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PREFACE.

THE subject selected by the Examiners for the Adams Prize for

1882 was

"A general investigation of the action upon each other of two

closed vortices in a perfect incompressible fluid."

In this essay, in addition to the set subject, I have discussed

some points which are intimately connected with it, and I have

endeavoured to apply some of the results to the vortex atom theory

of matter.

I have made some alterations in the notation and arrangement

since the essay was sent in to the Examiners, in so doing I have

received great assistance from Prof. G. H. Darwin, F.R.S. one of

the Examiners, who very kindly lent me the notes he had made

on the essay. Beyond these I have not made any alterations

in the first three parts of the essay : but to the fourth part, which

treats of a vortex atom theory of chemical action , I have made

some additions in the hope of making the theory more complete :

paragraph 60 and parts of paragraphs 58 and 59 have been added

since the essay was sent in to the Examiners.

I am very much indebted to Prof. Larmor of Queen's College,

Galway, for a careful revision of the proofs and for many valuable

suggestions.

TRINITY COLLEGE, CAMBRIDGE.

October 1st, 1883.

J. J. THOMSON.

T. b
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INTRODUCTION.

IN this Essay the motion of a fluid in which there are circular

vortex rings is discussed. It is divided into four parts, Part I.

contains a discussion of the vibrations which a single vortex

ring executes when it is slightly disturbed from its circular form.

Part II. is an investigation of the action upon each other of two

vortex rings which move so as never to approach closer than by a

large multiple of the diameter of either ; at the end of this section

the effect of a sphere on a circular vortex ring passing near it is

found. Part III. contains an investigation of the motion of two

circular vortex rings linked through each other ; the conditions

necessary for the existence of such a system are discussed and the

time of vibration of the system investigated. It also contains an

investigation of the motion of three, four, five, or six vortices

arranged in the most symmetrical way, i.e. so that any plane per-

pendicular to their directions cuts their axes in points forming the

angular points of a regular polygon ; and it is proved that if there

are more than six vortices arranged in this way the steady motion

is unstable. Part IV. contains some applicatious of the preceding

results to the vortex atom theory of gases, and a sketch of a vortex

atom theory of chemical action.

When we have a mass of fluid under the action of no forces,

the conditions that must be satisfied are, firstly, that the ex-

pressions for the components of the velocity are such as to satisfy

the equation of continuity ; secondly, that there should be no

discontinuity in the pressure ; and, thirdly, that if F (x, y , z, t) = 0

be the equation to any surface which always consists of the same

fluid particles, such as the surface of a solid immersed in a fluid or

the surface of a vortex ring, then

dF dF dF dF

+ u + v + w.

dt dx dy dz

=
0,

where the differential coefficients are partial, and u, v , w are the

velocity components of the fluid at the point x, y, z. As we use in

the following work the expressions given by Helmholtz for the

velocity components at any point of a mass of fluid in which there

is vortex motion ; and as we have only to deal with vortex motion

which is distributed throughout a volume and not spread over a

surface, there will be no discontinuity in the velocity , and so no

discontinuity in the pressure ; so that the third is the only con-
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dition we have explicitly to consider. Thus our method is very

simple. We substitute in the equation

dF dF dF dF

+u + v + w =0

dt dx dy dz

the values of u, v, w given by the Helmholtz equations, and we

get differential equations sufficient to solve any of the above

problems.

We begin by proving some general expressions for the momen-

tum, moment of momentum, and kinetic energy of a mass of fluid

in which there is vortex motion. In equation (9) §7 we get the

following expression for the kinetic energy of a mass of fluid in

which the vortex motion is distributed in circular vortex rings,

T=Σ {23V- ( ddt

dQ dR

+9 + h

dt dt
+ ½p√√(u²+ v²+ w²) pdS,

where T is the kinetic energy ; 3 the momentum of a single

vortex ring ; P , Q, R the components of this momentum along

the axes of x, y, z respectively ; V the velocity of the vortex ring ;

f, g, h the coordinates of its centre ; p the perpendicular from the

origin on the tangent plane to the surface containing the fluid ;

and ρ the density of the fluid. When the distance between the

rings is large compared with the diameters of the rings, we prove

in § 56 that the terms

Σ

dP dD dR

+g + h

dtdt dt

for any two rings may be expressed in the following forms :

ds

or

2 πραγ
dr'

mmπρα α'

12

(3 cose cose - cos e),
зов

where r is the distance between the centres of the rings ; m and

m' the strengths of the rings, and a and a' their radii ; S the

velocity due to one vortex ring perpendicular to the plane of the

other ; e is the angle between their directions of motion ; and 0,

' the angles their directions of motion make with the line joining

their centres.

These equations are, I believe, new, and they have an important

application in the explanation of Boyle's law (see § 56).

We then go on to consider the vibrations of a single vortex

ring disturbed slightly from its circular form ; this is necessary for

the succeeding investigations , and it possesses much intrinsic

interest. The method used is to calculate by the expressions given
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by Helmholtz the distribution of velocity due to a vortex ring whose

central line of vortex core is represented by the equations

n

p = a + Σ (a cos ny +B, sinny),18

z = 3 + (y₂ cos ny+ d, sin ny),

where p, z, and are semi-polar coordinates, the normal to the

mean plane of the central line of the vortex ring through its

centre being taken as the axis of z and where the quantities a

Bn Yn & are small compared with a. The transverse section of

the vortex ring is small compared with its aperture. We make

use of the fact that the velocity produced by any distribution of

vortices is proportional to the magnetic force produced by electric

currents coinciding in position with the vortex lines, and such that

the strength of the current is proportional to the strength of the

vortex at every point. If currents of electricity flow round an

anchor ring, whose transverse section is small compared with

its aperture, the magnetic effects of the currents are the same as if

all the currents were collected into one flowing along the circular

axis of the anchor ring (Maxwell's Electricity and Magnetism, 2nd

ed. vol. II. § 683). Hence the action of a vortex ring of this shape

will be the same as one of equal strength condensed at the central

line of the vortex core. To calculate the values of the velocity

components by Helmholtz's expressions we have to evaluate

[" cose.de ,when q is very nearly unity. This integral occurs

0

in the Planetary Theory in the expansion of the Disturbing

Function, and various expressions have been found for it ; the

case, however, when q is nearly unity is not important in that

theory, and no expressions have been given which converge quickly

in this case. It was therefore necessary to investigate some

expressions for this integral which would converge quickly in this

case ; the result of this investigation is given in equation 25, viz.

1 cos no.de
2π

-

-

16 (q + 1)

9-1

XC

-

4(1 +$
41 +1 +

-
+ K¸ (n² − ‡) (n² — 2)2

1

}
2n- 1

1 x2

(21)222

π
0 √ (q- cos 0)

= -

π·√2 F (1 − n, 1 + n, 1 , − x ) {log

+
√2{K, (n² — })
π

-
+ K¸ (n² − 1) (n² — 2) (n² — 25) 2

1 x³

(31)² 23 +...

-
+ Km (n² − 1) (n² − 2) ... (n² −1 ( 2m − 1)³)

―
1 xm

(m !)22m +...}.
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whereK1+1 + ...

1

2m - 1'
and q = 1 + x; F(F ) denotes as

usual the hyper-geometrical series.

In equations 10-18 the expressions for the components of the

velocity due to the disturbed vortex at any point in the fluid are

given, the expressions going up to and including the squares of

the small quantities a , BY ; from these equations, and the

condition that if F (x, y, z, t) = 0 be the equation to the surface of

a vortex ring, then

we get

don

dt

==
Myn

παι

n

dF dF dF dF

+ u + v + w

dx dy dzdt

1وش 'n log

64a²

= 0,=0,

4a - 4f(n) - 1 ... (equation 37),-1}..

where m is the strength of the vortex, e the radius of the transverse

section, and f(n) = 1 + } + ...

1

2n -1

d3 m

2π
a
(lo

g

8a

( log Sa – 1 )...(equation 41),dt Σπα

this is the velocity of translation, and this value of it agrees very

approximately with the one found by Sir William Thomson :

dy ma

=1
n

64a²

e²=1 md; (n² - 1 ) { log 640 * — 45 (n ) −1} : (equation 42).dt παι

We see from this expression that the different parts of the

vortex ring move forward with slightly different velocities, and

that the velocity of any portion of it is Va/p, where V is the undis-

turbed velocity of the ring, and p the radius of curvature of the

central line of vortex core at the point under consideration ; we

might have anticipated this result.

These equations lead to the equation

where

d'a

dt²

-
+ n² (n³ − 1 ) L³a„ = 0 : (equation 44) ,

L=

m

Απα

{lo
g
64
a²

e³
41

―



INTRODUCTION. xiii

Thus we see that the ring executes vibrations in the period

2π

-
;

L√ {n² (n² − 1)} '
-

thus the circular vortex ring, whose transverse section is small

compared with its aperture, is stable for all displacements of its

central line of vortex core. Sir William Thomson has proved that

it is stable for all small alterations in the shape of its transverse

section ; hence we conclude that it is stable for all small displace-

ments. A limiting case of the circular vortex ring is the straight

columnar vortex column ; we find what our expressions for the

times of vibration reduce to in this limiting case, and find that they

agree very approximately with those found by Sir William Thomson,

who has investigated the vibrations of a straight columnar vortex.

We thus get a confirmation of the accuracy of the work.

In Part II. we find the action upon each other of two vortex

rings which move so as never to approach closer than by a large

multiple of the diameter of either. The method used is as follows :

let the equations to one of the vortices be

p= a + (a₂ cos ny +ß₁ sin ny) ,n

z = 3 + Σ (y, cos ny+ d„ sin ny) ;n

then, if be the velocity along the radius, w the velocity perpen-

dicular to the plane of the vortex, we have

B=

ny),(da
cos ny +

dt

dẞn

dt

sin ny),

w =
dz dyn d8

+Σ

dt
cos ny +

n

dt sin ny) ;

and, equating coefficients of cos ny in the expression for K, we

see that da /dt equals the coefficients of cos ny in that expression.

Hencewe expand R and w in the form

A cos +Bsin + A' cos 24+ B′ sin 2¥+ .
...

and express the coefficients A, B, A' , B' in terms of the time ;

and thus get differential equations for a B , Yn Sn. The calcu-Bu

lation of these coefficients is a laborious process and occupies

pp. 38-46. The following is the result of the investigation : If

two vortex rings (I.) and (II.) pass each other, the vortex (I.)

moving with the velocity p, the vortex (II.) with the velocity q

their directions of motion making an angle e with each other ; and if

c is the shortest distance between the centres of the vortex rings ,

g the shortest distance between the paths of the vortices, m and
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m' the strengths of the vortices (I. ) and (II. ) respectively, a, b

their radii, and k their relative velocity ; then if the equation to the

plane of the vortex ring ( II . ) , after the vortices have separated so

far that they cease to influence each other, be

2 = +ycos + sin ¥ + ...,

where the axis of z is the normal to the undisturbed plane of

vortex (II.), we have

2ma²b

c*/* ' sin² e . pq (q − p cos e ) √/( c² — gº) ( 1 – 49") : (equation 69),
y'=
=

S

2ma2b a sin² €
g

Pq
(1

4g2
-

-

3c²

and the radius of the ring is increased by

mabp*q

c+k+

-

4g2

..(equation 71),

sin³ e √/ ( c² — g ″) ( 1 — 44") . (equation 74) ,

-

where √ (c² — g²) is positive or negative according as the vortex (II .)

does or does not intersect the shortest distance between the paths

of the centres ofthe vortices before the vortex (I. ) .

The effects of the collision may be divided in three parts :

firstly, the effect upon the radii of the vortex rings ; secondly,

the deflection of their paths in a plane perpendicular to the plane

containing parallels to the original directions of motion of the

vortices ; and, thirdly, the deflection of their paths in the plane

parallel to the original directions of motion of both the vortex

rings.

Let us first consider the effect upon the radii. Let g= c cos &,

thus is the angle which the line joining the centres of the vortex

rings when they are nearest together makes with the shortest

distance between the paths of the centres of the vortex rings; & is

positive for the vortex ring which first intersects the shortest

distance between the paths negative for the other ring.

The radius of the vortex ring (II.) is diminished by

ma²b

c34
-p²q sin³ e sin 3p.

Thus the radius of the ring is diminished or increased accord-

ing as sin 34 is positive or negative. Now is positive for one

vortex ring negative for the other, thus sin 34 is positive for one

vortex ring negative for the other, so that if the radius of one

vortex ring is increased by the collision the radius of the other

will be diminished . When is less than 60° the vortex ring which

first passes through the shortest distance between the paths of the
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centres of the rings diminishes in radius and the other one increases.

When is greater than 60° the vortex ring which first passes

through the shortest distance between the paths increases in radius

and the other one diminishes. When the paths of the centres of

the vortex rings intersect is 90° so that the vortex ring which

first passes through the shortest distance , which in this case is the

point of intersection of the paths, is the one which increases in

radius. When is zero or the vortex rings intersect the shortest

distance simultaneously there is no change in the radius of either

vortex ring, and this is also the case when is 60º.

Let us now consider the bending of the path of the centre of

one of the vortex rings perpendicular to the plane which passes

through the centre of the other ring and is parallel to the original

paths of both the vortex rings.

We see by equation (71) that the path of the centre of the

vortex ring (II. ) is bent towards this plane through an angle

ma2

f c³ ³pqsin² e cos 3p,

this does not change sign with 4 and, whichever vortex first passes

through the shortest distance, the deflection is given by the rule

that the path of a vortex ring is bent towards or from the plane

through the centre of the other vortex and parallel to the original

directions of both vortices according as cos30 is positive or negative,

so that if is less than 30° the path of the vortex is bent towards,

and ifo be greater than 30°, from this plane. It follows from this

expression that if we have a large quantity of vortex rings uniformly

distributed they will on the whole repel a vortex ring passing by

them.

Let us now consider the bending of the paths of the vortices

in the plane parallel to the original paths of both vortex rings.

Equation (69) shews that the path of the vortex ring (II .) is bent

in this plane through an angle

2ma

c³k

sin² esin 34pq (q -p cos e)

Thus thetowards the direction of motion of the other vortex.

direction of motion of one vortex is bent from or towards the

direction of motion of the other according as sin 30 (q - p cos e) is

positive or negative. Comparing this result with the result for

the change in the radius, we see that if the velocity of a vortex

ring (II. ) be greater than the velocity of the other vortex (I. )

resolved along the direction of motion of (II.) , then the path of

each vortex will be bent towards the direction of motion of the

other when its radius is increased and away from the direction of

motion of the other when its radius is diminished, while if the
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velocity of the vortex be less than the velocity of the other resolved

along its direction of motion, the direction of motion will be bent

from the direction of the other when its radius is increased and

vice versa. The rules for finding the alteration in the radius were

given before.

Equation (75) shews that the effect of the collison is the same

as if an impulse

pqJ.J'

προ

sin e sin 30,

parallel to the resultant of velocities pq cos e, and q-p cos e

along the paths of vortices (II . ) and (I.) respectively and an

impulse

pqI.I'

3προκ

sin² e cos 30,

parallel to the shortest distance between the original paths of the

vortex rings, were given to one of the vortices and equal and

opposite impulses to the other ; here I and I' are the momenta of

the vortices.

We then go on to investigate the other effects of the collision.

We find that the collision changes the shapes of the vortices as

well as their sizes and directions of motion. If the two vortices are

equal and their paths intersect, equations (78) and (79) shew that,

after collision, their central lines of vortex core are represented by

the equations

p = α-

mπn*a* √√/2 €¯nc/k

4k √3 (nc/k)

sin (2 +nt + €),

cos (24+ nt + €),
8k5

2=3+

4
mπn*a* √2 €-nc/k

(nc/k)

where 2π/n is the free period of elliptic vibration of the circular

axis. These are the equations to twisted ellipses, whose ellipticities

are continually changing ; thus the collision sets the vortex ring

vibrating about its circular form.

We then go on to consider the changes in size, shape, and

direction of motion , which a circular vortex ring suffers when

placed in a mass of fluid in which there is a distribution of velocity

d

given by a velocity potential . We prove that if denotes

dh

differentiation along the direction of motion of the vortex ring,

l, m , n the direction cosines of this direction of motion, and a the

radius of the ring,
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da ΦΩ

Τα
dt dh2

dl ΦΩ ΦΩ
=

dt dh2 dxdh

(equation 80).
dm ΦΩ

=m

ΦΩ

dt

dn

dt

dhe dydh

ΦΩ ΦΩ

= n

dh" dz dh

The first of these equations shews that the radius of a

vortex ring placed in a mass of fluid will increase or decrease

according as the velocity at the centre of the ring along the

straight axis decreases or increases as we travel along a stream

line through the centre. We apply these equations to the case of

a circular vortex ring moving past a fixed sphere, and find the

alteration in the radius and the deflection .

In Part III. we consider vortex rings which are linked through

each other. We shewthat if the vortex rings are of equal strengths

and approximately circular they must both lie on the surface of an

anchor ring whose transverse section is small compared with its

aperture, the manner of linking being such that there are always

portions ofthe two vortex rings at opposite extremities ofa diameter

of the transverse section. The two vortex rings rotate with an

angular velocity 2m/πd round the circular axis ofthe anchor ring,

whilst this circular axis moves forward with the comparatively slow

m 64a2

e²
velocity log where m is the strength and e the radius of

2πα

the transverse section of the vortex ring, a is the radius of the

circular axis of the anchor ring and d the diameter of its trans-

verse section.

We begin by considering the effect which the proximity of the

two vortex rings has upon the shapes of their cross sections ; since

the distance between the rings is large compared with the radii of

their transverse sections and the two rings are always nearly

parallel, the problem is very approximately the same as that oftwo

parallel straight columnar vortices, and as the mathematical work

is more simple for this case, this is the one we consider. Bymeans

of a Lemma (§ 33) which enables us to transfer cylindrical har-

monics from one origin to another, we find that the centres of the

transverse sections of the vortex columns describe circles with the

centre of gravity of the two cross sections of the vortex columns as

centre, and that the shapes of their transverse sections keep

changing, being always approximately elliptical and oscillating about

the circular shape, the ellipticity and time of vibration is given by
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equation (89) . We then go on to discuss the transverse vibrations

ofthe central lines of vortex core of two equal vortex rings linked

together. We find that for each mode of deformation there are

two periods of vibration, a quick one and a slow one.

If the equations to the central line of one of the vortex rings be

p= a + acos ny +B sinny,ม

2 = 8 + y₁₂ cos ny + d sin ny,n

and the equations to the circular axis of the other be of the same

form with a , B , Y , 8 , written for a B , Y , & , we proven

α„ = A cos (vt + €) − Bcos (µt + €)

=

-

a A cos (vt + e) + Bcos (ut + €)

Yn
=

=
Yn'=

√(n² — 1)

n

--

√(n² - 1)

n

n' n'

A sin (vt+ e) + B sin (ut + e') (equation 96) ,

A sin (ut + c) – Bsin (ut + c )

where

m

V=
2πa³√ {n² (n²— 1)} log

64a²

de

μπ

m 2 (2n² - 1)

π d² 4a²

log

Thus, if the conditions allow of the vortices being arranged in

this way the motion is stable. In § 41 we discuss the condition

necessary for the existence of such an arrangement of vortex rings ;

the result is, that if I be the momentum, I the resultant moment

of momentum, r the number of times the vortices are linked through

each other, and p the density of the fluid, then I, I are constants

determining the size of the system, and the conditions are that

I = 4mπρα ,

г = mπрrad².

These equations determine a and d; from these equations we get

d² 4г (4mπp)*

a² TI

Now da² must be small, hence the condition that the rings

should be approximately circular and the motion steady and stable,

is that I (4mπp) /rI should be small . We then go on to consider the

case of two unequal vortex rings, and in § (43) we arrive at results.

similar in character to those we have been describing ; the chief

difference is that the system cannot exist unless the moment of

momentum has a certain value which is given in equation (105),

and which only depends on the strengths and volumes of the
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vortices, and the number of times they are linked through each

other.

In the latter half of Part III. we consider the case when n

vortices are twisted round each other in such a way that they all

lie on the surface of an anchor ring and their central lines

of vortex core cut the plane of any transverse section of the

anchor ring at the angular point of a regular polygon inscribed in

this cross section. We find the times of vibration when n equals

3, 4, 5 , or 6, and prove that the motion is unstable for seven or

more vortices, so that not more than six vortices can be arranged

in this way.

Part IV. contains the application of these results to the vortex

atom theory ofgases, and to the theory of chemical combination.
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ON THE MOTION OF VORTEX RINGS.

§1. THE theory that the properties of bodies may be

explained by supposing matter to be collections of vortex lines in

a perfect fluid filling the universe has made the subject of vortex

motion at present the most interesting and important branch

of Hydrodynamics. This theory, which was first started by Sir

William Thomson, as a consequence of the results obtained by

Helmholtz in his epoch-making paper " Ueber Integrale der hydro-

dynamischen Gleichungen welche den Wirbelbewegungen ent-

sprechen " has à priori very strong recommendations in its favour.

For the vortex ring obviously possesses many of the qualities

essential to a molecule that has to be the basis of a dynamical

theory of gases. It is indestructible and indivisible ; the strength

of the vortex ring and the volume of liquid composing it remain

for ever unaltered ; and if any vortex ring be knotted, or if two

vortex rings be linked together in any way, they will retain for

ever the same kind of be-knottedness or linking. These properties

seem to furnish us with good materials for explaining the per-

manent properties of the molecule. Again, the vortex ring, when

free from the influence of other vortices, moves rapidly forward

in a straight line ; it can possess, in virtue of its motion

of translation, kinetic energy ; it can also vibrate about its circular

form, and in this way possess internal energy, and thus it affords

us promising materials for explaining the phenomena of heat and

radiation .

This theory cannot be said to explain what matter is, since

it postulates the existence of a fluid possessing inertia ; but it

proposes to explain by means of the laws of Hydrodynamics all the

properties of bodies as consequences of the motion of this fluid .

It is thus evidently of a very much more fundamental character

than any theory hitherto started ; it does not, for example, like the

ordinary kinetic theory of gases, assume that the atoms attract

each other with a force which varies as that power of the distance

T. 1
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2 ON THE MOTION OF VORTEX RINGS.

which is most convenient, nor can it hope to explain any property

of bodies by giving the same property to the atom. Since this

theory is the only one that attempts to give any account of the

mechanism of the intermolecular forces, it enables us to form much

the clearest mental representation of what goes on when one atom

influences another. Though the theory is not sufficiently de-

veloped for us to say whether or not it succeeds in explaining

all the properties of bodies, yet, since it gives to the subject of

vortex motion the greater part of the interest it possesses, I shall

not scruple to examine the consequences according to this theory

of any results I may obtain.

The present essay is divided into four parts : the first part,

which is a necessary preliminary to the others, treats of some

general propositions in vortex motion and considers at some length

the theory of the single vortex ring ; the second part treats of the

mutual action of two vortex rings which never approach closer

than a large multiple of the diameter of either, it also treats of the

effect of a solid body immersed in the fluid on a vortex ring

passing near it ; the third part treats of knotted and linked

vortices ; and the fourth part contains a sketch of a vortex theory

of chemical combination, and the application of the results

obtaining in the preceding parts to the vortex ring theory of

gases.

It will be seen that the work is almost entirely kinematical ;

we start with the fact that the vortex ring always consists of the

same particles of fluid (the proof of which, however, requires

dynamical considerations), and we find that the rest of the work is

kinematical. This is further evidence that the vortex theory

of matter is of a much more fundamental character than the

ordinary solid particle theory, since the mutual action of two

vortex rings can be found by kinematical principles, whilst the

"clash of atoms " in the ordinary theory introduces us to forces

which themselves demand a theory to explain them.
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PART I.

Some General Propositions in Vortex Motion.

§ 2. WE shall, for convenience of reference , begin by quoting

the formulae we shall require. We shall always denote the com-

ponents of the velocity at the point (x, y, z ) of the incompressible

fluid by the letters, u, v, w ; the components of the angular velocity

of molecular rotation will be denoted by έ, n, S.

Velocity.

§3. The elements of velocity arising from rotations §', n', '

in the element of fluid dx'dy'dz' are given by

1

би =

Sv

δω

=

=

2πp³

1

2π³

1

27.3

-
{n' (z — z') — 5′ (y — y')} dx'dy'dz'

- -

{5' (x − x') — §' (z — 2') } dx'dy'dz ' } ... ( 1) ,
- -

{§' (y — y') — n' (x − x')} dx'dy'dz'
-

where r is the distance between the points (x, y, z) and (x' , y' , z′) .

-
m

2π

Momentum.

§4. The value of the momentum may be got by the following

considerations : Consider a single closed ring of strength m, the

velocity potential at any point in the irrotationally moving fluid

due to it is times the solid angle subtended by the vortex

ring at that point, thus it is a many-valued function whose cyclic

constant is 2m. If we close the opening of the ring by a barrier,

we shall render the region acyclic. Now we know that the motion

at any instant can be generated by applying an impulsive pressure

1-2
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to the surface of the vortex ring and an impulsive pressure over

the barrier equal per unit of area to p times the cyclic constant, p

being the density of the fluid. Now if the transverse dimensions

of the vortex ring be small in comparison with its aperture, the

impulse over it may be neglected in comparison with that over the

barrier, and thus we see that the motion can be generated by a

normal impulsive pressure over the barrier equal per unit of area

to 2mp.

Resolving the impulse parallel to the axis of x, we get

momentum of the whole fluid system parallel to x = 2mpx

(projection of area of vortex ring on plane yz),

with similar expressions for the components parallel to the axes of

y and z.

Thus for a single circular vortex ring, if a be its radius and

λ, μ, v the direction -cosines of the normal to its plane, the com-

ponents of momentum parallel to the axes of x, y, z respectively

are

2прта?),

2npma2v.

The momentum may also be investigated analytically in the

following way:

Let Pbethe x component of the whole momentum ofthe fluid

which moves irrotationally due to a single vortex ring of strength m.

Let be the velocity potential, then

P=

ΦΩ

=[[[pandx dy dz.dx

Integrating with respect to x,

P= SSp (Q - Q₂) dydz,

where , and , are the values of 2 at two points on opposite

sides of the barrier and infinitely close to it. Now the solid angle

subtended by the ring increases by 47 on crossing the boundary,

thus

therefore

Q₁ - L₂ = 2m ;2

P = 2m ffp dydz,

where the integration is to be taken all over the barrier closing

the vortex ring ; if λ, µ, v be the direction-cosines of the normal to

this barrier at any point

P = 2mpfЛxdS,

where dS is an element of the barrier.
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Now

ssads =}[(y

dz

-z
dy)ds,ds ds

where ds is an element of the boundary of the barrier, i.e. an

element of the vortex ring, thus

Р = mp M
y
У

dz
-

dy ds
2

ds ds

=PSSS(y - zn) dxdy dz,

and if we extend the integration over all places where there is

vortex motion, this will be the expression for the x component of

the momentum due to any distribution of vortex motion.

Thus, if P, Q, R be the components of the momentum along

x, y, z respectively,

Again

P= p√√√(y5 — zn) dxdydz
-

Q = p [ƒ(z - x ) dx dy dz

R=p√√√(xn−y§) dx dy dz

dP

-

dt = p fffdudx dydz.dt

But where a force potential V exists,

. (2) .

where

du

=
2υζ– 20η -

dx

dt dx
"

[dp
=

Χ + V + (vel . )²

ρ

(Lamb's Treatise on the Motion of Fluids, p. 241 ) ; therefore

dP

[[(205 - 2wn - dx) dx
dx)dx dy dz.

dt =P√√
√
(2

-

Since Χ is single-valued and vanishes at an infinite distance,

Again,

SSSfffdxdxdy dz = 0.

If(v - wn) dx dy dz = 0

(Lamb's Treatise, p. 161 , equation 31 ) ; therefore

dP

dt

=
0,

or Pis constant. We may prove in a similar way that both Q and

Rare constant ; thus the resultant momentum arising from any

distribution of vortices in an unlimited mass of fluid remains

constant both in magnitude and direction.
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Moment of Momentum.

§ 5. Let L, M, N be the components of the moment of

momentum about the axes of x, y, z respectively ; let the other

notation be the same as before ; then for a single vortex ring

-
L= pfff(wy — vz) dx dydz

=p

·SSS(3

У

ΦΩ

dz

ΦΩ

da)da dy dz

2

dy

-
= p SS{y (Q, — Q₂) dx dy.— z (N¸ — N )̧ dx dz}

=

-

= 2mp[f(zµ — yv) dS ;

1

this surface integral is, by Stokes' theorem, equal to the line

integral

So

dx

+√(2² + y²) Is
ds.

dx

ds

L= mp√(z² + y²) ds

=PSSS(2² + y²) § dx dydz ;

and if we extend the integration over all places where there

is vortex motion, this will be the expression for the a component

of the moment of momentum due to any distribution of vortices.

Thus

L= p √√√(y² + z²) § dx dydz

M= p√√√(2² + x²) ŉ dx dy dz

N= p√√√(x² + y²) Ç dx dy dz

dL

Again,
-

dt

as before,

dL

thus =

dt

dv

=

SSSC:

dw

Y dt
2

η

dv\

dt

de - 2w5-2
u5-dx,

dt

dw

dt

=

= 2un - 2v§→

dy

dx

dz

.(3).

dx dy dz ;

·2 ƒƒƒ{y (un — v§) — z (w§ — u§) } dx dydz
-

dz.

+ [[[(= dx - y dx) dxdy daSSS(=

-

dy dz

Since x is a single-valued function, the last term vanishes, andΧ

-
du

dy)} dxdydz.
–

fiz (wỹ–u5) dxdydz =[[]z {w(dy –d )-

dv dv

И

dx dyS dz
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Integrating this by parts, it

=[f(zw³dxdz — zwvdxdy – zuvdydz + zu³dxdz)

-SSS(zu

dw

dy

ZV

dw

dz

du du

-Zv + zu -vw ) dxdydz.

dx dy

The surface integrals are taken over a surface at an infinite

distance R from the origin ; now we know that at an infinite

1

distance u, v, w are at most of the order while the element of
R

surface is of the order R², and z is of the order R ; thus the surface

integral is of the order at most, and so vanishes when R is in-

definitely great.

1

R

Integrating by parts, similar considerations will shew that

dw

[[[zw to dxdydz = 0,dy

du

zu dxdydz = 0 ;

dy

so the integral we are considering becomes.

SSS

SSSC=

dw du

20 + zv

dz dx
+ vw ) dxdydz ;

du dv dw

since = 0,or,

it

since

=

+ +

dx dy dz

-If(zvdy - vw) dxdydz
SSSC:

fffvwdxdydz,

SSS=

dv

20 dxdydz = 0.

dy

Similarly 2fy (un — v§) dxdydz = fffvwdxdydz,

and thus

dL

dt

=

-

·2p Sƒƒ{y (un — v§) — z (wę — u ) } dxdydz = 0 ;
-

thus L is constant. We may prove in a similar way that M and

Nare also constant, and thus the resultant moment of momentum

arising from any distribution of vortices in an unlimited mass of

fluid remains constant both in magnitude and direction . When

there are solids in the fluid at a finite distance from the vortices,

then the surface integrals do not necessarily vanish, and the mo-

mentum and moment of momentum are no longer constant.
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Kinetic Energy.

§ 6. The kinetic energy (see Lamb's Treatise, § 136)

= -
= 2pSSS{u (y5 — zn) + v (z§ − x§) + w (xn− y§) } dxdydz ;

this may be written, using the same notation as before,

= 2p ≥ [mf{u (y dz− z dy ) + v (z dax − x dz) + w (x dy

Σ

ds ds ds ds

where Σ means summation for all the vortices.

ds

-
-y

dx

le)}ds],

We shall in subsequent investigations require the expression

for the kinetic energy of a system of circular vortex rings. To

evaluate the integral for the case of a single vortex ring with any

origin O we shall first find its value when the origin is at the centre

C' ; then we shall find the additional term introduced when we

move the origin to a point P on the normal to the plane of the

vortex through C', and such that PO is parallel to the plane of the

vortex ; and, finally, the term introduced by moving the origin from

P to 0.

When the origin is at C', the integral

=
= 2pm JVads,

where V is the velocity perpendicular to the plane of the vortex.

If V' be the mean value of this quantity taken round the ring, the

integral

=
4πрm a²V'.

When we move the origin from C' to P, the additional term

introduced

= -
- 2pm Sp Rds,

where R is the velocity along the radius vector measured outwards,

and p the perpendicular from O on the plane of the vortex ; thus

the integral

=-
d

2mpP at(πα ).

When we change the origin from P to O the additional term

introduced

=
= 2pm fc cos & Vds,

where c is the projection of OC' on the plane of the vortex ring, and

the angle between this projection and the radius vector drawn from

the centre of the vortex ring to any point on the circumference.

Let us take as our initial line the intersection of the plane of

the vortex ring with the plane through its centre containing the

normal and a parallel to the axis of z.
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Let be the angle any radius of the vortex ring makes with

this initial line, w the angle which the projection of OC on the

plane of the vortex makes with this initial line ; then

then

$ = 4 - w.

Let V be expanded in the form

V= V' + A cosy +B sin + C cos 24 + D sin 24 + &c.,

fcos & Vds = πα (A cos w + В sin w) .

Since V is not uniform round the vortex ring, the plane of the

vortex ring will not move parallel to itself, but will change its aspect.

We must express A and B in terms of the rates of change of the

direction-cosines of the normal to the plane of the vortex ring.

Let the perpendicular from any point on the vortex ring at the

time t + dt on the plane of the ring at the time t be

83 + dx cos + Sẞ sin ;

thus the velocity perpendicular to the plane of the vortex

dz dz dB

= + cos + siny.

dt dt dt

Comparing this expression with the former expression for the

velocity, we get

V' =
d

dt'

A =

da

dt'

B=
dB

dt

Fig.1.

M

8

P

B V

We must now find

đa d

dt' dt
in terms of the rates of change of the

direction-cosines of the normals to the plane of the ring.
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Draw a sphere with its centre at the centre C' of the vortex

ring. Let A, B, C be the extremities of axes parallel to the axes

Let I be the pole of the ring determined by e and as

shewn in the figure. Let MN be the ring itself and P any point

on it defined by the angle . The displaced position of the plane

of the vortex ring may be got by rotating the plane of the ring

through an angle 8B/a about the radius vector M in the plane of

the ring for which = 0, and through an angle da/a about the

π

radius vector N for which = . The first rotation leaves ✪ un-
2 '

by Sẞ/a sin 0 ; the second rotation

by da/a and leaves e unaltered, thus

changed and diminishes e

diminishes

80 =
δα

a

δε

SB

a sin e

... δι =

If l, m, n be the direction-cosines of I it

l = sin e cos e, m = sin 0 sin e,

cos e cos e +

is clear that

n = cos 0, and

δα SB
sin €,

a a

δα SB

Sm= cos e sin e COS €,

а a

δα

Sn=

It follows at once that

da a dn

sin 0.

a

dB dl dm
= sin e- COS €

dt sin e dt dt dt dt e),

therefore

(dn cos w dl dm

A cos + B sin w = a +
sin €

dt sin e dt dt-decos e)sin a }.

