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Quantity Symbol Value(s)

Elementary charge e 1.6022 ! 10"19 C
Speed of light in vacuum c 2.9979 ! 108 m/s
Permeability of vacuum (magnetic constant) m0 4p ! 10"7 N ! A"2

Permittivity of vacuum (electric constant) P0 8.8542 ! 10"12 F ! m"1

Gravitation constant G 6.6738 ! 10"11 N ! m2 ! kg"2

Planck constant h 6.6261 ! 10"34 J ! s
  4.1357 ! 10"15 eV ! s
Avogadro constant NA 6.0221 ! 1023 mol"1

Boltzmann constant k 1.3807 ! 10"23 J ! K"1

Stefan-Boltzmann constant s 5.6704 ! 10"8 W ! m"2 ! K"4

Atomic mass unit u 1.66053886 ! 10"27 kg
  931.494061 MeV/c2

Fundamental Constants

Mass in units of

Particle kg MeV/c2 u

Electron 9.1094 ! 10"31 0.51100 5.4858 ! 10"4

Muon 1.8835 ! 10"28 105.66 0.11343
Proton 1.6726 ! 10"27 938.27 1.00728
Neutron 1.6749 ! 10"27 939.57 1.00866
Deuteron 3.3436 ! 10"27 1875.61 2.01355
a particle 6.6447 ! 10"27 3727.38 4.00151

Particle Masses

1 y # 3.156 ! 107 s 1 T # 104 G
1 lightyear # 9.461 ! 1015 m 1 Ci # 3.7 ! 1010 Bq
1 cal # 4.186 J 1 barn # 10"28 m2

1 MeV/c # 5.344 ! 10"22 kg ! m/s 1 u # 1.66054 ! 10"27 kg
1 eV # 1.6022 ! 10"19 J

Conversion Factors
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U # h/2p # 1.0546 ! 10"34 J ! s # 6.5821 ! 10"16 eV ! s
hc # 1.9864 ! 10"25 J ! m # 1239.8 eV ! nm
Uc # 3.1615 ! 10"26 J ! m # 197.33 eV ! nm

1
4pP0

#8.9876 !109 N # m2 # C"2

Compton wavelength lc #
h

mec
#2.4263 !10"12 m

e 
2

4pP0
# 2.3071 ! 10"28 J # m # 1.4400 ! 10"9 eV # m

Fine structure constant a #
e 

2

4pP0 
Uc

# 0.0072974 !
1

137

Bohr magneton mB #
e U
2me

# 9.2740 ! 10"24 J/T # 5.7884 ! 10"5 eV/T

Nuclear magneton mN #
e  U

2mp
# 5.0508 ! 10"27 J/T

 # 3.1525 ! 10"
 
8 eV/T

Bohr radius a0 #
4pP0 

U2

mee 
2 # 5.2918 ! 10"11 m

Hydrogen ground state E0 #
e 

2

8pP0a0
# 13.606 eV # 2.1799 ! 10"18 J

Rydberg constant Rq #
a2mec

2h
#1.09737 !107 m"1

Hydrogen Rydberg RH #
m

me
 R q # 1.09678 ! 107 m"1

Gas constant R # NAk # 8.3145 J ! mol"1 ! K"1

Magnetic flux quantum £0 #
h
2e

#2.0678 !10"15 T # m2

Classical electron radius re # a2a0 # 2.8179 ! 10"15 m

kT # 2.5249 ! 10"2 eV !
1
40

 eV at T # 293 K

Note: The latest values of the fundamental constants can be found at the National Institute 
of Standards and Technology website at http://physics.nist.gov/cuu/Constants

Useful Combinations of Constants
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Our objective in writing this book was to produce a textbook for a modern physics 
course of either one or two semesters for physics and engineering students. Such a course 
normally follows a full-year, introductory, calculus-based physics course for freshmen or 
sophomores. Before each edition we have the publisher send a questionnaire to users of 
modern physics books to see what needed to be changed or added. Most users like our 
textbook as is, especially the complete coverage of topics including the early quantum 
theory, subfi elds of physics, general relativity, and cosmology/astrophysics. Our book 
continues to be useful for either a one- or two-semester modern physics course. We have 
made no major changes in the order of subjects in the fourth edition.

Coverage
The first edition of our text established a trend for a contemporary approach to the excit-
ing, thriving, and changing field of modern science. After briefly visiting the status of phys-
ics at the turn of the last century, we cover relativity and quantum theory, the basis of any 
study of modern physics. Almost all areas of science depend on quantum theory and the 
methods of experimental physics. We have included the name Quantum Mechanics in two 
of our chapter titles (Chapters 5 and 6) to emphasize the quantum connection. The latter 
part of the book is devoted to the subfields of physics (atomic, condensed matter, nuclear, 
and particle) and the exciting fi elds of cosmology and astrophysics. Our experience is that 
science and engineering majors particularly enjoy the study of modern physics after the 
sometimes-laborious study of classical mechanics, thermodynamics, electricity, magnetism, 
and optics. The level of mathematics is not difficult for the most part, and students feel they 
are fi nally getting to the frontiers of physics. We have brought the study of modern physics 
alive by presenting many current applications and challenges in physics, for example, nano-
science, high-temperature superconductors, quantum teleportation, neutrino mass and 
oscillations, missing dark mass and energy in the universe, gamma-ray bursts, holography, 
quantum dots, and nuclear fusion. Modern physics texts need to be updated periodically to 
include recent advances. Although we have emphasized modern applications, we also pro-
vide the sound theoretical basis for quantum theory that will be needed by physics majors 
in their upper division and graduate courses.

Changes for the Fourth Edition

Our book continues to be the most complete and up-to-date textbook in the modern 
physics market for sophomores/juniors. We have made several changes for the fourth 
edition to aid the student in learning modern physics. We have added additional end-of-
chapter questions and problems and have modifi ed many problems from earlier editions, 

x

Preface
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    Preface xi

with an emphasis on including more real-world problems with current research applica-
tions whenever possible. We continue to have a larger number of questions and problems 
than competing textbooks, and for users of the robust Thornton/Rex Modern Physics for 
Scientists and Engineers, third edition course in WebAssign, we have a correlation guide of 
the fourth edition problems to that third edition course.

We have added additional examples to the already large number in the text. The peda-
gogical changes made for the third edition were highly successful. To encourage and sup-
port conceptual thinking by students, we continue to use conceptual examples and strategy 
discussion in the numerical examples. Examples with numerical solutions include a discus-
sion of what needs to be accomplished in the example, the procedure to go through to fi nd 
the answer, and relevant equations that will be needed. We present the example solutions 
in some detail, showing enough steps so that students can follow the solution to the end.

We continue to provide a signifi cant number of photos and biographies of scientists 
who have made contributions to modern physics. We have done this to give students a 
perspective of the background, education, trials, and efforts of these scientists. We have 
also updated many of the Special Topic boxes, which we believe provide accurate and 
useful descriptions of the excitement of scientifi c discoveries, both past and current.

Chapter-by-Chapter Changes We have rewritten some sections in order to make the 
explanations clearer to the student. Some material has been deleted, and new material 
has been added. In particular we added new results that have been reported since the 
third edition. This is especially true for the chapters on the subfi elds of physics, Chapters 
8–16. We have covered the most important subjects of modern physics, but we realize that 
in order to cover everything, the book would have to be much longer, which is not what 
our users want. Our intention is to keep the level of the textbook at the sophomore/
junior undergraduate level. We think it is important for instructors to be able to 
supplement the book whenever they choose—especially to cover those topics in which 
they themselves are expert. Particular changes by chapter include the following:

• Chapter 2: we have updated the search for violations of Lorentz symmetry  and added 
some discussion about four vectors. 

• Chapter 3: we have rewritten the discussion of the Rayleigh-Jeans formula and 
Planck’s discovery. 

• Chapter 9: we improved the discussion about the symmetry of boson wave functions 
and its application to the Fermi exclusion principle and Bose-Einstein condensates. 

• Chapter 10: we added a discussion of classes of superconductors and have updated 
our discussion concerning applications of superconductivity. The latter includes how 
superconductors are now being used to determine several fundamental constants. 

• Chapter 11: we added more discussion about solar energy, Blu-ray DVD devices, in-
creasing the number of transistors on a microchip using new semiconductor materials, 
graphene, and quantum dots. Our section on nanotechnology is especially complete. 

• Chapter 12: we updated our discussion on neutrino detection and neutrino mass, 
added a description of nuclear magnetic resonance, and upgraded our discussion on 
using radioactive decay to study the oldest terrestrial materials.

• Chapter 13: we updated our discussion about nuclear power plants operating in the 
United States and the world and presented a discussion of possible new, improved 
reactors. We discussed the tsunami-induced tragedy at the Fukushima Daiichi nu-
clear power plant in Japan and added to our discussion of searches for new elements 
and their discoveries. 

• Chapter 14: we upgraded our description of particle physics, improved and ex-
panded the discussion on Feynman diagrams, updated the search for the Higgs bo-
son, discussed new experiments on neutrino oscillations, and added discussion on 
matter-antimatter, supersymmetry, string theory, and M-theory. We mention that the 
LHC has begun operation as the Fermilab Tevatron accelerator is shutting down. 

• Chapter 15: we improved our discussion on gravitational wave detection, added to 
our discussion on black holes, and included the fi nal results of the Gravity Probe B 
satellite. 
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• Chapter 16: we changed the chapter name from Cosmology to Cosmology and Mod-
ern Astrophysics, because of the continued importance of the subject in modern 
physics. Our third edition of the textbook already had an excellent discussion and 
correct information about the age of the universe, dark matter, and dark energy, but 
Chapter 16 still has the most changes of any chapter, due to the current pace of re-
search in the fi eld. We have upgraded information and added discussion about Ol-
bers’ paradox, discovery of the cosmic microwave background, gamma ray astrophys-
ics, standard model of cosmology, the future of space telescopes, and the future of 
the universe (Big Freeze, Big Crunch, Big Rip, Big Bounce, etc).

Teaching Suggestions
The text has been used extensively in its first three editions in courses at our home institu-
tions. These include a one-semester course for physics and engineering students at the 
University of Virginia and a two-semester course for physics and pre-engineering students 
at the University of Puget Sound. These are representative of the one- and two-semester 
modern physics courses taught elsewhere. Both one- and two-semester courses should 
cover the material through the establishment of the periodic table in Chapter 8 with few 
exceptions. We have eliminated the denoting of optional sections, because we believe that 
depends on the wishes of the instructor, but we feel Sections 2.4, 4.2, 6.4, 6.6, 7.2, 7.6, 8.2, 
and 8.3 from the first nine chapters might be optional. Our suggestions for the one- and 
two-semester courses (3 or 4 credit hours per semester) are then

One-semester: Chapters 1– 9 and selected other material as chosen by the 
instructor
Two-semester: Chapters 1– 16 with supplementary material as desired, with possible 
student projects

An Internet-based, distance-learning version of the course is offered by one of the authors 
every summer (Physics 2620, 4 credit hours) at the University of Virginia that covers all 
chapters of the textbook, with emphasis on Chapters 1– 8. Homework problems and exams 
are given on WebAssign. The course can be taken by a student located anywhere there is an 
Internet connection. See http://modern.physics.virginia.edu/course/ for details.

Features
End-of-Chapter Problems

The 1166 questions and problems (258 questions and 908 problems) are more than in 
competing textbooks. Such a large number of questions and problems allows the instruc-
tor to make different homework assignments year after year without having to repeat 
problems. A correlation guide to the Thornton/Rex Modern Physics for Scientists and Engi-
neers, third edition course in WebAssign is available via the Instructor’s companion website 
(www.cengage.com/physics/thornton4e). We have tried to provide thought-provoking 
questions that have actual answers. In this edition we have focused on adding problems 
that have real-world or current research applications. The end-of-chapter problems have 
been separated by section, and general problems are included at the end to allow assimila-
tion of the material. The easier problems are generally listed first within a section, and the 
more difficult ones are noted by a shaded blue square behind the problem number. A few 
computer-based problems are given in the text, but no computer disk supplement is pro-
vided, because many computer software programs are commercially available.

Solutions Manuals

PDF fi les of the Instructor’s Solutions Manual are available to the instructor on the Instructor’s 
Resource CD-ROM (by contacting your local Brooks/Cole—Cengage sales representative). 
This manual contains the solution to every end-of-chapter problem and has been checked by at 
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least two physics professors. The answers to selected odd-numbered problems are given at 
the end of the textbook itself. A Student Solutions Manual that contains the solutions to about 
25% of the end-of-chapter problems is also available for sale to the students.

Instructor’s Resource CD-ROM for Thornton/Rex’s Modern Physics 
for Scientists and Engineers, Fourth Edition

Available to adopters is the Modern Physics for Scientists and Engineers Instructor’s Resource 
CD-ROM. This CD-ROM includes PowerPoint® lecture outlines and also contains 200 
pieces of line art from the text. It also features PDF fi les of the Instructor’s Solutions Man-
ual. Please guard this CD and do not let anyone have access to it. When end-of-chapter 
problem solutions fi nd their way to the internet for sale, learning by students deteriorates 
because of the temptation to look up the solution.

Text Format

The two-color format helps to present clear illustrations and to highlight material in the 
text; for example, important and useful equations are highlighted in blue, and the most 
important part of each illustration is rendered in thick blue lines. Blue margin notes help 
guide the student to the important points, and the margins allow students to make their 
own notes. The first time key words or topics are introduced they are set in boldface, and 
italics are used for emphasis.

Examples

Although we had a large number of worked examples in the third edition, we have added 
new ones in this edition. The examples are written and presented in the manner in which 
students are expected to work the end-of-chapter problems: that is, to develop a concep-
tual understanding and strategy before attempting a numerical solution. Problem solving 
does not come easily for most students, especially the problems requiring several steps 
(that is, not simply plugging numbers into one equation). We expect that the many text 
examples with varying degrees of difficulty will help students.

Special Topic Boxes

Users have encouraged us to keep the Special Topic boxes. We believe both students and 
professors fi nd them interesting, because they add some insight and detail into the excite-
ment of physics. We have updated the material to keep them current.

History

We include historical aspects of modern physics that some students will find interesting 
and that others can simply ignore. We continue to include photos and biographies of 
scientists who have made significant contributions to modern physics. We believe this 
helps to enliven and humanize the material.

Website

Students can access the book’s companion website at www.cengagebrain.com/shop/
ISBN/9781133103721. This site features student study aids such as outlines, summaries, 
and conceptual questions for each chapter. Instructors will also find downloadable Pow-
erPoint lectures and images for use in classroom lecture presentation. Students may also 
access the authors’ websites at http://www.modern.physics.virginia.edu/ and http://www.
pugetsound.edu/faculty-pages/rex where the authors will post errata, present new excit-
ing results, and give links to sites that have particularly interesting features like simula-
tions and photos, among other things.
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Although the Greek scholars Aristotle and Eratosthenes performed measure-
ments and calculations that today we would call physics, the discipline of physics 
has its roots in the work of Galileo and Newton and others in the scientifi c revo-
lution of the sixteenth and seventeenth centuries. The knowledge and practice 
of physics grew steadily for 200 to 300 years until another revolution in physics 
took place, which is the subject of this book. Physicists distinguish classical physics, 
which was mostly developed before 1895, from modern physics, which is based on 
discoveries made after 1895. The precise year is un important, but monumental 
changes occurred in physics around 1900.

The long reign of Queen Victoria of England, from 1837 to 1901, saw 
 considerable changes in social, political, and intellectual realms, but perhaps 
none so important as the remarkable achievements that occurred in physics. For 
example, the description and predictions of electromagnetism by Maxwell are 
partly responsible for the rapid telecommunications of today. It was also during 
this period that thermodynamics rose to become an exact science. None of these 
achievements, however, have had the ramifications of the discoveries and appli-
cations of modern physics that would occur in the twentieth century. The world 
would never be the same.

In this chapter we briefly review the status of physics around 1895, including 
Newton’s laws, Maxwell’s equations, and the laws of thermodynamics. These re-
sults are just as important today as they were over a hundred years ago. Argu-
ments by scientists concerning the interpretation of experimental data using 

C H A P T E R

1

1

The Birth of 
Modern Physics

The more important fundamental laws and facts of physical science 
have all been discovered, and these are now so firmly established that 
the possibility of their ever being supplanted in consequence of new dis-
coveries is exceedingly remote. . . . Our future discoveries must be 
looked for in the sixth place of decimals.

Albert A. Michelson, 1894

There is nothing new to be discovered in physics now. All that remains 
is more and more precise measurement.

William Thomson (Lord Kelvin), 1900
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2 Chapter 1 The Birth of Modern Physics

wave and particle descriptions that seemed to have been resolved 200 years ago 
were reopened in the twentieth century. Today we look back on the evidence of 
the late nineteenth century and wonder how anyone could have doubted the 
validity of the atomic view of matter. The fundamental interactions of gravity, 
 electricity, and magnetism were thought to be well understood in 1895. Physi-
cists continued to be driven by the goal of understanding fundamental laws 
throughout the twentieth century. This is demonstrated by the fact that other 
funda mental forces (specifically the nuclear and weak interactions) have been 
added, and in some cases—curious as it may seem—various forces have even 
been combined. The search for the holy grail of fundamental interactions con-
tinues unabated today.

We finish this chapter with a status report on physics just before 1900. The 
few problems not then understood would be the basis for decades of fruitful 
investigations and discoveries continuing into the twenty-first century. We hope 
you find this chapter interesting both for the physics presented and for the his-
torical account of some of the most exciting scientific discoveries of the modern 
era.

1.1  Classical Physics of the 1890s
Scientists and engineers of the late nineteenth century were indeed rather 
smug. They thought they had just about everything under control (see the 
quotes from Michelson and Kelvin on page 1). The best scientists of the day 
were highly recognized and rewarded. Public lectures were frequent. Some sci-
entists had easy access to their political leaders, partly because science and en-
gineering had ben e fited their war machines, but also because of the many useful 
technical advances. Basic research was recognized as important because of the 
commercial and military applications of scientific discoveries. Although there 
were only primitive automobiles and no airplanes in 1895, advances in these 
modes of transportation were soon to follow. A few people already had tele-
phones, and plans for widespread distribution of electricity were under way.

Based on their success with what we now call macroscopic classical results, 
scientists felt that given enough time and resources, they could explain just 
about anything. They did recognize some difficult questions they still couldn’t 
answer; for example, they didn’t clearly understand the structure of matter—
that was under intensive investigation. Nevertheless, on a macroscopic scale, they 
knew how to build efficient engines. Ships plied the lakes, seas, and oceans of 
the world. Travel between the countries of Europe was frequent and easy by 
train. Many scientists were born in one country, educated in one or two others, 
and eventually worked in still other countries. The most recent ideas traveled 
relatively quickly among the centers of research. Except for some isolated scien-
tists, of whom Einstein is the most notable example, discoveries were quickly and 
easily shared. Scientific journals were becoming accessible.

The ideas of classical physics are just as important and useful today as they 
were at the end of the nineteenth century. For example, they allow us to build 
automobiles and produce electricity. The conservation laws of energy, linear 
momentum, angular momentum, and charge can be stated as follows:

Conservation of energy: The total sum of energy (in all its forms) is con-
served in all interactions.

Conservation of linear momentum: In the absence of external forces, linear 
momentum is conserved in all interactions (vector relation).

Early successes of science

Classical conservation laws
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   1.1 Classical Physics of the 1890s 3

Conservation of angular momentum: In the absence of external torque, 
angular momentum is conserved in all interactions (vector relation).

Conservation of charge: Electric charge is conserved in all interactions.

A nineteenth-century scientist might have added the conservation of mass to 
this list, but we know it not to be valid today (you will find out why in Chapter 
2). These conservation laws are reflected in the laws of mechanics, electromag-
netism, and thermodynamics. Electricity and magnetism, separate subjects for 
hundreds of years, were combined by James Clerk Maxwell (1831– 1879) in his 
four equations. Maxwell showed optics to be a special case of electromagne-
tism. Waves, which permeated mechanics and optics, were known to be an 
important component of nature. Many natural phenomena could be explained 
by wave motion using the laws of physics.

Mechanics
The laws of mechanics were developed over hundreds of years by many re-
searchers. Important contributions were made by astronomers because of the 
great interest in the heavenly bodies. Galileo (1564– 1642) may rightfully be 
called the first great experimenter. His experiments and observations laid the 
groundwork for the important discoveries to follow during the next 200 years.

Isaac Newton (1642– 1727) was certainly the greatest scientist of his time 
and one of the best the world has ever seen. His discoveries were in the fields of 
mathematics, astronomy, and physics and include gravitation, optics, motion, 
and forces.

We owe to Newton our present understanding of motion. He understood 
clearly the relationships among position, displacement, velocity, and accelera-
tion. He understood how motion was possible and that a body at rest was just a 
special case of a body having constant velocity. It may not be so apparent to us 
today, but we should not forget the tremendous unification that Newton made 
when he pointed out that the motions of the planets about our sun can be un-
derstood by the same laws that explain motion on Earth, like apples falling from 
trees or a soccer ball being shot toward a goal. Newton was able to elucidate 

Galileo, the first great 
experimenter

Newton, the greatest 
scientist of his time

Galileo Galilei (1564– 1642) was 
born, educated, and worked in 
Italy. Often said to be the “father 
of physics” because of his careful 
experimentation, he is shown 
here performing experiments by 
rolling balls on an inclined plane. 
He is perhaps best known for his 
experiments on motion, the 
devel opment of the telescope, 
and his many astronomical dis-
coveries. He came into disfavor 
with the Catholic Church for his 
belief in the Copernican theory. 
He was finally cleared of heresy 
by Pope John Paul II in 1992, 
350 years after his death.
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4 Chapter 1 The Birth of Modern Physics

carefully the relationship between net force and acceleration, and his concepts 
were stated in three laws that bear his name today:

Newton’s first law: An object in motion with a constant velocity will continue in motion 
unless acted upon by some net external force. A body at rest is just a special case of 
Newton’s first law with zero velocity. Newton’s first law is often called the law of 
inertia and is also used to describe inertial reference frames.

Newton’s second law: The acceleration a  of a body is proportional to the net external 
force F  and inversely proportional to the mass m of the body. It is stated mathemati-
cally as

 F ! ma  (1.1a)

A more general statement* relates force to the time rate of change of the 
linear momentum p .

 F !
dp
dt

 (1.1b)

Newton’s third law: The force exerted by body 1 on body 2 is equal in magnitude and 
opposite in direction to the force that body 2 exerts on body 1. If the force on body 
2 by body 1 is denoted by F21, then Newton’s third law is written as

 F21 ! "F12 (1.2)

It is often called the law of action and reaction.

These three laws develop the concept of force. Using that concept together 
with the concepts of velocity v , acceleration a , linear momentum p , rotation 
(angular velocity v and angular acceleration a), and angular momentum L , we 
can describe the complex motion of bodies.

Electromagnetism
Electromagnetism developed over a long period of time. Important contributions 
were made by Charles Coulomb (1736– 1806), Hans Christian Oersted (1777–
 1851), Thomas Young (1773– 1829), André Ampère (1775– 1836), Michael Faraday 
(1791– 1867), Joseph Henry (1797– 1878), James Clerk Max well (1831– 1879), and 
Heinrich Hertz (1857– 1894). Maxwell showed that electricity and magnetism were 
intimately connected and were related by a change in the inertial frame of refer-
ence. His work also led to the understanding of electromagnetic radiation, of 
which light and optics are special cases. Maxwell’s four equations, together with 
the Lorentz force law, explain much of electromagnetism.

 Gauss’s law for electricity   !E # dA !
q
P0

 (1.3)

 Gauss’s law for magnetism   !B # dA ! 0 (1.4)

 Faraday’s law   !E # ds ! " 

d£B

dt
 (1.5)

Newton’s laws

Maxwell’s equations

*It is a remarkable fact that Newton wrote his second law not as F ! ma, but as F ! d(mv)/dt, thus 
taking into account mass flow and change in velocity. This has applications in both fluid mechanics 
and rocket propulsion.

Isaac Newton (1642– 1727), the 
great English physicist and math-
ematician, did most of his work 
at Cambridge where he was edu-
cated and became the Lucasian 
Professor of Mathematics. He 
was known not only for his work 
on the laws of motion but also as 
a founder of optics. His useful 
works are too numerous to list 
here, but it should be mentioned 
that he spent a considerable 
amount of his time on alchemy, 
theology, and the spiritual uni-
verse. His writings on these sub-
jects, which were dear to him, 
were quite unorthodox. This 
painting shows him performing 
experiments with light.
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   1.2 The Kinetic Theory of Gases 5

 Generalized Ampere’s law   !B # ds ! m0P0 

d£E

dt
# m0I  (1.6)

 Lorentz force law  F ! qE # qv $ B  (1.7)

Maxwell’s equations indicate that charges and currents create fields, and in turn, 
these fields can create other fields, both electric and magnetic.

Thermodynamics
Thermodynamics deals with temperature T, heat Q , work W, and the internal en-
ergy of systems U. The understanding of the concepts used in thermodynamics—
such as pressure P, volume V, temperature, thermal equilibrium, heat, entropy, 
and especially energy—was slow in coming. We can understand the concepts of 
pressure and volume as mechanical properties, but the concept of temperature 
must be carefully considered. We have learned that the internal energy of a system 
of noninteracting point masses depends only on the temperature.

Important contributions to thermodynamics were made by Benjamin 
Thompson (Count Rumford, 1753– 1814), Sadi Carnot (1796– 1832), James 
Joule (1818– 1889), Rudolf Clausius (1822– 1888), and William Thomson (Lord 
Kelvin, 1824– 1907). The primary results of thermo dynamics can be described in 
two laws:

First law of thermodynamics: The change in the internal energy %U of a system is equal 
to the heat Q added to the system plus the work W done on the system.

 ¢U ! Q # W  (1.8)

The first law of thermodynamics generalizes the conservation of energy by 
including heat.

Second law of thermodynamics: It is not possible to convert heat completely into 
work without some other change taking place. Various forms of the second law 
state similar, but slightly different, results. For example, it is not possible to 
build a perfect engine or a perfect refrigerator. It is not possible to build a 
perpetual motion machine. Heat does not spontaneously flow from a colder 
body to a hotter body without some other change taking place. The second 
law forbids all these from happening. The first law states the conservation of 
energy, but the second law says what kinds of energy processes cannot take 
place. For example, it is possible to completely convert work into heat, but 
not vice versa, without some other change taking place.

Two other “laws” of thermodynamics are sometimes expressed. One is called 
the “zeroth” law, and it is useful in understanding temperature. It states that if two 
thermal systems are in thermodynamic equilibrium with a third system, they are in equilib-
rium with each other. We can state it more simply by saying that two systems at the same 
temperature as a third system have the same temperature as each other. This concept was 
not explicitly stated until the twentieth century. The “third” law of thermodynam-
ics expresses that it is not possible to achieve an absolute zero temperature.

1.2  The Kinetic Theory of Gases
We understand now that gases are composed of atoms and molecules in rapid 
motion, bouncing off each other and the walls, but in the 1890s this had just 
gained acceptance. The kinetic theory of gases is related to thermodynamics and 

Laws of thermodynamics
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6 Chapter 1 The Birth of Modern Physics

to the atomic theory of matter, which we discuss in Section 1.5. Experiments were 
relatively easy to perform on gases, and the Irish chemist Robert Boyle (1627–
 1691) showed around 1662 that the pressure times the volume of a gas was con-
stant for a constant temperature. The relation PV ! constant (for constant T ) is 
now referred to as Boyle’s law. The French physicist Jacques Charles (1746– 1823) 
found that V/T ! constant (at constant pressure), referred to as Charles’s law. 
Joseph Louis Gay-Lussac (1778– 1850) later produced the same result, and the 
law is sometimes associated with his name. If we combine these two laws, we ob-
tain the ideal gas equation

 PV ! nRT (1.9)

where n is the number of moles and R is the ideal gas constant, 8.31 J/mol # K.
In 1811 the Italian physicist Amedeo Avogadro (1776– 1856) proposed that 

equal volumes of gases at the same temperature and pressure contained equal 
numbers of molecules. This hypothesis was so far ahead of its time that it was not 
accepted for many years. The famous English chemist John Dalton opposed the 
idea because he apparently misunderstood the difference between atoms and 
molecules. Considering the rudimentary nature of the atomic theory of matter 
at the time, this was not surprising.

Daniel Bernoulli (1700– 1782) apparently originated the kinetic theory of 
gases in 1738, but his results were generally ignored. Many scientists, including 
Newton, Laplace, Davy, Herapath, and Waterston, had contributed to the devel-
opment of kinetic theory by 1850. Theoretical calculations were being compared 
with experiments, and by 1895 the kinetic theory of gases was widely accepted. 
The statistical interpretation of thermodynamics was made in the latter half of the 
nineteenth century by Maxwell, the Austrian physicist Ludwig Boltzmann (1844–
 1906), and the American physicist J. Willard Gibbs (1839– 1903).

In introductory physics classes, the kinetic theory of gases is usually 
taught by applying Newton’s laws to the collisions that a molecule makes with 
other molecules and with the walls. A representation of a few molecules col-
liding is shown in Figure 1.1. In the simple model of an ideal gas, only elastic 
collisions are considered. By taking averages over the collisions of many mol-
ecules, the ideal gas law, Equation (1.9), is revealed. The average kinetic 
energy of the molecules is shown to be linearly proportional to the tempera-
ture, and the internal energy U is

 U ! nNA8K 9 ! 3
2

 nRT  (1.10)

where n is the number of moles of gas, NA is Avogadro’s number, 8K 9 is the aver-
age kinetic energy of a molecule, and R is the ideal gas constant. This relation 
ignores any nontranslational contributions to the molecular energy, such as ro-
tations and vibrations.

However, energy is not represented only by translational motion. It became 
clear that all degrees of freedom, including rotational and vibrational, were also 
capable of carrying energy. The equipartition theorem states that each degree of 
freedom of a molecule has an average energy of kT/2, where k is the Boltzmann 
constant (k ! R/NA). Translational motion has three degrees of freedom, and 
rotational and vibrational modes can also be excited at higher temperatures. If 
there are f degrees of freedom, then Equation (1.10) becomes

 U !
f
2

 nRT  (1.11)

Ideal gas equation

Statistical thermodynamics

Equipartition theorem

Internal energy

Figure 1.1 Molecules inside a 
closed container are shown collid-
ing with the walls and with each 
other. The motions of a few mol-
ecules are indicated by the ar-
rows. The number of molecules 
inside the container is huge.
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   1.2 The Kinetic Theory of Gases 7

The molar (n ! 1) heat capacity c V at constant volume for an ideal gas is the 
rate of change in internal energy with respect to change in temperature and is 
given by

 c V !
3
2

 R (1.12)

The experimental quantity c V /R is plotted versus temperature for hydrogen in 
Figure 1.2. The ratio c V /R is equal to 3/2 for low temperatures, where only trans-
lational kinetic energy is important, but it rises to 5/2 at 300 K, where rotations 
occur for H2, and finally reaches 7/2, because of vibrations at still higher tempera-
tures, before the molecule dissociates. Although the kinetic theory of gases fails to 
predict specific heats for real gases, it leads to models that can be used on a gas-by-
gas basis. Kinetic theory is also able to provide useful information on other proper-
ties such as diffusion, speed of sound, mean free path, and collision frequency.

In the 1850s Maxwell derived a relation for the distribution of speeds of the 
molecules in gases. The distribution of speeds f (v) is given as a function of the 
speed and the temperature by the equation

 f  1v 2 ! 4pN a m
2pkT

b 3 /2

v 2e "mv 
2

 /2kT (1.13)

where m is the mass of a molecule and T is the temperature. This result is plotted 
for nitrogen in Figure 1.3 for temperatures of 300 K, 1000 K, and 4000 K. The 
peak of each distribution is the most probable speed of a gas molecule for the 
given temperature. In 1895 measurement was not precise enough to con firm 
Maxwell’s distribution, and it was not confirmed experimentally until 1921.

By 1895 Boltzmann had made Maxwell’s calculation more rigorous, and the 
general relation is called the Maxwell-Boltzmann distribution. The distribution can 
be used to find the root-mean-square speed vrms,

 vrms ! 28v 2
 9 ! B3kT

m  (1.14)

which shows the relationship of the energy to the temperature for an ideal gas:

 U ! nNA8K 9 ! nNA
m 8v 2

 9
2

! nNA
m3kT

2m
!

3
2

 nRT  (1.15)

This was the result of Equation (1.10).

Heat capacity

Maxwell’s speed 
distribution

Figure 1.2 The molar heat ca-
pacity at constant volume (cV) di-
vided by R (cV/R is dimension-
less) is displayed as a function of 
temperature for hydrogen gas. 
Note that as the temperature in-
creases, the rotational and vibra-
tional modes become important. 
This experimental result is consis-
tent with the equipartition theo-
rem, which adds kT/2 of energy 
per molecule (RT/2 per mole) 
for each degree of freedom.
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8 Chapter 1 The Birth of Modern Physics

1.3  Waves and Particles
We first learned the concepts of velocity, acceleration, force, momentum, and 
energy in introductory physics by using a single particle with its mass concen-
trated in one small point. In order to adequately describe nature, we add two- 
and three-dimensional bodies and rotations and vibrations. However, many 
aspects of physics can still be treated as if the bodies are simple particles. In 
particular, the kinetic energy of a moving particle is one way that energy can be 
transported from one place to another.

But we have found that many natural phenomena can be explained only in 
terms of waves, which are traveling disturbances that carry energy. This descrip-
tion includes standing waves, which are superpositions of traveling waves. Most 
waves, like water waves and sound waves, need an elastic medium in which to 
move. Curiously enough, matter is not transported in waves—but energy is. Mass 
may oscillate, but it doesn’t actually propagate along with the wave. Two exam-
ples are a cork and a boat on water. As a water wave passes, the cork gains energy 
as it moves up and down, and after the wave passes, the cork remains. The boat 
also reacts to the wave, but it primarily rocks back and forth, throwing around 
things that are not fixed on the boat. The boat obtains considerable kinetic en-
ergy from the wave. After the wave passes, the boat eventually returns to rest.

Waves and particles were the subject of disagreement as early as the seven-
teenth century, when there were two competing theories of the nature of light. 
Newton supported the idea that light consisted of corpuscles (or particles). He 
performed extensive experiments on light for many years and finally published 
his book Opticks in 1704. Geometrical optics uses straight-line, particle-like trajectories 
called rays to explain familiar phenomena such as reflection and refraction. Geo-
metrical optics was also able to explain the apparent observation of sharp shad-
ows. The competing theory considered light as a wave phenomenon. Its stron-
gest proponent was the Dutch physicist Christian Huygens (1629– 1695), who 
presented his theory in 1678. The wave theory could also explain reflection and 
refraction, but it could not explain the sharp shadows observed. Experimental 
physics of the 1600s and 1700s was not able to discern between the two competing 
theories. Huygens’s poor health and other duties kept him from working on optics 
much after 1678. Although Newton did not feel strongly about his corpuscular 

Energy transport

Nature of light: waves 
or particles?

