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Observation of Deterministic Chaos in a Phase-Conjugate Mirror 
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Deterministic chaos in the intensity of the beam produced by a barium titanate self-pumped phase-
conjugate mirror has been observed. The correlation exponent of the strange attractor is found to de
pend on the crystal orientation and to lie within the range 1.2 to 2.4, and the order-two Renyi entropy is 
found to increase with increasing laser intensity and to be as large as 22 bits/sec. A standard model of 
self-pumped phase conjugation due to four-wave mixing has been generalized to include time depen
dence. This model predicts frequency shifts and chaotic behavior for the reflectivity. 

PACS numbers: 42.50.Tj, 05.45.+b, 42.65.Hw 

There has recently been great interest in determining 
the extent to which optical nonlinearities can cause opti
cal systems to become unstable in their operating charac
teristics. x In this Letter we show experimentally and 
theoretically that certain phase-conjugate mirrors can be 
operated in a regime in which the output fluctuates tem
porally in a chaotic manner. This result is of interest 
both in demonstrating a limitation to the performance 
characteristics of phase-conjugate mirrors (PCM's) and 
in demonstrating that a passive nonlinear optical system 
can display deterministic chaos. 

Unstable operation has long been observed in lasers, 
and it has been shown that under certain conditions these 
instabilities are a manifestation of deterministic chaos.2 

There has recently been considerable interest in deter
mining the conditions under which passive nonlinear op
tical systems can also display chaotic behavior. Feed
back by an external resonator often plays an important 
role in establishing such instabilities.3 However, Silber-
berg and Bar-Joseph4 have shown theoretically that the 
mutual interaction of two counterpropagating waves in a 
Kerr medium characterized by a noninstantaneous 
response can lead to chaotic behavior of the transmitted 
intensities. Furthermore, a number of authors5 have 
shown that the polarization state of counterpropagating 
beams in a Kerr medium can also show chaotic behavior. 
Since strong counterpropagating waves are present in the 
standard geometry of phase conjugation by degenerate 
four-wave mixing, these predictions suggest that chaotic 
behavior may be expected for certain PCM's . 6 

Under special conditions, phase conjugation by four-
wave mixing can occur without the use of externally ap
plied pump waves. In the most common realization of a 
self-pumped PCM, 7 a laser beam is focused into a poled 
barium titanate crystal and an output beam is generated 
by means of a nonlinear interaction. The standard 
model8 of self-pumped phase conjugation assumes the 
geometry shown in the inset to Fig. 1. The incident laser 
beam of field amplitude A 4 breaks up into new spatial 
components due to a self-focusing process known as 
self-beam fanning, creating a beam of amplitude A\. 

This beam undergoes total internal reflection at the faces 
of the crystal and is thereby redirected so that it inter
sects the incident laser beam a second time. Analogous
ly, a second beam of amplitude A[ is generated at this 
intersection point and traverses the loop in the opposite 
direction. At each of the two interaction regions coun
terpropagating waves are therefore present, and the 
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FIG. 1. Theoretically predicted time evolution of (a) the 
reflectivity and (b) the phase shift upon reflection for a self-
pumped phase-conjugate mirror based upon four-wave mixing 
in two coupled interaction regions, whose geometry is shown in 
the inset. The values of the coupling coefficients appropriate 
for low laser intensities were used. Following an initial tran
sient, the reflectivity reaches a constant value and the phase of 
the output wave increases linearly in time, implying that the 
conjugate wave is shifted in frequency with respect to the in
put. 
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phase-conjugate output wave is generated by the usual 
four-wave mixing process. Since the four interacting 
waves are strongly coupled within each of the interaction 
regions, it might be expected that this system would 
show instabilities, and in fact such instabilities have been 
observed experimentally.9 The intent of the present 
Letter is to show that these instabilities are chaotic and 
to present a theoretical model that describes the nature 
of them. 