Now if X', ', ' be the direction-cosines of the projection

of OC' on the plane of the vortex ring, andf, g, h the coordinates

of C',

λ = cos e cos e cos @ — sin e sin w,
---

μsin e cose cos @ + cos e sin

v sin cos w.-

It is also easily proved that

x'=f-lp

ω,
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So COS W

μ'=9 - mp

ν =

h -np

c

p = lf+ mg+ nh.

v'

sin

sin ∞ = μ' cos e

-

-

(h― np) __ Inf+ mng- sin³0 . h

c sin e

X'sin e =

=

=

1
-

c sin

sin0 (μ'l — X'm)

1

c sine (lg- mf) ;

thus

A cos + B sin @ =
a Sdn

sindt

cos @ +

(dim-dm 1) sin o}.dt dt

This, after substituting for cos w and sin o the values given

above,

Thus

=-

-a(k

dn dm

h

с

2pmсπα (A cos w + B sin w)

+ g +f
dt dt

――
2прта2

dtdl).

.dl dm dn

+g + h
dt dt dt

Thus the kinetic energy of the vortex ring

d

= 2pm 2πα² V' — 2mpp
dt(πа³) — 2πpmа³ (ƒd

=
dm

+9 +h

dt dt dn).

If I be the momentum of the vortex ring, viz. 2πpma², and

P , Q, Rthe components of I along the axes of x, y, z respectively,

this may be written, since plf+ mg + nh,

.dv da dR

+9 + h2IV'

-( 9dt dt dt

and thus the kinetic energy of any system of circular vortex rings

dP da dR

+g +h

= {21V ( d

-

dt dt dt
(8).

This expression for the kinetic energy is closely analogous

to Clausius expression for the virial in the ordinary molecular

theory of gases.

§ 7. We have in the preceding investigation supposed that

the bounding surfaces were infinitely distant from the vortices,

so that the surface integrals might be neglected ; we shall,

however, ' require the expression for the kinetic energy when

this is not the case.
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The expression

-
2pЛff{u (y5− zn) + v (z§− x5) + w (xn− y§) } dxdydz

becomes, on integrating by parts and retaining the surface in-

tegrals, supposing, however, that the boundaries are fixed so that

lu + mv + nw = 0,

if l, m, n are the direction-cosines of the normal to the boundary

surface,

½pSSS(u² + v² + w²) dxdydz

-
− }p SS (u² + v² + w³) (x dy dz + y dxdz + z dxdy) ,

or if dS be an element of the surface and p the perpendicular

from the origin on the tangent plane

T=

=
{PSSS(u² + v² + w³) dxdydz − p ƒƒ (u² + v² + w²) pdS.

-

But by the preceding investigation it also equals

Σ {2IV®– (.

dv dQ

- +9 +h

dt dt
do).
dt

Thus T, the kinetic energy, is given by the equation

da

+ g +hd}')} +{pƒƒ(u² + v²+ w")pd‚§……..(9).

" = {2IV" — ( d) +

-

dt dt dt



MOTION OF A SINGLE VORTEX.

§ 8. HAVING investigated these general theorems we shall go

on to consider the motion of a single approximately circular vortex

ring. We shall suppose that the transverse section of the vortex

core is small compared with the aperture of the ring. We know

that the velocity produced by any distribution of vortices is pro-

portional to the magnetic force produced by electric currents coin-

ciding in position with the vortex lines, and such that the strength

of the current is proportional to the strength of the vortex at

every point. Now if currents of electricity flow round an anchor

ring, whose transverse section is small compared with its aperture,

the magnetic effects of the currents are the same as if all the

currents were collected into one flowing along the central line of

the anchor ring (Maxwell's Treatise on Electricity and Magnetism,

2nd edition, vol. II. , § 683). Hence the action of a vortex ring of

this shape will be the same as one of equal strength condensed at

the central line of the vortex core.

Let the equation to this central line be

p= a + acos ny +ẞ, sin ny,13

z = 3 + Y₂ cos ny + d₁ sin ny,n

when ' , p, are the cylindrical coordinates of a point on the

central line of the vortex core, the normal of the vortex ring being

taken as the axis of z, the axis of x being the initial line from

which the angle is measured. a is the mean radius of the central

line of the vortex core, the perpendicular from the origin on the

mean plane of the vortex, and a B Yn & quantities which are

very small compared with a. Let m be the strength of the vortex

ring, e the radius of the transverse section of the core. Now, by

equations (1) , the velocity components due to a vortex of this
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strength, situated at the central line of the vortex core, are

given by

u=

m 1

2π

-
z')

dy'
dz't

ds'
-(y - y')

ds')

ds' ,

m 1 dz' dx'

v =
(x − x')

2π ³ ds'
(z- z')ds

fd
s

',

m

W =

2π {(y-y)

dx'
-

ds' (x −x') dy} ds',ds'

where r is the distance between the points (x, y , z) and (x', y' , z') ,

and the integrals are taken all round the vortex ring.

Now

n sinny cosy,x = p cos y = a cos y + α, cos ny cos y +ẞ

y' = p sin = a sin + a, cos ny sin y +ß, sin ny siny,

therefore

da

dy

dy'

dy

dz

dy

=

a sin c − sin g (an cos nh t ơn
-

cosny)

n

-
— n cos (a sin ny –ß„ cos ny),n

a cos + cos (a, cos ny +B, sin ny),

= ―n (y, sin ny – d₁ cos ny).

n, S
n"

n

-n sin (a sin ny -B₁ cos ny),

In calculating the values of u, v, w we shall retain small

quantities up to and including those of the order of the squares of

an B Y Although, for our present purpose, which is to find

the time of oscillation of the vortex about its circular form, we only

require to go to the first powers of a,, &c. , yet we go to the higher

order of approximation because, when we come to consider thẹ

question of knotted vortices, we require the terms containing the

squares of these quantities.

If R, 4, z be the cylindrical coordinates of the point x, y, z,

73 = {p² + R² − 2p R cos ( − ) + (≈ — 2') ²} ",
--

now when we substitute for p its value it is evident that

expanded in the form

1

can be

28

Σ (s) (4¸ + B¸ cos n↓ + C¸ sin ny + D¸cos 2n↓ +E, sin 2n↓)

8

× cos s ( − ),
-

where A, contains terms independent of a,..., B, and C, are of the

first, and D, and E, of the second order in these quantities.
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The part of A, which is independent of a ... is evidently

1 (2π
cos sᎾ ᏧᎾ

-
=π

(a² + R² + z² − 2aR cos 0)¹ ›

but we shall investigate the values of all these coefficients later.

Velocity parallel to the axis of x.

§9. In the equation

m (2π 1
dy -u =

2π. зов
0 dy

—(y−y)d ) dự,

the expression to be integrated becomes, when the values for

Y', z, dy dz

are substituted and the terms arranged in order of
ds' ' ds'

magnitude, being written for z

1

-
8,

(Ça cos y + ny (y, sin ny — §, cos ny)n

-
+ } { (n + 1 ) 5x„ + (n − 1 ) ay } cos (n + 1) ↓- †

- } {(n ·
-

n

· 1 ) 5ª, + (n + 1) ay } cos (n − 1)

+ } { (n + 1 ) ¿B₂ + (n − 1 ) ad„ } sin (n + 1)y

-
—

{(n − 1) 5B + (n + 1 ) ad } sin (n - 1)n

+ n (1,8, - Y₂ B ) sin (2, Y + B₁ d ) cos ↓dn Yn ½ y

-

-

− 1 (ªn Yn − B₂n Ɛn ) { cos (2n + 1 ) ¥

-

n n

-
+ cos (2n − 1) ¥}

− 1 (an dn + Yn Bn) {sin (2n + 1 ) ↓ + sin (2n − 1) ↓}) .

Let us consider the term

1

Expanding this equals

2π

m

2π

2 La cos
dy.

для

m[* dy ga cos yΣ. (s) { (4¸ + B¸ cos nỵ +C¸ sin nỵ
2π

Remembering that

this equals

2π

8

-

+D, cos 2n + E, sin 2n ) cos s ( − $)} .

cos my cos nydy = 0 if m does not equal n,
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=

2π

m[*dy a cosy x
2π

sa

+

+ [{4, cos ( - )]1

B,+ [B + cos ( − ( n + 1 ) p} + B₂-1 cos { + ( n - 1 ) } ]
n+1

-

1
4} C₂+ [C- sin { + ( n - 1) p } - C +1 sin { ( n + 1) ø} ]

n-1

+ [Dan+1 COS { — (2n + 1 ) $} + Dan-1 cos (y + (2n - 1) p} ]cos
-

+ [Ensin { + (2n - 1 ) p} - E2 +1 sin { (2n + 1 ) $} ])
[E2n-1

= {ma} [A¸ cos &

{y

+ {Bati cos ( n + 1 ) + B -1 cos ( n - 1) + C , sin ( n - 1) p½

+ } {D₂n+1 cos (2n + 1) + Dan-1 cos (2n - 1)

Similarly, we may prove that

m

2π
[* ny (v sin ny — §, cos ny) dự

2T 1

дов

-

N-1

+ Cnt sin (n + 1) ø}

2n-1+ E -1 sin (2n - 1) p

+ Egnti sin (2n + 1) ø}].

Bon= mny {A, (y, sin no- 8, cos no) + Coy₂- B¸dμ

++ (B₂n Yn - Can Sn) sin 2n - (B₂n En + Can Yn) cos 2n p},

and that

m

4π

2″ 1

[2"
0 2018

2n

{(n + 1) 5² + (n − 1 ) ay„} cos (n + 1) ydyn

= ‡m { (n + 1 ) 5αn + (n − 1 ) aɣn}
=

x {Anticos (n + 1) + (B, cos -C, sin & + Bant cos (2n + 1 )
n+1

and that

2″

& 2n+1

+ Can+1 sin (2n + 1) $)},

−
m (* 17 {(n − 1 ) 5x + (n + 1) ay } cos (n − 1) ↓dự
4π

-

= ‡m { (n − 1 ) 5α„ + (n + 1) ayn}
-

cosx {4 cos (n - 1) + (B, cos + C, sin + B₂n-1 COS (2n - 1){A -1 4 ½ & &

and that

2T

+ Can-1 sin (2n - 1) 4)} ,

m(* 13 { (n + 1) 58, + (n − 1) aò̟„} sin (n + 1) ↓dự

Ꮞ . 0

= ‡m { (n + 1 ) [B„ + (n − 1) ad„}
=

× {An+1 sin (n +1 ) 4 + ½ (B¸ sin 4 + C₁cos + B₂n+1 sin (2n + 1 ) ø

--
Can+1 Cos (2n +1) 6)} ,
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and

=

m 2″ 1

4π[** / { (n − 1) ¿³,„ + (n + 1) ad„} sin (n − 1) ↓dự0 203
n

1m { (n − 1 ) SB₂ + (n + 1) ad„ }
-

-

-

cos + B -1 sin (2n - 1)× {4,-, sin (n − 1) ☀ + † ( − B¸ sin + C, cos & + B,

=

----

2n- 1

- Can-1 cos (2n - 1) 6 ) }

The integral of the terms involving the products a,, Bn ,...

= {m [n A¸ (a„§„ — B„ „) sin & – A₂ (ªn¥n + ß„dn) cos &1

− (ann - B₂dn) {A2n+1 cos (2n + 1 )—

‡ †- (ad + BY ) {A2n +1 sin (2n + 1 )n

+ A₂n-1 cos (2n − 1 ) 4}
-

-
+ 4-1 sin (2n − 1 ) 4} ] .A ,2n-1

Thus u terms not containing a +terms containing a ... to

the first power + terms containing a ... to the second power.

=

The term not containing a

=
= 1mga A , cos p………...1

The terms containing a ... to the first power

= m [2ny A₂ (Y₂, sin no - 8, cos no)

=

n n n

+ {Ça B₂+1 + [ (n + 1 ) 5x

an+ { a B -1 - [(n - 1 )

+ {5a On+1 + [(n + 1 )
C

-
+ (n − 1 ) ay,] 4 +1} cos (n + 1) $(n+1)

+ (n + 1 ) ay ] A- } cos (n - 1)n-1

B + (n - 1) ad ] 4+ ) sin (n + 1)n+1)

φ

.. (10).

+ { %a C − [ (n − 1 ) $ 3, + (n + 1 ) a8,] A ,- } sin ( n − 1 ) ¢] (11 ).· ad„]n-1
-

n-1

The terms containing a ...to the second power

= {m [ny {Y₂ (2C, + B₂, sin 2nd - C₂n cos 2np) - „ (2B。

-

-

2n

1

2n

+ B₂n cos2no + C₁₂ sin 2nd) }

1

2n

-

2n

+ { − (ªn¥n + Bndµ) A¸ + (Çαn − aɣn) B₂ + (Çß₂ − ad₁ ) C₁} cos &

+ n {2 (andn − Bn¥n) A₁ + (SB„ + ad„) B¸ − (Çª„ + ay ) C₁} sin &

+ { - } (~₂Y₂- B₂8 ) A 2n +1 +
-

n

1 n

} [ (n + 1 ) a + ( n - 1) ay ] B₂n +1

- [(n + 1) SB + (n − 1 ) ad ] Can+1 + αD2n+1}+ a¿Dan+1} cos (2n + 1) p

+ { - } (α- B₂S ) A2n-1 - [ (n − 1 ) + (n + 1 ) ay ] B₂

-

n

ß„§„)

n

5¹„ 2n-1

+ } [(n − 1) SB, + ( n + 1 ) ad ] C₂n-1 + açDan- 1} cos (2n − 1) p

+ { - } (0,8₂ + BnYn) A2n+1 + ½ [ (n + 1 ) B₁ + (n − 1 ) ad„ ] B₂n +1ndn } (Bn
-

+ ½ [ (n + 1) Sa₂ + (n − 1 ) ayn] C₂n+1 + a【E2n +1} sin (2n + 1) ø

+ { − & (and₂ + B₂Yn) A2n-1 — } [ (n − 1 ) ¿B₁ + (n + 1 ) ad„ ] B₂n-1

-

-- -
n

− } [ (n − 1) 5¼„ + (n + 1 ) ayn] C₂n-1 + a 【E2n-1 } sin (2n − 1) ø] (12)
-

T.
2
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strength, situated at the central line of the vortex core, are

given by

บ =

dzt

(z — 2 ) dy — (y — y ) des } ds' ,
ds'

- - -

(x − x ') dz' — (z — 2 ') dx } ds ' ,
- -

m

u=

2π

m 1

2π ³

m 1

ds'j

w= -

2π гов
(y — y')

dx'

ds'
(x - x')

dy

ds'}ds,

- Is

where r is the distance between the points (x, y, z) and (x', y' , z ') ,

and the integrals are taken all round the vortex ring.

Now

=x
p cos y = a cosy + a„ cos ny cos

y' = p sin = a sin

therefore

dx'

dy

dy'

dy

=

dz

=

dy

n,

n n+ B₁ sin ny cos y,

+ a, cos ny sin +B sin ny siny,ከ

a sin -sin (a, cos ny + B₂ cos ny)n

-ncos (a sin ny -B cos ny),

a cos y +cos (a„ cos n¥ + ß„ sin ny),

-
n (y, sin ny — § cos ny).n

n

-
— n sin f (a sin ny –ẞ„ cos ny),
-

n

In calculating the values of u, v, w we shall retain small

quantities up to and including those of the order of the squares of

an B Y Although, for our present purpose, which is to find

the time of oscillation of the vortex about its circular form, we only

require to go to the first powers of a,, &c., yet we go to the higher

order of approximation because, when we come to consider the

question of knotted vortices, we require the terms containing the

squares of these quantities.

If R, 4, ≈ be the cylindrical coordinates of the point x, y, z,

203= -
{p³ + R² – 2p R cos († − y) + (≈ − 2')²} ",

now when we substitute for p its value it is evident that

expanded in the form

1

Σ (s) (A¸ + B¸ cos ny + C¸ sin ny + D¸ cos 2ny + E, sin 2ny)8

can be

× cos s ( − ),
-

where A, contains terms independent of a,..., B, and C, are of the

first, and D, and E, of the second order in these quantities.
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The part of A, which is independent of a ... is evidently

1 2π

-

cos sᎾ de

√ -
π 。 (a² + R² + z² — 2aR cos 0)

but we shall investigate the values of all these coefficients later.

Velocity parallel to the axis of x.

§9. In the equation

m (2″ 1 dy'
dz'

u= 2')
-

2π 0 dy

- (y — y')
-

dy
dź)dy,

the expression to be integrated becomes, when the values for

dy dz

y', ' ,ds are substituted and the terms arranged in order of

magnitude, being written for z -8,

1

203
–

-

· (Ça cos y + ny (y, sin ny - 8, cos ny)

m

2π

n

-
+ } { (n + 1 ) 5ª„ + (n − 1 ) ay, } cos (n + 1) ↓

-
− 1 { (n − 1 ) 5ª„ + (n + 1 ) ay„} cos (n − 1) ↓

-

+ } { (n + 1 ) [B₂ + (n − 1 ) ad„ } sin (n + 1) ↳

— -
− 1 { (n − 1 ) SB„ + (n + 1 ) ad } sin (n − 1) ↳

--

-

+ n (¼, Ɛn − Yn ẞ„) sin ↓ – ½ ( „ V₂ + Bn Sn) cos y

-

น น n

− 1 (ªn Yn − Bn Ɛn ) { cos (2n + 1 ) ¥ + cos (2n − 1 ) y}
- -

− 1 (αm d₂ + Yn B₂) {sin (2n + 1) ♣ + sin (2n − 1) †}).n

Let us consider the term

1

Expanding this equals

2π

зод

2π
m COS зв

2π зов
dy.

0

[* dy ça cos ↳ Σ (s) { (4¸ + B¸ cos n¥ + C¸ sin n↓8

-

+D, cos 2n↓ +E, sin 2ny) cos s (¥ − p) }.

Remembering that

this equals

2π

-

cosmy cos nydy = 0 if m does not equal n,
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=

2π

mfhdy ga cos y2π 0
4x

+ [{4, cos ( − )]

+ [B + cos { − ( n + 1 ) p} + B -1 cos { + ( n - 1) } ]
-

+ [C sin { + ( n − 1 ) p } - Cat sin { ( n + 1 ) p} ][C²n-s { + ( n

-·

-
n+1

+ [D₂n+1 COS { − (2n + 1 ) p} + D₂n-1 cos ( + (2n - 1) p} ]

+ [En- sin { + (2n - 1 ) p} - Equ + sin { (2n + 1) 6} ] )
2n-1

= ma [A, cos &1

E212n+1

+ {But cos ( n + 1) + B -1 cos ( n - 1 ) + C , sin ( n - 1) p
n+1

+ } {D₂n+1 cos (2n + 1 ) + Dan-1 cos (2n - 1)

Similarly, we may prove that

m

2πS

2″ 1

0

- ny (y₁ sin ny — 8, cos ny) dy
-

+ C sin (n + 1) ø}n+1

2n-1+ E-, sin (2n - 1 )

+ Egn+1 sin (2n + 1) $} ] .

-
= ½ mny {A „ (Y₂ sin no - d, cos np) + Coyn― B¸dn
=

+ (B₂m Y

and that

=

m 2″ 1

дов

2n

n

-

n

Can Sn) sin 2n - ½ ( B₂n Ɛn + C₂n Yn) cos 2n p} ,2n

: −4пЈо
{(n + 1) 5x

-

+ (n − 1) ay } cos (n + 1)Yd¥

·‡m {(n + 1 ) 5x₂ + (n − 1 ) aɣ„}n

x {Anticos (n + 1) + (B, cosn+1

and that

m

4π

2π 1

-C, sin + Bant cos (2n +1 )2n+1

+ Canti sin (2n + 1) ø) } ,2n +1

[** = { (n − 1) 51, + (n + 1) ay.) cos (n − 1) ódó

=‡m {(n − 1) 5am + (n + 1 ) ayn}n

-

x {A cos (n - 1) + (B, cos + C, sino + B -1 Cos (2n - 1)2n-1{A₂-1

and that

m 2π 1

+ C₂n-1 sin (2n − 1) 4)},
-

=

1
° {(n + 1) ¿Bn + (n − 1) ad„ } sin ( n + 1) ydy

= {m { (n + 1 ) {B₂ + (n − 1 ) ad„}

x {Antisin (n +1) + (B, sin + C, cos + Ban+1 sin (2n + 1) p

-
- C₂n +1 cos (2n +1 ) ø)} ,
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and

=

m

4π

2″ 1

зав
{(n -1) + (n + 1) ad, } sin (n - 1 ) ydy

ầm { (n − 1 ) $ Bn + (n + 1 ) a8, }

- -
× {4„-, sin (n − 1 ) 4 + ½ ( − B, sin + C, cos + B2n-1 sin (2n − 1 ) ø

=

- C₂n-1 cos (2n - 1) 6) }
-

The integral of the terms involving the products a,, B. ,...

nn
- -

= {m [nA¸ (α„§„ — By ) sin – A¸ (αn¥n + ßndn) cos &

- (α - B8 ) (42n+1 cos (2n + 1) + A2n-1 cos (2n-– B„dn)

1- (and + B₂Y ) {A2n+1 sin (2n + 1 ) + A,n B„¥„) 2n-1

1 ) }

sin (2n - 1) 4} ].

Thus u terms not containing a + terms containing a ... to

the first power +terms containing a ... to the second power.

=

The term not containing a

=
= ½maA , cos ……...1

The terms containing a ... to the first power

= 1m [2ny A₂ (Y₂ sin np - 8, cos no)n

+ {Ça B₂+1 + [ (n + 1 )

+ {ca B -1 - [(n - 1 ) (a

+ {5a Cnt₁ + [(n + 1 )n+1

+ { a C₁-- [(n - 1 )

n

n

SB

+ (n − 1 ) ay,] Ant } cos (n + 1)
-

n+1

+ ( n + 1) ay ] A- } cos (n - 1)n-1

+ (n - 1 ) ad ] 4+ ) sin (n + 1 ) $n+1 )

.. (10).

B₂ + (n + 1 ) ad ] 4. } sin (n - 1 ) ] (11).n n-1

The terms containing a ...to the second power

= {m [ny {Y₂ (2C + B₂, sin 2nd – Can cos 2nd) — 8, (2B。
=

2n
-

-

2n
-

n

+ B₂n cos2n + C₂n sin 2nd) }2n 2n

+ { − (αn¥n + Bndµ) A¸ + (Çª‚ − aɣn) B₁ + (§ß„ − ad„) C₁} cos &

-

1 1
-

+ n {2 (ªndn − BnYn) A₁ + ( 5ßn + ad„) B¸ − (Çα„ + ay₁) C₁} sin &

-

1

+ { − 1 (~₂Y - B₂8„) A 2n +1 + } [ ( n + 1 )(ann 38,)

―

n

--

-
a + (n − 1 ) ay ] B2n +1n

− } [ (n + 1 ) 5B₂ + (n − 1 ) ad„] C'2n+1 + a¿D2n+1} cos (2n + 1) p

+ { - } (α- B₂d ) A2n-1 — § [ (n − 1 ) + (n + 1 ) ay ] B₂n-1B„d„) − 1 5¹„

}

- -

-+ [(n − 1) SB₂ + (n + 1) ad ] C₂n-1 + a¿D₂n- 1} cos (2n − 1) p

+ { - (0n8n + BnYn) Agn+1 + ½ [ ( n + 1 ) SB, + (n − 1) a8 ] B1 n
-

2n+1

+ } [ (n + 1) Ša„ + (n − 1 ) ayn] C2n+1 + açE2n+1} sin (2n + 1 ) ø
-

+ { - } (and + B₂Yn) A2n-1 - [ (n − 1 ) B₂ + (n + 1 ) ad ] B₂nn
-

n 2n-1

− } [ (n − 1) 5º„ + (n + 1 ) ayn ] C₂n-1 + açE2n-1 } sin (2n − 1) ø] (12)n -

T.
2
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§ 10.

m

v =

[2″ 1.

2π 2.3

dz

(x - x')
- - -

0 dy
(2 — 2) day}dy.

The expression to be integrated becomes on substitution

The term

m 2T 1

2π 2.3
0

[ça sin ynx (y, sin ny — 8, cos n¥)

-
n

− } { (n + 1 ) SB„ + (n − 1) ad„ } cos (n + 1)↓

- -
− } {(n − 1 ) 5B,„ + (n + 1 ) ad, } cos (n − 1) ↓

+ } { (n + 1) 5α, + (n − 1) ay,} sin (n + 1) ↓

+ } {(n − 1) Sa„ + (n + 1) ay„} sin (n − 1) ♣

-
+n (BnYn − α„dn) cos y − 1 (ª‚Yn + Bß„§„) sin ¥

―

---

· ‡ (αnyn — B₂dn) { sin (2n + 1)

− 1 (andn + Bn¥n) {cos (2n − 1) ↓
-

La sinydy

-
− sin (2n − 1) ↓}
-

— cos (2n + 1) y } ] .

= ½ maš [aA¸ sin & + ½ {B₂+1 sin (n + 1) † − B„-1 sin (n − 1) ø
=

1

-
Cnti cos (n + 1 )n+1

-
+ C₁-1 cos (n − 1) p}

En+1 cos (2n + 1)p $+ } {D₂n+1 sin (2n + 1 ) - D₂n-1 sin (2n - 1 ) -

The term

nx
2π

m

2π
0

= -

(y sin ny — §, cos ny) d¥

The term

-
m

4π

==

-

+E cos (2n − 1 ) }] .2n-1

mnx {4, (y, sin np − d, cos np) + CoYn − BƐnn n

+ (B₂nyn - C₂nd ) sin 2nd2n

- (B₂8 + C₂nyn) cos 2np} .

1

17.{(n + 1) 58, + (n − 1) ad„}[** / cos (n + 1) v . dy

n

0

1 m {(n + 1) [B₂ + (n − 1) ad„}

x {4n+ cos (n + 1) + (B, cos - C, sin + Ban+1 cos (2n + 1)4 ½

The term

m

4π
{(n − 1) 5B₁ + (n + 1) ad „} [*

=

2+3
0

B, $

+ Canti sin (2n +1) 4)} .2n+1

cos (n - 1)y dy

1m {(n - 1) SB + (n + 1 ) ad }

x {4, cos (n- 1) + (B, cos + C, sin + B2n-1 cos (2n - 1 )× {An-1 ☀ ½ & &

+ C₂ -1 sin (2n - 1) 6) }2n-1
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The term

m

4π

(2π 1

dy
{ (n + 1) $ + (n −1)a n sin (n + 1 ) nhưng5ª, + − 1 ) ayn } []

=

0
для

} m { (n + 1 ) 51„ + (n − 1 ) aɣ„}

× {An+1 sin (n + 1) $ + ½ (B, sin 4 + C₁ cos

The term

m

4π

1

(2π 1

+ B₂n+1 sin (2n + 1 ) $

―
-C

2n+1 cos (2n + 1) )}

(n + 1 )ay asin (n − 1 ) ch
{ (n − 5x, + ay₂}

− 1 ) gan+
[*
0

= 1 m { ( n − 1 ) 5x„ + (n + 1 ) ayn}
=

× [4,-, sin (n − 1) + 1 {− B, sin + C, cos4 &

=

n-1

--

↓ d↓

-
+ B -1 sin (2n − 1 )2n-1

Can-1 cos (2n - 1) } ]

The integral of the terms involving the products a,, P ...

-

= { m [n (ẞ„Y„ — α„ §„ ) 4 , cos & — § (a„ß„ + ß„§„) A¸ sin &
-

n 1

†

--
− } (αnYn − Budn) { A2n+1 sin (2n + 1 ) † - An-1 sin (2n − 1 ) 6}

− 1 (and₂ + B„vn) {A2n-1 cos (2n − 1 ) - A2n+1 cos (2n + 1) p} ] .

Thus terms not containing a ...+ terms containing a ...to

the first power + terms containing a ... to the second power.

The term not containing a ... ma 4, sin1 o

The terms containing a ... to the first power

-
= { m [— 2nxA₂ (y, sin no — 8, cos no)
=

n

— { [ (n + 1 ) 5ß„ + (n − 1 ) ad„ ] A ++ a¿C₁₂ +1 } cos (n + 1 ) p
-−

n
-

n+1

.(13).

n n-1.
-
− { [ (n − 1 ) 5ß„ + (n + 1 ) ad„] A„-1 −

-
a¿С„-1 } cos (n − 1) ø

++ { [(n + 1) Sa„ + (n − 1) ayn] Antı a¿B₁₁ } sin (n + 1) øn+1

+ {[(n − 1) Sa„ + (n + 1) ayn] A „-ı — a¿B } sin (n − 1 ) ] ... ( 14) .n-1
-

n-1.

The terms containing a ...to the second power

-

= 1m [— nx {yn (2C¸ + B½ sin 2np – C₂n cos 2np)
==

2n

- 8 (2B + B₂, cos 2nd + C₂n sin 2nd)}2n 2n

+ n {2 (B₂Yn − α„§„) A¸ − (§ß„ + ad„) B₁ + (§ª„ + ay ) C₁} cos

-

'n

-
n 1

-

-

1

1

n

{− (α₂Yn + B₂dn) A¸ + ( Çî„ − aɣ„) B₁ + ( ¿ß₂ − aồn) C₁ } sin &

+ {1 (andµ + Bn¥n) A2n+1 − † [ (n + 1 ) Çß„ + (n − 1) a§„] B₂n+1

- [(n + 1 ) 5x + (n - 1 ) adμ ] Canti - agE2n+1} cos (2n + 1) p

+ {- } (αdn + BnYn) A2n-1 - [ (n − 1 ) SB + (n + 1 ) ad ] B₂

− 1 [(n − 1 ) 5x + ( n + 1 ) ayn ] C₂n-1 + acE -1} cos (2n - 1)-

-
n

2n-

2n-1

ø

2--2
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-

+ {— § (ª‚„Y„ − B₂dn) A2n + 1 + ½ [ (n + 1 ) ² + (n − 1 ) ay„ ] B2n+1

{†

- -

n

C₂

·

− } [ (n + 1 ) 5ß, + (n − 1 ) adn] Cân+1 + açƊ2n+1} sin (2n + 1) $

B,
-

+ {} (ªnYn − B₂dn) A2n−1 + ½ [ (n − 1 ) 52n + (n + 1 ) ay₂ ] B₂ -1

− § [(n − 1) SB„ + (n + 1 ) aồn] C₂n-1 — a¿D₂n-1} sin (2n + 1) p... (15)

§ 11 .

12π 1m

w=

2π
0

(y-y)d↓

dx'
--・ (x − x') dy')-

dys

dy.

The expression to be integrated becomes after substitution

1

дов
[a² -
-

a (y sin

-
+ } (n + 1) (yß₂ −

+ cos y) + 2a (2, cos n¥+ß„ sin n¥)

xx„) cos̟ (n + 1) †

-

+ 1 (n − 1 ) (xa„ + yẞ„) cos (n − 1)†

-} (n + 1) (31,+8, ) sin (n + 1)
-

- -

- * ( n −1) (y2n = 8, ) sin (n − 1)

+ (a²„ cos³n¥ + 21,ß, cos ny sin ny +ß²„ sin³ n¥)].n

2π
m

The term a² dy
2π зов

= {ma³ (2A¸ + B„ cos no + C₂ sin no + D₂ cos 2nd + E½ sin 2nd).

The term -

2π

2π
ทาง

зов

2n

{y sin + cos ) dự↓ x

putting a = R cos p, y = Rsin & becomes

=-

maR (2π 1
*-

cos (p − y) dy
2π 0

2n

- †maR [2A¸ + (Bn+1 + Bn-1) cos no + (C'n+1 + C₂-1) sin nø

The term

+ (D2n+1 + D2n-1) cos 2nd + (E2n+1 + En-1) sin 2nd]

(2π
a

m chn nhπJo зов
(a, cos n + B, sin nh) ảnh

= ma [4, (a, cos no +ß„ sin np) + Bo₂ + Coßnn

+ (Ban'n - Cauẞn) cos 2np + (C₂nn + B₂nßn) sin 2nd](B₂nºn

4π

m

The term

== 17

m

4

2n

1

2n 2n

(n + 1) (yẞ, − xa ) [2 ,cos (n + 1) dy

-
· (n + 1 ) (yẞ₂ − xx„)

× {Anticos (n + 1)
n+1 + (B, cos - C₁ sin

+ B2n+1 Cos (2n + 1 ) + C2n+1 sin (2n + 1) ø)} .
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m

The term

m

=

4

4.πT

2″ 1

-

(n − 1) (x² +yẞ, ) [** — cos (n − 1) ydy

(n − 1) (xam + yẞ„)

-

n

× {4„-1 cos (n − 1) 4 + 1 (B₁ cos & + C₁ sin &

+ B₂n-1 cos (2n − 1 )
-

[0

The term (n + 1 ) (y² + xẞn)

m
-

4

m
-

4πT

(n + 1) (y²„ + xß„)

•2″ 1

× {An+1 sin (n + 1 ) ☀ + ½ [ B¸ sin 4 + C₁ cos &

The term

.m

m

477

+ C₂ -1 sin ( 2n − 1) $)}2n-1

sin (n + 1)ydy

+ Banti sin (2n + 1) - Canti cos (2n + 1) $]} .2n +1

1

2n+1

(n − 1) (ya,„ — æß¸) [*” , sin (n − 1) ♣dy− — xß„)

= − ™ (n − 1 ) (y¹„ — xß„)

-

4

-

× {A„-, sin (n − 1 ) 4 + ½ (− B¸ sin + C₁ cos &
-

1

+ B₂n-1 sin (2n − 1 ) - C₂n-1 cos (2n − 1) 4)} .
-

The term containing the second powers of a ...

= } m {(x²„ +ß³„) A。 + † (a³n − ß³„) Aan cos 2n + aẞ42 sin 2np}.
--

2n n 2n

Thus w terms not involving a, +terms containing a ... to the

first power + terms containing a ... to the second power.

The terms not involving a

=
= ½ m (2a³Ã¸ — aRA¸)………………………….

....... (16).