0
f(v

)

v (m/s)

4000 K

1000 K

Nitrogen

300 K

Most probable speed (300 K)

40003000200010000

Figure 1.3 The Maxwell dis-
tribution of molecular speeds (for 
nitrogen), f (v), is shown as a 
function of speed for three 
temperatures.
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   1.3 Waves and Particles 9

theory, the magnitude of his reputation caused it to be almost universally accepted 
for more than a hundred years and throughout most of the eighteenth century.

Finally, in 1802, the English physician Thomas Young (1773– 1829) an-
nounced the results of his two-slit interference experiment, indicating that 
light behaved as a wave. Even after this singular event, the corpuscular theory 
had its supporters. During the next few years Young and, independently, 
Augustin Fresnel (1788– 1827) performed several experiments that clearly 
showed that light behaved as a wave. By 1830 most physicists believed in the wave 
theory—some 150 years after Newton performed his first experiments on light.

One final experiment indicated that the corpuscular theory was difficult to 
accept. Let c be the speed of light in vacuum and v be the speed of light in an-
other medium. If light behaves as a particle, then to explain refraction, light 
must speed up when going through denser material (v & c). The wave theory of 
Huygens predicts just the opposite (v ' c). The measurements of the speed of 
light in various media were slowly improving, and finally, in 1850,  Foucault 
showed that light traveled more slowly in water than in air. The corpuscular theory 
seemed incorrect. Newton would probably have been surprised that his weakly 
held beliefs lasted as long as they did. Now we realize that geometrical optics is 
correct only if the wavelength of light is much smaller than the size of the ob-
stacles and apertures that the light encounters.

Figure 1.4 shows the “shadows” or diffraction patterns from light falling on 
sharp edges. In Figure 1.4a the alternating black and white lines can be seen all 
around the razor blade’s edges. Figure 1.4b is a highly magnified photo of the 
diffraction from a sharp edge. The bright and dark regions can be understood 
only if light is a wave and not a particle. The physicists of 200 to  300 years ago 
apparently did not observe such phenomena. They believed that shadows were 
sharp, and only the particle nature of light could explain their observations.

In the 1860s Maxwell showed that electromagnetic waves consist of oscillat-
ing electric and magnetic fields. Visible light covers just a narrow range of the 
total electromagnetic spectrum, and all electromagnetic radiation travels at the 
speed of light c in free space, given by

 c !
12m0P0

! lf  (1.16)

where l is the wavelength and f is the frequency. The fundamental constants m0 
and P0 are defined in electricity and magnetism and reveal the connection to the 
speed of light. In 1887 the German physicist Heinrich Hertz (1857– 1894) suc-
ceeded in generating and detecting electromagnetic waves having wavelengths 

Figure 1.4 In contradiction to 
what scientists thought in the sev-
enteenth century, shadows are 
not sharp, but show dramatic dif-
fraction patterns—as seen here 
(a) for a razor blade and (b) for 
a highly magnified sharp edge.(a) (b)
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10 Chapter 1 The Birth of Modern Physics

far outside the visible range (l " 5 m). The properties of these waves were just 
as Maxwell had predicted. His results continue to have far-reaching effects in 
modern telecommunications: cable TV, cell phones, lasers, fiber optics, wireless 
Internet, and so on.

Some unresolved issues about electromagnetic waves in the 1890s eventually 
led to one of the two great modern theories, the theory of relativity (see Section 
1.6 and Chapter 2). Waves play a central and essential role in the other great 
modern physics theory, quantum mechanics, which is sometimes called wave me-
chanics. Because waves play such a central role in modern physics, we review their 
properties in Chapter 5.

1.4  Conservation Laws and 
Fundamental Forces

Conservation laws are the guiding principles of physics. The application of a 
few laws explains a vast quantity of physical phenomena. We listed the con-
servation laws of classical physics in Section 1.1. They include energy, linear 
momentum, angular momentum, and charge. Each of these is extremely use-
ful in introductory physics. We use linear momentum when studying colli-
sions, and the conservation laws when examining dynamics. We have seen the 
concept of the conservation of energy change. At first we had only the con-
servation of kinetic energy in a force-free region. Then we added potential 
energy and formed the conservation of mechanical energy. In our study of 
thermodynamics, we added internal energy, and so on. The study of electri-
cal circuits was made easier by the conservation of charge flow at each junc-
tion and the conservation of energy throughout all the circuit elements.

Much of what we know about conservation laws and fundamental forces has 
been learned within the last hundred years. In our study of modern physics we 
will find that mass is added to the conservation of energy, and the result is some-
times called the conservation of mass-energy, although the term conservation of energy 
is still sufficient and generally used. When we study elementary particles we will 
add the conservation of baryons and the conservation of leptons. Closely related 
to conservation laws are invariance principles. Some parameters are invariant in 
some interactions or in specific systems but not in others. Examples include time 
reversal, parity, and distance. We will study the Newtonian or Galilean invariance 
and find it lacking in our study of relativity; a new invariance principle will be 
needed. In our study of nuclear and elementary particles, conservation laws and 
invariance principles will often be used (see Figure 1.5).

Fundamental Forces
In introductory physics, we often begin our study of forces by examining the 
reaction of a mass at the end of a spring, because the spring force can be easily 
calibrated. We subsequently learn about tension, friction, gravity, surface, elec-
trical, and magnetic forces. Despite the seemingly complex array of forces, we 
presently believe there are only three fundamental forces. All the other forces 
can be derived from them. These three forces are the gravitational, electroweak, 
and strong forces. Some physicists refer to the electroweak interaction as sepa-
rate electromagnetic and weak forces because the unification occurs only at very 
high en ergies. The approximate strengths and ranges of the three fundamental 
forces are listed in Table 1.1. Physicists sometimes use the term interaction when 

K!

!

K!

K! " p K0 " K" " #!

K0#!

K"

p!

p

Figure 1.5 The conservation 
laws of momentum and energy 
are invaluable in untangling com-
plex particle reactions like the 
one shown here, where a 5-GeV 
K" meson interacts with a proton 
at rest to produce an (" in a 
bubble chamber. The uncharged 
K0 is not observed. Notice the 
curved paths of the charged parti-
cles in the magnetic field. Such 
reactions are explained in Chap-
ter 14.
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   1.4 Conservation Laws and Fundamental Forces  11

referring to the  fundamental forces because it is the overall interaction among 
the constituents of a system that is of interest.

The gravitational force is the weakest. It is the force of mutual attraction 
between masses and, according to Newton, is given by

 Fg ! "G  

m1m2

r 2  r̂  (1.17)

where m1 and m2 are two point masses, G is the gravitational constant, r is the 
distance between the masses, and r̂  is a unit vector directed along the line be-
tween the two point masses (attractive force). The gravitational force is notice-
ably effective only on a macroscopic scale, but it has tremendous importance: it 
is the force that keeps Earth rotating about our source of life energy—the sun—
and that keeps us and our atmosphere anchored to the ground. Gravity is a 
long-range force that diminishes as 1/r 2.

The primary component of the electroweak force is electromagnetic. The other 
component is the weak interaction, which is responsible for beta decay in nuclei, 
among other processes. In the 1970s Sheldon Glashow, Steven Weinberg, and 
Abdus Salam predicted that the electromagnetic and weak forces were in fact fac-
ets of the same force. Their theory predicted the existence of new particles, called 
W and Z bosons, which were discovered in 1983. We discuss bosons and the experi-
ment in Chapter 14. For all practical purposes, the weak interaction is effective in 
the nucleus only over distances the size of 10"15 m. Except when dealing with very 
high energies, physicists mostly treat nature as if the electromagnetic and weak 
forces were separate. Therefore, you will sometimes see references to the four fun-
damental forces (gravity, strong, electromagnetic, and weak).

The electromagnetic force is responsible for holding atoms together, for 
friction, for contact forces, for tension, and for electrical and optical signals. It 
is responsible for all chemical and biological processes, including cellular struc-
ture and nerve processes. The list is long because the electromagnetic force is 
responsible for practically all nongravitational forces that we experience. The 
electrostatic, or Coulomb, force between two point charges q1 and q2, separated 
by a distance r, is given by

 FC !
1

4pP0
 
q1q2

r 2  r̂  (1.18)

The easiest way to remember the vector direction is that like charges repel and 
unlike charges attract. Moving charges also create and react to magnetic fields 
[see Equation (1.7)].

Gravitational interaction

Weak interaction

Electromagnetic 
interaction

Coulomb force

Interaction Relative Strength* Range

Strong 1 Short, #10"15 m

Electroweak f   Electromagnetic 
Weak

10"2

10"9

Long, 1/r 2

Short, #10"15 m
Gravitational 10"39 Long, 1/r 2

*These strengths are quoted for neutrons and/or protons in close proximity.

Tab le  1 .1   Fundamental Forces
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12 Chapter 1 The Birth of Modern Physics

The third fundamental force, the strong force, is the one holding the nu-
cleus together. It is the strongest of all the forces, but it is effective only over 
short distances—on the order of 10"15 m. The strong force is so strong that it 
easily binds two protons inside a nucleus even though the electrical force of re-
pulsion over the tiny confined space is huge. The strong force is able to contain 
dozens of protons inside the nucleus before the electrical force of repulsion 
becomes strong enough to cause nuclear decay. We study the strong force exten-
sively in this book, learning that neutrons and protons are composed of quarks, 
and that the part of the strong force acting between quarks has the unusual 
name of color force.

Physicists strive to combine forces into more fundamental ones. Centuries 
ago the forces responsible for friction, contact, and tension were all believed to 
be different. Today we know they are all part of the electroweak force. Two 
hundred years ago scientists thought the electrical and magnetic forces were 
independent, but after a series of experiments, physicists slowly began to see 
their connection. This culminated in the 1860s in Maxwell’s work, which 
clearly showed they were but part of one force and at the same time explained 
light and other radiation. Figure 1.6 is a diagram of the unification of forces 
over time. Newton certainly had an inspiration when he was able to unify the 
planetary  motions with the apple falling from the tree. We will see in Chapter 
15 that Einstein was even able to link gravity with space and time.

The further unification of forces currently remains one of the most active 
research fields. Considerable efforts have been made to unify the electroweak 
and strong forces through the grand unified theories, or GUTs. A leading GUT is 
the mathematically complex string theory. Several predictions of these theories 
have not yet been verified experimentally (for example, the instability of the 
proton and the existence of magnetic monopoles). We present some of the ex-
citing research areas in present-day physics throughout this book, because these 

Strong interaction

Unification of forces

Electroweak

Glashow,
Salam, and
Weinberg

Newton

Einstein

Space
Time

Strong Gravitation

Single
Force

Grand
Unification

Terrestrial
motion

Astronomical
motionElectromagnetic

Light

Maxwell

Faraday

MagneticElectrical

Weak

Figure 1.6 The three funda-
mental forces (shown in the heavy 
boxes) are themselves unifications 
of forces that were once believed 
to be fundamental. Present re-
search is under way (see blue 
lines) to further unify the funda-
mental forces into a single force.
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   1.5 The Atomic Theory of Matter 13

topics are the ones you will someday read about on the front pages of newspa-
pers and in the weekly news magazines and perhaps will contribute to in your 
own careers.

1.5  The Atomic Theory of Matter
Today the idea that matter is composed of tiny particles called atoms is taught in 
elementary school and expounded throughout later schooling. We are told that 
the Greek philosophers Democritus and Leucippus proposed the concept of 
atoms as early as 450 b.c. The smallest piece of matter, which could not be sub-
divided further, was called an atom, after the Greek word atomos, meaning “indi-
visible.” Physicists do not discredit the early Greek philosophers for thinking that 
the basic entity of life consisted of atoms. For centuries, scientists were called 
“natural philosophers,” and in this tradition the highest university degree Ameri-
can scientists receive is a Ph.D., which stands for doctor of philosophy.

Not many new ideas were proposed about atoms until the seventeenth cen-
tury, when scientists started trying to understand the properties and laws of 
gases. The work of Boyle, Charles, and Gay-Lussac presupposed the interactions 
of tiny particles in gases. Chemists and physical chemists made many important 
advances. In 1799 the French chemist Proust (1754– 1826) proposed the law of 
defi nite proportions, which states that when two or more elements combine to form 
a compound, the proportions by weight (or mass) of the elements are always the 
same. Water (H2O) is always formed of one part hydrogen and eight parts oxy-
gen by mass.

The English chemist John Dalton (1766– 1844) is given most of the credit for 
originating the modern atomic theory of matter. In 1803 he proposed that the 
atomic theory of matter could explain the law of definite proportions if the ele-
ments are composed of atoms. Each element has atoms that are physically and 
chemically characteristic. The concept of atomic weights (or masses) was the key 
to the atomic theory.

In 1811 the Italian physicist Avogadro proposed the existence of molecules, 
consisting of individual or combined atoms. He stated without proof that all gases 
contain the same number of molecules in equal volumes at the same temperature and pres-
sure. Avogadro’s ideas were ridiculed by Dalton and others who could not imag-
ine that atoms of the same element could combine. If this could happen, they 
argued, then all the atoms of a gas would combine to form a liquid. The concept 
of molecules and atoms was indeed difficult to imagine, but finally, in 1858, the 
Italian chemist Cannizzaro (1826– 1910) solved the problem and showed how 
Avogadro’s ideas could be used to find atomic masses. Today we think of an 
atom as the smallest unit of matter that can be identified with a particular ele-
ment. A molecule can be a single atom or a combination of two or more atoms 
of either like or dissimilar elements. Molecules can consist of thousands of 
atoms.

The number of molecules in one gram-molecular weight of a particular ele-
ment (6.023 $ 1023 molecules/mol) is called Avogadro’s number (NA). For ex-
ample, one mole of hydrogen (H2) has a mass of about 2 g and one mole of 
carbon has a mass of about 12 g; one mole of each substance consists of 6.023 $ 
1023 atoms. Avogadro’s number was not even estimated until 1865, and it was 
finally accurately measured by Perrin, as we discuss at the end of this section.

During the mid-1800s the kinetic theory of gases was being developed, and 
because it was based on the concept of atoms, its successes gave validity to the 

Dalton, the father 
of the atomic theory

Avogadro’s number
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14 Chapter 1 The Birth of Modern Physics

atomic theory. The experimental results of specific heats, Maxwell speed distribu-
tion, and transport phenomena (see the discussion in Section 1.2) all supported 
the concept of the atomic theory.

In 1827 the English botanist Robert Brown (1773– 1858) observed with a 
microscope the motion of tiny pollen grains suspended in water. The pollen ap-
peared to dance around in random motion, while the water was still. At first the 
motion (now called Brownian motion) was ascribed to convection or organic mat-
ter, but eventually it was observed to occur for any tiny particle suspended in 
liquid. The explanation according to the atomic theory is that the molecules in 
the liquid are constantly bombarding the tiny grains. A satisfactory explanation 
was not given until the twentieth century (by Einstein).

Although it may appear, according to the preceding discussion, that the 
atomic theory of matter was universally accepted by the end of the nineteenth 
century, that was not the case. Certainly most physicists believed in it, but there 
was still opposition. A principal leader in the antiatomic movement was the re -
nowned Austrian physicist Ernst Mach. Mach was an absolute positivist, believing 
in the reality of nothing but our own sensations. A simplified version of his line 
of reasoning would be that because we have never seen an atom, we cannot say 
anything about its reality. The Nobel Prize– winning German physical chemist 
Wilhelm Ostwald supported Mach philosophically but also had more practical 
arguments on his side. In 1900 there were difficulties in understanding radioac-
tivity, x rays, discrete spectral lines, and how atoms formed molecules and solids. 
Ostwald contended that we should therefore think of atoms as hypothetical con-
structs, useful for bookkeeping in chemical reactions.

On the other hand, there were many believers in the atomic theory. Max 
Planck, the originator of quantum theory, grudgingly accepted the atomic 
theory of matter because his radiation law supported the existence of submicro-
scopic quanta. Boltzmann was convinced that atoms must exist, mainly because 
they were necessary in his statistical mechanics. It is said that Boltzmann commit-
ted suicide in 1905 partly because he was despondent that so many people re-
jected his theory. Today we have pictures of the atom (see Figure 1.7) that would 

Opposition to 
atomic theory

Figure 1.7 This scanning tun-
neling microscope photo, called 
the “stadium corral,” shows 76 in-
dividually placed iron atoms on a 
copper surface. The IBM re-
searchers were trying to con-
tain and modify electron density, 
observed by the wave patterns, by 
surrounding the electrons inside 
the quantum “corral.” Research-
ers are thus able to study the 
quantum behavior of electrons. 
See also the Special Topic on 
Scanning Probe Microscopes in 
Chapter 6. Co
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   1.6 Unresolved Questions of 1895 and New Horizons 15

undoubtedly have convinced even Mach, who died in 1916 still unconvinced of 
the validity of the atomic theory.

Overwhelming evidence for the existence of atoms was finally presented in 
the first decade of the twentieth century. First, Einstein, in one of his three fa-
mous papers published in 1905 (the others were about special relativity and the 
photoelectric effect), provided an explanation of the Brownian motion observed 
almost 80 years earlier by Robert Brown. Einstein explained the motion in terms 
of molecular motion and presented theoretical calculations for the random walk 
problem. A random walk (often called the drunkard’s walk) is a statistical process 
that determines how far from its initial position a tiny grain may be after many 
random molecular collisions. Einstein was able to determine the approximate 
masses and sizes of atoms and molecules from experimental data.

Finally, in 1908, the French physicist Jean Perrin (1870– 1942) presented 
data from an experiment designed using kinetic theory that agreed with 
Einstein’s predictions. Perrin’s experimental method of observing many parti-
cles of different sizes is a classic work, for which he received the Nobel Prize for 
Physics in 1926. His experiment utilized four types of measurements. Each was 
consistent with the atomic theory, and each gave a quantitative determination of 
Avogadro’s number—the first accurate measurements that had been made. Since 
1908 the atomic theory of matter has been accepted by practically everyone.

1.6  Unresolved Questions of 1895
and New Horizons

We choose 1895 as a convenient time to separate the periods of classical and 
modern physics, although this is an arbitrary choice based on discoveries made 
in 1895– 1897. The thousand or so physicists living in 1895 were rightfully proud 
of the status of their profession. The precise experimental method was firmly 
established. Theories were available that could explain many observed phenom-
ena. In large part, scientists were busy measuring and understanding such physi-
cal parameters as specific heats, densities, compressibility,  resistivity, indices of 
refraction, and permeabilities. The pervasive feeling was that, given enough time, 
everything in nature could be understood by applying the careful thinking and 
experimental techniques of physics. The field of mechanics was in particularly 
good shape, and its application had led to the stunning successes of the kinetic 
theory of gases and statistical thermodynamics.

In hindsight we can see now that this euphoria of success applied only to 
the macroscopic world. Objects of human dimensions such as automobiles, 
steam engines, airplanes, telephones, and electric lights either existed or were 
soon to appear and were triumphs of science and technology. However, the 
atomic theory of matter was not universally accepted, and what made up an 
atom was purely conjecture. The structure of matter was unknown.

There were certainly problems that physicists could not resolve. Only a few 
of the deepest thinkers seemed to be concerned with them. Lord Kelvin, in a 
speech in 1900 to the Royal Institution, referred to “two clouds on the horizon.” 
These were the electromagnetic medium and the failure of classical physics to 
explain blackbody radiation. We mention these and other problems here. Their 
solutions were soon to lead to two of the greatest breakthroughs in human 
thought ever recorded—the theories of quantum physics and of relativity.

Overwhelming evidence 
of atomic theory

Experiment and reasoning

Clouds on the horizon
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16 Chapter 1 The Birth of Modern Physics

William Thomson (Lord Kelvin, 
1824– 1907) was born in  Belfast, 
Ireland, and at age 10 entered the 
University of Glasgow in Scotland 
where his father was a professor 
of mathematics. He gradu ated 
from the University of Cambridge 
and, at age 22, accepted the chair 
of natural philosophy (later called 
physics) at the University of 
Glasgow, where he fin ished his 
illustrious 53-year career, finally 
resigning in 1899 at age 75. Lord 
Kelvin’s contributions to nine-
teenth-century science were far 
reaching, and he made contribu-
tions in electricity, magnetism, 
thermodynamics, hydrodynam-
ics, and geophysics. He was in-
volved in the successful laying of 
the transatlantic cable. He was 
arguably the preeminent scientist 
of the latter part of the nineteenth 
century. He was particularly well 
known for his prediction of the 
Earth’s age, which would later 
turn out to be inaccurate (see 
Chapter 12). 

Electromagnetic Medium. The waves that were well known and understood by 
physicists all had media in which the waves propagated. Water waves traveled in 
water, and sound waves traveled in any material. It was natural for nineteenth-
century physicists to assume that electromagnetic waves also traveled in a 
medium, and this medium was called the ether. Several experiments, the most 
notable of which were done by Michelson, had sought to detect the ether 
without success. An extremely careful experiment by Michelson and Morley in 
1887 was so sensitive, it should have revealed the effects of the ether. Subsequent 
experiments to check other possibilities were also negative. In 1895 some 
physicists were concerned that the elusive ether could not be detected. Was there 
an alternative explanation?

Electrodynamics. The other difficulty with Maxwell’s electromagnetic theory 
had to do with the electric and magnetic fields as seen and felt by moving bodies. 
What appears as an electric field in one reference system may appear as a 
magnetic field in another system moving with respect to the first. Although the 
relationship between electric and magnetic fields seemed to be understood by 
using Maxwell’s equations, the equations do not keep the same form under a 
Galilean transformation [see Equations (2.1) and (2.2)], a situation that 
concerned both Hertz and Lorentz. Hertz unfortunately died in 1894 at the 
young age of 36 and never experienced the modern physics revolution. The 
Dutch physicist Hendrik Lorentz (1853– 1928), on the other hand, proposed a 
radical idea that solved the electrodynamics problem: space was contracted 
along the direction of motion of the body. George FitzGerald in Ireland 
independently proposed the same concept. The Lorentz-FitzGerald hypothesis, 
proposed in 1892, was a precursor to Einstein’s theory advanced in 1905 (see 
Chapter 2).

Blackbody Radiation. In 1895 thermodynamics was on a strong footing; it had 
achieved much success. One of the interesting experiments in thermodynamics 
concerns an object, called a blackbody, that absorbs the entire spectrum of 
electromagnetic radiation incident on it. An enclosure with a small hole serves as 
a blackbody, because all the radiation entering the hole is absorbed. A blackbody 
also emits radiation, and the emission spectrum shows the electro magnetic power 
emitted per unit area. The radiation emitted covers all frequencies, each with its 
own intensity. Precise measurements were carried out to determine the spectrum 
of blackbody radiation, such as that shown in Figure 1.8. Blackbody radiation 
was a fundamental issue, because the emission spectrum is independent of the 
body itself—it is characteristic of all blackbodies.

Many physicists of the period—including Kirchhoff, Stefan, Boltzmann, 
Rubens, Pringsheim, Lummer, Wien, Lord Rayleigh, Jeans, and Planck—had 
worked on the problem. It was possible to understand the spectrum both at the 
low-frequency end and at the high-frequency end, but no single theory could 
account for the entire spectrum. When the most modern theory of the day (the 
equi partition of energy applied to standing waves in a cavity) was applied to the 
problem, the result led to an infinite emissivity (or energy density) for high fre-
quencies. The failure of the theory was known as the “ultraviolet catastrophe.” 
The solution of the problem by Max Planck in 1900 would shake the very foun-
dations of physics.

Ultraviolet catastrophe: 
infinite emissivity
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Figure 1.8 The blackbody spec-
trum, showing the emission spec-
trum of radiation emitted from a 
blackbody as a function of the ra-
diation wavelength. Different 
curves are produced for different 
temperatures, but they are inde-
pendent of the type of blackbody 
cavity. The intensity peaks at lmax.

On the Horizon
During the years 1895– 1897 there were four discoveries that were all going to 
require deeper understanding of the atom. The first was the discovery of x rays 
by the German physicist Wilhelm Röntgen (1845– 1923) in November 1895. Next 
came the accidental discovery of radioactivity by the French physicist Henri Bec-
querel (1852– 1908), who in February 1896 placed uranium salt next to a care-
fully wrapped photographic plate. When the plate was developed, a silhouette of 
the uranium salt was evident—indicating the presence of a very penetrating ray.

The third discovery, that of the electron, was actually the work of several 
physicists over a period of years. Michael Faraday, as early as 1833, observed a gas 
discharge glow—evidence of electrons. Over the next few years, several scientists 
detected evidence of particles, called cathode rays, being emitted from charged 
cathodes. In 1896 Perrin proved that cathode rays were negatively charged. The 
discovery of the electron, however, is generally credited to the British physicist 
J. J. Thomson (1856– 1940), who in 1897 isolated the electron (cathode ray) and 
measured its velocity and its ratio of charge to mass.

The final important discovery of the period was made by the Dutch physicist 
Pieter Zeeman (1865– 1943), who in 1896 found that a single spectral line was 
sometimes separated into two or three lines when the sample was placed in a 
magnetic field. The (normal) Zeeman effect was quickly explained by Lorentz 
as the result of light being emitted by the motion of electrons inside the atom. 
Zeeman and Lorentz showed that the frequency of the light was affected by the 
magnetic field according to the classical laws of electromagnetism.

The unresolved issues of 1895 and the important discoveries of 1895– 1897 
bring us to the subject of this book, Modern Physics. In 1900 Max Planck completed 
his radiation law, which solved the blackbody problem but required that energy be 
quantized. In 1905 Einstein presented his three important papers on Brownian 
motion, the photoelectric effect, and special relativity. While the work of Planck 
and Einstein may have solved the problems of the nineteenth-century physicists, 
they broadened the horizons of physics and have kept physicists active ever since.

Discovery of x rays

Discovery of radioactivity

Discovery of the electron

Discovery of the 
Zeeman effect
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18 Chapter 1 The Birth of Modern Physics

S u m m a r y

Physicists of the 1890s felt that almost anything in nature 
could be explained by the application of careful experimen-
tal methods and intellectual thought. The application of 
mechanics to the kinetic theory of gases and statistical ther-
modynamics, for example, was a great success.

The particle viewpoint of light had prevailed for over a 
hundred years, mostly because of the weakly held belief of 
the great Newton, but in the early 1800s the nature of light 
was resolved in favor of waves. In the 1860s Maxwell showed 
that his electromagnetic theory predicted a much wider 
frequency range of electromagnetic radiation than the visi-
ble optical phenomena. In the twentieth century, the ques-
tion of waves versus particles was to reappear.

The conservation laws of energy, momentum, angular 
momentum, and charge are well established. The three 
fundamental forces are gravitational, electroweak, and 
strong. Over the years many forces have been unified into 
these three. Physicists are actively pursuing attempts to unify 
these three forces into only two or even just one single fun-
damental force.

The atomic theory of matter assumes atoms are the 
small est unit of matter that is identified with a characteristic 
element. Molecules are composed of atoms, which can be 
from different elements. The kinetic theory of gases as-
sumes the atomic theory is correct, and the development of 
the two theories proceeded together. The atomic theory of 
matter was not fully accepted until around 1910, by which 
time Einstein had explained Brownian motion and Perrin 
had published overwhelming experimental evidence.

The year 1895 saw several outstanding problems that 
seemed to worry only a few physicists. These problems in-
cluded the inability to detect an electromagnetic medium, 
the difficulty in understanding the electrodynamics of mov-
ing bodies, and blackbody radiation. Four important discov-
eries during the period 1895– 1897 were to signal the atomic 
age: x rays, radioactivity, the electron, and the splitting of 
spectral lines (Zeeman effect). The understanding of these 
problems and discoveries (among others) is the object of 
this book on modern physics.
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One of the great theories of physics appeared early in the twentieth century 
when Albert Einstein presented his special theory of relativity in 1905. We 
learned in introductory physics that Newton’s laws of motion must be measured 
relative to some reference frame. A reference frame is called an inertial frame if 
Newton’s laws are valid in that frame. If a body subject to no net external force 
moves in a straight line with constant velocity, then the coordinate system at-
tached to that body defi nes an inertial frame. If Newton’s laws are valid in one 
reference frame, then they are also valid in a reference frame moving at a uni-
form velocity relative to the first system. This is known as the Newtonian prin-
ciple of relativity or Galilean invariance.

Newton showed that it was not possible to determine absolute motion in 
space by any experiment, so he decided to use relative motion. In addition, the 
Newtonian concepts of time and space are completely separable. Consider two 
inertial reference frames, K and K!, that move along their x and x œ axes, respec-
tively, with uniform relative velocity v  as shown in Figure 2.1. We show system K! 
moving to the right with velocity v  with respect to system K, which is fixed or 

Inertial frame

Galilean invariance

C H A P T E R

2

19

Special Theory of Relativity

It was found that there was no displacement of the interference fringes, 
so that the result of the experiment was negative and would, therefore, 
show that there is still a difficulty in the theory itself. . . .

Albert Michelson, Light Waves and Their Uses, 1907

K

K′

O′
O

y ′y

x ′

x

z ′
z

v

Figure 2.1 Two inertial systems 
are moving with relative speed v 
along their x axes. We show the 
system K at rest and the system K! 
moving with speed v relative to 
the system K.
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20 Chapter 2 Special Theory of Relativity

stationary somewhere. One result of the relativity theory is that there are no 
fixed, absolute frames of reference. We use the term fixed to refer to a system that 
is fixed on a particular object, such as a planet, star, or spaceship that itself is 
moving in space. The transformation of the coordinates of a point in one system 
to the other system is given by

  x œ " x # vt

  y œ " y (2.1)

  z œ " z 

Similarly, the inverse transformation is given by

  x " x œ $ vt

  y " y œ (2.2)

  z " z œ

where we have set t " t œ  because Newton considered time to be absolute. Equa-
tions (2.1) and (2.2) are known as the Galilean transformation. Newton’s laws of 
motion are invariant under a Galilean transformation; that is, they have the same 
form in both systems K and K!.

In the late nineteenth century Albert Einstein was concerned that although 
Newton’s laws of motion had the same form under a Galilean transformation, 
Maxwell’s equations did not. Einstein believed so strongly in Maxwell’s equa-
tions that he showed there was a significant problem in our understanding of 
the Newtonian principle of relativity. In 1905 he published ideas that rocked the 
very foundations of physics and science. He proposed that space and time are 
not separate and that Newton’s laws are only an approximation. This special 
theory of relativity and its ramifications are the subject of this chapter. We begin 
by presenting the experimental situation historically—showing why a problem 
existed and what was done to try to rectify the situation. Then we discuss 
Einstein’s two postulates on which the special theory is based. The interrelation 
of space and time is discussed, and several amazing and remarkable predictions 
based on the new theory are shown.

As the concepts of relativity became used more often in everyday research 
and development, it became essential to understand the transformation of mo-
mentum, force, and energy. Here we study relativistic dynamics and the relation-
ship between mass and energy, which leads to one of the most famous equations 
in physics and a new conservation law of mass-energy. Finally, we return to elec-
tromagnetism to investigate the effects of relativity. We learn that Maxwell’s 
equations don’t require change, and electric and magnetic effects are relative, 
depending on the observer. We leave until Chapter 15 our discussion of Einstein’s 
general theory of relativity.

2.1  The Apparent Need for Ether
Thomas Young, an English physicist and physician, performed his famous ex-
periments on the interference of light in 1802. A decade later, the French physi-
cist and engineer Augustin Fresnel published his calculations showing the de-
tailed understanding of interference, diffraction, and polarization. Because all 
known waves (other than light) require a medium in which to propagate (water 
waves have water, sound waves have, for example, air, and so on), it was naturally 

Galilean transformation
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   2.2 The Michelson-Morley Experiment 21

assumed that light also required a medium, even though light was apparently 
able to travel in vacuum through outer space. This medium was called the lu mi -
nif er ous ether or just ether for short, and it must have some amazing properties. 
The ether had to have such a low density that planets could pass through it, 
seemingly for eternity, with no apparent loss of orbit position. Its elasticity must 
be strong enough to pass waves of incredibly high speeds!

The electromagnetic theory of light (1860s) of the Scottish mathematical 
physicist James Clerk Maxwell shows that the speed of light in different media 
depends only on the electric and magnetic properties of matter. In vacuum, the 
speed of light is given by v " c " 1 /1m0P0, where m0 and P0 are the permeability 
and permittivity of free space, respectively. The properties of the ether, as pro-
posed by Maxwell in 1873, must be consistent with electromagnetic theory, and 
the feeling was that to be able to discern the ether’s various properties required 
only a sensitive enough experiment. The concept of ether was well accepted by 
1880.

When Maxwell presented his electromagnetic theory, scientists were so con-
fi dent in the laws of classical physics that they immediately pursued the aspects 
of Maxwell’s theory that were in contradiction with those laws. As it turned out, 
this investigation led to a new, deeper understanding of nature. Maxwell’s equa-
tions predict the velocity of light in a vacuum to be c. If we have a flashbulb go 
off in the moving system K!, an observer in system K! measures the speed of the 
light pulse to be c. However, if we make use of Equation (2.1) to find the relation 
between speeds, we find the speed measured in system K to be c $ v, where v is 
the relative speed of the two systems. However, Maxwell’s equations don’t dif-
ferentiate between these two systems. Physicists of the late nineteenth century 
proposed that there must be one preferred inertial reference frame in which the 
ether was stationary and that in this system the speed of light was c. In the other 
systems, the speed of light would indeed be affected by the relative speed of the 
reference system. Because the speed of light was known to be so enormous, 3 % 
108 m/s, no experiment had as yet been able to discern an effect due to the rela-
tive speed v. The ether frame would in fact be an absolute standard, from which 
other measurements could be made. Scientists set out to find the effects of the 
ether.

2.2  The Michelson-Morley Experiment
The Earth orbits around the sun at a high orbital speed, about 10#4c, so an obvi-
ous experiment is to try to find the effects of the Earth’s motion through the 
ether. Even though we don’t know how fast the sun might be moving through 
the ether, the Earth’s orbital velocity changes signifi cantly throughout the year 
because of its change in direction, even if its orbital speed is nearly constant.