Our model of a self-pumped PCM is an extension of 
that of MacDonald and Feinberg.8 In their model, only 
one of the four gratings that contribute to the nonlinear 
coupling among the waves was explicitly included. In 
this approximation, they were able to find an analytic 
solution for the steady-state intensity of the phase-
conjugation signal. In order to explore the stability 
characteristics of a self-pumped PCM, we have extended 
the MacDonald-Feinberg model by including the tem
poral evolution of the optical nonlinearity and by includ
ing the contributions of all four gratings. In particular, 
we consider the geometry shown in the inset to Fig. 1 in 
which the field amplitudes At are coupled according to 
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where Qj denotes the amplitude of the grating created by 
the interference between two of the waves and is given 
by 

T\Qi + Q\-(r\/Io)(A\Ai +A2A3), (2a) 

T2Q2 + Q2 = (n/Io)(A{Af +A%A4)y 

T3Q3 + Q3-(Y3/IOUIAS9 

(2b) 

(2c) 

(2d) 

A similar set of equations for the second interaction re
gion are obtained through the substitutions A—+ A', 
Q-+Q\ and z ^ z'. Here /o™Zy \Aj | 2 is the total in
tensity, and Yj is the photorefractive coupling coefficient. 
From low-intensity measurements of the two-beam cou
pling strength, we have determined that the ratios of 
these coefficients are given by 71:72:73:74 s 1:0.48:0.49 
:0.17. These values are in good agreement with previous
ly reported10 values and are within a factor of 2 of those 
predicted on the basis of theory.11 We have also found 
that for laser intensities greater than 10 W c m - 2 the 
coupling coefficients are intensity dependent and that 72, 
73, and 74 can even change sign. In deducing the form 

of Eqs. (2) we have assumed that the nonlinear response 
of the medium obeys a Debye relaxation relation, with a 
time constant ry which scales with the grating wave vec
tor as predicted by theory. I2 For the geometry of Fig. 1, 
the ratios of these time constants are given by X\\T2'.T3\X4 

= 1:7.1:7.2:7.2. The coupling between the two interac
tion regions is described by the boundary conditions 
AiU)-AiU), A2(l)-Ai(l)9 A3(l)=A'3(0), and A4(l) 
- / 4 J ( 0 ) . 

In order to investigate the dynamics of the self-
pumped phase-conjugation process, we have performed a 
numerical integration of the set of equations given by (1) 
and (2). When this integration is performed with use of 
the low-intensity coupling coefficients given above and a 
short interaction length /, the solution predicts that the 
reflectivity reaches a stable steady-state value. However, 
when the integration is performed with use of a longer 
path length such that 71/= 10, the solution predicts that 
the phase of the generated wave increases linearly with 
time, although the intensity of the generated wave still 
reaches a constant value, as shown in Fig. 1. This result 
explains the frequency shift between the incident and 
conjugate waves which has been observed by many work
ers.9 ,13 The value of the frequency shift can be modified 
by a change in the ratio of the coupling coefficients, 
which is accomplished experimentally by a rotation of 
the crystal. Frequency shifts in an external ring resona
tor due to mode-pulling effects have been observed14 and 
theoretically analyzed.15 It has been postulated that this 
mode-pulling effect is the origin of the frequency shift 
observed in the self-pumped PCM; however, our numeri
cal results show that the nonlinear interaction alone is 
sufficient to produce instabilities in the phase of the out
put beam. 

Qualitatively different behavior is predicted by our 
model when the integration is performed with use of 
values of the coupling coefficients appropriate to the 
higher laser intensities used in our experiment. Figure 
2(a) shows the predicted behavior when the values j\l 
= 6, 7 2 / = — 3.7, 73/ = —3.8, and 74/= —1.3 are used. 
The predicted phase-conjugate intensity is seen to fluctu
ate wildly in time. Our computer simulations do not pre
dict chaotic behavior or frequency shifts when only one 
grating is included in the model. For this reason, we be
lieve that the origin of these instabilities is the interplay 
between the four contributions to the nonlinear coupling, 
each of which is characterized by a different time con
stant. 

The experiment that demonstrates chaotic behavior in 
the output intensity of a PCM was performed with a 
barium titante crystal having dimensions of 4 .8x4 .2x4 .1 
mm 3 and an unusually large free-charge density of 
2 x l 0 1 7 c m - 3 . The experiment was conducted in a 
thermally insulated enclosure on a floating optical table 
to prevent environmental effects from influencing the re
sults. A single-mode argon-ion laser operating at 5145 
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FIG. 2. (a) Theoretically predicted and (b) experimentally 
observed chaotic time evolutions of the reflectivity of a self-
pumped phase-conjugate mirror. Values of the coupling 
coefficients appropriate for high laser intensity were used in the 
theoretical simulation. 