The terms involving a ...to the first power become after substi-

tuting for x and y, R cos & and R sin & respectively

½m [(a²В₂ — 1aR (B₂+1 + B₂-1) + 2uï„An
-

-
+ †Rî„ {(n − 1) A₂-1 − (n + 1 ) An+1}) cos no

+ (a²C₂ − aR ( Cn+1 + Cn-1) + 2aß„ªn
-

+ }Rß„ {(n − 1 ) A „-1 − (n + 1 ) A „-1}) sin nø]……………. (17) .

The term involving a ... to the second power

= m [aª‚„B¸ + aẞ„С. — § α„B₁— {ẞn C₁ + ½ (a³n + B²„) A。0 1
-

1

+ } { R², [ (n − 1 ) B₂n- 1 − (n + 1 ) B₂n+1]
- --

-
- RB₁ [(n − 1) C₂n-1 − (n + 1 ) C2n +1] + 4α (B₂nªn - C₂uẞn)

-

į

C,
4a ´a

2n

ß³„ )

n
--

2n

+ 4a³D₂n - 2aR (D2n+1 + D2n-1) + 2 (a² - ẞ³ ) A₂ } cos 2nd2n
-

n 2n
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-
+ į {Ra, [(n − 1 ) C₂n-1 − (n + 1 ) C₂n+1]

-

-

+B8)- RB₂ [(n + 1 ) B₂n+1 − (n − 1 ) B₂n-1] + 4α (C₂n²n + B₂nß₂)
· 4a-

+4a³E₂ - 2aR (E2n+1 + E2n-1)

+ 47ẞ42 } sin 2nd]'n n 2n ...... ......(18).

§ 12. We must now proceed to determine the values of the

quantities which we have denoted by the symbols A , B , C, &c.

We have, in fact, to determine the coefficients in the expansion of

-

1

{p² +R² + 5² − 2Rp cos (0 − 4) )

or, as it is generally written for symmetry, of

in the form

1

-
{1 + a² — 2a cos (0 – $) }

,

A + A₁cos (0 −4) +….. A„ cos n (0 − $) +…...Ο
-

This problem also occurs in the Planetary Theory in the expan-

sion of the disturbing function, and consequently these coefficients

have received a good deal of attention ; they have been considered

by, amongst others, Laplace, in the Mécanique Céleste, t. I. § 49 ;

Pontecoulant, Du Système du Monde, vol . III. chap. II.

These mathematicians obtain series for these coefficients pro-

ceeding by ascending powers of a. The case we are most concerned

with is when the point whose coordinates are R, z, & is close to the

vortex ring, and then R is very nearly equal to p and is very

small, so that a is very nearly equal to unity, and thus the series

given by these mathematicians converge very slowly, and are almost

useless for our present purpose. We must investigate some expres-

sion which will converge quickly when a is nearly unity.

Our problem in its simplest form may be stated as follows , if

1

(q - cos 0)

=
co + c, cos 0 +...c, cos no +... ,

we have to determine c, in a form which will converge rapidly if q

be nearly unity.

Let

1

=

(q - cos 0) ³

b + b₁ cos 0 +...b₁ cos ne +....

cos no

Then by Fourier's theorem,

Cn
=

=

1

π

1

π

0

2π

2π

0

(q — cos 0) *
-

cos no

(q - cos 0)¹

de, Co

de,

=
1

2πS

2π

0

de

·(q·- cos 0)

1 2π

b。=

2π
0

de

(q -cos 0)2
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Now

d sin no n cos no -

=

de

(q -cos 0)

-}

(q - cos 0)

{cos (n - 1 ) 0. cos (n + 1 )0}

(q - cos 0)*

...(19).

Integrating both sides with respect to 0 between the limits O

and 27, we have

or

-
0 = nb₁ — 4 (C„-1 — Cn+1) ,12-1

-

4nbn = Cn-1
4

Cot

Reducing the right-hand

denominator, we have

..... (20).

side of equation (19) to a common

d

4

sin no

do(q-cos 0)*

-
4ng cos no — { (2n + 1 ) cos (n − 1 ) 0 + (2n − 1 ) cos (n + 1 ) 0}

-

(g- cos 0)

Integrating both sides with respect to 0 between the limits 0

and 27, we get

-

0 = 4nqc, — { (2n + 1) Cn-1 + (2n − 1 ) C₂+1} ...

By means of this and equation (20), we easily get

Cn
=

2n + 1

(q² - 1)

n n+1

.. (21) .

. (22) ;

and thus, if we know the values of the b's, we can easily get those

of the c's, and as the b's are easier to calculate we shall determine

them and deduce the values ofthe c's.

= b₁₂ + b₁ cos 0 +...b, cos no +……..1 n

1

Let V :=

(q -cos 0)3

d²V
-

(1 − q³)

dq²

2q -IV:
dq

=

d02
;

By differentiation we have

dV d2V

hence, substituting for V the value just written and equating the

coefficients of cos no we have

Let

d2b

(1 − q²) dqª

n -
db

n

2
9
d
q

9
-

+ b₂ (n² − 4) = 0 .

1

b₁ = $(2) log 16 (q + 1)

-

+Y (2),

where (9) and (q) are rational and integral algebraic functions

of q.

Substituting in the differential equation , we find

-
(1 − q²)

d
o 29 dqdo

dq²

аф

+ (1 − g³)-
4dq

-

-
+ (n² − 1) $ = 0,

dy
ď² -29 dq

dq²

-

+ (n² − 1) ↓ = 0 .
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Let us change the variable from q to x, where x = q - 1, the

equations then become

dx − (n² — 1) p = 0,
--

dy

-

d
k
-

d'o do

x (2 + x)
dx²

+2 (1 + x)

do

4 +x (2 + x)
d

dx dx²
+2 (1 + x) (n² − 1)y = 0.

Let
$
=

dx

а + a₁x +...amxm +....

Substituting in the differential equation for 4, we find

therefore

-
m.m + 1

2 (m + 1)²

n²- 1

am+1
=

$

-

+ (n² — ¹) (n² — 3)

2

22 ( )*
+

-

(x) = a { 1 + (n² − 1) %/

ami

n² - 1. n² - 2 . n² - 254

(3 !)² (~)* +...}..(23),

or, with the ordinary notation for the hypergeometrical series,

Let

$ (x) = a¸F (± −n, § + n, 1 , − {x).

† (x) = α + α¸x + x,x² +... αmxm + ....

Substituting in the differential equation for y (x), we find

n² − 1 − m . m +1
-

2 (m + 1)²

2

m +1

am+1

↓ (x) = a¸ F (} — n, § + n, 1 , − 1x)

am+1
=

So

-
− a {2 (n

-

− 1) 2 + 3 (n ²

1 x²
-

− 4) (n

-

− 1) 27

- -
+¹¹ (n² − 1) (n² − 2) (n² — 25)

-

1 23

22 22

+ 25 (n² — 4) (n² − 2) (n² — 25) (n³ — 49).

(3 !)2 29

1

(4 !)² 2+

+......... ( 24),

1 xm

where the general term inside the bracket

=

2 (1 + 4 +... —1 ) (n² − 1) (n ² — £). ….….(n² — 1 (2m−1)º) (m !)² 2m ·

аoTo complete the solution we have to determine the values of

and We shall do this by determining the value of b, when q is

very nearly unity, or when x is small.

We may prove, in exactly the same way as we proved equation

(20), that

or

4ngb₁ = (2n - 1) bn-1 + (2n + 1 ) bn+1

4n (1 + x) b₁ = (2n − 1 ) bn-1 + (2n + 1) b₂+1bn
=3

n+1°
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By the help of this sequence equation we can express b, in

terms of b, and b, in the form

b₁ = (A + Bx + Cx² + Dx³ +... ) b + (A ' + B'x + C'x² + ... ) b₁.

We only want now to determine a, and a , i.e. the parts of

and & independent of x, thus we only want the coefficients A and

A' in the equation just written ; now evidently A and A' will be

the same as if we put x = 0 in the sequence equation and then

determine b in terms of b, and b₁,n

The sequence equation becomes, when x = 0,

4nb
=

N (2n - 1) b,-1 + (2n + 1 ) bu+1'

the solution of this is

1

b₁₂ = C + C ' ( 1 + } + · · · 2n -n
...

where C and C' are arbitrary constants.

find

2n·

Determining the arbitrary constants in terms of b, and b, we

b₁ = 2b¸ + (b¸ − 2b,̧) (1 + + +...

-

} 2n - 1).

for in the sequence equation involving b。, 2b, must be written

instead ofb

Now 26.
=

=

=

1

π

1

π

2π do

。 √(q - cos 0)

2π

=

1 2″ de
-

So √(a + 1 - 2 sin²

1
2π

-

π

30)

。 √(q + cos 0)

T√ ( +1) √ √ (1 − l² sin'0) •

2

where k²=

q+1'

4

-

π√(q + 1 )√ √ (1 − sin³¿)

Now, when k is very nearly unity, we know that

аф

√ √(1-1 sin' )

4

=
log

k₁

approximately,

where k₁
= -
√ (1 − k²) , in our case =

+
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Therefore, when q is very nearly unity

26, -22 log (+ √ ( 1) } approximately.

=

π

1 2π

1b₁ = =√
π

--

1

π

4

π

cose de

√ (q= cos 0)

2π

0

-

√(q − cos 0) do +
-

2π

q

45%

do

π 。 √(q- cose)

√(q + 1 ) [' ** √ ( 1 − k² sin²p) dp + 2b,q.

When k is very nearly unity

[** √(1 −kº sin³p) do=1 approximately ;

-

therefore

4/2

b₁ +2b。.
π

Therefore, when q is very nearly unity,

b₂ = √2 log 16 (q + 1 ) _ 2 / 2 ( 1 + + +...2n-
1

ba
П 9-1

-

π
1 ;

comparing this with our former solution for b , we find

and

a。

ao

=-
√2

π

4/2

2π cos no
1

ba=

π
。 √(q — cos 0)

de

1

π
(1 +3 +··· 2n − 1

...

=
√2 (į
π

Thus

- F () -n, 1 + n, 1, -ja) { log 16 (2+ ) 4 (1 + 1 +... 21 ) }

√2

-

2n -

-

+ K₁ (n²
-

П
21) ½2 • + K¸ (n² − 1) (n² — ³)

1 x²

(2 !)2 22

1 x8

(3 !) 2 23

where

+ K¸ (n³ − 1) (n² — 2) (n³ — 25)

+ Km (n² − 1) (n³ — 2) ... (n³ — — (2m — 1)²)

= 2

xm

— −1 ) ) ) + ( 25 ) .2m

K =2 (1 ++... ) so that

K₁ = 2, K₁ = 3, K¸ = ¹¹ ‚ K₁ = 25, K¸ = 137 &c.2 3
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nIf denote the sum of the reciprocals of the natural

numbers up to and including n, then

1
=

2n 1 2n- n
-
— 1S₁ =ƒ (n) say.

+ ' ,

1 + 1 + 1 + ....

Now
S₁₂=.577215 +log n +n

1
-

1

2n 12n2

see Boole's Finite Differences, 2nd edition, p. 93.

Thus f(n) = .288607 + log 2n − † log n +
-

1

+....
48n2

We only want the value of b, when x is very small, and thus

we have approximately

b, =1/2² (1 − 1 (↓ — n°)x} { log 16
П

− −

By equation (22)

XC

-
(2 + æ)_ 16 (2 + x) — 4 ƒ (n )}

--
·x (‡ − n²)….. (26) .

-
√2

π

2n + 1

Cn=

(q³- 1)

(qbn -bn+1).

n+1Ifwe substitute for b, and b, their values, as given above, we

find that approximately

Cn
=√

252

~~ [2- (n - 1) { log (2 + 2 ) 16π
(n² ( 2 + 2 ) 16 — 4ƒ (n ) } − (n² + 3 )]...( 27).

-

The integrals we have to evaluate are of the form

1 2π cosne.de

=√₂ -π 。 (R² + p² + y² − 2Rp cos 0)

which may be written

1 2π cos no.de

π (2Rp) o (q - cose) ,

R² + p² + Ç²

2Rp

;

{(R − p)² + 5"}
-

where
q=

therefore
x= q - 1 =

and 2 +x= 1 + q =

2 +x

OC

=
(R + p)² + y²

(R − p)² + y²
-

2Rp

(R + p)² + y²

2Rp

Thus

>
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and the integral we wish to find =

x=

be put for x in equation (27) .

1

c.,if the value

(2Rp)*

{(R − p)² + y²}
-

2Rp

n

(2R ) wh
en

x has thi
s
val

ue
by SLet us denote

1

C,n'

Then

-

1

{R² + p² + 5² − 2Rp cos (↓ − p) } *

and

=

Now in S' , p and

-

S'₂ + S' , cos (y- 4) +…..S', cos n († − p) +……..

are functions ofy,

p = a + a₁cosny +B₁ sin ny,

-

n

Y= z — 2' = (≈ — 3) — (Y₂ cos ny + d„ sin ny).

Now let S, be the value of S' when p = a and (z — 3) .

By Taylor's theorem ,

=

S₂ = S₂ + (ª‚„ cos n¥ + B, sin ny) (y, cos ny+d, sin ny)(a,

ds
n

da

d'S

+ ½ (a, cos n↓+ß„ sin n¥)² -

n

da2

n

dSn

dz

-
− (a₂ cos ny + ẞ₂ sin ny) (Y½ cos n¥ + d„ sin n¥)n n

+ ½ (Y₂ cos ny + d₁ sin ny)²

d's

dz

d'Sn

da dz

+terms involving the cubes and higher powers ofa &c.

S'₂ = S₂ + 1 (an³ +ß„²)

d'S
n

d&S
n

da
- ½ (αnYn + B₂dn) dadz

d'S

+ 1 (yn² + 8,²)

2 "

dz

{

dSp

+ cos
nyan da

n

-

ds

-Yn'
dz

+ sin ny (B

Sn

dsn

da

dadz+ ‡ cos 2n↓ { (a„² — B¸²) d'S" - 2 (an-(an¥n ẞndn)
da

— ß„”)
-

dS

Enn n dz

d'Sn

+ (Yn² - En²)
d²S₂)

dz2

d'S

+ } sin 2n¥ {a‚ß‚„ −(ª‚„d„ + B₂Yn) dadz

d'S d'S
- On + √ndn

dz2

+terms of higher orders.
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Hence, comparing these equations with § 8, we see that

ท d2Sde S d'S

n nA₁ = S₂ + 1 (a,³ +ß„²)n
da

18 -
- ½ (αmYn + B₂dn)

dadz + 1 (Y, ² + 8,3)

n

dz

dSds
n

B₁= da
28

C₂ = Bn

ds
n

da

n

-Yn dz

-
ds

12
En dz

D = -

B₁ = } {13 ds.n Bn
da²

d² S

da²

n

-

d'S²²

· 2 (αnn - B₂Sn) + (1₂² - 8₂²)

d'S

dadz

dadz

d'Sn

dz2

(andn + BnYn) + YnEn

(28).

d'S

dz2

§ 13. We can now go on to find the motion of a vortex ring

disturbed slightly from its circular form. It will here be only

necessary to retain the first power of the quantities a ,..., so that

we shall neglect all terms containin
g the squares of those

quantities.

Ө

Fig.2.

0

Let fig. 2 represent a section of the vortex ring by the plane

of the paper. Let O be the origin of coordinates, and let C be

the centre of the transverse section of the vortex core ; let the

radius CP of this section e ; let CP make an angle x with OC

produced .

=

Then the equations to the surface of the vortex ring are

p = a + a₁ cos n¥ + ẞ„ sin ny + e cos x......... (29),n

z = 8 + y, cos ny + d, sin ny + e sin x.........(30).

Now if F (x, y, z, t) = 0 be an equation to a surface which as

it moves always consists of the same particles of the fluid , then we

know that

dF

+ u

dt

dF dF dF

+ v + w =

dx dy dz
0,

where the differential coefficients are partial, and where u, v, w are

the x, y, z components of the velocity of the fluid at the point

(x, y, z).

The surface of a vortex ring is evidently a surface of this kind ;

we may therefore apply this result to its equation.

dan

dt

If we apply this theorem to equation (29) , we find

dB

cosny
+ " sin ny — n ( ” „ sinny

–ẞ„ cosny
) V - esinx.X

- K = 0,
dt
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where is the velocity of the fluid along the radius vector, Y the

angular velocity of the fluid round the normals to the vortex ring,

X the angular velocity round a tangent to the central line of the

vortex core.

Now ifthe vortex be truly circular, I vanishes ; thus con-

tains an
and B, to the first power ; and a will be ofthe second

order in a,, and may for our present purpose be neglected . Neglect-

ing such terms, the equation becomes

But

da

dt

n

Since R and

dß

dt

cos ny + sinnye sin X = R
Χ

of the vortex ring,

we have

and writing

ucosy +v sin¥= K.

......... (31).

are now the coordinates of a point on the surface

R= a + a, cos ny +B, sinny + e cos x,

y= Y cos ny + sin nyesin X,

instead of in equations (11) and (14), we find,

neglecting terms of the order a,,

u cos +v sin ✈ = †ma (y, cos n¥ + d, sin ny + e sin x) A¸n

+ ‡m { (n − 1 ) A,+1 − (n + 1) A -1} ayn cos ny
-·

+1+ ≥m {(n − 1) Anti

=

-
n + 1) A₂-1} ad, sin nyn-

= ½meA , sin x + 1 ma {2A¸ + (n − 1) Anti

But R

d
a
n

=

dt

− (n + 1) An+1} (Y, cos ny + 8, sin ny).

cos ny +de sinnydßn sin n – e sin X.X ;
dt

therefore, equating coefficients of sinx, cos ny, sin ny, we get

X = -1mA

da
n

dt

dßn

dt

n

. (32),

= ½may, [ A¸ + ½ { (n − 1 ) Antı − (n + 1) A„-1} ] ……. (33) ,=

=

1
-

-
= ½mad„ [ 4 , + ½ { (n − 1 ) An+1 − (n + 1) An-1}]……. (34).

1

Now as we neglect the squares of a ..., we may put A„ = S„

and R = a + e cos x, e sin

denoted by S

=
X;

e²

that is, x = in the quantity

2a2

Making these substitutions in equation (27) , we get

1 4a²

Sn
=

2πα

64a2

e²

-

S. - 2- a³ [ +3 — (n ° — 4) {log 4 – 45(n)} − (n° +4ƒ(n)} - (n² + 3) ]... (35 ) ;

- -
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2πα e

1 (4a²

thus S
=

(log

64a³

e²

3m

X=

(log

64a2

;
e²

therefore

m

=-
+

πρ 16πα

or, if be the angular velocity of molecular rotation, so that

m=ωπε ,

X = -w + 38 w

& (log

64a²

e²

-

$)

64a²

. (36),

and since is small,

a

approximately

a²
log will be small ; thus we have

e²

X = - w,

which agrees with the result given by Sir William Thomson in a

note to Professor Tait's translation of Helmholtz's paper, Phil. Mag.

1867.

Substituting in equation (33) the values of A,, An+19 An-1, i.e.

in this case S, S -1 S1 given in equation (35) , we find

dan

dt

=-

n+1

64a²

log
-

-1 n² {log

Myn

παι 4f( )-1 }......(37 ),

where we have neglected terms of the form Af (n) + C, where A

and C are numerical coefficients, since when n is small ƒ(n) is

small compared with n² log and when ŉ is large it is small

compared with n²ƒ(n) .

64a²

e³

>

Now unless n be very large, log

64a²

e*
is very large compared

withƒ(n), and the equation becomes

dz

dt

dxn 64a

==
myn

παλ

n² log

e²
..(38).

64a2

e²
But iff(n) be so large that ƒ(n) is comparable with log

then, since approximately

ƒ(n) = ·288607 + log 2n − 1 log n (Boole's Finite Differences, p. 93)

equation (37) becomes

-

Myn 2

da, =-1m²n ' (log - 2 ·1544)
4............(39)..

dt πα

4a²

n²e²
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This formula must be used when n is so large that ne is com-

parable with a.

We have exactly the same relation between dß /dt and 8, as

between da /dt and Y.Yn

If we make the second of the equations to the surface of the

vortex ring satisfy the condition necessary for it to be the equation

to a surface which always consists of the same particles, we get,

using the same notation as before,

'cosny+

nd&

dt

-

sinny – n (ỵ, sin ny – S„ cos ny) ¥+ e cosx . Xn

(y, sinny - 8 cos ny) I as before

-
— w = 0 ;

dz dyn

+
dt dt

or, neglecting

we find

dz , dyn

+ cos ny +
dt dt

d8

dt
" sinnye cos x . X = w . ... (40) .

......

But we know by equations (16) and (17) that

w = m (2a³A - aRA ,)

+ }m [a²B„− }aR (B₂+1 + Bn+1) + ½ { (n − 1 ) A „-ı− (n + 1) An+1} Rïn

+ 2a4 ] cos n¥n

+{m [a³C„−1aR( Cn+1 + Cn-1) + ½ { (n − 1 ) An-ı− (n + 1) An+1 } Rßn

+ 2aAnẞ ] sin ny,

where
R= a + a, cos ny +B, sin ny + e cos x, &c.

Substituting this value for R and the values of A, B , &c.

given in equation (28) , we find

w = 1m (2a³S - a²S₁) - mae cos x . S₁

[

+ ma

d

da
{Sn − 1 (Sn+1 + Sn-1)}
-

-
+ { (n − 1) S -- (n + 1) Sn+1} + 2S,}

·
n-1

- S₁ + a dR(25, - S)] a (2, cos ny + B₂ sin ny).

Where in S, R after differentiation is put equal to a + e cos x,

e²

and x =

2a2,

Equating in the two expressions for w, the term independent

of and x, the coefficient of cos x and the coefficients of cos ny

and sin ny, we get
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2
2

dt

= -

†m (2a³S — a³S¸),

X = -mae S₁,

dy. = ¡maz. [ a d (8. - † (5, + B -1)}
dt da

n (Sn+1

-
+ } {(n − 1) S„-, − (n + 1 ) S₁₂+1 } + 2S₂- S₁

d

n-1

+a17 (25, -5)] .
dR

with a similar equation between dƐ„/dt and ß„.

S before differentiation

where

n

1 2
-

(n²–

-
4

-

2= (Ra)+ [ = − ( a* − 1) {log (2 +# 16) − +ƒ(m)} − (x²+ 1)] ,
Ꮳ

X =
(R − a)² + 5²
-

2Ra

When S has not to be differentiated, it equals

1 [4a²

(n² — 1) { log 64a² — 4,ƒ(n)} − (n² + 2)] .
***— -

Σπα ρ e²

−

The first equation gives the velocity of translation of the

vortex ring, substituting the values for S, and S, we find

dz m

dt

=

Απα

64a2

(log 2)e²

= (log - 1)2πα e
1.1............. . (41).......

In a note to Professor Tait's translation of Helmholtz's paper

on Vortex Motion, Phil. Mag., 1867, Sir William Thomson states

that the velocity of translation of a circular vortex ring is

m

2πα

8a

(log Sa - 4).e

This agrees very approximately with the result we have just

obtained, and Mr T. C. Lewis, in the Quarterly Journal ofMathe-

matics, vol. XVI. obtains the same expression as we have for the

velocity of translation .

The second expression gives the same value for the angular

velocity X as we had before.

The third equation gives on substitution and differentiation

man

dy. = 22, (w² - 1 ) { log 64a² - 4 (n) −1} .

dt

=

Απα
–

e³

T. 3
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neglecting as before terms of the form Af(n) + C, where A and C

are numerical coefficients.

We have a similar equation between dƐ /dt and ẞ„•

dyn

dt

d8n
Substituting these values for and in equation (40) , we

dt

find that the velocity of translation W at any point on the ring

is given by

m 64a2

W= d + (n - 1){log - 4ƒ(n ) -1} (a, cos ny +8 sinny) ;dt 4πa²

or, neglecting 4f(n),

W=
dz

e²

-

d³ {1 + n² – 1 (x , cos ny + B₁ sinnų)} .dt α
n n

If p' be the radius of curvature at any point of the central line

of vortex core, we can easily prove that

1

L

Р

=
1

α
+

n²- 1

a²
·(am cos ny + ẞ₂ sin ny),n

so that the velocity of translation of any point of the vortex ring

dz a
=

;
dt ρ

thus those portions of the axis which at any time have the greatest

curvature will have the greatest velocity.

Returning to the equation for

dyn

we have as before
dt

,

dyn

.. (43),
=

where

dt

L==

· (n² — 1) La₂ ·

m

Απα

64a2

log
e³

except when n is so large that ne is at all comparable with a, then

m

L=

ΑπαAma
²
(log

4a2
-

ne - 2: 1544),
n²e²

approximately ; the accurate value of Lis

64a2

log - 4f(n) -1 ;

this is the same coefficient as we had in the equation giving da /dt

so that our equations are

dxn

dt

dyn

dt

=

- n²LY

(n² − 1) La„.
-
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Differentiating the first of these, and substituting for

the second, we find

d'a

dt2
'+ n² (n² — 1) L³a„ = 0,

an

the solution of which is

and therefore

= A cos [L √/{n³ (n² − 1 ) } t + B]
-

Yn=A

√(n²=1),n

dyn
from

dt

.. (44),

sin [L √ {n² (n² – 1) } t + B]

where A and Bare arbitrary constants.

-

We can shew by work of an exactly similar kind, that

B₁= A' cos [L√ {n² (n² − 1 ) } t + B']n

S₂ = A'n

√✓(n²- ¹) sin [L √ { n² (n² − 1 ) } t +B]
n³

(45).

These equations shew that the circular vortex ring is stable for

all small displacements of its central line of vortex core. Sir

William Thomson has proved, that it is stable for all small alter-

ations in the shape of its transverse section, hence we conclude that

it is stable for all small displacements. The time of vibration

where

2π

=
2π

L√ {n² (n² − 1) } '

=

´√{n² (n³ — 1) }

Απα

64a2

m (log ta* — 4f (n) – 1)

f (n )= 1 + 3 + +

-

e² -

1

...

'2n - 1 '

Thus, unless n be very large, the time of vibration

=

2π 2πα

m log e

√ {n³ (n² − 1 ) } 8a

or, if V be the velocity of translation of the vortex ring

=

2π α

√{n² (n² − 1 ) } V ·

. (46),

Thus for elliptic deformation the time of vibration is 289 times

the time taken by the vortex ring to pass over a length equal to its

circumference.

3-2
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When ne is at all comparable with a, the time of vibration is

approximately

2π 2πα

;

√ {n² (n² — 1 )}
m

(log 20

2a

-1.0772

ne

or, since we may write, as n is large, n² instead of n² — 1, it equals,

if I be the wave length

Σπα

n

2π

2ωπ ρ

12 (log Te

―
- 1.0772

Now this case agrees infinitely nearly with the transverse vibra-

tions of a straight columnar vortex which have been investigated

by Sir William Thomson.

In the sub-case in which 7/e is large, he finds that the period

of vibration

2π

=

2wπ

12

2.2

log

(10%
2πе

+ 1159 +1

(Phil. Mag., Sept. 1880, p. 167 eq. 61) ; or, since log, 2 = '62314,

this equals

2π

2ωπ ρ

12 (log we

3272

and thus agrees very approximately with the value we have just

found.

n

nSince the amplitudes of a and B, when n is large are approxi-

mately the same as those of y, and 8 , we can represent a displace-

ment of this kind by conceiving the central line of the vortex

core to be wound round an anchor ring of small transverse section

so as to make n turns round the central line of the vortex ring, and

this form to travel along the anchor ring with velocity , where ▾

is the time of vibration just found and 7 the wave length.
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PART II.

To find the action of two vortices upon each other which move

so as never to approach closer than a large multiple of the diameter

ofeither.

§ 14. The expressions for the velocity due to a circular vortex

ring, which we investigated in the previous part, will enable

us to solve this problem. If we call the two vortices AB and

CD, then in order to find the effect of the vortex AB on CD

we must find the velocity at CD due to AB. Now, since

the vortices never approach very closely to each other, they

will not differ much from circles ; hence in finding the velocity

due to one of them at a point remote from its core , say at the

surface of the other, we may, without appreciable error, suppose

the vortex ring to be circular.

Let the shortest distance between the directions of motion

of the vortices be perpendicular to the plane of the paper ; thus

the plane of the paper will be parallel to the directions of motion of

both vortices .

Let the semi-polar equations to the central line of the vortex

AB of strength m (fig. 3) be

B

Fig.3.

D

C

p = a + Σ (2₁ cos nó +ß„ sin np) ,

z = 3 + Σ (y₂ cos no + d„ sin np) ,

when z is measured perpendicularly to the plane of the vortex AB

and is measured from the intersection of the plane of the vortex

AB with the plane of the paper ; a B Yn are all very small

compared with a. Let m be the strength of the vortex AB.

n

Let the equations to the central line of the vortex CD of

strength m' be

p' = b + Σ (a', cos ny +B', sin ny),n

z' = ' + Σ (y'n cos ny' + d'„ sin ny'),
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where is measured perpendicularly to the plane of the vortex

CD, and from the intersection of the plane of this vortex

with the plane of the paper ; a'n B'n 'n d'n are all very small in

comparison with b.

ነ

nWe shall have to express a Bu Yn En a'n B'n ' n 'n as

functions of the time ; we shall then have found the action ofthe

two vortices on each other.

To find the action of AB on CD let us take as our axis of Z

the perpendicular to the plane of the vortex ABthrough its centre,

the plane of XZ parallel to the plane of the paper and the axis of

Y drawn upwards from the plane of the paper.

Let e be the angle between the direction of motion of the two

vortices ; l, m, n the direction-cosines of a radius vector of the

vortex CD drawn from the centre of that vortex.

Let Z, X (fig. 4) be the points where the axes of Z and X cut

Z

Fig.4.

K

a sphere whose centre is at the origin of coordinates, K the point

where a parallel to the direction of motion of the vortex CD cuts

this sphere, and P the point where a parallel to the radius vector of

the vortex CD cuts the sphere : KP will be a quadrant of a circle.

Then we easily see, by Spherical Trigonometry, that

l=
cos ecos y,

m = siny,

n=-sin e cosy.

Now by equations (10, 13, 16) the velocities u, v, w parallel to

the axes of X, Y, Z due to the vortex AB supposed circular are

given by the equations
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u =

1

maZXA₁,
2R

1

v = maZYA,,
2R

w = m (2a³A¸ — aRA₁),
-

where
R=√X² + Y².

Since

1 1
(a² - 2aR cos 0)

noo

(a² + R² + Z² − 2aR cos 0) (R² + Z²)* (R²+ Z²)

4a2R2 cos20

+1.5 + .

(R²+ Z³)

where, since R + Z' is very great compared with a, the terms

diminish rapidly,

1

A. =
=

(R² + Z²)

3aR

and
A₁ =

a² a²R2

c
o
l
o

op +

(R² + Z2) (R² + Z²)

(R²+ Z*)$ *

Nowif f, g, h be the coordinates of the centre of the vortex

CD, and X, Y, Z the coordinates of a point on the central line of

that vortex,

X=ƒ+ bl = ƒ + b cos e cosy,

Y= g + bm = g + b sin ,

therefore

Z = h + bn =h ― b sin e cos ;

R²+ Z² = X² + Y² + Z²

=ƒ² + g² + h² + 2b (ƒcos e cosy+g sin

$15.

1

u = maXZA₁ = 3 ma²·

2R

-h sin e cos¥) + b².

XZ

(X² + Y² + Z²)

Substituting the values given above for X, Y, Z and writing ď²

forf²+g² + h² + b² we find that approximately

u= 3ma²

[ƒh
+

d's
hcos e -fsin e

5fh

d2
(fcose--h sine))ine))b cos

bcos

ds

5fgh sin

d

5

+

-)+

sin e cos e-

d
(h cos e-fsin e) (fcos e-cos eh sin e)

35

+
2dJ,

fh {(ƒcos e

-

− h sin e)² — g"}) 2d

b2
-

cos 24

+
(fsin e − h cose + fg (ƒcos e -h sin e)) sin 24 +...

+…... … .. (47).
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When in these expressions we have a coefficient consisting of

several terms of different orders of small quantities we only retain

the largest term .

YZ1

§ 16. v =

2R

Substituting as before we find

maYZA, = § ma²• 5

(X² + Y² + Z²)

v = {ma³

gh

d's

-
g sin e + -

d
5kg (fcos e - h sine)) cos y

+ } (cos eg (ƒsin e−h cose)+

5g2
-

5h
-

gh

ď

d5

5g2 b

+ (1 - 50") , sin
d

( (cose - hsine)" - 9" ) cos 24

dz (fcos e − h sin e)

b2

35hg" (fcos e − h sin e)) 2 sin 24

+((507— 1) sin
sin e-

+
d+

§ 17.

= & m .

ma²

X

–

-

d³

2a2

-

w= m (2a A - aRA )

.(48).

3a* (a² + R²)

+ 15

a¹R²

(X²+ Y²+ Z²)(X² + Y² +Z²)* (X² + Y² + Z³)

¿ª (ƒª + g²) + 3 (2 (h sin e − 2ƒcos e)
[2 − 3d2

+
52 (ƒ²+g³) (ƒcos e − h sin

5

-

e))

-
2f

b

¥ —{cos ↳ + 3g (ƒ² + g³ — 4h³) sin

+ } (sin²e + (ƒcos e −h sin e) (3ƒ cos e — h sin e) — 9º}d

35 b2

— 2¿¹ (ƒª + 9") { (ƒcos e − h sin e) " — gº ) a cos 24
—

-

d2

+15 (3ƒcos e -h sin e

7

(49).

big

d+- ( +9) (ƒcos e-k sine) sin 24 +...]... (42d2
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da'n

§18. In using these expressions to find the effect ofthe vortex

AB on CD, we have to find the velocity perpendicular to the

plane of CD and along the radius vector. Then, as in the case of

the single vortex, we have equations of the type = coefficient

of cos ny in the expression for the velocity along the radius

vector of CD.

dt

n

To solve these differential equations, we must have the

quantities on the right-hand side expressed in terms of the time.

Hence we must express the value for u, v, w which we have just

obtained in terms of the time.

§ 19. In the small terms which express the velocity at the

vortex CD due to the vortex AB, we may, for a first approxi-

mation, calculate the quantities on the supposition that the motion

is undisturbed.

Let us reckon the time from the instant when the centres of

the vortices are nearest together.

Let p and q be the velocities of the vortices AB and CD

respectively ; k the relative velocity, viz. √ (p² + q² − 2pq cos €) ;

c the shortest distance between their centres.

