shall be = 1. Let us first examine t he 
osmotic forces caus ing t he di ffusional mot ion of the dissolved substance 
contained between the inf in itesimal ly close planes E and £'. From the 
l eft, t he force of osmot ic pressure p acts 0 11 the lamina ' s boundary surface 
l, and from t he right, t he pressure p' acts on t he boundary surface £'; t he 
r esultant of t he pressure forces is t herefore 

p - p'. 
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z 

~l D, "' fJ, 
EE' N , M, 

Fig . 94 Fig. 95 

We will denote the dist ance of the surface £ from the left en<l of t he 
vessel by x , and the dist ance of the surface £1 from the same end of t he 
vessel by x + dx; then dx also equal s t he volume of t he liquid lamina 
cons idered. Since p - p' is t he osmot ic pressure acting on t he volume ,Ix of 
the dissolved substance , 

is the osmotic force act ing on the dissolved substance contained rn the unit 
( SJ volume . Since , further, t he osmot ic pressure is given by the equation 

p = RTv , 

where fl denotes the const ant of the gas equation (8.31 ·107) , T the 
absolute t emperature , and v the number of di ssolved gram-molecules per unit 
volume, we get , finally, the following expression for t he osmotic force K 

act ing on the dissolved substance per unit volume 

(1) K = - Ill tlv ax 

To be able to calculate t he diffus ional motions t hat t hese mot ive forces 
can produce , we must al so know how great a resistance i s offered by the sol­
vent t o t he motion of the dissolved subst ance. If a motive force k acts on 
a mol ecule , i t imparts to it a proportional velocity v according to t he 
equation 
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(2) 

where 9t is a constant which we will call the frictional resistance of the 
molecul e . In general, this frictional resistance cannot be determined by 
t heoretical methods . But if we are allowed to regard the molecule approxi ­
mately as a sphere that is large compared wit h a molecule of the solvent, then 
we can determine the frictional resistance of the dissol ved molecule by t he 
methods of ordinary hydrodynamics , in which the molecular constitution of the 
liquid is not taken into account . Within the limits of validity of ordinary 
hydrodynamics, a sphere moving in a liquid obeys equat ion (2), where we put 

(3) 9t = 61:1]p. 

Here f/ denotes t he coeff icient of viscosity of t he liquid, and p the 
radi us of the sphere. If we can assume that t he molecules of a dissol ved 
substance are approximately spherical and large compared with the molecul es of 
the solvent, then equation (3) may be appl ied to the individual dissolved 
molecules. 

Now we can calculate t he amount of dissolved subst ance diffusing t hrough 
a cross section of the cylinder per unit t ime. The unit vo lume contains v 
gram-mol ecul es, which amounts to vN real molecul es , where N denotes the 
number of real molecules in one gram-molecule . If a force K is distributed 
over t hese vN molecules contained in t he unit volume, it wi ll impart a 
veloci ty to them t hat is vN t imes smaller than t he velocity it would be able 
to impart to a single molecul e if it acted upon the latter alone . Taking into 
account equation (2), we get t herefore f or the veloc ity v that t he force K 
can impart to vN molecul es 

In the case considered, K is equal to tbe osmotic force exerted on the 
vN molecules contained in the unit volume , which we determined before, so 
t hat we get from this, us ing equation (1), 
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(4) vv = BT 1 dv 
- T ' 7l ' ax 

THEORY OF UROWNIAN MOTION 

The left-hand s ide contains the product of t he concentrat ion II of the 
dissolved subst ance and t he velocity with which t he dissol ved subst ance is 
moved along by t he process of di ffus ion . Th is product represents t herefore 
the quantity of the dissolved substance (in gram-molecules) trans})orted })er 
second through uni t cross section by diffus ion. The factor of t on the 

right -hand side of t his equation i s t herefore• not hing other than t he 
coefficient of diffusion O of t he solution considered. Hence , we have in 
general 

(5) 

an<l, in case the dif fusing molecules can be considered as spherical and large 
compared with t he molecules of t he so lvent , we have according to equat ion (3) 

(5a) 

Thui:; , in t he case just mentioned, t he coefficient of diffus ion doe:; not 
dcpeud on any constants characteristic for t he subst m1ces in quc:::;tion other 
than the viscosity of t he sol vent 1J and t he radius p of t he molecule. 2 

1l t should be noted t hat t he numerical value of the coeff icient of diffusion 
is independent of the choice of the un i t for t he concentration. 

2This equation permit s the approximate det ermination of t he radius of (large) 
molecul es from the coeff icient of di ffus ion if the latt er is know, since 

where we have to put R = 8. 31- 107 and N = 6-1023 . To be sure , t he value of 
(6) N has a margin of uncertainty of about 507.. This relat ionship might be of 

significance for the det erminat ion of t he approximate s ize of molecules in 
[ 7] col lo idal solut ions . 
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§2 . Diffus ion attd random mo t ion of mo lecules 

The molecular theory of heat affords yet another standpoint from which 
the process of diffus ion can be viewed. The process of random motion , which 
is what t he heat content of a substance must be considered to be , wi ll cause 
the individual molecules of a liquid to change t heir position in t he most 
random manner imaginable. This , as it were, haphazard meandering of the 
molecules of t he dissolved substance in a sol ution will have as a consf'quence 
tl1at t he initial nonuniform distribution of concentrat ion wi ll gradually give 
way t o a uniform one. 

We will now consider this process i n somewhat greater detail, l imit ing 
ourselves again t o the case considered in §t, where only diffus i on in oue s in­
gle direction, namely in the direction of the axis (x-a..xis) of the cylinder Z 
has t o be taken int o account . We imagine that we know t he -,;-coordinates of 
all dissolved molecules at a cert ain t ime t, and also at t ime t + r, where r 

denotes a time interval so short t hat the concentrat ions in our solut ion 
change very lit tle during it. During t his time r , the x-coord inate of the 
first dissolved molecule will change by a certain quantity 61 on account of 
the random thermal mot ion, t hat of the second molecule wi ll change by 112 , 

etc. These displacements t\p 112 , etc., wi ll be in part negative (directed t o 
t he left} and in part })ositive (directed to t he right). Furthermore , the 
magnit ude of these di splacements will vary from molecule to mol ecule. Uut 
since we assume , as before, t hat the sol ution is dilute, this displacement i s 
determined only by t he surrounding solvent, whi le t he rest of the dissol ved 
molecules has no appreciable effect; for t hat reason, t hese di splacements /i 

will 0 1t t/ie average be of equal magnitude in parts of the solution having 
differing concentrations , and will be just as oft en positive as negative . 

l-.'e now want t o see how much of the subst ance diffuses t hrough t he uni t 
cross section of our solution during time r if we know the magni tude of t he 
displacements t\ i n t he direct ion of the cylinder axis exper ienced on the 
average by the dissol ved molecules. To simpl ify this consideration, we wi ll 
assume that all molecul es undergo an equally large displacement t\, with half 
of the molecules undergoing t he displacement +t\, (i.e . , to t he right), and 
the other half the displacement - /i (i. e. , t o the left) . We thus replace the 
individual di splacements /1p 112 , etc . , by thei r mean value Ii . [ B] 
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According t o our simplifying assumpt ion, t he plane E of our cylinder 
(Fig. 95) [on p. 320) can be crossed dur ing t ime r from left to right only 
by those dissolved molecules which prior t o int erval r were locat ed left of 
E, at a di stance from E smaller than A. These mol ecules are all l ocat ed 
bet ween the planes q1 and £ (Fig. 95 }. But s ince on ly half of these 
mol ecules experience t he di splacement +A, only half of t hem will cross t he 
plane E. Out one-half of t he dissolved subst ance cont ained bet ween q1 and 
E amount s , in gram-molecules , t o 

where v1 denotes t he mean concent rat ion in t he volume Q1E, i.e., t he 
concentration in the midp lane J/1. Since the cross sect ion equals 1, A 
represents the vo lume enclosed between Q1 and £, which, when multiplied by 
t he mean concentrat ion, gives t he dissolved subst ance contained in t his volume 
in gram-molecules . 

Uy an analogous considerat ion we find that the amount of dissolved 
subst ance crossing £ from r ight t o l ef t during t ime T equals 

where v2 denotes t he concent ration in the midp laue J/2 . The amount of 
substance diffusing through E from left t o r ight during time T i s 
obvious ly equal to t he difference of t hese two values , and hence equals 

(G } 

111 and v2 are the concentrations in two cross sect ions separated by 
the very small dist ance 6. If we again denote a cross sect ion's distance 
from the left end of t he cylinder by x, we will have according t o t he 
definit ion of the differential quotient 
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~ _ dv 
ti. - ax, 

and from t his 

so t hat t he a111ount of substance diffusing dur ing r t hrough £ equals 

(6a) 

The amount of substance , expressed in gram-molecul es , diffus ing t hrough 
£ in un i t time hence equal s 

With t his we have obt ained a second value for t he coefficient of 
diffusion D. We have 

(7) 0 _ 1 fl2 

- 2 r • 
where fl denotes t he path travelled on t he average1 by a dissolved molecul e 
during t ime r in t he direction of the x-axis. 

Solving (7) for fl, we obtain 

(7a) 

§9. J/otion of individual mol ecules. Brownian mo t ion 

If we equate t he values for the diffu::;ion coeff ic ient in equations (5) 
and (7) , we obtain by solving for fl 

1To be more precise, 11 equals the square root of t he mean of the :;qua.res of 
t he individual displ acements l1'f , !1~, etc. For greater accuracy, we should 
therefore write ..(X2" instead of A. (9) 



[12] 
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(8) 

We see from this formula that t he path travelled on the average by a. 

molecule i s not pro1>ortional t o t he time1, but to t he square root of the time . 
This i s due to the fact that t he pat hs travelled in two consecutive time units 
are not always to be added , but just as frequently are t o be subtrac.:ted. The 
displacement experienced on the average by a molecule on account of random 
molecul ar motion can be calculated according t o equation (7a) from t he 
coefficient of diffusion, or according to equation (8) from t he force of 
resist ance !:R offered to a forced motion proceeding wit h velocity v = 1. 

If t he dissolved molecul e is spherical and large compared with the 
molecule of the so lvent, we can subst itute for !:R in equat ion (8) the vc1lue 
given in equation (3), so that we get 

(8a) 

This equation permits us to calculat e the disp lacement average2 b. from 
the t emperature T, the viscosity of the solvent 11 , and the molecular 
radius p. 

Out according to the molecu lar-kinetic concept , t here exists no 
fundamental difference between a di ssolved molecule and a suspended corpuscle. 
We must therefore cons ider equat ion (8a) to be valid for any kind of suspended 
spherical particles as well. 

We now calculat e t he path b. travel led on the average by a particle 
with a diamet er of 1 micron in 1 second in a particular di rection in water at 
room t emperat ure . We put 

R = 8. 31-107 , 

T = 290 , 

N = 6 -1023 , 

,, = 0.0135, 
p = 0. 5 . 10-4 , 

T = 1. 

[11] 1Cf. A. Einstein, Zci t sc/1. f. Elek trnclicmie 6 (1907). 
2To be more precise , t he square root of the mean value of 1::.2 . 
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We obtain 
A = 0.8·10-4 cm= 0.8 micron. 

This number has an uncert ainty of :1:: 257. due to t he low accuracy with 
wh ich N is known. (13 ] 

It i s of interest to compare the mean proper motion of the microscopic 
part icles we j ust calculated with that of dissolved molecules or ions. For an 
undissociat ed dissol ved substance whose coeff icient of diffusion is known , 6 
can be calculated from equat ion (7a) . For sugar at room t emperature we have 
/J = 24~65~60 From t his we get from equation (7a) for T = 1 ( 14 ] 

6 = 27 .6 micron. 

From the number N and the molecular vo lume of solid sugar we can 
conclude that t he diameter of a molecule of sugar is of the order of magnitude 
of a t housandth of a micron, i.e., about one thousand t imes smaller t han t he ( 15 ] 

diameter of the suspended particle considered before. According to equat ion 
(8a) , we can t herefore expect 6 to be about ~1000 times larger for sugar 
t han for the particl e with a diameter of 1 micron. As we have now seen , t his 
is indeed approximately correct . 

For ions , A ("A" added by the translator] can be det ermined from their ( 16) 

migrat ion velocity l from equation (8) . l equals the quantity of electr i-
city in coulombs t hat would flow t hrough 1 cm2 per second at a concentration 
v = 1 of t he ion in quest ion and at a potential gradient of 1 vol t per 
centimeter. In t hi s imaginary process , t he velocity v of t he motion of the 
ions (in centimet er/second) i s obviously given by the equation 

f = V • 96 ,000. 

Furt her, s ince 1 volt contains 108 electromagnet ic uni t s , and the charge 
of a (univalent) ion equal s ~ electromagnetic units , t he force k exerted 

on one ion i n t he process imagined wi ll be 

k. _ 1os. 9,600 
- N • 

[ 17 ] 

( 18] 
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Substit uting t his value of k and the value of v obtained from t he 
previously found equat ion, 

f 
V = !Jo.000 I 

in equation (2 ) , we get 

With t he usual definit ion of f,, t his formula hol ds for polyvalent ions 
as well. Substituting t his value for 9t in equat ion (8) , we get 

A = 4 . 25 • 10-s [lTr . 
The fo rmula yields for room t emperat ure and r = 1 

Ion e A in microns 

II 300 125 
K G5 58 

Di isoamyl ammonium ion C10ll24N 24 35 

Rece ived on 1 Apr il 
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ON THE FUNDAMENTAL ELECTROMAGNETIC EQUATIONS FOR MOVING BODIES 

by A. Einstein and J. Laub 
[Anna len der Ph ysik 26 (1908) : 532-540] 
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In a r ecently published st udy1 Mr . Minkowski has presented the funda­
mental equat ions for the elect romagnetic processes in moving bodies. In view 
of the fact that t his st udy makes rather great demands on the reader in its 
mathematical aspects , we do not consider it superfluous to derive here t hese 
important equations in an el ementary way , which, i s , by the ,,ay, essent ially 
in agreement with that of Minkowski. 

§1 . /Jerivation of the fundamental equat io,is f or moving bodi es 

The rout e t o be t aken is as follows: We introduce two coordinate 
systems K and K' , both of which are nonaccel erated but in relative mot ion. 
If the space cont ains mat ter at rest relative to K' , t hen the laws of t he 
electrodynamics of bodies at rest , described by t he Maxwell-Hert z equations , 
wil l hold wi th respect t o K' . If we t ransform t hese equations t o t he syst ern 
K, we dir ect ly obt ain t he electrodynamic equations of moving bodies for t he 
case t hat the velocity of t he matter i s spat ially and t emporally const ant . 
Obviously, t he equat ions so obtained hold at least i n first approximation also 
in the case when t he distribut ion of velocity of the matt er is arbitrary . [2] 

This assumpt ion i s also part ly justified by t he fact t hat t he resul t obt ained 
in this way i s strictly valid in the case of a number of bodies moving wit h 
diff erent unifo rm veloci ties that are separated from each ot her by vacuum 
interspaces. 

When referred to the syst em K' , t he vector of the electric force will 
be denoted by CE ' , that of t he magnetic force by .fj', that of the di electric 
displacement by 'D ' , that of t he magnet ic ind11ction by 23 ' , that of the 

111. Minkowski , Cot t inger Na chr. 1908. [I } 
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electr ic current by .s ' ; p' shall denot e the electric densit y. For the 
r eference sy:,tem K' t here shall hold t he Maxwell-Hertz equat ions : 

{1) curl ' fl' = ½[~; + s'] , 

(2) curl' ~• 

(3) div' 'D ' = p' , 

(4) div' 23 ' = 0 . 

Let us consider a second orthogonal reference syst em ft whose axes are 
})ermanentl y parallel t o those of K' . Let the origin of K' move in t he 
po::;itive direction of t he x-axis of K with constant velocity v. As we 
know , accordi ng to t he t heory of relat ivity t he fo llowing transformation 
equations1 will t hen hold for every point event , provided the starting time 
point has been suitably chosen : 

x' = P( x - vt) 

y' y 

z' z 

t ' = P[ t - ~ x] ' 

where x, y, z, t denote t he space and t ime coordinates in t he syst em }:. If 
one carries out t he transformations , one obtains the equations 

(la) 

(2a) 

(3a) 

1 [{)T) ] cur 1 fl = c 7ft + .s , 

1 {)<J3 
curl ~ = - c oT, 

div 'D = p , 

[3 ) 1A. Einst ein, Ann . d. Pliys . 17 (1905): 902. 
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(4a) div 23 = 0 , 

where one has put 

<ex = <c~ , 

1e = P[1e ' + E 23 '] , y y C Z 

(6 ) 

1e = P[1c ' - E 23 ' ] 
Z Z C 'JI ' 

1) = ".O ' 
X X ' 

'1) = /J['l) ' + ! i'J' ] y y C Z ' 

'l)z = P[".O; - ~ i'J~] , 

i'Jx = .fj~ ' 

i'Jy = P[n~ - ~ ".O;] , 

(7 ) 
nz = P[n; + ~ ".D~] , 

23 = 23 ' 
X X ' 

23 = P[23' - E 1c ') y 'JI C Z ' 

23 = P[23 ' + ! 1e ') 
Z Z C 'JI ' 

and 

(8) p = P[P' + ~ s~] , [ 4] 

!

sx = P[s~ + ~ p'] , (5 ) 

(9 ) s = s' . y y 

sz = s; 
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To obtain the express ions for the primed quant ities as functions of t he 
unprimed ones , one has t o int erchange t he pri med and unprimed quant i ties and 
t o replace v by -v. 