Albert Michelson (1852– 1931) performed perhaps the most significant 
American physics experiment of the 1800s. Michelson, who was the first U.S. citi-
zen to receive the Nobel Prize in Physics (1907), was an ingenious scientist who 
built an extremely precise device called an interferometer, which measures the 
phase difference between two light waves. Michelson used his interferometer to 
detect the difference in the speed of light passing through the ether in different 
directions. The basic technique is shown in Figure 2.2. Initially, it is assumed that 
one of the interferometer arms (AC) is parallel to the motion of the Earth 
through the ether. Light leaves the source S and passes through the glass plate 
at A. Because the back of A is partially silvered, part of the light is reflected, 

The concept of ether

Albert A. Michelson (1852–
 1931) shown at his desk at the 
University of Chicago in 1927. He 
was born in Prussia but came to 
the United States when he was 
two years old. He was educated 
at the U.S. Naval Academy and 
later returned on the faculty. 
Michelson had appointments at 
several American universities in-
cluding the Case School of 
Applied Science, Cleveland, in 
1883; Clark University, Worcester, 
Massachusetts, in 1890; and the 
University of Chicago in 1892 
until his re tirement in 1929. 
During World War I he returned 
to the U.S. Navy, where he devel-
oped a range finder for ships. He 
spent his retirement years in 
Pa sa dena, California, where he 
continued to measure the speed 
of light at Mount Wilson. 
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22 Chapter 2 Special Theory of Relativity

eventually going to the mirror at D, and part of the light travels through A on to 
the mirror at C. The light is reflected at the mirrors C and D and comes back to 
the partially silvered mirror A, where part of the light from each path passes on 
to the telescope and eye at E. The compensator is added at B to make sure both 
light paths pass through equal thicknesses of glass. Interference fringes can be 
found by using a bright light source such as sodium, with the light fi ltered to 
make it monochromatic, and the apparatus is adjusted for maximum intensity of 
the light at E. We will show that the fringe pattern should shift if the apparatus 
is rotated through 90° such that arm AD becomes parallel to the motion of the 
Earth through the ether and arm AC is perpendicular to the motion.

We let the optical path lengths of AC and AD be denoted by /1 and /2, re-
spectively. The observed interference pattern consists of alternating bright and 
dark bands, corresponding to constructive and destructive interference, respec-
tively (Figure 2.3). For constructive interference, the difference between the two 

Ether drift

Partially silvered!
mirror

A
S

B C

Compensator

Optical path length !1

Optical path!
length !2

D

E

Mirror M2

Mirror!
M1

Monochromatic!
light source

v

Figure 2.2 A schematic diagram 
of Michelson’s interferometer ex-
periment. Light of a single wave-
length is partially reflected and 
partially transmitted by the glass 
at A. The light is subsequently 
reflected by mirrors at C and D, 
and, after reflection or transmis-
sion again at A, enters the tele-
scope at E. Interference fringes 
are visible to the observer at E.

Figure 2.3 Interference fringes 
as they would appear in the eye-
piece of the Michelson-Morley 
experiment. Fr
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   2.2 The Michelson-Morley Experiment 23

path lengths (to and from the mirrors) is given by some number of wavelengths, 
21/1 # /2 2 " nl, where l is the wavelength of the light and n is an integer.

The expected shift in the interference pattern can be calculated by deter-
mining the time difference between the two paths. When the light travels from 
A to C, the velocity of light according to the Galilean transformation is c $ v, 
because the ether carries the light along with it. On the return journey from C to 
A the velocity is c # v, because the light travels opposite to the path of the ether. 
The total time for the round-trip journey to mirror M1 is t1:

 t1 "
/1

c $ v
$

/1

c # v "
2c /1

c 2 # v 2 "
2/1

c  a 1
1 # v 2

 /c 2 b
Now imagine what happens to the light that is reflected from mirror M2. If the 
light is pointed directly at point D, the ether will carry the light with it, and the 
light misses the mirror, much as the wind can affect the flight of an arrow. If a 
swimmer (who can swim with speed v2 in still water) wants to swim across a swiftly 
moving river (speed v1), the swimmer must start heading upriver, so that when 
the current carries her downstream, she will move directly across the river. Care-
ful reasoning shows that the swimmer’s velocity is 2v 2

2 # v 1
2 throughout her 

journey (Problem 4). Thus the time t2 for the light to pass to mirror M2 at D and 
back is 

 t2 "
2/22c 2 # v 2

"
2/2

c  
121 # v 2

 /c 2

The time difference between the two journeys &t is

 ¢t " t2 # t1 "
2
c  a /221 # v 2

 /c 2
#

/1

1 # v 2
 /c 2 b  (2.3)

We now rotate the apparatus by 90° so that the ether passes along the length /2 
toward the mirror M2. We denote the new quantities by primes and carry out an 
analysis similar to that just done. The time difference &t œ is now

 ¢t œ " t 2
œ # t 1

œ "
2
c  a /2

1 # v 2
 /c 2 #

/121 # v 2
 /c 2
b  (2.4)

Michelson looked for a shift in the interference pattern when his apparatus was 
rotated by 90°. The time difference is

 ¢t œ # ¢ t "
2
c  a /1 $ /2

1 # v 2
 /c 2 #

/1 $ /221 # v 2
 /c 2
b

Because we know c W v, we can use the binomial expansion* to expand the 
terms involving v2/c 2, keeping only the lowest terms.

 
¢t œ # ¢t "

2
c  1/1 $ /2 2 c a1 $

v 2

c 2 $ pb # a1 $
v 2

2c 2 $ pb d
  !

v 2
 1/1 $ /2 2

c 3  (2.5)

Michelson left his position at the U.S. Naval Academy in 1880 and took his inter-
ferometer to Europe for postgraduate studies with some of Europe’s best physi-

*See Appendix 3 for the binomial expansion.
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24 Chapter 2 Special Theory of Relativity

cists, particularly Hermann Helmholtz in Berlin. After a few false starts he finally 
was able to perform a measurement in Potsdam (near Berlin) in 1881. In order 
to use Equation (2.5) for an estimate of the expected time difference, the value 
of the Earth’s orbital speed around the sun, 3 % 104 m/s, was used. Michelson’s 
apparatus had /1 ! /2 ! / " 1.2 m. Thus Equation (2.5) predicts a time differ-
ence of 8 % 10#17 s. This is an exceedingly small time, but for a visible wavelength 
of 6 % 10#7 m, the period of one wavelength amounts to T " 1/f " l/c " 2 % 
10#15 s. Thus the time period of 8 % 10#17 s represents 0.04 fringes in the inter-
ference pattern. Michelson reasoned that he should be able to detect a shift of 
at least half this value but found none. Although disappointed, Michelson con-
cluded that the hypothesis of the stationary ether must be incorrect.

The result of Michelson’s experiment was so surprising that he was asked by 
several well-known physicists to repeat it. In 1882 Michelson accepted a position 
at the then-new Case School of Applied Science in Cleveland. Together with 
Edward Morley (1838– 1923), a professor of chemistry at nearby Western Re-
serve College who had become interested in Michelson’s work, he put together 
the more sophisticated experiment shown in Figure 2.4. The new experiment 
had an optical path length of 11 m, created by reflecting the light for eight 
round trips. The new apparatus was mounted on soapstone that floated on mer-
cury to eliminate vibrations and was so effective that Michelson and Morley be-
lieved they could detect a fraction of a fringe shift as small as 0.005. With their 
new apparatus they expected the ether to produce a shift as large as 0.4 of a 
fringe. They reported in 1887 a null result —no effect whatsoever! The ether 

Michelson in Europe

Null result of Michelson-
Morley experiment

10
3

4
1 2

Mirrors Mirrors

Mirrors

Mirrors

Mirrors

Adjustable!
mirror

Glass!
compensator

Partly!
silvered!
mirror

Light!
source

Glass!
compensator

Partly!
silvered!
mirrorAdjustable!

mirror

Light!
source

Telescope

Stone

Lens

Telescope

(a) (b)

Figure 2.4 An adaptation of the Michelson and Morley 1887 experiment taken from their publi-
cation [A. A. Michelson and E. M. Morley, Philosophical Magazine 190, 449 (1887)]. (a) A perspec-
tive view of the apparatus. To reduce vibration, the experiment was done on a massive soapstone, 
1.5 m square and 0.3 m thick. This stone was placed on a wooden float that rested on mercury in-
side the annular piece shown underneath the stone. The entire apparatus rested on a brick pier. 
(b) The incoming light is focused by the lens and is both transmitted and reflected by the partly sil-
vered mirror. The adjustable mirror allows fine adjustments in the interference fringes. The stone 
was rotated slowly and uniformly on the mercury to look for the interference effects of the ether.
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   2.2 The Michelson-Morley Experiment 25

does not seem to exist. It is this famous experiment that has become known as 
the Michelson-Morley experiment.

The measurement so shattered a widely held belief that many suggestions 
were made to explain it. What if the Earth just happened to have a zero mo-
tion through the ether at the time of the experiment? Michelson and Morley 
repeated their experiment during night and day and for different seasons 
throughout the year. It is unlikely that at least sometime during these many 
experiments, the Earth would not be moving through the ether. Michelson and 
Morley even took their experiment to a mountaintop to see if the effects of the 
ether might be different. There was no change.

Of the many possible explanations of the null ether measurement, the one 
taken most seriously was the ether drag hypothesis. Some scientists proposed that 
the Earth somehow dragged the ether with it as the Earth rotates on its own axis 
and revolves around the sun. However, the ether drag hypothesis contradicts 
results from several experiments, including that of stellar aberration noted by the 
British astronomer James Bradley in 1728. Bradley noticed that the apparent 
position of the stars seems to rotate in a circular motion with a period of one 
year. The angular diameter of this circular motion with respect to the Earth is 
41 seconds of arc. This effect can be understood by an analogy. From the view-
point of a person sitting in a car during a rainstorm, the raindrops appear to fall 
vertically when the car is at rest but appear to be slanted toward the windshield 
when the car is moving forward. The same effect occurs for light coming from 
stars directly above the Earth’s orbital plane. If the telescope and star are at rest 
with respect to the ether, the light enters the telescope as shown in Figure 2.5a. 
However, because the Earth is moving in its orbital motion, the apparent posi-
tion of the star is at an angle u as shown in Figure 2.5b. The telescope must actu-
ally be slanted at an angle u to observe the light from the overhead star. During 
a time period t the starlight moves a vertical distance c t while the telescope 
moves a horizontal distance vt, so that the tangent of the angle u is

 tan u "
vt
ct

"
v
c

Ether drag

Stellar aberration

Figure 2.5 The effect of stellar aberration. (a) If a telescope is at rest, light from a distant star 
will pass directly into the telescope. (b) However, if the telescope is traveling at speed v (because it 
is fixed on the Earth, which has a motion about the sun), it must be slanted slightly to allow the 
starlight to enter the telescope. This leads to an apparent circular motion of the star as seen by the 
telescope, as the motion of the Earth about the sun changes throughout the solar year.

v " 0 v

u

(a) (b)

ct

vt

v
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26 Chapter 2 Special Theory of Relativity

The orbital speed of the Earth is about 3 % 104 m/s; therefore, the angle u is 
10#4 rad or 20.6 seconds of arc, with a total opening of 2u " 41 s as the Earth 
rotates—in agreement with Bradley’s observation. The aberration reverses itself 
over the course of six months as the Earth orbits about the sun, in effect giving a 
circular motion to the star’s position. This observation is in disagreement with the 
hypothesis of the Earth dragging the ether. If the ether were dragged with the Earth, 
there would be no need to tilt the telescope! The experimental observation of stellar 
aberration together with the null result of the Michelson and Morley experiment is 
enough evidence to refute the suggestions that the ether exists. Many other experi-
mental observations have now been made that also confirm this conclusion.

The inability to detect the ether was a serious blow to reconciling the invari-
ant form of the electromagnetic equations of Maxwell. There seems to be no 
single reference inertial system in which the speed of light is actually c. H. A. 
Lorentz and G. F. FitzGerald suggested, apparently independently, that the re-
sults of the Michelson-Morley experiment could be understood if length is con-
tracted by the factor 21 # v 2

 /c 2 in the direction of motion, where v is the speed 
in the direction of travel. For this situation, the length /1, in the direction 
of motion, will be contracted by the factor 21 # v 2

 /c 2, whereas the length /2, 
perpendicular to v, will not. The result in Equation (2.3) is that t1 will have the 
extra factor21 # v 2

 /c 2, making &t precisely zero as determined experimentally 
by Michelson. This contraction postulate, which became known as the Lorentz-
FitzGerald contraction, was not proven from first principles using Maxwell’s equa-
tions, and its true significance was not understood for several years until Einstein 
presented his explanation. An obvious problem with the Lorentz-FitzGerald 
contraction is that it is an ad hoc assumption that cannot be directly tested. Any 
mea suring device would presumably be shortened by the same factor.

2.3  Einstein’s Postulates
At the turn of the twentieth century, the Michelson-Morley experiment had laid 
to rest the idea of finding a preferred inertial system for Maxwell’s equations, yet 
the Galilean transformation, which worked for the laws of mechanics, was invalid 
for Maxwell’s equations. This quandary represented a turning point for physics.

Albert Einstein (1879– 1955) was only two years old when Michelson reported 
his first null measurement for the existence of the ether. Einstein said that he 
began thinking at age 16 about the form of Maxwell’s equations in moving iner-
tial systems, and in 1905, when he was 26 years old, he published his startling 
proposal* about the principle of relativity, which he believed to be fundamen-
tal. Working without the benefit of discussions with colleagues outside his small 
circle of friends, Einstein was apparently unaware of the interest concerning the 
null result of Michelson and Morley. † Einstein instead looked at the problem in 
a more formal manner and believed that Maxwell’s equations must be valid in 

Albert Einstein (1879– 1955), 
shown here sailing on Long 
Island Sound, was born in 
Germany and studied in Munich 
and Zurich. After having difficulty 
finding a position, he served 
seven years in the Swiss Patent 
Office in Bern (1902– 1909), 
where he did some of his best 
work. He obtained his doctorate 
at the University of Zu rich in 
1905. His fame quickly led to 
appointments in Zurich, Prague, 
back to Zurich, and then to Berlin 
in 1914. In 1933, after Hitler 
came to power, Einstein left for 
the Institute for Advanced Study 
at Princeton University, where he 
became a U.S. citizen in 1940 
and remained until his death in 
1955. Einstein’s total contribu-
tions to physics are rivaled only 
by those of Isaac Newton.

*In one issue of the German journal Annalen der Physik 17, No. 4 (1905), Einstein published three 
remarkable papers. The first, on the quantum properties of light, explained the photoelectric effect; 
the second, on the statistical properties of molecules, included an explanation of Brownian motion; 
and the third was on special relativity. All three papers contained predictions that were subsequently 
confirmed experimentally.

†The question of whether Einstein knew of Michelson and Morley’s null result before he produced 
his special theory of relativity is somewhat uncertain. For example, see J. Stachel, “Einstein and Ether 
Drift Experiments,” Physics Today (May 1987), p. 45.

AI
P/

Em
ili

o 
Se

gr
è 

Vi
su

al
 A

rc
hi

ve
s.

03721_ch02_019-083.indd   2603721_ch02_019-083.indd   26 9/29/11   9:28 AM9/29/11   9:28 AM



   2.3 Einstein’s Postulates 27

all inertial frames. With piercing insight and genius, Einstein was able to bring 
together seemingly inconsistent results concerning the laws of mechanics and 
electromagnetism with two postulates (as he called them; today we would call 
them laws). These postulates are

1.  The principle of relativity: The laws of physics are the same in all inertial 
systems. There is no way to detect absolute motion, and no preferred 
inertial system exists.

2.  The constancy of the speed of light: Observers in all inertial systems mea-
sure the same value for the speed of light in a vacuum.

The first postulate indicates that the laws of physics are the same in all coor-
dinate systems moving with uniform relative motion to each other. Einstein 
showed that postulate 2 actually follows from the first one. He returned to the 
principle of relativity as espoused by Newton. Although Newton’s principle re-
ferred only to the laws of mechanics, Einstein expanded it to include all laws of 
physics—including those of electromagnetism. We can now modify our previous 
definition of inertial frames of reference to be those frames of reference in which all 
the laws of physics are valid.

Einstein’s solution requires us to take a careful look at time. Return to the two 
systems of Figure 2.1 and remember that we had previously assumed that t " t œ. We 
assumed that events occurring in system K! and in system K could easily be syn-
chronized. Einstein realized that each system must have its own observers with 
their own clocks and metersticks. An event in a given system must be specified by stat-
ing both its space and time coordinates. Consider the flashing of two bulbs fixed in 
system K as shown in Figure 2.6a. Mary, in system K! (the Moving system) is be-
side Frank, who is in system K (the Fixed system), when the bulbs flash. As seen 
in Figure 2.6b the light pulses travel the same distance in system K and arrive at 
Frank simultaneously. Frank sees the two flashes at the same time. However, the 
two light pulses do not reach Mary simultaneously, because system K! is moving 
to the right, and she has moved closer to the bulb on the right by the time the 
flash reaches her. The light flash coming from the left will reach her at some 
later time. Mary thus determines that the light on the right fl ashed before the 
one on the left, because she is at rest in her frame and both fl ashes approach her 

Einstein’s two postulates

Inertial frames of 
reference revisited

Simultaneity

v

0

K′

Mary

$1 m#1 m

0

FrankLight!
flash

Light!
flash

$1 m#1 m

0

K′

KK

Mary

$1 m#1 m

0

(a) (b)

Frank

$1 m#1 m

v Figure 2.6 The problem of si-
multaneity. Flashbulbs positioned 
in system K at one meter on ei-
ther side of Frank go off simulta-
neously in (a). Frank indeed sees 
both flashes simultaneously in 
(b). However, Mary, at rest in sys-
tem K! moving to the right with 
speed v, does not see the flashes 
simultaneously despite the fact 
that she was alongside Frank 
when the flashbulbs went off. 
During the finite time it took 
light to travel the one meter, 
Mary has moved slightly, as shown 
in exaggerated form in (b).
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28 Chapter 2 Special Theory of Relativity

at speed c. We conclude that

Two events that are simultaneous in one reference frame (K) are not necessarily 
simultaneous in another reference frame (K œ) moving with respect to the first frame.

We must be careful when comparing the same event in two systems moving 
with respect to one another. Time comparison can be accomplished by sending 
light signals from one observer to another, but this information can travel only 
as fast as the finite speed of light. It is best if each system has its own observers 
with clocks that are synchronized. How can we do this? We place observers with 
clocks throughout a given system. If, when we bring all the clocks together at one 
spot at rest, all the clocks agree, then the clocks are said to be synchronized. 
However, we have to move the clocks relative to each other to reposition them, 
and this might affect the synchronization. A better way would be to flash a bulb 
half way between each pair of clocks at rest and make sure the pulses arrive simul-
taneously at each clock. This will require many measurements, but it is a safe way 
to synchronize the clocks. We can determine the time of an event occurring far 
away from us by having a colleague at the event, with a clock fixed at rest, mea-
sure the time of the particular event, and send us the results, for example, by 
telephone or even by mail. If we need to check our clocks, we can always send 
light signals to each other over known distances at some predetermined time.

In the next section we derive the correct transformation, called the Lorentz 
transformation, that makes the laws of physics invariant between inertial frames 
of reference. We use the coordinate systems described by Figure 2.1. At t " t œ " 
0, the origins of the two coordinate systems are coincident, and the system K! is 
traveling along the x and x œ axes. For this special case, the Lorentz transforma-
tion equations are

  x œ "
x # vt21 # v 2

 /c 2

  y œ " y  
(2.6)

  z œ " z

   t œ "
t # 1vx /c 2 221 # v 2

 /c 2

We commonly use the symbols b and the relativistic factor g to represent two lon-
ger expressions:

  b "
v
c  (2.7)

  g "
121 # v 2

 /c 2
 (2.8)

which allows the Lorentz transformation equations to be rewritten in compact 
form as

  x œ " g 1x # bct 2
  y œ " y  

(2.6)
  zœ " z

  t œ " g 1t # bx /c 2
Note that g ' 1 (g " 1 when v " 0).

Synchronization of clocks

Lorentz transformation 
equations

Relativistic factor
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   2.4 The Lorentz Transformation 29

2.4  The Lorentz Transformation
In this section we use Einstein’s two postulates to find a transformation between 
inertial frames of reference such that all the physical laws, including Newton’s 
laws of mechanics and Maxwell’s electrodynamics equations, will have the same 
form. We use the fixed system K and moving system K! of Figure 2.1. At t " t œ " 
0 the origins and axes of both systems are coincident, and system K! is moving to 
the right along the x axis. A flashbulb goes off at the origins when t " t œ " 0. 
According to postulate 2, the speed of light will be c in both systems, and the 
wavefronts observed in both systems must be spherical and described by

  x 2 $ y2 $ z2 " c 2t 2  (2.9a)

  x œ2 $ yœ2 $ zœ 2 " c 2t œ 2 (2.9b)

These two equations are inconsistent with a Galilean transformation because a 
wavefront can be spherical in only one system when the second is moving at 
speed v with respect to the first. The Lorentz transformation requires both systems 
to have a spherical wavefront centered on each system’s origin.

Another clear break with Galilean and Newtonian physics is that we do not 
assume that t " t œ. Each system must have its own clocks and metersticks as indi-
cated in a two-dimensional system in Figure 2.7. Because the systems move only 
along their x axes, observers in both systems agree by direct observation that

  yœ " y

 zœ " z

We know that the Galilean transformation x œ " x # vt is incorrect, but what is 
the correct transformation? We require a linear transformation so that each 
event in system K corresponds to one, and only one, event in system K!. The 
simplest linear transformation is of the form

 x œ " g 1x # vt 2  (2.10)

We will see if such a transformation suffices. The parameter g cannot depend on 
x or t because the transformation must be linear. The parameter g must be close 
to 1 for v V c in order for Newton’s laws of mechanics to be valid for most of 
our measurements. We can use similar arguments from the standpoint of an 
observer stationed in system K! to obtain an equation similar to Equation (2.10).

 x " gœ1x œ $ vt œ 2  (2.11)

Because postulate 1 requires that the laws of physics be the same in both reference 
systems, we demand that g! " g. Notice that the only difference between Equa-
tions (2.10) and (2.11) other than the primed and unprimed quantities being 
switched is that v S #v, which is reasonable because according to the observer in 
each system, the other observer is moving either forward or backward.

According to postulate 2, the speed of light is c in both systems. Therefore, 
in each system the wavefront of the flashbulb light pulse along the respective x 
axes must be described by x " ct and x œ " ct œ, which we substitute into Equations 
(2.10) and (2.11) to obtain

 ct œ " g 1ct # vt 2  (2.12a)

and

 ct " g 1ct œ $ vt œ 2  (2.12b)

Figure 2.7 In order to make 
sure accurate event measure-
ments can be obtained, synchro-
nized clocks and uniform measur-
ing sticks are placed throughout a 
system.
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30 Chapter 2 Special Theory of Relativity

We divide each of these equations by c and obtain

 t œ " gt a1 #
v
c b  (2.13)

and

 t " gt œ a1 $
v
c b  (2.14)

We substitute the value of t from Equation (2.14) into Equation (2.13).

 t œ " g2t œ a1 #
v
c b a1 $

v
c b  (2.15)

We solve this equation for g2 and obtain

 g2 "
1

1 # v 2
 /c 2

or

 g "
121 # v 2

 /c 2
 (2.16)

In order to fi nd a transformation for time t!, we rewrite Equation (2.13) as

t! " g a t #
vt
c b

We substitute t  "  x/c for the light pulse and fi nd

t! " g a t #
vx
c 2 b "

t # vx/c 221 # b2

We are now able to write the complete Lorentz transformations as

 x œ "
x # vt21 # b2

  yœ " y  
(2.17)

  zœ " z

  t œ "
t # 1vx /c 2 221 # b2

The inverse transformation equations are obtained by replacing v by #v as dis-
cussed previously and by exchanging the primed and unprimed quantities.

  x "
x œ $ vt œ21 # b2

  y " yœ  
(2.18)

  z " zœ

  t "
t œ $ 1vx œ/c 2 221 # b2

Notice that Equations (2.17) and (2.18) both reduce to the Galilean trans-
formation when v V c. It is only for speeds that approach the speed of light 

Inverse Lorentz 
transformation equations
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that the Lorentz transformation equations become significantly different 
from the Galilean equations. In our studies of mechanics we normally do not 
consider such high speeds, and our previous results probably require no cor-
rections. The laws of mechanics credited to Newton are still valid over the 
region of their applicability. Even for a speed as high as the Earth orbiting 
about the sun, 30 km/s, the value of the relativistic factor g is 1.000000005. We 
show a plot of the relativistic parameter g versus speed in Figure 2.8. As a rule 
of thumb, we should consider using the relativistic equations when v/c ( 0.1 
(g ! 1.005).

Finally, consider the implications of the Lorentz transformation. The linear 
transformation equations ensure that a single event in one system is described by 
a single event in another inertial system. However, space and time are not sepa-
rate. In order to express the position of x in system K!, we must use both x œ and 
t œ. We have also found that the Lorentz transformation does not allow a speed 
greater than c ; the relativistic factor g becomes imaginary in this case. We show 
later in this chapter that no object of nonzero mass can have a speed greater 
than c.

2.5  Time Dilation and Length Contraction
The Lorentz transformations have immediate consequences with respect to time 
and length measurements made by observers in different inertial frames. We shall 
consider time and length measurements separately and then see how they are 
related to one another.

Time Dilation
Consider again our two systems K and K! with system K fixed and system K! mov-
ing along the x axis with velocity v  as shown in Figure 2.9a (p. 32). Frank lights 
a sparkler at position x1 in system K. A clock placed beside the sparkler indicates 
the time to be t1 when the sparkler is lit and t2 when the sparkler goes out (Figure 
2.9b). The sparkler burns for time T0, where T0 " t2 # t1. The time difference 
between two events occurring at the same position in a system as measured by a 
clock at rest in the system is called the proper time. We use the subscript zero on 
the time difference T0 to denote the proper time.

Now what is the time as determined by Mary who is passing by (but at rest 
in her own system K!)? All the clocks in both systems have been synchronized 
when the systems are at rest with respect to one another. The two events (spar-
kler lit and then going out) do not occur at the same place according to Mary. 
She is beside the sparkler when it is lit, but she has moved far away from the 
sparkler when it goes out (Figure 2.9b). Her friend Melinda, also at rest in 
system K!, is beside the sparkler when it goes out. Mary and Melinda measure 
the two times for the sparkler to be lit and to go out in system K! as times t œ

1 
and t œ

2. The Lorentz transformation relates these times to those measured in 
system K as

 t 2
œ # t 1

œ "
1t 2 # t1 2 # 1v /c 2 2 1x2 # x1 221 # v 2

 /c 2

In system K the clock is fixed at x1, so x2 # x1 " 0; that is, the two events occur 
at the same position. The time t2 # t1 is the proper time T0, and we denote the 
time difference t œ

2 # t œ
1 " T œ as measured in the moving system K!:

Proper time
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ct
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0!
1!
2!

4!

6!

8!

0! 0.2! 0.4!
v!
c!

0.6! 0.8! 1.0

Figure 2.8 A plot of the rela-
tivistic factor g as a function of 
speed v/c, showing that g be-
comes large quickly as v ap-
proaches c.
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32 Chapter 2 Special Theory of Relativity

 T œ "
T021 # v 2

 /c 2
" gT0  (2.19)

Thus the time interval measured in the moving system K! is greater than the 
time interval measured in system K where the sparkler is at rest. This effect is known 
as time dilation and is a direct result of Einstein’s two postulates. The time mea-
sured by Mary and Melinda in their system K! for the time difference was greater 
than T0 by the relativistic factor g (g ( 1). The two events, sparkler being lit and 
then going out, did not occur at the same position (x!2 ) x!1) in system K! (see 
Figure 2.9b). This result occurs because of the absence of simultaneity. The events 
do not occur at the same space and time coordinates in the two systems. It requires 
three clocks to perform the measurement: one in system K and two in system K!.

The time dilation result is often interpreted by saying that moving clocks run 
slow by the factor g#1, and sometimes this is a useful way to remember the effect. 
The moving clock in this case can be any kind of clock. It can be the time that 
sand takes to pass through an hourglass, the time a sparkler stays lit, the time 
between heartbeats, the time between ticks of a clock, or the time spent in a class 
lecture. In all cases, the actual time interval on a moving clock is greater than the 
proper time as measured on a clock at rest. The proper time is always the small-
est possible time interval between two events.

Each person will claim the clock in the other (moving) system is running 
slow. If Mary had a sparkler in her system K! at rest, Frank (fixed in system K) 
would also measure a longer time interval on his clock in system K because the 
sparkler would be moving with respect to his system.

Time dilation

Moving clocks run slow

System K′

z′ z′

System K

x ′
x2′ x1′!

x1

z

Mary
Melinda

Clock

t1
Clock

(a) (b)

Frank

System K′

System K

x ′
x2′!

t2′!

x1′!

x1
x

x

z

Mary
Melinda

Clock

t2
Clock

Frank

v v

t1′!

Figure 2.9 Frank measures the proper time for the time interval that a sparkler stays lit. His 
clock is at the same position in system K when the sparkler is lit in (a) and when it goes out in (b). 
Mary, in the moving system K!, is beside the sparkler at position x 1

œ  when it is lit in (a), but by the 
time it goes out in (b), she has moved away. Melinda, at position x 2

œ , measures the time in system 
K! when the sparkler goes out in (b).
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The preceding results naturally seem a little strange to us. In relativity we 
often carry out thought (or gedanken from the German word) experiments, be-
cause the actual experiments would be somewhat impractical. Consider the fol-
lowing gedanken experiment. Mary, in the moving system K!, flashes a light at her 
origin along her yœ axis (Figure 2.10). The light travels a distance L, reflects off a 
mirror, and returns. Mary says that the total time for the journey is T 

œ
0 " t œ

2 # t œ
1 

" 2L/c, and this is indeed the proper time, because the clock in K! beside Mary 
is at rest.

What do Frank and other observers in system K measure? Let T be the 
round-trip time interval measured in system K for the light to return to the 
x axis. The light is flashed when the origins are coincident, as Mary passes by 
Frank with relative velocity v. When the light reaches the mirror in the system 
K! at time T/2, the system K! will have moved a distance vT/2 down the x axis. 
When the light is re  flected back to the x axis, Frank will not even see the 
light return, because it will return a distance vT away, where another observer, 
Fred, is positioned. Because observers Frank and Fred have previously synchro-
nized their clocks, they can still measure the total elapsed time for the light 
to be reflected from the mirror and return. According to observers in the K 
system, the total distance the light travels (as shown in Figure 2.10) is 
22 1vT /2 22 $ L2. And according to postulate 2, the light must travel at the 
speed of light, so the total time interval T measured in system K is 

 T "
distance

speed
"

22 1vT /2 2 2 $ L2

c

As can be determined from above, L " cT œ
0/2, so we have

 T "
22 1vT /2 2 2 $ 1cT 0! /2 22

c

which reduces to

 T "
T0

œ21 # v 2
 /c 2

" gT0
œ

Gedanken experiments

Show that Frank in the fixed system will also determine the 
time dilation result by having the sparkler be at rest in the 
system K!.

Strategy We should be able to proceed similarly to the 
derivation we did before when the sparkler was at rest in 
system K. In this case Mary lights the sparkler in the moving 
system K!. The time interval over which the sparkler is lit is 
given by T 

œ
0 " t œ

2 # t œ
1, and the sparkler is placed at the posi-

tion x œ
1 " x œ

2 so that x œ
2 # x œ

1 " 0. In this case T 
œ
0 is the 

proper time. We use the Lorentz transformation from Equa-

tion (2.18) to determine the time difference T " t2 # t1 as 
measured by the clocks of Frank and his colleagues.

Solution We use Equation (2.18) to find t2 # t1:

  T " t2 # t1 "
1t 2

œ # t 1
œ 2 $ 1v /c 2 2 1x 2

œ # x 1
œ 221 # v 2

 /c 2

  "
T 0

œ21 # v 2
 /c 2

" gT 0
œ

The time interval is still smaller in the system where the 
spark ler is at rest.

 EXAMPLE 2 .1
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34 Chapter 2 Special Theory of Relativity

This is consistent with the earlier result. In this case T ( T 0
œ . The proper time is 

always the shortest time interval, and we find that the clock in Mary’s system K! 
is “running slow.”

It is the year 2150 and the United Nations Space Federation 
has finally perfected the storage of antiprotons for use as 
fuel in a spaceship. (Antiprotons are the antiparticles of 
protons. We discuss antiprotons in Chapter 3.) Preparations 
are under way for a manned spacecraft visit to possible plan-
ets orbiting one of the three stars in the star system Alpha 
Centauri, some 4.30 lightyears away. Provisions are placed 
on board to allow a trip of 16 years’ total duration. How fast 
must the spacecraft travel if the provisions are to last? Ne-
glect the period of acceleration, turnaround, and visiting 
times, because they are negligible compared with the actual 
travel time.

Strategy The time interval as measured by the astronauts 
on the spacecraft can be no longer than 16 years, because 
that is how long the provisions will last. However, from Earth 
we realize that the spacecraft will be moving at a high rela-

tive speed v to us, and that according to our clock in the 
stationary system K, the trip will last T " 2L/v, where L is the 
distance to the star.

Because provisions on board the spaceship will last for 
only 16 years, we let the proper time T 0

œ in system K! be 
16 years. Using the time dilation result, we determine the 
relationship between T, the time measured on Earth, and 
the proper time T œ

0 to be

 T "
2L
v

"
T 0

œ21 # v 2
 /c 2

 (2.20)

We then solve this equation for the required speed v.

Solution A lightyear is a convenient way to measure large 
distances. It is the distance light travels in one year and is 
denoted by ly:

 EXAMPLE 2 .2

System K′
(moving)

y ′!y ′!y ′!

Light!
returns

Light!
reflects

L

Mary

Mirror
System K
(at rest)

Frank Fred

y

L

x

Mirror

x1′! x1′!x1′!

t ′ "t1′ " 0 t2′ " T0′
T0′
2

t "t1 " 0

O1 O2

t2 " TT
2

vT
2

cT
2

cT
2

vT
2

v

Figure 2.10 Mary, in system K!, flashes a light along her yœ axis and measures the proper time T 
œ
0 

" 2L/c for the light to return. In system K Frank will see the light travel partially down his x axis, 
because system K! is moving. Fred times the arrival of the light in system K. The time interval T 
that Frank and Fred measure is related to the proper time by T " gT 

œ
0.
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   2.5 Time Dilation and Length Contraction 35

Length Contraction
Now let’s consider what might happen to the length of objects in relativity. Let an 
observer in each system K and K! have a meterstick at rest in his or her own re-
spective system. Each observer lays the stick down along his or her respective x 
axis, putting the left end at x/ (or x /

œ) and the right end at xr (or x œ
r). Thus, Frank 

in system K measures his stick to be L0 " xr # x/. Similarly, in system K!, Mary 
measures her stick at rest to be L œ

0 " x œ
r # x /

œ  " L0. Every observer measures a 
meterstick at rest in his or her own system to have the same length, namely one 
meter. The length as measured at rest is called the proper length.