Then, since f, g, h are the coordinates of the centre of CD at

the time t,

f= f+ qsin e . t,

g = g,

-
h=h + (q cos e −p) t,

where f, g, h are the values of f, g, h when t = 0 ; since the

distance between the centres of the vortices, viz. √ (ƒ² +g² +h³) is

a minimum when t = 0,

therefore

fq sin e +h (q cos e − p) = 0 ;

-

qcos €

f

-
p

=
h

q sin e

therefore if ħ be positive, we have

and

h =

-

=
√(c² — a²)

kc

q sin e√ (c² — g²)

kc

-
−

-

f =_ (q cos e − p) √ (c² –

kc

ƒ² + g² + h² = c² + k²t².

;

. (50),

g²)
• (51 ) ,

§ 20. If we substitute for f, g, h in the expression for w their

values in terms of the time, we find that as far as the term inde-

pendent of goes,
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W =

ma2

(c² + k²t²) ½

3 -
g²)

q² sin² e

k2

6 √o = (q cos e - p) qsine.t + [ 2 ( q cose —p) '—q′sin'e} ¿"]… ..( 52 ).

6√c²

2
-
g

+

k
− {2

The coefficient of cos y

-
g2

- 8 ma³ {2(√c²=gr
=

cos e +p)
-sin e (q cos e + p) t

k

1

-

{q (sin² e + 2 cos² e) — 2p cos e}

t)

(c²+ k²t²)

+ (L + Mt + Nť² + Pť³) ·

(c² + k²t²)

. (53),........

where

L

M

=

=

N=

ka

sin €

k2

-
(p cos e

-

9) ( c² (p − q cos e)² + g²q² sin²
²e)

(c² (p − q cos e) (p² +pq cos e − 2q*) + g°q (pq (3 + cos² e)

-

-

'c² — g² sin² e . q {2p² — qp cos e — qº}
k

P = sin³ e qp.

. -

The coefficient of sin

- 2 (p² + q²) cos

3ma bg

{c² - 5

(c² - g²)

2 (c² + k²t²)

k2
q2 sin' e

10√c² - g²

+
k

qsine (p -qcos e) t + (5q² sin² e — 4k²)ť²}…………..(54) .

The coefficient of cos may be written

--

3 ma²b²

sin² € c²- g3

+

·(c² + k³t²)

2 √c²- g²

+
k

k²

-
sin e { 2p (p cos e − q) + q (p − q cos e) } t

+sin e p (q sin 2e + p sin e) ť² )

-

(pcose- q) (3 cose (p -qcose) -qsin❜e) — g³
-

1

(c²+ k²ť²){

1
-
— 35 (L' + M′t + N'ť² + P't³ + Q't¹) .. (55),

(c² + k²ť²)
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where

1
-

I'′ = }, ( c ° (q cos e−p )* + g′qª sin² e) (c² (p cos e −q)ª

-

-g³ {(p cos e- q)² + k²}),

M = 2√c² — ª² sin e {c² (p² — q²) (p cos e − q) (p − q cos €)

k³

+ g³q ((p cos e
-

·q) (2pq — cos e (p² + q²) )

+ (q cos e −p) (p² + q² − 2pq cos e)) } ,
-

N=

sin2 €

k²

{cp (q cos e - p) - g'q² (p cos e − q)²

2 sin³ €

P'=

k

·

-
— 4 pq (c² — g²) (p − q cos e) (p cos e − q)} ,
-

√c² — g³pq (p² — q²),

Q' = sin' e p²q².

The coefficient of sin 24 may be written.

-

G

{3p cos e - q (3 cos² e + sin² e)}
¥ maʼg {{√o² k

√c² — ª² {3p cos €

+(q sin 2e +p sin e) t

−1 (L + Mt+ Nť² + Pť³)

1

(c² + k²ť²) ½

1

(56) ,

(c² + kit²) 3

where L, M, N, P have the same values as in equation (53) .

§21. The velocity parallel to the axis ofy.

The term independent of

ma²g (√c²- q²

= 33

(c² + k²t²) ²
k

qsin e +(qcos e-os e − p) t.….…..(57) .

The coefficient of cos

sin €

==
• ma'bg

+

·(c² + k²t²)

(c²

:((62)

-

√c²=g* {2pq —cose (p² + q ') } t+ sine.p (qcose −p) ť)
k

(p² + q³)} t+ sine.p (qcose —p) ť)

The coefficient of sin

g²)
+ 5

12
sin e.q (p cos e − q)

―

1

. (58).

(c²+ k²t²)=

qsine

k
={ma°¿g(√/c²—gº2³in² + (qcose—p) t) (¿+kv)²¯

1 5g²

`(c²+k²t²) ½ (c²+k²ť²)²
A)$)...(59) .
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The coefficient of cos 24

= e➡ 4 mal°g {cos « √e² — g²

-

hc
(psine-qsin 2e)

1

(c² + k²t²)

+ } (L” + M″t + N'ť² + P''ť³)

1

(c² + k²t²)

... (60)

where

L'

M"

N"

=

=

=

-

{(c² — g³) (p sin e − q) ³ — g² k³},

c* — g³

-
- 11 { (c² — g³) (p cos e —

1

k²

-

{(c² — g³) (p cos e − q) [ (2 + sin³ e) pq − cos e (p² + q³)]

√c²- g²

k

- -

-
— g³ k² (q cos e − p)} ,

-p sin e {pq (3 + cos² e) — 2 (p² + q³) cos e},

-
P" = sin² e . p² (q cos e − p).

The coefficient of sin 24

=-
-&

5g²
1

——§ mar³ {sin e (1 − (¿ 4PT)) (&+ke

+

-

k

g2

(c² + k²t²)

+5 (1-7 ) ( sine .(c²
k

-

+5 (1 'c² — g² sin e . q (p cos e — Q)

p) ť)

1

{2pq—cos e (p² +gº)} t+ sin e .p (qcos e −p) ťº) (♬+1ºť)i,

§ 22. The velocity parallel to the axis ofx.

The term independent of

—

(c² k³t³)

(61).

=
=3 ma²

´(c² — g³)
-

sin e. q(p-qcos €)

2
√c²- g²

k
{qª cos 2e−2pq cos e +p”} t + sin e.q (q cose—p) ťª}

1

(c²+1²²)

...... (62) .

The coefficient of cos

=} ma′b {{√o* =gº
k (q sin2e−p sine) + (gcos 2e −p cos e) t)

− 5 (L'" + M''t + N'''ť² + P'''t³)

1

(c²+k²t²)§

1

(c² + k³t²)
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where

L' =

=

(c³ — g³) ³

-

-

k
sin e .q (q cos e -p) (q −p cos e),

c² =ª² (q³cos2e-pq'cos e (cos² e + 2) + p³q (2 + cos²e) —p³ cos e) ,

k ?

M"

N" = sin € .

k

g²
(— q³ cos e + q²p (1 + sin² e) + qp² cos e — p³) ,

P"" = sin² e . pq (q cos e−p).
-

The coefficient of sin

=
- 15 ma³ba

mabg {(c°

(c²-α²)

sin e . q (p -q cose) –
k k

-² (q² cos 2e

1

-2pq cose+p²) t + sin e.q (q cos e− p)

The coefficient of cos 24

..(64).

(c + k²t²):

= ma²b²

sinecose

((c² + k²t²) *

k

- -
(c³ — g²)

k²

-

sin e {2q2 cos e - pq (1 + 2 cos² €) +p² cos e}

(q² cos 2e -2pq cose+p³)t+ sine.p (q cos 2e -pcose)ť²)

1

(c²+k²t²)

1

+ 35 (L₁ + M¸t + N₁ť² + P¸ť³ + Q₁t*) . (65) ,

(c² + k²t²) +

where

L₁
=-

(c² - g²)

k*

M.

N₁=

-

sin e . q (q cose -p) {c² (p cos e −q)²

— g² [(p cos e − q) ² + k²] } ,
-

/c³ — g² { (c² — g³) ( p cos e − q) (q³ cos 2e −pq² cos e (cos 2e + cos²e)-

-

- -

-
+p²q (1 + 2 cos 2e) — p³ cos e) + g²² (q² cos 2e − 2pq cos e + p²)} ,

(c² - g²)

k

√c²c³ — ª²

P₁ =
k

sin e {q (q cos e - p) (p² cos 2e − 2pq cos e + q²)
―

(q²+ 2p (p cos e−q) (q' cos 2e - 2pq cos e +p")},
-

sin² e . p (3pq² —p³ — 2q³ cos e),

Q₁ = sin³ e . p³q (q cos e − p) .

-
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The coefficient of sin 2

== 15 ma²b²
/c² - g²

k
(q sin 2e -p sin e)

+ (q cos 2e −p cos e) t)

-
1

+7
(c²—g²)

(c²+ k²tu)
k²

(pcose -q) (p-qcos e)

2
- 1

+
kc

sin e (p -q ) t+pq sin³ €
e t² . (66).

(c + kt²)

§ 23. To find the effect of the vortex AB on CD we require

the expressions for the velocity perpendicular to the plane of the

vortex ring CD and along its radius vector.

The velocity perpendicular to the plane of CD

= w cos e + u sin e.

Now in this expression , the most important terms are the coeffi-

cients of cos and sin y, because these terms, as we shall see,

determine the deflection of the vortex. We shall therefore pro-

ceed to find these terms first.

The coefficient of cos in the expression for the velocity per-

pendicular to the plane of CD may be written as

A=

where

√√ (c²— g³)
-

k

3

ma b

·
(c³ + k²t³)} (A + Bt+ Ctª +Dť) ,

{c² (pcos 2e-qcos e) — 5 sin³e

B = c² (p.sin 2e

-

+

--
q sin e)

5 (c² - g²)

k2

-
(c²- g³)

k²
pq (p cos e − q)},e-

{q³ -q² p cos e - qp³ (1 +sin³ e) + p³ cos e},

= √/c³ — 9ª {4k² (q cos e − p ) + sin² e . p (8pº — 7q′ — pq cos e) } ,
C=

k

-
− —

D= sin e {5p³q sin³ e - k³ (q + 3p cos e) } .

The coefficient of sin

where

maba
=

(c² + k²ť²)z

(A' + B't + Ct). ... (67),

5 (c³ - g²)

k2
pqsin²e,

A' = c² cos e-

B' =
5√ (c² - g²)

k

C' = k² cos €
-

{2pq sin e cos e - 2q² sin e + k²},

· 5 (q cos e − p) (q −p cos e).
-
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Now, since the equation to the vortex CD is

z' = ' + Σ (y', cos ny + d' sin ny).n n

The velocity perpendicular to the plane of the vortex

dz

= dt

+Σ (dy"
cosny +

dt dt
do, sin ny).

since as ' , ' and I are all small quantities we may neglectn

Thus

dy,

dt

=

n (S'₂ cos ny - y' , sin ny) Y.n
-

n

coefficient of cos in the expression for the velo-

city perpendicular to the plane of the vortex CD.

A reference to equation (43) will shew that the vortex CD con-

tributes nothing to this term, so that

dy',
ma2b

dt (c² + k²ť²) ½
(A + Bt + Ct² + Dt³).

Integrating we find

Y'₁ = } mab {t

Dc²/k* - B/k2 D/k A- Cc/k² t

13/08 + 1/1/0

(c² + k²t²)* (c² + k²ť²) *
c²

(c²+k²²)

{4A/c* + C/c²k²} t
8A 20 t

+ 1/8

(c²+k²t²) *

+15 +
Cε ck

+

·(c² + k²t²) ³

k
})}

where the arbitrary constant arising from the integration has been

determined so as to make y' , = 0 when t = − ∞ .1

If we substitute for A, B, C, D the values given above, we shall

get the value for y, at each instant of the collision ; but at present

we shall only consider the change in y' , when it has got so far away

from the vortex AB that its motion is again undisturbed. We can

find this change in y' , by puttingto in the above formula, on

doing this we find

4A C \ 2

св c4k² k
Y'₁ = { ma²b +

or substituting for A and C their values ,

2ma❜bpq 4g
-

r₁= (1 − p cos e) (1 — ¹ª³) √ (c² — g³) sin³ ….…….(69).
c*k*

§ 24. We have similarly

ds',
1 =

dt

-

coefficient of sin in the expression for the velocity perpen-

dicular to the plane of the vortex

=

ma ba

(A' + B't + C'ť²).

(c² + k²t²) =
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(A' — C' c²/k³)
-

Integrating we find

18', = { ma²bg {− +

B'/k2
-

t

(c² + k²t²) #

+
20)(

t

++18

+ }}

(c² + k²t²)*

++

(4A'/c*+C'/c²k³)t 18A' 20"

(c²+ k³t²) #

c²

·(c² + k²t²)·

where the arbitrary constant arising from the integration has been

determined so as to make 8,0 when t∞ . The change in

S', when the vortex CD is so far away from AB that its motion is

undisturbed is given by

1

18A' 20'' 2

+
5₁ = {} maba is (341

Substituting we find

ck k

δ',
=

C¹³

2ma²bª sin² e . pq
1 -

4g2\

3c²

...........(71) .

§ 25. We have in paragraph (6) investigated the changes in

the direction cosines of the direction of motion of the vortex ring

due to changes in the coefficients y' , and ' From that investi-

gation we find that the direction cosines of the direction of motion

of the vortex CD after the impact are

sin €-
γι

b

S
1

1

COS €,

1°

b

COS € +
sin €,

b

or substituting for y' , and ', the values just found, the direction

cosines become

sin €-

COS E +

2ma2

c*k*

-

1

gº) ( 1 - 40²)
√ (c² — g²) ( 1

4g
2ma²

sin²e .

sin'e
. pq ( 1 - 197)

ck

2ma²

c*k*

3c "

4g2

sin'e cos e. pq (q −p cos e) ,

√ (c² — g³) ( 1 − 1.9 ") sin²e. pq (q −p cos e).

- -

Thus if A, B, C (fig. 5) be the points where the axes of x, y, z

cut a sphere with the origin for centre and P the point where

a parallel through this centre to the direction of motion of the

vortex CD before the collision cuts the sphere.

Then if the vortex CD be the first to intersect the shortest
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distance between the directions of motion of the vortices, P' will be

the point where a parallel to the direction of motion after impact

Fig.5 .

B

cuts the sphere, supposing g to be positive and < c and the

velocity of CD greater than the velocity of AB resolved along the

direction of motion of CD, i.e. if q - p cos e be positive. We may

describe this by saying that the direction of motion of the vortex

ring is altered in the same way as it would be if the vortex ring

received an impulse parallel to the shortest distance between the

directions of motion of the vortices and another impulse perpen-

dicular both to its own direction of motion and the shortest

distance ; the first impulse being from and the second towards the

vortex AB. In this case the angle between the direction of motion

of CD and the original direction of motion of AB is diminished by

the impact.

If the vortex AB be the first to intersect the shortest distance

then we must change the sign of √ (c² - g ) in the expressions

for f and h ; this will change the sign of y' , but will leave S',

unaltered, and consequently P" the point where the direction of

motion of CD after the impact intersects the sphere of reference

will be situated as in the figure ; in this case the angle between

the direction of motion of CD and the original direction of

motion of AB is increased by the impact. The angle through

which the direction of motion of CD is deflected

=

2

+

8,

b2

2ma²pq
=

k
2maq sin'e (9 - pense) (1-19′) (~" — g) + g° ( 1 − +0 ) " }

4g2

2

(c² —
- -

40224a²

3c2

...(72).

If the paths of the vortices intersect so that g = 0, this

becomes

2ma' sin²e

T.

-

c³k+
-pq (q − p cos e) . (73),



50 ON THE MOTION OF VORTEX RINGS.

or the deflection is cæteris paribus inversely proportional to the

cube of the shortest distance between the vortices.

If the paths of the vortices do not intersect, but the vortices

move so as to come as close together as possible, then c = g,

and the deflection

=

2ma sin❜e.pq

3c³k³

..... (74).

This is again inversely proportional to the cube of the distance.

If in the two cases above, c be the same, then the deflection

when the paths of the vortices intersect will be greater, equal

to or less than when they do not, according as 8 (q -p cos e) is

greater, equal to, or less than p' sin e ; thus, unless the relative

velocity ofthe vortices perpendicular to the direction of motion of

CD is great compared with that along CD, the deflection will be

greater when the directions of motion of the vortices intersect than

when they do not.

The expression for the deflection simplifies when the line.

joining the vortices at the instant when they are nearest

together is inclined at an angle of 30° to the shortest distance

between their directions of motion, in this case g = c cos 30° c√3,

thus &', == 0 as 1 ―
4g²

3c²

vanishes, and the deflection

2ma² sin²e . pq (q — p cos e)

ck

=

which, if c be the same, is the same as when the vortices intersect .

§ 26. We have next to consider how the vortex CD is

altered in size by the collision.

0We know that if a be the alteration in the radius of the

vortex CD that

da'

dt

=
coefficient of the term independent of in the expression

for the velocity along the radius vector of CD.

Now a reference to equation (38) will shew that the vortex CD

contributes nothing to this term itself, so that

da'.

dt
= coefficient of the term independent of in the expression

for the velocity along the radius vector of CD due to the vortex

AB.

Since λ, u, v, the direction-cosines of a radius vector, are

by § 6 given by the equations
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λ =

μπ

cos e cos y,

sin ,

v= sin e cosy,

da。0

dt

= coefficient of the term independent of in

u cos e cos + v sin - w sin e cosy.

Hence by equations (53), (59), (63) ,

where

-
F=√ (c²— gº)

k³

dz
=

mab

dt (c² + k²t²)=
(F+ Gt+ H + Kt),

sin e [c² {p³q (4 — cos³e) — 2p³cos e — q³} — 5gª sin³e . p²q] ,
-

(p²

G= & {(qcos e -p)(2-5(q- poose) ") + sin'e .p (3-5 (p"-9") } ,
c² COS

H= √ (c² — g³)

k
sin e (8p³ cos e -p²q cos² e - 11p³q +4q³),

K=k² {2 (q cos e − p) + 3p sin³ e} - 5pq sin'e (q − p cos e) .

Integrating, we find

k

a' = 2 ma²b

Kc²/k - G/k²

(c² + k²t²)#

-
-}

K/k

(c²+k³t²)}

F- Hek t

+ 1/3
c²

(c²+ k²t") =

18F 2H t

+ 1/8 + 1/15 + +
C6 ck

(c²+k³t²)

(4F/c* + H/c²k²) t

(c² + k²ť²)*

If we

where the arbitrary constant arising from the integration has

been determined so as to make a = 0 when t = -∞ .

substitute for F, G, H, K the values just written we shall get

the change in the radius at any instant, but at present we shall

only consider the change in the radius of CD when it has got

so far away from the vortex AB that its motion is again

undisturbed. We can find this change in the radius by putting

t = ∞ in the above formula ; doing this we find

ma2b /4F H

+
5k C6 ck

Substituting for Fand Htheir values, we find

=

ma2b sin³ € . p²q 4g

k³c

---1 -
2 √ (c² — g²) ........ (74 *) .

Thus we see that the radius of the vortex which first passes

through the shortest distance between their directions of motion is

increased, provided c > 2g. If AB had first intersected the shortest

4-2
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distance we should have had to change the sign of (c - g³) , then

a would be negative, and the radius of CD would be diminished.

If the directions of motion of the vortices intersect, so that

g = 0, then

άπ
=

ma2b sin³ e. p³q

k³c³

or the increase in radius is cæteris paribus inversely proportional

to the cube of the shortest distance between the vortices.

If the directions of motion of the vortices do not intersect, but

the vortices move so as to come as close together as possible, then

c = α, and a = 0, and the radius of the vortex in this case is not

altered by the collision.

If c = 2g, or if the line joining the vortices when they are

nearest together be inclined at an angle of 60° to the shortest

distance between the directions of motion of the vortices, then

a = 0, or in this case again the radius of the vortex is not altered

by the collision. Thus we see for our present purpose we may

divide collisions into two classes. In the first class the line joining

the centres of the vortices when they are nearest together is in-

clined at an angle greater than 60° to the shortest distance between

the directions of motion of the vortices. In this case the vortex

which first passes through the shortest distance increases in radius,

and consequently decreases in velocity and increases in energy,

while the other vortex decreases in radius and energy and increases

in velocity.

In the second class of collisions the line joining the centres of

the vortices when they are nearest together is inclined at an angle

less than 60° to the shortest distance between the directions of

motion of the vortices. In this case the vortex which first passes

through the shortest distance decreases in radius, and consequently

increases in velocity and decreases in energy, while the other vortex

increases in radius and energy and decreases in velocity.

§ 27. Having found the change in the radius and the change

in the direction of motion of the vortex, we can find the changes

in the components of the momentum of the vortex referred to any

axes.

Let I ' be the momentum of the vortex CD ; P', Q', R′ its com-

ponents parallel to the axes of x, y, z respectively, l' , m', n' the

direction-cosines of the normal to the plane of the vortex.

SO

Thus
I' = m'πb², P' = m'πb²l' ,

SP ' = 2πm'bdbl' + m'πb²Sl′

=2 %/%P' + 'Sʊ',
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similarly, ¿Q² = 2 ºº Q' + I'dm ',

SR' 2 0

b

=
7°R'+F'dn'.

It remains to find dl' , dm', Ɛn' in terms of y', and S. Now if

E, P, Q, R denote the same quantities for the vortex AB as the

same letters accented do for the vortex CD, then it is easy to

prove that the direction-cosines of the old axes referred to the new

are as follows.

The direction-cosines of the old axis of x are

P'E-PE' cos e

I.I' sin e

Q'I- QI' cos €

I.I' sin e

RI- RI' cos e

I.I'sin e

The direction-cosines of the old axis of y are

OR-RO RP -PR' PO' -OP'

I.I'sin e I.I' sin e
>

I.I'sin e

The direction-cosines of the old axis of z are

P

E

છดે R

I
"
I

Thus if λ, μ, v be the direction-cosines of the normal to the

plane of the vortex CD referred to the old axes, then

δι' =
dλ (P'X – PF' cos e) dµ (QR'-RQ) , Sv.P

-

I. ' sin e

+ +
I.I' sin e I

with symmetrical expressions for dm' and Ɛn'.

Now by § 6

δλ== COS E,

δ'

δμ=
b

δν Y¹=

b

"

sin e.

Substituting for y' , and ' , their values, we find

δι' =

1

2ma pq sin e (q − p cos €

c¹k³ .I' k

1

4g2

√ (c² — g³) (1 − 49 ") (pr′ – Ep ′ cos e)
—

c²

-
EP'

+ g (1-2 ) (OR = RQ)}

with symmetrical expressions for Sm ' and Sn'.

3c2



54 ON THE MOTION OF VORTEX RINGS.

Thus

843' =

2ma pqsin e (√(c— g³)

c'k³1 . I' k
(1 - 42")

-

× F' {PF '(q — poos e) – PE (q cos e - p ) ) +g (1-4 ) ( R - RO )}

_pqsin e √√√(c²- g²)
=

wo

k (1-4 )

× {PF' (2 −pcos e) — P´E(q cos e−p)} +g ( 1

-
4g

-

3c

with symmetrical expressions for dQ' and R'.

F(@R´_RQ')}

-

(QR′ – RQ)}

.. (75) ,

If be the angle which the line joining the centres of the

vortices when they are nearest together makes with the shortest

distance between the paths of the centres of the vortex rings,

then

SO

and

g = c coso,

(1.– 4 º) √c — g² = c sin 4 (4

4g2

3c²

-

g (1 - 1807).=ccos +(1

sin² +— 3) =

- =--c sin 34,

4 cos²

3
14)=-3cos 34.

Thus

sap'=

4pqsin

πολ

€

sin 34 { X' (q — p cos e) - P'I (q cos e−p)}
-

-cos 34R(QR' – RO')
-

RQ)] ,

with symmetrical expressions for SQ' and R'.

+ ' is constant throughout the motionSince

similarly SQ

SR

=-
sap',

SQ',

- SR'.

=-

=-

the
§28. We can now sum up the effects of the collision upon

vortex rings AB and CD. We shall find it convenient to express

them in terms of the angle & used in the last paragraph : is the

angle which the line joining the centres of the vortex rings when

they are nearest together makes with the shortest distance between

the paths of the centres of the vortex rings, & is positive for the

vortex ring which first intersects the shortest distance between the

paths, negative for the other ring, so that with a given a, may

be regarded as giving the delay of one vortex behind the other.

§ 29. Let us first consider the effect of the collision on the

radii of the vortex rings.
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The radius of the vortex ring CD is diminished by

ma²b

ck
p³q sin³ e sin 3p.

Thus the radius of the ring is diminished or increased accord-

ing as sin 34 is positive or negative. Now & is positive for one

vortex ring negative for the other, thus sin 34 is positive for one

vortex ring negative for the other, so that if the radius of one

vortex ring is increased by the collision the radius of the other

will be diminished . When is less than 60° the vortex ring which

first passes through the shortest distance between the paths of the

centres of the rings diminishes in radius and the other one increases.

When is greater than 60° the vortex ring which first passes

through the shortest distance between the paths increases in radius

and the other one diminishes. Whenthe paths of the centres of

the vortex rings intersect & is 90°, so that the vortex ring which

first passes through the shortest distance, which in this case is the

point of intersection of the paths, is the one which increases in

radius. When is zero or the vortex rings intersect the shortest

distance simultaneously there is no change in the radius of either

vortex ring, and this is also the case when is 60º.

§30. Let us now consider the bending of the path of the

centre of one of the vortex rings perpendicular to the plane through

the centre of the other ring and parallel to the original paths of

both the vortex rings.

We see by equation (71) that the path of the centre of the

vortex ring CD is bent towards this plane through an angle

ma2

c³k³
pq sin² e cos 34;

this does not change sign with 4, and whichever vortex first passes

through the shortest distance the deflection is given by the rule

that the path of a vortex ring is bent towards or from the plane

through the centre of the other vortex and parallel to the original

directions of both vortices according as cos 36is positive or negative,

so that if is less than 30° the path of the vortex is bent towards,

and if o be greater than 30° from this plane. It follows from this

expression for the deflection that if we have a large quantity of

vortex rings uniformly distributed they will on the whole repel a

vortex ring passing by them.

§31 . Let us now consider the bending of the paths of the

vortices in the plane parallel to the original paths of both vortex

rings. Equation (69) shews that the path of the vortex ring CD is

bent in this plane through an angle

2ma²

sin² e sin 34pq (q −p cos €)
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towards the direction of motion of the other vortex. Thus the

direction of motion of one vortex is bent from or towards the

direction of motion of the other according as sin 34 (q -p cos e) is

positive or negative. Comparing this result with the result for

the change in the radius, we see that if the velocity of a vortex

ring CD be greater than the velocity of the other vortex AB

resolved along the direction of motion of CD, then the path of

each vortex will be bent towards the direction of motion of the

other when its radius is increased and away from the direction of

motion of the other when its radius is diminished, while if the

velocity of the vortex be less than the velocity of the other resolved

along its direction of motion, the direction of motion will be bent

from the direction of the other when its radius is increased and

vice versa. The rules for finding the alteration in the radius were

given before.

§32. Equation (75) shews that the effect of the collision is

the same as if an impulse

pqł.I'

pc k

sin² e sin 30,

parallel to the resultant of velocities p - q cos e and q ― p cos e

along the paths of vortices ( CD) and (AB) respectively, and an

impulse

pqt.F

3προκ

sin² e cos 30,

parallel to the shortest distance between the original paths of the

vortex rings, were given to one of the vortices and equal and

opposite impulses to the other ; here I and I' are the momenta of

the vortices.

§ 33. We have so far been engaged with the changes in the

magnitude and position of the vortex ring CD, and have not

considered the changes in shape which the vortex ring suffers from

the collision. These changes will be expressed by the quantities

ag B₂, ag, B₂, &c. We must now investigate the values of these

quantities.

da',

dt

39

Now we know

= coefficient of cos 24 in the expression for the velocity along

the radius vector.

A reference to equation (38) will shew that the vortex ring

CD itself contributes to this coefficient the term

πb2

2m' 8b

log
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The vortex ring AB contributes, as we see from equations (53),

(59), and (63), a term

where

C³

ma²b

(c²+k²t²)

{F" + G′t + Hť² + K'ť³),

-
·3q³ - 2p³ cos e} ,

(q -p cos e)2)
-

F = sin e { p³q (2 — cos³e) + 4pqª cos e —

G'

H'

k2

= c²

=

-

{p sin² e(3 — 5 (p² - 9" ) — 5 (q cose−p)

c sin e

k

- -

{8p³ cos e − p³q (2 + cos² € ) + pq² (4 cos e − 11 ) + 2q³} ,

K = 3k'p sin'e- 5pq sin'e (q -p cos e),

-

where, in order to make the work as simple as possible, we

have put g = 0 ; so that the undisturbed paths of the vortices

intersect.

Thus

da'. 2m' 8b ma2b

=

dt πb2

log ·(F″ + G′t + H'ť² + K't³),
é

(c² + k²t²)
}

say

8b

log

é
·Ÿ'₂ +ƒ(t).

dx,

dt

=

Now

2m'

πb2

dy the coefficient of cos 24 in the expression for the

dý 2

dt

=

velocity perpendicular to the plane of the vortex CD.

The vortex CD itself contributes to this coefficient the term

m'

Th
e
lo
g

8b

é

·
2*

The vortex AB contributes, as we see from equations (55)

and (65), the term

ma²b

(c² + k²t²) 3

(F"' + G″t + H''t² + K't³ + L″ t ).

Say for brevity F(t), where if, as before, we put g = 0,

F" =
(p cos e

G"

5c³ sin e

k³

q) {35 (p cos e − q) (3pq sin² e — k³ cos e)

— 5k² (½p sin² e +p − q cos €)} ,
-

[(1² — p³) {21 (p cos e − q)² + žk²}
-

-
+ (p cos e − q) p ( 41 pq sin² e — 5k²) ] ,

-
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H"=
pc² sin' e

k²
[{p³q sin³ e + 2 (p cos e − q) (p² — q³)

-

-
-(p cos e- q) } (q cos e−p)

— ½ 5k² {7 cos e . k² + (p² + q²) cos e − 2pq}],

K" =
pcsin e

k
{21p sin² e (q² — p³) — k² (5p cos e + 6q) },

-

L" = p sin² e {21p (q —p cos e) (q cos e − p) — k² (5p cos e + 6g) }.

Thus

m'

-

dy's - 1 m, logo. d', + F (6) ;
=

dt По e'

dx'

differentiating this equation, and substituting for from the

other equation, we find

2d'y'

dr² +3dt2

'm'

( 6-

m' 26

dt

; log 2b) , = F' (t) + 4 m² log 25f(t)

= x (t) say ;

b2

or writing n² for 3

πό(wba log 20) ;

ď'''½ + n³y'₂ =x (t).

P✅
2

dt2
2

The solution of this differential equation is

y'₂ = A cos nt+B sin nt

I'x (t') sin nť dť
+

cos nt

n

t
sin nt ft

x (t) cos nt' dt',
n

or choosing the arbitary constants so that y' , and dy both

vanish when t :

น

=

= -

cos nt

n

The integral

"t

∞ , we find

[ x -

X(t') sinnt' dt'

sin nt rt

fxn

x (t') cos nt' dt'

involves integrals of the form

dt

2

X (t') cos nt' dt'.

rt
cos nť dť

and

t' cos nt' dť

-∞
(c² + k²t²) $(2p+1)

I have not been able to

when t∞ .

-∞
(c²+k²t²) $ (2p +1 ) °

evaluate these integrals except
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2

9

In the expression for y', the terms under the integral express

the effect of the vortex AB on CD. Now the vortex AB will

only exert an appreciable effect on CD during the time the

vortices are in the neighbourhood of the place where they are

nearest together ; and thus, after the collision , we may, without

appreciable error, write the equation for y', as

ช่ 2
=
Pcos nt Q sin nt

where P

Q

=

=

∞+.

81

•+∞

n n

sin nt .x (t) dt,

cos nt . x (t) dt.

Thus the vortex rings are thrown by the collision into vibra-

tion, and after the collision is over the period of the vibration is

2π

the same as the period of the corresponding free vibration of

the vortex CD.

n

To find Pand Q we have to find

or if we write q for ,
k'

•+00
cos nt.dt

(c²+k²²)& (2p+1)

,

cos nt.dt

(q² + t²)$ (2)

+00

88
(2p+1)

Now q is the time taken by the vortices to separate by a

2π

n
distance c, while is (§ 13) of the same order as the time taken

by the vortex CD to pass over a length equal to its diameter ;

but, since c is large compared with the diameter of the vortex,

2 or ng is large.
2π

2
0

Let

∞
cos nt.dt

(q² + t²)*

By differentiation we find

Hence we find

Vp+1
=-

} } (2p+ 1) = N² V₂ •

-2
dvp

(2p + 1) \dn

-P

nv).

p
-

n
Up 1.3.5... (2(p - 1) (d ) (d = 2)...d &
=

(−1)" q²

−
dn
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This may be written

d

Vp
=

(-2n)'q-²

1.3.5... (2p-
-
- 1) \d (n²).

.. (76).

We can easily verify that , satisfies the differential equation

2

dv, + 1 dv, - (P² + q²) v₂ = 0.

dn²

Let us assume

Vp
=

n dn

-nq

x

-C-

(4₂ +

A,

4 +4

+
...).

(-
n

If we substitute this expression for v, in the differential

equation, and equate to zero the various powers of n, we get the

equations

2q (x + 1 ) A₁ +1

A¸ (2qx q) = 0,

x (x+1) A, -qA, -

-

0xA。 -p³A = 0,

=0,2q (x + 2) A₂ + (x + 1 ) (x + 2 ) A¸ −qA¸− (x + 1 ) A¸ −µ³Ã¸

2q(x+m)Д +(x+m− 1)(x+m) Am-1− qAm−(x+m− 1)Am-1 -p³Am-1=0 ;

these give

x= 1,

2q4, +
-

(1 − p²) A¸ = 0,

4q4, +
4qA2

(2 - p²) A₁A, = 0,

therefore

2mqAm + [† (2m — 1) ³ — p³] Am-1 = 0 ;

1
2

-

e
-ng 22 11)

2

p

p
4.1+ +

η 2nq

v =

-

(2ng) 2.2

321

22

C-DC-DC-D....

32 52、

22 22 22

+

(2ng)³.3 !

and Aalone remains to be determined ; if we can determine A, for

any value of p, we can find it for any other by means of equation

(76) . Now when p = 0,

and

cos nt . dt

• (9²+ t²)$

∞

cos nt.dt

° (q² + ť²)

=K (i.ng)
=
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(Heine, Kugelfunctionen, vol . II . § 50) , where K is the second kind

of Bessel's function of zero order and i = √− 1.

