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MAGNETOHYDRODYNAMICS 

OF THE EARTH'S DYNAMO 

F. H. Busse 
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 
California 90024 

INTRODUCTION 

:(8131 

Albert Einstein once ranked the problem of the origin of the earth's magnetic field 
among the three most important unsolved problems in physics. In Einstein's time 
scientists went so far as to postulate new physical laws in order to explain the 
phenomenon of geomagnetism. Today it is generally accepted that the earth's 
magnetic field is generated by motions in the liquid part of the earth's core, but 
the details of this process are still unresolved. In this article an attempt is made to 
outline the theoretical problems associated with this process and to describe some 
of the advances that have been made in recent years. 

The mathematical problem describing the generation of magnetic fields by motions 
in an electrically conducting fluid is called the dynamo problem. The second section 
of this ar ticle provides an introduction to dynamo theory and its geophysically 
pertinent results. The first mathematically convincing evidence that the dynamo 
process is indeed possible in a singly connected volume of a homogeneous fluid 
was derived only two decades ago by Backus (1958) and Herzenberg (1958). Although 
the dynamo problem is akin to the problem of hydrodynamic instability, it did not 
become widely known among fluid dynamicists until recently. That technical 
applications appear to be remote seems to be the main reason for the fact that the 
dynamo problem is usually not mentioned in textbooks on fluid mechanics or even 
magnetohydrodynamics. 

The dynamo process converts mechanical energy into magnetic energy and 
dissipates it in the form of ohmic heat. The question of the energy source of the 
earth's magnetic field is therefore of primary importance. This question is considered 
in Section 3 in connection with a discussion of the physical state of the earth's 
core. Most geophysicists regard convection driven by thermal or chemical buoyancy 
as the most likely source of energy for the geodynamo, but the possibility of a 
dynamo driven by the earth's precession cannot be entirely excluded. 

Fortunately the unresolved question of the energy source is not a major obstacle 
for the theory. As discussed in Section 4 the dynamics of motions in the earth's 
core are dominated by the Coriolis force rather than the energy-providing forces. 
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436 BUSSE 

This allows us to bypass some of the uncertainyies caused by the lack of knowledge 
about the earth's core and proceed to the magnetohydrodynamic problem of the 
geodynamo. In Section 5 steps towards a solution of this problem are discussed. 
The ultimate goal of any theory of the geodynamo is to develop models that are 
sufficiently detailed that the form and the observed secular variations of the geo
magnetic field can be interpreted in terms of the physical paramcters of the carth's 
core. The development of an efficient numerical dynamo model is needed to attain 
this goal. 

The earth is not the only planet exhibiting a magnetic field. Jupiter's strong 
magnetic field was revealed by peculiar radio signals long before it was measured by 
the Pioneer 10 and 1 1  space probes. The discovery of the magnetic field of Mercury 
by the Mariner 10 space probe has surprised planetary scientists in view of the 
finding that the moon does not exhibit a large-scale magnetic field. In spite of large 
differences in the properties of the three planets for which an active dynamo appears 
to be required the physical mechanisms may be similar. This suggests the possibility 
of a general theory of planetary magnetism, as discussed in Section 6. The constraints 
offered by such a theory may ultimately provide the key for the understanding of the 
origin of the earth's magnetic field. 

2 DYNAMO THEORY 

2.1 Basic Equations 
The kinematic aspects of the dynamo problem are described by Ohm's law for a 
moving conductor and by Maxwell's equations in the magnetohydrodynamic 
approximation in which the displacement current is neglected. It is convenient to 
eliminate all variables but the magnetic induction B according to the following 
scheme: 

Ohm's Law 
Maxwell's equations 

(magnetohydrodynamic approximation) 

a 
j = a(v x B+ E) V x Bill = j, -B = -v x E, V' B = 0 

L-I _--. ____ -JI ot 

1 I 
-VxB=vxB+E 
Wr 

a 
-B+V x V.V x B) = V x (v x B) at 
(:t + V'V)B-AV2B = B'Vv 

(2.1a.) 

(2.1b) 

In the last step the general form (2.la) of the dynamo equation has been simplified 
by the assumption that the velocity field v satisfies V' v = O. Since the effects of 
compressibility are of minor importance in the earth's core, the dynamo problem 
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MAGNETOHYDRODYNAMICS OF THE EARTH'S DYNAMO 437 

is usually considered for a solenoidal velocity field. The inverse of the product of the 
electrical conductivity u and the permeability p is called the magnetic diffusivity A. 
In deriving Equation (2.1b) it has been assumed that A is constant. For liquid metals 
like mercury A is of the order of 1 m2 sec- 1, and a value of the same order 
of magnitude is usually assumed for the liquid iron core of the earth, since the 
eftects of rising temperature and rising pressure tend to compensate each other. 

In order to complete the description of the dynamo problem, boundary conditions 
for the magnetic field must be added. It is often assumed that the conductivity (J 
differs from zero only within a finite volume V while the outside is electrically 
insulating. Since the magnetic field B cannot have any sources it must decay towards 
infinity at the rate of at least the third power of the inverse of the distance r from V, 

(2.2) 

An important property of the dynamo equation (2.1) is that it remains invariant 
with respect to a transformation to a rotating frame of reference, since B remains 
unchanged with respect to such a transformation within the framework of the 
magneto hydrodynamic approximation. Another important property of Equation 
(2.1) is that the flux of B through any material surface of the fluid is conserved 
in the limit A -+ 0, corresponding to an infinitely conducting fluid. This property 
represents an analogue to Kelvin's theorem and follows from the similarity of 
Equation (2.1) to the vorticity equation. Since the generation of a magnetic field is 
meant to imply the generation of magnetic flux, it is evident that finite effects of 
magnetic diffusion are required. The dynamo process cannot occur i"n a super
conductor. 

In general two forms of the dynamo problem are distinguished. The kinematic 
dynamo problem is concerned with the conditions under which growing solutions B 
of Equation (2.1) exist for arbitrarily given solenoidal velocity fields v. In the case of 
time-independent fields van exponential time dependence exp {pt} can be assumed 
for B. A dynamo process occurs when a solution B exists of the boundary-value 
problem defined by (2.1) and (2.2) for which the eigenvalue p has a positive real 
part. One also speaks of dynamo action in this case. 

Exponentially growing solutions are clearly unphysical beyond a finite range of 
time, since the magnetic energy cannot grow indefinitely. In reality the velocity field 
v cannot be prescribed independently of the magnetic field. Instead v must obey 
the equations of motion, which include the Lorentz force (V x B) x Blp. As the 
magnetic field grows the Lorentz force modifies the velocity in such a way that the 
growth of the magnetic field is reduced and an asymptotic equilibrium value for 
the magnetic energy is attained, at least in an average sense. Accordingly, the 
second form of the dynamo problem, called thc magnetohydrodynamic dynamo 
problem, is based on the equations of motion in conjunction with the dynamo 
equation (2. 1 ). The coupling of the equations by the Lorentz force introduces a 
nonlinearity, which has prevented any simple solutions of this problem. For geo
physical applications, however, it is hard to avoid the solution of the full magneto
hydrodynamic dynamo pro blem, since the choice of forces is much better constrained 
than the choice of the velocity fields and since the nonlinearity of the dynamo 
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438 BUSSE 

process is a necessary ingredient for the determination of the amplitude of the 
magnetic field. 