Let system K be at rest and system K! move along the x axis with speed v. 
Frank, who is at rest in system K, measures the length of the stick moving in K!. 
The difficulty is to measure the ends of the stick simultaneously. We insist that 
Frank measure the ends of the stick at the same time so that t " tr " t/. The 
events denoted by (x, t) are (x/, t) and (xr, t). We use Equation (2.17) and find

 x r
œ # x /

œ "
1xr # x/ 2 # v 1tr # t/ 221 # v 2

 /c 2

The meterstick is at rest in system K!, so the length x r
œ # x /

œ  must be the proper 
length L œ

0. Denote the length measured by Frank as L " xr # x/. The times tr and 
t/ are identical, as we insisted, so tr # t/ " 0. Notice that the times of measurement 
by Mary in her system, t /

œ  and t œ
r, are not identical. It makes no difference when 

Mary makes the measurements in her own system, because the stick is at rest. How-
ever, it makes a big difference when Frank makes his measurements, because the 
stick is moving with speed v with respect to him. The measurements must be done 
simultaneously! With these results, the previous equation becomes

 L0
œ "

L21 # v 2
 /c 2

" gL

or, because Lœ
0 " L0,

 L " L021 # v 2
 /c 2 "

L0

g
 (2.21)

Notice that L0 ( L, so the moving meterstick shrinks according to Frank. This 
effect is known as length or space contraction and is characteristic of relative 

Proper length

Length contraction

 

 1 ly " a3.00 % 108
  
m
s
b11 year 2 a365  

days
year

ba24  

h
day
ba3600  

s
h
b

 " 9.46 % 1015 m

Note that the distance of one lightyear is the speed of light, 
c, multiplied by the time of one year. The dimension of a 
light year works out to be length. In this case, the result is 
4.30 ly " c(4.30 y) " 4.07 % 1016 m.

We insert the appropriate numbers into Equation (2.20) 
and obtain

 
2 14.30 ly 2 19.46 % 1015 m/ly 2

v
"

16 y21 # v 2
 /c 2

The solution to this equation is v " 0.473c " 1.42 % 108 m/s. 
The time interval as measured on Earth will be gT œ

0 " 18.2 y. 
Notice that the astronauts will age only 16 years (their clocks 
run slow), whereas their friends remaining on Earth will age 
18.2 years. Can this really be true? We shall discuss this ques-
tion again in Section 2.8.
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36 Chapter 2 Special Theory of Relativity

motion. This effect is also sometimes called the Lorentz-FitzGerald contraction be-
cause Lorentz and FitzGerald independently suggested the contraction as a way 
to solve the electrodynamics problem. This effect, like time dilation, is also re-
ciprocal. Each observer will say that the other moving stick is shorter. There is 
no length contraction perpendicular to the relative motion, however, because yœ 
" y and zœ " z. Observers in both systems can check the length of the other me-
terstick placed perpendicular to the direction of motion as the metersticks pass 
each other. They will agree that both metersticks are one meter long.

We can perform another gedanken experiment to arrive at the same result. 
This time we lay the meterstick along the x œ axis in the moving system K! (Figure 
2.11a). The two systems K and K! are aligned at t " t œ " 0. A mirror is placed at 
the end of the meterstick, and a flashbulb goes off at the origin at t " t œ " 0, 
sending a light pulse down the x œ axis, where it is reflected and returned. Mary 
sees the stick at rest in system K! and measures the proper length L0 (which 
should of course be one meter). Mary uses the same clock fixed at x œ " 0 for the 
time measurements. The stick is moving at speed v with respect to Frank in the 
fixed system K. The clocks at x " x œ " 0 both read zero when the origins are 
aligned just when the flashbulb goes off. Notice the situation shown in system K 

According to!
system K′
(moving)

x′!

Mirror

Frank

Light!
returns

Flashbulb!
goes off

According to!
system K!
(fixed)

Light is reflected!
from mirror

0 1 m

t ′!

L0 x
0

vt2

vt1

x!1 x!2 xr1 xr2

t " t2

t " t1

t " 0

Mary

(a) (b)

v

Figure 2.11 (a) Mary, in system K!, flashes a light down her x œ axis along a stick at rest in her 
system of length L0, which is the proper length. The time interval for the light to travel down the 
stick and back is 2L0/c. (b) Frank, in system K, sees the stick moving, and the mirror has moved a 
distance vt1 by the time the light is reflected. By the time the light returns to the beginning of the 
stick, the stick has moved a total distance of vt2. The times can be compared to show that the mov-
ing stick has been length contracted by L " L021 # y2/c 2.
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   2.5 Time Dilation and Length Contraction 37

(Figure 2.11b), where by the time the light reaches the mirror, the entire stick 
has moved a distance vt1. By the time the light has been reflected back to the 
front of the stick again, the stick has moved a total distance vt2. We leave the 
solution in terms of length contraction to Problem 18.

The effect of length contraction along the direction of travel may strongly 
affect the appearances of two- and three-dimensional objects. We see such ob-
jects when the light reaches our eyes, not when the light actually leaves the ob-
ject. Thus, if the objects are moving rapidly, we will not see them as they appear 
at rest. Figure 2.12 shows the appearance of several such objects as they move. 
Note that not only do the horizontal lines become contracted, but the vertical 
lines also become hyperbolas. We show in Figure 2.13 a row of bars moving to 
the right with speed v " 0.9c. The result is quite surprising.

Figure 2.12 In this computer simulation, the rectangular boxes are drawn as if the observer 
were 5 units in front of the near plane of the boxes and directly in front of the origin. The boxes 
are shown at rest on the left. On the right side, the boxes are moving to the right at a speed of v " 
0.8c. The horizontal lines are only length contracted, but notice that the vertical lines become hy-
perbolas. The objects appear to be slightly rotated in space. The objects that are further away from 
the origin appear earlier because they are photographed at an earlier time and because the light 
takes longer to reach the camera (or our eyes). Reprinted with permission from American Journal of Phys-
ics 33, 534 (1965), G. D. Scott and M. R. Viner. © 1965, American Association of Physics Teachers.

A

C
D

B

2 % 2 % 4

B
A

C D

2 % 2 % 4 4 % 4 % 4

4 % 4 % 4
units

At rest At v " 0.8c

Figure 2.13 (a) An array of 
rectangular bars is seen from 
above at rest. (b) The bars are 
moving to the right at v " 0.9c. 
The bars appear to contract and 
rotate. Quoted from P.-K. Hsuing and 
R. H. P. Dunn, Science News 137, 
232 (1990).

(a) (b)
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38 Chapter 2 Special Theory of Relativity

2.6  Addition of Velocities
A spaceship launched from a space station (see Figure 2.14) quickly reaches its 
cruising speed of 0.60c with respect to the space station when a band of asteroids 
is observed straight ahead of the ship. Mary, the commander, reacts quickly and 
orders her crew to blast away the asteroids with the ship’s proton gun to avoid a 
catastrophic collision. Frank, the admiral on the space station, listens with ap-
prehension to the communications because he fears the asteroids may eventu-
ally destroy his space station as well. Will the high-energy protons of speed 0.99c 
be able to successfully blast away the asteroids and save both the spaceship and 

Consider the solution of Example 2.2 from the standpoint 
of length contraction.

Strategy The astronauts have only enough provisions for 
a trip lasting 16 years. Thus they expect to travel for 8 years 
each way. If the star system Alpha Centauri is 4.30 lightyears 
away, it may appear that they need to travel at a velocity of 
0.5c to make the trip. We want to consider this example as if 
the astronauts are at rest. Alpha Centauri will appear to be 
moving toward them, and the distance to the star system is 
length contracted. The distance measured by the astronauts 
will be less than 4.30 ly.

Solution The contracted distance according to the astro-
nauts in motion is 14.30 ly 221 # v 2

 /c 2. The velocity they 
need to make this journey is the contracted distance divided 
by 8 years.

 v "
distance

time
"
14.30 ly 221 # v 2

 /c 2

8 y

If we divide by c, we obtain

  b "
v
c

"
14.30 ly 221 # v 2

 /c 2

c 18 y 2 "
14.30 ly 221 # v 2

 /c 218 ly 2
 8b " 4.3021 # b2

which gives

  b " 0.473

  v " 0.473c

which is just what we found in the previous example. The 
effects of time dilation and length contraction give identical 
results.

 EXAMPLE 2 .3

y y!

x!

x

System K!
at rest

System K!!
!

Space station

Spaceship Proton Asteroid

u!
 u!

v 

v

v v

Figure 2.14 The space station 
is at rest at the origin of system K. 
The spaceship is moving to the 
right with speed v with respect to 
the space station and is in system 
K!. An asteroid is moving to the 
left toward both the spaceship 
and space station, so Mary, the 
commander of the spaceship, or-
ders that the proton gun shoot 
protons to break up the asteroid. 
The speed of the protons is u and 
uœ with respect to systems K and 
K!, respectively.
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   2.6 Addition of Velocities 39

space station? If 0.99c is the speed of the protons with respect to the spaceship, 
what speed will Frank measure for the protons?

We will use the letter u to denote velocity of objects as measured in various 
coordinate systems. In this case, Frank (in the fixed, stationary system K on the 
space station) will measure the velocity of the protons to be u, whereas Mary, the 
commander of the spaceship (the moving system K!), will measure uœ " 0.99c. 
We reserve the letter v to express the velocity of the coordinate systems with re-
spect to each other. The velocity of the spaceship with respect to the space sta-
tion is v " 0.60c.

Newtonian mechanics teaches us that to find the velocity of the protons with 
respect to the space station, we simply add the velocity of the spaceship with respect 
to the space station (0.60c) to the velocity of the protons with respect to the space-
ship (0.99c) to determine the result u " v $ uœ " 0.60c $ 0.99c " 1.59c. However, 
this result is not in agreement with the results of the Lorentz trans formation. We 
use Equation (2.18), letting x be along the direction of motion of the spaceship 
(and high-speed protons), and take the differentials, with the results

  dx " g 1dx œ $ v dt œ 2
  dy " dyœ  

(2.22)
  dz " dzœ

  dt " g 3dt œ $ 1v /c 2 2  dx œ 4
Velocities are defined by ux " dx/dt, uy " dy/dt, uœ

x " dx œ/dt œ, and so on. There-
fore we determine ux by

 ux "
dx
dt

"
g 1dx œ $ v dt œ 2

g 3dt œ $ 1v /c 2 2  dx œ 4 "
ux

œ $ v
1 $ 1v /c 2 2ux

œ  (2.23a)

Similarly, uy and uz are determined to be

  uy "
uy

œ

g 31 $ 1v /c 2 2ux
œ 4  (2.23b)

  uz "
uz

œ

g 31 $ 1v /c 2 2ux
œ 4  (2.23c)

Equations (2.23) are referred to as the Lorentz velocity transformations. Notice 
that although the relative motion of the systems K and K! is only along the x 
direction, the velocities along y and z are affected as well. This contrasts with the 
Lorentz transformation equations, where y " yœ and z " zœ. However, the differ-
ence in velocities is simply ascribed to the transformation of time, which de-
pends on v and x œ. Thus, the transformations for uy and uz depend on v and uœ

x. 
The inverse transformations for uœ

x, uœ
y, and uœ

z can be determined by simply 
switching primed and unprimed variables and changing v to #v. The results are

 ux
œ "

ux # v
1 # 1v /c 2 2ux

  uy
œ "

uy

g 31 # 1v /c 2 2ux 4  (2.24)

  uz
œ "

uz

g 31 # 1v /c 2 2ux 4

Relativistic 
velocity addition
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40 Chapter 2 Special Theory of Relativity

Note that we found the velocity transformation equations for the situation 
corresponding to the inverse Lorentz transformation, Equations (2.18), before 
finding the velocity transformation for Equations (2.17).

What is the correct result for the speed of the protons with respect to the space 
station? We have uœ

x " 0.99c and v " 0.60c, so Equation (2.23a) gives us the result

 ux "
0.990c $ 0.600c

1 $
10.600c 2 10.990c 2

c 2

" 0.997c

where we have assumed we know the speeds to three significant figures. There-
fore, the result is a speed only slightly less than c. The Lorentz transformation 
does not allow a material object to have a speed greater than c. Only massless 
particles, such as light, can have speed c. If the crew members of the spaceship 
spot the asteroids far enough in advance, their reaction times should allow them 
to shoot down the uncharacteristically swiftly moving asteroids and save both the 
spaceship and the space station.

Although no particle with mass can carry energy faster than c, we can imag-
ine a signal being processed faster than c. Consider the following gedanken ex-
periment. A giant floodlight placed on a space station above the Earth revolves 
at 100 Hz, as shown in Figure 2.15. Light spreads out in the radial direction from 
the floodlight at speeds of c. On the surface of the moon, the light beam sweeps 
across at speeds far exceeding c (Problem 36). However, the light itself does not 
reach the moon at speeds faster than c. No energy is associated with the beam of 
light sweeping across the moon’s surface. The energy (and linear momentum) 
is only along the radial direction from the space station to the moon.

Figure 2.15 A floodlight re-
volving at high speeds can sweep 
a light beam across the surface of 
the moon at speeds exceeding c, 
but the speed of the light still 
does not exceed c.

Floodlight

High-speed rotation

Light!
speed " c

Speeds ( c

Moon’s!
surface

Mary, the commander of the spaceship just discussed, is 
holding target practice for junior officers by shooting pro-
tons at small asteroids and space debris off to the side (per-
pendicular to the direction of spaceship motion) as the 
spaceship passes by. What speed will an observer in the 
space station measure for these protons?

Strategy We use the coordinate systems and speeds of the 
spaceship and proton gun as described previously. Let the 
direction of the protons now be perpendicular to the direc-
tion of the spaceship—along the yœ direction. We already 
know in the spaceship’s K! system that uœ

y " 0.99c and uœ
x " 

 EXAMPLE 2 .4
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uœ
z " 0, and that the speed of the K! system (spaceship) with 

respect to the space station is v " 0.60c. We use Equations 
(2.23) to determine ux, uy, and uz and finally the speed u.

Solution To find the speeds in the system K, we first need 
to find !.

 g "
121 # v 2

 /c 2
"

121 # 0.6002
" 1.25

Next we are able to determine the components of u.

  ux 1protons 2 "
0 $ 0.600c31 $ 10.600c 2 10c 2  /c 2 4 " 0.600c

  uy 1protons 2 "
0.990c

1.25 31 $ 10.600c 2 10c 2  /c 2 4 " 0.792c

  uz 1protons 2  "
0

1.25 31 $ 10.600c 2 10c 2  /c 2 4 " 0

  u 1protons 2 " 2u2
x $ u2

y $ u2
z " 2 10.600c 22 $ 10.792c 22

 " 0.994c

We have again assumed we know the velocity components to 
three significant figures. Mary and her junior officers only 
observe the protons moving perpendicular to their motion. 
However, because there are both ux and uy components, 
Frank (on the space station) sees the protons moving at an 
angle with respect to both his x and his y directions.

By the early 1800s experiments had shown that light slows 
down when passing through liquids. A. J. Fresnel suggested 
in 1818 that there would be a partial drag on light by the 
medium through which the light was passing. Fresnel’s sug-
gestion explained the problem of stellar aberration if the 
Earth was at rest in the ether. In a famous experiment in 
1851, H. L. Fizeau measured the “ether” drag coefficient for 
light passing in opposite directions through flowing water. 
Let a moving system K! be at rest in the flowing water and 
let v be the speed of the flowing water with respect to a fixed 
observer in K (see Figure 2.16). The speed of light in the 
water at rest (that is, in system K!) is uœ, and the speed of 
light as measured in K is u. If the index of refraction of the 
water is n, Fizeau found experimentally that

 u " uœ $ a1 #
1
n 2 b v 

which was in agreement with Fresnel’s prediction. This re-
sult was considered an affirmation of the ether concept. The 
factor 1 # 1/n2 became known as Fresnel’s drag coefficient. 
Show that this result can be explained using relativistic ve-
locity addition without the ether concept.

Strategy We note from introductory physics that the ve-
locity of light in a medium of index of refraction n is uœ " 
c/n. We use Equation (2.23a) to solve for u.

Solution We have to calculate the speed only in the x-
direction, so we dispense with the subscripts. We utilize 
Equation (2.23a) to determine

 u "
uœ $ v

1 $ uœv /c 2 "
c /n $ v
1 $ v /nc

"
c
n

 
a1 $

nv
c
b

a1 $
v
nc
b

Because v V c in this case, we can expand the denominator 
(1 $ x)#1 " 1 # x $ p keeping only the lowest term in x " 
v/c. The above equation becomes

  u "
c
n

 a1 $
nv
c
b a1 #

v
nc

$ p b
  "

c
n

 a1 $
nv
c

#
v
nc

$ p b
  "

c
n

$ v #
v
n 2 " uœ $ a1 #

1
n 2 b v

which is in agreement with Fizeau’s experimental result and 
Fresnel’s prediction given earlier. This relativistic cal culation 
is another stunning success of the special theory of relativity. 
There is no need to consider the existence of the ether.

 EXAMPLE 2 .5

Figure 2.16 A stationary sys tem K is fixed on shore, and a mov-
ing system K! floats down the river at speed v. Light emanating 
from a source under water in system K! has speed u, uœ in systems 
K, K!, respectively.

Water!
flowing!
at speed!
v

Fixed observer

O O′

y ′

x ′
u, u′ 

Light

River

y

x

v
K′K
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42 Chapter 2 Special Theory of Relativity

2.7  Experimental Verification
We have used the special theory of relativity to describe some unusual phenom-
ena. The special theory has also been used to make some startling predictions 
concerning length contraction, time dilation, and velocity addition. In this sec-
tion we discuss only a few of the many experiments that have been done to 
confirm the special theory of relativity.

Muon Decay
When high-energy particles called cosmic rays enter the Earth’s atmosphere from 
outer space, they interact with particles in the upper atmosphere (see Figure 
2.17), creating additional particles in a cosmic shower. Many of the particles in the 
shower are p-mesons (pions), which decay into other unstable particles called 
muons. The properties of muons are described later when we discuss nuclear and 
particle physics. Because muons are unstable, they decay according to the radio-
active decay law

 N " N0 expa# 

1ln 2 2 t
t1 /2

b " N0 expa# 

0.693t
t1 /2

b
where N0 and N are the number of muons at times t " 0 and t " t, respectively, 
and t1/2 is the half-life of the muons. This means that in the time period t1/2 half 
of the muons will decay to other particles. The half-life of muons (1.52 % 10#6 s) 
is long enough that many of them survive the trip through the atmosphere to the 
Earth’s surface.

We perform an experiment by placing a muon detector on top of a moun-
tain 2000 m high and counting the number of muons traveling at a speed near 
v " 0.98c (see Figure 2.18a). Suppose we count 103 muons during a given time 
period t0. We then move our muon detector to sea level (see Figure 2.18b), and 
we determine experimentally that approximately 540 muons survive the trip 
without decaying. We ignore any other interactions that may remove muons.

Classically, muons traveling at a speed of 0.98c cover the 2000-m path in 
6.8 % 10#6 s, and according to the radioactive decay law, only 45 muons should 
survive the trip. There is obviously something wrong with the classical calcula-
tion, because we counted a factor of 12 more muons surviving than the classical 
calculation predicts.

Radioactive decay law

Figure 2.17 Much of what we know about muons in cos-
mic rays was learned from balloon flights carrying sophisti-
cated detectors. This balloon is being prepared for launch in 
NASA’s Ultra Long Duration Balloon program for a mission 
that may last up to 100 days. The payload will hang many me-
ters below the balloon. Victor Hess began the first such bal-
loon flights in 1912 (when he discovered cosmic rays), and 
much improved versions are still launched today from all 
over the world to study cosmic rays, the atmosphere, the sun, 
and the universe. Ph
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   2.7 Experimental Verification 43

Because the classical calculation does not agree with the experimental result, 
we should consider a relativistic calculation. The muons are moving at a speed of 
0.98c with respect to us on Earth, so the effects of time dilation will be dramatic. 
In the muon rest frame, the time period for the muons to travel 2000 m (on a 
clock fixed with respect to the mountain) is calculated from Equation (2.19) to be 
(6.8/5.0) % 10#6 s, because g " 5.0 for v " 0.98c. For the time t " 1.36 % 10#6 s, the 
radioactive decay law predicts that 538 muons will survive the trip, in agreement 
with the observations. An experiment similar to this was performed by B. Rossi and 
D. B. Hall* in 1941 on the top of Mount Washington in New Hampshire.

It is useful to examine the muon decay problem from the perspective of an 
observer traveling with the muon. This observer would not measure the distance 
from the top of the 2000-m mountain to sea level to be 2000 m. Rather, this ob-
server would say that the distance is contracted and is only (2000 m)/5.0 " 400 m. 
The time to travel the 400-m distance would be (400 m)/0.98c " 1.36 % 10#6 s ac-
cording to a clock at rest with a muon. Using the radioactive decay law, an ob-
server traveling with the muons would still predict 538 muons to survive. There-
fore, we obtain the identical result whether we consider time dilation or space 
contraction, and both are in agreement with the experiment, thus confirming the 
special theory of relativity.

Atomic Clock Measurement
In an atomic clock, an extremely accurate measurement of time is made using a 
well-defined transition in the 133Cs atom ( f " 9,192,631,770 Hz). In 1971 two 
American phys icists, J. C. Hafele and Richard E. Keating (Figure 2.19), used four 

Muons

Detector

At 2000 m, we!
detect 1000 muons!
in period t0 traveling!
at speed near 0.98c.

Muons

At sea level, we detect!
only 542 muons in the
same time period t0!
traveling at speed!
near 0.98c.

(a) (b)

Figure 2.18 The number of muons detected with speeds near 0.98c is much different (a) on top 
of a mountain than (b) at sea level, because of the muon’s decay. The experimental result agrees 
with our time dilation equation.

*B. Rossi and D. B. Hall, Physical Review 50, 223 (1941). An excellent, though now dated, film recreat-
ing this experiment (Time Dilation—An Experiment with m-mesons by D. H. Frisch and J. H. Smith) is 
available from the Education Development Center, Newton, Mass. See also D. H. Frisch and J. H. 
Smith, American Journal of Physics 31, 342 (1963).
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44 Chapter 2 Special Theory of Relativity

cesium beam atomic clocks to test the time dilation effect. They flew the four 
portable cesium clocks eastward and westward on regularly scheduled commer-
cial jet airplanes around the world and compared the time with a reference 
atomic time scale at rest at the U.S. Naval Observatory in Washington, D.C. 
(Figure 2.20).

The trip eastward took 65.4 hours with 41.2 flight hours, whereas the west-
ward trip, taken a week later, took 80.3 hours with 48.6 flight hours. The com-
parison with the special theory of relativity is complicated by the rotation of the 
Earth and by a gravitational effect arising from the general theory of relativity. 
The actual relativistic predictions and experimental observations for the time 
differences* are

Travel Predicted Observed

Eastward #40 * 23 ns #59 * 10 ns
Westward 275 * 21 ns 273 * 7 ns

A negative time indicates that the time on the moving clock is less than the refer-
ence clock. The moving clocks lost time (ran slower) during the eastward trip, 
but gained time (ran faster) during the westward trip. This occurs because of the 
rotation of the Earth, indicating that the flying clocks ticked faster or slower than 
the reference clocks on Earth. The special theory of relativity is verified within 
the experimental uncertainties.

Figure 2.19 Joseph Hafele and 
Richard Keating are shown un-
loading one of their atomic clocks 
and the associated electronics 
from an airplane in Tel Aviv, Is-
rael, during a stopover in Novem-
ber 1971 on their round-the-
world trip to test special relativity.

Earth’s!
rotation

Earth

N

Eastward

U.S. Naval Observatory!
(Washington, D.C.)

Westward

Figure 2.20 Two airplanes took off (at different times) from Washington, D.C., where the U.S. 
Naval Observatory is located. The airplanes traveled east and west around Earth as it rotated. 
Atomic clocks on the airplanes were compared with similar clocks kept at the observatory to show 
that the moving clocks in the airplanes ran slower.

*See J. C. Hafele and R. E. Keating, Science 177, 166– 170 (1972).
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Velocity Addition
An interesting test of the velocity addition relations was made by T. Alväger and 
colleagues* at the CERN nuclear and particle physics research facility on the bor-
der of Switzerland and France. They used a beam of almost 20-GeV (20 % 109 eV) 
protons to strike a target to produce neutral pions (p0) having energies of more 
than 6 GeV. The p0 (b ! 0.99975) have a very short half-life and soon decay into 
two g rays. In the rest frame of the p0 the two g rays go off in opposite directions. 
The experimenters measured the velocity of the g rays going in the forward direc-
tion in the laboratory (actually 6°, but we will assume 0° for purposes of calculation 
because there is little difference). The Galilean addition of velocities would re-
quire the velocity of the g rays to be u " 0.99975c $ c " 1.99975c, because the 
velocity of g rays is already c. However, the relativistic velocity addition, in which 

Pion decay experiment

In 1985 the space shuttle Challenger flew a cesium clock and 
compared its time with a fixed clock left on Earth. The 
shuttle orbited at approximately 330 km above Earth with a 
speed of 7712 m/s ("17,250 mph). (a) Calculate the ex-
pected time lost per second for the moving clock and com-
pare with the measured result of #295.02 * 0.29 ps/s, 
which includes a predicted effect due to general relativity of 
35.0 * 0.06 ps/s. (b) How much time would the clock lose 
due to special relativity alone during the entire shuttle flight 
that lasted for 7 days?

Strategy This should be a straightforward application of 
the time dilation effect, but we have the complicating fact 
that the space shuttle is moving in a noninertial system (or-
biting around Earth). We don’t want to consider this now, 
so we make the simplifying assumption that the space shut-
tle travels in a straight line with respect to Earth and the two 
events in the calculations are the shuttle passing the starting 
point (launch) and the ending point (landing). We are not 
including the effects of general relativity.

We know the orbital speed of the shuttle with respect to 
Earth, which allows us to determine b and the relativistic fac-
tor g. We let T be the time measured by the clock fixed on 
Earth. Then we can use the time dilation effect given by 
Equation (2.19) to determine the proper time T0

œ measured 
by the clock in the space shuttle. The time difference is &T " 
T # T0

œ. We have T0
œ " T 21 # b2 and &T " T # T0

œ " 

T 11 # 21 # b2 2 . For part (b) we need to find the total 
time lost for the moving clock for 7 days.

Solution (a) We have b " v/c " (7712 m/s)/(2.998 % 
108 m/s) " 2.572 % 10#5. Because b is such a small quan-
tity, we can use a power series expansion of the square root 21 # b2, keeping only the lowest term in b2 for &T.

 ¢T " T c1 # a1 #
b2

2
$ p b d "

b2T
2

Now we have

 
¢T
T

"
b2

2
"

1
2

 12.572 % 10#5 22 " 330.76 % 10#12

In this case &T is positive, which indicates that the space 
shuttle clock lost this fraction of time, so the moving clock 
lost 330.76 ps for each second of motion.

How does this compare with the measured time? The 
total measured result was a loss of 295.02 * 0.29 ps/s, but 
we must add the general relativity prediction of 35.0 * 0.06 
ps/s to the measured value to obtain the result due only to 
special relativity. So the measured special relativity result is 
close to 330.02 ps/s, which differs from our calculated result 
by only 0.2%!

(b) The total time of the seven-day mission was 6.05 % 
105 s, so the total time difference between clocks is (330.76 % 
10#12)(6.05 % 105 s) " 0.2 ms, which is easily detected by 
cesium clocks.

 EXAMPLE 2 .6

*See T. Alväger, F. J. M. Farley, J. Kjellman, and I. Wallin, Physics Letters 12, 260 (1964). See also ar-
ticle by J. M. Bailey, Arkiv Fysik 31, 145 (1966).
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46 Chapter 2 Special Theory of Relativity

v " 0.99975c is the velocity of the p0 rest frame with respect to the laboratory and 
uœ " c is the velocity of the g rays in the rest frame of the p0, predicts the velocity u 
of the g rays measured in the laboratory to be, according to Equation (2.23a),

 u "
c $ 0.99975c

1 $
10.99975c 2 1c 2

c 2

" c

The experimental measurement was accomplished by measuring the time taken 
for the g rays to travel between two detectors placed about 30 m apart and was in 
excellent agreement with the relativistic prediction, but not the Galilean one. We 
again have conclusive evidence of the need for the special theory of relativity.

Testing Lorentz Symmetry
Although we have mentioned only three rather interesting experiments, physi-
cists performing experiments with nuclear and particle accelerators have exam-
ined thousands of cases that verify the correctness of the concepts discussed 
here. Quantum electrodynamics (QED) includes special relativity in its frame-
work, and QED has been tested to one part in 1012.

Lorentz symmetry requires the laws of physics to be the same for all observ-
ers, and Lorentz symmetry is important at the very foundation of our description 
of fundamental particles and forces. Lorentz symmetry, together with the prin-
ciples of quantum mechanics that are discussed in much of the remainder of this 
book, form the framework of relativistic quantum field theory. Many interactions 
that could be added to our best theories of physics (see the Standard Model in 
Chapter 14) are excluded, because they would violate Lorentz symmetry. In just 
the past two decades, physicists have conceived and performed many experi-
ments that test Lorentz symmetry, but no violations have been discovered to 
date. For example, tests done with electrons have shown no violations to one part 
in 1032, with neutrons one part in 1031, and with protons one part in 1027. These 
are phenomenal numbers, but many more experiments are currently underway, 
and more are planned. Several physicists have proposed in recent years that 
some theories of quantum gravity imply that Lorentz symmetry is not valid. They 
suggest a violation may occur at very small distances around 10#35 m. Direct in-
vestigation at these small distances is not now possible, because the energy re-
quired is huge (1028 eV), but such effects may be observed in highly energetic 
events in outer space. To date, no verifi ed experiments have found a violation of 
Lorentz symmetry, but interest remains high.*

2.8  Twin Paradox
One of the most interesting topics in relativity is the twin (or clock) paradox. Al-
most from the time of publication of Einstein’s famous paper in 1905, this subject 
has received considerable attention, and many variations exist. Let’s summarize 
the paradox. Suppose twins, Mary and Frank, choose different career paths. Mary 
(the Moving twin) becomes an astronaut and Frank (the Fixed twin) a stock broker. 
At age 30, Mary sets out on a spaceship to study a star system 8 ly from Earth. Mary 
travels at very high speeds to reach the star and returns during her life span. 

*See “Lorentz Invariance on Trial,” Maxim Pospelov and Michael Romalis, Physics Today (July 2004) 
p. 40. See also Scientific American (September 2004) Special Issue on “Beyond Einstein.”
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According to Frank’s understanding of special relativity, Mary’s biological clock 
ticks more slowly than his own, so he claims that Mary will return from her trip 
younger than he. The paradox is that Mary similarly claims that it is Frank who is 
moving rapidly with respect to her, so that when she returns, Frank will be the 
younger. To complicate the paradox further one could argue that because nature 
cannot allow both possibilities, it must be true that symmetry prevails and that the 
twins will still be the same age. Which is the correct solution?

The correct answer is that Mary returns from her space journey as the 
younger twin. According to Frank, Mary’s spaceship takes off from Earth and 
quickly reaches its travel speed of 0.8c. She travels the distance of 8 ly to the 
star system, slows down and turns around quickly, and returns to Earth at the 
same speed. The accelerations (positive and negative) take negligible times 
compared to the travel times between Earth and the star system. According 
to Frank, Mary’s travel time to the star is 10 years [(8 ly)/0.8c " 10 y] and the 
return is also 10 years, for a total travel time of 20 years, so that Frank will be 
30 $ 10 $ 10 y " 50 years old when Mary returns. However, because Mary’s clock 
is ticking more slowly, her travel time to the star is only 1021 # 0.82 y " 6 years. 
Frank calculates that Mary will only be 30 $ 6 $ 6 y " 42 years old when she 
returns with respect to his own clock at rest.

The important fact here is that Frank’s clock is in an inertial system* during 
the entire trip; however, Mary’s clock is not. As long as Mary is traveling at con-
stant speed away from Frank, both of them can argue that the other twin is aging 
less rapidly. However, when Mary slows down to turn around, she leaves her 
original inertial system and eventually returns in a completely different inertial 
system. Mary’s claim is no longer valid, because she does not remain in the same 
inertial system. There is also no doubt as to who is in the inertial system. Frank 
feels no acceleration during Mary’s entire trip, but Mary will definitely feel ac-
celeration during her reversal time, just as we do when we step hard on the 
brakes of a car. The acceleration at the beginning and the deceleration at the 
end of her trip present little problem, because the fixed and moving clocks 
could be compared if Mary were just passing by Frank each way. It is Mary’s ac-
celeration at the star system that is the key. If we invoke the two postulates of 
special relativity, there is no paradox. The instantaneous rate of Mary’s clock is 
determined by her instantaneous speed, but she must account for the accelera-
tion effect when she turns around. A careful analysis of Mary’s entire trip using 
special relativity, including acceleration, will be in agreement with Frank’s assess-
ment that Mary is younger. Mary returns to Earth rich as well as famous, because 
her stockbroker brother has invested her salary wisely during the 20-year period 
(for which she only worked 12 years!).

We follow A. P. French’s excellent book, Special Relativity, to present Table 2.1 
(page 48), which analyzes the twin paradox. Both Mary and Frank send out sig-
nals at a frequency f (as measured by their own clock). We include in the table 
the various journey timemarks and signals received during the trip, with one 
column for the twin Frank who stayed at home and one for the astronaut twin 
Mary who went on the trip. Let the total time of the trip as measured on Earth 
be T. The speed of Mary’s spaceship is v (as measured on Earth), which gives a 
relativistic factor g. The distance Mary’s spaceship goes before turning around (as 
measured on Earth) is L. Much of this table is best analyzed by using spacetime 
(see the next section) and the Doppler effect (see Section 2.10).

Who is the younger twin?

Mary is both 
younger and rich

*The rotating and orbiting Earth is only an approximate inertial system.
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48 Chapter 2 Special Theory of Relativity

2.9  Spacetime
When describing events in relativity, it is sometimes convenient to represent 
events on a spacetime diagram as shown in Figure 2.21. For convenience we use 
only one spatial coordinate x and specify position in this one dimension. We 
use ct instead of time so that both coordinates will have dimensions of length. 
Spacetime diagrams were first used by H. Minkowski in 1908 and are often called 
Minkowski diagrams. We have learned in relativity that we must denote both 
space and time to specify an event. This is the origin of the term fourth dimension 
for time. The events for A and B in Figure 2.21 are denoted by the respective co-
ordinates (xA, ctA) and (xB, ctB), respectively. The line connecting events A and 
B is the path from A to B and is called a worldline. A spaceship launched from 
x " 0, ct " 0 with constant velocity v has the worldline shown in Figure 2.22: a 
straight line with slope c/v. For example, a light signal sent out from the origin 
with speed c is represented on a spacetime graph with a worldline that has a 
slope c/c " 1, so that line makes an angle of 45° with both the x and ct axes. Any 
real motion in the spacetime diagram cannot have a slope of less than 1 (angle 
with the x axis + 45°), because that motion would have a speed greater than c. 
The Lorentz transformation does not allow such a speed.