When ny is large,

K (i.ng) = √√ (31π)

en
g

(ng)

(1

-

1.32

(Heine, vol. I. § 61) ; hence

v₂ = √ (1π)

e-ng

(ng)2

1

+

23. 2nq 25. (2nq)²

- ...) ;

and, by equation (76), we find on comparing the coefficient of

en
g

that

(ng)2

A₁ = √ ( π)

q
e-ng

therefore

1.3.5 ... (2p - 1) (ng)

-nq
e

v, = √ (3π) 1.3.5 ... (2p - 1) (ng)

p

x1 + +

[+00

cos nt . dt no

2nq

1

=

81
(q²+t²) $ ( 2p

√ (2π)(2p+1)

- -

22

(2ng)* . 2

e-ng

q1.3.5 ...(2p− 1 ) ( q) *

-
32

22

x{1

2
-

22
p
-

+

32

22

+ ... . (77) ,

2ng (2ng) .2

and this series converges rapidly when nq is large.

The other integrals in Q are of the form

S

t cos nt.dt

(2p+1)∞-

(q² + t²)

and these evidently vanish.

The integrals in P are ofthe forms

∞
sin nt . dt t sin nt . dt

and
2

-
(q²+ t²)

(2p+1 )
-∞

• (q² + t²)²

(2p+ 1 ) *

The first ofthese evidently vanishes, and the second

d
00

==

dn (81

cos nt . dt

(q² + ť²)'

(2p+1)

and we have just found the value of the integral.
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§ 34. We can now find the values of y' , and a„

.

Pcos nt Qsin nt

By § 28,

where

n n

Р =

-∞

sin nt . x (t) dt,

=
cos nt .x (t) dt.

If we substitute for x (t) its value, and evaluate the integrals

by means of formula (77), and retain only the largest terms, we

shall find

P:=
m√ (2π) a²b²

8k⁹

-

{4p cos e (p cos e− q)²

-

-

— 4p (q² — p²) (g —p cos e) + cos e (q² — p²)²} .n³

Q
=
m√(2π) a²b²

8k5

-

sin e {4p (p cos e − q) ² — (q² — p²)²} . nº
- -

e-nc/k

(nc/k) *

e-nc/k

(nc/k)

If the vortices move with equal velocities these expressions

simplify very much and become

P=
m √ (2π) a²b³n"

8k5

Q
=

so that

therefore

m √ (2π) a²b²n°

8k

e-nc/k

COS €

(nc/k)

5
e-nc/k

sin e

(nc/k)+'

(nc/k)

cos (nt + e)
........ (78) ;

(nc/k)*

sin (nt+€) ......... (79).

m √ (2π) a²b³n¹ e-nc/k

8/5

m√ (2π) a²b³n e-nc/k

√3.4k

These equations represent twisted ellipses whose greatest

ellipticity is

m√(2π) a²bnt e-nc/k

√3.2k
(nc/k)**

The time of vibration is the corresponding free period.

§ 35. We can now sum up the effects of the collision of two

vortices AB and CD.

The collisions must be divided into two classes, (1) those in

which the shortest distance between the vortices is greater than

twice the shortest distance between the directions of motion of

the vortices ; (2) those in which it is less.
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Class I.

If the vortex CD be the first to intersect the shortest distance

between the directions of motion of the vortices its radius is

increased, and if its velocity is greater than the velocity of AB,

resolved along the direction of motion of CD, it is bent towards the

direction of motion of AB, and away from the plane containing

the path of AB, and a parallel to that of CD. If its velocity is

less than the value stated above it is bent from the direction of

motion of AB and away from the plane containing the path of

the centre ofAB and a parallel to that of CD. This is the direction

in which the path of CD is deflected if AB first intersects the

shortest distance between the directions of motion of the vortices ,

but in this case the radius of CD is diminished.

Class II.

If the vortex CD be the first to intersect the shortest

distance between the directions of motion of the vortices its

radius is diminished by the collision. It is bent from or towards

the direction of motion of AB according as its velocity is

greater or less than the velocity of AB resolved along the direction

of motion of CD, and away from or towards the plane containing

the path of AB and a parallel to that of CD, according as the

shortest distance between the vortices is greater or less than

2

√3

times the shortest distance between their directions of motion.

The deflection of AB with reference to this plane is the same

whether AB or CD first intersect the shortest distance. If AB be

the first to intersect the shortest distance, the radius of CD is

increased, and the deflection of the path of CD relative to the

direction of motion of AB is the opposite of that when CD was the

first to intersect the shortest distance.

When the directions of motion of the vortices intersect, these

results admit of much simpler statement, and, though included

in Class I., it may be worth while to restate them. In this

case the result is that the vortex which first passes through the

point of intersection of the directions of motion of the vortices

is deflected towards the direction of motion of the other ; it

increases in radius and energy, and its velocity is decreased ; the

other vortex is deflected in the same direction, it decreases in

radius and energy, and its velocity is increased.

§ 36. Very closely allied to the problem of finding the action

of two vortices on each other is the problem of finding the motion

of one vortex when placed in a mass of fluid throughout which
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the distribution of velocity is known. We proceed to consider

this problem, using the notation of § 14. Let be the velocity

potential of that part of the motion which is not due to the vortex

ring itself. Let the equations to the central line of the vortex

core be

p= a + Σ (a, cos n¥+ß„ sin ny) ,n

z = 3 + Σ (Y₂ cos ny + ♪ sin ny).22

Let Twe² be the strength of the vortex ; let l, m, n be the

direction-cosines of the normal to its plane, λ, μ, v the direction-

cosines of a radius vector of the vortex ; then (§ 6)

l=

m =

n =

λ=

με

y = –

sin e cos e,

sin 0 sin e,

cos 0,

cos e cos cos
-
— sin e sin y,

sin e cose cos + cos e siny,

sin cosy.

Let x, y, z be the coordinates of the centre of the vortex ;

if u, v, w be the velocities parallel to the axes of x, y, z at a point

on the vortex ring, then, by Taylor's theorem,

ΦΩ

dx

d

dx

u= +αλ +μ

d

+ v

dy
d)as

ΦΩ

dz dx

d d

+ 1a²(λ +v

dx dz
d),an

+
dx

with symmetrical expressions for v and w.

The velocity along the radius vector = λu +µv + vw

=(x

d

da

dt

d d d
2

λ +μ + v Ω + αλ +μ +v Ω
dx dy dz

d d

dx dy dz

d d

dx

d \³

+ & a²(λ —/² + μ$ + μdy
+v Ω+ .

dz

-term inthe expression for the velocity along the radius vector,

which is independent of y.

As λ, u, v all involve , the first powers of these quantities

furnish nothing to this term .

a²= { (1 − 1²) +

µ² = 1 (1 − m²) +

ນ :
=

(1 - n²) +

cos 24 (cos³0 cos² e — sin²e) — sin 2
- -

cos 24 (cos²0 sin²e — cos³e) + sin 2

cos 2 sin² 0,

λµ= -1 lm + cos 24 (1 +cos²0) sin ecos e+

\v= -1 In +1 cos 24 (− sin 0 cos 0 cos e) +

μυ - −1 mn + ½ cos 24 (− sin ✪ cos 0 sin e) –
== -

sinecos e cose,

sinecos e cose,

sin 24 cos 0 cos 2e,

sin 24 sin 0 sin e,

sin 24 sin 0 cos e.
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The vortex itself contributes no term independent of to the

expression for the velocity along the radius vector ; thus if the

radius of the ring be small, we have approximately

da

dt
= } a { (1 - .

a--

ΦΩ

-

dx2 + (1 − m²³) dy³

ΦΩ ΦΩ

+ (1 − n³)
dz2

or, since

da

dt § a(1

d d d
2

+ m + n Ω;
dx dy

―-2lm

ΦΩ

dxdy

-

ΦΩ ΦΩΤΩ

+ +
dx² + dy dz2

=
0,

ΦΩ ΦΩ

2ln 2mn

dx dz dydz

d

or, if

dh
denote differentiation along the normal to the plane of

the vortex ring,

da
=-

ΦΩ

dt τα dh2 .

From this equation we see that the radius of a vortex ring

placed in a mass of fluid will increase or decrease according as the

velocity along the normal to the plane of the vortex ring at the

centre of the ring decreases or increases as we travel along a

stream line through the centre. A simple application of this result

is to the case when we have a fixed ring placed near a fixed

barrier parallel to the plane of the ring. The effect of the barrier

is to superpose on the distribution of velocity due to the vortex

ring a velocity from the barrier which decreases as we recede from

the barrier ; it is this superposed velocity which affects the size of

the ring, and, since the velocity decreases as we go along a stream

line (which flows from the barrier), the preceding rule shews that

the vortex will increase in size, which agrees with the well-known

result for this case.

Let us now find how the vortex ring is deflected.

The velocity perpendicular to the plane of the vortex

ΦΩ d

= + alλ

dh dx
+μ dy

d d do

+ v

dz dh

+ ½ a² (λ
(2da

d d d\' dn

dx
+μ + v +

dy
dz/ dh

The coefficient of cos y

= α

(

d d

COS ECOS + sin e sin

dx dy
d

d\ dQ

+terms in a³.

dz dh

The coefficient of sin

=a(-:a (– sin e

d

+ sin e cos
dx

d\ dn

dy dh

+ terms in a³.

T. 5
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dy,

dt
= coefficient of cos in the expression for the velocity perpen-

dicular to the plane of the vortex.

The vortex itself contributes nothing to the coefficients of

either cos or sin in the expression for the velocity perpen-

dicular to the plane of the vortex (see equation 43) .

d)an approximately,

Thus

dy₁ d d ΦΩ

=acos e cos + sin € sin 0.

dt dx dy dz dh

dt

=

=

dô = a(-sine d

Now by§ 6,

dl

dt

dm

dt

dn 1 dy₁ sin 0.

=

dt a dt

Substituting the values just found

d\ dn

+ sin e cos 0

dy/ dh

1 d8, 1 dy,
sin e -- COS

a dt

e cose,

a dt

1 d8,

a dt

1 dy,
COS € cos e sin e,

a dt

for

ds,1
,

dt dt

dy,
in these

expressions, we find

dl ΦΩ dan
=

dt dh2 dh dx

dm ΦΩ ΦΩ

=m .(80) .

dt dha dhdy

dn ΦΩ ΦΩ

- n

dt dh2 dh dz

These equations enable us to find the orientation of the plane

of the vortex at any time.

dx2

dt

To find the change in the shape of the vortex, we have

=
coefficient of cos 24 in the expression for the velocity along

the radius vector.

Now the vortex itself contributes to this coefficient the term

2we² 8a

a²
log Y₂ (see equation 38) .

e

•
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And if we pick out the coefficient of cos 24 arising from the

velocity potential , we shall find that it reduces to

d

ΦΩ ΦΩ

-1a + 2-
dh² dk

where denotes differentiation along an axis coinciding in

dk

direction with the radius of the vortex ring for which ↓ = ½π.

Thus 2

dt

da, 2we 8a

log
a²

• Y2
-

e
- ta (dan

ΦΩ

+2

dh2 dk2

Again,

dy2

dt

=coefficient of cos 24 in the expression for the velocity

perpendicular to the plane of the vortex.

Nowthe vortex itself contributes to this coefficient the term

we² 8a

3334 log a, (see equation 43).

a² e

·

And if we pick out the coefficient of cos 24 arising from the

velocity potential N, we shall find that it reduces to

d² dQ

+2
dh dle dh'

Thus

=

-ta²(d

we2 8a

log 'a₂— a²(1

d2 d² dn
--

+2

dh² dk dh
;

d72
and

Y2 enables

dt

dy2

94
dt a² e

and this, with the preceding equation connecting

us to find da and Y2'

d

We have two exactly analogous equations connecting dß/dt and

d d

8, the only difference being that we substitute for where

dk dk'

denotes differentiation with respect to an axis passing through
dk

the centre and coinciding in direction with the radius of the vortex

ring for which ¥ = 0.

§ 37. We can apply these equations to find the motion of

a vortex ring which passes by a fixed obstacle. We shall suppose

that the distance of the vortex from the obstacle is large compared

with the diameter of the vortex, and that the obstacle is a

sphere.

fixed sphere B,

the direction of

Let the axis of

Let the plane containing the centre of the

the centre of the vortex A, and a parallel to

motion of the vortex be taken as the plane of xy.

x be parallel to the direction of motion of the vortex.

the strength of the vortex, and a its radius.

Let m' be

5-2
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The velocity potential due to the vortex at a point P

==

Im'a²d (1) approximately.dx

•

1 1 BP BP2

Now

AP AB AB²
= + Q, +1

AB³
Q₂ + .... (fig. 6),

8

Fig.6.

if BP < AB, and Q , Q,...are spherical harmonics with ABfor axis.

At the surface of the sphere the velocity parallel to x

d2 1

= {m'a²

dx² (AP)=

|= }m'a²²

3 cos 0-1

AB3
+smaller terms,

where is the angle AB makes with the axis of x.

The velocity parallel to the axis of y

== m'a²

d2

dxdy AP(11)={m'a²

3 cos e sin

AB³

+ smaller terms .

Now at the surface of the sphere the velocity must be entirely

tangential, hence we must superpose a distribution of velocity,

giving a radial velocity over the sphere equal and opposite to the

radial velocity due to the vortex ring, i. e . equal to

Ꮖ

m'

ABS

a²
У

(3cos³0-1 )+3 cos✪ sin

if x and y be the coordinates of a point on the sphere, b the

radius of the sphere. Let AB = R. Q, the velocity potential

which will give this radial velocity, is given by the equation

Ω 1

m'b³a²

R³

d 1

(3 cos20-1) +3 cos 0 sin

dx r

d 1)

dy r

where r = BP.

2 is approximately the value of the velocity potential which

produces the disturbance of the motion ofthe vortex.
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The equation

becomes in this case

da

dt

--
-La

ΦΩ

dh

da m'a³ ³

dt
=}}

R³ {(3 cos³0 – 1)

d³ 1
-

+3cos e sin
dx³r

da 1)

da'dyr

d³

Now

das (

= -

d³

da³
dy

(1)

=

3 (5 cos 0-3 cos 0)

R$

3 sin (1-5 cos² )

Ꭱ

We must express the quantities on the right-hand side of the

equation in terms ofthe time.

Let us measure the time from the instant when the line joining

the centre of the sphere to the centre of the vortex is per-

pendicular to the direction of motion of the vortex. Let u be the

velocity of the vortex ; then we have, accurately if the motion were

undisturbed, and very approximately as the motion of the vortex is

only slightly disturbed,

R² = c² + u²t²,

ut

cos ==

(c²+ u³t³) + '

sin

с
=

(c²+ u²²) + '

where c is the shortest distance between the centre of the vortex

and the centre of the sphere.

Substituting we find

da

dt

= -

u³t³ m'a³b³

132 (c² + u²t*,³ ³

thus the vortex expands until it gets to its shortest distance from

the centre of the sphere, after passing its shortest distance it ceases

to expand and begins to contract.

Integrating the differential equation, we get

where
ао

a = α

{1

+

1 m'a 2b³a²

16u R (1 + 3 cos³0) } ,

is the value of a before the vortex got near the sphere.

Thus we see that the radius is the same after the vortex

has passed quite away from the sphere as it was before it got

near to it, since in both cases R = ∞ ; in intermediate positions it

is always greater.
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The greatest value of the radius is

b

a. (1 + 1 m'a,' ');16u

the greatest increase in the radius is thus proportional to the

volume of the sphere, and inversely proportional to the sixth

power of the shortest distance between the vortex and the

sphere.

§38. To find the way in which the direction of motion of

the vortex is altered we have, if l, m are the x and У direction

cosines ofthe normal to its plane,

dm

dt

= m

ΦΩ ΦΩ

dxdydx

Now in the undisturbed motion

equation

m = 0, so we may write this

dm ΦΩ

dt dady

m'b³aªdm

dt

=
4

Now

R3 {(3.

cos 0-1) P

dx dy (1)

d³ 1 3y

ds

+3 cos 0 sin

dy'de (-)}·

de'd
y
(+ ) = 30 (1-5

a²
)

d³

dy'de (- ) = 3.x (r² - 5y")

Substituting these values, we find

dm

dm

dt

pr

2
m'b³a⁹

=-

Ꭱ .
sin (1 +4 cos* 0) ;

thus is always negative , or the vortex moves as if attracted

dt

by the sphere ; expressing the right-hand side in terms of the

time, we get

dm

=-

dt

5

{
m′ba²c {(c² + ut*)**

4c2

}(c² + u³t²)5)

Integrating both sides from t = − ∞ to t = + ∞ , we find that

m, the whole angle turned through by the vortex, is given by the

equation

πm'b³a²
45

m = -
128 9

and this effect varies inversely as the sixth power of the shortest

distance between the vortex ring and the sphere, and directly as

the volume of the sphere. Sir William Thomson shewed by

general reasoning that a vortex passing near a fixed solid will

appear to be attracted by it ("Vortex Motion," Edinburgh

Transactions, vol. xxv. p. 229) ; and this result agrees with the

results we have obtained for the sphere.
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PART III.

Linked Vortices.

§ 39. WE must now pass on to discuss the case of Linked

Vortices. We shall suppose that we have two vortex rings linked

one through the other in such a way that the shortest distance

between the vortex rings at any point is small compared with the

radius of the aperture of either vortex ring, but large compared

with the radius of the cross section of either of them. Thus, the

circumstances in this case are the opposite to those in the case we

have just been considering, when the shortest distance between

the vortices was large compared with the diameter of either.

In the present case it is important to examine the changes

in the shape of the cross section of the vortices, in order to see

that they remain approximately circular. We shall, therefore,

discuss this problem first.

Since the distance between the vortices is very small compared

with the radii of the apertures of the vortices, the changes in

their cross sections will be very approximately the same as the

changes in the cross sections of two infinitely long straight cylin-

drical vortex columns placed in the same mass of fluid in such a

manner that the distance between them is great compared with

the radius of either of their cross sections.

We shall prove that if the cross sections of two such vortex

columns are at any moment approximately circular they will

always remain so.

We must first find the velocity potential due to such a vortex

column.

Let the equation to the cross section be

where a and Bn

p= a + a₁ cos no +B sin no,

are small compared with a, the mean radius

of the section. Let w be the angular velocity of molecular

rotation.
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The stream function due to this distribution of vorticity is

given by the equation

1

dx
y = − =[] w log r da' dy

SS

(Lamb's Treatise on the Motion of Fluids, § 138, equation 33) ,

where r is the distance of the points x, y from the points x', y'.

W

2π

Thus is the potential of matter of density- distributed

over the cross section.

At a point outside the cylinder let

↓ = C' — wa² log r + (4,„ cos no + B, sin no) « ... (81 ).

an

At a point inside the cylinder let

¥ = 'C'′ — ¿wr² + (4' ,„, cos no + B' , sin nə) ....... (82).

Thus, since

-

απ

is continuous, these two values must be equal at

the surface of the cylinder; thus, if we substitute

r = a + am cos ne+ ß, sin në,n

we may equate the coefficients of cos no and sin ne in the two ex-

pressions for .

Doing this we get, neglecting powers higher than the first of

a, and Ban

- =-
waan + An waxn + A'n

B'ni-ωαβ + B = = ωαβ +B' ;waẞn +B₂

or A₂= A'n

B₂= B'n'

The differential coefficients of y are continuous ; thus the two

values of must be the same at the surface of the cylinder ;
dy

dr

differentiating both expressions for

r= a + a₂ cos në +

with respect to r, putting

ß„ sin në,n

and equating the coefficients of cos no and sin ne, we find

wan

ωβη
-

nA nA'

α

n
=

a

nBn
B

α

=

Solving these equations, we find

A
n
-
awan

n

a

B
₁

n
- wan'

ωβη.

n

=
αωβ.

n
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Thus at a point outside the cylinder,

y=C - wa² logr +

aw

n
B(a, cos në + ß, sin n☺) ™™™ ….. (83).

We can now find the time of vibration of a single vortex

column whose section differs slightly from the circular form.

1.

nFor if p = a + a, cos ne +ẞ, sin ne be the equation to the cross

section, then, since the surface always consists of the same particles

of the fluid, using the theorem that if F(x, y, z, t) = 0 be the

equation to such a surface,

dF dF dF dF

+ u + v + w =

dt dx dy dz

we get

R

dzn

dt

= cos no+

dt

n

0,

dẞ" sinne —n (a,„, sin ne — ß„, cos në) ©……. (84) ,
- -

where R is the velocity of the fluid at the surface of the cylinder

along the radius vector and its angular velocity round the axis

of the cylinder.

Now R==
dy

rde'

1 dy

rdr

Thus, when r= a + a, cos no +B sin no,n

R== w (a, sin ne - Nẞ, cos nе)

W .. (85) ,

= @ n
α
(a, cos no +ẞ, sin n☺)

neglecting squares of a,, and B.

Hence substituting in equation (84) and neglecting all powers of

a, and B, above the first, we getn

dz dB

- w (a, sinne -ẞ„ cos no) :
= cosno +

dt

sin no

dt

-
nw (a, sin ne – ẞ„,cos nė) :

-
"

equating coefficients of cos no and sin ne, we get

dt

da

dt

n

dẞn

dt

--

=

-
(n − 1) wß,

-
(n − 1) wa,;

+ (n - 1)² w²a,, = 0,

d'a

therefore
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or -
a₁ = A cos {(n − 1) wt + B} ,

-
B₁= A sin { (n − 1) wt + B},

where A and B are arbitrary constants.

Thus r= a +A cos [ {n0 − (n − 1 ) wt} − ẞ] ……………………………. (86).- -

Thus the section never differs much from a circle, and the

disturbance in the shape travels round the cylinder in the time

2π

(n − 1) w '
-

These results agreed with those stated by Sir William

Thomson in his paper on "Vortex Atoms" (Phil. Mag. 1867) , and

proved in his paper "On the Vibration of a Columnar Vortex."

Proceedings of the Royal Society of Edinburgh, March 1 , 1880;

reprinted in Phil. Mag., Sep. 1880.

§40. Let us now consider the case when there are two vortex

columns in the fluid (fig. 7).

Fig.7.

P

Let p= a + Σ (a₁ cos në +ß„ sin në)

be the equation to the cross section of the one with A as centre,

and let

p' = b + Σ (a,' cos nơ′ +ß’„ sin në)n

be the equation to the cross section of the one with B as centre, p

being measured from A and p' from B.

Let c be the distance AB between their centres, and e the

angle AB makes with the initial line.

Then the stream function due to the two vortex columns at

a point Pis given by the equation

aw an

= C - wa² logr +Σ (an cos ne +ẞ, sinnë)n
n

bw' bn

- w'b²log r' + Σ n(a' cos ne'+ ', sin ne')
n p'n'
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where r = AP, r' = BP, and 0, 0′ are the angles AP and BP make

with the initial line, w and w' are the angular velocities of

molecular rotation of the two vortex columns.

We shall want to use the current function at the surface

of both the cylinders, thus it will be convenient to find a method

of transforming that part of the stream function where the

coordinates used are measured from A as origin to coordinates

with B as origin, and vice versa. To do this we shall use

the following lemma, which may be easily proved by trigo-

nometry.

Fig.8.

B

Lemma.

§41 . If AP= r, BP = r', < PAB = ↓, < PBC = x, AB = c.

Then if r' < c

ทsinny =

chзов

2

- {(6) sin x - 1 +1 ( )' sin 2x1.2

cos ny

зов

=
1

n

+

8
n+ 1.n + 2 /r'

1.2.3 (~) sin 3x +
3x +...

n . n + 1 /r\2
-n.

cosx +
1.2 (~)

cos 2x

n.n + 1.n + 2

( )

cos 3x +

if r' < c,

ny
1

1.2.3

2

sinn , mn hin ox − sin (n +1)x +" in# (-) in ( +2)x...} ,

cos ny

pn

=

=

r

1

in

-
nx n =

1.2

n.n + 1
2

cos nx − n cos (n + 1) x + ·(~~) *cos (n + 2)x...}.

§ 42. Again logr = log r²

1.2

= log (r'²+ c² + 2cr' cos x).

22

Ifc> r' ,

log r = log c + cosx - cos 2x + }++
cos 3x ..

C³
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If c < r' ,

logr = logr + cosx - cos 2x +

63

3778
cos 3x ....

We can now find the effect of the vortex columns on each

other.

For if R be the radial velocity of a point Q on one of the

vortex columns relative to B the centre of that vortex column,

and b the velocity of Q relative to B, perpendicular to BQ,

then as before

珉

dann
= cos no +

dt

dB'

Now, the part of

dt
" sin no - n (a , sin ne -B', cos ne) ...(87).

có

due to the vortex column with B as centre

= - lá , cosing − 8 , sin nổ ) ,n
-

n

the part of R due to the term - wa² log r in the stream function

b

= -wa²

&sin 2 (@

b2

sin 2 (0′ — €)
--

the term

gives
-aw

an

Ch+1

X

-

aw

n

b³

sin 3 (0 €) + sin 4 (0 .− e)
-

(a cos ne +B sin no)n

(a, cos ne + ẞ sin ne) (n + 1)

aw

n

-

+ sin 4 (0 –e) ...} ,

an

C¹

>

sin 2 (0 - e) - 1 +2 (5) sin 3 ( − e) +...}

ar

1.2

¿” +1 (³„ cos ne— a„ sin ne) (n+ 1)n

2

-

X

1.2
cos 2 (0' — e)

- - (n + 2) (2)

cos 3 (0 − e) +...}.

B andan BnSince a

α

с

are all small quantities, as we are

neglecting the squares of small quantities, we may neglect these

terms which involve quantities of the order of a² ; and for the

same reason, we may in equation (87) put = w' , since it only

α

"differs from it by small quantities of the order a, and and in

that equation is multiplied by quantities of this order.

Substituting these values for and in equation (87) , and

equating the coefficients of cos 6' , and sin e' on each side of the

equations, we get

dx',

dt

1 - dß',

0,

dt

=
0,

or, as a', and B'₁ are zero initially we get a', = 0, B'₁ = 0, and1 1
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similarly a₁ = 0, ß₁ = 0 ; and thus the motion ofthe centre of gravity

of either vortex column is not disturbed. If we equate the

coefficients of cos 20′ and sin 20' on each side of equation (87), we get

and

d²²2 + wB² 2

dt

dẞ'2

dt

-
wab sin 2 €

wab cos2€
- w'a'z

c²

wa + w'b²

c²

this value of n follows at

Now AB travels round approximately uniformly with an

angular velocity n, where n =

once if we remember that the centre of gravity of the two vortex

columns remains at rest.

Thus taking the initial position of AB as the initial line from

which to measure our angles, we have e = nt.

Thus

2

dt

da'₂ +
w'B'₁=

+ώβ',

wa2b

sin 2nt,

c²

dB2 wa2b
-

cos 2nt;
dt c²

therefore

d'a wa2b

dt2

²+ w²²a's = (2n + w ') cos 2nt;
c²

therefore

a'₂ = A cos (w't + B)+
c²

.. (88) .

Now, let a,,B = 0 initially, then da /dt = 0 initially, and we get2

wab (2n + w') cos 2nt

12
w'² -4n²

.....

d2

B'₂
=

wa2b

c² (w' - 2n)

wab

c² (w' - 2n)

(cos 2nt - cos a't)

(sin 2nt- sin w't)

.. (89) .

Thus the cross section at any instant is an ellipse. This

ellipse does not, however, remain of the same shape, but vibrates

about the circular form ; the maximum ellipticity is proportional to

wa b

and thus varies inversely as the square of the distance

c" (w' - 2n)'

between the vortex columns. The vibration has two periods, a

П

long one

2π

and a short one

n

3
a³

The terms in a,, B, will involve

C3

and thus will be relatively3
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с
unimportant, as α , ß, only involve the square of ~ ; the same

reasoning applies à fortiori to a, andB, when n is greater than three.

§ 42. Our investigation of the motion of two infinite cylindrical

vortices shews that to retain an approximately circular cross section

the vortices must be at a distance from each other large compared

with the diameter of the cross section of either. If we consider a

portion of two linked vortices near each other, and regard them as

straight, which we may do ifthe distance between them is small

compared with the radius of the aperture of either, we see that the

vortices will spin round each other with an angular velocity

m+m'

πα

when m and m' are the strength of the two vortices, and d the

shortest distance between the two parts ofthe vortices we are

considering; thus, if the motion is to be steady, we must have this

angular velocity approximately constant all round the vortices,

and therefore d' must be approximately constant all round the

vortices.

To get a clear conception of the way the vortices, supposed for

the moment of equal strength, are linked , we may regard them as

linked round an anchor ring whose transverse section is small com-

pared with its aperture, the manner of linking being such that

there are always portions of the two vortices at opposite extremities

of a diameter of a transverse section of the anchor ring. The

shortest distance between pieces of the two vortices is then

approximately constant, and equal to the diameter of the transverse

section of the anchor ring.

Let us suppose that the vortex is linked r times round the

anchor ring, then the equation to the central line of vortex core

may be written

p= a + a, cos 0 +8, sin 0 +...a, cos re +ẞ, sin re"

+...a cos no + B sin ne+...

z = 3 + y₁ cos 0 + 8, sin 0 +... y, cos r✪ + d sin rA

19 1'

1 ∞

n

+... Y cos ne + d, sin no +....

Let the equations to the second vortex differ from these only

in having accents affixed to the letters. Here a,, ; Vp d₁; av B'₁;

YS, &c. are all small in comparison with a and a', but a,, B ;

Yr dr; a',, B'+; Y , &', are large compared with the others, so that

in the expression for the velocities due to the vortex rings we shall

go to the squares of these quantities, but only retain the first

powers of the other quantities denoted by the Greek letters. Let

m be the strength of the vortex whose equation was first written,

which we shall call vortex (I), m' the strength of the other, which
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we shall call vortex (II). Let e and e' be the radii of the cross

sections of vortices (I) and (II) respectively.

111 nLet 4 denote the value of the quantity we denoted in § 13

by A, due to the vortex (I) at a point on the surface of itself.

n124, the value of the quantity A, due to the vortex (I) at a

point on the surface of vortex (II).

n24, the value of the quantity A, due to the vortex (II) at a

point on the surface of the vortex (I) .

224, the value of the quantity A, due to the vortex (II) at a

point on the surface of itself.

Now, from equations (11) and (14) the terms of the first order

in a, &c., in the expression for the velocity along the radius vector

due to the vortex (I) at the surface of the vortex (II) are

§ ma Σ {1,4 , (y'n cos ny + d₂ sin ny)

+ { [(n − 1 ) 124n+1 (n + 1 ) 124-1] (Y, cos ny +8, sin ny) } .

- ·
n

If we suppose the two vortices wound round an anchor ring, of

diameter d, in such a way that there are always portions of the two

vortices at opposite extremities of a diameter of the transverse

section, then in the expression for A, given in equation (35) we

must put x =

d2

2a2.
Substituting this value of A, and retaining

only the most important terms, we find that the velocity along the

radius vector of the vortex (II) due to the vortex (I)

m

= Σ

Απα {(8%
n

64a2

cos ny + d, sin ny) - log 6ta²)

4a

d

4a2

+ (y„ cos ny + d„ sin ny) (− taª² – (n² — 4) log 64a³) }d2

-- -

d

By equation (38) we see that the velocity along the radius

vector of the vortex (II) due to this vortex itself

m

Απα
Σ (y'n cos ny + d', sin ny) n² log

But from the equation

64a2

e .

p' = a' + Σ (a', cos ny +B'„ sin ny) + e' cos 4,n

we see that if we only retain the first powers of the quantities

a'n B'n, the velocity along the radius vector

dẞ'n
=
da

dt

n

cos ny +
sin ny,

dt

equating the coefficients of cos ny and sin ny in this expression for

the velocity and in the expression just found, we find
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da'

dt

ท
=

m

Απα
n

{Y'. (4a² — & log 64a²) -
- Yn

(

14a²

da

-

64a2

4) log 64a³)}

+ (n² − 2) log

-
m'

-

d

4πa' Yn n² log12

64a2

dB.-m {5. (4a - 4 log 644) - 8. (4a² + (n° - 2) log 64a") }

n
=

dt Απα
n n

d2

12

m'

Απα

64a2

n
S'n² log

e's

"

From equations (16) and (17) the terms of the first order

in a,, &c., in the expression for the velocity perpendicular to the

plane of vortex (II) due to vortex (I)

-
=½ma (2α¸ª¸ — a´„ ª¸) — §ma (a'„ cos ny +B', sin n¥)„ ª¸12 0 12

+¡ma” (a „ cos n↓ +B”‚„ sin ny) & (&; + d) (2,4。
3n

+¿m (a„ cos n↓+
n
ß„ sin n¥) { ba²

dr'

d

+
drdR

12 1

- 14,)12

{12An−¥ (12An+2+12An−1)}

− } ;
+ 2a¸ A„ + §a { (n − 1 ) 124₂-1 − (n + 1)

-
12 ・n+1

where, before differentiation, the A's are to be regarded as

functions ofr' and R, and after differentiation we put

r' = a + a, cos ry +ß, sin ry,

Ra'a', cos ry +B,sin ry,

d2

and retain the largest terms ; the quantities a„, Br, d'r, B'r› have

eachd for their maximum value. If we substitute in these

expressions the values for the quantities denoted by the A's

given in equation (35) , and put x = we find that the22
2a2

velocity_perpendicular to the plane of vortex (II) due to

vortex (I)

m

=

2π
a
(log

m

8a

d

-

1)

m
-

Απα
2 (a’ „ cos n↓ + B´„ sin nų) (4a²+ log64a²)

4a2

d2

n

+4a² (α, cos ny +ẞ₁ sin ny) + (n² - 1) log 64a²)2 n

d2

if we go to the first powers only of the quantities denoted by the

Greek letters.

The velocity perpendicular to the plane of the vortex (II)

due to this vortex itself, is by equation (43)

>

m'

Σπα (log
Sa

8a'

é 1) +

m'

Απα
/24ra (n² - 1) log

64a2

e'2
(a, cos ny + B, sin n¥).
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But from the equation

z = 8 + Σ (y'n cos ny + d'„ sin ny),n

we see, as in equation (40) , that the velocity perpendicular to

the plane of the vortex, is

dz

dt

+Σ
Σ(

dyn don

cos ny +
dt dt sin ny) .

х

Hence, equating the constant terms and the coefficients of

cos ny and sin ny, in this expression, and the expression we

have just found for the same quantity, we get

dz m

=

dt Σπα

dýn
=

m

dt Απα

(log

8a

an

d

4a2

do'n m

dt Απα

4a2

=
Bn

d2

-

1)
1)+

m' 8a'

log
-

Σπα

+ (n² — 4) log 64a²) —
-

+

G
64a2

d2
án

(

14a²

d2 +4 log G4a³)}

m' 64a2

4πα
a'n (n² - 1) log 12

- B

+ { log 64a²)}

m' 64a2

+

4πα
B'n (n² - 1) log

e'2

+ (n³ — 4) log64a³) — B´‚
d2

n

4a2

In the case we are considering the mean radii of the vortices are

equal, thus a = a'.