The equations (1a) to (4a), whi ch describe the electromagnetic processes 
relat i ve t o t he system K, have the same form as the equations (1) to (4). 'fie 
will theref ore use t he same terminology f or the qua nt i ti es 

(.1:, 'D, .fj, 23, p , 5 

as f or the corresponding quanti ti es relat ive to the sys t em K' . Thus Q:, 'D, 
.fj, 23 , p, s are the electric f orce, the die lect ri c di splacement, the magnetic 
f orce, the magnet ic i nduct ion, the el ectri c de nsit y, the elec tri c current with 
respect t o K. 

For vacuum t he t ransformat ion equations (6) and (7 ) reduce t o t he 
equat ions fo r el ectr ic and magnetic forces found earlier. 1 

I t is clear t hat by repeated application of t ransformat ions of the kind 
t hat we have j ust performed one must always arr ive at equations of t he same 
form as the original equations (1) t o (4) , and t hat for such transformations 
equat ions (6 ) t o (9) apply, s ince formal l y t he transf ormation did not make use 
of the fact that t he matter was at rest relative to t he original syst em K'. 

We assume that the t ransformed equat ions (la) t o (4a) are al so valid if 
t he veloci ty of t he matter is spatially and temporally variable , whi ch wi ll be 

[6 ] corr ect in the first approximation. 
It i s remarkable that t he boundary conditions for t he vectors Q: , 'D, .fj , 

23 at t he boundary of two media are t he same as for bodies at r est . This 
[ 7] fo llows directly from equations (l a) t o (4a) . 

Just like equat ions (1) to (4) , equat ions (1a) t o (4a) hold qui te 
generally for inhomogeneous and an isotropic bodies. They do not complet ely 
determine t he elect romagnet ic processes , however. Rather , relat ions t hat 
express t he vect ors 'D, ~. and s as functions of Q: and .fj need to be 
given in addition . We will now give such equations for t he case t hat t he 
matt er is isotrop ic. If we fi rst consider the case when all matter is at rest 
re lative t o K' , t hen the following equat ions hol d with respect t o K': 

1A. Einstein, loc. cit . , p. 909 . 
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( 11 ) 

(12) .51 : ~ I , 

where f = dielectric constant, µ = permeab i lity, and " = electrical 
conduct ivi t y are t o be r egarded as known funct ions of x' , y', z', t' . By 
transforming ( 10) to (12 ) to K by means of inversion of our transformat ion 
equations (6) to (9) , one obtains the relat ions holding for the syst em K: 

(1Oa) 

(lla) 

(12a) 

'DX = f (EX ' 

'Dy - ~ fjz = f [<cy - ~ ~ z] • 

'Dz + ~ fjy = f[<Ez + ~ ~y] • 

Qlx = µ fjx • 

~ + ! <E = µ[i> + E 'D ] • y C Z y C Z 

~ _ E <c = µ [fj _ E 'D ] , 
Z C y Z C 'IJ 

If the veloci ty of the matter is not parallel to the / -ax.is , but i s 
determined by t he vector o instead, one obtains the vectorial relations that 
are analogous to equations ( 10a) to ( 12a) : 

[8 ] 
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'.i) + ½(ojj] ; + = + ½ro~]} ' 

~ - ½(0\1:] ; + -½(o'D]} ' 

(13) 

P[•0 - 1%1 p] ; + + ½r0~1}; 
•o ; qp {IE + ½(1>93] L ' 

where t he subscript tJ signif ies that t he component has to be taken in t he 
direction of tJ , and the subscript tJ t hat t he components have to be t aken in 
the dir ections 6 perpendicular to tJ. 

§2 . O,i the elcc t romag1ietic behavior of moving ,liel ectrics. 

Vilson' s experimen t 

In t he following sect ion we will use a simple special case to show how 
moving dielectrics behave according t o the theory of relativ ity and how the 
results differ from those obtained by t he Lorentz t heory. 

Let S be a pri smatic strip of a homogeneous , isotropic nonconductor, 
indicat ed i n i t s cross sect ion (cf. f igure) , t hat ext ends t o infin ity perpen­
dicul ar l y t o t he plane of t he paper in both di rections and that moves with t he 

r 

------z 

---··S 
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constant velocity v away from t he observer t oward the plane of t he paper 
bet ween t he condenser plates A1 and A2 . The dimension of t he strip S 
perpendicular to t he plates A shall be infinitesimally small compared to its 
dimens ion parallel to t he plates and to the dimensions of the plates A; also, 
the gap between S and the plates A (hencefortl1 called gap in brief) shall 
be negligible compared to the t hickness of S. We refer the system of body 
under considerat ion to a coordinate system t hat is at rest r elative to t he 
plates A and whose posit ive %-direct ion shall coincide with t he direct ion 
of mot ion , while its Y- and Z-axes , respectively, are parallel and perpen­
dicular t o the plates A. We will examine the electromagnet ic behavior of the 
piece of the strip located between the plates A if t he elect romagnet ic state 
is stationary. 

We imagine a closed surface that just enclo::;es the eff ective part of the 
condenser plates together with t hat of t he piece of the strip lying between 
them. Since no mov ing t rue charges nor electric conduct ion currents exist 
within this surface, the equations (cf. equations (la) t o (4a)) 

curl .fj = 0 , 
curl IE = 0, 

apply. Thus , wi thin t his space t he electric as well as the magnetic force i s 
derivable from a pot ential. Hence we immediately know the distribut ion of the 
vect ors IE and .fj if the dist ribut ion of the free el ectric and magnetic 
densi ty , respectively, is known. We shall limit ourselves to consideration of 
the case in which t he magnetic force fj i s parallel to the Y-axis , and t he 
electr ic force IE is parallel t o the Z-axis. We are j ustified in doing 
t his , as well as in assuming that the pertinent f ields both wit hin t he str ip 
and within t he gap are homogeneous, due to t he conditions st ipulated earl ier 
regarding the orders of magnitudes of t he dimensions of t he system under 
considerat ion . We al so conclude immediately that t he magnet ic masses at the 
ends of the strip cross section make only a vanishingly small contribution t o 
the magnetic fi eld. 1 Equations (13) then yield the following relations for 
the interior of the strip: 

1This is also evident from t he fact that , without essent ial change of the 
condit ions , we could give t he condenser plates and t he strip a circular 
cylin<lric shape, in which caHe , for reasons of symmetry, f ree magnet ic masses 
could not arise at all. 
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'D + .! jj = t: [~ + .! 93], 
Z C ?J Z C 'JI 

These equati ons can al so be wri tten in t he following form : 

Concerning t he interpret ation of (1 ) we remark t he following: The 
diel ectric di splacement 'Dz experiences no jump at the surface of the str ip, 
hence it equals the charge of the condenser plates (more exactly, of t he plate 
A1) per un it area. Further, IEz x 6 equal s t he pot ential difference between 
the condenser plat es A1 and A2 if 6 denotes t he separation of the plat es , 
because if one imagines t hat t he strip i s separated by an infin i tely narrow 
slit runn ing parallel t o t he XZ-plane , then lE equals the electr ic force in 
t he slit on account of the boundary conditions hold ing for t hat vect or . 

Next we consider the case t hat no magnetic fi eld excited from the out­
s ide i s present, i .e. , according t o t he above, t hat in t he space considered 
t he magnetic f ield strength vanishes. Then equations (1) will have the 
following form: 

[ 
v2] V 1 - t:µ -;2 93 = - ( t:µ - 1) ~ , 
C 'JI C Z 

[ v2] ( v'l] 1 - t:µ, c1 'Dz = t: 1 - c1 lE z . 

Since we must have v < c, the coeffi ci ent s of !Ez in the last two equat ions 
must be posi t ive if t:µ- 1 > 0. In cont rast , t he coeff icients of ~ y and 
'D are larger , equal to, or smaller t han zero , respect ively, depending on z 
whether t he velocit y of t he str ip is smaller , equal t o, or larger than c/fiµ, , 

i .e .. t han the velocity of t he el ectromagnet ic waves in the strip med ium. 
Hence, if <Ez has a fixed value , i. e . . if one applies a fixed potential 
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difference to t he condenser plat es, and varies t he strip velocity from l ower 
t o higher values , then at first both t he charge of t he condenser plates , which 
is proportional to t he vector '.D, and the magnetic induct ion ~ in t he 

st ri1> will increase. When v reaches the value c/ fqj,, both the condenser' s 
charge and tbe magnet ic induction become infinitely large . Hence, in t his 
case even an arb i trarily small applied potent ial difference would destroy the 

strip. For all v > cf [qi, there result negative values for '.D and 23 . 
Thus , in t he last case a potential difference applied to the condenser plates 
would charge t he condenser in the sense opposite to the potential di fference. 

Finally, we consider the case of the presence of a magnetic field SJY 
excited from the outs ide . We then have t he equat ion 

which yields a relat ion between <E and 'D at a given SJ . If one z z y 
restricts oneself to quant ities of the first order in v/c, one has 

(2} 

while Lorentz's theory l eads to t he express ion 

(3) 1) = f(c + ! (f - l )µSJ 
Z Z C 'g 

As we know, t he lat t er equation has been experimentally test ed by II . A. 

[ 11] 

Wilson (Wilson effect) . One sees t hat (2) and (3) differ in terms of fi rst [12] 

order. If we would have a dielectric body of cons iderable permeabil i t y, it 
would be poss ible to decide experimentally between equations (2) and (3). [13 ] 

If one connects t he plat es A1 and A2 by a conductor, a charge of 
magn i tude 'Dz per unit area i s generat ed on the condenser plates ; one 
obtains it from equation (2) by t aking into account that for connect ed 
condenser plates , <Ez == 0. One gets 

1) = E.( {J; - 1 )SJ,, . 
Z C ;, 



338 EQUATIONS FOR MOVING DODIES 

If one connect s t he condenser plat es A1 and A2 with an electrometer of 
infinit esimally small capacity, i hen 'Dz= 0, and one obt ains for t he 
potential di fference (~z-D) the equation 

Dern , 29 Apri l 1908 . (Received on 2 May 1908) 
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Doc. 52 
ON THE PONDEROMOTIVE FORCES EXERTED UN BODIES AT REST 

IN THE ELECTROMAGNETIC FIELD 
by A. Einstein and J . Laub 

[Annalen der Physik 26 (1908): 541-550] 

339 

In a r ecent ly published study1 Mr . Minkowski presented an expression for 
t he ponderomotive forces of el ectromagnetic origin that act on arbitrarily 
moving bodies. If one specializes Minkowski's expressions to i sotropic , [2] 

homogeneous bodies at rest , one obtains for t he I -component of t he force 
acting on a unit volume 

( 1) K = p<E + .s 2.3 - .sz~y , 
X X 'U Z 

where p denotes the electric density, .s t he electric conduction current , 
Q; the electric field strength , and 23 t he magnetic induction . This expres­
sion seems to us not to be i n agreement with t he electron-theoretical picture 
for the following reasons : While a body t raversed by an electric current. 
(conduct ion current ) experiences a force in the magnet ic fi eld, according to 
equation (1 ) t his would not be the case if t he body in the magnetic f ield were 
permeated by a polar ization current ( IYD/ iJ t) instead of a conduction 
current. Thus , according to Minkowski there exists here a difference in 
principle between a displacement current and a conduct ion cur rent such that a 
conductor cannot be considered as a dielectric with an infinitely large 
dielectric constant . 

In view of t his stat e of affairs, it seems to us t hat it would be of 
interest to der ive t he ponderomot ive forces for arbitrary magnetizable bodi es 
on the bas i s of the electron theory . We present here such a derivation , 
though restrict ing our selves to bod ies at rest. 

111 . Minkowski, Co tt. Na clir . (1908), p. 45 .. 

[ 3] 

[ l] 
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§J. Forces that do not depend on the veloci t i es of el ementary pa rti cles 

In t hi s der ivation we wi ll consist ently base oursel ves 011 the standpoint 
(4] of the elect ron t heory1; hence we put 

(2) 

(3) ~ = .fj + .Q, 

where ~ denot es the el ectric and .Q t he magnetic po lar ization vector. We 
th ink of el ectric and magnetic polarizations , r espectively, as cons ist ing of 
spat ial displacements of elect ric and magnetic mass particles of dipoles that 
are bound to equi libr ium posit ions. In addition , we also assume the presence 
of mob i le electric part icles not bound to dipoles (conduction electrons). Let 
Maxwell's equat ions for empty space be valid in t he space between t he above 
particles , and l et , as in Lorentz, t he i nt eract i ons betwee11 mat ter anc/ elec-

[6] t romagnetic fi eld be exclus i ve ly brought about by t l,ese parlicl es. Acconl­
iugly, we assume t hat t he forces exerted by the elect romagnet i c f ield on t he 
volume element of the matter equal t he resultant of the ponderomot ive forces 
exerted by t his field on all element ary electric and magnetic particles in the 
vol ume element considered. Oya volume element of the matter we always 
understand a space so large that it contains a very large number of el ectric 
and magnetic particles. The boundar ies of a volume element must always be 
imagined as drawn such t hat the boundary surface <loe::; not cut through any 
electric or magnet ic dipol es . 

First we calculate that force act ing on a dipole which is due t,o the 
f ield strength Q! not being exactly the same at the locations of the elemen­
tary masses of t he dipole . If p denot es the vector of the dipole moment , 
one obtains the following expression for the %-component of the force sought: 

otx i}(E.x D~x 
f x = Px OX + Py Vy + Pz oz 

[5] 1l1owever, we st ick to t he dual t reatment of elect ric and magnetic phenomena 
for t he sake of a simpler presentat ion. 
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If one imagines that t he above expression is formed for and summed over all 
dipoles in t he uni t volume , one obtains , t alcing into account the r elation 

the equation 

(4 ) 

341 

If the algebraic sum of the pos itive and negative conduction elect rons 
tloes not vanish , t hen t he express ion (4 ) contains an addit ional term, which we 
shall now calculate . The I -component of t he ponderomot ive force acting on a 
conduction electron of electr ic mass e i s e~x · If one sums over all 
conduction electrons of t he unit volume , one obtains 

(5) 

If one imagines t hat t he matter in t he uni t vol ume is enclosed by a surface 
t hat does not cut through any dipole, one obtains in accordance with Gauss' s 
law and t he definition of the displacement vector 'D 

l e div 'D , 
so that 

(5a) 

The X-component of t he fo rce exert ed by the electr ic fi eld st rength on the 
unit volume of t he matt er t herefore equals 

{)rt ~ i)r,£ 

( G) i ex = i lx + J 2x = '-13 x Tx + '-13 y di + '-13 z Tz + ~x div 'D • 

In an analogous way, tak ing into account t he relation 

div 23 = 0, 
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we obtain for the X-cou,ponent of the fo1ce imparted by the magnet ic field 
strength 

(7) 

I t should be noted t hat the derivation of t he expre8sions (6) and (7) 
doe8 not r equire any assumptions about the rel ation connecting t he field 
strengt hs Q: and SJ with the po larization vectors q3 and .Q. 

In the case of anisotropic bodies , t he electric and magnetic f i eld 
strengths , respectively , do not impart only a force , but also fo rce couples 
that act on the matter. The torque sought can eas i l y be obtained for the 
indiviclual dipoles and summat ion over all electric and magnetic dipoles in the 
unit volume . One obtains 

(8) 

Formula (6) yields those ponderomot ive forces that play a role in electro­
static problems. We want to transform this equation , appl ied in the case of 
i sotropic bodies , in such a way t hat it all ows a comparison with the expres­
sion for ponderomotive forces used in electrostatics. Tf we put 

q3 = ( { - 1 )Q! • 

equation (6) becomes 

Je = ~x div 'D 
X 

The fi r st two terms of this expression arc identical with those famil iar from 
electrostat ics. As one can see , the thi rd t erm is d<'rivable from a potential. 
If the forces involved act upon a body in the vacuum , t his term docs not con­
t r ibute anyt hing on integration over t he body. However, if the ponderomotive 
forces involved act on liquids, then the part of the force corresponding t o 
the t hird term i s compensat ed by a pressure distribution in the liquid when in 
equilibrium. 
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§2 . Forces that depend on the velocit ies of the elemen ta rg particl es 

We now turn t o the part of the ponderomotive force that i s produced by 
the velocities of motion of the elementary charges . 