The kinematic dynamo problem and the magnetohydrodynamic �ynamo problem 
have the same mathematical relationship as the linear problem of hydrodynamic 
instability and the nonlinear postinstability problem. In fact, the dynamo problem 
represents a particular kind of magnetohydrodynamic instability in which the motion 
of an electrically conducting fluid becomes unstable to a growing disturbance that 
manifests itself in the form of a magnetic field. It is not unusual in problems of 
hydrodynamic instability that the growing disturbance is characterized by a new 
degree of freedom or even the appearance of a new physical quantity. In the case 
of the onset of thermal convection in a layer heated from below, for instance, a 
motionless state becomes unstable to a state with motion. The dynamo problem, 
however, possesses a number of peculiar properties that are described briefly in 
the following sections. Whenever possible attention is drawn to similarities with 
ordinary problems of hydrodynamic instability. 

2.2 The Disk Dynamo 

In view of the simplicity of the dynamo equation (2.1) it may appear surprising 
that the question of the existence of growing solutions has been answered only fairly 
recently. The dynamo principle of the generation of electromagnetic energy from 
mechanical energy has been known for a long time, of course, and has become 
one of the most commonly used technical processes. Technical dynamos differ 
fcom planetary dynamos, however, in that they require a complicated distribution 
of electrical conductivity. The simplest example of a technical dynamo is the disk 
dynamo shown in Figure 1. A metal disk is rotating about its axis of symmetry 
in a weak initial magnetic field Bo. The field induces an electromotive force between 
the axis and the rim of the disk that can be used to drive a current in a non
rotating circuit. When the winding of the circuit has the appropriate sense the field 
B generated by the current has the same direction as the initial field Bo. When 

\ 
\ 

B 
I 

/ 

Figure 1 A disk dynamo. 
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'
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the rotation ratc n is high cnough, B exceeds Bo and a self-cxcited dynamo is 
obtained. The condition for dynamo action or self-excitation is given by 

MQ/R> 2n, (2.3) 

where M is the mutual inductance between circuit and disk and R is the resistance 
of the circuit. 

The multiply connected distributi9n of conductivity of the disk dynamo is not 
available in planetary cores, and complicated velocity fields must compensate for an 
essentially uniform distribution of conductivity within the singly connected domain 
of the Celre. In other respects the fluid dynamo, or homogeneous dynamo as it is 
often called, is rather similar to the disk dynamo. The latter has been studied in 
considerable detail as the simplest example of a dynamo. Oscillations (Bullard 1 955, 
Lebovitz 1 960), reversals (Rikitake 1 958, Allan 1 962, Robbins 1 975), and other 
nonlinear properties have been investigated by using suitably modified disk dynamos 
or systems of coupled disk dynamos. Although properties such as the reversals of the 
magnetic field resemble reversals of the geomagnetic field shown by the paleo
magnetic record, the theory of the disk dynamo cannot easily be generalized to the 
case of the homogeneous dynamo. The origin of geomagnetic reversals has thtls 
remained one of the most intriguing problems of dynamo theory. 

2.3 Necessary Conditions for Dynamos 

A shear flow can become unstable when a disturbance velocity field gains more 
energy from the shear by the stretching of vortex lines than it loses by viscous 
dissipation. The nondimensional parameter describing the ratio of the two terms is 
the Reynolds number Re == U L/v, where U is a typical velocity of the shear flow, 
L is a characteristic length, and v is the kinematic viscosity. Similarly, growing 
solutions of the dynamo equation (2.1b) require that the term on the right-hand 
side describing the stretching of magnetic-field lines becomes comparable with the 
magnetic diffusion term on the left-hand side. The magnetic Reynolds number 
Rm == U L/). gives a measure of the ratio of the two terms, and the condition for 
dynamo action in general requires that Rm exceeds a certain finite value Rmc, 

(2. 4) 

Relationship (2.3) is an example of such a condition. 
The comparison of the magnetic-diffusion term and the stretching term in 

Equation (2.lb) provides the basis for necessary conditions for dynamo action. 
Considering an arbitrary volume V of fluid with constant diffusivity )., Backus 
(1958) derived the inequality 

-
2
1 

d
d f IBI2:;; {m(t)-n2)./r6) f IBI2, t V+V' V+V' 

(2.5) 

where V' denotes the insulating space outside V, m(t) is the largest principal value 
of the rate-of-strain tensor Sij == -!-(J jV; + J;v j) of the velocity field in V, and ro 
represents the radius of the smallest sphere enclosing V. An obvious consequence 
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440 BUSSE 

of the inequality is that the condition 

* m(t)r1i 2 Rm:= -- �n 
X -

(2.6) 

is necessary for dynamo action. Using different estimates Childress (1969) derived 
the condition 

Rm:= Uro/A � n, (2.7) 

where U is the maximum velocity in V. Conditions (2.6) and (2.7) are mathematically 
equivalent to the necessary conditions for hydrodynamic instability derived by 
Serrin ( 1959). Other more specialized conditions can be derived and are known 
in fluid mechanics as energy stability limits. Joseph ( 1976) gives a comprehensive 
account of this subject. 

A general relationship that does not have an analogue in hydrodynamic stability 
theory is given by (Busse 1975a): 

��f IB'rI2:;:;f-x+max(v'r)Q} f IVr'BI2, 2 dt v v+v' 
where r is the position vector and Q is defined by 

Q =( f IBI2 / f Ivr'BI2) 1/2 
Jv I Jv+v' 

(2,8) 

(2.9) 

Relationship (2.8) is particularly useful for the application to the earth's core, which 
may be regarded in first approximation as a sphere of constant diffusivity surrounded 
by an insulating medium. It is convenient to use the following general representation 
for the solenoidal vector field B, 

B = V x (V x rh) + V x rg, (2.10) 

where the origin of r is assumed at the center of the sphere. The first term on the 
right-hand side of (2. 10) is called the poloidal component and the second the 
toroidal component of B, and h and g are arbitrary scalar functions that can be 
chosen such that their average over any surface I r I = const vanishes, since the 
addition to g or h of any function depending only on I r I does not affect B. Only the 
poloidal component of B intersects the surface of the conducting sphere. The 
toroidal component vanishes outside the spher�, which is the main reason for the 
uncertainty about the strength of the magnetic fi"ld inside the earth's core. Estimates 
for the toroidal field strength vary by two orders of magnitude between 5 '1O-4T 
and 0.1 T ( l0-4T = 1 G), while the estimate of 5'10 4T for the poloidal field 
can be obtained easily by extrapolation from the observed value at the earth's 
surface. 

Since the radial component of B depends only on h, a lower estimate for the 
integral in the denominator of expression (2.9) can be obtained from the energy 
Ep of the observed poloidal component of the geomagnetic field. The integral in 
the numerator describes the total magnetic energy, EM, in the earth's core [except 
for the factor (2/1)-IJ, which can be bounded from above by estimates of ohmic 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

97
8.

10
:4

35
-4

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 o
n 

07
/1

5/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



MAGNETOHYDRODYNAMICS OF THE EARTH'S DYNAMO 441 

dissipation. The lower bound for the radial velocity in the earth's core implied by 
relationship (2.8), 

(2.11) 

can thus serve as a useful criterion for the feasibility of proposed dynamo 
processes (Busse 1975a, Gubbins 1975). 