Let us consider two events that occur at the same time (ct " 0) but at differ-
ent positions, x1 and x2. We denote the events (x, ct) as (x1, 0) and (x2, 0), and 
we show them in Figure 2.23 in an inertial system with an origin fixed at x " 0 
and ct " 0. How can we be certain that the two events happen simultaneously if 

Spacetime (Minkowski) 
diagrams

Worldline

 Measured by Frank  Measured by Mary 
Item (remains on Earth) (traveling astronaut)

Time of total trip T " 2L /v T  
œ " 2L /gv

Total number of signals sent f T " 2f L /v f T  
œ " 2f L /gv

Frequency of signals received f  B1 # b

1 $ b
 f  B1 # b

1 $ bat beginning of trip f œ

Time of detecting Mary’s  t1 " L /v $ L /c t œ
1 " L /gv

turnaround
Number of signals received at f œt1 "

f L
v
21 # b2 f œt 1

œ "
f L
v

 11 # b 2
the rate f œ

Time for remainder of trip t2 " L /v # L /c t œ
2 " L /gv

Frequency of signals received at f  B1 $ b

1 # b
 f  B1 $ b

1 # bend of trip f fl

Number of signals received at f flt2 "
f L
v
21 # b2 f flt œ

2 "
f L
v

 11 $ b 2
rate f fl

Total number of signals received 2f L /gv 2f L /v

Conclusion as to other twin’s  T œ " 2L /gv T " 2L /v
measure of time taken

After A. French, Special Relativity, New York: Norton (1968), p. 158.

Tab le  2 .1   Twin Paradox Analysis
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   2.9 Spacetime 49

they occur at different positions? We must devise a method that will allow us to 
determine experimentally that the events occurred simultaneously. Let us place 
clocks at positions x1 and x2 and place a flashbulb at position x3 halfway between 
x1 and x2. The two clocks have been previously synchronized and keep identical 
time. At time t " 0, the flashbulb explodes and sends out light signals from posi-
tion x3. The light signals proceed along their worldlines as shown in Figure 2.23. 
The two light signals arrive at positions x1 and x2 at identical times t as shown on 
the spacetime diagram. By using such techniques we can be sure that events oc-
cur simultaneously in our inertial reference system.

But what about other inertial reference systems? We realize that the two 
events will not be simultaneous in a reference system K! moving at speed v with 
respect to our (x, ct) system. Because the two events have different spatial coor-
dinates, x1 and x2, the Lorentz transformation will preclude them from occur-
ring at the same time t œ simultaneously in the moving coordinate systems. We 
can see this by supposing that events 1, 2, and 3 take place on a spaceship moving 
with velocity v. The worldlines for x1 and x2 are the two slanted lines beginning 
at x1 and x2 in Figure 2.24. However, when the flashbulb goes off, the light signals 
from x3 still proceed at 45° in the (x, ct) reference system. The light signals in-
tersect the worldlines from positions x1 and x2 at different times, so we do not see 
the events as being simultaneous in the moving system. Spacetime diagrams can 
be useful in showing such phenomena.

Anything that happened earlier in time than t " 0 is called the past and 
anything that occurs after t " 0 is called the future. The spacetime diagram in 
Figure 2.25a shows both the past and the future. Notice that only the events 
within the shaded area below t " 0 can affect the present. Events outside this 
area cannot affect the present because of the limitation v , c ; this region is 
called elsewhere. Similarly, the present cannot affect any events occurring outside 
the shaded area above t " 0, again because of the limitation of the speed of light. 

Figure 2.21 A spacetime dia-
gram is used to specify events. 
The worldline denoting the path 
from event A to event B is shown.

A

B

0 xA

ctA

ctB

xB

ct

x

Worldline

Figure 2.22 A light signal has 
the slope of 45° on a spacetime 
diagram. A spaceship moving 
along the x axis with speed v is a 
straight line on the spacetime dia-
gram with a slope c/v.

0

Spaceship

Light signal

v

c

ct

x

Figure 2.23 Clocks positioned at 
x1 and x2 can be synchronized by 
sending a light signal from a position 
x3 halfway between. The light signals 
intercept the worldlines of x1 and x2 
at the same time t.

Light

Light

ct

ct

x
x1 x3 x2

t t

Figure 2.24 If the positions x1 
(" x œ

1) and x2 (" x œ
2) of the previous 

figure are on a moving system K! 
when the flashbulb goes off, the times 
will not appear simultaneously in sys-
tem K, because the worldlines for x œ

1 
and x œ

2 are slanted.

ct

x
x1

ct1

ct2

c c

vv

x3 x2
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50 Chapter 2 Special Theory of Relativity

If we add another spatial coordinate y to our spacetime coordinates, we will have 
a cone as shown in Figure 2.25b, which we refer to as the light cone. All causal 
events related to the present (x " 0, ct " 0) must be within the light cone. In 
Figure 2.25b, anything occurring at present (x " 0, ct " 0) cannot possibly affect 
an event at position A; however, the event B can easily affect event A because A 
would be within the range of light signals emanating from B.

Invariant quantities have the same value in all inertial frames. They serve a spe-
cial role in physics because their values do not change from one system to another. 
For example, the speed of light c is invariant. We are used to defining distances by 
d2 " x2 $ y2 $ z2, and in Euclidean geometry, we obtain the same result for d2 in 
any inertial frame of reference. Is there a quantity, similar to d2, that is also invariant 
in the special theory? If we refer to Equations (2.9), we have similar equations in 
both systems K and K!. Let us look more carefully at the quantity s2 defined as

 s2 " x 2 # 1ct 22 (2.25a)

and also

 sœ2 " x œ2 # 1ct œ 22 (2.25b)

If we use the Lorentz transformation for x and t, we find that s2 " s!2, so s2 is an 
invariant quantity. This relationship can be extended to include the two other 
spatial coordinates, y and z, so that*

 s2 " x 2 $ y2 $ z2 # 1ct 22 (2.26)

For simplicity, we will sometimes continue to use only the single spatial coordi-
nate x.

If we consider two events, we can determine the quantity &s2 where

 ¢s2 " ¢x 2 # c 2 ¢t 2 (2.27)

between the two events, and we find that it is invariant in any inertial frame. The 
quantity &s is known as the spacetime interval between two events. There are 
three possibilities for the invariant quantity &s2.

1.  !s2 " 0: In this case &x2 " c 2 &t2, and the two events can be connected 
only by a light signal. The events are said to have a lightlike separation.

2.  !s2 ( 0: Here we must have &x2 ( c 2 &t2, and no signal can travel fast 
enough to connect the two events. The events are not causally connected 

Light cone

Invariant quantities

Spacetime interval

Lightlike

Figure 2.25 (a) The spacetime 
diagram can be used to show the 
past, present, and future. Only 
causal events are placed inside 
the shaded area. Events outside 
the shaded area below t " 0 can-
not affect the present. (b) If we 
add an additional spatial coordi-
nate y, a space cone can be 
drawn. The present cannot affect 
event A, but event B can.

Present

ElsewherePast

Future

ct

x
Elsewhere

Present
Past

Future

ct

x

yA

B

Elsewhere

(a) (b)

* Some authors use the negative of the expression here in Equation (2.26).
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and are said to have a spacelike separation. In this case we can always find 
an inertial frame traveling at a velocity less than c in which the two events 
can occur simultaneously in time but at different places in space.

3.  !s2 + 0: Here we have &x2 + c 2 &t2, and the two events can be causally 
connected. The interval is said to be timelike. In this case we can find an 
inertial frame traveling at a velocity less than c in which the two events 
occur at the same position in space but at different times. The two events 
can never occur simultaneously.

Spacelike

Timelike

Draw the spacetime diagram for the motion of the twins 
discussed in Section 2.8. Draw light signals being emitted 
from each twin at annual intervals and count the number of 
light signals received by each twin from the other.

Strategy We shall let Mary leave Earth at the origin (x, ct) 
" (0, 0). She will return to Earth at x " 0, but at a later time 
ct " 20 ly. Her worldlines will be described by two lines of 
slope $c/v and #c/v, whereas Frank’s worldline remains 
fixed at x " 0. Frank’s and Mary’s signals have slopes of *1 
on the spacetime diagram. We pay close attention to when 
the light signals sent out by Frank and Mary reach their 
twin’s worldlines.

Solution We show in Figure 2.26 (page 52) the spacetime 
diagram. The line representing Mary’s trip has a slope 
c/0.8c " 1.25 on the outbound trip and #1.25 on the return 

trip. During the trip to the star system, Mary does not re-
ceive the second annual light signal from Frank until she 
reaches the star system. This occurs because the light signal 
takes considerable time to catch up with Mary. However, 
during the return trip Mary receives Frank’s light signals at 
a rapid rate, receiving the last one (number 20) just as she 
returns. Because Mary’s clock is running slow, we see the 
light signals being sent less often on the spacetime diagram 
in the fixed system. Mary sends out her sixth annual light 
signal when she arrives at the star system. However, this sig-
nal does not reach Frank until the 18th year! During the 
remaining two years, however, Frank receives Mary’s signals 
at a rapid rate, finally receiving all 12 of them. Frank re-
ceives the last 6 signals during a time period of only 2 years.

 EXAMPLE 2 .7

A 3-vector R can be defi ned using Cartesian coordinates x, y, z in three-
dimensional Euclidean space. Another 3-vector R! can be determined in an-
other Cartesian coordinate system using x!, y!, z! in the new system. So far in 
introductory physics we have discussed translations and rotations of axes be-
tween these two systems. We have learned that there are two geometries in New-
tonian spacetime. One is the three-dimensional Euclidean geometry in which 
the space interval is d/2 " dx 2 $ dy2 $ dz2, and the other is a one-dimensional 
time interval dt. Minkowski pointed out that both space and time by themselves 
will not suffi ce under a Lorentz transformation, and only a union of both will be 
independent and useful.

We can form a four-dimensional space or four-vector using the four compo-
nents x, y, z, ict. The equivalent of Equation (2.27) becomes

 
ds2 " dx 2 $ dy2 $ dz2 # c 2dt 2

ds!2 " dx!2 $ dy!2 $ dz!2 # c 2dt!2

ds2 " ds!2
 (2.28)

We previously noted that ds2 (actually &s2) can be positive, negative, or zero. 
With the four-vector formalism we only have the spacetime geometry, not separate 
geometries for space and time. The spacetime distances ds2 " ds!2 are invariant 
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52 Chapter 2 Special Theory of Relativity

under the Lorentz transformation. In Section 2.12 we will learn how the energy 
and momentum of a particle are connected. Similar to the spacetime four-
vector, there is an energy-momentum four-vector, and the invariant quantity is 
the mass.

The four-vector formalism gives us equations that produce form-invariant 
quantities under appropriate Lorentz transformations. It allows the mathemati-
cal construction of relativistic physics to be somewhat easier. However, the pen-
alty is that we would have to stop and learn matrix algebra and perhaps even 
about tensors and, eventually, spinors. At this point in our study there is little to be 
gained in understanding about relativity. Another disadvantage in utilizing four-
vectors at this point is that there is no general agreement among authors as to 
terminology. Sometimes ict is term 0 of the four-vector (ict, x, y, z with x, y, z be-
ing terms 1, 2, 3), and sometimes it is described as term 4 (x, y ,z ,ict). Sometimes 
the formalism is arranged such that the imaginary number i " 2#1 doesn’t 
appear. We have chosen not to use four-vectors.

2.10  Doppler Effect
You may have already studied the Doppler effect of sound in introductory phys-
ics. It causes an increased frequency of sound as a source such as a train (with 
whistle blowing) approaches a receiver (our eardrum) and a decrease in fre-

Figure 2.26 The spacetime diagram for Mary’s trip to the star sys-
tem and back. Notice that Frank’s worldline is a vertical line at x " 0, 
and Mary’s two worldlines have the correct slope given by the magni-
tude c/v. The black dashed lines represent light signals sent at annual 
intervals from Mary to Frank. Frank’s annual signals to Mary are solid 
black. The solid dots denote the time when the light signals arrive.
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quency as the source recedes. A change in sound frequency also occurs when the 
source is fixed and the receiver is moving. The change in frequency of the sound 
wave depends on whether the source or receiver is moving. On first thought it 
seems that the Doppler effect in sound violates the principle of relativity, until 
we realize that there is in fact a special frame for sound waves. Sound waves de-
pend on media such as air, water, or a steel plate to propagate. For light, how-
ever, there is no such medium. It is only relative motion of the source and re-
ceiver that is relevant, and we expect some differences between the relativistic 
Doppler effect for light waves and the normal Doppler effect for sound. It is not 
possible for a source of light to travel faster than light in a vacuum, but it is pos-
sible for a source of sound to travel faster than the speed of sound. Similarly, in 
a medium such as water in which light travels slower than c, a light source can 
travel faster than the speed of light.

Consider a source of light (for example, a star) and a receiver (an astrono-
mer) approaching one another with a relative velocity v. First we consider the 
receiver fixed (Figure 2.27a) in system K and the light source in system K! mov-
ing toward the receiver with velocity v. The source emits n waves during the time 
interval T. Because the speed of light is always c and the source is moving with 
velocity v, the total distance between the front and rear of the wave train emitted 
during the time interval T is

 Length of wave train " cT # vT

Because there are n waves emitted during this time period, the wavelength 
must be

 l "
cT # vT

n

and the frequency, f " c /l, is

 f "
cn

cT # vT
 (2.29)

Figure 2.27 (a) The source (star) is approaching the receiver (astronomer) with velocity v while 
it emits starlight signals with speed c. (b) Here the source and receiver are receding with velocity v. 
The Doppler effect for light is different than that for sound, because of relativity and no medium 
to carry the light waves.

v v
System K′

System K

Astronomer

Star

Source

c

(a)

System K′

System Kc

(b)
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In its rest frame, the source emits n waves of frequency f0 during the proper 
time T œ

0.

 n " f0T 
œ
0 (2.30)

The proper time interval T œ
0 measured on the clock at rest in the moving system 

is related to the time interval T measured on a clock fixed by the receiver in 
system K by

 T 0
œ "

T
g

 (2.31)

where g is the relativistic factor of Equation (2.16). The clock moving with the 
source measures the proper time because it is present with both the beginning 
and end of the wave.

Special Topic

Applications of the 
Doppler Effect

T he Doppler effect is not just a curious result of 
relativity. It has many practical applications, 

three of which are discussed here, and others are 
mentioned in various places in this text.

Astronomy

Perhaps the best-known application is in astronomy, 
where the Doppler shifts of known atomic transition 
frequencies determine the relative velocities of astro-
nomical objects with respect to us. Such measurements 
continue to be used today to find the distances of such 
unusual objects as quasars (objects having incredibly 
large masses that produce tremendous amounts of ra-
diation; see Chapter 16). The Doppler effect has been 
used to discover other effects in astronomy, for exam-
ple, the rate of rotation of Venus and the fact that 

Venus rotates in the opposite direction of Earth—the 
sun rises in the west on Venus. This was determined by 
observing light reflected from both sides of Venus—on 
one side it is blueshifted and on the other side it is red-
shifted, as shown in Figure A. The same technique has 
been used to determine the rate of rotation of stars.

Radar

The Doppler effect is nowhere more important than 
it is in radar. When an electromagnetic radar signal 
re flects off of a moving target, the so-called echo signal 
will be shifted in frequency by the Doppler effect. Very 
small frequency shifts can be determined by examin-
ing the beat frequency of the echo signal with a refer-
ence signal. The frequency shift is proportional to the 
radial component of the target’s velocity. Navigation 
radar is quite complex, and ingenious techniques 
have been devised to determine the target position 
and velocity using multiple radar beams. By using 
pulsed Doppler radar it is possible to separate moving 
targets from stationary targets, called clutter.

Doppler radar is also extensively used in meteo-
rology. Vertical motion of airdrafts, sizes and motion 
of raindrops, motion of thunderstorms, and detailed 
patterns of wind distribution have all been studied 
with Doppler radar.

X rays and gamma rays emitted from moving atoms 
and nuclei have their frequencies shifted by the Dop-
pler effect. Such phenomena tend to broaden radia-
tion frequencies emitted by stationary atoms and nuclei 
and add to the natural spectral widths observed.Figure A

Incident light

Blueshifted

Reflected light!
redshifted

Rotation
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We substitute the proper time T 
œ
0 from Equation (2.31) into Equation (2.30) 

to determine the number of waves n. Then n is substituted into Equation (2.29) 
to determine the frequency.

  f "
c f0T /g

cT # vT

  "
1

1 # v /c
  

f0

g
"
21 # v 2

 /c 2

1 # v /c
  f0

where we have inserted the equation for g. If we use b " v/c, we can write the 
previous equation as

Laser Cooling

In order to perform fundamental measurements in 
atomic physics, it is useful to limit the effects of thermal 
motion and to isolate single atoms. A method taking 
advantage of the Doppler effect can slow down even 
neutral atoms and eventually isolate them. Atoms emit-
ted from a hot oven will have a spread of velocities. If 
these atoms form a beam as shown in Figure B, a laser 
beam impinging on the atoms from the right can slow 
them down by transferring momentum.

Atoms have characteristic energy levels that al-
low them to absorb and emit radiation of specific 
frequencies. Atoms moving with respect to the laser 
beam will “see” a shift in the laser frequency because 
of the Doppler effect. For example, atoms moving 
toward the laser beam will encounter light with high 
frequency, and atoms moving away from the laser 
beam will encounter light with low frequency. Even 
atoms moving in the same direction within the beam 
of atoms will see slightly different frequencies de-
pending on the velocities of the various atoms. Now, 
if the frequency of the laser beam is tuned to the 
precise frequency seen by the faster atoms so that 
those atoms can be excited by absorbing the radia-

tion, then those faster atoms will be slowed down by 
absorbing the momentum of the laser radiation. The 
slower atoms will “see” a laser beam that has been 
Doppler shifted to a lower frequency than is needed 
to absorb the radiation, and these atoms are not as 
likely to absorb the laser radiation. The net effect is 
that the atoms as a whole are slowed down and their 
velocity spread is reduced.

As the atoms slow down, they see that the Doppler-
shifted frequencies of the laser change, and the atoms 
no longer absorb the laser radiation. They continue 
with the same lower velocity and velocity spread. The 
lower temperature limits reached by Doppler cooling 
depend on the atom, but typical values are on the order 
of hundreds of microkelvins. Doppler cooling is nor-
mally accompanied by intersecting laser beams at dif-
ferent angles; an “optical molasses” can be created in 
which atoms are essentially trapped. Further cooling is 
obtained by other techniques including “Sisyphus” and 
evaporative cooling, among others. In a remarkable 
series of experiments by various researchers, atoms 
have been cooled to temperatures approaching 10#10 K. 
The 1997 Nobel Prize in Physics was awarded to Steven 
Chu, Claude Cohen-Tannoudji, and William Phillips 
for these techniques. An important use of laser cooling 
is for atomic clocks. See http://www.nist.gov/physlab/
div847/grp50/primary-frequency-standards.cfm for a 
good discussion. See also  Steven Chu, “Laser Trapping 
of Neutral Particles,” Scientific American 266, 70 (Febru-
ary 1992). In Chapter 9 we will discuss how laser cool-
ing is used to produce an ultracold state of matter 
known as a Bose-Einstein condensate.

Figure B

Laser radiationBeam of atoms
Oven
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56 Chapter 2 Special Theory of Relativity

 f "
21 $ b21 # b

  f0  Source and receiver approaching  (2.32)

It is straightforward to show that Equation (2.32) is also valid when the source is 
fixed and the receiver approaches it with velocity v. It is the relative velocity v, of 
course, that is important (Problem 49).

But what happens if the source and receiver are receding from each other 
with velocity v (see Figure 2.27b)? The derivation is similar to the one just done, 
except that the distance between the beginning and end of the wave train 
becomes

 Length of wave train " cT $ vT

because the source and receiver are receding rather than approaching. This change 
in sign is propagated throughout the derivation (Problem 50), with the fi nal result

 f "
21 # b21 $ b

  f0  Source and receiver receding  (2.33)

Equations (2.32) and (2.33) can be combined into one equation if we agree 
to use a $ sign for b ($v/c) when the source and receiver are approaching each 
other and a # sign for b (#v/c) when they are receding. The final equation 
becomes

 f "
21 $ b21 # b

  f0  Relativistic Doppler effect  (2.34)

The Doppler effect is useful in many areas of science including astronomy, 
atomic physics, and nuclear physics. One of its many applications includes an 
effective radar system for locating airplane position and speed (see Special 
Topic, “Applications of the Doppler Effect”).

Elements absorb and emit characteristic frequencies of light due to the exis-
tence of particular atomic levels. We will learn more about this later. Scientists have 
observed these characteristic frequencies in starlight and have observed shifts in the 
frequencies. One reason for these shifts is the Doppler effect, and the frequency 
changes are used to determine the speed of the emitting object with respect to us. 
This is the source of the redshifts of starlight caused by objects moving away from 
us. These data have been used to ascertain that the universe is expanding. The 
farther away the star, the higher the redshift. This observation is what led Harlow 
Shapley and Edwin Hubble to the idea that the universe started with a Big Bang.*

So far in this section we have only considered the source and receiver to be 
directly approaching or receding. Of course, it is also possible for the two to be 
moving at an angle with respect to one another, as shown in Figure 2.28. We omit 
the derivation here† but present the results. The angles u and u! are the angles the 
light signals make with the x axes in the K and K! systems. They are related by

Redshifts

*Excellent references are “The Cosmic Distance Scale” by Paul Hodge, American Scientist 72, 474 
(1984), and “Origins” by S. Weinberg, Science 230, 15 (1985). This subject is discussed in Chapter 16.

†See Robert Resnick, Introduction to Special Relativity, New York: Wiley (1968).
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   2.10 Doppler Effect 57

 f cos u "
f01cos uœ $ b 221 # b2

 (2.35)

and

 f sin u " f0 sin uœ (2.36)

The generalized Doppler shift equation becomes

 f "
1 $ b cos uœ21 # b2

  f0 (2.37)

Note that Equation (2.37) gives Equation (2.32) when u! " 0 (source and re-
ceiver approaching) and gives Equation (2.33) when u! " 180° (source and re-
ceiver receding). This situation is known as the longitudinal Doppler effect.

When u " 90° the emission is purely transverse to the direction of motion, 
and we have the transverse Doppler effect, which is purely a relativistic effect that 
does not occur classically. The transverse Doppler effect is directly due to time 
dilation and has been verified experimentally. Equations (2.35) through (2.37) 
can also be used to understand stellar aberration.

In Section 2.8 we discussed what happened when Mary 
traveled on a spaceship away from her twin brother Frank, 
who remained on Earth. Analyze the light signals sent 
out by Frank and Mary by using the relativistic Doppler 
effect.

Strategy We will use Equation (2.34) for both the out-
bound and return trip to analyze the frequency of the light 
signals sent and received. During the outbound trip the 
source (Frank) and receiver (Mary) are receding so that b 
" #0.8. For the return trip, we have b " $0.8. The fre-
quency f0 will be the signals that Frank sends; the frequency 
f will be those that Mary receives.

Solution First, we analyze the frequency of the light signals 
that Mary receives from Frank. Equation (2.34) gives

 f "
21 $ 1#0.8 221 # 1#0.8 2   f0 "

f0

3

Because Frank sends out signals annually, Mary will receive 
the signals only every 3 years. Therefore during the 6-year 
trip in Mary’s system to the star system, she will receive only 
2 signals.

During the return trip, b " 0.8 and Equation (2.34) 
gives

 f "
21 $ 0.821 # 0.8

  f0 " 3f0

 EXAMPLE 2 .8

Figure 2.28 The light signals in 
system K! are emitted at an an-
gle u! from the x œ axis and remain 
in the x œ

 yœ plane.

System K′y ′

x ′

x

y

z ′

u′

System K

z

v
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58 Chapter 2 Special Theory of Relativity

2.11  Relativistic Momentum
Newton’s second law, F " dp /dt, keeps its same form under a Galilean transfor-
mation, but we might not expect it to do so under a Lorentz transformation. 
There may be similar transformation difficulties with the conservation laws of 
linear momentum and energy. We need to take a careful look at our previous 
definition of linear momentum to see whether it is still valid at high speeds. Ac-
cording to Newton’s second law, for example, an acceleration of a particle al-
ready moving at very high speeds could lead to a speed greater than the speed 
of light. That would be in conflict with the Lorentz transformation, so we expect 
that Newton’s second law might somehow be modified at high speeds.

Because physicists believe the conservation of linear momentum is funda-
mental, we begin by considering a collision that has no external forces. Frank 
(Fixed or stationary system) is at rest in system K holding a ball of mass m. Mary 
(Moving system) holds a similar ball in system K! that is moving in the x direction 
with velocity v with respect to system K as shown in Figure 2.29a. Frank throws 
his ball along his y axis, and Mary throws her ball with exactly the same speed 
along her negative yœ axis. The two balls collide in a perfectly elastic collision, and 
each of them catches their own ball as it rebounds. Each twin measures the speed 
of his or her own ball to be u0 both before and after the collision.

We show the collision according to both observers in Figure 2.29. Consider 
the conservation of momentum according to Frank as seen in system K. The 
velocity of the ball thrown by Frank has components in his own system K of

  uFx " 0  
(2.38)

  uFy " u0

If we use the definition of momentum, p " mv , the momentum of the ball 
thrown by Frank is entirely in the y direction:

 pFy " mu0 (2.39)

Because the collision is perfectly elastic, the ball returns to Frank with speed u0 
along the #y axis. The change of momentum of his ball as observed by Frank in 
system K is

so that Mary receives 3 signals each year for a total of 18 
signals during the return trip. Mary receives a total of 20 
annual light signals from Frank, and she concludes that 
Frank has aged 20 years during her trip.

Now let’s analyze the light signals that Mary sends 
Frank. During the outbound trip the frequency at which 
Frank receives signals from Mary will also be f0 /3. During 
the 10 years that it takes Mary to reach the star system on his 
clock, he will receive 10/3 signals—3 signals plus 1/3 of the 
time to the next one. Frank continues to receive Mary’s sig-
nals at the rate f0 /3 for another 8 years, because that is how 
long it takes the sixth signal she sent him to reach Earth. 
Therefore, for the first 18 years of her journey, according to 
his own clock he receives 18/3 " 6 signals. Frank has no way 

of knowing that Mary has turned around and is coming back 
until he starts receiving signals at frequency 3f0. During 
Mary’s return trip Frank will receive signals at the frequency 
3f0 or 3 per year. However, in his system, Mary returns 
2 years after he has received her sixth signal and turned 
around to come back. During this 2-year period he will re-
ceive 6 more signals, so he concludes she has aged a total of 
only 12 years.

Notice that this analysis is in total agreement with the 
spacetime diagram of Figure 2.26 and is somewhat easier to 
obtain. Although geometrical constructions like spacetime 
diagrams are sometimes useful, an analytical calculation is 
usually easier.
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   2.11 Relativistic Momentum 59

 ¢pF " ¢pFy " #2mu0 (2.40)

In order to confirm the conservation of linear momentum, we need to de-
termine the change in the momentum of Mary’s ball as measured by Frank. We will 
let the primed speeds be measured by Mary and the unprimed speeds be mea-
sured by Frank (except that u0 is always the speed of the ball as measured by the 
twin in his or her own system). Mary measures the initial velocity of her own ball 
to be uœ

Mx " 0 and uœ
My " #u0, because she throws it along her own #yœ axis. To 

determine the velocity of Mary’s ball as measured by Frank, we need to use the 
velocity transformation equations of Equation (2.23). If we insert the appropri-
ate values for the speeds just discussed, we obtain

  uMx " v  
(2.41)

  uMy " #u021 # v 2
 /c 2

Before the collision, the momentum of Mary’s ball as measured by Frank 
becomes

  Before   pMx " mv  
(2.42)

  Before   pMy " #mu021 # v 2
 /c 2

For a perfectly elastic collision, the momentum after the collision is

  After   pMx " mv  
(2.43)

  After   pMy " $mu021 # v 2
 /c 2

Figure 2.29 Frank is in the fixed K system, and Mary is in the moving K! system. Frank throws 
his ball along his $y axis, and Mary throws her ball along her #yœ axis. The balls collide. The event 
is shown in Frank’s system in (a) and in Mary’s system in (b). (Because it is awkward to show the 
twins as they catch the ball, we have drawn them faintly and in a reversed position.)
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60 Chapter 2 Special Theory of Relativity

The change in momentum of Mary’s ball according to Frank is

 ¢pM " ¢pMy " 2mu021 # v 2
 /c 2 (2.44)

The conservation of linear momentum requires the total change in momen-
tum of the collision, &pF $ &pM, to be zero. The addition of Equations (2.40) and 
(2.44) clearly does not give zero. Linear momentum is not conserved if we use the 
conventions for momentum from classical physics even if we use the velocity transformation 
equations from the special theory of relativity. There is no problem with the x direc-
tion, but there is a problem with the y direction along the direction the ball is 
thrown in each system.

Rather than abandon the conservation of linear momentum, let us look for 
a modification of the definition of linear momentum that preserves both it and 
Newton’s second law. We follow a procedure similar to the one we used in deriv-
ing the Lorentz transformation; we assume the simplest, most reasonable change 
that may preserve the conservation of momentum. We assume that the classical 
form of momentum mu is multiplied by a factor that may depend on velocity. Let 
the factor be -(u). Our trial definition for linear momentum now becomes

 p " - 1u 2mu (2.45)

In Example 2.9 we show that momentum is conserved in the collision just 
described for the value of -(u) given by

 - 1u 2 "
121 # u2

 /c 2
 (2.46)

Notice that the form of Equation (2.46) is the same as that found earlier for the 
Lorentz transformation. We even give -(u) the same symbol: -(u) " g. However, 
this g is different; it contains the speed of the particle u, whereas the Lorentz 
transformation contains the relative speed v between the two inertial reference 
frames. This distinction should be kept in mind because it can cause confusion. 
Because the usage is so common among physicists, we will use g for both pur-
poses. However, when there is any chance of confusion, we will write out 
1 /21 # u2

 /c 2 and use g " 1 /21 # v 2
 /c 2 for the Lorentz transformation. 

We will write out 1 /21 # u2
 /c 2 often to avoid confusion.

We can make a plausible determination for the correct form of the momen-
tum if we use the proper time discussed previously to determine the velocity. The 
momentum becomes

 p " m  

dr
dt

" m  

dr
dt

 
dt
dt

 (2.47)

We retain the velocity u " dr /dt as used classically, where r  is the position vec-
tor. All observers do not agree as to the value of dr /dt, but they do agree as to 
the value of dr /dt, where dt is the proper time measured in the moving system 
K!. The value of dt /dt 1" g 2  is obtained from Equation (2.31), where the speed 
u is used in the relation for g to represent the relative speed of the moving 
(Mary’s) frame and the fixed (Frank’s) frame.

The definition of the relativistic momentum becomes, from Equation 
(2.47),

 p " m  

dr
dt

 g

 p " gmu  Relativistic momentum (2.48)

Diffi culty with classical 
linear momentum

Relativistic momentum

Figure 2.30 The linear mo-
mentum of a particle of mass m is 
plotted versus its velocity (v/c) for 
both the classical and relativistic 
momentum results. As v S c the 
relativistic momentum becomes 
quite large, but the classical mo-
mentum continues its linear rise. 
The relativistic result is the cor-
rect one.
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   2.11 Relativistic Momentum 61

where

 g "
121 # u2

 /c 2
 (2.49)

This result for the relativistic momentum reduces to the classical result for small 
values of u/c. The classical momentum expression is good to an accuracy of 1% 
as long as u + 0.14c. We show both the relativistic and classical momentum in 
Figure 2.30.

Some physicists like to refer to the mass in Equation (2.48) as the rest mass 
m0 and call the term m " gm0 the relativistic mass. In this manner the classical 
form of momentum, mu, is retained. The mass is then imagined to increase at 
high speeds. Most physicists prefer to keep the concept of mass as an invariant, 
intrinsic property of an object. We adopt this latter approach and will use the 
term mass exclusively to mean rest mass. Although we may use the terms mass and 
rest mass synonymously, we will not use the term relativistic mass. The use of rela-
tivistic mass too often leads the student into mistakenly inserting the term into 
classical expressions where it does not apply.

Rest and relativistic mass

Show that linear momentum is conserved for the collision 
just discussed and shown in Figure 2.29.

Strategy We use the relativistic momentum to modify the 
expressions obtained for the momentum of the balls thrown 
by Frank and Mary. We will then check to see whether mo-
mentum is conserved according to Frank. We leave to Prob-
lem 62 the question of whether momentum is conserved 
according to Mary’s system.

Solution From Equation (2.39), the momentum of the ball 
thrown by Frank becomes

 pF y " gmu0 "
mu021 # u0

2
 /c 2

For an elastic collision, the magnitude of the momentum 
for this ball is the same before and after the collision. After 
the collision, the momentum will be the negative of this 
value, so the change in momentum becomes, from Equa-
tion (2.40),

 ¢pF " ¢pFy " #2gmu0 " # 

2mu021 # u0
2

 /c 2
 (2.50)

Now we consider the momentum of Mary’s ball as mea-
sured by Frank. Even with the addition of the g factor for 
the momentum in the x direction, we still have &pMx " 0. We 
must look more carefully at &pMy. First, we find the speed of 
the ball thrown by Mary as measured by Frank. We use 
Equations (2.41) to determine

uM " 2uMx
2 $ uM y

2 " 2v 2 $ u0
2

 11 # v 2
 /c 2 2   (2.51)

The relativistic factor g for the momentum for this 
situation is

 g "
121 # uM

2
 /c 2

The value of pMy is now found by modifying Equation (2.42) 
with this value of g.

 pMy " #gmu021 # v 2
 /c 2 "

#mu021 # v 2
 /c 221 # uM

2
 /c 2

We insert the value of uM from Equation (2.51) into this 
equation to give

pMy "
#mu021 # v 2

 /c 22 11 # u0
2

 /c 2 2 11 # v 2
 /c 2 2 "

#mu021 # u0
2

 /c 2
 (2.52)

The momentum after the collision will still be the negative 
of this value, so the change in momentum becomes

 ¢pM " ¢pMy "
2mu021 # u0

2
 /c 2

 (2.53)

The change in the momentum of the two balls as measured 
by Frank is given by the sum of Equations (2.50) and (2.53):

 ¢p " ¢pF $ ¢pM " 0

Thus Frank indeed finds that momentum is conserved. 
Mary should also determine that linear momentum is con-
served (see Problem 62).

 EXAMPLE 2 .9
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62 Chapter 2 Special Theory of Relativity

2.12  Relativistic Energy
We now turn to the concepts of energy and force. When forming the new theo-
ries of relativity and quantum physics, physicists resisted changing the well-
accepted ideas of classical physics unless absolutely necessary. In this same spirit 
we also choose to keep intact as many definitions from classical physics as pos-
sible and let experiment dictate when we are incorrect. In practice, the concept 
of force is best defined by its use in Newton’s laws of motion, and we retain here 
the classical definition of force as used in Newton’s second law. In the previous 
section we studied the concept of momentum and found a relativistic expression 
in Equation (2.48). Therefore, we modify Newton’s second law to include our 
new defi nition of linear momentum, and force becomes

 F "
dp
dt

"
d
dt

 1gmu 2 "
d
dt

 a mu21 # u2
 /c 2
b  (2.54)

Aspects of this force will be examined in the problems (see Problems 55– 58).
Introductory physics presents kinetic energy as the work done on a particle 

by a net force. We retain here the same definitions of kinetic energy and work. 
The work W12 done by a force F  to move a particle from position 1 to position 2 
along a path s  is defined to be

 W12 "#
2

1

F # ds " K2 # K1 (2.55)

where K1 is defined to be the kinetic energy of the particle at position 1.
For simplicity, let the particle start from rest under the influence of the force 

F  and calculate the final kinetic energy K after the work is done. The force is 
related to the dynamic quantities by Equation (2.54). The work W and kinetic 
energy K are

 W " K "# d
dt

 1gmu 2 # u dt (2.56)

where the integral is performed over the differential path ds " u dt. Because the 
mass is invariant, it can be brought outside the integral. The relativistic factor g 
depends on u and cannot be brought outside the integral. Equation (2.56) 
becomes

 K " m#dt 
d
dt

 1gu 2 # u " m#u d 1gu 2
The limits of integration are from an initial value of 0 to a final value of gu.