We star t from the Biot-Savart l aw. According t o exper ience, the force 
that act s on a unit vol ume of a vol ume element traversed by a cur rent and 
located in a magnetic field i s 

if the mat ter t raversed by the current is not magnetically polarizabl e . As 
far as we know, for t he inter ior of a magnetically polarizable body t hat force 
has so far been set equal 1 to 

where 23" denot es t he magnetic i nduct ion. We will now show that t he force 
acting on the current-carry ing volume element is also obt ained in the case 
where the current -traver sed matter is magnet i ca l l y po la ri zable if the volume 
force 

(9) J = ! [snJ 
.5 C 

is added t o the force expressed by equat ion (7) . We will first i llustrate 
this by a simple example . 

Let the infini t ely thin strip S, plotted in i ts cross section , stret ch 
to infinity in both directions perpendicular to the plane of t he paper. 
Assume t hat it cons ists of magnetically polar izable material and is located in 
a homogeneous magnetic fi eld .fja, whose direction is ind icted by t he arrows 
(cf . figure) . We ask for t he force act ing on t he material strip if the lat t er 
is traversed by a current i. 

1 F 

L...------------'' s 
+ + + + + + + + + + + 

b 

1Cf., e. g. ,also M. Abraham , Tl,eori e der Elckt rizita t 2 ( 1905): 319. 

[8] 

[7) 
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Exper ience shows t hat this force i s independent of t he magnetic perme­
ab ili ty of t he material of the conduct or , and from this it has been concluded 
that it i s not t he fi eld ::;trength .fj, but the magnet i c induction ~ i ' t hat is 
re l evant for t he ponderomotive force , Lecause in t he inter ior of t he strip the 
magnetic induct ion ~ i is equal to the force .fja acting out s ide t he str ip 
independent of t he value of the strip' s permeability, while for a given 
external f ield t he force in t he inter ior of t he strip depends on µ. Uowever, 
th i s argument is not conclusi ve , because t he ponderomotive force cons idered i s 
not t he only one acting on our mater ial str i p, since t he external fi eld .fju 

induces magnetic layers of dens ity1 .fja ( t - 1/µ ) on the top and bott om sides 
of the material strip, t he layer be ing negat ive 0 11 the top, and positive on 
the bott om. Each of these layers is act ed on by a force which i s produced by 
the cu1T<>nt flowing through t he strip ; t his magnet ic force has a st rength of 
i/2b per un it length of t he strip1 and its direction on t he top differs from 
that on t he bottom. The ponderomot ive forces so obtained add up, so t hat we 
get t he ponderomotive force (1 - 1/µ) f)ai. It seems t hat th is force has not 
been t aken into cons iderat ion up t o now . 

The t otal force exer ted per unit l ength of our str ip is, t hen , equal t o 

the sum of t he force j ust calcul t ed and the force R exerted by t he 111agnet ic 
fi eld on t he str ip's volume elements due to t he current flow. Since 
experience shows that the total ponderomotive force act ing on the unit length 
i s i.}\

1
, we have the equation 

or 

This shows t hat for t he calculation of t hc-> ponderomotive force fl , which is 
act ing on the cur rent -traversed volume element s , it is t he fi eld strength .fj i 

and not the induct ion Q3 i that i s responsibl e. 

~ince t he density is 
.Q . = ~ - - f) . = fJ (1 - ! ) . 

Z Z Z ll µ 
2Strictly speaking , based on tlw results of the previous section, we 
have introduced vol ume forc<'S instead of the above forces acti ng on 
surface layers , but t his i ::; of no consequence. 

should 
t he 
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To eliminat e all doubt , we will discuss one more exampl e which shows 
that t he principle of equali t y of action and reaction requires the Ansa t z we 
have chosen. 

We envision a cyl indric conductor surrounded by empty space and 
traversed by the current !i , which stret ches to infi nity along the X-axis of 
a coordinate system in bot h direct ions . The material const ants of t he 
conductor , as well as t he fie ld vectors cons idered in the following, shall be 
independent of x, but shall be func tions of y and z. The conductor shall 
be a magnet ically hard body and shall have a magnetization perpendicular to 
the X-axis. We assume that no external field acts on the conduct or , and thus 
the magnetic force Sj vanishes far from the conduct or. 

I t is clear t hat no ponderomotive force act s on the conductor as a 
whole , because no r eaction oppos ing such an action can be specified . We now 
want to show that t he above force indeed vanishes given t he A1isatz we have 
chosen. In acconlance with equations (7 ) and (9), the entire force act ing ou 
the unit length of our conductor in the direction of the Z-axis can be 
presented in the form 

(10) 

where ,If denotes a surface element of t he YZ-plane. We assume that all 
pert inent quantities are continuous on t he surface of t he conduct or . Fi rst we 
consider the f i rst integral of equat ion (10). We have 

If one substit utes the right -hand side of th is equation in our integral, then 
t he first two t erms vanish on integrat ion over t he YZ-plane because t he forces 
vanish at infinity. Tak ing into cons ideration that 

div ~ = 0 , 

the th i rd term Cil.Il be t ransformed so that our integral assumes the form 
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Now we have 

D.fJ Sjz 1 {)552 
However, the t wo t erms T + 2 rz vani sh on integrat ion . Using 

l}Sj 
Maxwell's equat ions, the term - Sj'J/ 7Fi can be t ransformed to 

- - Sj s + _:Jj_ 1 { oSj ] 
C 'JI X iJz • 

so that finally we can wri t e equation (10) as 

R = - ! J 55 {s + 3_] df + ! J s S5 df C y X lJz C X y 

1 I i}Jj 1 I ass2 = - - S5 _..:JI.. ,If = - n-::- _:..JI.. df . 
C y lJ z a OZ 

The last integral equals zero, because the forces vanish at infini ty . -
Thus hav ing ascertained t he force that acts on matter t raversed by a 

conduction current, we obtain t he force that acts on a body permeated by a 
polarization current by not ing that from t he st andpo int of the theory of 
el ectrons the polarization current and the conduction current are completely 
equivalent wi th regard to el ect rodynamic action . 

Ily t aking into account t he duality of magnetic and elect ric phenomena , 
one also ob tains the force exerted on a body permeated by a magnet ic 
polarization current in t he electric fi eld. In t his way we obtain the 
following equat ions as an overall expression for t he forces that depend on the 
velocity of the elementary particles: 

(11) 
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§9. £qua li ty of action and react i on 

Adding equat ions (6), (7) , and (11 ) , one obtains the overall cxpi-ession 
for t he I -component of t he ponderomotive force acting on t he matter per unit 
volume in the fo rm 

This equat i on can also be writ ten as 

If one makes use of Maxwell 's equations to replace 

1 il.13 
and cuf 

by curl .fj and cur l (£, respect i vely , a simple t ransformation yields 

( 12) 

(9) 
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[ 10] where we have put 1 

X = - l (~ 2 + .sj2 ) + ~ ".O + .sj 23 , 
X £- X X X X 

(1 3 ) 
X = ~".O + .S:,23, 

'g X 'JI X y 

Xz = ~/Dz + .sjx23z' 

Corresponding equations hold for t he other t wo component s of t he 
ponderomotive force. 

Dy i nt egrat ing (12) over t he infinite space, one obtains the equation 

(1 2] (14 ) 

if the f i eld vectors vanish at infin i t y. Th is equations st ates that on 
introduction of t he electromagnet ic momentum our ponderomotive forces satisfy 
the l aw of equality of action and reaction. 

Dern , 7 May 1908. (Received on 13 May 1908) 

1Geheimrat Wi en kindly drew our attention t o the fact t hat II. A. Lor ent z had 
al ready present ed the pondcromotive forces for nonmagnetizable bodies in this 

[ 11 ] form . J:n zyk lopadi e der ma t/iematis chen llissenscliaft en 5, p.247 . 
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Doc. 53 
CORRECTION TO THE PAPER: 11 UN THE FUNDAMENTAL 
ELECTROMAGNETIC EQUATIONS FOR MOVING BOD IES" 

by A. Einstein and J. Laub 
[Annalen der Physik 27 (1908) : 232] 

34!) 

Two errors had slipped into t he paper publ ished under t he above t i tle in 
t his journal (26, p. 532, 1908) : (I] 

p. 534, formula (8) should read 

instead of 

and t he first of t he formulas (9 ) , 

s = P( s' + vp') X X 
i nst ead of 

s = P(s' + Ep•) X X C • 

Likewise , the first of formulas (12a) and t he th ird of 
formulas (13) should read 

and 

(Received on 24 August 1908) 
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Doc . 54 
REMARKS ON OUR PAPER: "ON THE FUNDAMENTAL ELE(,1'ROMAGNEfIC 

EQUATIOXS FOR MOVlNG UOUIES" 
by A. Ei nst ein and J . Laub 

[Annalen der Physik, 28 (1908): 445-447] 

Mr. Laue was kind enough to call our att ention t o an inaccuracy in our 
[2 ] paper cited in the t itle. 1 We say there (Ann . d. Phys. i6(1908): 535): 

"It is r emarkabl e that t he boundary conditions for t he vect ors (E, '.O, 
jj, Q3 at the boundary of t wo media are t he same as for bodies at rest. Thi s 
follows directl y from equations ( la) t o ( 4a) . " 

..\part from t he fact that equations (3a) and (4a) are irrelevant for t he 
der ivat ion of the boundary conditions , this stat ement is correct only if the 
component of the motion normal to t he boundary sur face van i shes , which is 
actually t he case in the problem treated in §2 of t he paper quoted. The 
boundary condit ions of t he general case are most eas ily found in t he follow ing 

[3] way , which cor responds to the one t ake11 by Heinrich Hertz. 
If the boundary surface , or, more exactly, t he inf initely thin boundary 

trans it ion shell, moves in some arbi t rary manner , then , in a point s ituated in 
it and inst antaneously at rest , the quantit ies determining t he el ect romagnetic 
fi eld will in general vary di scont inuously, infinitely fast , with time ; how­
ever , these changes wi ll be cont inuous for a point moving witli the ma t ter. 
Thus , t he applicati on of t he operator 

a 7n: + ( tJV ) 

t o a scalar or t o a vect or will not l ead t o infin itely large values even in 
the boundary surface . If we t hen write equation (la) 2 in the form 

(l] liu his l etter &Ir. Laue gave t he correct boundary condit ions and pointed out 
a diff er ent derivat ion of t hem. 

2 loc. ci t. 
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and assume t hat the cur rent density s is fi ni t e evPn in t he boundary layer, 
then t he left-hand s ide of this equatic.,n i s fini t e in t he boundary layer. The 
same holds t herefore for t he r ight-hand side' of t he equation. 

For an easy interpret ation of th is resul t we imagine t hat the coordinate 
syst em i s orient ed in such a way t hat a given i nfinites imally small port ion of 
the boundary surface, which we now wish t o consider, i s parallel t o the 
J'Z-plane. It is t hen clear t hat t he derivatives of all quanti t i es with 
respect t o y and z remain finite in t he above portion of t he boundary 
surface. Hence t he totalit y of t hose t erms on the r ight-hand side of t he 
above equation that contain differentiations wi t h respect t o x must. also 
yield somethi ng finite . lly si mple expansion of t he right -hand side and 
negl ecting t he t erms different iated with respect t o y and z , one arr ives at 
the r esul t t hat the express ions 

l1 [)D 
X X 

c Tx ' 

remain fin ite in the boundary layer. If we also assume t hat the velocity 
component s of the boundary surface do not experience any j ump, then it follows 
from t his that t he expressions 

l1 
.fj + _! 'D 

'IJ C Z 

ox 
.fj -- 'D 

Z C 'I/ 
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have the same value on both sides of t l11~ boundary surface ( J'Z-plane). Since 
'Dx and t he components of t> are continuous , we can replace t he last two 
express ions by 

1 .fj - -( l1 'D - I) 'D ) 
y cz x x z ' 

1 
.fj - - ( t> 'D - l1y'Dx) 

Z C X 'JI 

We get r id of the dependence on the special choice of the posi tion of 
the coordinate axes relative to t he b01::1dary surface element considered by 
writing t he result us ing t he notation of vector analys is. If the subscr ipts 
n and ii , respectively, denote t he components of t he pert inent vector in the 
direct ion of and perpendicular to t he normal of t he surface o-f di scontinuity, 
t hen i t fo llows t hat 

must be cont inuous at the boundary surface. 
In the same way one concl udes from ec1uation (2a)l that the components 

are continuous. 

Dern and Wiirzburg, November 1908. (Recei ved on 6 December 1909) 

1loc . cit. 
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Addendum. If there i s a layer of true electrici ty <J p dr) of surface 

density 1J on t he boundary surface unc!er cons ideration , t hen s becomes 
infini t e . In that case 

curl SJ + l(o~)".D - s 
C 

is finite in the boundary layer , where s can be replaced by (o/c)p. The 
above boundary condit ions are obtained for this case t oo, except that t he 
f i r st of t hose i s to be replaced by 

(Received on 19 January 1909) 

Doc 55 
COMMENT ON THE PAPER OF D. MIRUIANUFF "UN THE FUNDA\IENTAL 

EQUATIONS ... II 

by A. Einstein 
[Annal en der Ph ysik 28 (1909): 885-888] 

1. The system of differential equations and t ransformation equations 

[4] 

present ed in th is paper1 does not differ from that of Minkowski in any way, {2] 

or , rather, differs only insofar as t he vector usually denot ed by fj 

(magnetic force) was denoted by t he author by 

I .e. , wit h t he introduct ion of .Q, as t he author himself shows , the ( 3) 

differential equat ion (I ) becomes identical with the corresponding equation of 

1D. Mir imanoff, Ann . d. Ph ys. 28 (1909) : 192. [I] 
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Minkowski , while t he remaining t hree different ial equations do not contain .fj 

and already have t he form of the corresponding equations of Minkowski . 
Indeed , the author says himself t hat his vectors I!: , 'D, .Q, and Q3 t ransform 
like the vectors usually denot ed by <E, 'D, fj , Q3 . 

2. Similarly , the relat ions between t he vect ors containing material 
constants ( t:, µ and u) do not differ from Minkowski's corr esponding relations. 
I. e. , the author starts from the postulate t hat for a coordinate syst em 
inst ant aneous ly at rest relative t o the system point under consideration, t he 
equations 

1 
.fj = - ~. µ 

should hold ; i f one bears i n mind t hat the (author's) vector .fj is identical 
with the vector .Q fo r ru = 0, and t L1t .Q plays exactly the same role in 
t he author's different ial equat ions and in his transformation equations as m 

does in Minkowski' s equations ( usually denoted by .fj ) , t hen one realizes t hat 
thesP equations , too, agree with Minkowski's corresponding equations, except 
that t he notation .fj is replaced by t he notation .Q. 

3. Thus, it has been shown t hat ~lir imanoff I s quant ity .Q plays the 
same role i n all his eciuations as t he quant ity usually denoted by .fj and 
called "magnet ic force" or "magnet ic field strength ." Nevertheless , 
Mirimanoff' s equations wou ld have a different cont ent t han t hose of Minkowski 
if by def inition t he quantity .Q of Miri manoff would have a different phys i ­
cal meaning t han t he quantity usually denoted by .fj . 

In order t o reach a conclus ion in that mat ter, we fi rst ask for t he 
meaning of t he vectors ~. 'D, .fj , ~ L Minkowski ' s equat ions 

(A) 

1 - l ifD . cur .)J = c 7JT + 1 , 

1 lJB curl <E = - c of , 

div 'D = p , 

div 23 = 0 . 

One has to admit t hat t hese vector s have not yet been expressly defined fo r 
t he case that the veloc ity ru of matter differs from zero ; only for the case 
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that ro vanishes do we possess definitions on which (ideal ) measurements of 
these quantities could be based, and here I have in mind those definitions 
t hat are we l l known from the electrodynamics of bodies at rest. Therefore, if 
upon us ing Minkowski ' s equations we find t hat in a certain volume element of 
t he body moving with velocity ro the field vectors at a certain t ime have 
certain (vector ) values CE, 1), fJ, 23, then we must first transform these 
fie ld vectors t o a reference system that is at rest with respect to t he volume 
el ement in quest ion. Only the vectors CE', 'D', 55', 23' thus obtained have a 
definite physical meaning which is known from the electrodynamics of bodies at 
rest . 

Thus , Minkowski's differential equations by themselves do not have any 
content at t he points in which ro I 0; however.they do so when taken together 
wi th ~Linkowski' s transformation equations and wi th t he stipulation that for 
t he case ro = 0 the definit ions of the electrodynam ics of bodies at rest 
must be valid for the field vectors. 

We now have to ask: Is Mirimanoff 's vector 0. defined in a different 
way from the vector we have denot ed by f.)? This i s not the case, for the 
following reasons: 

1. The same differential equations and transformation equat ions hold 
for Mirimanoff 's field vectors CE, 'D, i2, 23 as for the vect ors CE, 'D, ,fj, 23 
of Minkowski' s equations (A) . 