2.4 Negative Theorems 
The dynamo equation possesses some interesting properties without parallel in 
other areas of fluid dynamics. The most famous one is expressed by Cowling's 
theorem, which states that Equation (2.1b) does not permit axisymmetric or two
dimensional steady solutions for B. The original proof by Cowling (1934) has been 
extended by Backus & Chandrasekhar ( 1956) and by Lortz (1968a). Cowling'S 
theorem has played an important historical role. Since the earth's magnetic field 
is approximately axisymmetric it seemed doubtfu l  for a long time whether the 
dynamo process was possible in a nearly homogeneous body of fluid like the 
earth's core. Today it is well known, mainly because of the work of Braginsky 
(1965a,b, 1975), that arbitrary small deviations from axisymmetry are sufficient to 
generate magnetic fields if the magnetic Reynolds number is high enough. 

Even more important for practical applications than Cowling's theorem is the 
toroidal theorem, which was found by Elsasser (1946) and has been proven 
rigorously by Bullard & Gellman (1954). The theorem states that any solution B 
of Equation (2.la) decays if the velocity field v is toroidal, i.e. if it can be written 
in the form 

v=V x rljJ, (2.12) 

and if the diffusivity � is a function of the radial coordinate r == I r I only. The 
toroidal theorem would be implied by the general condition (2.8) if it could be 
proven that any steady or growing solution B of the dynamo equation must have 
a radial component. Such a proof is highly desirable because it would exclude the 
possibility of a magnetic field inside a planetary core that could not be noticed 
from the outside. Even though the equation for the toroidal potential 9 is relatively 
simple, it has not yet been possible to prove that all solutions for 9 must decay 
if h == O. There are a number of similar conjectures that have remained without 
proof, although they are generally believed to be true. [See Busse (1977a) for further 
details]' 

The toroidal theorem can also be formulated for a plane geometry where the 
diffusivity .Ie depends only on the coordinate in the direction of the constant unit 
vector k. In this case the theorem states that all solutions B of Equation (2.la) 
decay in time if v is of the form 

v = V x kljJ (2.13) 

and if .Ie is a function of k· r only. The toroidal theorem in this form clearly 
demonstrates why it has been difficult to demonstrate the feasibility of the homo
geneous dynamo process. Most simple velocity fields can be written in the form (2.13) 
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442 BUSSE 

and are therefore excluded from dynamo action. The closest analogue to the 
toroidal theorem in hydrodynamic stability theory is the fact that some flows, such 
as plane Couette flow or Hagen-Poiseuille flow in a circular pipe, are stable with 
respect to infinitesimal disturbances. It is worth emphasizing that the absence of 
dynamo action in the case of toroidal velocity fields does not imply that mechanical 
energy could not be converted into magnetic energy. A velocity field of the form 
(2. 1 3) may lead to an initial increase of the magnetic energy, but ultimately all 
magnetic fields must decay because of the unbalanced ohmic dissipation of the 
poloidal component of the magnetic field. 

2.5 Simple Dynamos 

To illuminate some typical features of the dynamo process we consider a simple 
example. The simplest velocity field not excluded by the toroidal theorem is a 
two-dimensional field of the form 

v = V x k!fr(x, y)+ kw(x, y), (2.14) 

where k is the unit vector in the z direction of the Cartesian system of coordinates. 
The work of Childress ( 1970) and G. O. Roberts ( 1970, 1972) has shown that 
spatially periodic dynamos can be constructed easily because the boundary 
conditions for the magnetic field at the surface of the conducting fluid are a voided. 
Following G. O. Roberts ( 1972) we assume 

!fr = A sin IXX sin IXY = A wjC, (2. 1 5) 

with constants A and C. The solution for the magnetic field must have a z dependence 
according to Cowling's theorem. Since the dynamo equation does not depend 
explicitly on t or z we may assume 

B cx: exp {iyz+pt}. (2. 16) 

The magnetic field can be separated into a mean part (B) and a fluctuating part 
B' == B- <B>, where the brackets indicate the average over the x, y plane. By taking 
the average over the dynamo equation (2. 1  b) and subtracting it from Equation (2.1b) 
we obtain two equations for (B) and B', 

(p+Ay2)(B) = iyk x <v x B'), 

(p-AV2)B' = (B)·Vv+iyw(B)+ .... 

(2.l7) 

(2.1 8) 

Assuming that the fluctuating field H' is small in comparison with the mean field 
(H) we have neglected terms involving H' on the right-hand side of (2.18). This 
assumption is justified in the limit y2 � 1X2, as can be confirmed from the results. 
Equation (2.17) suggests that p will be of the same order of magnitude as ..\y2. 
Assuming this and neglecting terms of the order y in Equation (2. 18) we find as 
the approximate solution B' = (B)· VVj2AOC2 • After inserting this solution in 
Equation (2. 1 7) we obtain 

(2.19) 
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which can be satisfied only if 

p = _Ay2+yACj4),()(2. 

The solution itself can be written in the form 

(2.20) 

(2.21) 

where Bl is a complex constant to be determined by the ini'tial conditions. A 
dynamo process exists if p is positive, i.e. the condition for dynamo action is 

(()(AM.)(C/yA) > 4. (2.22) 

The right-hand side is written in this condition as the product of two magnetic 
Reynolds numbers, one of which is based on the scale of the fluctuating field, while 
the other is based on the wavelength of the mean field. The dependence of the 
dynamo condition on the product of two differently defined magnetic Reynolds 
numbers is characteristic for nearly alI homogeneous dynamos. 

The field lines uf the magnetic field (2.21) can be visualized as the edges of the 
steps in a winding staircase, as shown in Figure 2 for the case y > O. The same 
sense of winding characterizes the velocity field. Some illumination of the dynamo 
process may be gained by neglecting the effect of diffusion' and considering the 
distortion of magnetic field lines by the velocity field. In Figure 3 the distortions 
owing to the two components of the velocity field have been separated. It can be 
seen that an x component· results from the field lines that are originally aligned 
with the y direction and vice versa. It must be kept in mind, though, that magnetic 
diffusion is required for the generation of magnetic flux. 

There are two properties of the above example that are typical for the majority 
of the homogeneous dynamos considered in the literature: 

1 .  The velocity field (2.14), (2.15) possesses the same sense of winding everywhere. 
Mathematically this is expressed by the property that the helicity <v' V x v> is 

a b 
Figure 2 (a) Streamline of the velocity field (2.14) for AC > O. (b) The direction of the mean 

magnetic field (B> as a function of z. 
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444 BUSSE 

Figure 3 A sketch of dynamo process. The upper part of the figure shows the components 
V x ktjJ (left) and kw (right) of the velocity field. Below the distortions of the magnetic 
field caused by the velocity field are shown. The distortion of the field in the y direction at the 
level z = n/2y results in a component of the field in the x direction at the level z = 0, and 
vice versa. The magnetic fields at the two levels can thus reinforce each other if diffusion is 
taken into account. 

finite. The dynamo condition (2.22) can actually be expressed in terms of the 
helicity, since the latter is proportional to AC. There is no law that a finite 
helicity is required for dynamo action. It is known, however, that the dynamo 
process is most direct in the case of a finite helicity and that velocity fields without 
helicity require higher values of the magnetic Reynolds number for dynamo action. 

2. The magnetic field separates into a mean and a fluctuating part. The separation 
of scales between the velocity field and the large-scale component of the magnetic 
field is not solely a matter of mathematical convenience. From the investigation of 

dynamos by numerical methods (Gubbins 1973, Bullard & Gubbins 1977) it is known 
that a sufficient separation of scales is necessary to obtain dynamo action. 