 K " m#
gu

0

u d 1gu 2  (2.57)

The integral in Equation (2.57) is straightforward if done by the method of in-
tegration by parts. The result, called the relativistic kinetic energy, is

 K " gmc 2 # mc 2 " mc 2
 a 121 # u2

 /c 2
# 1 b " mc 2

 1g # 1 2  (2.58)

Equation (2.58) does not seem to resemble the classical result for kinetic 
energy, K " 12 mu2. However, if it is correct, we expect it to reduce to the classical 
result for low speeds. Let’s see whether it does. For speeds u V c, we expand g 
in a binomial series as follows:

Relativistic force

Relativistic kinetic energy
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   2.12 Relativistic Energy 63

 K " mc 2
 a1 #

u2

c 2 b#1/2

# mc 2

  " mc 2
 a1 $

1
2

 
u2

c 2 $ pb # mc 2

where we have neglected all terms of power (u/c)4 and greater, because u V c. 
This gives the following equation for the relativistic kinetic energy at low speeds:

 K " mc 2 $
1
2

 mu2 # mc 2 "
1
2

 mu2 (2.59)

which is the expected classical result. We show both the relativistic and classical ki-
netic energies in Figure 2.31. They diverge considerably above a velocity of 0.6c.

A common mistake students make when first studying relativity is to use ei-
ther 1

2 mu2 or 1
2 gmu2 for the relativistic kinetic energy. It is important to use only 

Equation (2.58) for the relativistic kinetic energy. Although Equation (2.58) looks 
much different from the classical result, it is the only correct one, and neither 
1
2 mu2 nor 1

2 gmu2 is a correct relativistic result.
Equation (2.58) is particularly useful when dealing with particles accelerated to 

high speeds. For example, the fastest speeds produced in the United States have been 
in the 3-kilometer-long electron accelerator at the Stanford Linear Accelerator 
Laboratory. This accelerator produces electrons with a kinetic energy of 8 % 10#9 J 
(50 GeV) or 50 % 109 eV. The electrons have speeds so close to the speed of light that 
the tiny difference from c is difficult to measure directly. The speed of the electrons 
is inferred from the relativistic kinetic energy of Equation (2.58) and is given by 
0.99999999995c. Such calculations are difficult to do with calculators because of 
significant-figure limitations. As a result, we use kinetic energy or momentum to ex-
press the motion of a particle moving near the speed of light and rarely use its speed.

Figure 2.31 The kinetic en-
ergy as a fraction of rest energy 
(K/mc 2) of a particle of mass m is 
shown versus its velocity (v/c) for 
both the classical and relativistic 
calculations. Only the relativistic 
result is correct. Like the momen-
tum, the kinetic energy rises rap-
idly as v S c.
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Determine whether an object with mass can ever have the 
speed of light.

Solution If we examine Equation (2.58), we see that when 
u S c, the kinetic energy K S q. Because there is not an 
infinite amount of energy available, we agree that no object 

with mass can have the speed of light. The classical and rela-
tivistic speeds for electrons are shown in Figure 2.32 as a 
function of their kinetic energy. Physicists have found that 
experimentally it does not matter how much energy we give 
an object having mass. Its speed can never quite reach c.

 CONCEPTUAL EXAMPLE 2 .10

Figure 2.32 The velocity (v/c) of electrons is shown versus kinetic energy for both classi-
cal (incorrect) and relativistic calculations. The experimentally measured data points agree 
with the relativistic results. Adapted with permission from American Journal of Physics 32, 551 
(1964), W. Bertozzi. © 1964 American Association of Physics Teachers.
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64 Chapter 2 Special Theory of Relativity

Total Energy and Rest Energy
We rewrite Equation (2.58) in the form

 gmc 2 "
mc 221 # u2

 /c 2
" K $ mc 2 (2.63)

The term mc 2 is called the rest energy and is denoted by E0.

 E0 " mc 2  (2.64)

This leaves the sum of the kinetic energy and rest energy to be interpreted as the 
total energy of the particle. The total energy is denoted by E and is given by

 E " gmc 2 "
mc 221 # u2

 /c 2
"

E021 # u2
 /c 2

" K $ E0  (2.65)

Rest energy

Total energy

Electrons used to produce medical x rays are accelerated 
from rest through a potential difference of 25,000 volts be-
fore striking a metal target. Calculate the speed of the elec-
trons and determine the error in using the classical kinetic 
energy result.

Strategy We calculate the speed from the kinetic energy, 
which we determine both classically and relativistically and 
then compare the results. In order to determine the correct 
speed of the electrons, we must use the relativistically cor-
rect kinetic energy given by Equation (2.58). The work done 
to accelerate an electron across a potential difference V is 
given by qV, where q is the charge of the particle. The work 
done to accelerate the electron from rest is the final kinetic 
energy K of the electron.

Solution The kinetic energy is given by

  K " W " qV " 11.6 % 10#19 C 2 125 % 103 V 2
  " 4.0 % 10#15 J

We first determine g from Equation (2.58) and from 
that, the speed. We have

 K " 1g # 1 2mc 2 (2.60)

From this equation, g is found to be

 g " 1 $
K

mc 2 (2.61)

The quantity mc 2 for the electron is determined to be

  mc 2
 1electron 2 " 19.11 % 10#31 kg 2 13.00 % 108 m/s 22

  " 8.19 % 10#14 J

The relativistic factor is then g " 1 $[(4.0 % 10#15 J)/(8.19 % 
10#14 J)] " 1.049. Equation (2.8) can be rearranged to de-
termine b2 as a function of g2, where b " u/c.

 b2 "
g2 # 1
g2 "

11.049 22 # 111.049 22 " 0.091 (2.62)

The value of b is 0.30, and the correct speed, u " bc, is 
0.90 % 108 m/s.

We determine the error in using the classical result by 
calculating the velocity using the nonrelativistic expression. 
The nonrelativistic expression is K " 12 mu2, and the speed is 
given by

  u " B214.0 % 10#15 J 2
9.11 % 10#31 kg

  " 0.94 % 108 m/s   1nonrelativistic 2
The (incorrect) classical speed is about 4% greater than the 
(correct) relativistic speed. Such an error is significant 
enough to be important in designing electronic equipment 
and in making test measurements. Relativistic calculations 
are particularly important for electrons, because they have 
such a small mass and are easily accelerated to speeds very 
close to c.

 EXAMPLE 2 .11
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   2.12 Relativistic Energy 65

Equivalence of Mass and Energy
These last few equations suggest the equivalence of mass and energy, a concept 
attributed to Einstein. The result that energy " mc 2 is one of the most famous 
equations in physics. Even when a particle has no velocity, and thus no kinetic 
energy, we still believe that the particle has energy through its mass, E0 " mc 2. 
Nuclear reactions are certain proof that mass and energy are equivalent. The 
concept of motion as being described by kinetic energy is preserved in relativistic 
dynamics, but a particle with no motion still has energy through its mass.

In order to establish the equivalence of mass and energy, we must modify 
two of the conservation laws that we learned in classical physics. Mass and energy 
are no longer two separately conserved quantities. We must combine them into 
one law of the conservation of mass-energy. We will see ample proof during the 
remainder of this book of the validity of this basic conservation law.

Even though we often say “energy is turned into mass” or “mass is converted 
into energy” or “mass and energy are interchangeable,” what we mean is that 
mass and energy are equivalent ; this is important to understand. Mass is another 
form of energy, and we use the terms mass-energy and energy interchangeably. 
This is not the first time we have had to change our understanding of energy. In 
the late eighteenth century it became clear that heat was another form of energy, 
and the nineteenth-century experiments of James Joule showed that heat loss or 
gain was related to work.

Consider two blocks of wood, each of mass m and having kinetic energy K, 
moving toward each other as shown in Figure 2.33. A spring placed between 
them is compressed and locks in place as they collide. Let’s examine the conser-
vation of mass-energy. The energy before the collision is

 Mass-energy before:  E " 2mc 2 $ 2K  (2.66)

and the energy after the collision is

 Mass-energy after:  E " Mc 2 (2.67)

where M is the (rest) mass of the system. Because energy is conserved, we have E " 
2mc 2 $ 2K " Mc 2, and the new mass M is greater than the individual masses 2m. 
The kinetic energy went into compressing the spring, so the spring has increased 

Conservation 
of mass-energy

Figure 2.33 (a) Two blocks of 
wood, one with a spring attached 
and both having mass m, move 
with equal speeds v and kinetic 
energies K toward a head-on col-
lision. (b) The two blocks collide, 
compressing the spring, which 
locks in place. The system now 
has increased mass, M " 2m $ 
2K/c 2, with the kinetic energy be-
ing converted into the potential 
energy of the spring.

(a)

(b)

v v
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66 Chapter 2 Special Theory of Relativity

potential energy. Kinetic energy has been converted into mass, the result being 
that the potential energy of the spring has caused the system to have more mass. 
We find the difference in mass &M by setting the previous two equations for 
energy equal and solving for &M " M # 2m.

 ¢M " M # 2m "
2K
c 2  (2.68)

Linear momentum is conserved in this head-on collision.
The fractional mass increase in this case is quite small and is given by fr " 

&M/2m. If we use Equation (2.68), we have

 fr "
M # 2m

2m
"

2K /c 2

2m
"

K
mc 2 (2.69)

For typical masses and kinetic energies of blocks of wood, this fractional 
increase in mass is too small to measure. For example, if we have blocks of wood 
of mass 0.1 kg moving at 10 m/s, Equation (2.69) gives

 fr "
1
2 mv 2

mc 2 "
1
2

 
v 2

c 2 "
1
2

 
110 m/s 2 213 % 108 m/s 22 " 6 % 10#16

where we have used the nonrelativistic expression for kinetic energy because the 
speed is so low. This very small numerical result indicates that questions of mass 
increase are inappropriate for macroscopic objects such as blocks of wood and 
automobiles crashing into one another. Such small increases cannot now be mea-
sured, but in the next section, we will look at the collision of two high-energy 
protons, in which considerable energy is available to create additional mass. 
Mass-energy relations are essential in such reactions.

Relationship of Energy and Momentum
Physicists believe that linear momentum is a more fundamental concept than 
kinetic energy. There is no conservation of kinetic energy, whereas the conser-
vation of linear momentum in isolated systems is inviolate as far as we know. A 
more fundamental result for the total energy in Equation (2.65) might include 
momentum rather than kinetic energy. Let’s proceed to find a useful result. We 
begin with Equation (2.48) for the relativistic momentum written in magnitude 
form only.

 p " gmu "
mu21 # u2

 /c 2

We square this result, multiply by c 2, and rearrange the result.

  p2c 2 " g2m 2u2c 2

  " g2m 2c 4
 a u2

c 2 b " g2m 2c 4b2

We use Equation (2.62) for b2 and find

  p2c 2 " g2m 2c 4
 a1 #

1
g2 b

  " g2m 2c 4 # m 2c 4
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   2.12 Relativistic Energy 67

The first term on the right-hand side is just E2, and the second term is E  0
2. The 

last equation becomes

 p2c 
2 " E 

2 # E 0
2

We rearrange this last equation to find the result we are seeking, a relation be-
tween energy and momentum.

 E2 " p2c 2 $ E0
2  (2.70)

or

 E 
2 " p2c 

2 $ m2c4  (2.71)

Equation (2.70) is a useful result to relate the total energy of a particle with its 
momentum. The quantities (E2 # p2c 2) and m are invariant quantities. Note that 
when a particle’s velocity is zero and it has no momentum, Equation (2.70) cor-
rectly gives E0 as the particle’s total energy.

Massless Particles
Equation (2.70) can also be used to determine the total energy for particles hav-
ing zero mass. For example, Equation (2.70) predicts that the total energy of a 
photon is

 E " pc  Photon (2.72)

The energy of a photon is completely due to its motion. It has no rest energy, 
because it has no mass.

We can show that the previous relativistic equations correctly predict that 
the speed of a photon must be the speed of light c. We use Equations (2.65) and 
(2.72) for the total energy of a photon and set the two equations equal.

 E " gmc 2 " pc

If we insert the value of the relativistic momentum from Equation (2.48), we 
have

 gmc 2 " gmuc

The fact that u " c follows directly from this equation after careful consideration 
of letting m S 0 and realizing that gS q.

 u " c  Massless particle (2.73)

Momentum-energy relation

Massless particles must 
travel at the speed of light

Tachyons are postulated particles that travel faster than the 
speed of light. (The word tachyon is derived from the Greek 
word tachus, which means “speedy.”) They were first seri-
ously proposed and investigated in the 1960s. Use what we 
have learned thus far in this chapter and discuss several 
properties that tachyons might have.

Solution Let’s first examine Equation (2.65) for energy:

 E " gmc 2 "
mc 221 # u2

 /c 2
 (2.65)

 CONCEPTUAL EXAMPLE 2 .12
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68 Chapter 2 Special Theory of Relativity

2.13  Computations in Modern Physics
We were taught in introductory physics that the international system of units is 
preferable when doing calculations in science and engineering. This is generally 
true, but in modern physics we sometimes use other units that are more conve-
nient for atomic and subatomic scales. In this section we introduce some of those 
units and demonstrate their practicality through several examples. Recall that 
the work done in accelerating a charge through a potential difference is given 
by W " qV. For a proton, with charge e " 1.602 % 10#19 C, accelerated across a 
potential difference of 1 V, the work done is

 W " 11.602 % 10#19 2 11 V 2 " 1.602 % 10#19 J

In modern physics calculations, the amount of charge being considered is almost 
always some multiple of the electron charge. Atoms and nuclei all have an exact 
multiple of the electron charge (or neutral). For example, some charges are 
proton ($e), electron (#e), neutron (0), pion (0, *e), and a singly ionized car-
bon atom ($e). The work done to accelerate the proton across a potential dif-
ference of 1 V could also be written as

 W " 11 e 2 11 V 2 " 1 eV

where e stands for the electron charge. Thus eV, pronounced “electron volt,” is 
also a unit of energy. It is related to the SI (Système International) unit joule by the 
two previous equations.

 1 eV " 1.602 % 10#19 J (2.74)

The eV unit is used more often in modern physics than the SI unit J. The term 
eV is often used with the SI prefixes where applicable. For example, in atomic 
and solid state physics, eV itself is mostly used, whereas in nuclear physics MeV 
(106 eV, mega-electron-volt) and GeV (109 eV, giga-electron-volt) are predomi-
nant, and in particle physics GeV and TeV (1012 eV, tera-electron-volt) are used. 
When we speak of a particle having a certain amount of energy, the common 
usage is to refer to the kinetic energy. A 6-GeV proton has a kinetic energy of 
6 GeV, not a total energy of 6 GeV. Because the rest energy of a proton is about 
1 GeV, this proton would have a total energy of about 7 GeV.

Use eV for energy

Because u ( c, the energy must be imaginary if the mass is 
real, or conversely, if we insist that energy be real, we must 
have an imaginary mass! For purposes of discussion, we will 
henceforth assume that energy is real and tachyon mass is 
imaginary. Remember that ordinary matter must always 
travel at speed less than c, light must travel at the speed of 
light, and tachyons must always have speed greater than c. In 
order to slow down a tachyon, we must give it more energy, 
according to Equation (2.65). Note that the energy must 
become infinite if we want to slow down a tachyon to speed 
c. If the tachyon’s energy is reduced, it speeds up!

Because tachyons travel faster than c, we have a prob-
lem with causality. Consider a tachyon leaving Earth at time 
t " 0 that arrives at a distant galaxy at time T. A spaceship 

traveling at speed less than c from Earth to the galaxy could 
conceivably find that the tachyon arrived at the galaxy be-
fore it left Earth!

It has been proposed that tachyons might be created in 
high-energy particle collisions or in cosmic rays. No con-
firm ing evidence has been found. Tachyons, if charged, 
could also be detected from Cerenkov radiation. When we 
refer to speed c, we always mean in a vacuum. When travel-
ing in a medium, the speed must be less than c. When par-
ticles have speed greater than light travels in a medium, 
characteristic electromagnetic radiation is emitted. The ef-
fect of the blue glow in swimming pool nuclear reactors is 
due to this Cerenkov radiation.
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Like the SI unit for energy, the SI unit for mass, kilogram, is a very large unit 
of mass in modern physics calculations. For example, the mass of a proton is only 
1.6726 % 10#27 kg. Two other mass units are commonly used in modern physics. 
First, the rest energy E0 is given by Equation (2.64) as mc 2. The rest energy of the 
proton is given by

  E01proton 2 " 11.67 % 10#27 kg 2 13 % 108 m/s 2 2 " 1.50 % 10#10 J

  " 1.50 % 10#10 J 
1 eV

1.602 % 10#19 J
" 9.38 % 108 eV

The rest energies of the elementary particles are usually quoted in MeV or GeV. 
(To five significant figures, the rest energy of the proton is 938.27 MeV.) Because 
E0 " mc 2, the mass is often quoted in units of MeV/c 2; for example, the mass of 
the proton is given by 938.27 MeV/c 2. We will find that the mass unit of MeV/c 2 
is quite useful. The masses of several elementary particles are given on the inside 
of the front book cover. Although we will not do so, research physicists often 
quote the mass in units of just eV (or MeV, etc.).

The other commonly used mass unit is the (unified) atomic mass unit. It is 
based on the definition that the mass of the neutral carbon-12 (12C) atom is 
exactly 12 u, where u is one atomic mass unit.* We obtain the conversion be-
tween kilogram and atomic mass units u by comparing the mass of one 12C atom.

  Mass 112C atom 2 "
12 g /mol

6.02 % 1023 atoms /mol

  " 1.99 % 10#23 g /atom  (2.75)

  Mass 112C atom 2 " 1.99 % 10#26 kg " 12 u /atom

Therefore, the conversion is (when properly done to 6 significant figures)

  1 u " 1.66054 % 10#27 kg (2.76)

  1 u " 931.494 MeV /c 2  (2.77)

We have added the conversion from atomic mass units to MeV/c 2 for 
com pleteness.

From Equations (2.70) and (2.72) we see that a convenient unit of momen-
tum is energy divided by the speed of light, or eV/c. We will use the unit eV/c 
for momentum when appropriate. Remember also that we often quote b (" v/c) 
for velocity, so that c itself is an appropriate unit of velocity.

Use MeV/c 2 for mass

Atomic mass unit

*To avoid confusion between velocity and atomic mass unit, we will henceforth use v for velocity 
when the possibility exists for confusing the mass unit u with the velocity variable u.

A 2.00-GeV proton hits another 2.00-GeV proton in a head-
on collision. (a) Calculate v, b, p, K, and E for each of the 
initial protons. (b) What happens to the kinetic energy?

Strategy (a) By the convention just discussed, a 2.00-GeV 
proton has a kinetic energy of 2.00 GeV. We use Equation 

(2.65) to determine the total energy and Equation (2.70) to 
determine momentum if we know the total energy. To de-
termine b and v, it helps to first determine the relativistic 
factor g, which we can use Equation (2.65) to find. Then we 
use Equation (2.62) to find b and v. These are all typical cal-
culations that are performed when doing relativistic 
computations.

 EXAMPLE 2 .13
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70 Chapter 2 Special Theory of Relativity

Binding Energy
The equivalence of mass and energy becomes apparent when we study the bind-
ing energy of atoms and nuclei that are formed from individual particles. For 
example, the hydrogen atom is formed from a proton and electron bound to-
gether by the electrical (Coulomb) force. A deuteron is a proton and neutron 
bound together by the nuclear force. The potential energy associated with the 
force keeping the system together is called the binding energy EB. The binding 
energy is the work required to pull the particles out of the bound system into 
separate, free particles at rest. The conservation of energy is written as

 Mbound systemc 2 $ EB "a
i

mic 2 (2.80)

where the mi values are the masses of the free particles. The binding energy is the 
difference between the rest energy of the individual particles and the rest energy of the com-
bined, bound system.

 EB "a
i

mic 2 # Mbound systemc 2  (2.81)

For the case of two final particles having masses m1 and m2, we have

 EB " 1m1 $ m2 # Mbound system 2c 2 " ¢Mc 2 (2.82)

where &M is the difference between the final and initial masses.

Solution (a) We use K " 2.00 GeV and the proton rest 
energy, 938 MeV, to find the total energy from Equation 
(2.65),

 E " K $ E0 " 2.00 GeV $ 938 MeV " 2.938 GeV

The momentum is determined from Equation (2.70).

 p2c 2 " E2 # E0
2 " 12.938 GeV 22 # 10.938 GeV 22

  " 7.75 GeV2

The momentum is calculated to be

 p " 27.751GeV/c 22 " 2.78 GeV/c

Notice how naturally the unit of GeV/c arises in our 
calculation.

In order to find b we first find the relativistic factor g. 
There are several ways to determine g; one is to compare the 
rest energy with the total energy. From Equation (2.65) we 
have

  E " gE0 "
E021 # u2

 /c 2

  g "
E
E0

"
2.938 GeV
0.938 GeV

" 3.13

We use Equation (2.62) to determine b.

 b " Bg2 # 1
g2 " B3.132 # 1

3.132 " 0.948

The speed of a 2.00-GeV proton is 0.95c or 2.8 % 108 m/s.
(b) When the two protons collide head-on, the situa-

tion is similar to the case when the two blocks of wood col-
lided head-on with one important exception. The time for 
the two protons to interact is less than 10#20 s. If the two 
protons did momentarily stop at rest, then the two-proton 
system would have its mass increased by an amount given by 
Equation (2.68), 2K/c 2 or 4.00 GeV/c 2. The result would be 
a highly excited system. In fact, the collision between the 
protons happens very quickly, and there are several possible 
outcomes. The two protons may either remain or disappear, 
and new additional particles may be created. Two of the pos-
sibilities are

  p $ p S p $ p $ p $ p (2.78)

  p $ p Sp$ $ d (2.79)

where the symbols are p (proton), p (antiproton), p (pion), 
and d (deuteron). We will learn more about the possibili-
ties later when we study nuclear and particle physics. What-
ever happens must be consistent with the conservation laws 
of charge, energy, and momentum, as well as with other 
conservation laws to be learned. Such experiments are rou-
tinely done in particle physics. In the analysis of these ex-
periments, the equivalence of mass and energy is taken for 
granted.
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When two particles (for example, a proton and neutron) are bound to-
gether to form a composite (like a deuteron), part of the rest energy of the in-
dividual particles is lost, resulting in the binding energy of the system. The rest 
energy of the combined system must be reduced by this amount. The deuteron 
is a good example. The rest energies of the particles are

  Proton   E0 " 1.007276c 2 u " 938.27 MeV

  Neutron   E0 " 1.008665c 2 u " 939.57 MeV

  Deuteron   E0 " 2.01355c 2 u " 1875.61 MeV

The binding energy EB is determined from Equation (2.81) to be

 EB 1deuteron 2 " 938.27 MeV $ 939.57 MeV # 1875.61 MeV " 2.23 MeV

Why can we ignore the 13.6 eV binding energy of the proton 
and electron when making mass determinations for nuclei, 
but not the binding energy of a proton and neutron?

Solution The binding energy of the proton and electron 
in the hydrogen atom is only 13.6 eV, which is so much 
smaller than the 1-GeV rest energy of a neutron and proton 
that it can be neglected when making mass determinations. 

The deuteron binding energy of 2.23 MeV, however, repre-
sents a much larger fraction of the rest energies and is ex-
tremely important. The binding energies of heavy nuclei 
such as uranium can be more than 1000 MeV, and even that 
much energy is not large enough to keep uranium from 
decaying to lighter nuclei. The Coulomb repulsion between 
the many protons in heavy nuclei is mostly responsible for 
their instability. Nuclear stability is addressed in Chapter 12.

 CONCEPTUAL EXAMPLE 2 .14

What is the minimum kinetic energy the protons must have 
in the head-on collision of Equation (2.79), p $ p S p$ $ d, 
in order to produce the positively charged pion and deu-
teron? The mass of p$ is 139.6 MeV/c 2.

Strategy For the minimum kinetic energy K required, we 
need just enough energy to produce the rest energies of the 
final particles. We let the final kinetic energies of the pion 
and deuteron be zero. Because the collision is head-on, the 
momentum will be zero before and after the collision, so the 
pion and deuteron will truly be at rest with no kinetic en-
ergy. We use the conservation of energy to determine the 
kinetic energy.

Solution Conservation of energy requires

 mpc 2 $ K $ mpc 2 $ K " mdc 2 $ mp$c 2

The rest energies of the proton and deuteron were given in 
this section, so we solve the previous equation for the kinetic 
energy.

  K " 1
2 1mdc 2 $ mp$c 2 # 2mpc 2 2

  " 1
2 31875.6 MeV $ 139.6 MeV # 21938.3 MeV 2 4

  " 69 MeV

Nuclear experiments like this are normally done with fixed 
targets, not head-on collisions, and much more energy than 
69 MeV is required, because linear momentum must also be 
conserved.

 EXAMPLE 2 .15
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72 Chapter 2 Special Theory of Relativity

A positively charged sigma particle (symbol .$) produced 
in a particle physics experiment decays very quickly into a 
neutron and positively charged pion before either its en-
ergy or momentum can be measured. The neutron and 
pion are observed to move in the same direction as the .$ 
was originally moving, with momenta of 4702 MeV/c and 
169 MeV/c, respectively. What was the kinetic energy of the 
.$ and its mass?

Strategy The decay reaction is

 .$ S n $ p$

where n is a neutron. Obviously the .$ has more mass than 
the sum of the masses of n and p$, or the decay would not 
occur. We have to conserve both momentum and energy for 
this reaction. We use Equation (2.70) to find the total en-
ergy of the neutron and positively charged pion, but in or-

 EXAMPLE 2 .18

The molecular binding energy is called the dissociation en-
ergy. It is the energy required to separate the atoms in a 
molecule. The dissociation energy of the NaCl molecule is 
4.24 eV. Determine the fractional mass increase of the Na 
and Cl atoms when they are not bound together in NaCl. 
What is the mass increase for a mole of NaCl?

Strategy Binding energy is a concept that applies to vari-
ous kinds of bound objects, including a nucleus, an atom, a 
molecule, and others. We can use Equation (2.82) in the 
present case to find &M, the change in mass, in terms of 
the binding energy EB/c 2. We then divide &M by M to find 
the fractional mass increase.

Solution From Equation (2.82) we have ¢M " EB /c 2 (the 
binding energy divided by c 2) as the mass difference be-
tween the molecule and separate atoms. The mass of NaCl 
is 58.44 u. The fractional mass increase is

  fr "
¢M
M

"
EB /c 2

M
"

4.24 eV /c 2

58.44 u
 

c 2 u
931 MeV

 
1 MeV
106 eV

  " 7.8 % 10#11

One mole of NaCl has a mass of 58.44 g, so the mass decrease 
for a mole of NaCl is fr % 58.44 g or only 4.6 % 10#9 g. Such 
small masses cannot be directly measured, which is why 
nonconservation of mass was not observed for chemical re-
actions—the changes are too small.

 EXAMPLE 2 .17

The atomic mass of the 4He atom is 4.002603 u. Find the 
binding energy of the 4He nucleus.

Strategy This is a straightforward application of Equation 
(2.81), and we will need to determine the atomic masses.

Solution Equation (2.81) gives

 EB 14He 2 " 2mpc 2 $ 2mnc 2 # M4He c 2

Later we will learn to deal with atomic masses in cases like 
this, but for now we will subtract the two electron masses 
from the atomic mass of 4He to obtain the mass of the 4He 
nucleus. The mass of the electron is given on the inside of 

the front cover, along with the masses of the proton and 
neutron.

  M 4He 1nucleus 2 " 4.002603 u # 2 10.000549 u 2
 " 4.001505 u

We determine the binding energy of the 4He nucleus to be

  EB 14He 2 "  32 11.007276 u 2 $ 2 11.008665 u 2 # 4.001505 u 4c 2

 " 0.0304c 2u

  EB 14He 2 " 10.0304 c 2 u 2  931.5 MeV
c 2 u

" 28.3 MeV

The binding energy of the 4He nucleus is large, almost 1% 
of its rest energy.

 EXAMPLE 2 .16
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2.14  Electromagnetism and Relativity
We have been concerned mostly with the kinematical and dynamical aspects of 
the special theory of relativity strictly from the mechanics aspects. However, re-
call that Einstein first approached relativity through electricity and magnetism. 
He was convinced that Maxwell’s equations were invariant (have the same form) 
in all inertial frames. Einstein wrote in 1952,

What led me more or less directly to the special theory of relativity was the conviction 
that the electromagnetic force acting on a body in motion in a magnetic field was 
nothing else but an electric field.

Einstein was convinced that magnetic fields appeared as electric fields observed 
in another inertial frame. That conclusion is the key to electromagnetism and 
relativity.

Maxwell’s equations and the Lorentz force law are invariant in different in-
ertial frames. In fact, with the proper Lorentz transformations of the electric and 
magnetic fields (from relativity theory) together with Coulomb’s law (force be-
tween stationary charges), Maxwell’s equations can be obtained. We will not at-
tempt that fairly difficult mathematical task here, nor do we intend to obtain the 
Lorentz transformation of the electric and magnetic fields. These subjects are 
studied in more advanced physics classes. However, we will show qualitatively 
that the magnetic force that one observer sees is simply an electric force accord-
ing to an observer in another inertial frame. The electric field arises from 
charges, whereas the magnetic field arises from moving charges.

Electricity and magnetism were well understood in the late 1800s. Maxwell 
predicted that all electromagnetic waves travel at the speed of light, and he com-
bined electricity, magnetism, and optics into one successful theory. This classical 
theory has withstood the onslaught of time and experimental tests.* There were, 
however, some troubling aspects of the theory when it was observed from differ-
ent Galilean frames of reference. In 1895 H. A. Lorentz “patched up” the dif fi-

Einstein’s conviction 
about electromagnetism

Magnetism and 
electricity are relative

der to determine the rest energy of .$, we need to know the 
momentum. We can determine the .$ momentum from the 
conservation of momentum.

Solution The rest energies of n and p$ are 940 MeV and 
140 MeV, respectively. The total energies of En and Ep$ are, 

from E " 2p2c 2 $ E0
2,

  En " 2 14702 MeV 22 $ 1940 MeV 22 " 4795 MeV

  Ep$ " 2 1169 MeV 22 $ 1140 MeV 22 " 219 MeV

The sum of these energies gives the total energy of the reac-
tion, 4795 MeV $ 219 MeV " 5014 MeV, both before and 
after the decay of .$. Because all the momenta are along 
the same direction, we must have

  p © $ " pn $ pp$ " 4702 MeV /c $ 169 MeV /c

  " 4871 MeV /c

This must be the momentum of the .$ before decaying, so 
now we can find the rest energy of .$ from Equation (2.70).

  E 0
2

 1.$ 2 " E 
2 # p2c 

2 " 15014 MeV 22 # 14871 MeV 22
  " 11189 MeV 22
The rest energy of the .$ is 1189 MeV, and its mass is 1189 
MeV/c 2.

We find the kinetic energy of .$ from Equation (2.65).

 K " E # E0 " 5014 MeV # 1189 MeV " 3825 MeV

*The meshing of electricity and magnetism together with quantum mechanics, called the theory of 
quantum electrodynamics (QED), is one of the most successful theories in physics.
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74 Chapter 2 Special Theory of Relativity

culties with the Galilean transformation by developing a new transformation that 
now bears his name, the Lorentz transformation. However, Lorentz did not 
understand the full implication of what he had done. It was left to Einstein, who 
in 1905 published a paper titled “On the Electrodynamics of Moving Bodies,” 
to fully merge relativity and electromagnetism. Einstein did not even mention 
the famous Michelson-Morley experiment in this classic 1905 paper, which we 
take as the origin of the special theory of relativity, and the Michelson-Morley 
experiment apparently played little role in his thinking. Einstein’s belief that 
Maxwell’s equations describe electromagnetism in any inertial frame was the key that led 
Einstein to the Lorentz transformations. Maxwell’s assertion that all electromag-
netic waves travel at the speed of light and Einstein’s postulate that the speed of 
light is invariant in all inertial frames seem intimately connected.

We now proceed to discuss qualitatively the relative aspects of electric and 
magnetic fields and their forces. Consider a positive test charge q0 moving to the 
right with speed v outside a neutral, conducting wire as shown in Figure 2.34a in 
the frame of the inertial system K, where the positive charges are at rest and the 
negative electrons in the wire have speed v to the right. The conducting wire is 
long and has the same number of positive ions and conducting electrons. For 
simplicity, we have taken the electrons and the positive charges to have the same 
speed, but the argument can be generalized.

What is the force on the positive test charge q0 outside the wire? The total 
force is given by the Lorentz force

 F " q01E $ v % B 2  (2.83)

Figure 2.34 (a) A positive 
charge q0  is placed outside a neu-
tral, conducting wire. The figure 
is shown in the system where the 
positive charges in the wire are at 
rest. Note that the charge q0 has 
the same velocity as the electrons. 
(b) The moving electrons pro-
duce a magnetic field, which 
causes a force FB on q0. (c) This is 
similar to (a), but in this system 
the electrons are at rest. (d) Now 
there is an abundance of positive 
charges due to length contrac-
tion, and the resulting electric 
field repels q0. There is also a 
magnetic field, but this causes no 
force on q0, which is at rest in this 
system.
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and can be due to an electric field, a magnetic field, or both. Because the total 
charge inside the wire is zero, the electric force on the test charge q0 in Fig-
ure 2.34a is also zero. But we learned in introductory physics that the moving 
electrons in the wire (current) produce a magnetic field B  at the position of q0 
that is into the page (Figure 2.34b). The moving charge q0 will be repelled upward 
by the magnetic force (q0v % B) due to the magnetic field of the wire.

Let’s now see what happens in a different inertial frame K! moving at speed 
v to the right with the test charge (see Figure 2.34c). Both the test charge q0 and 
the negative charges in the conducting wire are at rest in system K!. In this sys-
tem an observer at the test charge q0 observes the same density of negative ions 
in the wire as before. However, in system K! the positive ions are now moving to 
the left with speed v. Due to length contraction, the positive ions will appear to 
be closer together to a stationary observer in K!. Because the positive charges 
appear to be closer together, there is a higher density of positive charges than of 
negative charges in the conducting wire. The result is an electric field as shown 
in Figure 2.34d. The test charge q0 will now be repelled in the presence of the 
electric field. What about the magnetic field now? The moving charges in Figure 
2.34c also produce a magnetic field that is into the page, but this time the charge 
q0 is at rest with respect to the magnetic field, so charge q0 feels no magnetic 
force.