2. Mirimanoff 's vector i2 as well as the vector .fj of (A ) are 
defined only for the case ro = 0. However, in that case, because of 
ll irimanoff' s equat ion 

one has to put 0. = .fj = fi eld strength; in exactly the same way, in the case 
ro = 0, t he vector fJ of equations (A ) is equivalent to t he field strengt h in 
the sense of the electrodynamics of bodies at rest. 

It follows from t hese two arguments that Mirimanoff' s vector 0. and 
t he vector ,fj of (A) are <'Ompletely equivalent. 

4. In order to compare his results regarding Wilson's arrangement wit h 
those obtained by Mr. Laub and me, t he aut hor should have carried his consid- (4) 

erations far enough to arr ive at relations between def ined quant ities, i.e. , 
quant i ties accessible t o observat ion at least in principle . For t his purpose 
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he would only have had to apply t he bondary condit ions corresponding to his 
system of equat ions. According to what we said above, he would have had to 
come to t he same conclusions as we did, since his tllC'ory is identical with 
Minkowski 1s. 

In conclusion, I would also like t o point to the import ance of the 
( 5) recently published paper by Ph. Frank ,1 whi ch , by t aking into account the 

Lorentz contraction, restores t he agreement between Lorentz 's treatment, based 
(6) on the elect ron t heory , and Minkowski I s treatment of the electrodynamics of 

moving bodies .The advantage of the treatment based on the electron theory 
consist s , on the one hand , in prov id ing a graphic interpretat ion of the field 
vectors and, on t he other hand, in dispensing with the arb itrary assumption 
that t he derivatives of the velocity of matter do not appear i n the 

( 7 ) di fferential equat ions . 

(8] 
[9] Dern, January 1909 . (Received on 22 January 1909) 

1Ph . Frank, Ann. d. Pliys. 27 (1908): 1059. 
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Doc. 56 
ON THE PRESENT STATUS OF THE RADIATION PRODLE\I 

by A. Einstein 
[Phys ika lische Ze i tsch , ift 10 (1909): 185 -193] 

This journal has recently publisl ad expressions of opinio11 by 

357 

Messrs. II . A. Lorentz•. Jeans2 , and Ritz3 which offer good ins ight into t he [4] 

present status of t his extremely import ~nt problem. In the belief t hat. it 
would be of benefit if all t hose who have seriously t hought about t his matter 
would communicate t heir views , even if t hey have not been able to arrive at a 
final result. I would like t o conununic~te t he follow ing. 

1. The s implest form in which we can express the l aws of elect10-
dynamics established so far is t hat prrsented by t he Maxwell -Lorentz part ial 
different ial equat ions. In contrast to Mr. Ritz3 , I regard the forms 
containing retarded fun ct ions as merely auxiliary mathematical forms . The [ 5 ] 

reason I see myself compelled to take t his view is first of all t hat t hose 
forms do not subsume the energy principl e, while I believe t hat we should 
adhere to the strict validity of the energy principle unt il we shall have 
fo und important reasons for renouncing this guiding star. It is certainly 
true that Maxwell's equations for emptr space, taken by themselves, do not say 
anything, that they only represent an intermediary const ruct ; but, as is well 
known, exactly the same could be said about Newton's equations of motion, as 
well as about any t heory t hat needs to be supplement ed by other theories in 
order t o yield a picture fo r a comp lex of phenomena. What distinguishes the 
Alaxwcll-Lorentz differential equations from t he forms that contain retarded 
f unctions is the circumstance that they yield an expression for the energy and 
the momentum of the system under consideration for any instant of t ime, 
relat i ve to any unaccelerated coordinat e system. With a t heory that operat es 
with retarded forces it is not poss ible to describe t he instantaneous state of 
a system at all without using earlier f'tates of the system for th is 
description. 

111 . A. Lorentz, Phys . Zeit. 9 (1908): 5n2-563. 
2J . II. Jeans . P/,ys . Ze i t. 9 (1908): 853-855. 
3W. Ri tz, Phys. Zeit. 9 (1908): 903-907. 

[ l] 

[ 2) 

[3] 
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For example, if a light source A had emi tted a light complex toward t he 
screen B, but i t has not yet reached t he screen ll, t hen, according to 
t heories operating wit h retarded force~, t he light complex i s r epresented by 
nothing except t he processes t hat have taken place in the emitt ing body during 
t he preceding emiss ion. Energy and mo111ent u111- -if one does not want to renounce 
t hese quantities al togethcr--must t hen be represented as time integrals. 

To be sure , Mr. Ritz claims t hat experience forces us to abandon t hese 
differential equations and int roduce t he retarded potentials . However , his 
arguments do not seem valid to me. 

If one puts with Ritz 

1 J i.o [(x' ,y ' ,z', t - ~] 
/ 1 = 4,r r dx ' , dy' ,dz ' 

and 

1 I i.o[(x' ,y' , z' , t + ~] 
12 = ifir r dx' ,dy' ,dz ' , 

t hen 11 as well as / 2 are solutions of the equation 

1 {)2 ( 
c2" 7Jf'I - 6/ = (p( X y Z t) , 

hence 

is also a solution if a1 + a2 = 1. Bu1; it is not true t hat t he solution fs 

is a more genera l solution than / 1 and t hat one specializes t he t heory by 
putting a1 = 1, a2 = 0. Put ting 

f (x , y , z , l) = 11 , 

amount s to calculat ing t he electromagnet ic effect at t he point x,y,z from 
those motions and configurations of the el ectric quant i ties that took place 
prior to t he instant t. Putt ing 

J(x, y,z, I.) = / 2 , 
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we are determining the above electromagnetic effects from the mot ions and 
configurations that take place after the i nstant t. 
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In the first case the electr ic field is calculated from t he totality of 
the processes producing it, and in the second case from the totality of t he 
processes absorbing it . If t he whole process occurs i n a (finite ) space 
bounded on all sides , then i t can be represented in the form 

J = !1 

as wel l as in the form 

If we consider a fie ld that i s emitted from the finite into the infinite, we 
can, naturally , use only t he form 

J : !1 I 

precisely because the totality of the absorbing processes is not takeri in to 
consideration . But here we are deal ing with a misleadi ng paradox of the 
infinite. Both kinds of representation can always be used, regardless of how 
distant the absorbing bodies are imagined to be. Thus , one cannot conclude 
t hat t he solut ion J = / 1 is more spec ial than the solution aif1 + a2/ 2 , 

where a1 + a2 = 1 . 

That a body does not "receive energy from infinity unless anot her body 
l oses a corresponding quantity of energy" cannot be brought up as an argument [6] 

either , in my opinion. First of all, if we want to stick t o experience, ,,e 
cannot speak of infinity but only of spaces ly ing outside the space consid-
ered . Furthermore, it is no more permissible to infer irreversibility of the 
electromagnet ic elemeri ta ry processes from t he nonobscrvabil ity of such a 
process than it is permissible to infe1 i rreversibility of the element ary 
processes of atomic motion from t he second law of t hermodynamics . [ 7] 

2. Jeans' interpretation can be disputed on the grounds t hat i t might 
not be permissible to apply the general results of statistical mechan ics to 
cavities filled with rad iat ion . llol>ever, the l aw deduced by Jeans can also be (8) 

arrived at in t he fol lowing way1. 

1Cf. A. Einstein, Ann . d. Ph ys. 17 (1905): 133- 136 . [9] 
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According to Maxwell's theory, an ion capable of osci llating about an 
equi librium posi tion in the di rection of the X-axis will, on the average, 
emit and absorb equal amounts of energy per un it time only if t he following 

relation hol ds between t he mean osci llation energy ~ and t he energy density 
of t he rad iation p

11 
at the proper frequency II of the osc illator : 

E - c3 
II - 8w P,, ' (I) 

where c denotes the speed of light . If the osci llating ion can also 
interact wit h gas mol ecules (or, generally, with a syst em t hat can be 
descr ibed by means of the molecular t heory ) , then we must necessar ily have, 
according to the statistical theory of heat, 

-rr- _ RT 
c,v - 1{ (II) 

(R = gas const ant , N = number of atoms in one gram-atom , T = absolute 
t empciature) , if, on t he average , no energy i s transferred by the oscillator 
from the gas t o t he radiation space1. 

From these two equations we arrive al 

R 8,r 21 
pl/ = N c3" II • (III) 

i.e., exactly the same law that has also been found by Messr s . Jeans and H. A. 
[ 12) Lorcntz2 . 

(11 ] 

[13) 

[14] 

3. There can be no doubt, i n my opm1on , t hat our current theoretical 
views inevitably l ead t o tile l aw propounded by Mr. Jeans . However, we can 
consider it as almost equally well established that formula (III) is not 

1M. Planck , Ann. d. Pli ys. 1 (1900): 99. M. Planck , Vorlesungen uber die 
1'/ieori e der A'armes t rah lung [Lectures on the theory of thermal radiation] , 
Chapt er 3. 

2It should be explicitly noted that this equat ion i s an inevitable consequence 
of t he statist ical theory of heat . The attempt. on p. 178 of t he book by 
Planck just cited, t o question the general validity of Equat ion II, i s based, 
i t seems to me, only on a gap in Doltzmann's considerations , which has been 
f illed in the meantime by Gibbs' invest igat ions. 
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compat ible with the fact s. Why, after all, do solids emit visible light only 
above a fixed, rather sharply defined t emperature? Why are ul traviolet rays 
not swarming everywhere if t hey are indeed const antly being produced at 
ordinary t emperatures? How i s it poss ible to st ore highly sensit ive 
photographic plates in cassettes for a long time if they constantly produce 
short-wave rays? For furt her argument s I refer to §166 of Planck's repeatedly [15) 

ci ted work. Thus , we will indeed have to say that experience forces us to [16) 

reject ei t her equation (I ) , required by the electromagnetic t heory, or 
equation (II ), required by st atistical mechanics , or both equations. 

4. We must now ask ourselves how Pl anck' s radiation theory relates to 
t he theory wh ich i s indicat ed under 2 .. and which i s based on our current ly 
accepted theoretical foundations. In my opinion t he answer to this quest ion 
i s made harder by the fact t hat Planck's presentation of his own t heory 
suffers from a cert ain logical imperfect ion. I will now try to expl ain t his 
briefly. 

a) If one adopts the standpoint t hat t he irreversibility of t he 
processes in nature i s only apparent, and t hat t he i rreversibl e process 
consi sts in a transition to a more probable state, then one must first give a 
def inition of the probabil i ty II of a state. The on ly definition worthy of 
considerat ion, in my opinion, would be t he follow ing. [ 17) 

Let A 1 ,A2 . . . Al be all the states a closed system at a certain energy 
content can assume, or, more accurately, all t he states that we can dist in-
gu ish in such a syst em with the help of certain auxiliary means. According to [18) 

t he classical theory, after a certain t ime t he syst em will assume one particu-
lar state (e.g. , Al) and then remain in this state (thermodynamic equilib-
rium). However, accord ing t o t he st atistical theory t he system will keep 
assuming, in an irregular sequence, all these states A1 .. . A1.• If the syst em 
is observed over a very l ong t ime period 0, there will be a certain por tion 
T

11 
of t hi s time such that during T

11
, and during T

11 
only, the syst em 

occupies the state A
11

• [The quantity] r vf 8 will have a definite limit ing (20) 

value, which we call t he probability II of the state A
11 

under considera-
tion. 

1That only this last interpretation is tenabl e follows immediatel y from the 
propert ies of Brownian mot ion. [ 19] 
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Proceeding from t his defini t ion, oue can show that t he entropy S must 
(2 1) sat i sfy t he equat ion 

R S = N lg fl + const . , 

where t he constant is the same for all states of the same energy. 
b) Neit her Mr. Bolt zmann nor Mr. Planck gave a defi nit ion of II. 

They put purely formal ly II = number of compl exions of the state under 
[ 22) consideration. 

If one now demands t hat these complexions be equally probable , where the 
probability of t he complexion is defined in the same way t hat we have defi ned 
the probability of the state under (a) , one wi ll obtain precisely t he defini­
tion for t he probability of a st ate given under (a) ; however, t he logically 
unnecessary element "complex ion" has been used in t he definition. 

Even though t he i ndicated relat ion between S and fl is val id only if 
t he probabilit y of a comp lexion is defined in t he manner indicated or in a 

manner equivalent to it, neither Mr. Bol tzmann nor Mr. Plauck has defined the 
probability of a complexion. But Mr . Bol tzmann did clearly real ize that t he 
molecular-theoretical picture he had chosen dictated his choice of complexions 
in a quite definite manner; he discussed this on pages 404 and 405 of his 
paper "Uber die Beziehung ... 11 ["On t he relation ... "] that appeared in t he 

(23] llic11er Si t zungsberi ch te in 1877 . 1 Similarly, Mr. Planck would have had no 
freedom in the choice of compl exions in t he resonator t heory o-f radiation. lie 
could have been permitt ed t o postulate the pai r of equat ions 

R S = N lg V 
and 

V = number of complexions 

only if he had appended t he condit ion that the complexions must be chosen such 
t hat in the theoretical mode l chosen by him they had been found t o be equally 
probable on t he basis of st atistical considerations. In t his way he would 

[25) have arrived at t he formula def ended by Jeans . Though every phys icist must 

1Cf. L. Boltzman, Vo r l esungen uber Cas tlieorie (Lectures on the t heory of 
[24 ] gases) , Vol . I , p. 40, l ines 9-23 . 
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rejo ice that Mr. Planck disregarded these requ irement s in such a fort unate 
manner, i t should not be forgot ten that the Planck radiat ion for mula is 
incompatible wi t h t he theoretical foundation from which Mr . Planck st arted 
out . 

5. It is simpl e to see t he way i n which one could mod ify the founda­
tions of the Pl anck theory in order to have the Planck radiation formula truly 
result from the theoretical foundat ions . I wil l not present t he pertinent 
derivations here but wi l l rather just refer to my papers on t his subject .1 

The r esult i s as fo llows : One arrives at the Planck rad iat i on formula if one 
1. adheres to equation (I ) between resonator energy and radiation 

pressure, which Pl anck derived from Maxwell's t heory2 ; 

2. modif ies t he stat i stical theory of heat by the f ollowing 
assumption: A structure t hat i s capabl e of carrying out 
oscil lations with t he frequency v, and which, due t o its 
possession of an electric charge, i s capabl e of converting 
rad iat ion energy int o energy of mat t er and vice ver sa, cannot 
assume oscillat ion states of any arbitrary energy, but rather 
only such oscillation state~ whose energy i s a mul t iple of 
h•v . Here h i s the constant so des ignat ed by Planck, which 
appears in his radiat ion equat ion . (28 ] 

6. Since the modificat ion of the foundations of Planck' s t heory j ust 
described necessar ily leads to very profound changes in our physical t heories , 
it is very important to search for t he s implest poss ible, mut ual ly independent 
interpretations of Planck's radiation formula as well as of the radiat ion l aw 
in general, insofar as the latter may be assumed to be known. Two considera­
t ions on this matter, which are distinguished by their s implicity, shall be 
brief ly described below . 

Unt i l now, t he equation S = i lg // has been applied mainl y t o calcu­
late the quantity II on the basis of a more or l ess complete theory, and then 
t o calculate t he entropy from II. However, this equation can also be applied 
conversely, using empirically obtained entropy values Sv to obtain t he 

1A. Einstein, Ann . d. Ph ys . 20 (1906) and Ann . d. Ph ys . 22 (1907 ) , §1 . ( 26] 

2This amounts t o the same as assuming t hat the electromagnetic t heory of 
radiation at least yiel ds correct time averages . This , however, can hardly 
be doubted, given the utility of this t heory in optics . [27) 
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statistical probability of the indiv idual states Av of an isol ated system. 
A t heory yielding values for t he probability of a st ate t hat differ from t hose 
obtained i n this way must obviousl y be rej ected . 

A consideration of t he kind indicated for determining certain stat ist i ­
cal properties of heat radiat ion enclosed in a cavity had already been carr ied 
out by me in an earlier paper, 1 in which T f irst presented the t heory of light 
quanta . However, s ince at t hat time I started out from Wien 's radiation 

[ 30 J fo rmula , "hich is valid only in the limit ( for small values of 7) , I shall 
present here a s i milar consideration which provides a s imple interpretation of 
t he content of Planck's radiat ion formula . 

Let V and v be two interconnect ed spaces bounded by diffusely, com­
pletel y re-fleeting wall s . Let a heat rad iat ion with the frequency range dv 
be enclosed in these spaces. ll shal l be the radiation energy exist i ng 
instantaneously in V. and TJ t he rad iat ion energy exist i ng instantaneously 

[31] i n v . After some time the proport ion //0 : 1/o = V : v will t hen hold 
per manent l y, wi t hin some approximat ion . At an arbitrari ly chosen inst ant of 
time, 1J will deviate from 1/o according t o a stat istical law t hat is 
obtai ned direct ly from the rel ation bet ween S and I/ if one changes over to 
t he differential s , 

If t and u denotP t he entropy of t he radiation in the two respect ive 
spaces , and if we set 11 = 1Jo + f , we have 

and 

Ilccause 

[29] 1Ann . d . Phys. 17 (1905) : 132- 148 . 
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if one assumes that V is very large compared with v,the second equat ion 
reduces to 

S 1 {d
2 cr] 2 = const. + 2 "if?[ 

0

f + . .. . 
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If we content ourselves with the first nonvanishing term of t he series, thus 
causing an error that is the smaller the greater the value of v compared 
with t he cube of the radiat ion wavelength, we obtain 

1 N[d2u] 2 

dfl = const. · e- 2 R. ai"'I / • df . 