The separation of scales is the basis for the mean field electrodynamics (MFE) 
formulated by Steenbeck, Krause & Riidler ( 1966). These authors make statistical 
assumptions about a small-scale turbulent velocity field and obtain in the simplest 
case an equation of the form 

(2.23) 

where the brackets indicate a three-dimensional local average. Equation (2.23) is 
based on the assumption of isotropic homogeneous turbulence without the property 
of mirror symmetry. This lack of symmetry can be expressed by a finite helicity 
and leads to a non vanishing coefficient 0(. When 0( is sufficiently large, dynamo 
action occurs, as has been demonstrated by numerous solutions of Equation (2.23) 
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(see Steenbeck, Krause & Radler 1966, Krause & Steenbeck 1967, P. H. Roberts 
1972). 

Equation (2.23) can be generalized by the addition of a large-scale motion, as 
for example a differential rotation in a rotating system. Models based on these 
equations have been applied to the earth's core and to the sun (Deinzer & Stix 
1971, Krause & Radler 1 971 , Levy 1972). In the latter case the models appear to 
be more appropriate because the statistical assumptions, in particular the property 
of isotropy, are better satisfied than in the earth's core where the Coriolis force 
plays a dominant role. Because of its simplicity the concept of MFE has become 
very popular. However, "this seeming simplicity is a delusion. Beneath the surface 
of turbulent dynamo theory lies a morass of difficulties on which the subject rests 
uneasily" as Soward & Roberts (1 976) have pointedly remarked. A recent review 
of MFE has been given by Roberts & Soward (1975). Some of the mathematical 
problems involved in this approach can be analyzed in more detail by restricting 
attention to the case of random inertial waves, as was done by Moffatt (1970a,b, 
1972) and Soward (1975). 

Among the large number of other approaches for the solution of the kinematic 
dynamo problem I mention here only the elegant solution by Lortz (1968b), which 
is based on a helical system of coordinates. For an application of Lortz' model 
to the case of a sphere see Benton (1 975). A nearly complete review of solutions 
up to 1970 has been given by P. H. Roberts (1971 ). More recent reviews have been 
given by Gubbins (1 974) and Moffatt (1976). Some of the geophysically relevant 
solutions of the kinematic dynamo problem, in particular numerical solution of the 
problem in a sphere, are discussed in Section 5.2. 

2.6 The Magnetohydrodynamic Dynamo Problem 

The kinematic dynamo problem describes the dynamo process in its initial stages, 
when a particular mode among the small random magnetic disturbances that 
permeate the universe becomes amplified by dynamo action. When the amplitude 
of the magnetic field reaches a value such that the Lorentz force in the equation 
of motion is no longer negligible, the magnetohydrodynamic dynamo problem 
must be considered. The quadratic dependence of the Lorentz force on the amplitude 
of the magnetic field suggests a perturbation approach based on an expansion in 
powers of the nondimensional magnetic energy density M, 

v = VO+MVI + ... , 

(2.24) 

To obtain a finite-amplitude solution a minimum of four steps is required. In the 
first step the equations of motion are solved without Lorentz forces. This is by no 
means a trivial problem, because solutions of the form (2.13) must be avoided. Since 
nearly all known exact solutions of the Navier-Stokes equations can be written in 
the form (2.13), Vo is usually determined by approximation methods. In the second 
step the kinematic dynamo problem for Vo is solved. The strongest growing magnetic 
field is accepted as the physically relevant solution and the corresponding Lorentz 
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force is calculated. The resulting modification Mv 1 of the velocity field is derived 
in the third step. In the fourth step the dynamo equation of the order M3/2 is 
considered. In general it is sufficient to consider the solvability condition to determine 
the equilibrium value M of the magnetic energy density. When the initial growth 
of the magnetic field is exponential an expansion analogous to (2.24) can be used 
for the growth rate p. The balancc for the equilibrium valuc M of the magnetic 
energy density is given in this case by real part {Po+Mpll � 0, which indicates 
that the perturbation approach is restricted to the region of the parameter space 
of the problem where the real part of Po is sufficiently small. 

The above perturbation approach has been used by Busse (1 973) in the case of 
convection in a layer heated from below with a plane parallel shear flow and by 
Soward (1974, see also Childress & Soward 1972) in the case of a rotating con
vection layer. The most important result of these studies is that the equilibrium 
amplitude of the magnetic field is determined by diffusion properties of the system 
rather than by an equipartition of magnetic and kinetic energy. Although it is 
known from problems of finite-amplitude convection that the perturbation approach 
often provides a qualitatively correct description far beyond the region where 
converging expansions can be expected, there are undoubtedly efJ"ects of the Lorentz 
force that cannot be captured by the perturbation approach. This problem is dis
cussed again in Section 6. 1 in connection with the discussion of the equilibration 
in the case of the geodynamo. 

Studies on the extension of turbulent dynamos into the nonlinear magnetohydro
dynamic regime have been made by a number of authors. Malkus & Proctor (1 975) 
and Proctor (1 977) have analyzed on the basis of MFE the effects of large-scale 
flows generated by Lorentz forces. For a statistical treatment of the nonlinear 
magnetohydrodynamic problem we refer to Pouquet, Frisch & Leorat ( 1976). 

Before closing this brief survey of dynamo theory I want to mention the 
laboratory investigation of a homogeneous dynamo by Lowes & Wilkinson ( 1 963, 
1 968). These authors used the high permeability of iron rotors in their experimental 
realization of the Herzenberg dynamo in order to achieve a sufficiently high magnetic 
Reynolds number. Because of the nonlinear properties of the permeability and the 
effects of hysteresis, the experimental dynamo exhibits a complex behavior and is 
not well suited for a comparison with theoretical predictions. An experimental 
dynamo without ferromagnetic material is highly desirable but rather costly because 
of the large dimensions required. 

3 THE PHYSICAL STATE OF THE EARTH'S CORE 

3.1 Properties of the Core 

It has been said that we know more about the interior of stars than about the 
interior of our own planet. This is somewhat exaggerated. The radii of the liquid 
outer core and the solid inner core have heen measured hy seismic methods to an 
accuracy of a few kilometers (see Figure 4). It is also generally accepted that the 
core consists mainly of iron, which is alloyed with nickel in the inner core, while 
the density of the onter core requires the admixture of a lighter element, most 
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Figure 4 The earth's interior. The mean radii " and ro have the values 1210 km and 
3480 km, respectively. 

likely sUlphur or silicon. But the physical properties of iron at core pressures of a 
few mega bars are scarcely known, and estimates for the viscosity in the outer core 
vary by several orders of magnitude. The electrical and thermal conductivities are 
somewhat better known even though a factor 3 must be regarded as a realistic 
estimate for the uncertainty (Malkus 1 968). Some of the commonly used values for 
the properties of the earth's outer core are listed in Table 1 ,  and we refer to the 
recent monograph by Jacobs ( 1 975) for a more detailed discussion. 

The form and the secular variation of the geomagnetic field represent a large 
potential source of information about the core. If a sufficiently detailed theory of 
the earth's dynamo were available, constraints on the properties of the earth's core 
could be derived by comparing theoretical predictions and observations. As in many 
other areas of geophysics, however, the relationship between the development of 
theoretical models and the interpretation of observational data is one of mutual 
dependence. Thus the progress in the theory of the geodynamo is hampered nearly 

Table 1 Commonly assumed properties of the earth's core 

kinematic viscosity 
thermal conductivity 
electrical conductivity 
thermal diffusivity 
magnetic diffusivity 
coefficient'of thermal expansion 

v = 10-6 m2 sec-I 
k = 60 WK-I m-I 
(J = 5 . 105 mho m - I 
K = 7 '10-6 m2 sec-1 
.Ie = 1.6 m2 sec-I 
{3=4.S· 1O-6K-1 
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as much by the lack of knowledge about the earth's core as by mathematical 
difficulties. 