If we write for the sake of brevity,

4a²

L=

d2

-log

64a2

d²

64a2

M'=n²log 12

4a2

N= -

d

4a²

Р=

d

+ (n² — $) log

+ &
logď

Q' = (n² - 1) log

4a2

R =

d2

64a2

d2

(90).

64a2

d

64a²

é'2

64a2

d2
+ (n² − 1) log

Then our equations become

da'n

dt

=

1

Απα

-

{y', (mL — m'M') — y„mN} ………………. ... (91 ) ,

T. 6
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dýn

dt

=
1

-
*4a² {a'n (m'Q' — mP) + α„mR} .....

If we go to the vortex (I) , we get

dz m'
=

dt 2πα

don
=

1

dt Απα

dyn 1

dt

=

8a m

log d + log

8a m + m'

Σπα
"

2πα e

-
{Y„ (m'L — mM) — y'„m´N} ,

{a„
-

4πa² {α, (mQ — m'P) +a'„m'R},
Απα

....... (92).

where M and Q are what M' and Q become when e is written

for e'.

Equating the two values of

dz
we must have

dt'

m δα

2πα d

log + log

m' 8a m² 8a

Σπα é Σπα d

log + log

m 8a

Σπα

d d

m log m' log

,

or . (93).

We shall first consider the case when m = m', and therefore

e = e'.

In this case our equations are

da

dt

dýn

dt

dan

dt

dyn

dt

=

=

=

=

Απα

m

m

{y' " (LM) - Y₂N},

{x'n (Q − P) + a„R} , ·

{Y½ (L — M) — y'„N},

Απα

m

Απα

m

Απα

2

{ª„ (Q − P) + a'„R} .
-

Adding the first and third of these equations, we get

d

dt Απα

adding the second and fourth, we get

m

(a'n + an)
=

(L - M- N) (Yn + V'n) ;

d

dt
at (V'n + Yn)

m
=

Απα
(Q + R − P) (αn + án).

Hence

d²
2

dt²
√ (a' + am) + ( m³) ( Q + R − P) (M +N− L) (a' „ + o,„) = 0 ;n

Απα

-
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therefore a'n+ an
=
A cos (vt + €),

where v² ==

2

( m²) ² (Q + R − P) (M+ N− L),

and A and e are arbitrary constants.

Substituting the values of the quantities involved in the ex-

pression for v, we find

Απα d

2

v2:
(1 ma³) 4n² (n² — 1 ) (log

8a

+ logSa)";

64a2

therefore V =
. (94),

m

2πа
²√

{n² (n² - 1) } log
-

de

or if I be the velocity of translation of the vortex ring we have

very nearly

--
V

v = √ {n² (n² − 1 ) } a

Yn+ Y₂ = A
√ (n² − 1 )

sin (vt + e)
n

n

Subtracting the third from the first of the four equations giving

and

dan

&c. , we get
dt

d

dt
(a'n'

m

Απα
(L + N− M) (y'n — Vn) ·

-

Subtracting the fourth from the second of these equations,

we get

d

dt

m

(I'n - Yn)
=

4πa² (Q - P - R) (a'n — αn).
-

Hence

d2
2

-

dt2

-

(á´„ − a„) + ('m¸³)* (L +N−M) (R + P − Q) ( a' , − a„ ) = 0 ;

therefore

Απα

án - an = B cos (µt + e') ,

2

-

where = -

· (1m²² ) ² (L + N − M) (R+ P − Q),

-

and B and e' are arbitrary constants.

Substituting the values of the quantities involved in the ex-

pression for μ , we find

=
m

4πα

- -
8a² 64a2

d2
+ (n² — §) log

d2
-n² log 64a²)

X

d2(Sa²+(n² + 4) log

6422 64a2

d2
(n² - 1 ) log

e²

6-2
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and

m (4a2

=

- (2 ) - log - logΣπα Id²

14a

X + log · (n² — 1 ) log )..... (95),

d2

8a

d

-

Yn - Y = B' sin (ut + c ),n

-4a2

d2
+ log

8a

d

where B' -B

4a² 8a

d
-log

d

-

-

-

(n² - 1 ) log

n²
log

d

Combining the expressions for a', + a, and a', -a,, and doubling

the arbitrary constants A and B for convenience, we find

=

a₂ =n

=

Yn =

√ (n²− 1 )

n

-

-

Acos (vt + e) + B cos (µt + e')

-
A cos (vt + e) – B cos (µt + e')

A sin (ut + c) + B sin (ut + c) ... (96).

V (n * − 1) A sin ( t + e ) – B'sin (ut + c )

n

nSince exactly the same relation exists between B', and ',, Bn

and 8 , as between a', and y' , a , and y , we shall have

B'n=

B₁₂ =

Ccos (vt + e) + D cos (µt + e')

δ'8'₁ = √(n² — 1 )
n

− 1 ) C'
=

n

√(n² - 1)

-
C'cos (vt + e) – D cos (ut+ e')

C' sin (vt + e) + D' sin (ut + e')

sin (vt + e) — D' sin (ut + e')
n

-4a2 8a

+ $ log
d2 d

- (n² - 1) log
-

d

where D' = - D

4a2 8a d

da
- log n² log

d

(97) ,

As consequences of these equations we see (1) that the motion

of the kind we have been considering is possible and stable ; (2)

that for each mode of displacement there are two periods of

vibrations, viz.

2π

ע

2π

and

μ

d e a²

Now, if be of the same order as will be of the order>
α

; and when x is large, a is very great compared with log x, thus
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8
1
0

e

α

will be great compared with log , and therefore

a

compared with log .

μ

a²

d2

will be great

We shall for con-
Thus will be very much greater than v.

venience refer to the vibration expressed by A cos μt as the quick

vibration, and to the one expressed by A cos vt as the slow vibra-

tion. As a very rough approximation we see that µ =

period of the vibration =

T2d2

m

n.

2m

πd² ; or the

This would be the period in which

n

two infinitely long straight vortices would rotate round each other

if the distance between them were great compared with the

diameter of either. We also observe that the coefficients of the

quick vibration in the expression for a, and a' are equal in

magnitude and opposite in sign, and that the same is true for the

coefficients of Y, and y' . Thus, if the vortices were initially

placed so that a, was equal and opposite to a' , and y, equal and

opposite to y' , the slow vibrations would not be excited , and could

only arise when the vortices suffered some external disturbance.

This relation between a, and a',, Y, and y', exists when the vortices

are placed as we have supposed them, i.e. when they are wound

round an anchor ring, the cross section of which is small compared

with its aperture, and so placed that pieces of the two vortices are

always at opposite extremities of a diameter of the cross section of

the anchor ring.

Let us consider in more detail some of the simple cases.

(1) Let us suppose that the vortices are linked once through

each other.

In this case n = 1, and by equation (95)

2

μ²= ( m

2 14a2 8a

d2 d

d4a²

d2

log + ½ logsa) ,

8a

d

or approximately

1

μ
=
m /2

π d

—

log ).
4a²log2).

(2) Let the vortices be linked twice through each other.

In this case we have approximately, since n = 2,

m /2 logd).

πd
2 4a²

Thus this vibration is slower than the other by

3m d

log
4π²α²

vibrations in a second ; this is a very small fraction of the
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whole number of vibrations in a second, and increases with the

distance between the vortices, the cross section remaining the

same.

If the vortices are linked n times through each other, we

have approximately

μ
=
m /2

π d²

(2n² - 1)

4a2

-1)
log

2).

Thus we see that the period of the vibrations gets longer as

the complexity of the linking increases, but that the difference

in the number of vibrations per second from this cause is small

compared with the whole number of vibrations per second.

§ 43. Let us now go on to consider the case when the two

vortices are of unequal strength ; in this case there will for each

value of a be a definite value of d, so that if the radius of the

aperture of the anchor ring, on which we supposed the vortices

wound, be given, the radius of the transverse section of the anchor

ring will be determinate.

The relation connecting d, and e, e' the radii of the transverse

sections of the vortex rings , is by equation (93)

m

d

log = m' log ,
e

m
'd\ m

or =
ד

Now when a is given e, and e' are determinate, since the

volume of fluid in each vortex ring remains constant ; and from

the equation d can be determined.

Let · e = ré' ,

m = sm' ,

then we may easily prove from the above equation that

1

d = p³-1 (re')

-1

(98).

must be greater than

must be so too, or the

greatest cross section.

Since d must be greater than re' , r

unity, thus if s be greater than unity, r

vortex of greatest strength must have the

If we are to apply our results, which were obtained on the

supposition, that the distance between the vortices was great

compared with the diameter of the cross section of either ; we
1

must therefore have 1 large. It ought to be noticed, that r as

well as s is constant, and does not depend on the radius of the
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rings, for if Q and Q' be the volumes of the liquid in the vortices

(I) and (II) respectively, we have

Q
= = r² or r =

Q' 2π³αе'2
12 a constant quantity.

With the same notation as before, we have, by equations (91)

and (92),

Ifwe put

1da'n

dt Απα

dy'n

dt

dan

dt

=

=

=

=

1

Απα

1

Απα

1

-
{Y'n (mL – m'M') — y„mN}

{a'n (m'Q' — mP) + a„mR}

‚z {Yn (m'L – mM) — y'„m'N}

dyn

dt Απα

{ª„ (mQ − m'P) + a'„m'R}

ɑ„ = Â€º, a'„ = A'e”, Y„ = Beª, y'n = B'eº,

... (99).

we find by the usual method the following equation for q :

1

q*+

(4πα)

{2mm'NR- (m'Q' — mP) (mL — m'M')

- (mQ -m'P) (m'L — mM)} q²

1

+ {(m'Q' — mP) (mQ — m’P) — mm′R²}

(4πα*)

-
× {(mL— m'M') (m'L — mM) — mm’N²} = 0.

If we put q - p³, and suppose a/d of the same order of small

quantities as e/d, then we shall find, by substituting for the quan-

tities involved, their values from equation (90), that the two values

ofp are approximately

mm' 1

72
πα m + m² 4πa²

d2

(2n²- 1) log e''

m+ m'

Ρι
-

-

Pa
=

Απα

_n √ (n² = 1 ) {m² log
8a 8a 8a Sa

d
+ m log + m log + m' log

e d és

or, if V be the velocity of translation of the vortices, the last equa-

tion may, by the help of equation (93) , be written

P2
=

-
n√ (n² − 1 ) V

а
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root

Thus we have, as before, a quick vibration corresponding to the

P₁ and a slow vibration corresponding to p

Hence
a₁ = A cos (p₁t + a) + B cos (p₂t +ß),

YnY₁ = C sin (p,t + a) + D sin (p,t + B),

a'A' cos(p₁t + a) + B'cos (p¸t +B),

YC'sin (p,t + a) + D' sin (p,t +B),

where A, B, C, D, A', B', C', D' are constants, two of which are

arbitrary, and the rest deducible from them, a and B are also arbi-

trary constants. If we substitute these values for ɑn, Yn 'n 'n in

the differential equations, we shall find that approximately

mA - m'A ' ,

A = -C,

mC = ―m'C',

A' =- C',

B:= B' , D = D',

√ (n² − 1)
-

D= B, D' =
√ (n² - 1) B'.

nn

The first four of these equations shew that, as we might have

expected, the way the vortices are linked is not the same as when

they are of equal strength. These equations shew that the vortex

rings are now linked in the following manner.

Describe an anchor ring whose mean radius of aperture is a

and the radius of whose transverse section is

m'

m + m'

, d, then the

central line of vortex core of the vortex of strength m will always

lie on the surface of this anchor ring. Describe another anchor ring

with the same circular axis and the same mean radius of aperture

as the first, but with a transverse section of radius

m

m + m'

d, then

the central line of vortex core of the vortex ring, whose strength

is m' , will always lie on the surface of this anchor ring ; and will be

so situated with respect to the first vortex ring that if we take

a transverse section of the anchor ring, and if C be the common

centre of the two circular sections, P and Q the points where

the central lines of the vortex rings cut the plane of section, then

P, C, Q will be in one straight line and Cwill be betweenP and Q.

If we imagine the circular axis of the anchor rings to move

forward with a velocity V, and the circular axes of the vortex

rings to rotate round it with angular velocity P₁, we shall get

a complete representation of the motion.

§ 44. We have in the preceding investigations supposed the

axes of the two vortices to be twisted r times round an anchor ring

in the manner described in § 34, so that when the vortices are of

equal strengths, and there are no other sinuosities in their axes, the

equations to the axes of the two vortices are respectively

1
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p= a + dcos (ut + mp))

z = 3 +3d sin (µt+ rf)S

-
p = a − ad cos (µt+ rf))

2 =
z=33dsin (ut + rf))

,

When d is the diameter of the transverse section of the anchor

2m

πα
ring, and μ = approximately, its accurate value is given by

equation (95), writing in that equation r in place of n.

Now, though d is small compared with a, yet it is large when

compared with the quantities a , B. , &c., denoting the other sinu-

osities ; so that it is desirable to include the terms containing the

squares of d in the expressions for the velocities.

By means of equations (11) , (12) , (14 ) , (15) and (35), we find

that the terms in d in the expression for the velocity along the

radius vector

=

md2

Επα

8a

sin 2 (ut +ry) 2² log
r¥) {2 r³log

-
a²)

e d2

We have only retained the largest terms in these expressions, thus

8a . a

we have neglected login comparison with d'

The velocity perpendicular to the plane of the vortex by

equations (17) , (18 ) and ( 35) , if we retain only the largest terms,

64a²)
=
md² (a²

8πα α

-

32log
d2

md2

+
32πα

18a2

da

-
cos 2 (ut +r ) · (8r² + 25) log 64a²) .

We shall only require in the expression for the velocity perpen-

dicular to the radius vector the terms containing d to the first power ;

we find by equations (11) and (14), that to this order of small

quantities the velocity perpendicular to the radius vector

md

Απα
cos (ut + r ) rlog

64a²

de

a² 8a

Now, as before,
da

will be large compared with log- ›
thus we

e

may neglect the terms involving logarithms in the expressions for

the velocities.

If we go to the equation (§ 13)

dar

Σ cos ry +

dt

dß

sin ry)

-
— r (2„ sin r↓ – ß, cos ry) ¥ — e sin x . X = R,

dt
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and introduce into R the additional terms we have just found, we

get if we equate the coefficients of cos 2ry (neglecting the terms

containing log

dxer

dt

64a2

e²
)

-

m m

== sin 2ut +

πα
4πα² (Ý′2r (L — M) — Y₂,N),

see equation (91) , here L, M, N have the same values as those

given by equation (90) , if 2r be written in those equations in the

place of n.

From the equation (§ 13),

d&

Σ (dy, cos ry +

dd,

sin r↓)
dtdt

-r (y sin ry - 8, cos ry) + e cos x .X = w;

introducing into w the additional term just found, we get if we

equate the terms independent of on both sides of the equation,

dz

dt

=

m

2″α
{

log

64a2

de

-
2+

}}

m
-

2π
a
( log

64a2

de

if we equate the coefficient of cos 2ry on each side of the equation,

we get, neglecting the logarithmic terms as before,

dyer M

dt Απα

=

m

cos 2μt + (α′2″ (Q − P) + α„R),
Απα

2r

see equation (92) , P, Q, R have the values given by equation (90),

if 2r be written in those equations instead of n.

We have similarly for the other vortex

5
0

dt

da'or m m
2r

Επα

sin 2µt +
-

Απα
· (Y½r (L — M) — y' 2N),

m

cos 2μt +

dy2r

dt

d

SO
dt

and

=

Απα

(dar - α'ar):27

d

dt (Ver - Y´2r) :

=

m

Απα

m

=

Απα

m

Απα
·( ½ (Q − P) + α'„R),

-

(Y2r − Y₂r)(L + N – M),
-

(ag — a2 ) (R + P - Q).2r
-

2r/

2r 2rThese equations shew that if a = d2 and Y₂ = Y2 initially,

they will remain equal, we shall suppose that initially these

quantities are equal, so that the equation becomes

dar

dt

der

dt

=
m

Επα

sin 2ut +

m

Απα
Yər (L - M - N) ,

m m

cos 2μt +
Απα Απα

d27 (Q + R − P) ,
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hence

2

( m²) (M + N − L) ( Q + R − P) a

ďder+

dt2 Απα

m

Απα:(

m

μ+
4πα
4a² (N+M-L)) cos 2ut.

Now, by equation (90) , we see that N+M- L is small com-

2m

pared with μ, i.e.
πα

d'agr

dt

2

if v2 =

Thus der

so that the equation is approximately

ημ

+ v³α₂
=-

2r Απα cos 2μt,

-

= (4m²) (M + N − L) ( Q + R − P).
Απα

ημ

4πα (v² - 4µ²) cos 2ut +complementary function ;

(ν* 4μ )

equation (90) shews that v is small compared with μ, so that

we have approximately for the forced vibration

Similarly

and

m

a21
-

cos 2μt

721

ά,2r

=

=

16παμ

d2

32a

d2

16α

cos 2μt.

sin 2ut,

= αar Yar = √2r"2r> 2r

We thus see that any sinuosity gives rise to one of half the

wave length, and that, neglecting powers of above the second,

α

d

the equations to the two central lines of the vortices are

p=a {1

d d2

1+ cos (µt + r )+ cos 2 (ut + ry
2α 32a2

... (100),

d2

2 = 3 + ad sin (µt + rf) +
16a

sin 2 (ut + r )

d
-

p=a {1 − 1 = cos (µt+ ry) +

d2

32a2
cos 2 (ut +ry

(101) .

d2

2 = 3 - ½dsin (µt + r¥) +
16a

sin 2 (ut +r )

We have thus proved that two vortices linked in the manner

described in § (34), are capable of steady motion, and that
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this steady motion is stable ; and if the vortices are of equal

strength, their central lines take the shapes given by equations

(100) and (101 ) .

or

§45. We may prove that if the vortices are to retain an

approximately circular form, they must be linked in this manner ;

for Sir W. Thomson has pointed out that the condition for steady

motion is that, with a given force resultant of the impulse and

given vorticity, the kinetic energy must be a maximum

a minimum. If we imagine two approximately circular equal

vortices linked through each other, so that the distance between

their centres is considerable compared with the radius of the

rings ; then if we give one of them a motion of translation

so as to make its centre approach that of the other, we increase

the kinetic energy without altering the impulse or vorticity ;

thus, when the centres are not near together, the kinetic energy

is not a maximum or minimum, and thus the motion cannot

be steady, and when the centres are close together, the motion

is evidently as we have described it.

§46. The force resultant of the impulse , and the resultant

moment of momentu
m

, remain constant as long as the motion

of the linked vortices is not disturbed by external circumsta
nces

(see SS4, 5) , they will thus be constants determini
ng

the size of

the system. We can express a and d in terms of I the force

resultant of the impulse , and I the resultant moment of momen-

tum. First, suppose the vortices are of equal strength, then

by § 5

p being the density of the fluid.

I = 4mπαρ .....
(102),

This equation gives a the radius of the aperture of the

vortices.

By equation (3),

dz

dy,r = mp √(x² + y²) ↓↓

from the equation to the circular axis of the ring

dz
=

dy

= ½rd cos (r↓ + µt),

d2

4

and x² + y² = a² + ad cos (r + μt) + cos² (r + μt) ;

integrating all round the ring, we find that the moment of momen-

tum for each ring = mpπrad , so that

Γ
T = πmprad². .(103) .
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This is the same expression for the resultant moment of momen-

tum as that given by Sir William Thomson in his paper on

"Vortex Statics," Phil. Mag., Aug. 1881 , p. 102.

From equations (102) and (103) we find

d

4
г (4πmp)

a²
r1}

d2

Now is small, hence the condition that the rings should be

a²

approximately circular and the motion steady, is that (4πmp)³

should be small.

г

If the vortices instead of being equal are of strengths m and m',

we find in a similar way

I = 2πα²р (m + m),

rmm'

Γ = 2πραδ m + m

.. (104) ,

these equations determine a and d, but equation (98) determines d

when a is known ; hence, unless the value of d, determined from

equations (104) , differs but infinitesimally from that determined by

equation (98) , the motion cannot be steady if the vortex rings are

nearly circular.

From equation (98) we see that

m

2π'ad =
m-m'

Qm- Q

m'

m'-m

when Q and Q' are the volumes of vortices (I) and (II) respectively ;

hence, from equation (104), we get

pr
г = Q

m

m-m'

m

m'-m
mm'

Q'
m + m²

. (105) .
π

Thus when two unequal vortices are linked together, unless

the moment of momentum has the value given by this equation ,

the vortices cannot be linked in the manner described in § (38),

and so there can be no steady motion with the vortex rings approxi-

mately circular.

§ 47. In the case we have been considering only two vortices

were linked together ; we can, however, apply the same method to

the case when any number of equal vortices are twisted round each

other. We must suppose the vortices linked round an anchor ring

whose transverse section is small compared with its aperture, the

vortices being arranged so that the circular lines of their vortex cores
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cut the plane of any transverse section in the angular points of a

regular polygon inscribed in the circular transverse section of the

anchor ring. The question however arises whether such a distri-

bution of vortices would be stable, and the following considerations

will shew, I think, that there must be a limit to the number of

vortices which can be in stable equilibrium when arranged at equal

intervals round the circumference of a circle. When we have a

large number of vortices arranged round the circle the distance

between consecutive ones must be small compared with the radius

of the circle, and thus, as the number of vortices increases, the

system will approximate to a cylindrical vortex sheet ; but for this

case there is discontinuity in the motion when we pass from the

inside to the outside of the cylinder, and, as Sir William Thomson

has proved, all discontinuous fluid motion is unstable ; the equili-

brium in this case would be unstable and the vortices would pro-

bably break up into separate groups, each group consisting of a

comparatively small number of vortices.

We shall now go on to investigate the number of vortices which

can be arranged in the manner described and yet be in stable equi-

librium .

As the distance between the vortices is small compared with

the radius of their apertures this problem will be very approxi-

mately the same as if the same number of infinitely long straight

vortices were arranged at equal intervals round the circumference

of a circle, and as the mathematical work in this case is much

simpler than in the original one, it is the case we shall consider in

the subsequent investigation .

§ 48. The problem we are about to investigate is this : A

system consisting of n equal straight cylindrical vortices, arranged

at equal intervals round the circumference of a circle, is slightly

displaced ; what is the subsequent motion ? We suppose the

radius of a cross section of a vortex to be small compared with the

distance between two vortices.

Take as the origin of coordinates the centre of gravity of the

vortices in their undisturbed position. Let the position of the

sth vortex be determined by the radius vector (r +x ) , say r¸, and

the angle (w + 0), say o, when r and w, are the coordinates of the

position the sth vortex would occupy if the motion were undisturbed.

Thus, x, and 0, will be small quantities.

8

8

Let the strength of each of the vortices be m.

The stream function due to a single vortex of strength m at a

point whose distance from the vortex is p

m

π

log p.
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Thus , the stream function at a point R and 4 due to the n

vortices, is given by the equation

少
-
m

2π

-
Σ log {r² + R² − 2r¸R cos (4. – 4)} .

The velocity along the radius vector

m

Σ

π

=
dy

Rdo

r, sin (4-4)

-
{r¸² + R² − 2r¸R cos (4 — 4.)} '

The velocity perpendicular to the radius vector = -

dy

dR

m

= Σ
{R − r, cos (p − $.) }

-

π
{r²+R - 2rRcos (4-4)} '

Now let the point (R, 4) coincide in position with the sth vortex,

then the velocity along the radius vector

ms

2

r, sin (4, — ₁)
-

1
+

2r, sin (4. — 4₂)

cos (4.

-

-
π \r₁² + r² = 2r₁r, cos (4. — 4,) r²² +r² − 2rr.

-

The velocity perpendicular to the radius vector

=-
1

m
r¸ - r₁ cos (4, - (1)

П
1

-

r¸ - r, cos (4. — $2)

-

+ .. }$2)

. (105*).

5+....+ r¸² −2r¸r¸ cos (4. − 4₁) ' r² + r¸² — 2r¸r, cos (4¸– $2)
+ -

In the undisturbed position the vortex has no velocity along

the radius vector, so that its radial velocity will be a function

of the quantities x and 0 , which vanishes when they do, we

proceed to find this function . Calling the radial velocity when

expressed as in equation (105* ) v, the radial velocity at the sth

vortex

m

dv

dr

dv

= x1 +

dv

dr. "₂ +... +

dv

do.

10₁ +
•

20₂ +.....

do21 2

neglecting the squares of the small quantities x and 0, and after

differentiation putting r₁ = r₂ = r and 0₁ = 0, = ...= 0.

d

Now

2

sin (4, — Þ₁)

-

1

dr.r + r - 2rr, cos (4. — 4₁)

=

-

2

2r, sin (6, − 6 ,) {r, — r, cos (4, − 4,)}

2

{r² +r¸² — 2r¸r, cos (4, — 4,) }³

and when r₁ = r₂ = r and @ = 0 , this becomes

2 (1

-
sin (w, — w₁)

cos (w!- w,)} '

8
-
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Again

d
r, sin (4, - ,) sin (4, — 4,)

-

2 2

1dr₁ r² + r² - 2r,r, cos (4, −4,) ¯¯r² + r‚ª — 2r¸r, cos (4. — $,)

2 2
--

2r, sin (4. - 6,) {r, -r, cos

2
-

r, cos (4. - 6,)}

-
{r.² + r¸³ — 2r₁r, cos (4. — 4₁) }²

and when all the r's are put equal to r, and all the O's zero, this

becomes

sin (w, - w₁) sin (w, - w₁)
- =0.

2r² { 1 - cos (w,
―
w, ) } _ 2² { 1 - cos (w, — w,)}

--

d

If be written for a moment for 4, - ,,

", sin

-
d¥ r¸² + r² — 2r₁r, cosy

=
1r₁cos y

2rr, cos (r +r - 2r,r, cos y)

12r,²r, sin²

2

(r¸²+r¸²— 2r¸r¸cos )²

when r₁ = r¸ = r and y = w¸ — w₁›
-

1

this becomes

2r { 1 — cos (w, — w₁) } '
- -

hence the velocity along the radius vector of the sth vortex

2
m 0-0, 0-0₂1 8

2πη cos (@
+

-
cos (w +….. } ... (106).

-W

The coefficient of x, vanishes, because it is evidently propor-

tional to the expression for the velocity along the radius vector in

the undisturbed motion, which we know vanishes.

The radial velocity of the sth vortex also =

dx

d
t
;

8
therefore

dx m
8 80-0₁

―
1

=

dt 2πη
-

cos (w, - w₁) 1

+
80. — 0.

-
cos (w. - w₂)

+….…..}... (107).
8

We proceed to find the expression for the velocity perpendicular to

the radius vector.

Now

d
1r. —r, cos (6. — $1)

-

8
=

2
-

1

dr¸ r² + r¸² — 2r¸r, cos (4. − 4₁) ¯¯r² + r¸² — 2r¸r, cos (4. — 41)
-

when r₁ = r = r, and 4, = w,, $1
1

1

-
8

2 {r, -r, cos (4, - 4,) }²

{r +r - 2r,r, cos (4, - )} ;

= @1

-

this becomes

1 cos (w, — w₁)

2r21 - cos (w, -w₁) '

;
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-d {r. - r, cos (4. — $,) }
1

dr₁ r² + r¸² − 2r¸r, cos (4. — ₁)

-

2 2

cos (4, - 4,)

-
r² +r¸² — 2r¸r¸ cos (4. — 4₁)

- -
2{r. — r, cos (6. — 6,)} {r, −r, cos (4. — 6,)} ;

2 2
-

{r¸² +r¸² − 2r¸r, cos (4. — 4,)}²

when r₁ = r, = r, &c. , this becomes

1

2r² {1 — cos (w, - w₁)}

-
Writing as before ↓ for ò ,̟ — þ₁,

d -
r. — r₁ cos y1 =

2

r, sin

-
d¥ r² + r¸² − 2r₁r, cos y¯¯ r² + r¸².— 2r₁r, cosf

and when r₁ = r, r, &c. this vanishes.

2r,r, sin (r, - r, cos y)

(r² +r² - 2r,r, cos y)*

Thus the increment in the velocity perpendicular to the

radius vector

m cos (w,- w,) cos (w,- w₂)
X +

2πr²
-

cos (w, - w₁) 1 - cos (w, — w₂)
- +...)

x1 X2
+ +

1- cos (w,
- +....

(108).
1

cos (w, - w₁)

But if be the angular velocity of revolution of the system when

the motion is steady, the increment in the velocity perpendicular

do.
.

to the radius vector = r + x,2. Now

dt

hence

rde m.

dt 2πr²

+

1-

Ꮖ.

1

Ω=

cos (w,

-

m

2πµ‚² (n − 1),

--

+
-1

cos (w¸ - w₁)

X2

cos (w, w,) + 1 - cos (w, - w₂)-

- w₁) cos (w, - w₂)

-cos (w - w₁)
+...- (n - 1)]

+...}
(109).

(n - 1) (n − 5)

+...= ...(110).
6

Now we can prove by Trigonometry that

cos (w, - w,)

+

1- cos (w, -w₁) 1

-
cos (w, - w₂)

-

8

cos (∞, - w₂)

Substituting this value, we find

rdo.

dt

m

2πx*

-

(-?

-
x, (n − 1 ) (n − 11)

+

6

x1

1- cos (w, - w₁)

+
+…..) ... (111).

1 - cos (w,-w₂)

T. 7
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We have also

0₁ + 0₂ + 0 +...0„ = 0 ;1

and since Emr² is constant,

2 8

x₁₂ + x₁₂ + x +...α = 0.

These equations and equation (107) will enable us to solve

the problem we are considering.

Let us apply them to the various cases in succession.

Three Vortices.

§ 49. The three vortices were originally placed at the angular

points ofan equilateral triangle, hence

--
w₂ - w₁ = 120°,1

@₂ - w₁=120° ;

therefore by equation (107),

--

dx, m 10, -0₂

-

dt 2πη

1

1 2
+

Ꮎ.1
-

goo

== 0 ;

0.
3

and

therefore

similarly

dx,

dt

dx2

dt

2

=

=

dx
3 =

dt

m

ΠΥ

m

πr

m

0.
2

0.
3

By equation (111) , we have

or since

similarly

rde,

dt
1

rde,

dt

m

{ + + }
2πr²

m

1 x

2Пр
ах
а

m

==0,

;

rde2

dt

rde8

dt

hence +

dt

= -

m²

m

πλ
.2 X3

x. =

.. (112).

......
. (113),
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therefore

m

x₁ =A sin t +
a) and re₁ = A cos

2
(mat+a),

X2with similar expressions for x, and x, re, and re .̧2

Thus the motion in this case is stable, and the time of a

2π2.2

small oscillation = " the same as the period of rotation of the

m

undisturbed system.

Four Vortices.

§ 50. Let us suppose that the four vortices are initially at the

angular points ofa square.

Our equations in this case are

or since

dx, m

dt 2πr

=

-
1 0 .

1

2
+

0.1
-

2

0.3
+

Ꮎ.
-

1
;

0₁ + 0₂ + 0 + 0₁ = 0,1 2

dx m

dt

=

Απη

dx m

dt

dx3

dt

=

=

3

(70₁ + 03)

Απ
2(70₂ + 0₁)

.. (114) .

m

Απγ

dx m

Equation (111 ) gives

therefore

dt

rdo₁ = -

dt

rde,

dt

rde
2

=

m

Απη

2πr²

(70₂+ 0₁)

(70₁ + 0₂)

(½ x¸ + x¸ + ½ x¸ + x₁) ;

m
-

(5 − 2 )Ап
р

(5x1

m

4πr

m

2

4πr²

(52 , − c )

-
(5x¸ − x₁)

similarly
dt

rde
3

dt

rde m

dt 4π²
(5×4 — x₂)

d

Thus

dt
(x, + x3)

=

2m

(0, +03) ,1
ΠΥ

.. (115) .

7-2
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d

and

dt 1
(0₁ + 0₂)

--
m

(x₁ + x₂) ;

d2 2m²

hence

dt2
(x + x₁₂) + 77³µ‚« (∞₂ + ∞ )̧ = 0 ;

therefore x₁ + x3 = 24 cos
( √2t+ B).

Similarly we may prove

d2

dť² (x₂ − x )̧ +

9m²
- -

4772
(x₁ − x¸) = 0 ;

3m

therefore x₁ - x = 2A′ cos t

2πr² +r);

therefore

m

x₁= A cos

B).
√2t +B + A'cos

(

3m

t+ y

.. (116) ,

m

x₁ =A cos
2t+B)-

3m

m

Пре

with corresponding expressions for

A

r0, -- sin ( √2t+ 8) -4'sin ( t + y)...(117) ,
= √2

roi

with similar expressions for 0,, 03 04
2)

These equations shew that the motion is stable, and that the

A' cos t +y
2π

x2 and X4 and

3m

periods of the vibration are

2722

m√2

4π²²

and

3m

periods are smaller than the period for three vortices.

Both of these

Five Vortices.

§ 51. Let us suppose that the five vortices are initially at the

angular points of a regular pentagon,

Then by equation (107) , we have

--dx, m
10, - 02

=

dt 2πη
+

COS π 1

01 - 03

-

1Ꮎ, - Ꮎ
+

1
+
1eos π
-

COS π

Now we can prove by Trigonometry that

1 1

+

1 COS

2π

n

+

4.πT

...

n

1 - cos 1- cos

1

2 (n − 1) π
-

n

=

- CO

5

n² - 1

;
6
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hence

and

dx,

dt

=

or if

1

1- cosπ

m

2πη{0, (4

-

+

1

+

1 COS π 1

-

1

cos $7

1

π

1 1

+ =
=4,

COST 1 COS&π

+(0₁₂+0₁)

25 - √/5

-

1 1

COS π 1 1
- Cus &m)}};

a= 4+

dx

dt

1 -

1 -

m

2πη

1

1

-
COS π 5

1 2

1 - cosπ √/5 'COS π

-

{a0, + b (0₂ + 0 )̧},2

with symmetrical expressions for

By equation (111),

dx, dx
dx , &c."

dt dt

de.
1

m

dt 2приз

=

or if

m

(400
+1 1

4

-

x2 X3
+ +
1.-COS π 1

-

X4

+
-

Xg

COS π

- 2 x (+- 1— 2018 ) + (2 + 2 ) (1 -car - 1-006 fm)} ;

Hence

прв 1- costπ/

C= 4

do.
=-

dt

1 -

m²

2π³

1

1-cosπ

15 +√5

COS π 5
,

{cx, − b (x₂ + x )̧}.
-

...... (118),4m²³µ³ {œ₁ (αc − b²) + (x¸ + x ) (bc − ab + b²)} ..

ma

=

dt

say

- -

da, = − {a'x¸ + b′ (x¸ +x)},
dt

with symmetrical expressions for x, x, &c.