What appears as a magnetic force in one inertial frame (Figure 2.34b) ap-
pears as an electric force in another (Figure 2.34d). Electric and magnetic fields 
are relative to the coordinate system in which they are observed. The Lorentz 
contraction of the moving charges accounts for the difference. This example can 
be extended to two conducting wires with electrons moving, and a similar result 
will be obtained (see Problem 86). It is this experiment, on the force between 
two parallel, conducting wires, in which current is defined. Because charge is 
defined using current, the experiment is also the basis of the definition of the 
electric charge.

We have come full circle in our discussion of the special theory of relativity. 
The laws of electromagnetism represented by Maxwell’s equations have a special 
place in physics. The equations themselves are invariant in different inertial sys-
tems; only the interpretations as electric and magnetic fields are relative.

S u m m a r y

Efforts by Michelson and Morley proved in 1887 that either 
the elusive ether does not exist or there must be significant 
problems with our understanding of nature.

Albert Einstein solved the problem in 1905 by applying 
two postulates:

1.  The principle of relativity: The laws of physics are the 
same in all inertial systems.

2.  The constancy of the speed of light: Observers in all in-
ertial systems measure the same value for the speed of 
light in vacuum.

Einstein’s two postulates are used to derive the Lorentz 
transformation relating the space and time coordinates of 
events viewed from different inertial systems. If system K! is 
moving at speed v along the $x axis with respect to system 
K, the two sets of coordinates are related by

  x œ "
x # vt21 # b2

  yœ " y  
(2.17)

 zœ " z

  t œ "
t # 1vx /c 2 221 # b2
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76 Chapter 2 Special Theory of Relativity

The inverse transformation is obtained by switching the 
primed and unprimed quantities and changing v to #v.

The time interval between two events occurring at the 
same position in a system as measured by a clock at rest is 
called the proper time T0. The time interval T œ between the 
same two events measured by a moving observer is related to 
the proper time T0 by the time dilation effect.

 T œ "
T021 # v 2

 /c 2
 (2.19)

We say that moving clocks run slow, because the shortest 
time is always measured on clocks at rest.

The length of an object measured by an observer at rest 
relative to the object is called the proper length L0. The 
length of the same object measured by an observer who sees 
the object moving at speed v is L, where

 L " L021 # v 2
 /c 2 (2.21)

This effect is known as length or space contraction, because 
moving objects are contracted in the direction of their 
motion.

If u and uœ are the velocities of an object measured in 
systems K and K!, respectively, and v is the relative velocity 
between K and K!; the relativistic addition of velocities 
(Lorentz velocity transformation) is

 ux "
dx
dt

"
uœ

x $ v
1 $ 1v /c 2 2uœ

x

  uy "
uœ

y

g 31 $ 1v /c 2 2uœ
x 4  (2.23)

  uz "
uœ

z

g 31 $ 1v /c 2 2uœ
x 4

where

 g "
121 # v 2

 /c 2
 (2.8)

The Lorentz transformation has been tested for a hundred 
years, and no violation has yet been detected. Nevertheless, 
physicists continue to test its validity, because it is one of the 
most important results in science.

Spacetime diagrams are useful to represent events geo-
metrically. Time may be considered to be a fourth dimen-
sion for some purposes. The spacetime interval for two 
events defined by &s2 " &x2 $ &y2 $ &z2 # c 2 &t 2 is an invari-
ant between inertial systems.

The relativistic Doppler effect for light frequency f is 
given by

 f "
21 $ b21 # b

  f0 (2.34)

where b is positive when source and receiver are approach-
ing one another and negative when they are receding.

The classical form for linear momentum is replaced by 
the special relativity form:

 p " gmu "
mu21 # u2

 /c 2
 (2.48)

The relativistic kinetic energy is given by

K " gmc 2 # mc 2 " mc 2
 a 121 # u2

 /c 2
# 1 b  (2.58)

The total energy E is given by

E " gmc 2 "
mc 221 # u2

 /c 2
"

E021 # u2
 /c 2

" K $ E0

(2.65)

where E0 " mc 2. This equation denotes the equivalence of 
mass and energy. The laws of the conservation of mass and 
of energy are combined into one conservation law: the con-
servation of mass-energy.

Energy and momentum are related by

 E2 " p2c 2 $ E0
2 (2.70)

In the case of massless particles (for example, the photon), 
E0 " 0, so E " pc. Massless particles must travel at the speed 
of light.

The electron volt, denoted by eV, is equal to 1.602 % 
10#19 J. The unified atomic mass unit u is based on the mass 
of the 12C atom.

1 u " 1.66054 % 10#27 kg " 931.494 MeV /c 2 (2.76, 2.77)

Momentum is often quoted in units of eV/c, and the velocity 
is often given in terms of b (" v/c).

The difference between the rest energy of individual 
particles and the rest energy of the combined, bound system 
is called the binding energy.

Maxwell’s equations are invariant under transforma-
tions between any inertial reference frames. What appears 
as electric and magnetic fields is relative to the reference 
frame of the observer.
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Q u e s t i o n s

 1. Michelson used the motion of the Earth around the 
sun to try to determine the effects of the ether. Can 
you think of a more convenient experiment with a 
higher speed that Michelson might have used in the 
1880s? What about today?

 2. If you wanted to set out today to fi nd the effects of the 
ether, what experimental apparatus would you want 
to use? Would a laser be included? Why?

 3. For what reasons would Michelson and Morley repeat 
their experiment on top of a mountain? Why would 
they perform the experiment in summer and winter?

 4. Does the fact that Maxwell’s equations do not need to 
be modifi ed because of the special theory of relativity, 
whereas Newton’s laws of motion do, mean that 
Maxwell’s work is somehow greater or more signifi -
cant than Newton’s? Explain.

 5. The special theory of relativity has what effect on mea-
surements done today? (a) None whatsoever, because 
any correction would be negligible. (b) We need to 
consider the effects of relativity when objects move 
close to the speed of light. (c) We should always make 
a correction for relativity because Newton’s laws are 
basically wrong. (d) It doesn’t matter, because we 
can’t make measurements where relativity would 
matter.

 6. Why did it take so long to discover the theory of rela-
tivity? Why didn’t Newton fi gure it out?

 7. Can you think of a way you can make yourself older 
than those born on your same birthday?

 8. Will metersticks manufactured on Earth work cor-
rectly on spaceships moving at high speed? Explain.

 9. Devise a system for you and three colleagues, at rest 
with you, to synchronize your clocks if your clocks are 
too large to move and are separated by hundreds of 
miles.

 10. In the experiment to verify time dilation by fl ying the 
cesium clocks around the Earth, what is the order of 
the speed of the four clocks in a system fi xed at the 
center of the Earth, but not rotating?

 11. Can you think of an experiment to verify length con-
traction directly? Explain.

 12. Would it be easier to perform the muon decay experi-
ment in the space station orbiting above Earth and 
then compare with the number of muons on Earth? 
Explain.

 13. On a spacetime diagram, can events above t  "  0 but 
not in the shaded area in Figure 2.25 affect the fu-
ture? Explain.

 14. Why don’t we also include the spatial coordinate z 
when drawing the light cone?

 15. What would be a suitable name for events connected 
by &s2  "  0?

 16. Is the relativistic Doppler effect valid only for light 
waves? Can you think of another situation in which it 
might be valid?

 17. In Figure 2.22, why can a real worldline not have a 
slope less than one?

 18. Explain how in the twin paradox, we might arrange to 
compare clocks at the beginning and end of Mary’s 
journey and not have to worry about acceleration 
effects.

 19. In each of the following pairs, which is the more mas-
sive: a relaxed or compressed spring, a charged or 
uncharged capacitor, or a piston-cylinder when closed 
or open?

 20. In the fi ssion of 235U, the masses of the fi nal products 
are less than the mass of 235U. Does this make sense? 
What happens to the mass?

 21. In the fusion of deuterium and tritium nuclei to pro-
duce a thermonuclear reaction, where does the ki-
netic energy that is produced come from?

 22. Mary, the astronaut, wants to travel to the star system 
Alpha Centauri, which is 4.3 lightyears away. She 
wants to leave on her 30th birthday, travel to Alpha 
Centauri but not stop, and return in time for her wed-
ding to Vladimir on her 35th birthday. What is most 
likely to happen? (a) Vladimir is a lucky man, because 
he will marry Mary after she completes her journey. 
(b) Mary will have to hustle to get in her wedding 
gown, and the wedding is likely to be watched by bil-
lions of people. (c) It is a certainty that Mary will not 
reach Alpha Centauri if she wants to marry Vladimir 
as scheduled. (d) Mary does reach Alpha Centauri 
before her 35th birthday and sends a radio message to 
Vladimir from Alpha Centauri that she will be back on 
time. Vladimir is relieved to receive the message be-
fore the wedding date.

 23. A salesman driving a very fast car was arrested for driv-
ing through a traffi c light while it was red, according 
to a policeman parked near the traffi c light. The sales-
man said that the light was actually green to him, be-
cause it was Doppler shifted. Is he likely to be found 
innocent? Explain.
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78 Chapter 2 Special Theory of Relativity

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

2.1 The Need for Ether
 1. Show that the form of Newton’s second law is invari-

ant under the Galilean transformation.
 2. Show that the defi nition of linear momentum, p  "  

mv, has the same form p!  "  mv! under a Galilean 
transformation.

2.2 The Michelson-Morley Experiment
 3. Show that the equation for t2 in Section 2.2 expresses 

the time required for the light to travel to the mirror 
D and back in Figure 2.2. In this case the light is trav-
eling perpendicular to the supposed direction of the 
ether. In what direction must the light travel to be 
refl ected by the mirror if the light must pass through 
the ether?

 4. A swimmer wants to swim straight across a river with 
current fl owing at a speed of v1  "  0.350 m/s. If the 
swimmer swims in still water with speed v2  "  1.25 m/s, 
at what angle should the swimmer point upstream 
from the shore, and at what speed will the swimmer 
swim across the river?

 5. Show that the time difference &t !  given by Equation 
(2.4) is correct when the Michelson interferometer is 
rotated by 90°.

 6. In the 1887 experiment by Michelson and Morley, 
the length of each arm was 11 m. The experimental 
limit for the fringe shift was 0.005 fringes. If sodium 
light was used with the interferometer ("  "  589 nm), 
what upper limit did the null experiment place 
on the speed of the Earth through the expected 
ether?

 7. Show that if length is contracted by the factor 11#v 2/c 2 in the direction of motion, then the result 
in Equation (2.3) will have the factor needed to make 
&t  "  0 as needed by Michelson and Morley.

2.3 Einstein’s Postulates
 8. Explain why Einstein argued that the constancy of the 

speed of light (postulate 2) actually follows from the 
principle of relativity (postulate 1).

 9. Prove that the constancy of the speed of light (postulate 
2) is inconsistent with the Galilean transformation.

2.4 The Lorentz Transformation
 10. Use the spherical wavefronts of Equations (2.9) to 

derive the Lorentz transformation given in Equations 
(2.17). Supply all the steps.

 11. Show that both Equations (2.17) and (2.18) reduce to 
the Galilean transformation when v V c.

 12. Determine the ratio #  "  v/c for the following: (a) A 
car traveling 95 km/h. (b) A commercial jet airliner 
traveling 240 m/s. (c) A supersonic airplane traveling 
at Mach 2.3 (Mach number  "  v/vsound). (d) The space 
station, traveling 27,000 km/h. (e) An electron travel-
ing 25 cm in 2 ns. (f) A proton traveling across a nu-
cleus (10#14 m) in 0.35 % 10#22 s.

 13. Two events occur in an inertial system K as follows:

  Event 1: x1  "  a, t1  "  2a/c, y1  "  0, z1  "  0
Event 2: x2  "  2a, t2  "  3a/ 2c, y2  "  0, z2  "  0

  In what frame K! will these events appear to occur at 
the same time? Describe the motion of system K!.

 14. Is there a frame K! in which the two events described 
in Problem 13 occur at the same place? Explain.

 15. Find the relativistic factor ! for each of the parts of 
Problem 12.

 16. An event occurs in system K!  at x!   "  2 m, y!   "  3.5 m, 
z!   "  3.5 m, and t!   "  0. System K!  and K have their 
axes coincident at t  "  t!   "  0, and system K!  travels 
along the x axis of system K with a speed 0.8c. What 
are the coordinates of the event in system K?

 17. A light signal is sent from the origin of a system K at 
t  "  0 to the point x  "  3 m, y  "  5 m, z  "  10 m. (a) At 
what time t is the signal received? (b) Find (x !, y!, z!, t!) 
for the receipt of the signal in a frame K!  that is mov-
ing along the x axis of K at a speed of 0.8c. (c) From 
your results in (b) verify that the light traveled with a 
speed c as measured in the K!  frame.

2.5 Time Dilation and Length Contraction
 18. Show that the experiment depicted in Figure 2.11 and 

discussed in the text leads directly to the derivation of 
length contraction.

 19. A rocket ship carrying passengers blasts off to go from 
New York to Los Angeles, a distance of about 5000 km. 
(a) How fast must the rocket ship go to have its own 
length shortened by 1%? (b) Ignore effects of general 
relativity and determine how much time the rocket 
ship’s clock and the ground-based clocks differ when 
the rocket ship arrives in Los Angeles.

 20. Astronomers discover a planet orbiting around a star 
similar to our sun that is 20 lightyears away. How fast 
must a rocket ship go if the round trip is to take no 
longer than 40 years in time for the astronauts aboard? 
How much time will the trip take as measured on 
Earth?

 21. Particle physicists use particle track detectors to deter-
mine the lifetime of short-lived particles. A muon has 
a mean lifetime of 2.2 /s and makes a track 9.5 cm 
long before decaying into an electron and two neutri-
nos. What was the speed of the muon?

P r o b l e m s
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 22. The Apollo astronauts returned from the moon un-
der the Earth’s gravitational force and reached speeds 
of almost 25,000 mi/h with respect to Earth. Assum-
ing (incorrectly) they had this speed for the entire 
trip from the moon to Earth, what was the time differ-
ence for the trip between their clocks and clocks on 
Earth?

 23. A clock in a spaceship is observed to run at a speed of 
only 3/5 that of a similar clock at rest on Earth. How 
fast is the spaceship moving?

 24. A spaceship of length 40 m at rest is observed to be 
20 m long when in motion. How fast is it moving?

 25. The Concorde traveled 8000 km between two places 
in North America and Europe at an average speed of 
375 m/s. What is the total difference in time between 
two similar atomic clocks, one on the airplane and 
one at rest on Earth during a one-way trip? Consider 
only time dilation and ignore other effects such as 
Earth’s rotation.

 26. A mechanism on Earth used to shoot down geosyn-
chronous satellites that house laser-based weapons is 
fi nally perfected and propels golf balls at 0.94c. (Geo-
synchronous satellites are placed 3.58 % 104 km above 
the surface of the Earth.) (a) What is the distance 
from the Earth to the satellite, as measured by a detec-
tor placed inside the golf ball? (b) How much time 
will it take the golf ball to make the journey to the 
satellite in the Earth’s frame? How much time will it 
take in the golf ball’s frame?

 27. Two events occur in an inertial system K at the same 
time but 4 km apart. What is the time difference mea-
sured in a system K! moving parallel to these two 
events when the distance separation of the events is 
measured to be 5 km in K!?

 28. Imagine that in another universe the speed of light is 
only 100 m/s. (a) A person traveling along an inter-
state highway at 120 km/h ages at what fraction of the 
rate of a person at rest? (b) This traveler passes by a 
meterstick at rest on the highway. How long does the 
meterstick appear?

 29. In another universe where the speed of light is only 
100 m/s, an airplane that is 40 m long at rest and fl ies 
at 300 km/h will appear to be how long to an observer 
at rest?

 30. Two systems K and K! synchronize their clocks at t  "  
t!  "  0 when their origins are aligned as system K! 
passes by system K along the x axis at relative speed 
0.8c. At time t  "  3 ns, Frank (in system K) shoots a 
proton gun having proton speeds of 0.98c along his x 
axis. The protons leave the gun at x  "  1 m and arrive 
at a target 120 m away. Determine the event coordi-
nates (x, t) of the gun fi ring and of the protons arriv-
ing as measured by observers in both systems K and K!.

2.6 Addition of Velocities
 31. A spaceship is moving at a speed of 0.84c away from an 

observer at rest. A boy in the spaceship shoots a pro-

ton gun with protons having a speed of 0.62c. What is 
the speed of the protons measured by the observer at 
rest when the gun is shot (a) away from the observer 
and (b) toward the observer?

 32. A proton and an antiproton are moving toward each 
other in a head-on collision. If each has a speed of 
0.8c with respect to the collision point, how fast are 
they moving with respect to each other?

 33. Imagine the speed of light in another universe to be 
only 100 m/s. Two cars are traveling along an inter-
state highway in opposite directions. Person 1 is trav-
eling 110 km/h, and person 2 is traveling 140 km/h. 
How fast does person 1 measure person 2 to be travel-
ing? How fast does person 2 measure person 1 to be 
traveling?

 34. In the Fizeau experiment described in Example 2.5, 
suppose that the water is fl owing at a speed of 5 m/s. 
Find the difference in the speeds of two beams of 
light, one traveling in the same direction as the water 
and the other in the opposite direction. Use n  "  1.33 
for water.

 35. Three galaxies are aligned along an axis in the order 
A, B, C. An observer in galaxy B is in the middle and 
observes that galaxies A and C are moving in opposite 
directions away from him, both with speeds 0.60c. 
What is the speed of galaxies B and C as observed by 
someone in galaxy A?

 36. Consider the gedanken experiment discussed in Sec-
tion 2.6 in which a giant fl oodlight stationed 400 km 
above the Earth’s surface shines its light across the 
moon’s surface. How fast does the light fl ash across 
the moon?

2.7 Experimental Verifi cation
 37. A group of scientists decide to repeat the muon decay 

experiment at the Mauna Kea telescope site in Ha-
waii, which is 4205 m above sea level. They count 104 
muons during a certain time period. Repeat the cal-
culation of Section 2.7 and fi nd the classical and rela-
tivistic number of muons expected at sea level. Why 
did they decide to count as many as 104 muons instead 
of only 103?

 38. Consider a reference system placed at the U.S. Naval 
Observatory in Washington, D.C. Two planes take off 
from Washington Dulles Airport, one going eastward 
and one going westward, both carrying a cesium 
atomic clock. The distance around the Earth at 39° 
latitude (Washington, D.C.) is 31,000 km, and Wash-
ington rotates about the Earth’s axis at a speed of 
360 m/s. Calculate the predicted differences between 
the clock left at the observatory and the two clocks in 
the airplanes (each traveling at 300 m/s) when the 
airplanes return to Washington. Include the rotation 
of the Earth but no general relativistic effects. Com-
pare with the predictions given in the text.
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2.8 Twin Paradox
 39. Derive the results in Table 2.1 for the frequencies f ! 

and f 0 . During what time period do Frank and Mary 
receive these frequencies?

 40. Derive the results in Table 2.1 for the time of the total 
trip and the total number of signals sent in the frame 
of both twins. Show your work.

2.9 Spacetime
 41. Use the Lorentz transformation to prove that s2 " s!2.
 42. Prove that for a timelike interval, two events can never 

be considered to occur simultaneously.
 43. Prove that for a spacelike interval, two events cannot 

occur at the same place in space.
 44. Given two events, (x1, t1) and (x2, t2), use a spacetime 

diagram to fi nd the speed of a frame of reference in 
which the two events occur simultaneously. What val-
ues may &s2 have in this case?

 45. (a) Draw on a spacetime diagram in the fi xed system 
a line expressing all the events in the moving system 
that occur at t !  "  0 if the clocks are synchronized at 
t  "  t !  "  0. (b) What is the slope of this line? (c) 
Draw lines expressing events occurring for the four 
times t !4, t !3, t!2, and t !1 where t !4  +  t !3  +  0  +  t !2  +  t !1. 
(d) How are these four lines related geometrically?

 46. Consider a fi xed and a moving system with their 
clocks synchronized and their origins aligned at 
t  "  t !  "  0. (a) Draw on a spacetime diagram in the 
fi xed system a line expressing all the events occurring 
at t !  "  0. (b) Draw on this diagram a line expressing 
all the events occurring at x!  "  0. (c) Draw all the world-
lines for light that pass through t  "  t !  "  0. (d) Are the 
x! and ct ! axes perpendicular? Explain.

 47. Use the results of the two previous problems to show 
that events simultaneous in one system are not simul-
taneous in another system moving with respect to the 
fi rst. Consider a spacetime diagram with x, ct and x !, 
ct ! axes drawn such that the origins coincide and the 
clocks were synchronized at t  "  t !  "  0. Then consider 
events 1 and 2 that occur simultaneously in the fi xed 
system. Are they simultaneous in the moving system?

2.10 Doppler Effect
 48. An astronaut is said to have tried to get out of a traffi c 

violation for running a red light ("  "  650 nm) by tell-
ing the judge that the light appeared green ("  "  540 
nm) to her as she passed by in her high-powered 
transport. If this is true, how fast was the astronaut 
going?

 49. Derive Equation (2.32) for the case where the source 
is fi xed but the receiver approaches it with velocity v.

 50. Do the complete derivation for Equation (2.33) when 
the source and receiver are receding with relative ve-
locity v.

 51. A spacecraft traveling out of the solar system at a 
speed of 0.95c sends back information at a rate 

of 1400 kHz. At what rate do we receive the 
information?

 52. Three radio-equipped plumbing vans are broadcast-
ing on the same frequency f0. Van 1 is moving east of 
van 2 with speed v, van 2 is fi xed, and van 3 is moving 
west of van 2 with speed v. What is the frequency of 
each van as received by the others?

 53. Three radio-equipped plumbing vans are broadcast-
ing on the same frequency f0. Van 1 is moving north 
of van 2 with speed v, van 2 is fi xed, and van 3 is mov-
ing west of van 2 with speed v. What frequency does 
van 3 hear from van 2; from van 1?

 54. A spaceship moves radially away from Earth with ac-
celeration 29.4 m/s2 (about 3g). How much time does 
it take for the sodium streetlamps ("  "  589 nm) on 
Earth to be invisible (with a powerful telescope) to the 
human eye of the astronauts? The range of visible 
wavelengths is about 400 to 700 nm.

2.11 Relativistic Momentum
 55. Newton’s second law is given by F  "  dp/dt. If the force 

is always perpendicular to the velocity, show that F  "  
m!a, where a is the acceleration.

 56. Use the result of the previous problem to show that 
the radius of a particle’s circular path having charge q 
traveling with speed v in a magnetic fi eld perpendicu-
lar to the particle’s path is r  "  p/qB. What happens to 
the radius as the speed increases as in a cyclotron?

 57. Newton’s second law is given by F  "  dp/dt. If the force 
is always parallel to the velocity, show that F  "  !3ma.

 58. Find the force necessary to give a proton an accelera-
tion of 1019 m/s2 when the proton has a velocity 
(along the same direction as the force) of (a) 0.01c, 
(b) 0.1c, (c) 0.9c, and (d) 0.99c.

 59. A particle having a speed of 0.92c has a momentum of 
10#16 kg # m/s. What is its mass?

 60. A particle initially has a speed of 0.5c. At what speed 
does its momentum increase by (a) 1%, (b) 10%, (c) 
100%?

 61. The Bevatron accelerator at the Lawrence Berkeley 
Laboratory accelerated protons to a kinetic energy of 
6.3 GeV. What magnetic fi eld was necessary to keep 
the protons traveling in a circle of 15.2 m? (See Prob-
lem 56.)

 62. Show that linear momentum is conserved in Example 
2.9 as measured by Mary.

2.12 Relativistic Energy
 63. Show that 1

2m!v2 does not give the correct kinetic 
energy.

 64. How much ice must melt at 0°C in order to gain 2 g 
of mass? Where does this mass come from? The heat 
of fusion for water is 334 J/g.

 65. Physicists at the Stanford Linear Accelerator Center 
(SLAC) bombarded 9-GeV electrons head-on with 
3.1-GeV positrons to create B mesons and anti-B 
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mesons. What speeds did the electron and positron 
have when they collided?

 66. The Tevatron accelerator at the Fermi National Ac-
celerator Laboratory (Fermilab) outside Chicago 
boosts protons to 1 TeV (1000 GeV) in fi ve stages (the 
numbers given in parentheses represent the total ki-
netic energy at the end of each stage): Cockcroft-
Walton (750 keV), Linac (400 MeV), Booster (8 GeV), 
Main ring or injector (150 GeV), and fi nally the Teva-
tron itself (1 TeV). What is the speed of the proton at 
the end of each stage?

 67. Calculate the momentum, kinetic energy, and total 
energy of an electron traveling at a speed of (a) 0.020c, 
(b) 0.20c, and (c) 0.90c.

 68. The total energy of a body is found to be twice its rest 
energy. How fast is it moving with respect to the 
observer?

 69. A system is devised to exert a constant force of 8 N on 
an 80-kg body of mass initially at rest. The force 
pushes the mass horizontally on a frictionless table. 
How far does the body have to be pushed to increase 
its mass-energy by 25%?

 70. What is the speed of a proton when its kinetic energy 
is equal to twice its rest energy?

 71. What is the speed of an electron when its kinetic en-
ergy is (a) 10% of its rest energy, (b) equal to the rest 
energy, and (c) 10 times the rest energy?

 72. Derive the following equation:

b "
v
c

" A1 # a E0

E0 $ K
b 2

 73. Prove that #  "  pc/E. This is a useful relation to fi nd 
the velocity of a highly energetic particle.

 74. A good rule of thumb is to use relativistic equations 
whenever the kinetic energies determined classically 
and relativistically differ by more than 1%. Find the 
speeds when this occurs for (a) electrons and (b) 
protons.

 75. How much mass-energy (in joules) is contained in a 
peanut weighing 0.1 ounce? How much mass-energy 
do you gain by eating 10 ounces of peanuts? Compare 
this with the food energy content of peanuts, about 
100 kcal per ounce.

 76. Calculate the energy needed to accelerate a spaceship 
of mass 10,000 kg to a speed of 0.3c for intergalactic 
space exploration. Compare this with a projected an-
nual energy usage on Earth of 1021 J.

 77. Derive Equation (2.58) for the relativistic kinetic en-
ergy and show all the steps, especially the integration 
by parts.

 78. A test automobile of mass 1000 kg moving at high 
speed crashes into a wall. The average temperature of 
the car is measured to rise by 0.5°C after the wreck. 
What is the change in mass of the car? Where does 
this change in mass come from? (Assume the average 

specifi c heat of the automobile is close to that of steel, 
0.11 cal # g#1 # °C#1.)

2.13 Computations in Modern Physics
 79. A helium nucleus has a mass of 4.001505 u. What is its 

binding energy?
 80. A free neutron is an unstable particle and beta decays 

into a proton with the emission of an electron. How 
much kinetic energy is available in the decay?

 81. The Large Hadron Collider at Europe’s CERN facility 
is designed to produce 7.0 TeV (that is, 7.0 % 1012 eV) 
protons. Calculate the speed, momentum, and total 
energy of the protons.

 82. What is the kinetic energy of (a) an electron having a 
momentum of 40 GeV/c? (b) a proton having a mo-
mentum of 40 GeV/c?

 83. A muon has a mass of 106 MeV/c2. Calculate the 
speed, momentum, and total energy of a 200-MeV 
muon.

 84. The reaction 2H  $  2H S n  $  3He (where n is a neu-
tron) is one of the reactions useful for producing 
energy through nuclear fusion. (a) Assume the deute-
rium nuclei (2H) are at rest and use the atomic mass 
units of the masses in Appendix 8 to calculate the 
mass-energy imbalance in this reaction. (Note: You 
can use atomic masses for this calculation, because 
the electron masses cancel out.) This amount of en-
ergy is given up when this nuclear reaction occurs. (b) 
What percentage of the initial rest energy is given up?

 85. The reaction 2H  $  3H S n  $  4He is one of the reac-
tions useful for producing energy through nuclear 
fusion. (a) Assume the deuterium (2H) and tritium 
(3H) nuclei are at rest and use the atomic mass units 
of the masses in Appendix 8 to calculate the mass-
energy imbalance in this reaction. This amount of 
energy is given up when this nuclear reaction occurs. 
(b) What percentage of the initial rest energy is given 
up?

2.14 Electromagnetism and Relativity
 86. Instead of one positive charge outside a conducting 

wire, as was discussed in Section 2.14 and shown in 
Figure 2.34, consider a second conducting wire paral-
lel to the fi rst one. Both wires have positive and nega-
tive charges, and the wires are electrically neutral. 
Assume that in both wires the positive charges travel 
to the right and negative charges to the left. (a) Con-
sider an inertial frame moving with the negative 
charges of wire 1. Show that the second wire is at-
tracted to the fi rst wire in this frame. (b) Now con-
sider an inertial frame moving with the positive 
charges of the second wire. Show that the fi rst wire is 
attracted to the second. (c) Use this argument to show 
that electrical and magnetic forces are relative.
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General Problems
 87. An 1# particle has rest energy 1672 MeV and mean 

lifetime 8.2 % 10#11 s. It is created and decays in a 
particle track detector and leaves a track 24 mm long. 
What is the total energy of the 1# particle?

 88. Show that the following form of Newton’s second law 
satisfi es the Lorentz transformation. Assume the force 
is parallel to the velocity.

F " m 

dv
dt

 

131 # 1v 2/c 2 2 43/2

 89. Use the results listed in Table 2.1 to fi nd (a) the 
number of signals Frank receives at the rate f !  and 
the time at which Frank detects Mary’s turnaround, 
and (b) the number of signals Mary receives at the 
rate f !  and her clock reading when she turns around. 
(c) From Frank’s perspective, fi nd the time for the 
remainder of the trip (after he detects Mary’s turn-
around), the number of signals he receives at the rate 
f 0, the total number of signals he receives, and Mary’s 
age, based on that total number of signals. (d) From 
Mary’s perspective, fi nd the time for the remainder of 
the trip (after her turnaround), the number of signals 
she receives at the rate f 0, the total number of signals 
she receives, and Frank’s age, based on that total 
number of signals.

 90. For the twins Frank and Mary described in Section 
2.8, consider Mary’s one-way trip at a speed of 0.8c to 
the star system 8 lightyears from Earth. Compute the 
spacetime interval s in the fi xed frame and s! in the 
moving frame, and compare the results.

 91. Frank and Mary are twins. Mary jumps on a spaceship 
and goes to the star system Alpha Centauri (4.30 light-
years away) and returns. She travels at a speed of 0.8c 
with respect to Earth and emits a radio signal every 
week. Frank also sends out a radio signal to Mary once 
a week. (a) How many signals does Mary receive from 
Frank before she turns around? (b) At what time does 
the frequency of signals Frank receives suddenly 
change? How many signals has he received at this 
time? (c) How many signals do Frank and Mary re-
ceive for the entire trip? (d) How much time does the 
trip take according to Frank and to Mary? (e) How 
much time does each twin say the other twin will mea-
sure for the trip? Do the answers agree with those for 
(d)?

 92. A police radar gun operates at a frequency of 10.5 GHz. 
The offi cer, sitting in a patrol car at rest by the highway, 
directs the radar beam toward a speeding car traveling 
80 mph directly away from the patrol car. What is the 
frequency shift of the refl ected beam, relative to the 
original radar beam?

 93. A spaceship moving 0.80c direction away from Earth 
fi res a missile that the spaceship measures to be mov-
ing at 0.80c perpendicular to the ship’s direction of 

travel. Find the velocity components and speed of the 
missile as measured by Earth.

 94. An electron has a total energy that is 250 times its rest 
energy. Determine its (a) kinetic energy, (b) speed, 
and (c) momentum.

 95. A proton moves with a speed of 0.90c. Find the speed 
of an electron that has (a) the same momentum as the 
proton, and (b) the same kinetic energy.

 96. A high-speed K0 meson is traveling at a speed of 0.90c 
when it decays into a $$ and a $# meson. What are 
the greatest and least speeds that the mesons may 
have?

 97. Frank and Mary are twins, and Mary wants to travel to 
our nearest star system, Alpha Centauri (4.30 lightyears 
away). Mary leaves on her 30th birthday and intends to 
return to Earth on her 52nd birthday. (a) Assuming 
her spaceship returns from Alpha Centauri without 
stopping, how fast must her spaceship travel? (b) How 
old will Frank be when she returns?

 98. The International Space Federation constructs a new 
spaceship that can travel at a speed of 0.995c. Mary, the 
astronaut, boards the spaceship to travel to Barnard’s 
star, which is the second nearest star to our solar system 
after Alpha Centauri and is 5.98 lightyears away. After 
reaching Barnard’s star, the spaceship travels slowly 
around the star system for three years doing research 
before returning back to Earth. (a) How much time 
does her journey take? (b) How much older is her twin 
Frank than Mary when she returns?

 99. A powerful laser on Earth rotates its laser beam in a 
circle at a frequency of 0.030 Hz. (a) How fast does 
the spot that the laser makes on the moon move 
across the moon’s landscape? (b) With what rotation 
frequency should the laser rotate if the laser spot 
moves across the moon’s landscape at speed c?

 100. The Lockheed SR-71 Blackbird may be the fastest non-
research airplane ever built; it traveled at 2200 miles/
hour (983 m/s) and was in operation from 1966 to 
1990. Its length is 32.74 m. (a) By what percentage 
would it appear to be length contracted while in fl ight? 
(b) How much time difference would occur on an 
atomic clock in the plane compared to a similar clock 
on Earth during a fl ight of the Blackbird over its range 
of 3200 km?

 101. A spaceship is coming directly toward you while you 
are in the International Space Station. You are told 
that the spaceship is shining sodium light (with an 
intense yellow doublet of wavelengths 588.9950 and 
589.5924 nm). You have an apparatus that can resolve 
two closely spaced wavelengths if the difference is 
&" + 0.55 nm. If you fi nd that you can just resolve the 
doublet, how fast is the spaceship traveling with re-
spect to you?

 102. Quasars are among the most distant objects in the 
universe and are moving away from us at very high 
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speeds, as discussed in Chapter 16. Astrophysicists use 
the redshift parameter z to determine the redshift of 
such rapidly moving objects. The parameter z is deter-
mined by observing a wavelength "! of a known spec-
tral line of wavelength "source on Earth; z  "  &"/"source  
"  ("! # "source)/"source. Find the speed of two quasars 
having z values of 1.9 and 4.9.

 103. One possible decay mode of the neutral kaon is K0 S
$0  $  $0. The rest energies of the K0 and $0 are 498 
MeV and 135 MeV, respectively. The kaon is initially 
at rest when it decays. (a) How much energy is re-
leased in the decay? (b) What are the momentum and 
relative directions of the two neutral pions ($0)?