A still unresolved problem is the question of the energy source of the geodynamo. 
The discussion by Bullard (1949) of various external and internal forces acting on 
the core still holds. Convection driven by thermal or chemical buoyancy appears 
to be the most likely cause of motions. Turbulent motions induced in the core by 
the precession of the earth is another possibility that requires consideration. 

3.2 Convection 

Assuming that the core is cooling down, thermal energy is available from the 
latent heat liberated by the growth of the inner core (Verhoogen 1961 ,  Malkus 
1 973) and from radioactive elements distributed throughout the core. The latter 
proposal has been a subject of controversy (Brett 1 976). Yet there appears to be 
the possibility that a significant fraction of the observed surface heat flux could be 
produced in the earth's core by the radioactive potassium isotope 4°K (Goettel 
1976) . Chemical buoyancy is provided by the fact that the light component in the 
outer core stays in solution and becomes enriched near the growing inner core 
(Braginsky 1963, Loper & Roberts 1 977) . The gravitational energy released by the 
upward motion of the enriched material may not be large. The energy is not 
subject to the constraints of thermal efficiency, however, when it is converted into 
ohmic dissipation by the dynamo process (Gubbins 1976). 

Much of the recent discussion of the physical state of the earth's core has been 
stimulated by the hypothesis of Higgins & Kennedy (1971) that the outer core is 
at the melting temperature of iron or of an iron-sulphur mixture (Usselman 1 975). 
According to Higgins and Kennedy the adiabat of liquid iron is a steeper function 
of the pressure than the melting temperature, with the consequence that the core 
would be stably stratified. A more detailed. inspection of the problem (Kennedy & 
Higgins 1 973) shows that this hypothesis must be restricted to the outer part of the 
outer core. The exact distance from the inner core up to which thermal convection 
could occur depends on the Griineisen parameter, the value of which at high 
pressures is not known. The assumptions made by Higgins and Kennedy have been 
disputed by other scientists (Frazer 1 973, Verhoogen 1 973), and it is also possible 
to remove the discrepancy between the isentrope and the melting temperature by 
assuming an iron slurry distribution in the outer core (Busse 1 972, Elsasser 1 972). 
Each of the alternatives to the Higgins and Kenn-edy

· 
proposal poses its own 

problems, however, and the stable stratification of the outermost core must be 
regarded as a serious possibility. 

3.3 Motions Induced by Precession 

The feasibility of a precession-driven geodynamo has been investigated by Malkus 
(1963, 1968). The advantage of this proposal is that the forces are well known, 
since they derive from the astronomical phenomenon of the 26,OOO-year precession 
of the earth's axis about the normal of the ecliptic. Since the precessional torques 
of moon and sun acting on the mantle are larger than those acting on the core 
because of the smaller ellipticity of the latter, the co-precession of mantle and core 
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requires a coupling torque exerted by the mantle on the core. Poincare (1910) 
discussed this problem on the basis of the solution for the motion of a homo
geneous ideal fluid in a precessing spheroidal c�vity, which he rederived after it 
had been derived by Hough (1895) fifteen years earlier. The Hough-Poincare solution 
is based on the assumption of constant vorticity and suggests a negligible effect 
of precession on motions in the earth's core. It can be shown, however, that this 
solution does not represent the solution of the problem for a viscous fluid in the 
limit where the viscosity vanishes (Busse 1968). Instead of a constant vorticity a 
singularity in the form of a cylindrical vortex sheet with a radius of (�)1/2 of the 
core radius develops when the viscosity tends to zero. Malkus (1 968) has demon
strated by laboratory experiments that the shear flow becomes unstable to wavy 
disturbances and that a fully turbulent state is realized when the rate of precession 
is sufficiently large. 

It is doubtful whether the precession of the earth is strong enough to induce a 
turbulent state in the core. If the outer part of the outer core is stably stratified, 
as proposed by Kennedy & Higgins (1973), the differential rotation induced by 
precession would be stabilized, since ·the region of strongest shear is close to the 
core-mantle boundary. The problem becomes more complex when Lorentz forces 
are included, and the heuristic arguments by Malkus in favor of a precession-driven 
magnetohydrodynamic turbulence as the cause of geomagnetism have been criticized 
by Rochester et al ( 1975). On the other hand, a precessional origin of geo
magnetism is an attractive hypothesis in terms of energy considerations, since the 
vast reserve of the rotational energy of the earth would be available. Only a fraction 
of the energy lost by tidal dissipation would be needed to supply the energy lost by 
ohmic heating. I conclude that the question of the feasibility of a precession-driven 
geodynamo must be regarded as open at this time and that a detailed theoretical 
analysis of the problem is desirable. 

4 HYDRODYNAMICS OF THE EARTH'S CORE 

4.1 General Remarks 
From the discussion in Section 2 it is evident that the dynamo process can be 
regarded as an instability of the solution of the basic equations of motion without 
magnetic field. An understanding of the hydrodynamics of the earth's core in the 
limit of vanishing Lorentz forces is therefore a prerequisite for the solution of the 
full magnetohydrodynamic problem of the geodynamo. The solutions of interest in 
the cases of convection as well as of precession are instabilities themselves of a basic 
state. In the language of bifurcation theory the dynamo process thus represents a 
secondary or higher order branching in the solution space of the respective boundary
value problem. 

This section is restricted to the classical problem of thermal convection in a 

rotating, uniformly heated, self-gravitating sphere. The solution for this problem 
exhibits the characteristic features of the dynamics in rotating planetary cores 
without magnetic fields. Because of the dominating influence of the Coriolis force, 
the nature of the energy-providing forces has relatively little influence on the form 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

97
8.

10
:4

35
-4

62
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 o
n 

07
/1

5/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



450 BUSSE 

of the motions, and general conclusions reached in the case of thermal convection 
apply in other cases as well. It is apparent from the results that the presence of an 
inner core does not affect the solution significantly. It must be remembered that 
in spite of its sizeable diameter the earth's inner core occupies only about -to of 
the volume of the core. For the same reason the inner core is usually neglected in 
the analysis of the dynamo problem. 

4.2 Thermal Convection in a Rotating Sphere 

A detailed analysis of the problem of convection in a sphere in the asymptotic 
limit of large rotation rates has been given by P. H. Roberts ( 196�). The physically 
realized solution was determined by Busse ( 1970a). Figure 5 shows a qualitative 
sketch of this solution, which exhibits the characteristic alignment of the conVection 
rolls with the axis of rotation. To minimize the stabilizing influence of the Co rio lis 
force the realized convection mode obeys as far as possible the Proudman-Taylor 
theorem, which states that steady small-amplitude motion in a rotating fluid of 
vanishing viscosity must be independent of the z coordinate in the direction of the 
axis of rotation. Because of the boundary condition the velocity field cannot be 
entirely z-independent unless the radial component vanishes, in which case no work 
is done by buoyancy forces. To accommodate the deviations from the Proudman
Taylor theorem the convective motion becomes time-dependent and assumes the 
form of columns propagating slowly in the prograde azimuthal direction, like 
Rossby waves. In addition, viscous friction becomes large enough, owing to a small 
azimuthal wavelength, to balance part of the Coriolis force. The relevant parameter 
is the Ekman number E = v/nr3 based on the kinematic viscosity v, the rotation 
rate n, and the radius of the sphere roo The wavelength decreases with E1/3 and 
the phase velocity divided by n decreases with E2/3 as E tends to zero. 