From this we obtain for the mean val ue t1 of the square of t he energy 
fluctuation of t he radiat ion occurring in v 

If t he radiation formula is known, we can calcul at e er from it . 1 If one 
considers Planck's rad iation formula as an express ion of experience, one 
obtains , aft er a simple calcul ation, 

R { c3 
f2 = Nf vh110 + Bw2Jv 

We have t hus arrived at an eas ily interpretable expression for the mean value 
of t he fluctuations of the radiation energy present in v. We shall now show 
that the current t heory of radiation i s incompat ible with t his result. 

According to the current t heory, t he fluctuat ions are due solely to t he 
circumstance t hat the infin i t ely many rays traver sing the space, which 
const i tute the radiation present in v, interfere with one another and thus 
provide a momentary energy that is sometimes greater, somet imes smaller than 

the sum of t he energies that the indiv idual rays would provide if t hey were 

1Cf . , e.g., Planck's repeat edly cited book, Equation (230). 

[32) 

[33] 

(34] 

(36) 

(35) 
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not int erfering with each other at al l. We could thus exactly determine the 
quantity ~ by a considerat ion t hat i s mathemat ically somewhat compl icated. 
We shall content ourselves here wi th a simple dimens ional cons iderat ion. The 
f ollowing conditions must be satisf i ed : 

1. The magnitude of the mean fluctuation depends only on ). (wave­
l ength ), d). , u, and v , where u denotes the radiation dens i t y r elated to 

[37) the wavelengths (ud). = pdv ) . 

2. Since t he rad iat ion energies of adjacent wavelength ranges and 
vol umes1 are simply additive, and t he corresponding fluctuations are indepen­
dent of eacli other , at a given ,\ and p, ~ mu~t be proportional t o the 
quantities d,\ and v. 

3. ~ has the dimension of the square of an energy. 
The expression for ~ i s t hereby completely determined up to a 

numer ical factor (of order of magnitude 1). In this way one arrives at the 
expression u2>. 4vd,\ , which upon introduction of t he variables used above 

(38] reduces t o t he second t erm of t he formula for ?I just developed . But we 
would have obtained solely t his second term for ?I had we started out with 
the Jeans formula . One would then also have to put -k equal to a constant 

of order of magnitude 1, which corresponds t o Planck' s det erminat ion of t he 
( 39) element ary quantum2. Thus , the first t erm of t he above expression for ~. 

which for t he vis ible rad iat ion surroun ding us everywhere makes a far greater 
contr ibution t han t he second one , is not compat ible with the current t heory. 

If one would put, with Planck, -A = 1, then t he fi rst t erm, if present 

alone , would yield a fluctuatiou of t he radiat ion energy equal t o t hat 
produced if t he rad iat ion consisted of po int quanta of energy hv moving 

(40] independently of each other . Thi s can be shown by a simple calculation . One 
should remember that t he contribution of t he first t erm to the average percent 
fluctuation of energy 

10nly if t hese are large enough , of course. 
28y carry ing out the interference considerat ion i ndicated above , one would 

obtain ' = 1. 
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is the great er the smaller t he energy 1/o , and t hat the magnitude of this 
percent fluctuation yielded by the first term i s independent of the size of 
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t he space v over which t he radiation is distr ibuted; I mention t his in order 
t o show how f undament ally di fferent the actual st atist ical properties of 
rad iat ion are from t hose to be expected on the basis of our current theory, 
which i s based on l inear, homogeneous di ff erent ial equations. (41] 

7. In the foregoing we have calculat ed the fluctuations of t he energy 
dist ribut ion in order to obtain informat ion on the nature of t hermal radia­
t ion. In what follows we shall briefly show how one can obtain analogous 
results by calculating t he fluctuations of the radiation pressure, due to 
fluctuat ions of t he momentum. [42] 

Let a cavi ty surrounded on all sides by matter of absolute t emperature 
T contain a mirror that can move freely in the direct ion perpendicular to its 
normal1. If we imagine it to be moving wi t h a certah1 velocity from t he 
outset , then , due to th is mot ion , more radiation will be reflected at its 
front than at i t s back ; hence , the radiat ion pressure acting on t he front will 
be great er than that acting on t he back . Thus , due to i ts motion relative to 
t he cavity radiation, t he mirror will be act ed upon by a force comparable to 
friction, which little by little would have t o consume t he momentum if there 
did not exist a cause of motion exactly compensat ing on t he average for the 
momentum l ost through t he above-ment ioned fr ictional force. To t he i rregular 
fluctuations of t he energy of a rndiation space st ud ied above, there also 
correspond irregular fluctuat ions of the momentum, or i rregular fluctuations 
of the pressure forces exerted by the radiat ion on t he mirror, which would 
have to set t he mirror in mot ion even if it had originally been at rest. The 
mean speed of t he motion of the mirror has then to be determined from the 
ent ropy-probability relat ion, and the law of the above-mentioned fr ictional 
forces from the rad iation law, which is assumed t o be known. From these two 
resul ts one then calculates the effect of the pressure fluctuations, which in 
turn makes it poss ible t o draw conclusions concerning t he constit ution of tbe 
radiation or-more precisely-concern ing the elementary processes of the 
refl ection of the radiation from the mirror. 

1The mot ions of the mirror considered here are completely analogous to the 
so-called Brownian mot ion of suspended particles. 



(43 ) 

[44 ] 

[45) 
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Let v denote the velocity of t he mirror at time t. Owing t o t he 
f r ict ional force ment ioned above, t his velocity decreases by P~r in the 

small time interval r , where ,n denotes the mass of t he mirror and P the 
retarding force corresponding t o un it veloci t y of the mirror . Furt her, we 
denot e by !J. the velocity change of t he mi rror during r corresponding to 
t he irregular fl uctuations of t he rad iation pre~;sure. The velocit y of the 
mirror at t ime t + r is 

For t he condition that on the average v shall r emain unchanged during r, we 
obtain 

or, if we omit relat ively infinit esimal quanti t ies and t ake int o account t hat 
the average val ue of v!J. obviously vanishes: 

!J.2 = 2Pr v1 . 
Ill 

In thi s equation v'1- can be replaced using the equation 

which can be derived from t he ent ropy-probability equation. Defo re giving t he 
value of the fr ict i on const ant P, we specialize t.he problem under considera­
tion by assuming t hat the mir ror completely reflects the radiat ion of a 
cert ain frequency range (between II and 11 + dv) and is completely t ranspar­
ent to radiation of ot her frequencies. Uy a calculat ion om itt ed here for the 

[461 sake of brevity, one obtains from a purely elect rodynamic investigat ion t he 
following equation , which i s val id for any arbitrary radiation distribution: 

[47 ] 
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where p again denotes the radiation density at frequency 11, and / the 
surface area of the mirror. By substitut ing the values obtained for vl and 
P, we get 

7i:l RT 3 [ 1 4£] T = "N" . C p - 3 ll av dvf . 

If we t ransform th is express ion using f lanck' s radiat ion formula, we obtain 

A2 1 [ c3 p2] - = - llpv + a= ";-;7 dvf . 
T C O J" ll 

The close connection between this relation and the one der ived in the 
last sect ion for the energy fluctuation ("i2") is immediately obv ious , 1 and 
exact ly analogous cons iderations can be applied t o it . Again, according to 
the current theory, the expression would be reduced t o the second term (fluc­
t uat ion due to interference). If the first t erm alone were present, t he 
fluctuations of the radiation pressure could be completely expl ained by the 
assumption t hat the rad iat ion cons i st s of independently moving, not t oo 

(48) 

extended complexes of energy hv . In th is case, too, the fo rmula says t hat in [49 ) 

accordance with Planck's formul a the effect s of t he two causes of fluctuation 
mentioned act l ike fl uctuations (errors ) aris ing from mut ually i ndependent 
causes (addit ivity of t he terms of which the square of t he fluctuation is 
composed). 

8. In my opinion, the l ast two considerations conclusively show that 
t he constitution of radiat ion must be different from what we currently 
believe. It i s true that, as the excellent agreement of t heory and experiment 
in optics has proved, our current theory correctly yields the time averages, 
which alone can be direct ly observed, but it necessarily leads to l aws on 
t hermal properties of radiation that prove to be i ncompat ible with exper i ence 
if one maintains the entropy-probability relation. The discrepancy between 
t he phenomena and the theory is t he more prominent t he larger II and t he 
smal l er p. At smal l p the temporal fluctuations of the radiat ion energy of 

1That rel ation can be written in the form (assuming ' = 1) 

<' = {hpv + ~;z;J vdv 



370 THE RADIATION PROBLEM 

a given space or of the force of radiation pressure on a given surface are 
much larger t han expected from our current t heory. 

Ye have seen t hat Planck's radiation law can be understood if one uses 
the assumption t hat t he osc i llation energy of frequency v can occur only in 
quanta of magnit ude /w . According t o t he aforesaid, i t i s not sufficient to 
assume t hat rad iation can only be emi tt ed and absorbed in quant a of t his 
magnit ude, i. e . , that we are deal ing with a property of t he emit ting or 

[ SO] absorbi ng mat ter only; considerat ions 6 and 7 show t hat the fluctuations in 
t he spatial distribution of the radiat ion and in t he radiation pressure also 
occur as if the radiation consist ed of quanta of the indicated magn itude. 
Cert ainly, i t cannot be asserted t hat t he quant um t heory fo llows from Planck's 
radiation law as a consequence and that other interpretat ions are excluded. 
However, one can assert i ndeed that the quantum theory provides t he simplest 
interpret ation of the Planck formula. 

It should be emphasized t hat the considerat ions presented would in t he 
main in no way lose t heir val ue if it should t urn out t hat Planck' s formula i s 
not valid; it i s precisely that part of Planck's formu la which has been 
adequat ely confi rmed by exper ience (the Wien radiation law valid in the limit 

[ 51 ] for large 'T) which l eads to t he t heory of t he l ight quantum. 

9. The exper iment al investigation of t he consequences of t he theory of 
light quanta is , in my opinion, one of t he most important t asks t hat t he 
exper imental phys ics of today must solve. The results obtained so far can be 
div ided into t hree groups. 

a) There are clues concerning the energy of t hose elementary processes 
t hat are associated wit h t he absorpt ion or emiss ion of radiation of a certain 

( 52 ] frequency (Stokes ' ru le ; veloci t y of cat hode rays produced by light or X- rays ; 
cat hode luminescence, etc). To t his group also belongs t he int erest ing use 
Mr. Stark has made of the t heory of l ight quant a t o elucidate t he peculiar 
energy distribution in t he spectrum of a spectral line emi t t ed by canal rays. 1 

The met hod of deduction is always as fo llows: If one elementary process 
produces another one, then the energy of the latter is not l arger t han t hat of 
the former. On t he other hand, t he energy of one of t he two el ementary 

[53] 1J . Stark, Phys . Zei t. 9 (1908): 767 . 
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processes is known (of magnitude /iv ) if t he lat t er consist s in t he absorption 
or emiss ion of radiat ion of a specif ied frequency. 

Especially int eresting would be the study of exceptions to Stokes' law. [ 54 ] 

In order to explain t hese exceptions , one has to assume t hat a light quantum 
is emitted only when the emiss ion center in question has absorbed two light 
quant a. The frequency of such an event, and thus also the intensity of t he 
emitt ed l ight having a smaller wavelength t han the producing one, will in t his 
case have to be proportional to the square of the i ntensity of the excit i ng 
light at weak irradiat ion (according to the l aw of mass action) , while 
according to Stokes' ru le a proportionality wi th t he first power of the 
exc iting l ight int ens ity is t o be expected at weak irradiation. [55 ] 

b) If the absorption1 of each light quantum brings about an elementary 
process of a certain kind, then fv i s the number of these el ement ary pro-

cesses if t he quant i ty of energy E of rad iation of frequency v is 
absorbed. 

Thus , for example, i f t he quantit y E of radiation of frequency v is 
absorbed by a gas being ionized, t hen it is to be expect ed that -,{iw gram 

molecules of the gas wi ll be ionized. Th is relat ion only appear s to presume 
t he knowledge of N; for if Planck's radiat ion formula is written in t he form 

p = ov3 -n;-~v_l __ 

e - 1 

t hen Jv i s the number of gram-molecules ionized. 

This relat ion , which I have al ready presented in my fi rst papcr2 on th is 
subject, has unfortunately remained unnot iced t hus far. [58] 

c) The results noted in 5 lead to a modification of the kinetic t heory 
of specific heat3 and to certain relat ions between t he opt ical and t he thermal 
behavior of bod ies. 

10£ course. the analogous cons iderat ion holds also conversely for t he produc-
tion of light by el ementary processes (e.g. , by collisions of ions ). [ 56] 

2Ann. d. Phys . (4)17 (1905 ): 132-148, §9. [ 57] 

3A. Einstein, Ann. d. Phys. (4)22 (1907): 180-190 and 800. [59] 
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10. It seems diff icult to set up a t heoretical system that int erpret s 
t he light quanta in a complete fashion, the way our current molecular 
mechan ics in conjunct ion wit h the Maxwell -Lorentz t heory is abl e to interpret 
the radiation formula propounded by Mr. Jeans. That we are only dealing wi t h 
a modification of our current theory, not with its complete abol i tion, seems 
al r eady to be implied by t he fact that Jeans' law seems to be valid in the 
limit (for small f> . An indicat ion as to how this modificat ion would prob-

ably have to be carried out is given by a dimensional consideration carried 
( 60 ] out by Mr . Jeans a few years ago, which is Pxtremely important , in my opinion, 
[61 ] and which--modif ied in some points--! shall now recount in brief. 

Imagine that a closed space contains an ideal gas and radiation and 
ions , and that owing t o t hei r charge, t he ions are able t o mediat e an energy 
exchange between gas and radiat ion. In a theory of radiat ion linked with t he 
cons iderat ion of this syst em t he following quantit ies can be expected to play 
a role , i .e . , to appear in t he expression t o be obtained for the radiat ion 
dens i t y p: 

a) the mean energy 'f/ of a molecular struct ure (up t o an unnamed 
numerical factor equal t o f>, 

b) the velocity of light c, 
c) t he elementary quantum f. of electr icit y, 
d) the frequency v . 
From t he dimension of p, by solely cons ider ing t he dimensions of t he 

four quant ities mentioned above, one can then determine in a simple way what 
the form of the express ion for p must be. Substituting the val ue of .ij 
for ~. we obtain 

"here 
Rf. 2 V 

[62 ] Q = Tc 1' 

,,here ¢ denotes a funct ion that r emains undetermined. This equation 
[631 contains the Wien displacement l aw, whose valid ity can hardly still be in 

doubt. This has t o be understood as a conf irmation of the fact t hat apart 
from the four quantities int roduced above , no other t1uantities having a 
dimens ion play a role in the rad iat ion law. 
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From this we conclude t hat. except for dimens ionless numerical factors 
that appear in theoretical developments and of course cannot be determined by 

d • • 1 "d • l ff . • t:
2 d Rt: 2 • • l 11uens1.ona cons1 erat10ns , t 1e coe 1cients c4 an Tc appearing rn t 1e 

equation for p must be numerical ly equal to the coeff icients appearing in 
the Planck (or Wien) rad iation formula. Since t l1e above nondeterminabl e 
dimensionless numerical fact or s are hardly likely to essent ial ly change the 
order of magnitude, we can put , as far as the order of magni t ude1 is concerned 

h (2 
and h R t: 2 

c3" = c4 1i = Ne' 
hence 

It = (2 

C 
and N 

k = R 

I t i s tlie second of these equation which has been used by Mr . Planck to 
determine the elementary quanta of matter or electricity . Concerning the 
express ion for Ii, it should be noted t hat 

and 

h = 6-10-27 

~ = 7. 10-30 
C 

(64 ] 

(65] 

[66] 

Th is is three dec imal places off the mark. But t his may be due to t he fact [67] 

that the dimens ionl ess factors are not known. 
The most important aspect of t his der ivation i s that it relates the 

l ight quantum constant h to the elementary quantum t: of electricity. We 
should remember that the elementary quantum f is an out s ider in Maxwell­
Lorent z electrodynamics2 . Out side forces must be enlist ed in order t o con-
struct t he el ectron in the theory; usually, one introduces a rigid framework (69] 

1Thc Planck formula reads 
8-xhv3 

P = ~-h~v--

/?f - 1 

2Cf. Levi -Ci vita. "Sur l e mouvement etc ." (On t he motion , etc.], Comptes (68 ] 
Re11dus ( 1907) . 
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to prevent the electron' s electrical ma8ses from flying apart under the influ-
£2 

ence of t heir electric interact ion. The relation Ii = c seems t o me t o 

indicate that the same modificat ion of the theory t hat will contain the ele­
mentary quantum £ as a consequence will also cont ain t he quant um structure 
of rad iation as a consequence . The fundamental equation of opt i cs 

will have to be replaced by an equat ion in which t he universal constant t: 

(probably i ts square) also appears in a coefficient. The equat ion sought (or 
t he system of equations sought ) must be homogeneous in its dimensions. It 
must remain unchanged upon applicat ion of the Lorentz t ransformation. It 

[70] canuol be linear and homogeneous. It must-at least if Jeans' law is r eally 
valid in the limit of small 1 -lead t o t he form J)(<.p) = 0 for large 

ampli t udes in the limit. 
I have not yet succeeded in findi ng a syst cm of equations fulfilling 

these conditions which would have l ooked to me suitabl e for the construction 
[71) of the elementary electrical quantum and the l ight quanta. The variety of 

possibilities does not seem so great, however, for one t o have to shr ink from 
this task. 