If x, x ... vary as e , the equation to determine λ is

a + λ²,

b'

0

0 >

b'

b 0

a'+λ²,,

b'

›

0 b'
,

02

0

0

b

a'+λ²,

b'

0

>

>

0

b'

a'+λ²,

b' ,

0

b'

a' + λ²

==0.
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Again

d
r, sin (4. — 4,)

―

=
2

dr₁r² + r¸² — 2r¸r, cos (4, —4) ¯¯¯r² + r₁

2

sin (4, — 4、)

-

--

2rr, cos (4. - ₁)1

2r, sin (4. - 6,) {r, -r, cos (4. - 6,)}

2

{r² + r² - 2r₁r, cos (4, — þ₁)}²1

2 >

and when all the r's are put equal to r, and all the e's zero, this

becomes

sin (w, - w,) sin (w, -w,)
- =0.

2r² {1 — cos (∞, — w₁)} 2r² {1 - cos (w¸ — w₁)}
-

d

If be written for a moment for .- ,,

" sin
=

r₁cosy

d¥ r² + r.² — 2r₁r, cos y¯¯ (r² +r¸²—2r¸r, cos ¥)

12r,²r, sin²

(r¸²+ r¸²— 2r¸r¸cos ¥)²

when r₁ = r₁ = r and ↓ = w, — w₁, this becomes-

1

2r (1 - cos (w, -w₁)} '

hence the velocity along the radius vector of the sth vortex

m
80 — 0. 0-0₂8 2

=

2πη 1 cos (@
+

- @@ ) 1
cos (∞, - w₂)

+... ... (106) .

The coefficient of x, vanishes, because it is evidently propor-

tional to the expression for the velocity along the radius vector in

the undisturbed motion , which we know vanishes.

The radial velocity of the sth vortex also =

0-0₁

da8

+
2

- 1 -
8

dt ; there
fore

0, -0₂

cos (w, - w₂)

+ ... ... (107) .

dx m

=
{

dt

8

2πr 1 cos (w

We proceed to find the expression for the velocity perpendicular to

the radius vector.

Now

d
-

r¸ — r, cos (6, — (1)
1

2 2 2
-

1 - 2r₁r, cos (4.- $1)dr¸ r² + r¸² — 2r¸r, cos (4, - 4、 ) ¯¯¯r² + r₁
-

when r₁ = r = r, and 4, = w„, $1

1

1
-

2 {r¸ — r, cos (Þ. − &,)}²

-{r +r - 2r,r, cos (4.- )} ;

= @₁)
this

becomes

cos (w, - w,)

2r² 1 - cos (w, w₁) '
-
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d {r - r, cos (p, - , ) }

2

1dr₁r¸² + r¸² − 2r¸r¸ cos (4¸ — Þ₁)
-

cos (Þ. — $,)
-

8

2
- -

ï‚² + r¸² — 2r¸r¸ cos (4. — 4₁)1

2{r, -r, cos (4,4,) } { r, −r, cos (4, − 6,)}

2
- --

{r¸² + r² — 2r,r, cos (4. — 4,)} ²

when r, r, = r, &c. , this becomes

1

2r¹² { 1 — cos ( w, — w₁) } '

-
Writing as before √ for ø, — þ₁›

d r's r₁cos y
-

r, sin y

-

dr² +r² - 2rr, cos fr²+r - 2r¸r, cos ↓

and when r, r, r, &c. this vanishes.

2r,r, sin (r, - r, cos )

(r +r - 2rr, cos )*

Thus the increment in the velocity perpendicular to the

radius vector

m

2πr²

8

{-

Ꮖ .

cos (w, - w₁)

cos (w,
-

+ +

1 cos (w, - w₁)
1-

X2

+

cos (w,- w₂)

1 - cos (∞, -07) +...)(w

cos (w, - w₂)
+............

(108).

hence

rde, m

dt 2πr²
cos (∞, - w₁)

But if be the angular velocity of revolution of the system when

the motion is steady, the increment in the velocity perpendicular

do..
to the radius vector = r

dt

X1

Ω

+2Ω. Now

=
m

2πr²

cos (w, - w₁ )

-
(n − 1),

-
+

cos (w, - w₂)

1 -cos (w - w )

+ ...- (n − 1 )

X2
+ +

1 -
cos (w, -w ) 1 cos (w, — w₂)

+...}.......
(109).

cos (w,
-

1.

+

8

Now we can prove by Trigonometry that

8·w₁) cos (w, - w₂)

cos (w, - w₁) 1- cos (w, w₂)8
―

Substituting this value, we find

m x, (n - 1) (n - 11)rde

dt 2πx²

(n - 1) (n − 5)

+...= ...( 110).
6

+

6 1

x1

cos (w,

X2
+

1- cos (w,-
- 5+...) ... (111).

T. 7
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We have also

0₁₂ + 0 + 0₂ +... 0₁ = 0 ;

and since Emr² is constant,

2

x₁₂ + x₁₂ + x +...x = 0.

These equations and equation (107) will enable us to solve

the problem we are considering.

Let us apply them to the various cases in succession.

Three Vortices.

§ 49. The three vortices were originally placed at the angular

points of an equilateral triangle, hence

w₂ -w₁ = 120°,1

w₁ - w₁=120°;

therefore by equation (107) ,

and

therefore

similarly

dx,

dt

=

m 10.

2π
TY
(

27

1
-

2

0.2
+

3

Ꮎ.
1
-

0₁ + 0₂ + 0₂ = 0 ;

dx_m

dt

dx
=

πr

m

Ꮎ

3

0. ...(112).
2

ΠΥdt

dx, _m

dt

=

By equation (111 ) , we have

rde,
rdo₁ = -

dt

or since

m

2πr²

3
πη

+ +

x₁₂ + ∞₁₂ + x₁₂ = 0,2

rde, m

= -

8

similarly

hence

dt

rde m

dt
zx2

. (113),

rde

πρ

m
3

dt

dt

1
+

m²

X
734

x
= 0;
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therefore

m

x₁ = A sin t +2
a) and re₁ = A cos (mat+a),

X2with similar expressions for x, and x , re, and re¸.2

Thus the motion in this case is stable, and the time of a

2π27.2

small oscillation = the same as the period of rotation of the

m

undisturbed system.

Four Vortices.

§ 50. Let us suppose that the four vortices are initially at the

angular points of a square.

Our equations in this case are

or since

=3
m (0,dx,

dt 2πr

1
-

1

0, 0,2
+

1
-

2

0.3
+

Ꮎ

0₁ + 0₂ + 0 + 0₁ = 0,

dx

dt

1

dx2

dt

=

=

2

m

4πr

m

Απη

dx3 m

dt 4πr

dx

Equation (111 ) gives

rde,

dt

rdo₁ = -

dt

rdo

=

=

m

277

m

Απη

3

(70₁ + 03)

2

-

;
1

(70₂+ 0₁)

..(114).

(70₂+ 0₁)

(70 + 0₂)

(½ x¸ + x¸½ + ½ ï¸ + x¸) ;

m

4прод

4πr

therefore

dt

rde m

similarly

2

dt

rde. m

dt

rde
4

dt

d

Thus

dt
(x + x3) :

=

4πr²

m

Απγ

2m

ΠΥ

(5 – 2 ,)(5x₁
-

-

(5, − c )

(5x3− x₁)

(5x4
-

(0, +03),

− 22. )

.. (115) .

7-2
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and

hence

therefore

dt

m

dε (0, + 0) = (x + x) ;1

d 2m²

dt
(x₁ + x ) +

прёзов
(x₁ + x )̧ = 0) ;

x₁ + x3·
= 24 cos

(m²√2t + B).

Similarly we may prove

d2

dt²
da(x, − ∞) +

9m²
- -

4π²¾¹ (×1 − ∞3) = 0 ;

3m

therefore x₁ -x = 2A′ cos

2πr²

t ++r);

therefore

m

x₁=A cos √/ 2t + B) + A'cos (22

3m

t+y

....(116),

m

x =-A cos

Пр
о
√ 2t + B)−.

-
A'cos(3m

3m

t + y

2π²

with corresponding expressions for x and X4 and

m 3m

r0, -- sin ( √2t+ 8) -A'sin ( t + y)....(117),4 2

ηθι
=-

A

√2

with similar expressions for 0,, 03, 04

These equations shew that the motion is stable, and that the

2π²² 4722

periods of the vibration are
and

3mm√2

periods are smaller than the period for three vortices.

Both of these

Five Vortices.

§ 51. Let us suppose that the five vortices are initially at the

angular points of a regular pentagon,

Then by equation (107), we have

0, - 02 01 - 03
dx, m

1
=

dt 2πη
+

COS π 1
—

+
1eos π
—

0, - 01 1 5
+

COS π 1

Now we can prove by Trigonometry that

+

4π7

1 1

+
2π

1 COS 1 COS

n n

...

1- cos

1

2 (n − 1) π

n

=

2

COS π

-

n² =1;

6
;
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hence

and

dx₁__=

1

m

dt 2πη

-

1

+

-COS π 1

0,4
-

1

-

1

COS

or if

1 1

+

π 1

=

COS&π COS &π

a = 4+

1

COS π

1

-) + (0, + 0 ) ( 1 — cos & π

25/51

1 -COS π 5

1 2

√/5

d
x
=

1

1 - cosπ 1- cosπ

m

·{al¸ + b (0₂ + 0 )̧} ,
dt 2πη 1

2

with symmetrical expressions for

de,

dt

By equation (111),

or if

m

2np3

m

2Прв

4x₁ +
1

{0% (1

x2
+
1

dx, dx,3 &c.

dt ' dt

X3

,

1

X4

+ +
-
COST 1 COS&π

1

-

-

COS&π

1

1 - costπ/

C= 4

10 .

at

-

1 -

m²

2π³

1

COS π

-

15+√/5

5

{ x¸− b (x₂ + x¸)}.

4,

-

1

cos

1 -

1

XB

COS&π

847)}

Hence

d²x

dt

=

say

m²

4724
{x¸ (αc − b³) + (x¸ + x ) (bc − ab + b³)} ……………. (118),

dex.

dt

=-
· {α'x¸ + b′ (x₂ + xg)},

with symmetrical expressions for x2, x3, &c.

If ₁, x ... vary as et, the equation to determine › is

a +λ²,

b'

0

0

b

>

"

>

b' 0 0 b" "

ba'+λ²,

b'

0

0

"

,

"

a'+λ²,

b'

0

"

>

0

b'

a' +λ²,

b

,

>

Q

0

b

a' + λ²

=0.
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Now this determinant is of the form

a₁ a₂, ... an

an а₁, ...ann-1

an-1' an ...ann-2

which equals

A₂ , Az, ...a₁

(a₁ + a₂ + ... + a₂) II (α₁ + a¸@ + α¸w² + α‚„w”−¹) ,

n
where w is one of the roots of the equation " -1 = 0, unity being

excepted (Scott's Treatise on Determinants , p. 82).

4

Thus, if 1, w, w², w , w are the fifth roots of unity, the deter-

minant we are concerned with splits up into

(a' + λ²+ 2b′) (a' + λ² + wb' + w¹b') (a' + λ² + w³b' + w³b')

× (a' + λ² + w³b' + w¹²b′') (a' + λ² + w¹b' + w¹b´)

=(a' + λ² + 2b') {a' + λ² + b ' (w + w¹)} ² { a' + λ² + b′ (w² + w³)}².

Now

W = cos

@²== cos

π + i sin

π + i sin

π = cos 72° + i sin 72º,

π = cos 144º + i sin 144º,

w3 cos + i sin = cos 144° - i sin 144°,

= cos π + i sin π = cos 72° - i sin 72º.

Thus the equation to determine λ² becomes

(a' + λ² + 2b′) (a' + λ² + 2 cos 72ºb') ²(a′ + λ² + 2 cos 144°6′) ² = 0.

It can be proved in exactly the same way as in the corre-

sponding case of a material system (Thomson and Tait's Natural

Philosophy, § 343. m), that equal roots will not introduce terms of

the form text into the solution. Thus the sole condition of stability

is, that the values of X3 should all be negative.

The values of λ² are

- (a' + 2b')

-
- (a + 2 cos 72°6′)

- (a' + 2 cos 144°b′),

where a :

b

=

=

m²

4724

m²

2

(ac - b²)

m² 2 (35 + √√/5)
=

5

2
m² 1

4772
(bc - ab + b²) =

=

π²r √√/5
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therefore the values ofX are

-

-

4√5 m³

m² (35+√/5 + 4/5) -- (7+√5)

2π24

m² 35 + √√/5 √√/5

272

2

==

2π²p

+

5
15-=-1) =

m²

== 8

2π²

m² (35+ √5 _ (1+√/5)) .1/5 =
-26.

5
√5

4

Thus all the values of X are negative, and the periods of

vibration are

4π²²

m√ (14 +2√5) '

"
m

2π²º

m/3'

Six Vortices.

§ 52. Let us suppose that the vortices are arranged at the

angular points of a regular hexagon, then, using the same notation

as before, we have by equation (107)

dx₁

dt

= m ( 0-0,

2πr 1 cos 60°
{

or since

dx₁

dt

-
2
+

1 8

1 cos 120°

-

+
1

1- cos 180°

+
01— 0%

1.-cos 240°

+

-

0₁ + 0₂ + 0 + 0 + 0 + 0 = 0,1

=

m

2

2πη

3

-

5

· { 13 0 , − 1 (0 , + 0¸) + † 0 }

Again, by equation (111 ) ,

1 -

Ꮎ, - Ꮎ1

cos 300°

...(118) .

rdo, m
X3 X4

dt 2πr2
25 x₁ + + +

1 cos 60° 1 cos 120° cos 180°

since

+ 1-008 240 + 1-008 300 " }cos

X₁ + x + x + x + x + x = 0 ,2 8 4 5

cos

rde, m

dt 2πr³
3 2{} x¸ + § (x¸ + x¸) − { x }

......
(119).
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By means of equations (118) and (119), we get

m²d²x

dt2
(2πr²)² {¹¹¤; + ¹º (∞₂ + x)+{x}.……

d²x.

Say
dt2

{ax¸ + ß (x¸ + x )̧ + yx } ………………….. (120) ,

with similar equations for x, ... g
P

Thus, if x ... vary as et, the equation to determine λ is

λτα, BB , 0 2 ช 0 B> >

β , λτα,

0
3

B 0"

B , x² + α,x²+ a,

0

>

B 0>

,

B , λ² + a, B

Υ
0>

0

พ β >

> γ
0 ,

0
γ ? 0 2 >B λτα

γ
= 0.

B 0

If 1, w , w², w³, w , w" are the sixth roots of unity, this equation

splits up into the factors

x²+a + 28+ y,

λ²+ a+wß + w³y + w³ß,

x²+ a + w²ß + w®y + w*ß,

λ²+ a + w³ß + w³y + w³ß,

x²+ a + w²ß + y + w²ß,

λ²+ a + w³ß + w³y + w B.

The second and last of these factors are the same,

also the third and fifth ; thus the values of X² are

λx²= (a+ 2B + y) = ·−

==
λ²= B - 7) = --(a + B− y):

and so are

2
m²

32

(2π²)²

m²

(2π
r²
): 25

x²= - (a B + y) = −

m³

(121).

(2π7.2)*

16

x²=- (x- 23- y)

m²

9

Thus the values of 2 are all negative, and, as before, equal

roots do not affect the stability, so that the steady motion is stable ,

the times of oscillations are

47722.2

m√(32)

4π²²4722

m5 '

4π²²

m 4
'

m 3
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Seven Vortices.

§ 53. Let us suppose that the vortices are arranged at equal

intervals round the circumference of a circle, then using the same

notation as before, we have, by equation (107) ,

dx₁ m 0,0,

=

dt 2πη 1

1 2
+

30, - 0₂ 0₁-0
+

1

COS π 1

10, -0
. .

+ +

1 -

or since

and

1 -

1

+
1COS π

dx, m

dt

=

-

1

COS π 11- cosπ

0, - 05

1COS &π
-

COS 10π

0₁₂ + 0 + 0 + ... 0, = 0,

COS πT

2πη

8+

1 -

1

2 3

1

+

0,+

cosπ

1

=

+

0
1

Ꮎ.
--

1- cos 12π)

8 (see equation 110),

1

-
COS &π

1

1

+

COS &π
1 -

2(0₂ + 0₂)

;)(0,+ 03)} ,

.. (122),say
=

1

COST

·a0₁ + ß ( 0₂ + 0₁ ) + y (03 + 08)

dx

dt 1

with similar equations for ....

r

Again, by equation (111) ,

de,

dt

=

m

2π (4x +
1 -

Ꮖ.

2

+
X4

or since

r

do

dt

m

2πr² {(

4.

зов2do

+

COS π 1 cos π 1 - cos &π

X5
Х

1- cos+ 1-0081-0
081-008 ).

x₁ + x2 + x + ... x = 0,

1

1- cos T

8

1

1 1

( — cos ‡π − 1 − cos ‡π) (∞º½ + x₂)-

1

-X1

-G
(x3

-
COS &π

1 - COS π

ßsay
dt

- {αx¸ − ẞ (x₂ + x₂) + y (x3 + xz) } ….. (123) ,
-

with similar equations for ...

By means of equations (122) and (123), we get

d²x₁

dr² = {ex₁ +f(x₂ + x₂) + 9 (x¸ + x¸)} ,
dt2

−
2
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where
-

e=ax - 26² + 2By — y³,

f= ẞ(a− a) + y²,

g = 2ẞy + y² - ẞß² +y (a − a) ,

with similar equations for ....

Thus, ifx, x …….x, vary as et, the equation to determine λ is2

9

7

x² + e, f g

ƒ , x² + e,

•

g , ƒ x² + e ,

0 0" > > g f

f > g , 0 0 " g

f 9 ,> 0 0

f
x²+ e, f > g 0

== 0.
"

> f > g

0> " g > f
λ² + e,

f

f 9
0 0 > g , f

x²+ e,

0

0

g

"

"

9.

0

0

"

g x² + e, ƒ

If 1 , w, w³, w³, w³, w³, w be the seventh roots of unity, this

splits up into the factors

x² + e+ 2ƒ+ 2g,

{λ²+ e+f(w+ w®) + g (w³ + w³)} ³,

{λ² + e +f(w² + w³) + g (w* + w³) } ³,

{λ² + e +f(w³ + w¹) +g (w° + w)} ².

We proceed to calculate the numerical values of the roots

m

a= 8.52606

Σπη
> e = 21.70367

ni²

(2πr²) ›

m m²
2

B=-
2.130 9

2πη
ƒ= 10·84621

(2πr²)² ›

m m²

2=-
•29192

2πη
g= 173332

(2πr²)² ›

m

α = 3.47394

2πr

Now one value of λ² is

(e + 2 cos π.f+ 2 cos π.g).

If we substitute the values of e, f, g, we shall find that this

= '002

m²

(2πr²)² ·

Thus one root of the equation in X2 is positive, therefore the

steady motion is unstable. We therefore conclude that six is the

greatest number of vortices which can be arranged at equal

intervals round the circumference of the circle.
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§ 54. Sir William Thomson mentions this subject in a paper

in Nature, vol. xXVIII. p. 13 ; in connection with some experiments

made by Mr A. M. Mayer. Mr Mayer investigated experimentally

the stability of various configurations of long thin magnets

floating in water, and subject to the attraction of an independent

fixed magnet. Sir William Thomson in the paper just mentioned,

points out that if any configuration of the floating magnets form a

system in stable equilibrium, the same configuration of straight

columnar vortices will form a system whose steady motion is

stable. Mr Mayer in his paper (Nature, vol. XVIII. p. 258) states

that he finds the equilibrium to be stable when the floating

magnets are arranged at the angular points of an equilateral

triangle, a square, or a regular pentagon ; but unstable for the

hexagon and all polygons with a larger number of sides. This

would show that the steady motion is stable for three, four, and

five straight columnar vortices arranged at equal intervals round

the circumference of a circle, which agrees with what we have

just proved, while we have proved in addition that the steady

motion of six equal vortices arranged in the same way is stable, or

that seven is the smallest number of vortices which makes this

way of arranging them unstable.

§ 55. To sum up the results of this section ; we began by

finding the motion of two vortex rings which are approximately

circular, and which are linked through each other any number

of times ; we proved that the motion was stable when the distance

between the rings was small compared with their apertures,

and found the times of oscillation ; we found that for each dis-

placement there are two periods of vibration, a quick vibration,

whose period is

2π

mm 1 d2

πα m + m² 4πа²
(2n - 1) log

ee'

'm + m'

and a slow one, whose period is

Σπα

n√(n² — 1) V '
-

where n is the order of the displacement and V the velocity

of translation of the rings. We next proved that if the vortex

rings are of equal strength, the condition for the possibility of

motion of the kind we are considering, is that the resultant

moment of momentum should be small compared with

√(5)

where I is what Sir William Thomson calls the force resultant

of the impulse, and m is the strength of the vortex.
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In the case of two vortices of unequal strengths, we proved

that for motion of this kind to be possible the resultant moment

of momentum must have a certain definite value given by

equation (105). We then proved that we might not only have

2, but 3, 4, 5, or 6 vortices twisted round each other in such

a way that they all lie on the surface of an anchor ring, and are

arranged in such a way that their central lines of vortex core cut

any transverse section of the anchor ring in the angular points of

a regular polygon inscribed in the circular transverse section. We

found the times of vibration in each of these cases, and proved

that the motion is unstable if seven or more vortices are arranged

in this way.



PART IV.

THE VORTEX ATOM THEORY OF GASES.

§ 56. In this part we shall consider the application to the

vortex atom theory of the results we have obtained in the pre-

ceding pages. The expression we obtained in Part II. for the

action of one vortex on another, would enable us to work out

a dynamical theory of gases ; to do this, however, would make

the present essay too long, and it must form the subject of a

future paper. There are, however, some results which can be

obtained with very little additional calculation, and it is these

results we shall consider in the following discussion .

The pressure of a gas is one of the first things a kinetic theory

of gases has to explain. Sir William Thomson gives the following

explanation of the pressure of a gas on the vortex atom theory

(Nature, vol. xxiv. p. 47).

"When a vortex ring is approaching a plane, large in com-

parison with the dimensions of the ring, the total pressure over

the surface is nil. When a ring approaches such a surface it

begins to expand, so that if we consider a finite portion of the

surface, the total pressure upon it due to the ring will have

a finite value when the ring is close enough. In a closed

cylinder, any vortex ring approaching the plane end will expand

out along the surface, losing in speed as it so does, until it reaches

the cylindrical boundary, along which it will crawl back on re-

bounding to the other end of the cylinder. As it approaches,

it will therefore exert upon the plane surface a definite outward

pressure whose time integral is equal to the original momentum of

the vortex, and a precisely equal pressure as it leaves the surface.

Hence, in the case of myriads of vortex rings bombarding such a

plane surface, though no individual vortex ring leaves the surface

immediately after collision, for every vortex ring that gets en-

tangled in the condensed layer of drawn-out vortex rings another
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will get free, so that in the statistics of vortex impacts, the

pressure exerted by a gas composed of vortex atoms is exactly the

same as is given by the ordinary kinetic theory which regards the

atoms as hard elastic particles.'

Hence we see that just as in the ordinary solid particle theory

of gases

p = } Σ, (JV ') ,

where p is the pressure, I the momentum of a vortex ring and V'

its velocity, the summation being taken for all the molecules in a

unit of volume of the gas, hence if v be the volume of the gas,

pv = 32 (JV ') ,

where the summation is now taken for all the molecules of

the gas

But by equation (9),

}EJ V' = } T + } Σ ( ƒ

dP da dR

dt

+9 + h. − } pff(u² + v² + w²) p'ds,

dt dt

where T is the kinetic energy, f, g, h the coordinates
of the

centre of a vortex ring, P, Q, R the x, y, z components

of the momentum
of the ring, p' the perpendicular

from the

origin on the tangent plane to the surface containing
the

vortex rings. To apply this formula to gases we must calculate

dP do dR

dt dt

vortex rings, say vortex (I) and vortex (II) . Take the centre

of vortex (I) as the origin of coordinates
, the vortex (I) will

contribute
nothing to the term since for it f, g, h are all zero,

and if a be the radius of vortex (II) l , m , n the direction

dP da dR

cosines of its direction of motion, then Σ (ƒ' + g + h

the value of the quantity (f + g + h

for the two vortices

=

2mxpa {2(fl+gm+ hn)

da

+ alƒ
dt (1

dt

dt

for

dt

.dl dm

+ g + h

dt dt dt

any

dn)}.

two

dt

If be the velocity potential due to vortex (I) , then if we

da dl dm dn

substitute the values of dt' dt' dt' at given in the equations

(79) and (80), we find that the expression we are considering

==
d d

2mπρα f4 + h

+ 9 dy + h

d d dd

+ m + n Ω ;

dy
dzdz dx

or if r be the distance between the centres of the vortex rings

(I) and (II) and S the velocity perpendicular to the plane of

vortex (II) due to vortex (I) , this

ds
= -

2 πραγ
dr
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Ife be the angle between the directions of motion of the

vortices, and 0, ' the angles their directions of motion make

with the line joining their centres, we may easily prove that

this term

=
3mm πρ,αα'

дов
(3 cos e cose - cos e),

if m' be the strength and a' the radius of vortex (I) , and we see

that the sum of all these terms if the vortices are not very

unevenly distributed is positive, and tends to become zero.

In this investigation we have supposed that the molecules

of the gas are monatomic. When the molecules are diatomic

this investigation applies to that part of the term

Σ

:(f

dV da dn

dt

+9 + h

dtdt

which arises from the action of one molecule on another, there will

however be another part due to the action of the two atoms in a

molecule on each other. To calculate this part let us for the sake

of simplicity suppose that the planes of the two vortex ring atoms

are parallel to each other and perpendicular to the line joining the

centres of the vortex rings.

Take the centre of one of the vortex rings, say the one in the

rear as the origin of coordinates, and the plane of this ring as the

plane of xy ; then for the ring in the rearƒ=g = h = 0, for the ring

in front f= g = 0, h = d ; P = 0, Q = 0, R = 2πpma², if a be the

radius of the ring in front, d' the distance between the planes ofthe

rings, and m the strength of either ring.

dR

dt

The maximum value of =4πρηα .

m

πα

(§ 37) , where d is the shortest distance between the central lines

of the vortex cores of the two vortex rings. Since d is small

compared with a it will remain very approximately constant (§ 37) ;

hence the greatest value of d' is d, hence 4pm³a is the maximum

value of

Σ

(.

dB

+9

da dR

+ h

dt dt

8a

but IV' is of the form pm'a log

cross section of the vortex core, and

the part of the term

where e is the radius of the

e

Sa

log is very great, so that

e

da

Σ

dt

dR

+9 at
+ h

dtdr),
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due to the action of the two atoms in a molecule, is positive but

vanishingly small compared with 23V'. Thus in a gas whose

molecules are evenly distributed we have

pv = } ΣJV' = { T− ¿p √√(u² + v² + w²) p'dS ;

where p is the density of the fluid forming the vortex rings and is

not the same as the density of the gas. Since the surface is at

rest the velocity of the fluid in contact with it will be small ; thus

the second term on the right hand will be small, if we neglect this

term we have

pv = T.

This is Boyle's law, while if we take into account the

last term .

pv = {T− }pſſ(u² + v² + w²)p′dS ;

hence pv is a little less than the value given by Boyle's law, which

agrees with the results of Regnault's experiments ; thus the vortex

atom theory explains the deviation of gases from Boyle's law. In

this respect it compares favourably with the ordinary theories, for

if we assume the molecules to be elastic spheres we cannot explain

any deviation from Boyle's law, while if we assume that the atoms

repel one another with a force varying inversely as the fifth power

of the distance, the deviation ought to be the other way, i. e. pv

ought to be greater than the value given by Boyle's law, which is

contrary to the experimental results .

§ 57. According to the vortex atom theory as the temperature

rises and the energy increases, the mean radius of the vortex

rings will increase, but when the radius of a vortex ring is in-

creased its velocity is diminished, and thus the mean velocity

of the molecules decreases as the temperature increases ; thus

it differs from the ordinary kinetic theory where the mean ve-

locity and the temperature increase together. It ought to be

remarked, however, that though in the vortex atom theory the

mean velocity decreases as the temperature increases, yet the

mean momentum increases with the temperature.

The difference between the effects produced by a rise in tem-

perature on the mean velocity of the molecules will probably

furnish a crucial experiment between the vortex atom theory

and the ordinary kinetic theory of gases, since all the laws

connecting the phenomena of diffusion with the temperature

can hardly be the same for the two theories. In fact, if

we accept Maxwell's reasoning about the phenomenon called

"thermal effusion," we can see at once an experiment which

would decide between the two theories. The phenomenon is this,

if we have a porous diaphragm immersed in a gas, and the gas

at the two sides of the diaphragm at different temperatures, then
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when things have got into a steady state the pressures on the

two sides of the diaphragm will be different, and Maxwell, in

his paper "On Stresses in Rarified Gases," Phil. Trans. 1879,

Part I, p. 255 , gives the following reasoning to prove that, accord-

ing to the ordinary theory of gases, the pressures on the two

sides are proportional to the square root of the absolute tempe-

ratures of the sides. He says, "When the diameter of the hole

and the thickness of the plate are both small compared with the

length of the free path of the molecule, then, as Sir William

Thomson has shown, any molecule which comes up to the hole on

either side will be in very little danger of encountering another

molecule before it has got fairly through to the other side.

"Hence, the flow of gas in either direction through the hole

will take place very nearly in the same manner as if there had

been a vacuum on the other side of the hole, and this whether the

gas on the other side of the hole is of the same or of a different

kind.

"If the gas on the two sides of the plate is of the same kind

but at different temperatures, a phenomenon will take place,

which we may call thermal effusion. The velocity of the mole-

cules is proportional to the square root of the absolute temperature,

and the quantity which passes out through the hole is proportional

to this velocity and to the density. Hence, on whichever side the

product of the density into the square root of the temperature

is greatest, more molecules will pass from that side than from the

other through the hole, and this will go on till this product is

equal on both sides of the hole. Hence the condition of equi-

librium is that the density must be inversely as the square root of

the temperature, and since the pressure is as the product of the

density into the temperature, the pressure will be directly pro-

portional to the square root of the absolute temperature."

If we were to apply the same reasoning to the vortex atom

theory, we should no longer have the velocity proportional to the

square root of the absolute temperature, but to some inverse

power of it, and the above reasoning would shew that if p and p'

be the pressures, t and t' the temperatures on the two sides of the

plate, p/p' = (t/t')" where m is a quantity greater than unity.

Thus accurate investigations of the phenomenon of thermal

effusion would enable us to decide between the vortex atom

and the ordinary kinetic theory of gases. These experiments

would, however, be difficult to make accurately, as we should have

to work with such low pressures to get the mean path of the

molecules long enough that the pressure of the mercury vapour in

the air pump used to rarify the gas might be supposed sensibly to

affect the results. In the theoretical investigation, too, the effects

of the bounding surface in modifying the motion of the gas seem to

T. 8



114 ON THE MOTION OF VORTEX RINGS.

have scarcely been taken sufficiently into account to make the ex-

periment the crucial test of a theory; and it is probable that the

theory of the diffusion and viscosity of gases worked out from the

laws of action of two vortex rings on each other given in Part II of

this essay would lead to results which would decide more easily

and more clearly between the two theories.

The preceding reasoning holds only for a monatomic gas which

can only increase its energy by increasing the mean radius of its

vortex atoms ; if however the gas be diatomic the energy will be

increased if the shortest distance between the central lines of the

vortex cores of the two atoms be diminished, and if the radius of

the vortex atom is unaltered the velocity of translation of the mole-

cule will be increased as well as the energy ; thus for a diatomic

molecule we cannot say that an increase in the energy or a rise in

the temperature of the gas would necessarily be accompanied by a

diminution in the mean velocity of its molecules .

§ 58. We shall now go on to apply some of the foregoing

results to the case of chemical combination ; in the following

remarks we must be understood to refer only to bodies in the

gaseous state. When two vortex rings of equal strength, with (as

we shall suppose for simplicity) their planes approximately parallel

to each other and approximately perpendicular to the line joining

their centres, are moving in the same direction, and the circum-

stances are such that the hinder ring overtakes the one in front,

then if, when it overtakes it, the shortest distance between the

circular lines of vortex core of the rings be small compared with the

radius of either ring, the rings will not separate, the shortest

distance between their central lines of vortex core will remain ap-

proximately constant, and these central lines of vortex core will

rotate round another circle midway between them, while this

circle moves forward with a velocity of translation which is small

compared with the linear velocity of the vortex rings round it.

We may suppose that the union or pairing in this way of two

vortex rings of different kinds is what takes place when two

elements of which these vortex rings are atoms combine chemically;

while, if the vortex rings are of the same kind, this process is

what occurs when the atoms combine to form molecules. If two

vortex rings paired in the way we have described are subjected to

any disturbing influence, such as the action due to other vortex

rings in their neighbourhood, their radii will be changed by

different amounts ; thus their velocities of translation will become

different, and they will separate. We are thus led to take the

view of chemical combination put forward by Clausius and

Williamson, according to which the molecules of a compound gas

are supposed not to always consist of the same atoms of the
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elementary gases, but that these atoms are continually changing

partners. In order, however, that the compound gas should

be something more than a mechanical mixture of the elementary

gases of which it is composed, it is evidently necessary that the

mean time during which an atom is paired with another of a

different kind, which we shall call the paired time, should be large

compared with the time during which it is alone and free from

other atoms, which we shall call the free time. If we suppose

that the gas is subjected to any disturbance, then this will have the

effect of breaking up the molecules of the compound gas sooner

than would otherwise be the case. It will thus diminish the

ratio of the paired to the free time; and if the disturbance be

great enough, the value of this ratio will be so much reduced that

the substance will no longer exhibit the properties of a che-

mical compound, but those of its constituent elements : we should

thus have the phenomenon of dissociation or decomposition.

We know that when two elements combine a large amount of

heat is in many cases given out. We have proved in § (56 ) that

for two vortex rings in the position of the vortex atoms of a mole-

dP dQ dR

cule of a chemical compound Σ (ƒ +9 +his positive ;
dt dt dt

when the vortex rings are separated by a distance very great com-

pared with the radius of either this quantity vanishes : thus we see

from equation (9) that EV is increased by the combination of

the atoms so that this would explain the evolution of a certain

amount of heat. I do not think however that this cause would

account for the enormous quantities of heat generated in some

cases of chemical combination, for even these large as they are

seem only to be the differences between quantities much greater

than themselves. Thus for example the heat given out when hy-

drogen and chlorine combine to form hydrochloric acid is the

difference between the heat given out when the atoms of hydrogen

combine with the atoms of chlorine to form hydrochloric acid and

the heat required to split up the hydrogen and chlorine molecules

into their atoms. The determinations by Prof. E. Wiedemann of

the heat given out when hydrogen atoms combine to form mole-

cules, and by Prof. Thomson of the same quantity for carbon atoms

seem to shew that these quantities are much greater than the

quantities of heat given out in ordinary chemical combinations, and

thus that these latter quantities are the differences of quantities

much greater than themselves.