Figure 5 Sketch of the convection flow in an internally heated self-gravitating sphere 
(after Busse 1970a). 
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c 

o _5 

Figure 6 The stabilizing component C of the Coriolis force and the buoyancy force A as 

a function of distance s from the axis. The onset of convection occurs at the distance 
s � ro/2 from the axis, where CIA reaches a minimum. 

The most remarkable property of the solution is that the convective instability 
sets in at a distance of about ro/2 from the axis. This distance corresponds to the 
minimum of the ratio between the nongeostrophic part C of the Corio lis force and 
the buoyancy force A. Since the convection motion is predominantly parallel to the 
equatorial plane, only the buoyancy provided by the components of gravity and the 
temperature gradient perpendicular to the axis of rotation enter the dynamics in 
first approximation. Since both components increase linearly with distance s from the 
axis, A increases quadratically. The stabilizing force C increases with the inclination 
of the boundary, as shown in Figure 6, such that CIA reaches a minimum near 
s = ro/2. 

The property that the component of gravity perpendicular to the axis of rotation 
is the predominant source of buoyancy is the basis for a laboratory simulation 
experiment (Busse & Carrigan 1976). Since the buoyancy depends on the product of 
temperature gradient and gravity, thermal convection in a rotating planetary core 
can be modeled experimentally by using the centrifugal force in place of gravity 
and by reversing the temperature gradient. The onset of convection in a rotating 
spherical shell cooled from the inside and heated from the outside occurs in the form 
of regularly spaced columns, as shown in Figure 5, except that the onset occurs 
at the equator of the inner sphere. At higher temperature differences convection 
columns tend to fill the spherical shell. Even though the spacing becomes irregular, 
the columns retain their perfect alignment with the axis of rotation (see Figure 3 of 
Busse & Carrigan 1976). 

4.3 Differential Rotation Generated by Convection 
The concept of the generation of differential rotation owing to the advection of 
momentum by thermal convection has played an important role in the theory of the 
earth's dynamo. In analogy to the tendency of convection to homogenize tempera-
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tures it has been argued that angular momentum tends to be equalized in 
rotating convecting systems. This hypothesis has been used by Bullard ( 1 949) and 
Bullard et al (1 950) to explain the westward drift of the non dipole part of the geo
magnetic field. It can be easily demonstrated, however, that the hypothesis of 
angular-momentum mixing is false (Busse 197 1 ). Convection in a tall cylindrical 
annulus rotating about its vertical axis provides a good example. When the annulus 
is cooled from the inside and heated from the outside, convection driven by 
centrifugal buoyancy occurs in the form of two-dimensional columris similar to those 
discussed in the preceding section. Since the Coriolis force is entirely balanced by 
the pressure when the convective motion is exactly two-dimensional, the effects of 
rotation vanish from the dynamics of the problem. The solution becomes identical 
to that of two-dimensional convection rolls in a layer heated from below, and the 
possibility of the generation of a mean flow can be excluded in this case. A more 
detailed analysis of the problem in the case of an annulus of finite height reveals 
that the sign of the differential rotation depends on the radial curvature of the top 
and bottom boundaries (F. Busse and L. Hood, in preparation). The problem of the 
generation of differential rotation has been investigated in more detail in the astro
physical context. The sun actually offers the best argument against the hypothesis 
of angular-momentum mixing, since the highest angular velocity is observed at the 
solar equator. Although solar convection represents a highly turbulent system, the 
equatorial acceleration can be explained qualitatively by the nonlinear solution for 
convection in a thin rotating spherical shell (Busse 1 970b). Recent numerical calcula
tions by Gilman (1 972, 1 977) indicate that the maximum angular velocity shifts to 
hig�er latitudes as the Ekman number is decreased. It is evident from the numerical 
results that the problem of differential rotation in the earth's core defies a simple 
solution. 

5 MODELS OF THE GEODYNAMO 

5.1 Historical Developments 

The understanding of the origin of the earth's magnetic field has always been the 
main motivation for the development of dynamo theory. It is thus not surprising 
that a large number of dynamo models have been constructed that take into 
account the spherical configuration of the earth's core even though rather unrealistic 
assumptions are made about the velocity field. The mathematical complexity of the 
full magnetohydrodynamic problem was the rationale given for the attempts to 
understand the geodynamo on the basis of kinematic theory alone. In addition; the 
belief was widely held that dynamo action depended on rather special properties 
of the velocity field. It was tacitly assumed that if a solution describing the main 
features of the earth's magnetic field could be found, the associated velocity field 
would approximate the flow actually realized in the core. The development of 
dynamo theory in the last decade has shown that this belief is unfounded. The 
work by G. O. Roberts (1 970) and others has demonstrated quite convincingly 
that nearly all velocity fields can give rise to dynamo action if the magnetic Reynolds 
number is high enough. The main features of the geomagnetic field can un-doubtedly 
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be reproduced by a variety of very different velocity fields, especially since so little is 
known about the toroidal field in the core. Today it is evident that the solution 
of the full magneto hydrodynamic dynamo problem cannot be avoided. Although 
the forces causing motions in the earth's core are not well known, there appear 
to be only a few reasonable choices. It can therefore be expected that the construc
tion of sufficiently detailed magneto hydrodynamic models will provide the con
straints required to isolate the mechanism of the geodynamo. Since the kinematic 
problem is always a part of the full problem, the methods used in kinematic 
dynamo theory will be of continuing interest. Some of them are discussed briefly 
below. 

5.2 K inematic Models 

Kinematic dynamo theory does not provide constraints for the choice of velocity 
fields, so heuristic arguments have often been introduced to justify a particular 
selection. In many kinematic models a strong azimuthal flow is assumed that 
provides a simple way to generate a toroidal magnetic field from a poloidal field. 
This' idea was expressed in the early work by Elsasser ( 1 947, 1956) and Bullard 
( 1 949) and is the basis for Parker's (1955) dynamo process. The observed westward 
drift of the nondipole component of the geomagnetic field can be interpreted as a 
manifestation of a retrograde differential rotation with an amplitude of 10- 3 m sec - 1 
in the outer parts of the core. On the other hand the westward drift may represent 
the propagation of magneto hydrodynamic waves in the earth's core, as proposed 
by Braginsky ( 1965b, 1967), Hide (1966), and Malkus ( 1967). A mechanism for 
the selective excitation of westward-drifting waves based on the instability of a 
mean toroidal field was discovered by Acheson ( 1972). Unfortunately it is not 
possible, as Backus ( 1968) has shown, to decide on observational grounds �hether 
the westward drift represents a material velocity or a phase- or group-velocity of 
waves in the core. It must therefore be concluded that the observational evidence 
provides little help for an appropriate choice of the velocity field. 