A and stabilized to provide less than 0.1% intensity fluc
tuations was focused into the crystal to a spot size of 
— 80 /im to provide the input field. The intensity of this 
field was in the range 50 to 1000 W cm ~2, where chaotic 
behavior is expected. To prevent instabilities due solely 
to feedback into the exciting laser,13 a Faraday isolator16 

with an isolation ratio greater than 60 dB was used to 
isolate the laser from the beam returning from the bari
um titanate crystal. The output spectrum of the laser 
was monitored with a Fabry-Perot interferometer to en
sure that the laser ran in a single longitudinal mode. 
The phase-conjugate intensity was recorded with a 
twelve-bit digitizer and stored in a microcomputer. 

We find that for a broad range of laser intensities and 
crystal orientations, the intensity of the phase-conjugate 
wave fluctuates wildly in time. Typical results are shown 
in Fig. 2(b). We have determined that the fluctuations 
in the phase-conjugate signal are uncorrelated from the 
small fluctuations in the laser intensity; specifically, the 
normalized cross covariance is less than 3%. 

In order to determine that these fluctuations are 
chaotic, we have calculated the correlation exponent v 
and the order-two Renyi entropy K2 of the associated 
strange attractor from the time series of measured 
reflectivities {R(tj) \ j = 1, . . . ,iV}.17 We form </-di-
mensional time-delay vectors 

Yj-{RUj)9RUj + 8),. . .9RUj + (d-l)S)\j 

- 1 , 2 , . . . ,7V-</}, 

^ 
0 \-

i—r 
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FIG. 3. Determination of the order-two Renyi entropy K2 
for the experimental signal shown in Fig. 2(b). The quantity 
Ki^ie) is seen to converge to the positive value Ki=1.2 
bits/sec in the limit of large embedding dimension d and small 
hypersphere radius 6, implying that the signal is chaotic. 

where n = 16000 and the time delay 8 is determined 
from the first minimum in the autocorrelation of the 
phase-conjugate signal. These vectors are used to calcu
late the correlation integral Cjie) which is proportional 
to expfv — K2^(e)rd], where e is the hypersphere radius 
and r is the sampling interval. The order-two Renyi en
tropy is determined by 

K2 = lim \imK2£j(e). 

We have analyzed the experimental data in Fig. 2(b) 
and find that v = 1.3. In Fig. 3 we plot K2j(e) as a 
function of the embedding dimension d for several 
different values of e. It is seen that for large values of d, 
K2y(j(e) converges to the positive value of 7.2 bits sec _ 1 , 
implying that the signal is chaotic. In addition, we have 
determined that v = 1 . 2 for the attractor associated with 
the theoretical curve shown in Fig. 2(a) and that 
K2 = ( l 3 . 9 b i t s ) r f ! . 

We have found experimentally that the measured 
value of the correlation exponent v depends sensitively 
upon the crystal orientation. Exponents in the range 1.2 
to 2.4 have been observed. We have also conducted an 
experiment in which we varied the input intensity be
tween 150 and 1000 W c m - 2 while holding the crystal 
position fixed. We find that v remains nearly constant, 
while K2 varies linearly with input intensity between the 
values 3 and 22 bits s e c - 1 . These observations suggest 
that geometrical factors related to the nature of the self-
pumped phase-conjugation process determine the trajec
tory in phase space, whereas the laser intensity deter
mines the time scale of the chaotic evolution. 

Kaplan and Yorke18 have conjectured that for con
tinuous chaotic systems the fractal dimension D must be 
greater than 2. The correlation exponent v, which is a 
lower bound on Z), is often a good estimator of D. How
ever, the measured and theoretical values of v for our 
system are under some conditions less than 2, suggesting 
that at least under these conditions v does not accurately 
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predict D. It is seen from Fig. 2 that the phase-
conjugate reflectivity is often near zero, implying that 
some regions of the attractor are visited more frequently 
than others. Since the fractal dimension is insensitive to 
the rate of visitation, whereas the correlation exponent is 
sensitive to this effect,17 the two dimensions are expected 
to have different numerical values. 
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