Adde1ulum 

From what has been said above under 4. in this paper, t he r ea<ler could 
easily get an incorrect impression about the standpoint taken by \Ir. Planck 
with r egard t o his own theory of t hermal radiat ion . I therefore deem it 
appropriate t o note the followi ng . 

In bis book. Air. Planck emphasized in several places that his t heory 
should not yet be viewed as something complete and final. At the end of his 
introduction , for example, he says verbatim: "I find it important, however, 



DOC . 56 375 

t o especially emphas ize also at t his po int t he fact, as elaborated in greater 
detail in t he l ast sect ion of the book, that t he theory developed here does 
not claim by any means to be fu lly complete, even though, as I bel ieve, it 
affords a feasibl e approach by which to cons ider t he processes of energy 
rad iation from t he same viewpoint as those of molecular motion. 11 (72] 

The pert inent discuss ions in my paper should not be construed as an 
objection (in t he strict sense of t he word) against Planck' s theory, but 
rat her as an attempt to formulat e and apply the entropy-probabi lity princ iple 
more rigorously than has been done till now. A more rigorous formulation of 
t hi s principle was necessary because without it the subsequent elaborations in 
the paper, in wh ich t he mol ecular structure of radiation was inferred, would 
not have been adequatel y subst antiated . So t hat my conception of the prin­
ciple would not appear as chosen ad hoc , or arbi t rary, I had to show why its 
current fo rmulat ion has not completely 5at isf ied me. 

IlPrn , January 1909 . (Received on 23 January 1909) 
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Doc. 57 
ON THE PRESENT STATUS OF THE RADI ATION PROllLl:]i 

by W. Ritz and A. Einst ein 
[Phgsikal ische Ze i tschrift 10 (1909): 323-324] 

To clarify the differences of op inion t hat came to light in our 
respective publications 1, we note t he following. 

In t he special cases in wh ich an electromagneti c process remains 
restric ted to a f i nite space , the process can be represented in the fo rm 

dx' dy' dz' 

as well as in the form 

- -
1 J l{) [x I ' y I , z I ' t + f] 

f f ---------- h' dy'b' - 2 - :ifi r 

and in other forms . 
While Einst ein believes t hat one could restrict oneself to thi s case 

without substantia l ly Limit ing the generalit y of the considerat ion , Ri t z 
considers this restriction not t o be permiss ible in principl e. If one t akes 
t his st andpoint, t hen experience compels one to consider t he r epresent at ion by 
means of retarded potent ials as the only one possible, if one is inclined t o 
t he view t hat t he fact of irreversibil ity of radiation processes must already 
find it s expression in the f undam~ntal equat ions. Ritz cons iders t he restr ic­
t ion t o the form of retarded potentials as one of t he root s of t he second law , 
while Einstein believes that irreversibility is exclusively due t o reasons o-f 

[3] probabilit y. 

Zurich , Apri l 1909. (Received on 13 Apr il 1909 ) 

[2] 1W. Ritz, Phys. Zeit . 9 (1908): 903-907, and A. Einst ein, l'liys. Zeit . 10 
( 1909): 185-193 . 
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Doc. 58 
"Discuss ion" follow ing l ecture version of Henry Siedentopf, 

"On Ultramicroscopic Images" 
[Phys ika l i sche Zeitschri ft 10 (1909): 779-780] 
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[ l] 

Rubens : I would like t o ask Dr. Siedent opf whether be possibly has used [2 ] 

t his elegant method for quant itat ive measurements of Ilrownian molecular 
motion. With Mr. Perrin 's procedure such experiments can be used for t he 
determination of Loscl1midt ' s number. [3 ] 

Lecturer: I would l eave t his t o t he physicists working in t he 
l aboratory . 

Ru bens : It str ikes me t hat the method offers the great advantage t hat 
[ 4 J 

the quantities in quest ion can be measured in peace and quiet on a photogram. [ 5 ] 

Lectu rer: Let me ask the gentlemen to t ake this into their own hands. 
Professionally, I am so busy that I don 1 t have time for that. 

Einst ein: The main diff iculty is t he t emperature ; it cannot be kept 
constant. Th i s is also t he case wi th the French measurement s. [6 ] 

Seddig: The drawback just mentioned by t he previous discussant and [7 ) 

consisting in changes in t emperat ure of the preparation during observation due 
t o radiation absorption, which affect the result in an uncontrollabl e fashion , 
was also experienced by me in similar investigations . and for t his reason I 
did not use continuous i llumination in my attempt s to fo llow t he Brownian 
mo lecular motion quant itatively: instead, I al ways passed two very short 
flashes of light t hrough t he preparation to mark t he inst antaneous posi tion of 
the part icles photographically. In fact, a met hod somewhat s imilar to t he one [8] 

just described was used by The Svedberg 2 or 3 years ago ; he let the colloidal 
solution fl ow slowly t hrough t he test cuvette, and then he obt ained simi lar 
df'viations from r ect ilinear motion, which he of course did not photograph but 
rather observed t hrough an eyepiece micrometer. [9 ] 

Lecturer: The Svedbcrg' s met hod has the flaw that one cannot control 
the interfer ing cur rents , which even get magn ified. Also, he incorrectly 
assumed the mot ion to be s inusoidal. [ 101 



[ 1] 
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Doc. 59 
11Discuss ion" fo llow ing lecture vers ion of Ar t hur Szarvassi, 
"The Theory of Electromagnetic Phenomena in Moving Bodies 

and the Energy Principle" 
[Physikalische Zei tschrift 10 (1900): 813] 

Eins t ein: I th ink that a body subj ect ed to some forces , t hat t his body , 
when observed from a relatively moving coordinate syst em , because of i ts being 

(2] subject ed to forces , represents an energy. If t his assumpt ion is not made , 
t l1Crc wil l arise a violation of t he energy principl e. Don 1 t you think that 
this n1t1.y be the bas is of the example you considered? Is it clear to you what 
I mean? 

l ecturer: Not completely. 
Ei ns tein: I t can be shown that a moving body subject ed t o fo rces whose 

resultant docs not vanish , i n certain cases does not get accel erated t hereby . 
One must therefore assume in the theory of relat ivi ty that the moving (rigid) 
body subjected to forces possesses a ccrta iu energy content ; otherwise , one 
gets a violation of t he energy pr i nciple . 

Lecturer: That would mean that , besides the so-called kinetic energy in 
the cur rent ly accepted sense , and besides the so-called usual pot ential elec­
t ric energy of t he system , t here exist s an additional part of energy. Because 
I made no assumption about t he quanti ty ¢, t he above part would have t o be 
contained in t hi s f unction . Aft<'r all, I did not say anyth ing about the form 

[3] of t he function VJ . The energy equation expresses the energy principle quite 
generally. It i s very likely t hat t his energy quanti ty is contained in ¢. 

Ei ns t ein: I cannot comment on that, because I did not enter suffi ­
ciently into the spirit of th is consideration . 



DOC . 60 

Doc. 60 
ON THE DEVELOPMENT OF OUR VIEWS CONCERNING THE NATURE AND 

CONSTITlITION OF RADIATION 
by A. Einstein 

[lleutsche Phys ikal ische Cesellschaft, Verhandlungen 7 (1909): 482-500 . 
Also in Phys ikalische Zeit schrift 10 (1909) : 817-826] 
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(Presented at the session of the Division of Phys ics of the 81st Meet ing of 
German Scient i sts and Physicians i n Salzburg on September 21, 190!). ) [ l] 

(Cf . above p. 417) 

Once i t had been recognized that l ight exhibits the phenomena of int er ­
ference and diffraction, it seemed hard ly doubtful any longer t hat l ight i s to 
be conceived as a wave mot ion. Since light can also propagate t hrough vacuum , 
one had to imagine t hat vacuum, too, contains some special kind of matter that 
mediates the propagation of light waves. For the interpretat ion of t he l aws 
of the propagation of light in ponderable bodies, it was necessary to assume 
that t his matter, wh ich was called l uminiferous et her, is present in t hem too , 
and that in the interior of ponderable bod ies as well, i t is essentially the 
lumin iferous et her that mediates t he propagat ion of light . The existence of 
t his lumi niferous ether seemed beyond doubt. The first volume of t he excel­
lent text book by Chwolson . which was published in 1902, contains in t he 
Introduction the following sentence about the ether: "The probabil ity of the 
hypothes is on t he existence of t his agent borders extraordinarily closely on 
cer t ainty . 11 [2] 

JlowPver, today we must regard the ether hypothesis as an obsolete stand­
point. It i s even undeniable that there is an extensive group of fact s 
concerning radiation that shows that light possesses cert ain fundamental 
properties that can be understood far more readily from the standpoint of 
Newton ' s emission theory of light t han from t he standpoint of the wave t heory . [3] 

It i s therefore my opinion that t he next stage in t he development of t heore-
t i cal phys ics will bring us a theory of light t hat can be understood a~ a kind 
of fus ion of the wave and emiss ion t heories of light . To give r easons for 
t his opinion and to show that a profound change in our views on t he nature and 
constitut ion of light is imperative i s the purpose of the following remarks. 
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The greatest progress t heoretical optics ha::; made s ince the int roduction 
of the wave t heory consists doubt less i n Maxwell's bri lliant di scovery t hat 
light might be vi ewed as an electromagnetic process. Instead of mechanical 
quantities , i.e., deformation and velocity of part s of t he ether , this t heory 
i ntroduces int o consideration t he electromagnetic states of ether and matter 
and thereby reduces optical problems to electromagnet ic ones. The more 
electromagnetic t heory advanced, t he more t he quest ion of whether electro­
magnetic processes can be reduced to mechanical ones ret reated into t he 
background; one became used t o consider ing the concepts of el ectric and 
magnetic fi eld str ength , el ect ric space densit y, etc. , as elementary concept s 

(4] t hat are not in need of mechanist ic interpretation . 
The introduction of the elect romagnet ic theory brought about a simpl i­

fication of t he bases of t heoretical opt i cs and a reduct ion in t he number of 
arbitrary hypotheses. The old quPstion about the direction of oscillation of 

[51 polarized light became moot. The difficult ies with boundary conditions at the 
boundary of two media were resolved by the foundation of the theory. There 
was no longer a need for an arbitrary hypot hesis in order to exclude* longitu­
dinal light waves. The pressure of light, wh ich has only recently been 

[6] established experimentally, and which plays such an important role in the 
theory of radiation , proved to be a consequence of t he t heory. I will not 
attempt here an exhaust ive enumeration of t he well-known achievement s but will 
rather cons ider a cardinal aspect in wh ich the elect romagnetic theory agrees 
with or , more accurately , seems t o agree with t he kinet ic theory. 

ccord ing to both of t hese theor ies , light waves appear t o be 
essentially an aggregate of ~t atcs of a hypothetical medium , the ether, which 
i s prc>sent everywhere even in the absence of rad iation. It had t herefore to 
be a~sumed t hat t he movements of t his medium must influence t he optical and 
el ectromagnetic phenomena. The search for the laws governing t his influence 
has caused a transformat ion in t he fundamental views about the nature of 
ra<lia.t ion, the coun,e of which we wnnt t o cons ider briefly. 

The basic question t hat arose in this regard was t he following: Does 
t he l uminiferous ether take part in the mot ion of matt er or does it move 
inside t he moving matter in a different way ; or , fi nally , could it be possible 

*Translator's note: The German t ext erroneous ly says "anzuschliessen" (to 
connect) instead of "auszuschl iessen11 (to exclude) . 
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t hat it does not participate in t he motion of matter at all but stays at rest 
i nstead? To solve thi s problem, Fizeau performed an important i nterference 
experiment based on t he fo llowing consideration. Let l ight propagate in a [7) 

body with velocity V if the body i s at r est . If thi s body, when in mot ion , 
completely carries along its ether, the light will, relat ive to the body, 
propagate in the same way as if the body were at rest . Hence the propagation 
velocity relative to the body wi ll in this case also be JI. However, i n 
absol ute terms , i.e., relative to an observer not mov ing along with t he body, 
t he propagation velocity of a light ray will equal t he geometric sum of V 
and the vel ocity of motion v of the body . If the velocities of propagation 
and of motion have t he same direction and the same sense, t hen Yabs s imply 
equals the sum of the two velocities, i. e . , 

flabs = JI + v 

To test whether t his consequence of t he hypothesi s of t he complet ely 
co-moving lurn iniferous ether i s correct, Fizeau made each of two coherent [8] 

monochromatic beams of light pass axially through one of two water-fill ed 
t ubes and then interfere wi t h each other. When he then let both t he water and 
the light move axially through the tubes , in the direction of the light in one 
tube and in the opposite direction in the other tube , he obtained a shift in 
t he interfer ence fringes from which he coul d draw a conclusion about the 
effect of the velocity of t he body on the absolute velocity . 

It turned out, as we know, t hat the velocity of the body does show an 
influence in the sense expected, but that t hi s influence i s smaller than the 
hypothes i s of complete drag would require. We have 

V abs = V + av , 

where a is always smaller t han 1. Neglecting dispersion, we get 

Thi s exper iment showed that the ether is not fully carried along by 
matter, i . e . , that in general a relative mot ion of the ether with respect to 
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mat ter is taking place. Dut t he eart h i s a body t hat in the course of the 
year has velocities of varying directions wi th respect t o the solar system, 
and i t had t o be assumPd that the ether in our laboratories does not com­
pletely participate in this motion of the earth, just as i t did not seem to 
par t icipat e completely in t he motion of water in Fizeau 1s experiment . Thus , 
we had t o conclude that there exists a relative motion of t he ether with 
respect to our apparatuses t hat changes with t he time of day and wi th t he 
seasons , and one had t o expect t hat t his re lative motion would cause an 
apparent anisotropy of space in opt ical experiments , i.e., that optical 

(101 phenomena depend on t he orientation of t he apparatuses. All kinds of 
exper iment s have been carried out to detect such an anisotropy, but the 
expected dependence on the orientat ion of t he apparatuses could not be 
established. 

Th is contradict ion was resolved for the most part by the trailblazing 
[11 ] work of II . A. Lorentz in 1895. Lorentz showed t hat by assuming an et her that 

is at rest and does not t ake part in the motion of matter, one can arrive at a 
theory that accounts for almost all phenomena without having t o post ulate 
other hypotheses . In particular, explanations were obtained for the results 
of the exper iment of Fizeau outlined above and for t he negative result of the 
above-mentioned at tempts t o demonstrate t he motion of t he eart h relat ive to 
the ether . There was only one single test t hat seemed incompat ible with 

[12) Lorentz ' s t heory, namely the interference experiment of Michelson and Morl ey. 
Lorentz had shown that according to his t heory, apart from terms 

cont aining as a factor t he s<'cond or higher power of t he ratio 
velocity of t he body h 1 · f velocity of light , t e common t rans at ory mot10n o t he apparatuses has no 
effect on the ray paths in opti cal experiments. But one al ready knew t he 
interference experiment of Michelson and Morley, which had shown that in one 
special case the terms contain ing the second power of the ratio 
velocity of t he body . velocit y of light are not observed even though tlus had been expected from 
the st andpoint of the t heory of an ether at rest. In order to have this 

[ 13) experiment encompassed by the theory, Lorentz and Fi tzGerald introduced , as we 
hnow , the assumption t hat all bodies , hence also those connecting t he 
components of the exper imental arrangement of Michelson and Morley, change 
their shape in a certain way when t hey are set in motion relat ive to t he 
ether. 
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This state of affairs was extremely unsat isfact ory, however. The only 
t heory t hat was workable and transparent as to i t s fo undat ions was Lorentz 's 
t heory. Th is t heory rested on the assumpt ion of a completely immobile ether. 
The eart h had to be vi ewed as in mot ion relat ive t o t his ether. However, all 
at tempts t o prove this relative mot ion had ended in failure, so t hat one was 
forced to introduce a qui te peculiar hypothesi s in order to understand why 
t his relat ive mot ion was not observable. 