The generation of the poloidal field from the toroidal field requires a non
axisymmetric process according to Cowling's theorem. Parker (1955, 1970, 1971 )  in 
his pioneering work assumed turbulent cyclonic eddies driven by thermal buoyancy 
and was led to equations that anticipated the more formally derived equations of 
mean-field electrodynamics mentioned in Section 2.5. Bullard & Gellman ( 1954) 
assumed a poloidal velocity field with a cos 2¢ dependence on the azimuthal 
coordinate ¢. The latter authors were the first to apply numerical methods for 
the solution of the dynamo problem. With their limited computational facility 
Bullard & Gellman were unable to demonstrate numerical convergence of their 
results. Later authors found that the critical magnetic Reynolds number of the 
Bullard-Gellman dynamo increased as more terms of the expansion in spherical 
harmonics were taken into account. Gibson & Roberts ( 1969) in particular showed 
that it is unlikely that a stationary dynamo of the Bullard-Gellman type exists. 
Ever since, the problem of convergence has been a major issue in numerical 
investigations of dynamos. Part of the problem stems from the restriction of Bullard 
and Gellman's analysis to stationary solutions even though in general the growth 
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rate p does not move through zero but intersects the imaginary axis at some finite 
value as the magnetic Reynolds number increases. Recent numerical calculations 
of dynamos in a sphere have been more successful. G. O. Roberts (see P. H. 
Roberts 1971)  and Gubbins ( 1973) cQnsidered cases of axisymmetric velocity fields 
and obtained particularly simple solutions with an azimuthal dependence of the form 
exp {imcf>} . Pekeris, Accad & Shkoller ( 1973) used Beltrami velocity fields that 
are characterized by v x (V x v) = 0 and thus satisfy the statiQnary equations of 
motion for an ideal flow subject to a conservative body force. The arguments 
for the geophysical significance of these velocity fields are not convincing, however. 
More recently Kumar & Roberts ( 1975) obtained a large class of spherical dynamo 
solutions that have been used for a test of the analytical dynamo approach of 
Braginsky ( 1965a). 

Among the kinematic models Braginsky's dynamo ( 1965a,b, 1975) is of particular 
interest because it is based on the limit of high magnetic Reynolds number. 
In addition to the use of an expansion in powers of Rm- 1/2 Braginsky assumed 
a large toroidal magnetic field in zeroth order and showed that the nested system 
of equations resulting from the expansion could be solved in a consistent 
manner. Tough & Roberts ( 1968) and Soward ( 1972) generalized and clarified 
Braginsky's approach and took the equations of motion into account. Braginsky 
himself (1967, 1 975) has interpreted the fluctuating part of the velocity field 
in his dynamo as buoyancy-driven Alfven waves, which he christened MAC waves 
because of the combined magnetic, buoyancy (Archimedean), and Coriolis forces. 
A closed solution of the magneto hydrodynamic problem has not yet been given, 
however. For a review of the various possibilities of wave motions and other 
general aspects of the magnetohydiodynamics of the earth's core see the review 
articles by Roberts & Soward ( 1972), Hide & Stewartson ( 1972), and Acheson & 
Hide ( 1973). 

5.3 Magnetohydrodynamic Models 

The ultimate goal of the magnetohydrodynamic theory of the geodynamo is to 
solve the coupled system of the equations of motion and the dynamo equation 
for geophysically reasonable forces and to attain amplitudes of the magnetic field 
comparable to those observed. Only partial steps towards the realization of this 
goal have been achieved. In this section we consider a particularly simple magneto
hydrodynamic model that includes most of the important physical ingredients of 
the geodynamo even though the geometrical configuration is not that of a sphere. 

It is evident from the discussion in Section 4.2 that the problem of convection 
in a rotating sphere is essentially identical to the problem of convection in a 
rotating annulus that has conical boundaries and is subject to a radial gravity 
(Busse 1 970a). This model can be extended to the investigation of a dynamo 
process driven by convection. To obtain a simple boundary condition for the 
magnetic field the radial extent D of the annulus is assumed to be large com
pared with the height in the axial direction. The small-gap assumption D .::g So, 
where So is the mean radius of the annulus, is retained. This allows the use of a 
Cartesian system of coordinates and the application of analytical methods. 
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The solution of the dynamo equation turns out to be rather similar to the 
example discussed in Section 2.5. The toroidal part of the velocity field (2. 14) 
corresponds to the columnar convection motion and the motion along the columns 
is generated by the Ekman suction at the top and bottom boundaries or by 
higher-order effects introduced by the finite inc1it1ation of the boundaries (for details 
see Busse 1 975b). A minor difference is that the function w is z dependent, in 
contrast to expression (2. 1 5). Because of the finite height of the annulus there 
exists a smallest value of the convection amplitude for which dynamo action is 
possible. A rough estimate for this value can be obtained from condition (2.22) if y 
is set equal to 2n divided by the height of the annulus. It can be shown that the 
corresponding amplitude of convection is consistent with the assumption that only 
a small fraction of the observed heat flux at the earth's surface originates in the 
core. The form of the mean magnetic field for the strongest growing mode is 
sketched in Figure 7. Both the azimuthal and the radial component are anti
symmetric with respect to the equatorial plane. The radial component gives rise 
to an axisymmetric dipolar field outside the annulus. Thus the model reproduces 
the three primary features of the geomagnetic field : the dipolar nature, the 
approximate alignment with the axis of rotation, and the stationarity of the dynamo 
process. 

Except for the secular variations the geomagnetic field indicates a stationary 
geodynamo. This must be viewed in contrast to the oscillatory solar dynamo, with 
a period of 22 years corresponding roughly to the time scale of turbulent magnetic 
diffusion in the solar convection zone. Reversals of the geomagnetic field occur 
on a time scale of a few 105 years and must be regarded as a secondary 

Figure 7 A qualitative sketch of the mean magnetic field in the annulus model of the 
geodynamo. The poloidal field (right) continues as a dipolar field outside the conducting 

region. 
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phenomenon of the dynamo process, since that time scale is much longer than 
the time scale of magnetic diffusion. There is little known about the causes of 
reversals. They could represent excursions from normal oscillations of the dipole 
strength about its equilibrium value, as suggested by the analogous phenomenon 
found in the case of disk dynamos (see Section 2.2). Or they may be triggered 
by external events, as suggested by the surprising correlation between reversals 
and the impacts of large meteorites (Glass & Heezen 1967, Po hI 1976). 

The analysis of the annulus model of the geodynamo discussed .above has been 
extended into the nonlinear regime using the perturbation method mentioned in 
Section 2.6. An interesting phenomenon is the property that the Lorentz force 
can actually enhance dynamo action (Busse 1977b). This property contradicts Lenz' 
rule which describes the normal effect of the Lorentz force, but which does not 
have the character of a rigorous law in magnetohydrodynamics. The property of 
the Lorentz force to relax dynamic constraints, in particular in a rotating system, 
cannot be fully comprehended within the framework of a perturbation analysis 
(Soward 1974). It is generally believed that the relaxation of the dynamical con
straint imposed by the Coriolis force is the basic reason for the generation of 
magnetic fields in planets and stars and that the amplitude of the magnetic field 
is determined by this property. Only speculative suggestions about the appropriate 
balance have been proposed so far. This theme is discussed in the next chapter. 

An important constraint that the Lorentz force must satisfy in a rotating fluid 
contained by axisymmetric boundaries is Taylor's (1963) condition 

1 = const 
[(V x B) x BJ", deb dz = O. (5.1) 

The integral is extended over an. arbitrary concentric cylindrical surface intersecting 
the contained fluid and can be readily derived from the equations of motion in the 
limit of vanishing viscosity. In the annulus discussed above the eb component of 
the Lorentz force becomes small in the limit when D is very large compared with 
the height of the annulus and viscous forces can be invoked to avoid constraint (5. 1 ). 
Otherwise a differential rotation will be generated that tends to modify B in such 
a way that (5.1) is satisfied. For an example of this process in the case of a 
sphere we refer to Proctor (1977). 

6 PLANETARY DYNAMOS 

6.1 The Equilibration of Magnetic Energy 

The most interesting question of dynamo theory-and the most difficult to 
answer-is the question of the relationship determining the amplitude of the geo
magnetic field. That a definite relationship exists is indicated by the fact that in 
spite of many reversals the amplitude has not changed much throughout geologic 
history. I have already emphasized that simple criteria, for example the equilibration 
between kinetic and magnetic energy, are not releyant in dynamo theory, and 
that the knowledge of the dipole strength of other planetary magnetic fields may 
play a key role in the determination of equilibration criteria. To start the dis-
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cussion let us consider three possible relationships between Corio lis force (C), 
Lorentz force (L), and viscous friction (F), 

(a) C � F � L ;  (b) C � L � F ;  (c) L � C � F. 