Whatever be the reason, the pairing of two atoms, whether

of the same or different kinds, is attended by a large increase in the

translatory energy. The vortex atoms however do not remain con-

tinually paired, and two atoms will only contribute to the increase

in the translatory energy whilst they are paired and not when
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they are free, thus the whole increase in the translatory energy

of a large number of molecules will depend not only on the

amount of the increase contributed by any two atoms when they

pair, but also on the time they remain together, and will thus de-

pend on the ratio of the paired to the free times for the substance.

The ratio of the paired to the free time plays also a very impor-

tant part in determining whether chemical combination shall take

place or not, and when it does take place the proportion between

the amounts of the various compounds formed when more com-

pounds than one are possible. It is clear too that the value

of this ratio for the atoms of an elementary gas will have a very

great effect on the chemical properties of the gas : thus if the ratio

of the free to the paired times for the atoms of the gas be very

small the gas will not enter readily into combination with other

gases, for it will only do so to any great extent when the ratio of

the free to the paired time for the compound is less than for the

atoms in the molecule of the elementary gas, but if the latter

be very small there is less likelihood of the ratio for the compound

gas being less ; thus we should expect that this ratio would be very

small for the atoms of a gas like nitrogen which does not combine

readily with other gases. The value of the ratio would afford

a very convenient measure for the affinity of the constituents of a

compound for each other. It is also conceivable that this ratio

might affect the physical properties of a gas, and in a paper

in the Philosophical Magazine for June 1883 I suggested that

differences in the value of this ratio might account for the

differences in the dielectric strengths of gases.

Two vortex rings will not remain long together unless the

shortest distance between the central lines of their vortex cores is

small compared with the radius of either of the rings ; now as the

vortex rings approach each other they alter in size, the one in

front expands and the one in the rear contracts. Ifthe rings are to

remain together their radii must become nearly equal as they

approach each other and their planes become nearly coincident : it

is evident however that for this to happen the radii of the rings

before they pair must lie within certain limits. The energy of

the gas however, and therefore the temperature depend upon the

mean radius of the vortex rings which form the atoms of the gas,

and conversely the mean radius of the vortex atoms is a function of

the temperature, and if the mean radius is between certain limits

the temperature must also be between limits, thus unless the

temperature is between certain limits the atoms would not remain

long together after they paired and so chemical combination would

not take place ; this reasoning would indicate that chemical com-

bination could only occur between certain limits of temperature,

and this seems to be the case in at any rate a great many cases of

chemical combination.
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The following reasoning will explain how it is that the com-

pound after it is formed can exist at temperatures at which the

elements of which it is composed could not combine. When the

elements have once combined the molecules of the compound will

settle down so that the radii of their vortex atoms will be distri-

buted according to a definite law, and a large proportion of the

vortex atoms will have their radii between comparatively narrow

limits , just as in the ordinary theory of gases Maxwell's law gives

the distribution of velocity. Now suppose that a molecule of

a compound of the elements A and B is subjected to any disturb-

ance tending to change the radii of the atoms ; though the differ-

ence in the changes in the radii may be sufficient to cause the

atoms to separate, yet since the atoms were close together when

they were disturbed the difference in the changes must be small,

and since the motion is reversible the atom A would only have to

suffer a slight change to be able to combine again with a vortex

ring like B, or it could combine at once with a vortex ring differing

only slightly in radius from B ; thus A will have plenty of chances

of recombination with the B atoms and will be in a totally different

position with regard to them from that in which it would have

been if it had not previously been in combination with a B atom.

Let us now suppose that two vortex rings of approximately

equal radius but of different strengths come close together in such

a way that their planes are approximately parallel and perpen-

dicular to the line joining their centres, then we can see, as in the

analogous case of linked vortices, that the motion will be of the

following kind. Let m and m' be the strengths of the two vortices,

a the mean radius of either, and d the shortest distance between

their central lines, e and e' the radii of the cross sections of the two

vortex rings. If we imagine a circle between the central lines of

the two vortex rings dividing the distance between the vortices in-

versely as the strengths of the vortices, the two vortex rings will

rotate round this circle with an angular velocitym +m'/d² remaining

at an approximately constant distance d apart, while the circle

itself will move with a comparatively slow motion of translation

perpendicular to its own plane.

The mean velocity of the vortex of strength m

=

m m'

2m ( log - 1) + 2 (log 4-1) ;Σπα Σπα

the mean velocity of the vortex of strength m'

m'

= (log - 1) + m (log - 1) .2πα
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Now if the two vortices are to remain together, their mean

velocities must be equal ; therefore

8a m' 8am

2πα

log + log
2παe d

=
m' 8a m

log + log
é2πα é 2πα

8a

d

·

Now suppose a and d become, through some external influence,

a + da and d + dd, then the change in the mean velocity of the

vortex of strength m is, if V be the original mean velocity,

(

V 3m + 2m'

2m²)sa
α
+

Απα

δα -

2πα d

m δα

;

and if we interchange m and m' in this formula, we shall get the

change in the mean velocity of the vortex ring whose strength is m'.

Now if the two vortex rings are to remain together for a time long

compared with the mean interval between two collisions, in spite

of all the vicissitudes they will meet with when moving about in

an enclosure containing a great number of moving molecules, the

mean velocities of the two vortex rings must always remain equal ;

thus the changes in the mean velocities of the rings must be equal

for all values of da and Sd, so that the coefficients of da and Ɛd must

be equal in the two expressions for the changes in the mean

velocities ; for this to be the case we see that m must equal m'.

Hence, we conclude that if two vortex rings are to remain for long

together when subject to disturbing influences, they must be of

equal strength. We can extend this result to the case when we

have more than two vortices close together ; however many vortices

there are, if they are to remain together for any considerable time

they must be of equal strength.

§ 59. We shall often have occasion to speak of vortex rings

arranged in the way discussed in § 43, i. e . so that those portions of

the central lines of vortex core of the several vortex rings which are

closest together are always approximately parallel, and so that a

plane perpendicular to their central lines at any point cuts them in

the angular points of a regular polygon . We proved in Part III that

if the vortices are of equal strengths, and not more than six in

number, they will be in stable steady motion ; it is not necessary

for the truth of this proposition that each vortex ring should be

single ; the proposition will be true if the vortex rings are compo-

site, provided the distances between their components are small

compared with the sides of the polygon, at the angular points

of which the vortices are situated, and that the sum ofthe strengths

of the components is the same as the strength of the single vortex

ring, which they are supposed to replace. We shall speak of the

systems of vortices placed at the angular points of the polygon as

the primaries, and the component vortex rings of these primaries

as the secondaries of the system ; and when we speak of a system
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consisting of three, four, five, or six primaries, we shall suppose,

unless we expressly state the contrary, that they are arranged in

the wayjust described.

We may imagine the way in which these vortex rings are

linked through each other by supposing that we take a cylindrical

rod and describe on its surface a screw with n threads ; let us first

suppose that there are an exact number of turns of each thread on

the rod, bend the rod into a circle and join the ends, then each of

the n threads of the screw will represent the central line of the

vortex core of one of the n equal linked vortices ; next suppose that

the threads make m/n turns in the length of the rod where m is

an integer not divisible by n, then if we bend the rod as before

and join the ends, the threads of the screw will form an endless

thread with n loops, and for the present purpose the properties of

avortex ring whose core is of this kind will be similar to those of one

where then threads are distinct, so that we may suppose the core

of the vorticity which forms the atom to be arranged, in either of

these ways, and we shall speak of it as an atom with n links ; thus

the links may be separate or run one into the other forming an

endless chain.

Now let us suppose that the atoms of the different chemical ele-

ments are made up of vortex rings all of the same strength, but that

some of these elements consist of only one of these rings , others of

two ofthe rings linked together, or else of a continuous curve with

two loops, others of three, and so on ; but our investigation at the

end of Part III shews that no element can consist of more than six

of these rings if they are arranged in the symmetrical way there

described.

Then if any of these atoms combine so as to form a permanent

combination, the strengths of all the primaries in the system

formed by the combination must be equal. Thus an atom of an

element may combine with another atom of the same kind to form

a molecule of the substance consisting of two atoms. Again, three

of these atoms may combine and form a system consisting of three

primary elements, but the chance of their doing this is small

compared with the chance of two pairing, so that the number of

systems of this kind will be small compared with the number of

the systems consisting of only two atoms. We might have systems

consisting of four atoms, but the number would be small compared

with the number of systems that consist of three atoms, and

so on. We could not have a system consisting of more than six

primaries if arranged in the way supposed, but though this seems

the most natural way of arranging the atoms, we must not be

understood to assert that this is the only way, and in special cases

the atoms may be arranged differently, and then we might have

systems consisting of more than six primaries. Now, suppose that
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an atom of one element is to combine with an atom of another.

Suppose to fix our ideas, that the atom consisting of two vortex

rings linked together is to combine with an atom consisting of one

vortex ring, then since for stability of connection, the strength of

all the primaries which form the components of the compound

system must be equal ; the atom consisting of two links must

unite with molecules containing two atoms of the one with one

link. If the atoms are made to combine directly, the chance

that they form the simplest combination is almost infinitely greater

than the chance of any more complex combination, so that the

number of the simplest compound systems will be almost infinitely

greater than the number of any more complex compound system.

Thus the compound formed will be the simplest combination,

consisting of one of the atoms, which consist of two vortex rings

linked together, with two of the atoms consisting of only one

vortex ring. Similarly, if an atom consisting of three vortex rings

linked together were to combine directly with atoms consisting

of only one vortex ring, the compound formed would consist of

one of the three linked atoms with three of the others, and so on

for the combination of atoms formed by any number of vortex

rings linked together. This suggests, that the atoms of the

elements called by the chemists monads, dyads, triads, tetrads,

and so on, consist of one, two, three, four, &c. , vortex rings linked

together, for then we should know that a dyad could not combine

with less than two atoms of a monad to form a stable compound, a

triad with less than three, and so on, which is just the definition of

the terms monad, dyad, &c.

Thus each vortex ring in the atom would correspond to a unit

of affinity in the chemical theory of quantivalence. If we regard

the vortex rings in those atoms consisting of more vortex rings than

one as linked together in the most symmetrical way, then no

element could have an atom consisting of more than six vortex

rings at the most, so that no single atom would be capable of

uniting with more than six atoms of another element so as to

form a stable compound. This agrees with chemical facts,

as Lothar Meyer in his Modernen Theorien der Chemie, 4th

Edition, p. 196, states that no compound consisting of more than

six atoms of one element combined with only one of another is

known to exist in the gaseous state, and that a gaseous compound

of tungsten, consisting of six atoms of chlorine united to one

of tungsten does exist.

Though in direct combination, the simplest compound is

the one that would naturally be formed ; yet other compounds

are possible, and under other circumstances might be formed; thus

one atom of a dyad might unite not only with two atoms of a

monad, but also with four atoms of a monad, the four atoms of the
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monad splitting up into two groups of two each ; thus the one

atom of the dyad and the two groups of two monads would form

three primaries, which when arranged in the way described above,

would be in stable steady motion ; again, we might have two

atoms of the dyad and two of the monad forming again a system

with three primaries, or one atom of the dyad might unit with

one atom of another dyad, forming a system with two primaries,

or with two atoms of another dyad forming a system with three

primaries, and so on. These remarks may be illustrated by means

of the following gaseous compounds of sulphur and mercury.

Thus we have the compounds :

HS, SO SO

Hg.Cl₂ Hg,Cl

In fact, all that is necessary for the existence of any com-

pound from this point of view is, that its constituents should be

capable of division into primaries of equal strength, and if these

are to be arranged in the simplest and most symmetrical way, that

there should not be more than six of them .

§ 60. Looking at chemical combinations from this point of

view, we should expect to find that such compounds as hydro-

chloric acid, where one atom of hydrogen has only to meet with

one atom of chlorine ; or water where an atom of oxygen has

only to meet with two atoms or a molecule of hydrogen, would

be much more easily and quickly formed by direct combination,

than a compound such as ammonia gas, to form which, an atom of

nitrogen has to find itself close to three atoms of hydrogen at

once ; and it is, I believe , the case in direct combination, that

simple compounds are formed more quickly than complex ones.

We shall call the ratio of the number of links in the atom

of an element to the number in the atom of hydrogen, the valency

of the element. To determine this quantity with any degree of

certainty, we require to know the accurate composition of a large

number of the gaseous compounds of the element ; thus only those

compounds whose vapour-density is known afford us any as-

sistance, as it would make a great difference, for example, in the

valency of nitrogen, if the molecule of ammonia could be re-

presented by the formula N.H, instead of NH,, and differences

of this kind can only be determined by vapour-density deter-

minations ; so that in the following discussion of the valency of

the elements, too much importance must not be attached to the

result for any element, when the vapour densities of only a few

of its compounds have been determined. The determination of a

single vapour-density will enable us to assign a superior limit to the

valency of the elements in the compound, but it may require a

2 6

9
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great many vapour-density determinations to enable us to assign a

lower limit to the valency of the same element.

The compounds HCI, HI, HBr, HF, Tl Cl. shew that the

atoms of chlorine, iodine, fluorine, and thallium have the same

number of links as the atom of hydrogen, or that the valency of

each of these elements is unity. From the compound H₂O we infer

that the atom of oxygen consists of twice as many links as the

atom of hydrogen, though as far as this compound goes there is

nothing to shew that the atom of oxygen does not consist of the

same number of links as the atom of hydrogen, in this case

however we should have to look upon the molecule of water as

a system with the three primaries H - H - O ; it is however

preferable to take the simpler view that the water molecule is

a system with the two primaries HH - O, and suppose that the

valency of oxygen is two : the composition of all the compounds of

oxygen may be explained on this supposition, and there are other

considerations which lead us to endeavour to reduce the number of

primaries in the molecule of a compound to as few as possible.

Regarding oxygen then as a dyad, the molecule of hydrogen peroxide

consists of the three primaries H₂ - 0-0.

2

The compounds HS, H,Se, Pb Cl₂, Cd Br,, Te H,, indicate that

the atoms of sulphur, selenium, tellurium, lead and cadmium have

twice as many links as the atom of hydrogen. The compound CO

shews that the atom of carbon has the same number of links

as the atom of oxygen, or twice as many as the atom of hydrogen ;

the molecules of carbonic acid and marsh gas have each three

primaries represented by C - O - O and C - H₂- H₂ respectively.

Carbon is usually regarded as a tetrad, and we should therefore

have expected its atom to have four times as many links as the

atom of hydrogen ; the compound CO shews however that if the

view we have taken be correct, the carbon atom must have only

twice as many links as the hydrogen atom : this view is supported

by the composition of acetylene CH ; if the valency of carbon

atom be two, the molecule may be divided into the three primaries

C - C - H,, but if the valency of carbon were four, the molecule of

acetylene could not be divided into primaries of equal strength, so

that according to our view, its constitution is impossible on this

supposition.

The sulphur compounds afford good examples of molecules

containing various numbers of primaries, thus we have HS with

two primaries H. - S; SO, with three primaries S - 0-0 and SO,

with four primaries S - 0-0-0.

It is difficult to determine from the composition of the mercury

compounds as given in the chemical text-books whether the atom

of mercury has the same number of links as the atom of hydrogen

or twice that number ; according to Lothar Meyer the composition
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of calomel is Hg Cl, in most of the other text-books it is given

as Hg, Cl,; if Lothar Meyer's supposition be correct then the

mercury atom has as many links as the hydrogen atom and the

molecule of calomel consists of the two primaries Hg - Cl while

the molecule of corrosive sublimate consists of the three primaries

Hg - Cl - Cl ; if however the composition of calomel is Hg, Cl,

then the mercury atom probably has twice as many links as the

hydrogen atom and the molecule of calomel consists of the three

primaries Hg - Hg - Cl, while the molecule of corrosive sublimate

consists of the two primaries Hg – Cl₂.

The following reasons lead us to suppose that the atom of

phosphorus has the same number of links as the atom of hydro-

gen ; the composition of phosphoretted hydrogen PH, shews that

the atom of phosphorus must either have the same number of links

as the hydrogen atom in which case the molecule consists of four

primaries, or it must have three times as many in which case the

molecule of phosphoretted hydrogen will have two primaries ; the

compound PH, however shews that the phosphorus atom has

either the same number of links as the hydrogen atom or five

times as many ; hence we see that the phosphorus atom must

have the same number of links as the hydrogen atom. The

resemblance between the properties of arsenic and phosphorus

would lead us to conclude that the atom of arsenic had the same

number of links as the atom of hydrogen, and the constitution of its

compounds could be explained on this supposition ; there is nothing

to shew from its simpler inorganic compounds that the arsenic

atom has not three times as many links as the hydrogen atom ; the

composition of the chloride of cacodyl As Cl C,H, shews however

that this is not the case and the atom of arsenic like that of phos-

phorus must have the same number of links as the hydrogen atom,

2 6

The compounds of nitrogen present great difficulties when

considered from this point of view ; the composition of ammonia

NH, requires us to suppose either that the nitrogen atom has

three times as many links as the hydrogen atom, in which case the

molecule of ammonia would consist of the two primaries N - H„,

or that the nitrogen atom has the same number of links as the

hydrogen atom and then the molecule of ammonia would consist

of the four primaries N- H - H - H ; the composition of nitric

oxide NO however compels us to suppose that the atom of nitro-

gen has the same number of links as the atom of oxygen or twice

as many as the atom of hydrogen, and these suppositions are

inconsistent. It is however conceivable that an atom might go

through a process that would cause it to act like one with twice as

many links. To illustrate this take a single circular ring and pull

the opposite sides so that they cross at the centre of the ring,

forming a figure of eight, then bend one half of the figure of eight
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over the other half, the continuous ring will now form two circles

whose planes are nearly coincident. If the circular ring represented

a line of vortex core the duplicated ring would behave like one

with twice as many links as the original ring. Thus if we look

upon the atom of nitrogen as consisting of the same number of

links as the atom of hydrogen we can explain the constitution of

the compounds NH , NO, NO,, CN , HCN, CNH, &c. , but in

the compounds NO, NO, we should have to suppose that the atom

was duplicated in the manner described above.

The following table shews the valency of those elements which

form gaseous compound of known vapour density, though as we

said before when we know the vapour density of only a few of the

compounds of an element the value given in the table must not be

looked on as anything more than an upper limit to the value of

the valency of the element.

Univalent Elements.

Arsenic.
Mercury ?

Bromine.
Nitrogen.

Chlorine. Phosphorus.

Fluorine. Potassium.

Hydrogen.
Rubidium.

Iodine. Thallium.

Divalent Elements.

Cadmium. Mercury ?

Carbon.
Oxygen.

Chromium. Selenium.

Copper. Sulphur.

Lead. Tellurium.

Manganese. Zinc.

Trivalent Elements.

Aluminium. Bismuth.

Antimony.
Boron.

Indium.

Quadrivalent Elements.

Silicon. Tin.

§ 61. According to the view we have taken, atomicity cor-

responds to complexity of atomic arrangement ; and the elements

of high atomicity consist of more vortex rings than those whose

atomicity is low ; thus high atomicity corresponds to complicated

atomic arrangement, and we should expect to find the spectra of

bodies of low atomicity much simpler than those of high. This

seems to be the case, for we find that the spectra of Sodium,

Potassium, Lithium, Hydrogen, Chlorine which are all monad

elements, consist of comparatively few lines.
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Now if the two vortices are to remain together, their mean

velocities must be equal ; therefore

m Sa m' 8a m' Sa m Sa

log + log log +

é

log

παΣπα

=

e Σπα d Σπα

Now suppose a and d become, through some external influence,

a + da and d + Sd, then the change in the mean velocity of the

vortex of strength m is, if V be the original mean velocity,

V 3m + 2m'

+

Απα
2m²) Sa

-
m δα

Σπα αd'(- Sa

and if we interchange m and m ' in this formula, we shall get the

change in the mean velocity of the vortex ring whose strength is m'.

Now if the two vortex rings are to remain together for a time long

compared with the mean interval between two collisions, in spite

of all the vicissitudes they will meet with when moving about in

an enclosure containing a great number of moving molecules, the

mean velocities of the two vortex rings must always remain equal ;

thus the changes in the mean velocities of the rings must be equal

for all values of Sa and Sd, so that the coefficients of da and Ed must

be equal in the two expressions for the changes in the mean

velocities ; for this to be the case we see that m must equal m'.

Hence, we conclude that if two vortex rings are to remain for long

together when subject to disturbing influences, they must be of

equal strength. We can extend this result to the case when we

have more than two vortices close together ; however many vortices

there are, if they are to remain together for any considerable time

they must be of equal strength.

§ 59. We shall often have occasion to speak of vortex rings

arranged in the way discussed in § 43, i.e. so that those portions of

the central lines of vortex core of the several vortex rings which are

closest together are always approximately parallel, and so that a

plane perpendicular to their central lines at any point cuts them in

the angular points of a regular polygon. We proved in Part III that

if the vortices are of equal strengths, and not more than six in

number, they will be in stable steady motion ; it is not necessary

for the truth of this proposition that each vortex ring should be

single ; the proposition will be true if the vortex rings are compo-

site, provided the distances between their components are small

compared with the sides of the polygon, at the angular points

of which the vortices are situated, and that the sum of the strengths

of the components is the same as the strength of the single vortex

ring, which they are supposed to replace. We shall speak of the

systems of vortices placed at the angular points of the polygon as

the primaries, and the component vortex rings of these primaries

as the secondaries of the system ; and when we speak of a system
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consisting of three, four, five, or six primaries, we shall suppose,

unless we expressly state the contrary, that they are arranged in

the wayjust described.

We may imagine the way in which these vortex rings are

linked through each other by supposing that we take a cylindrical

rod and describe on its surface a screw with n threads ; let us first

suppose that there are an exact number of turns of each thread on

the rod, bend the rod into a circle and join the ends, then each of

then threads of the screw will represent the central line of the

vortex core of one of the n equal linked vortices ; next suppose that

the threads make m/n turns in the length of the rod where m is

an integer not divisible by n, then if we bend the rod as before

and join the ends, the threads of the screw will form an endless

thread with n loops, and for the present purpose the properties of

avortex ring whose core is of this kind will be similar to those of one

where then threads are distinct, so that we may suppose the core

of the vorticity which forms the atom to be arranged, in either of

these ways, and we shall speak of it as an atom with n links ; thus

the links may be separate or run one into the other forming an

endless chain.

Now let us suppose that the atoms of the different chemical ele-

ments are made up of vortex rings all of the same strength, but that

some of these elements consist of only one of these rings , others of

two of the rings linked together, or else of a continuous curve with

two loops, others of three, and so on ; but our investigation at the

end of Part III shews that no element can consist of more than six

of these rings if they are arranged in the symmetrical way there

described.

Then if any of these atoms combine so as to form a permanent

combination, the strengths of all the primaries in the system

formed by the combination must be equal. Thus an atom of an

element may combine with another atom of the same kind to form

a molecule of the substance consisting of two atoms. Again, three

of these atoms may combine and form a system consisting of three

primary elements, but the chance of their doing this is small

compared with the chance of two pairing, so that the number of

systems of this kind will be small compared with the number of

the systems consisting of only two atoms. We might have systems

consisting of four atoms, but the number would be small compared

with the number of systems that consist of three atoms, and

so on. We could not have a system consisting of more than six

primaries if arranged in the way supposed, but though this seems

the most natural way of arranging the atoms, we must not be

understood to assert that this is the only way, and in special cases

the atoms may be arranged differently, and then we might have

systems consisting of more than six primaries. Now, suppose that
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an atom of one element is to combine with an atom of another.

Suppose to fix our ideas, that the atom consisting of two vortex

rings linked together is to combine with an atom consisting of one

vortex ring, then since for stability of connection, the strength of

all the primaries which form the components of the compound

system must be equal ; the atom consisting of two links must

unite with molecules containing two atoms of the one with one

link. If the atoms are made to combine directly, the chance

that theyform the simplest combination is almost infinitely greater

than the chance of any more complex combination, so that the

number of the simplest compound systems will be almost infinitely

greater than the number of any more complex compound system.

Thus the compound formed will be the simplest combination,

consisting of one of the atoms, which consist of two vortex rings

linked together, with two of the atoms consisting of only one

vortex ring. Similarly, if an atom consisting of three vortex rings

linked together were to combine directly with atoms consisting

of only one vortex ring, the compound formed would consist of

one of the three linked atoms with three of the others, and so on

for the combination of atoms formed by any number of vortex

rings linked together. This suggests, that the atoms of the

elements called by the chemists monads, dyads, triads, tetrads,

and so on, consist of one, two, three, four, &c. , vortex rings linked

together, for then we should know that a dyad could not combine

with less than two atoms of a monad to form a stable compound, a

triad with less than three, and so on, which is just the definition of

the terms monad, dyad, &c.

Thus each vortex ring in the atom would correspond to a unit

of affinity in the chemical theory of quantivalence. If we regard

the vortex rings in those atoms consisting of more vortex rings than

one as linked together in the most symmetrical way, then no

element could have an atom consisting of more than six vortex

rings at the most, so that no single atom would be capable of

uniting with more than six atoms of another element so as to

form a stable compound. This agrees with chemical facts,

as Lothar Meyer in his Modernen Theorien der Chemie, 4th

Edition, p. 196, states that no compound consisting of more than

six atoms of one element combined with only one of another is

known to exist in the gaseous state, and that a gaseous compound

of tungsten, consisting of six atoms of chlorine united to one

of tungsten does exist .

Though in direct combination, the simplest compound is

the one that would naturally be formed ; yet other compounds

are possible, and under other circumstances might be formed; thus

one atom of a dyad might unite not only with two atoms of a

monad, but also with four atoms of a monad, the four atoms of the
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monad splitting up into two groups of two each ; thus the one

atom of the dyad and the two groups of two monads would form

three primaries, which when arranged in the way described above,

would be in stable steady motion ; again, we might have two

atoms of the dyad and two of the monad forming again a system

with three primaries, or one atom of the dyad might unit with

one atom of another dyad, forming a system with two primaries,

or with two atoms of another dyad forming a system with three

primaries, and so on. These remarks may be illustrated by means

of the following gaseous compounds of sulphur and mercury.

Thus we have the compounds :

HS, SO2, SO3,

Hg.Cl₂, Hg,Cl₂

In fact, all that is necessary for the existence of any com-

pound from this point of view is, that its constituents should be

capable of division into primaries of equal strength, and if these

are to be arranged in the simplest and most symmetrical way, that

there should not be more than six of them.

§ 60. Looking at chemical combinations from this point of

view, we should expect to find that such compounds as hydro-

chloric acid, where one atom of hydrogen has only to meet with

one atom of chlorine ; or water where an atom of oxygen has

only to meet with two atoms or a molecule of hydrogen, would

be much more easily and quickly formed by direct combination,

than a compound such as ammonia gas , to form which, an atom of

nitrogen has to find itself close to three atoms of hydrogen at

once ; and it is, I believe, the case in direct combination, that

simple compounds are formed more quickly than complex ones.

We shall call the ratio of the number of links in the atom

of an element to the number in the atom of hydrogen, the valency

of the element. To determine this quantity with any degree of

certainty, we require to know the accurate composition of a large

number of the gaseous compounds of the element ; thus only those

compounds whose vapour-density is known afford us any as-

sistance, as it would make a great difference, for example, in the

valency of nitrogen, if the molecule of ammonia could be re-

presented by the formula N,H, instead of NH,, and differences

of this kind can only be determined by vapour-density deter-

minations ; so that in the following discussion of the valency of

the elements, too much importance must not be attached to the

result for any element, when the vapour densities of only a few

of its compounds have been determined. The determination of a

single vapour-density will enable us to assign a superior limit to the

valency of the elements in the compound, but it may require a

6

9
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great many vapour-density determinations to enable us to assign a

lower limit to the valency of the same element.

The compounds HCI, HI, HBr, HF, TI Cl. shew that the

atoms of chlorine, iodine, fluorine, and thallium have the same

number of links as the atom of hydrogen, or that the valency of

each of these elements is unity. From the compound H₂O we infer

that the atom of oxygen consists of twice as many links as the

atom of hydrogen, though as far as this compound goes there is

nothing to shew that the atom of oxygen does not consist of the

same number of links as the atom of hydrogen, in this case

however we should have to look upon the molecule of water as

a system with the three primaries H - H - O ; it is however

preferable to take the simpler view that the water molecule is

a system with the two primaries HH - O, and suppose that the

valency of oxygen is two : the composition of all the compounds of

oxygen may be explained on this supposition, and there are other

considerations which lead us to endeavour to reduce the number of

primaries in the molecule of a compound to as few as possible.

Regarding oxygen then as a dyad, the molecule of hydrogen peroxide

consists of the three primaries H₂ - 0-0.

The compounds HS, H₂Se, Pb Cl₂, Cd Br₂, Te H,, indicate that

the atoms of sulphur, selenium , tellurium, lead and cadmium have

twice as many links as the atom of hydrogen. The compound CO

shews that the atom of carbon has the same number of links

as the atom of oxygen, or twice as many as the atom of hydrogen ;

the molecules of carbonic acid and marsh gas have each three

primaries represented by C - O - O and C - H₂- H₂ respectively.

Carbon is usually regarded as a tetrad, and we should therefore

have expected its atom to have four times as many links as the

atom of hydrogen ; the compound CO shews however that if the

view we have taken be correct, the carbon atom must have only

twice as many links as the hydrogen atom : this view is supported

by the composition of acetylene CH ; if the valency of carbon

atom be two, the molecule may be divided into the three primaries

C - C - H,, but if the valency of carbon were four, the molecule of

acetylene could not be divided into primaries of equal strength, so

that according to our view, its constitution is impossible on this

supposition.

The sulphur compounds afford good examples of molecules

containing various numbers of primaries, thus we have HS with

two primaries H. - S ; SO, with three primaries S - 0-0 and SO,

with four primaries S - 0-0-0.

3

It is difficult to determine from the composition of the mercury

compounds as given in the chemical text-books whether the atom

of mercury has the same number of links as the atom of hydrogen

or twice that number ; according to Lothar Meyer the composition
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of calomel is Hg Cl, in most of the other text-books it is given

as Hg, Cl,; if Lothar Meyer's supposition be correct then the

mercury atom has as many links as the hydrogen atom and the

molecule of calomel consists of the two primaries Hg - Cl while

the molecule of corrosive sublimate consists of the three primaries

Hg - Cl - Cl ; if however the composition of calomel is Hg, Cl,

then the mercury atom probably has twice as many links as the

hydrogen atom and the molecule of calomel consists of the three

primaries Hg - Hg - Cl, while the molecule of corrosive sublimate

consists of the two primaries Hg - Cl₂.

The following reasons lead us to suppose that the atom of

phosphorus has the same number of links as the atom of hydro-

gen ; the composition of phosphoretted hydrogen PH, shews that

the atom of phosphorus must either have the same number of links

as the hydrogen atom in which case the molecule consists of four

primaries, or it must have three times as many in which case the

molecule of phosphoretted hydrogen will have two primaries ; the

PE compound PH, however shews that the phosphorus atom has

either the same number of links as the hydrogen atom or five

times as many ; hence we see that the phosphorus atom must

have the same number of links as the hydrogen atom. The

resemblance between the properties of arsenic and phosphorus

would lead us to conclude that the atom of arsenic had the same

number of links as the atom of hydrogen, and the constitution of its

compounds could be explained on this supposition ; there is nothing

to shew from its simpler inorganic compounds that the arsenic

atom has not three times as many links as the hydrogen atom ; the

composition of the chloride of cacodyl As Cl C, H, shews however

that this is not the case and the atom of arsenic like that of phos-

phorus must have the same number of links as the hydrogen atom.

The compounds of nitrogen present great difficulties when

considered from this point of view ; the composition of ammonia

NH, requires us to suppose either that the nitrogen atom has

three times as many links as the hydrogen atom, in which case the

molecule of ammonia would consist of the two primaries N- H₂,

or that the nitrogen atom has the same number of links as the

hydrogen atom and then the molecule of ammonia would consist

of the four primaries N - H - H - H ; the composition of nitric

oxide NO however compels us to suppose that the atom of nitro-

gen has the same number of links as the atom of oxygen or twice

as many as the atom of hydrogen, and these suppositions are

inconsistent. It is however conceivable that an atom might go

through a process that would cause it to act like one with twice as

many links. To illustrate this take a single circular ring and pull

the opposite sides so that they cross at the centre of the ring,

forming a figure of eight, then bend one half of the figure of eight
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over the other half, the continuous ring will now form two circles

whose planes are nearly coincident. If the circular ring represented

a line of vortex core the duplicated ring would behave like one

with twice as many links as the original ring. Thus if we look

upon the atom of nitrogen as consisting of the same number of

links as the atom of hydrogen we can explain the constitution of

the compounds NH„, NO, NO, CN, ÍCN, CNH, &c. , but in

the compounds NO, NO, we should have to suppose that the atom

was duplicated in the manner described above."

The following table shews the valency of those elements which

form gaseous compound of known vapour density, though as we

said before when we know the vapour density of only a few of the

compounds of an element the value given in the table must not be

looked on as anything more than an upper limit to the value of

the valency of the element.

Univalent Elements.

Arsenic.
Mercury?

Bromine. Nitrogen.

Chlorine.
Phosphorus.

Fluorine. Potassium.

Hydrogen.
Rubidium.

Iodine. Thallium.

Divalent Elements.

Cadmium. Mercury ?

Carbon. Oxygen.

Chromium. Selenium.

Copper. Sulphur.

Lead. Tellurium.

Manganese. Zinc.

Trivalent Elements.

Aluminium . Bismuth.

Antimony.
Boron.

Indium.

Quadrivalent Elements.

Silicon. Tin.

§ 61. According to the view we have taken, atomicity cor-

responds to complexity of atomic arrangement ; and the elements

of high atomicity consist of more vortex rings than those whose

atomicity is low ; thus high atomicity corresponds to complicated

atomic arrangement, and we should expect to find the spectra of

bodies of low atomicity much simpler than those of high . This

seems to be the case, for we find that the spectra of Sodium ,

Potassium, Lithium, Hydrogen, Chlorine which are all monad

elements, consist of comparatively few lines.
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