Michelson ' s experi ment suggest ed t he assumpt ion that , relative to a 
coord inate system moving along with t he earth, and , more generally, relative 
to any system in nonaccelerated mot ion, all phenomena proceed accordi ng to 
exactly identical l aws. Hencefor t h, we wi ll call th is assumption in br ief 
"the princ ipl e of relativity ." Before we consider the question of whet her i t (14) 

is possible to adhere to t he principl e of relat ivity, we shall briefly discuss 
what will become of the ether hypot hes is if we adhere t o t his princ iple. 

Taking as a basis t he ether hypot hesis, t h~ experiment led t o t he 
supposit ion that t he et her i s immob ile. In that case t he pr inc iple of rela­
tivit y states t hat all laws of nature referred to a coord inate system K' 
that is in uniform motion relative t o the ether must be ident ical with the 
corresponding laws referred to a coordinate system K that i s at rest 
relat ive to it . But if th is i s so, t hen we have j ust as much reason t o 
imagine the ether at rest relative to K' as at rest relative to K. Hence 
i t i s totally unnat ural to single out one of the two coordinate systems K, K' 
by introducing an ether that i s at rest relative to i t. From this it foll ows 
t hat one can obtain a sat isfactory theory only if one drops the ether hypo­
t hesis . In t hat case the Plectromagnet ic fi elds that constitute the light 
will no l onger appear to be states of a hypot hetical medium , but rather 
independent entities emitted by the sources of light, exact ly as in t he 
Newtonian emiss ion t heory of light. Exactly as accord ing to t he latter 
t heory, a space not permeated by radiat ion and free of ponderable mat ter 
appears to be really empty . 

Upon superficial consideration, it seems imposs ible to reconcile t he 
gist of Lorentz ' s theory with the principle of relat ivity. For according to 
Lorentz 's theory, if a ray of light i s propagat ed in vacuum , t his al ways 
occurs with t he fixed velocity c wi th respect to a coordinate system K at 
rest i n t he ether, independent of the st ate of mot ion of the emitting body. 

[15 ] 
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l\e wi ll call this proposition the principl e of the constancy of t he velocity 
of l ight. According to the addit ion t heorem of velocities , t his same ray of 
light wi ll not also propagate wi th t he velocity c with respect t o a coordi­
nate syst em I. ' t hat i s in t ranslatory motion relative t o the ether. The 
laws of propagat ion of light t hus seem to be differ ent relative t o t he two 
coordinate systems, and from t hi s it seems to follow t hat the principle of 
relat ivi ty is incompatible wi th the l aws of propagation of light . 

However, the addit ion theorem of velocities i s based on t he arbit rary 
assumptions t hat st atement s concerning time as well as t hose concerning t he 
shape of moving bodies have a meaning that is independent of the stat e of 
mot ion of t he coordinate syst em used. One can see , however , that a definit ion 
of time and of the shape of moving bodies necessitates the introduction of 
clocks that are at r est wi t h respect t o t he coordinate system used . The above 
concepts must t herefore be defined separately for each coord inat e syst em , and 
i t is not a foregone conclus ion that for t wo coordinate syst ems K and K' 

moving relat i ve to each other t hese def initions yield t he same t ime values 
and t' for t he individual events ; it is equally impossible to say a prior i 
t hat every st atement about t he shape of t he bodies valid with respect to t he 
coordinate system K shall also be valid wi th respect t o the coordinate 
syst em K' that is moving relative t o K. 

From th is it fo llows that t he currently used t ransformation equat ions 
for t he transition from one coordinate system to another one moving uniformly 
relat ive t o it are based on arbit rary assumptions . If these are dropped , then 
the foundations of the Lorentz theory, or, more generally, t he principl e of 
the const ancy of the velocity of light , t urn out to be reconcilable with the 
principle of relativity. One thus arrives at new equations for t he t ransfor­
mat ion of coordinates, wh ich are uniquely determined by t he two principles , 
and which, given the appropriate choice of the origins of coord inat es and 
times , are characterized by the fact tliat t hrough them t he equation 

becomes an identity . Here c denotes the velocit y of light in vacuum ; x, y, 
z , t are space-time coord inat es with reference t o K, and x', u', z' , t ' 
with reference to K'. 
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This path leads to the so-called t heory of relativity, of whose conse­
quences I would here like to ment ion only one, because it brings about a 
certain modification of the bas ic ideas of phys ics . It t urns out that the 
inertial mass of a body decreases by L/ c2 when the body emits t he rad iation 
energy L. One can arrive at th is in the following way . ( 16 ] 

Ye consider a motionless , freely floating body that emits in two oppo­
site directions the same amount of energy in the form of radiation. The body 
r emains at rest. If £0 denotes the energy of the body before the emiss ion, 
£1 its energy after the emiss ion, and L the amount of rad iat ion emitted, 
t hen we have, according to the energy principle 

We now observe the body, as well as t he rad iat ion it emits, from a 
coordinate system re lative to which the body moves with velocity v. The 
theory of relativi ty then provides t he means for calculating the energy of the 
emitted radiation with respect to t he new coordinate system. The value 
obtained for it is 

L' l • 1 

J1 -* 
Since the principle of conservat ion of energy must hold for the new coordinate 
syst em as well, one obtains, us ing an analogous notat ion, 

El + L --1--

j1 -* 
By subtraction, and omitting terms of fourth or higher order i n v/ c, we 

get 

However, Eb - £0 i s nothing other than t he kinetic energy of the body 
before t he emission of light, and El - £1 is nothing other than i ts kinetic 
energy after the emiss ion of light . If J/0 denotes t he mass of t he body 
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before t he emission, and 11 i ts mass after the emiss ion , t hen one can put. 
neglecting t erms of higher than the second power, 

or 
L 

Mo= Hi+ ~ • 

Thus the inertial mass of a body decreases upon emission of light . The 
energy emitted must be reckoned as part of the body ' s mass . From t his it can 
be concluded f urther t hat each absorption or release of energy brings about , 
respectively, an increase or decrease of the mass of t he body involved. 
Energy and mass appear as equival ent quantities the same way t hat heat and 
mechanical energy do . 

The theory of relat ivity has thus changed our views on t he nat ure of 
light insofar as it docs not conceive of light as a sequence of states of a 
hypothet ical medium , but rather as something having an i ndependent exi st ence 
j ust like matter. Furthermore, t hi s theory shares wit h t he corpuscular t heory 
of light t he charact er istic f eature of a transfer of inert ial mass from t he 
emitt ing t o the absorbing body. Regard ing our concept ion of t he struct ure of 
light , in particular of t he distr ibution of energy in t he irradiated space, 
the t heory of relativ i ty did not change anyt hing. I t i s neverthel ess my 
opinion that wi th respect t o t his aspect of the probl em we are at the 
threshold of not yet fu lly foreseeabl e, but nevertheless highly significant , 
developments. What I shall presently say is for t he most part my private 
opinion or, rather, t he resul t of considerations t hat have not yet been 
sufficiently checked by others. If I nevertheless present these cons id­
erat ions , th is should not be att r ibuted t o excessive confidence in my own 
views but rat her to t he hope that I may induce one or another among you t o 
concern himself wi t h the probl ems in question. 

Even wi t hout getting deeper into any t heoret ical consideration, one can 
notice t hat our t heory of light cannot explain certain fundament al propert ies 

[ 17] of light phenomena. Why does it depend only on the color, but not on t he 
int ens ity, of light whether a given photochemical react ion wil l or wi ll not 
occur? Why are short-wave rc1ys in general chem ically more effective t han 
l ong-wave ones? Why is t he veloci ty of photoe lectrically produced cathode 
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rays independent of t he intens ity of light? Why does one need high temper ­
at ures, i . e . , high molecular energies , if the radiat ion emitted by bodies is 
to contain shor t-wave components? 

The wave theory in its current form does not answer any of these 
questions . In particular , it is absolut ely incomprehensible why the cat hode 
rays produced photoelectrical ly or by X-rays attain such a substantial 
velocity independent of radiat ion intensity. The appearance of such large ( 18) 

a.mounts o-f energy on a molecular structure under the influence of a source in 
which t he energy i s so sparsely distributed, as we must assume accord ing to 
t he wave t heory for light and X-rays , prompted capable phys icist s to resort to 
a rather farfetched hypothes is. They assumed t hat light plays merely a 
triggering role in the process , and that t he molecular energies t hat come to 
t he fore are of radioactive nature. As this hypothes is has by now been more ( 19) 

or l ess abandoned, I will not present any arguments against it. 
The basic property of the wave theory that gives rise to t hese 

difficult ies seems t o me to lie in the follow ing . While in the kinetic t heory 
of matter t here exists an inverse process for every process in wh i ch only a 
f ew element ary particles take pa.rt, e .g. , for every mo lecular coll is ion, 
according to the wave theory thi s i s not the case for elementary rad iat ion 
processes. According to the prevailing t heory, an oscil lat i ng ion produces an 
outwardl y propagated spher ical wave. The opposite process does not exist as 
an el ementary process. It is true t hat the inwardly propagated spherical wave 
i s mathemat ically poss ible ; however, its approximate real izat ion requi res an 
enormous amount of emitt ing elementary st ructures . flms , t he element ary 
process of light radiation as such does not possess t he character of reversi­
bility . Here, I believe, our wave t heory i s off t he mark. Concern ing th is 
point the Newtonian emission theory of light seems to contain more t ruth t han 
does the wave t heory, since accord i ng to the former the energy impart ed at 
emission to a particle of light is not scatt ered throughout the infinite space 
but remains available for an elementary process of absorpt ion. Keep in mind 
t he laws of product ion of secondary cathode rays by X- rays . 

If primary cat hode rays impinge upon a metal plat e Pl' t hey produce 
X-rays . If t hese impinge upon a second metal plate P2 , cathode rays wi ll be 
produced once again, their veloci ty being of the same order of magn itude as 
t hat of t he primary cathode rays. As far as we know today. the velocity of [ 20 J 
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t he secondary catl1ode rays depends neither on t he dist ance between t he plat es 
P1 and P2 upon which they impinge nor on t he intensity of t he primary 
cathode rays , but exclus ively on the velocit y of t he primary cathode rays . 
Let us for once assume that this i s str ictly valid. What will happen if we 
l et the int ens ity of t he primary cat hode rays , or the s ize of t he plat e P1 

upon which they impinge, decrease t o such a degree t hat t he impinging of an 
electron of t he primary cathode rays can he conceived as an i solated process? 
If t he above is really true, then, because t he velocity of t he secondary rays 
is i ndependent of t he intensity of the primary rays , we will have to assume 
t hat on P2 (as a result of t he impinging of t he above electron on P1) 

either nothing i s being produced or that a secondary emiss ion of an electron 
occurs on it with a velocity of t he same order of magni tude as of t he electron 
impinging on P1 . In other words, the elementary radiation process seems to 
proceed such t hat it does not , as the wave t heory would require , distribute 
and scatter the energy of the primary electron in a spherical wave propagat ing 
in all directions. Rather, it seems that at least a l arge part of t his energy 
is available at some locat ion of P2 or somewhere else. Th e elementary pro-

[ 21) cess of radiation seems to be directed . Furthermore , one get s the impress ion 
t hat t he process of X-ray product ion in P1 and t he process of secondary 
cathode ray product ion in P2 are essentially inverse processes . 

The constitution of radiation thus seems to be different from t hat 
fo llowing from our wave t heory. Tmport ant clues t o t hat effect have been 
provided by the theory of t emperature radiation, first and foremost by t he 
t heory on which Mr . Planck has based his rad iat ion formula. Since I cannot 
assume t hat thi s t heory is universally known, I will briefly describe i t s 

[ 22) essent ial points . 
The interior of a cavi t y of temperature T contains radiation whose 

compos it ion i s independent of t he nature of t he body. The amount of rad iation 
in t he cav ity, whose frequency lies between 11 and 11 + dv, i s pdv per unit 
vol ume. The probl em consist s of determin ing p as a funct ion of v and T. 

If an el ectr ic resonator of proper frequency 110 and slight attenuation is 
present in the cavity, t he elect romagnetic t heory of radiat ion enables us t o 
calculate the time average of the energy (£) of the resonator as a funct ion of 
p(v0 ). The probl em is t hereby reduced to one of det ermining E as a f unction 
of t he temperat ure. The l atter problem can in t urn be reduced to the 
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following . Let the cavity contain a very large number (N) of resonators of 
frequency v0 • How does t he entropy of this system of resonators depend on 
the lat t er's energy? 

To solve th is problem . Air. Planck uses the general relation bet ween 
entropy and t he probability of the state as inferred by Boltzmann from his 
investigations on t he theory of gases. We have, in general, 

entropy = k•log V, 

where k denotes a universal constant and V the probabil i ty of the state 
under consideration. This probability is measured by the "number of 
complexions ," a number that indicates in how many different ways t he state in 
question can be r eal i zed. In the case of t he above probl em . the state of the 
resonat or system is defined by its total energy, so that the problem t o be 
solved reads : In how many different ways can the given total energy be 
distributed among N resonators? In order to determine this , Mr . Planck 
divides the total energy into equal small parts of a certain magn itude f. 

A complexion i s determined by stating how many such f 1S belong to each reso­
nator . The number of such complexions, which yield t he total energy, is 
determined and set equal to V. 

From the Wien displacement law, which can be derived thermodynamical ly, 
Mr. Planck then concludes further that one has to set f = /iv , where Ii 

denot es a number t hat is independent of v. This way he arrives at his 
radiation formula 

8rJtv3 
p = ---;r 

which fully agrees with experience thus far. 
It might seem that accord ing to this derivat ion the Planck radiation (23] 

formula has to be viewed as a consequence of the current electromagnetic 
theory of rad iation . However, this i s not t he case, especially for the 
following reason. The number of complexions just discussed could be viewed as 
an expression of the mult ipl icity of probabilit ies of distribution of the 
total energ~, among N resonators only in case every imaginable distr ibution 
of energy would appear, at least t o some approximation, among the complexions 
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used for calcu lating II. Th is requ i res that for all v' s to which corresponds 
a perceptible energy density p, the energy quant um f be small compared with 
t he mean energy of the resonators £. However, one f inds by s impl e calcula­
t ion t hat for t he wavelength of 0.5 µ and absolute t emperature T = 1700 , 
E/ E is not only not small compared t o 1, but i s in -fact very large compared 
to i t. Its value i s about 6.5 x 107 . Thus , in t he numerical example pre­
sented , we must proceed with t he count ing of t he complexions as though the 
energy of the resonators could only assume t he value zero, the 6.5 x 107-fold 
of its mean energy value , or a mult ipl e of this. It is clear that if we 
proceed in this manner , we use for the calculation of the entropy only a 
van ishingly small part of t hose energy distributions that we must cons ider as 
poss ible according to the foundat ions of the t heory. Thus , according t o the 
foundations of t he t heory, the number of these complexions i s not an expres­
s ion -for t he probabil ity of the state in Boltzmann 's sense. In my op inion , to 
accept. Planck' s t heory means pl ainly t o reject the foundat ions of our rad ia­
tion t heory. 

I have al ready tr ied to show that our current foundations of t he radia­
t ion t heory must be abandoned. At any rate, t here can be no question of 
reject ing Planck' s t heory on the grounds t hat it does not fi t these founda­
t ions . Th is theory led to a det erminat ion of the elementary quanta that has 
been splendidly confirmed by the most recent measurements of these quantities 
based on t he counting of a-particles. For the elementary quant um of electri ­
city Rutherford and Geiger obtai ned on t he average a val ue of 4.65 • 10·10 

[ 25 ) ctntl Regener 4.79 • 10-10 , while Mr. Pl anck wit h the aid of his rad iation 
theory obtained from t he constant s of the rad iation formula the intermediate 

[ 26 ) val ue 4. 69 • 10-10 . 

Planck ' s t heory l eads t o the followi ng conjecture. If it is really t rue 
t hat a radiat ion resonat or can only assume energy values t hat are a mult iple 
of hv , t hen it i s logical t o assume t hat emission and absorpt ion of radiat ion 
can t ake pl ace only in quant a of t his energy value. On t he bas is of t his 

[ 27) hypothesis , the hypothes is of light quanta, one can answer the questions 
raised above regarding t he absorpt ion and em iss ion of rad iation. As far as we 
know, the quantit ative consequences of this hypothesis of light quanta are 
also being confirmed. The fo llowing question arises t hen. Isn't it conceiv­
able that Planck's formula is correct , but that nevert heless a derivation of 
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it can be given that i s not based on an assumption as horrendous- l ooking as 
Planck's theory? Would it not be poss ible to replace t he hypothes i s of light 
quanta by another assumption that would also fit the known phenomena? If it 
i s necessary to modify the elements of t he theory, would it not be possible to 
ret ain at least the equations for t he propagat ion of radiation and conceive 
only t he elementary processes of emission and absorption differently t han they 
have been unt il now? 