In cases (a) and (b) it is assumed that the major part of the Coriolis force is 
balanced by the pressure gradient. Case (a) is almost certainly not realized in the 
earth's core. I mention it only because it is accessible to the magnetohydrodynamic 
perturbation approach discussed in the preceding section. 

Traditionally case (c) has been assumed to describe the balance of the geodynamo. 
The investigation of the simple problem of convection in a layer heated from below 
and rotating about a vertical axis indicates that the presence of a homogeneous 
magnetic field minimizes the critical temperature difference for the onset of convec
tion when case (c) is realized (Eltayeo 1972, Roberts & Stewartson 1975). Case (c) 
requires a toroidal field of several hundred Gauss, and although the westward 
drift of the nondipole field has been interpreted in favor of such a high field 
strength (Braginsky 1965b, Hide 1966), there are strong arguments against this 
hypothesis. First, there is no need to balance the entire Coriolis force by the 
Lorentz force, as in the example of the horizontal convection layer, since the gravity 
vector is not parallel to the axis of rotation in most of the earth's core. The 
pressure gradient offers an energetically preferred balance for the Coriolis force. 
Second, the high ohmic dissipation associated with a large toroidal field imposes 
considerable strain on any proposal for the energy source of the geodynamo. Thermal 
convection would be an inadequate source of energy in this case because of its 
low efficiency (Verhoogen 196 1 )  and the upper bound on the heat flux from the 
earth's core provided by the observed surface heat flux. Third, there are alternative 
interpretations possible for the westward drift that do not require the assumption 
of a large toroidal field. Balance (b) seems to me to be the most likely one. 
Arguments in support of such a balance come from the model discussed in 
Section 4.3, which suggests that poloidal and toroidal components of the magnetic 
field in the earth's core do not differ by more than a factor 10, say, and from 
the following more speculative considerations. 

6.2 Dynamical ConstraintsIor the Strength oI Planetary Magnetic Fields 

The annulus model of the geodynamo discussed in Section 4.3 can be easily extended 
into the regime (b) in which the Lorentz force exceeds viscous friction if the poloidal 
magnetic field is neglected. Since the latter is presumably somewhat smaller than 
the toroidal field anyhow, the mathematical benefits of the neglect of the poloidal 
field outweigh the advantages of an accurate but more cumbersome analysis. The 
analysis of convection in a rotating annulus in the presence of an azimuthal 
magnetic field assumes the geostrophic balance, as discussed in Section 3. The 
Lorentz force, however, now becomes the major effect in balancing the deviations 
from the Proudman-Taylor condition caused by the inclination of the conical 
boundaries. There are two major results (Busse 1976, see also Eltayeb & Kumar 
1 977) . The wave number of convection columns in the azimuthal direction is no 
longer of thc order £- 1/3 but decreases as the magnetic field strength increases. 
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Second, there is an upper limit of the magnetic field strength beyond which 
solutions approximately satisfying the geostrophic balance can no longer exist. 
For the case of planetary interest the upper bound assumes the form 

(6.1 )  

where K i s  the thermal diffusivity, Bo i s  the strength o f  the magnetic induction, 
and IJ is the tangent of the angle of inclination. The annulus model does not 
provide a reasonable lower bound for the dimensionless wavenumber a of the 
convection columns. This must come from the fact that dynamo action ceases if 
the number of eddies becomes too small. Gubbins ( 1 973) and Bullard & Gubbins 
( 1 971) found that at least two eddies are required in the radial direction in a 
spherical shell resembling the earth's core. If we therefore assume a lower bound 
of the order 10 for a we find that tbe right-hand side of condition (6. 1 )  yields a 
value somewhat less than 10-4. 

At the present time two planets, Jupiter and Mercury, are known to exhibit a 
large-scale magnetic field. The existence of these fields is difficult to explain unless 
a dynamo process occurs in the respective electrically conducting planetary cores. 
Both magnetic fields are similar to the geomagnetic field in that they are pre
dominantly dipolar and nearly aligned with the axis of rotation. This together with 
the fact that thermal convection appears to be the most likely energy source in all 
cases suggests that the strengths of the magnetic fields may be determined by a 
common constraint. Condition (6. 1 )  could express such a constraint. Indeed, if the 
observed polar field strength extrapolated to the core is used in place of Bo and 
the values of Table 2 are used a surprisingly similar value of the expected order 
of magnitude is obtained in all three cases. Clearly, a more detailed analysis is 
needed to establish this hypothesis. At least it suggests that a general theory of a 
convection-driven dynamo in a sphere may be applicable to a variety of planetary 
cores. 

An alternative possibility has been discussed by Dolginov (1976), who considers 
precession as the common origin of planetary magnetism. Assuming heuristically 
that the magnetic field strength is proportional to I U x Up I pr6! A where Up is the 
angular velocity of precessic)ll, Dolginov finds reasonable agreement for various 

Table 2 Properties of planetary cores 

Earth Jupiter Mercury 

angular velocity n (10-5 sec - I) 7.3 1 7.5 0.1 2  
characteristic dimension 1 (106 m) 3.5 10 1.8 
magnetic diffusivity A (m2 sec - I) 1.6 1 .2 1 

thermal diffusivity K ( 10-6 m2 sec - I) 7 40 4 
magnetic induction B (10-4 T) 3.7 23 0.019 
energy parameter M (10- 1°) 0.85 4.6 0.33 

A 
- M  (10-5)  1 .9 1 .4 0.85 
K 
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planets. Since no physical justification for the assumed balance is given and since 
the actual torque exerted by the planetary mantle on the core has not been taken 
into account, the comparison is not entirely satisfactory. 

7 CONCLUSION 

Like hydrodynamic turbulence the generation of magnetic fields in an electrically 
conducting fluid originates in the form of an instability. Since this instability is 
characterized by the appearance of an additional physical quantity, the magnetic 
field, it might be expected that the theory of planetary magnetism is even more 
complex than the theory of hydrodynamic turbulence. The intimate relationship 
between planetary magnetism and rotation and the distinct regular features exhibited 
by planetary magnetic fields suggest, however, that the mechanism of the generation 
of the magnetic fields in planetary cores is actually simpler than ordinary hydro
dynamic turbulence. Whether or not this belief is overly optimistic will become 
cle a r  within the next deca de if the progress of dynamo theory continues a t  the same 

rate as in the past. 
At the present time dynamo theory is entering a new area. The basic dynamo 

mechanism has been understood well enough that the problem of quantitative 
models for the geodynamo can be attacked. The solution of this problem will 
require considerable numerical efforts and it is likely that a number of new non
linear phenomena will be discovered in the course of the computations. It is 
therefore advisable to continue the general exploration of the magneto hydrodynamic 
dynamo problem by analytical as well as numerical methods. The investigation of 
nonlinear oscillations and the possibility of reversals of the magnetic field appears 
to be of particular interest. Even the kinematic dynamo problem still offers 
numerous mathematical challenges, as was indicated in .Section 2.4. A concise 
classification of the different forms of dynamo action is desirable and the influences 
of different boundary conditions needs further study. The history of the dynamo 
problem has been full of surprising results and if the past is any indication of the 
future, there are many more fascinating properties waiting to be discovered. 
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