To clarify t hese matters , we will try to proceed in t he oppos i te direc­
t ion than that taken by Mr. Planck in his radiation t heory. We consider 
Planck's radiation formula as correct and ask ourselves whether some conclu­
sion about the constitution of radiation can be inferred from it. Of two 
considerations I have car r i ed out in th is sense, I will here outline for you 
only one whi ch, because of its clarity, seems to me especially per suasive. [28 ] 

Let a cavity contain an ideal gas as well as a p] ate made of a solid 
substance that can move freely only perpendicular to it s plane. Because of 
the irregular ity of t he coll is ions between the gas molecules and the plate, 
the latter will be set i n motion such that it s average kinetic energy equals 
one-thi rd of t he average kinet ic energy of a monoatomic gas molecule. This i s 
a conclusion drawn from statistical mechanics . Ye now assume that besides the 
gas , which we may conceive as consisting of few molecules , t here i s also 
radiat ion present in the cavit y; let this rad iat ion be t he so-called tempera­
ture radiation having the same temperature as the gas. Th is will be the case 
if the walls of the cavity have the definite t emperature T, are impermeable 
to radiation, and are not everywhere completely refl ect ing t oward t he cavit y. 
Further, we shall temporar ily assume that our plat e i s compl etely reflecting 
on both sides. Iu this st ate of affairs , not only t he gas but also the rad ia­
tion will be act ing upon the plate. The radiat ion will exert pressure on both 
sides of t he plate. The forces of pressure exerted on the two sides are equal 
if t he plate is at rest. However , if it i s in motion, more rad iation will be 
refl ected on the surface that is ahead during t he mot i on (front surface) t han 
on the back surface . The backward-act ing force of pressure exert ed on the 
front surface ls t hus larger t han the force of pressure act ing on t he back. 
Hence , as the resultant of t he t wo forces , there remains a force that 
counteracts the motion of the plate and t hat increases with the velocity of 
the pl ate. We will call this resultant "radiat ion fr iction" in brief. 
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Assuming for an instant that the above took full account of the 
mechanical effect of radiat ion on t he plate, we arrive at the follow ing 
interpretation . Through collision with gas molecules , impulses of random 
direction are impart ed t o t he plate at random interval s . The veloci t y of t he 
plate always decreases between two such coll isions because of radiation 
fri ction , and kinet ic energy of t he pl ate is converted into radiation energy . 
Consequently the energy of the gas molecul es would continually be converted 
into radiation energy by means of t he plate until all t be energy had turned 
into radiation energy. Hence no equi librium could exist between gas and 
radiation . 

Th is considerat ion is faul ty because one cannot consider the forces of 
pressure exerted on the plate by rad iation as constant in time and free of 
random fluctuat ions ,just like t he forces of pressure exerted on the plate by 
t he gas . For thermal equi l ibr ium t o be possible, t he fluctuations of the 
radiation pressure must be such that on the average t hey compensate for t he 
ve locity losses of the plate caused by radiation friction , where the average 
kinet ic energy of the plat e equals one-third of the average kinetic energy of 
a monoat omic gas molecule . If the l aw of radiation is known, one can calcu­
late the radiation fr iction , and from this one can calcul ate the average value 
of the momenta i mparted to the plate due to fluctuations of the radiation 
pressure so t hat statistical equil i br ium can exist. 

Th is consideration becomes even more interest ing if the plat e is cl10sen 
such that only radiat ion of the frequency interval dv is completely re­
fl ected , whil e radiat ion of ot her frequencies passes through without absorp­
t ion; then one obtains the fluct uations of the rad iat ion pressure for the 
radiat ion in t he frequency int erval dv. I shall now present t he result of 
the calculation for th is case: If /J. denot es the momentum transf erred t o t he 
plate dur ing time r as a result of t he irregular fluctuations of the 
radiat ion pressure, one obtains for t he mean square of /J. the express ion 

This express ion, f irst of all, is conspicuous by its simplicity; t here 
is not likely to exist another radiat ion f ormula agreeing wi th exper ience 
within t he range of experimental error that presents such a simple express ion 
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for t he statistical properties of the radiation pressure as does that of 
Planck. 

393 

As far as interpretat ion i s concerned, t he first thi ng to not e i s that 
t he express ion for the mean square of fluctuation i s a sum of two terms. [ 29 ] 

Thus , it appears that there exist two different, independent factors causing a 
fluctuat ion of the radiation pressure. From the fact that liJ. i s propor-
t ional to f, we conclude that pressure fluctuations for ad jacent parts of the 
plate, whose linear dimens ions are large compared wit h t he wavelengths of the 
reflect ion frequency, are 111ut ually independent events. 

The wave theory prov ides an explanation only for t he second term of the 
expression f ound for ll- . According to the wave t heory, beams of not very [30] 

different directions , not very different frequencies , and not very di fferent 
st ates of polarization must int erfere wit h each other, and to t he totality of 
these interferences, which occur in the most random fashion, there must 
correspond a fluctuation of the radiation pressure . That t he expression for 
t his fluctuation must have the form of the second term of our formula can be 
seen by a simple dimens ional analysis. One can see t hat the wave st ructure of 
radiation indeed causes the f l uctuat ions of rad iation pressure to be expected 
from i t . 

Out how to explain t he first term of the formula? This term i s by no 
means to be neglected; on t he contrary, it alone i s relevant, so to speak, in 
t he domain of validi ty of the so-called Wien rad iation law. For A = 0.5 µ 
and T = 1100, for example, t his term i s about 6.5 • 107 t imes larger than the 
second one . If radiation cons isted of very small -sized compl exes of energy 
/w , moving through space independent ly of each ot her and reflected 
independently of each other- a conception t hat represents the very roughest 
visualization of the hypothes is of light quant a-then the momenta acting on 
our plate due to fluctuations of the radiat ion pressure would be of the kind 
represented by the first term alone . 

Thus , in my op inion, the following must be concluded from the above 
formula, which is, in turn, a consequence of Planck's radiation formula. In 
addit ion to the nonuniformities in the spatial distribution of the momentum of 
the radiation which arise from the wave theory, there also exist other nonuni ­
form i ties in the spatia l distribut ion of the momentum, which at low energy 
densit y of the radiat ion have a fa r greater i nfluence then the first -mentioned 
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nonuni f ormit ies. I shall add that another consideration concerning the 
spat ial di stribution of t he energy yields results that agree quite well with 
the above cons iderat ion concerning the spatial dist r ibut ion of the moment um. 

As far as I know, it has not yet been poss ible to formu late a mat hemati ­
cal t heory of radiation that would do j ust ice both t o t he undulatory struct ure 
and t o t he struct ure inferred from the f i rst term of t he above formula 
(quantum structure) . The difficul ty lies mainly in the fact t hat t he fluctu­
ation properties of radiat ion , as expressed by the above formula , offer few 
for mal clues on which to bui ld a theory . Imagine t hat t he diffract ion and 
int er ference phenomena are not yet known, but t hat one knows that t he average 
magnit ude of t he i rregular fluctuat ions of t he rad iation pressure is deter­
mined by the second t erm of t he above formula, where v is a parameter of 
unknown signifi cance t hat determines the color . Who would have suffi cient 
imagination to construct the wave t heory of light on such a basis? 

St i ll , for t he time being the most natural interpret ation seems to me t o 
be that t hf' occurcnce of electromagnetic fi elds of light i s associated wi th 
singular points just like the occurence of electrostat ic fields according to 

(311 t he electron t heory. lt is not out of t he quest ion t hat in such a t heory t he 
entire energy of t he electromagnet ic field might be viewed as localized in 
t hese singularities , exactly like in the old theory of act ion at a distance. 

[32] I more or l ess imagine each such s ingu lar point as being surrounded by a field 
of force which bas essent ially t11e character of a plane wave and whose ampli­
tude decreases with the distance from t he s i ngular point. If many such sin­
gular ities are present at separations that are small compared with the dimen­
sions of t he fi eld of force of a singular point, t hen such f ields of force 
wi ll superpose, and their t otal ity will yield an undulatory field of force 
that may differ only slightly from an undulatory field as defined by the 
current elect romagnet ic theory of light. I am sure it need not be particu­
larly emphasized t hat no importance should be at t ached t o such a pict ure as 
long as it has not led to an exact t heory. All I want ed i s briefly t o 
i ndicate wi th its help t hat t he two structural properties (t he undulatory 
st ruct ure and the quant um structure) s imul t aneously di.splayed by radiation 
according to the Pl anck formul a should not be cons idered as mut ually 
incompatible . 
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Planck: While I am tak ing the liberty to say a few words of comment on 
the lecture, I wil l begin by joining in the thanks of the entire audience, 
which l istened with t he greatest of interest t o Mr . Einstein 's presentation 
and was stimul ated to fu rt her reflection even where perhaps opposit ion may 
have emerged . Naturally, I will restrict myself to the t hi ngs in which my 
opinion differs from that of the lecturer. After al l , most of what the 
lecturer has been saying wi ll not meet with any disagreement. I , t oo, 
emphasize the necessity of introducing certain quanta. Ye cannot progress 
with the radiation theory unless we divide, in a certain sense, the energy 
into quanta, which are to be conceived as atoms of action. The quest ion i s 
now where to look for these quanta. According to the lat est cons ideratio~s of 
Mr. Einstein, it would be necessary to conceive the free radiat i on in vacuum, 
and thus the light waves themselves , as atomistical ly const i tuted, and hence 
to give up Maxwell's equat ions . This seems to me a step which in my opinion 
is not yet necessary. I wi ll not go int o detai ls , but wil l rather not e the [ 1] 

following . In the latest considerat ion by Mr . Einstein he inferred the 
fl uctuat ions of free radiat ion in pure vacuum from t he motion of matter. This 
inference seems to me absolutely i rreproachable on ly in the case that t he 
interactions between t he radiation in vacuum and the mot ion of matter are 
completely known; if t his is not the case, then the bridge necessary t o cross 
from the motion of the mirror to t he intens ity of t he incident light is mi ss-
ing. However, it seems to me that we know very l i ttle about thi s i nteraction 
between the free electrical energy in vacuum and the motion of the atoms of 
matter. This interaction i s essentially based on the emiss ion and absorption 
of light . Essent ially t his i s also the case for radiation pressure, at least 
according to the generally accepted theory of di spers iont wh i ch also reduces 
reflection to absorption and emission. However, it is just emiss ion and 
absorption which are the obscure points about which we know very little. We 
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may know a lit tle about absorpt ion , but what about em iss ion? We imagine t hat 
it is produced by t he accel eration of electrons. Uut t his i s t he weakest 
point in the entire theory of elect rons. One imagines that the elect ron 
possesses a certain volume and a certain finit e charge density , whether due t o 
a volume or surface charge , one cannot manage wi t hout that ; t his , however, 
conflict s in a certain sense with t he atom istic conception o-f elect r icity . 
These are not imposs ibilities but diff icult ies , and l am almost surpr ised t hat 
this has not met wi t h more opposit ion. 

This is t he po int, I believe, at which the quantum theory can be 
employed with advantage. We can st ipulate the laws for l arge t ime intervals 
only. Ilut for small t ime int ervals and great accelerations we st ill face a 
gap whose f illing requires new hypotheses . Perhaps we may be allowed to 
assume t hat an oscillating resonator does not have a cont inuously variable 
energy , but that its energy is a s imple multiple of an element ary quantum 
instead. I believe t hat by using t his theory one can arr ive at a satj sfactory 
t heory of radiation. The question is , then: How does one visualize something 
like t hat? That i s to say, one asks for a mechanical or electrodynamic model 
of such a resonator. But mechanics and current electrodynamics do not provide 
for discrete elements of act ion, and hence we cannot produce a mechanical or 
electrodynamic model . Thus , mechanically t his seems imposs ible , and we will 
have to get used to that. After all, our attempts to mechan ically represent 
t he luminiferous et l1er al so have failed completely. There were also attempts 
t o conceive the electric current in a mechan istic way, and t o compare i t wit h 
a str eam of water, but this t oo had to be abandoned, and as one became used t o 
t hat , so one wi ll have to get used t o such a r esonator . Of course, t his 
theory would have to be worked out in much great er det ail than has been done 
so far; perhaps someone el se wi ll have more l uck with it than I had . In any 
case, I t hink t hat first of al l one should at t empt to transf er the whole 
problem of t he quantum t heory to t he area of i nterac tion between mat t er and 
radiation energy; the processes in pure vacuum could t hen temporarily be 
exp lained wi t h the aid of the Maxwell equat ions. 

ll . Ziegler: If t he urat oms of matter are conceived as invis ible tiny 
spheres t hat possess unchanging speed of light , then i t is possible t o 
describe all interact ions of corpuscular st at es and electromagnetic phenomena, 
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and this wou ld also establish the bridge between material and nonmaterial 
entities stil l missed by Mr. Planck. 
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Stark : Mr. Planck po int ed out that we have no reason at the moment to 
switch over to the Einstein consequence. to consider the radiation in space, 
where it occurs detached from mat ter, as concentrated . I was original ly also 
of t he opinion that for the time being we could restrict ourselves to r educing 
the element ary law to a certain mode of action of the resonators . Ilut I do 
believe that there exists a phenomenon that leads to the conclusion that 
electromagnetic radiation detached from matter, in space, must be cons idered 
as concentrated. I have in mind t he phenomenon that even at great distances , [21 
up to 10 m, electromagnetic radiation that has left an X-ray tube for the 
sur rounding space can stil l achieve concentrated action on a s ingle electron. 
I believe that th is phenomenon does represent a reason for considering the 
question of whether t he energy of electromagnet ic radiat ion should not be 
cons idered as concentrated even where it occurs detached from matter. 

Rubens : The view represented by Mr. Einstein woul d seem to yield a 
practical conclusion that can be test ed experiment ally. As we know, i t is not 
only the a-rays , but also the P- rays t hat produce a scint il lating luminous 
effect on t he fluorescent screen . According to the view presented, the same 
must also hold for r -rays and X-rays. 

Planck : The X-rays are a special case; I would not assert too much 
about t hem . - St ark brought up something in favor of the quantum theory, and I 
wish to bring up something against i t; I have in mi nd the interferences at the 
enormous phase differences of hundreds of thousands of wavelengths . When a 
quant um interferes with itself, it would have to have an extens ion of hundreds 
of t housands of wavelengths . This i s also a certain di fficulty. 

Stark: The interference phenomena can easily be pitt ed against t he 
quant um hypothesis. However, once they are treated wi th more benevolence 
toward t he quantum hypothesis , one wi ll find an explanation for them, t oo -
this is my hope . As for the experimental aspect , i t must be emphasized that 
t he experiments to which Mr. Planck alluded involve very dense radiat ion, so 
that a very large number of quanta of the same frequency were concent rated in 
t he beam of light; t his must be taken into account when discuss ing those 
interference phenomena. Wi th rad iation of very low density, t he interference 
phenomena would most likely be dif ferent . [3] 
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Einste i n: It probably wouldn't be as dif f icult to incorporat e the 
interference phenomena as one thinks , and t he reasons for this are as follows : 

[41 i t must not be assumed t hat rad iations cons ist of non interact ing quant a ; t his 
would make it impossible t o expiain the phenomena of interference. I pict ure 
a quantum as a s ingularity surrounded by a large vector field . Ily using a 
large number of quanta one can construct a vector f ield that does not differ 
much from t he kind of vector fi eld we assume to be involved in radiations. I 
can well i magine t hat when rays impinge upon a boundary surface , a separation 
of the quanta t akes place, due to interaction at t he boundary surface , poss i ­
bly according t o t he phase of the resulting f ield at which t he quanta reach 
the int erface. The equations for the r esulting field would probably not be 
very different from those in the prevailing t heory . It might not be 
necessary, with respect to interference, to change much in the current ly 
prevai ling concept ions . I would like to compare this with the process of 
molccular izat ion of the carr iers of the electrostatic fi eld. The fie l d, as 
brought about by atomized el ectric particles , i s essentially not very differ­
ent f rom the previous concept ions , and it is not out of the question t hat 
something similar wi ll happen in the theory of radiation. I do not see any 
fuudamental diffi culty in the int erference phenomena. 
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Eins te in: Of course , in t his case the irregular f l uctuations would be 
exact ly such t hat Maxwell's di stribution law would be maintained, i.e. , that 
t he damping would be compensated by the irregular impact s . 

Lec turer: I am not sure t hat I understand you correct ly. You mean , if 
you t hink of a closed container, and particles are moving in it , that t hey 
wouldn't be damped by radiation at al l? 

Eins tein: That's right. 
Lecturer: I am get ting not iceable dampi ng of mot ion only after a 

practically infinite t ime. 
Planck: The two gentlemen start out from different assumptions. The 

lect urer cons iders an entirely uniform radiat ion intensit y, "hi le Mr. Einstein 
considers radiat ion fluct uat ions , and therefore he also get s fluctuations in 
the resulting effect s, i.e., not a complete damping . 

(1) 

[2 ] 

[3] 