 104. The sun radiates energy at a rate of 3.9 % 1026 W. (a) At 
what rate is the sun losing mass? (b) At that rate, how 
much time would it take to exhaust the sun’s fuel sup-
ply? The sun’s mass is 2.0 % 1030 kg, and you may as-
sume that the reaction producing the energy is about 
0.7% effi cient. Compare your answer with the sun’s 
expected remaining lifetime, about 5 Gy.

 105. One way astrophysicists have identifi ed “extrasolar” 
planets orbiting distant stars is by observing redshifts 
or blueshifts in the star’s spectrum due to the fact that 

the star and planet each revolve around their com-
mon center of mass. (See Scientifi c American, August 
2010, p. 41.) Consider a star the size of our sun (mass  
"  1.99 % 1030 kg), with a planet the size of Jupiter 
(1.90 % 1027 kg) in a circular orbit of radius 7.79 % 
1011 m and a period of 11.9 years. (a) Find the speed 
of the star revolving around the system’s center of 
mass. (b) Assume that Earth is in the planet’s orbital 
plane, so that at one point in its orbit the star is mov-
ing directly toward Earth, and at the opposite point it 
moves directly away from Earth. How much is 550-nm 
light redshifted and blueshifted at those two extreme 
points?

 106. Small differences in the wavelengths in the sun’s spec-
trum are detected when measurements are taken 
from different parts of the sun’s disk. Specifi cally, 
measurements of the 656-nm line in hydrogen taken 
from opposite sides on the sun’s equator—one side 
approaching Earth and the other receding—differ 
from each other by 0.0090 nm. Use this information 
to fi nd the rotational period of the sun’s equator. 
Express your answer in days. (The sun’s equatorial 
radius is 6.96 % 108 m.)
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As discussed in Chapter 1, during the final decades of the 1800s scientists 
discovered phenomena that could not be explained by what we now call classical 
physics. Despite the prevalent confidence in the laws of classical physics, the few 
exceptions to these laws discovered during the latter part of the nineteenth cen-
tury led to the fabulous 30-year period of 1900– 1930, when our understanding 
of the laws of physics was dramatically changed. One of these exceptions led to 
the special theory of relativity, which was introduced by Einstein in 1905 and 
successfully explained the null result of the Michelson-Morley experiment. The 
other great conceptual advance of twentieth-century physics, the quantum the-
ory that is the subject of this chapter, began in 1900 when Max Planck intro-
duced his explanation of blackbody radiation.

We begin this chapter with Wilhelm Röntgen’s discovery of the x ray and 
J. J. Thomson’s discovery of the electron. Robert Millikan later determined the 
electron’s charge. We shall see that, although it was necessary to assume that 
certain physical quantities may be quantized, scientists found this idea hard to 
accept. We discuss the difficulties of explaining blackbody radiation with classi-
cal physics and how Planck’s proposal solved the problem. Finally, we will see 
that Einstein’s explanation of the photoelectric effect and Arthur Compton’s 
understanding of data on x-ray scattering made the quantum hypothesis difficult 
to refute. After many difficult and painstaking experiments, it became clear that 
quantization was not only necessary, it was also the correct description of 
nature.

3.1  Discovery of the X Ray 
and the Electron

In the 1890s scientists and engineers were familiar with the “cathode rays” that were 
generated from one of the metal plates in an evacuated tube across which a large 
electric potential had been established. The origin and constitution of cathode rays 

84

C H A P T E R

3 The Experimental Basis 
of Quantum Physics

As far as I can see, our ideas are not in contradiction to the properties 
of the photoelectric effect observed by Mr. Lenard.

Max Planck, 1905
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were not known. The concept of an atomic substructure of matter was widely ac-
cepted because of its use in explaining the results of chemical experiments. There-
fore, it was surmised that cathode rays had something to do with atoms. It was 
known, for example, that cathode rays could penetrate matter, and their properties 
were of great interest and under intense investigation in the 1890s.

In 1895 Wilhelm Röntgen was studying the effects of cathode rays passing 
through various materials and noticed a nearby phosphorescent screen glowing 
vividly in the darkened room. Röntgen soon realized he was observing a new 
kind of ray, one that, unlike cathode rays, was unaffected by magnetic fields and 
was far more penetrating than cathode rays. These x rays, as he called them, 
were apparently produced by the cathode rays bombarding the glass walls of his 
vacuum tube. Röntgen studied their transmission through many materials and 
even showed that he could obtain an image of the bones in a hand when the 
x rays were allowed to pass through as shown in Figure 3.1. This experiment cre-
ated tremendous excitement, and medical applications of x rays were quickly 
developed. For this discovery, Röntgen received the first Nobel Prize for Physics 
in 1901.

For several years before the discovery of x rays, J. J. Thomson (1856– 1940), 
professor of experimental physics at Cambridge University, had been studying 
the properties of electrical discharges in gases. Thomson’s apparatus was simi-
lar to that used by Röntgen and many other scientists because of its simplicity 
(Figure 3.2). Thomson believed that cathode rays were particles, whereas several 
respected German scientists (such as Heinrich Hertz) believed they were wave 
phenomena.

Thomson was able to prove in 1897 that the charged particles emitted from 
a heated electrical cathode were in fact the same as cathode rays. The main fea-
tures of Thomson’s experiment are shown in the schematic apparatus of Fig-
ure 3.2. The rays from the cathode are attracted to the positive potential on 
aperture A (anode) and are further collimated by aperture B to travel in a 
straight line and strike a fluorescent screen in the rear of the tube, where they 
can be visually detected by a flash of light. A voltage across the deflection plates 
sets up an electric field that defl ects charged particles. Previously, in a similar 
experiment, Hertz had observed no effect on the cathode rays due to the 
deflecting voltage. Thomson at first found the same result, but on further evacu-
ating the glass tube, he observed the deflection and proved that cathode rays had 
a negative charge. The previous experiment, in a poorer vacuum, had failed 
because the cathode rays had interacted with and ionized the residual gas. 
Thomson also studied the effects of a magnetic field upon the cathode rays and 
proved convincingly that the cathode rays acted as negatively charged particles 
(electrons) in both electric and magnetic fields, for which he received the Nobel 
Prize for Physics in 1906.

Thomson’s method of measuring the ratio of the electron’s charge to mass, 
e/m, is now a standard technique and generally studied as an example of charged 
particles passing through perpendicular electric and magnetic fields as shown 
schematically in Figure 3.3. With the magnetic field turned off, the electron 
entering the region between the plates is accelerated upward by the electric field

 Fy ! may ! qE (3.1)

where m and q are, respectively, the mass and charge of the electron, and ay is its 
resulting acceleration. The time for the electron to traverse the deflecting plates 
(length ! /) is t ! / /v0. The exit angle u of the electron is then given by

New penetrating ray: x ray

Wilhelm Röntgen (1845– 1923), 
born in Germany but raised in the 
Netherlands, studied mechanical 
engineering at the University of 
Zurich. After holding several uni-
versity appointments, he went to 
the University of Munich as Chair 
of Physics in 1900, where he re-
mained for the rest of his life. As 
a professor at the University of 
Würzburg in 1895, he discovered 
x rays while investigating the pas-
sage of electric current through 
low-pressure gases. He preferred 
working alone and built most of 
his own apparatus. He refused to 
benefit from his many discover-
ies and died nearly bankrupt after 
World War I.
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Glass tube
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X rays
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Cathode rays
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Figure 3.1 In Röntgen’s experiment, “x rays” were produced by cathode rays (electrons) hitting 
the glass near the anode. He studied the penetration of the x rays through several substances and 
even noted that if the hand was held between the glass tube and a screen, the darker shadow of the 
bones could be discriminated from the shadow of the hand.
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Figure 3.2 Apparatus of Thomson’s cathode-ray experiment. Thomson proved that the rays 
emitted from the cathode were negatively charged particles (electrons) by deflecting them in elec-
tric and magnetic fields. The key to the experiment was to evacuate the glass tube.
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Figure 3.3 Thomson’s method of measuring the ratio of the electron’s charge to mass was to 
send electrons through a region containing a magnetic field (B into page) perpendicular to an 
electric field (E down). The electrons having v ! E/B go through undeflected. Then, using elec-
trons of the same energy, the magnetic field is turned off and the electric field deflects the elec-
trons, which exit at angle u. The ratio of e/m can be determined from B, E, u, and /, where / is the 
length of the field distance and u is the emerging angle. See Equation (3.5).
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 tan u !
vy

vx
!

ayt
v0

!
qE
m  

/
v 2

0
 (3.2)

The ratio q/m can be determined if the velocity is known. By turning on the mag-
netic field and adjusting the strength of B so that no deflection of the electron 
occurs, the velocity can be determined. The condition for zero deflection is that 
the net force on the electron is exactly zero:

 F ! qE " qv $ B ! 0 (3.3)

Hence,

 E ! #v $ B

Because v and B are perpendicular, the electric and magnetic field strengths are 
related by

 "E " ! "vx " "B "

so that

 vx !
E
B

! v0 (3.4)

where we have used E ! "E " for the magnitude of the electric field and similarly 
B for the magnitude of B. If we insert this value for v0 into Equation (3.2), we 
extract the ratio q/m.

 
q
m !

v 2
0  tan u
E/ !

E tan u
B 

2/
 (3.5)

In an experiment similar to Thomson’s, we use deflecting 
plates 5.0 cm in length with an electric field of 1.2 $ 
104 V/m. Without the magnetic field we find an angular de-
flec tion of 30°, and with a magnetic field of 8.8 $ 10#4 T we 
find no deflection. What is the initial velocity of the electron 
and its q/m?

Strategy Because we know the values of E and B for which 
there is no deflection, we use Equation (3.4) to de termine 
the electron’s velocity v0. Then we can use Equation (3.5) to 
determine q/m for the situation with no magnetic field.

Solution We insert the values of E and B into Equa-
tion (3.4) to find

 v0 !
E
B

!
1.2 $ 104 V/m
8.8 $ 10#4 T

! 1.4 $ 107 m/s

Because all our units for E and B are in the international 
system (SI), the value for v0 is in meters/second. Equation 
(3.5) gives the following result for q/m:

  
q
m

!
E tan u

B 
2/

!
11.2 $ 104 V/m 2 1tan 30°218.8 $ 10#4 T 2210.050 m 2

 ! 1.8 $ 1011 C/kg

 EXAMPLE 3 .1

Sir Joseph John Thomson 
(1856– 1940), universally known 
as “J.J.,” went to Cambridge Uni-
versity at age 20 and remained 
there for the rest of his life. 
Thomson’s career with the Cav-
endish Laboratory spanned a pe-
riod of over 50 years, and he 
served as director from 1884 un-
til 1918 when he stepped down 
in favor of Ernest Rutherford. 
Thomson was exceptional in de-
signing apparatus and diagnosing 
problems, although he was not a 
particularly gifted experimentalist 
with his hands. His guidance at 
the Cavendish Laboratory was 
partly instrumental in the award 
of seven Nobel Prizes in Physics 
to him and his peers during his 
50 years at the lab.
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88 Chapter 3 The Experimental Basis of Quantum Physics

Thomson’s actual experiment, done in the manner of the previous example, 
obtained a result about 35% lower than the presently accepted value of 1.76 $ 
1011 C/kg for e/m. Thomson realized that the value of e/m (e ! absolute value of 
electron charge) for an electron was much larger than had been anticipated and 
a factor of 1000 larger than any value of q/m that had been previously measured 
(for the hydrogen atom). He concluded that either m was small or e was large (or 
both), and the “carriers of the electricity” were quite penetrating compared with 
atoms or molecules, which must be much larger in size.

3.2  Determination of Electron Charge
After Thomson’s measurement of e/m and the confirmation of the cathode ray 
as a charge carrier (called electron), several investigators attempted to determine 
the actual magnitude of the electron’s charge. In 1911 the American physicist 
Robert A. Millikan (1868– 1953) reported convincing evidence for an accurate 
determination of the electron’s charge. Millikan’s classic experiment began in 
1907 at the University of Chicago. The experiment consisted of visual observa-
tion of the motion of uncharged and both positively and negatively charged oil 
drops moving under the influence of electrical and gravitational forces. The es-
sential parts of the apparatus are shown in Figure 3.4. As the drops emerge from 
the nozzle, frictional forces sometimes cause them to be charged. Millikan’s 
method consisted of balancing the upward force of the electric field between the 
plates against the downward force of the gravitational field.

When an oil drop falls downward through the air, it experiences a frictional 
force Ff  proportional to its velocity due to the air’s viscosity:

 Ff ! #bv  (3.6)
Three great physicists (fore-
ground), 1931: Michelson, 
 Einstein, and Robert A. Millikan 
(1868– 1953). Millikan received 
his degrees from Oberlin College 
and Columbia University and was 
at the University of Chicago from 
1896 to 1921 before leaving to 
join the California Institute of 
Technology, where he was chair 
of the Executive Council from 
1921 to 1945 (de facto president) 
and helped Caltech become a 
leading research in stitution. His 
important work included the fa-
mous oil-drop experiment to de-
termine the electron charge, a 
confirmation of Einstein’s photo-
electric theory in which Millikan 
measured Planck’s constant h, 
and Brownian motion. He re-
ceived the Nobel Prize in Physics 
in 1923 for the first two experi-
ments. He also did important 
work in cosmic ray physics and 
is given credit for the name cos-
mic rays. In later life he became 
particularly interested in teaching 
and was a prolific textbook 
author. Co
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   3.2 Determination of Electron Charge 89

This force has a minus sign because a drag force always opposes the velocity. The 
constant b is determined by Stokes’s law and is proportional to the oil drop’s 
radius. Millikan showed that Stokes’s law for the motion of a small sphere through 
a resisting medium was incorrect for small-diameter spheres because of the 
atomic nature of the medium, and he found the appropriate correction. The 
buoyancy of the air produces an upward force on the drop, but we can neglect 
this effect for a first-order calculation.

To suspend the oil drop at rest between the plates, the upward electric force 
must equal the downward gravitational force. The frictional force is then zero 
because the velocity of the oil drop is zero.

 FE ! qE ! #mg  1when v ! 0 2  (3.7)

The magnitude of the electric field is E ! V/d, and V is the voltage across large, 
flat plates separated by a small distance d. The magnitude of the electron charge 
q may then be extracted as

 q !
mgd
V

 (3.8)

To calculate q we have to know the mass m of the oil drops. Millikan found he 
could determine m by turning off the electric field and measuring the terminal 
velocity of the oil drop. The radius of the oil drop is related to the terminal velocity 
by Stokes’s law (see Problem 7). The mass of the drop can then be determined 
by knowing the radius r and density r of the type of oil used in the experiment:

 m ! 4
3 pr 3r (3.9)

If the power supply has a switch to reverse the polarity of the voltage and an 
adjustment for the voltage magnitude, the oil drop can be moved up and down 
in the apparatus at will. Millikan reported that in some cases he was able to ob-
serve a given oil drop for up to six hours and that the drop changed its charge 
several times during this time period.

g
!
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(a)

Atomizer, to produce oil drops

"

#

DC!
power!
supply

Reversible voltage

Microscope

Light

FE

Figure 3.4 (a) Diagram of the Millikan oil-drop experiment to measure the charge of the 
 electron. Some of the oil drops from the atomizer emerge charged, and the electric field (voltage) 
is varied to slow down or reverse the direction of the oil drops, which can have positive or negative 
charges. (b) A student looking through the microscope is adjusting the voltage between the plates 
to slow down a tiny plastic ball that serves as the oil drop.
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90 Chapter 3 The Experimental Basis of Quantum Physics

Millikan made thousands of measurements using different oils and showed 
that there is a basic quantized electron charge. Millikan’s value of e was very close 
to our presently accepted value of 1.602 $ 10#19 C. Notice that we always quote 
a positive number for the charge e. The charge on an electron is then #e.

Measurement of electron 
charge

For an undergraduate physics laboratory experiment we 
often make two changes in Millikan’s procedure. First, we 
use plastic balls of about 1 micrometer (mm or micron) di-
ameter, for which we can measure the mass easily and ac-
curately. This avoids the measurement of the oil drop’s ter-
minal velocity and the dependence on Stokes’s law. The 
small plastic balls are sprayed through an atomizer in liquid 
solution, but the liquid soon evaporates in air. The plastic 
balls are observed by looking through a microscope. One 
other improvement is to occasionally bombard the region 
between the plates with ionizing radiation, such as an elec-
tron (beta particle) from a radioactive source. This radia-
tion ionizes the air and makes it easier for the charge on a 
ball to change. By making many measurements we can de-
termine whether the charges determined from Equation 
(3.8) are multiples of some basic charge unit.

In an actual undergraduate laboratory experiment the 
mass of the balls was m ! 5.7 $ 10#16 kg and the spacing 
between the plates was d ! 4.0 mm. Therefore q can be 
found from Equation (3.8):

  q !
mgd

V
!
15.7 $ 10#16 kg 2 19.8 m/s2 2 14.0 $ 10#3 m 2

V

  q !
12.23 $ 10#17 V 2

V
 C

where V is the voltage between plates when the observed ball 
is stationary. Two students observed 30 balls and found the 
values of V shown in Table 3.1 for a stationary ball. In this 
experiment the voltage polarity can be easily changed, and 
a positive voltage represents a ball with a positive charge. 
Notice that charges of both signs are observed.

 EXAMPLE 3 .2

  Voltage    Voltage    Voltage 
Particle (V) q (! 10"19 C) Particle (V) q Particle (V) q

  1 #30.0 #7.43 11 #126.3 #1.77 21 #31.5 #7.08
  2 "28.8 "7.74 12 #83.9 #2.66 22 #66.8 #3.34
  3 #28.4 #7.85 13 #44.6 #5.00 23 "41.5 "5.37
  4 "30.6 "7.29 14 #65.5 #3.40 24 #34.8 #6.41
  5 #136.2 #1.64 15 #139.1 #1.60 25 #44.3 #5.03
  6 #134.3 #1.66 16 #64.5 #3.46 26 #143.6 #1.55
  7 "82.2 "2.71 17 #28.7 #7.77 27 "77.2 "2.89
  8 "28.7 "7.77 18 #30.7 #7.26 28 #39.9 #5.59
  9 #39.9 #5.59 19 "32.8 "6.80 29 #57.9 #3.85
 10 "54.3 "4.11 20 #140.8 "1.58 30 "42.3 "5.27

Tab le  3 .1   Student Measurements in Millikan Experiment
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   3.3 Line Spectra 91

3.3  Line Spectra
In contrast to the smooth, continuous radiation spectrum obtained from ther-
mal bodies, chemical elements produce unique wavelengths (colors) when 
burned in a flame or when excited in an electrical discharge, a fact already 
known in the early 1800s. Prisms had been used to investigate these early sources 
of spectra, and optical spectroscopy became an important area of experimental 
physics, primarily because of the modern development of diffraction gratings by 
Henry Rowland* (1848– 1901) of Johns Hopkins University in the 1880s.

An example of a spectrometer used to observe optical spectra is shown in 
Figure 3.6. An electrical discharge excites atoms of a low-pressure gas contained 
in the tube. The collimated light passes through a diffraction grating with thou-
sands of ruling lines per centimeter, and the diffracted light is separated at angle 
u according to its wavelength. The equation expressing diffraction maxima is

 d sin u ! nl (3.10)

where d is the distance between rulings, and n (an integer) is called the order num-
ber (n ! 1 has the strongest scattered intensity). The resulting pattern of light 

Diffraction maxima

Figure 3.5 A histogram of the number of observations for the charge on a ball in a student 
 Millikan experiment. The histogram is plotted for ¢q ! 0.2 $ 10#19 C. The solid area refers to the 
first group’s 30 measurements, and the open area to another 70 measurements. Notice the peaks, 
especially for the first three (n ! 1, 2, 3) groups, indicating the electron charge quantization. 
When the basic charge q0 is found from q ! nq0 (n ! integer), q 0 ! 1.6 $ 10#19 C was determined 
in this experiment from all 100 observations.
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%q ! 0.2 $ 10#19 C

The values of #q # are plotted on a histogram in units of %q 
! 0.2 $ 10#19 C in Figure 3.5 (solid area). When 70 additional 
measurements from other students are added, a clear pattern 
of quantization develops with a charge q ! nq0 , especially for 
the first three groups. The areas of the his togram can be sepa-

rated for the various n values, and the value of q0 found for 
each measurement is then averaged. For the histogram shown 
we find q0 ! 1.7 $ 10#19 C for the first 30 measurements and 
q0 ! 1.6 $ 10#19 C for all 100 observations.

*Rowland was one of the first six professors chosen in 1875 for the founding of Johns Hopkins Uni-
versity and, together with Albert Michelson, was one of the foremost American physicists of the last 
part of the nineteenth century. He was a founder and was elected the first president of the American 
Physical Society in 1899. Albert Michelson was the vice president; neither had formally earned a 
Ph.D. degree.
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92 Chapter 3 The Experimental Basis of Quantum Physics

bands and dark areas on the screen is called a line spectrum. By 1860 Bunsen and 
Kirchhoff realized that the wavelengths of these line spectra would allow iden ti fi ca-
tion of the chemical elements and the composition of materials. It was discovered 
that each element had its own characteristic wavelengths (see examples shown on 
the inside back cover). The field of spectroscopy flourished because finer and more 
evenly ruled gratings became available, and improved experimental techniques al-
lowed more spectral lines to be observed and catalogued. Particular attention was 
paid to the sun’s spectrum in hopes of understanding the origin of sunlight. The 
helium atom was actually “discovered” by its line spectra from the sun before it was 
recognized on Earth (see Special Topic, “The Discovery of Helium”).

Many scientists believed that the increasing number of spectral lines sug-
gested a complicated internal structure of the atom, and that by carefully inves-
tigating the wavelengths for many elements, the structure of atoms and matter 
could be understood. That belief was eventually partially realized.

For much of the nineteenth century, scientists attempted to find some simple 
underlying order for the characteristic wavelengths of line spectra. Hydrogen ap-
peared to have an especially simple-looking spectrum, and because some chemists 
thought hydrogen atoms might be the constituents of heavier atoms, hydrogen was 
singled out for intensive study. Finally, in 1885, Johann Balmer, a Swiss school-
teacher, succeeded in obtaining a simple empirical formula that fit the wavelengths 
of the four lines then known in the hydrogen spectrum and several ultraviolet lines 
that had been identified in the spectra of white stars. This series of lines, called the 
Balmer series, is shown in Figure 3.7. Balmer found that the expression

 l ! 364.56 
k2

k2 # 4
 nm (3.11)

(where k ! 3, 4, 5, . . . ; k & 2) fit all the visible hydrogen lines. Wavelengths are 
normally given in units of nanometers* (nm).

Characteristic line spectra 
of elements

Balmer’s empirical result

High!
voltage

Discharge!
tube to!
excite gases

Slit

Screen

Diffraction!
grating

u

l1

l2

l3

Figure 3.6 Schematic of an op-
tical spectrometer. Light pro-
duced by a high-voltage discharge 
in the glass tube is collimated and 
passed through a diffraction grat-
ing, where it is deflected accord-
ing to its wavelength. See Equa-
tion (3.10).

65
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nm

Red

48
6

43
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41
0

39
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nm

Blue–!
greenViolet

Series!
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Figure 3.7 The Balmer series of 
line spectra of the hydrogen atom 
with wavelengths indicated in 
nanometers. The four visible lines 
are noted as well as the lower 
limit of the series.

*Wavelengths were formerly listed in units of angstroms [one angstrom (Å) ! 10#10 m], named after 
Anders Ångstrom (1817– 1874), one of the first persons to observe and measure the wavelengths of 
the four visible lines of hydrogen.
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*W. H. Keesom, Helium, Amsterdam, London, and New York: Else-
vier (1942).

The Discovery of Helium

I t might seem that the discovery of helium, the sec-
ond simplest of all elements, would have occurred 

centuries ago. In fact the discovery occurred over a 
period of several years in the latter part of the nine-
teenth century as scientists were scrambling to under-
stand unexpected results. The account here is taken 
from Helium, by William H. Keesom.*

A schematic diagram of an optical spectroscope is 
shown in Figure 3.11. Its first use in a solar eclipse was 
on August 18, 1868, to investigate the sun’s atmo-
sphere. Several people (including P. J. C. Janssen, 
G. Rayet, C. T. Haig, and J. Herschel) at the solar 
eclipse regions in India and Malaysia reported observ-
ing, either directly or indirectly, an unusual yellow line 
in the spectra that would later prove to be due to he-
lium. It occurred to Janssen the day of the eclipse that 
it should be possible to see the sun’s spectrum directly 
without the benefit of the eclipse, and he did so with a 
spectroscope in the next few days. The same idea had 
occurred to J. N. Lockyer earlier, but he did not suc-
ceed in measuring the sun’s spectrum until Octo-
ber 1868, a month or so after Janssen. This method of 
observing the sun’s atmosphere at any time was consid-
ered to be an important discovery, and Janssen and 
Lockyer are prominently recognized not only for their 
role in the evolution of helium’s discovery, but also for 
their method of studying the sun’s atmosphere.

The actual discovery of helium was delayed by the 
fact that the new yellow line seen in the sun’s atmo-
sphere was very close in wavelength to two well-known 
yellow lines of sodium. This is apparent in the atomic 
line spectra of both helium and sodium seen on the 

inside back cover of this text. By December 1868, 
Lockyer, A. Secchi, and Janssen each independently 
rec ognized that the yellow line was different from that 
of sodium.

Another difficulty was to prove that the new yel-
low line, called D3, was not due to some other known 
element, especially hydrogen. For many years Lockyer 
thought that D3 was related to hydrogen, and he and 
E. Frankland performed several experiments in an 
unsuccessful attempt to prove his thesis. Lockyer 
wrote as late as 1887 that D3 was a form of hydrogen. 
Despite Lockyer’s convictions, Lord Kelvin reported 
in 1871 during his presidential address to the British 
Association that Frankland and Lockyer could not 
find the D3 line to be related to any terrestrial (from 
Earth) flame. Kelvin reported that it seemed to repre-
sent a new substance, which Frankland and Lockyer 
proposed to call helium (from the Greek word helios 
for “sun”).

It was not until 1895 that helium was finally clearly 
observed on Earth by Sir William Ramsay, who had 
received a letter reporting that W. F. Hillebrand had 
produced nitrogen gas by boiling uranium ores (pitch-
blende) in dilute sulfuric acid. Ramsay was skeptical of 
the report and proceeded to reproduce it. He was as-
tounded, after finding a small amount of nitrogen 
and the expected argon gas, to see a brilliant yellow 
line that he compared with those from sodium, finding 
the wavelengths to be slightly different. Sir William 
Crookes measured the wavelength and reported the 
following day that it was the D3 line, proving the ter-
restrial existence of helium. Later in 1895 H. Kayser 
found the helium line in spectra taken from a gas that 
had evolved from a spring in Germany’s Black For-
est. Eventually, in 1898, helium was confirmed in the 
Earth’s atmosphere by E. C. Baly. No one person can 
be credited with the discovery of helium.

The remarkable properties of liquid helium are 
discussed in Section 9.7.

Special Topic
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94 Chapter 3 The Experimental Basis of Quantum Physics

It is more convenient to take the reciprocal of Equation (3.11) and write 
Balmer’s formula in the form

1
l

!
1

364.56 nm
 
k 

2 # 4
k 

2 !
4

364.56 nm
 a 1

22 #
1
k 

2 b ! RH a 1
22 #

1
k 

2 b   (3.12)

where RH is called the Rydberg constant (for hydrogen) and has the more accurate 
value 1.096776 $ 107 m#1, and k is an integer greater than two (k & 2).

By 1890, efforts by Johannes Rydberg and particularly Walther Ritz resulted  
in a more general empirical equation for calculating the wavelengths, called the 
Ryd berg equation.

 
1
l

! RH a 1
n2 #

1
k 

2 b  (3.13)

where n ! 2 corresponds to the Balmer series and k & n always. In the next 
20 years after Balmer’s contribution, other series of the hydrogen atom’s spectral 
lines were discovered, and by 1925 five series had been discovered, each having 
a different integer n (Table 3.2). The understanding of the Rydberg equa-
tion (3.13) and the discrete spectrum of hydrogen were important research top-
ics early in the twentieth century.

Rydberg equation

The visible lines of the Balmer series were observed first 
because they are most easily seen. Show that the wavelengths 
of spectral lines in the Lyman (n ! 1) and Paschen (n ! 3) 
series are not in the visible region. Find the wavelengths of 
the four visible atomic hydrogen lines. Assume the visible 
wavelength region is l ! 400– 700 nm.

Strategy We use Equation (3.13) to determine the vari-
ous wavelengths for n ! 1, 2, and 3. If the wavelengths are 
between 400 and 700 nm, we conclude they are in the visible 
region. Otherwise, they are not visible.

Solution We use Equation (3.13) first to examine the 
 Lyman series (n ! 1):

 
1
l

! RH a1 #
1
k 

2 b
 ! 1.0968 $ 107a1 #

1
k 

2 b  m#1

 k ! 2: 
1
l

! 1.0968 $ 107a1 #
1
4
b  m#1

 l ! 1.216 $ 10#7 m ! 121.6 nm 1Ultraviolet 2
 k ! 3: 

1
l

! 1.0968 $ 107a1 #
1
9
b  m#1

 l ! 1.026 $ 10#7 m ! 102.6 nm 1Ultraviolet 2
Because the wavelengths are decreasing for higher k values, 
all the wavelengths in the Lyman series are in the ultraviolet 
region and not visible by eye.

 EXAMPLE 3 .3

Discoverer (year) Wavelength n   k

Lyman (1916) Ultraviolet 1 &1
Balmer (1885) Visible, ultraviolet 2 &2
Paschen (1908) Infrared 3 &3
Brackett (1922) Infrared 4 &4
Pfund (1924) Infrared 5 &5

Tab le  3 .2   Hydrogen Series of Spectral Lines
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3.4  Quantization
As we discussed in Chapter 1, some early Greek philosophers believed that mat-
ter must be composed of fundamental units that could not be further divided. 
The word atom means “not further divisible.” Today some scientists believe, as 
these ancient philosophers did, that matter must eventually be indivisible. How-
ever, as we have encountered new experimental facts, our ideas about the fun-
damental, indivisible “building blocks” of matter have changed. “Elementary” 
particles are discussed further in Chapter 14.

Whatever the elementary units of matter may turn out to be, we suppose 
there are some basic units of mass-energy of which matter is composed. This idea 
is hardly foreign to us: we have already seen that Millikan’s oil-drop experiment 
showed the quantization of electric charge. Modern theories predict that 
charges are quantized in units (called quarks) of 'e/3 and '2e/3, but quarks 
are not directly observed experimentally. The charges of particles that have been 
directly observed are quantized in units of 'e.

In nature we see other examples of quantization. The measured atomic 
weights are not continuous—they have only discrete values, which are close to 
integral multiples of a unit mass. Molecules are formed from an integral number 
of atoms. The water molecule is made up of exactly two atoms of hydrogen and 
one of oxygen. The fact that an organ pipe produces one fundamental musical 
note with overtones is a form of quantization arising from fitting a precise num-
ber (or fractions) of sound waves into the pipe.

Is matter indivisible?

Electric charge is 
quantized

Quantization occurs often 
in nature

For the Balmer series (n ! 2) we find

 k ! 3: 
1
l

! 1.0968 $ 107a 1
4

#
1
9
b  m#1

 l ! 6.565 $ 10#7 m ! 656.5 nm 1Red 2
 k ! 4: 

1
l

! 1.0968 $ 107a 1
4

#
1
16
b  m#1

 l ! 4.863 $ 10#7 m ! 486.3 nm 1Blue-green 2
k ! 5: 

1
l

! 1.0968 $ 107a 1
4

#
1
25
b  m#1

 l ! 4.342 $ 10#7 m ! 434.2 nm 1Violet 2
k ! 6: 

1
l

! 1.0968 $ 107a 1
4

#
1
36
b  m#1

 l ! 4.103 $ 10#7 m ! 410.3 nm 1Violet 2
k ! 7: 

1
l

! 1.0968 $ 107a 1
4

#
1
49
b  m#1

 l ! 3.971 $ 10#7 m ! 397.1 nm 1Ultraviolet 2
Therefore k ! 7 and higher k values will be in the ultra-

violet region. The four lines k ! 3, 4, 5, and 6 of the Balmer 

series are visible, although the 410-nm (k ! 6) line is 
difficult to see because it is barely in the visible region and 
is weak in intensity.

The next series, n ! 3, named after Paschen, has wave-
lengths of

k ! 4:    1
l

! 1.0968 $ 107a 1
9

#
1
16
b  m#1

            l ! 1.876 $ 10#6 m ! 1876 nm 1Infrared 2
k ! 5:    1

l
! 1.0968 $ 107a 1

9
#

1
25
b  m#1

            l ! 1.282 $ 10#6 m ! 1282 nm 1Infrared 2
k ! q:    1

l
! 1.0968 $ 107a 1

9
#

1
q b  m#1

            l ! 8.206 $ 10#7 m ! 820.6 nm 1Infrared 2
Thus the Paschen series has wavelengths entirely in the 

infrared region. The series limit is the smallest wavelength 
that can occur for each series (see Problem 9). Notice that 
the series limit is found for k ! q and is equal to 820.6 nm 
for the Paschen series. The higher series, n ( 4, will all have 
wavelengths above the visible region.
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96 Chapter 3 The Experimental Basis of Quantum Physics

Line spectra provide a prime example of quantization. We have learned that 
the hydrogen line spectra have precise wavelengths that can be described em-
pirically by simple equations. We will see in the next chapter that Niels Bohr 
used some simple assumptions based on the new quantum theory to model the 
atom and successfully predict these wavelengths. By the end of the nineteenth 
century radiation spectra had been well studied. There certainly didn’t appear 
to be any quantization effects observed in blackbody radiation spectra emitted 
by hot bodies. However, the explanation of blackbody radiation spectra was to 
have a tremendous in flu ence on the discovery of quantum physics.

3.5  Blackbody Radiation
It has been known for many centuries that when matter is heated, it emits radia-
tion. We can feel heat radiation emitted by the heating element of an electric 
stove as it warms up. As the heating element reaches 550°C, its color becomes 
dark red, turning to bright red around 700°C. If the temperature were increased 
still further, the color would progress through orange, yellow, and finally white. 
We can determine experimentally that a broad spectrum of wavelengths is emit-
ted when matter is heated. This process was of great interest to physicists of the 
nineteenth century. They measured the intensity of radiation being emitted as a 
function of material, temperature, and wavelength.

All bodies simultaneously emit and absorb radiation. When a body’s tem-
perature is constant in time, the body is said to be in thermal equilibrium with its 
surroundings. In order for the temperature to be constant, the body must absorb 
thermal energy at the same rate as it emits it. This implies that a good thermal 
emitter is also a good absorber.

Physicists generally try to study first the simplest or most idealized case of a 
problem to gain the insight needed to analyze more complex situations. For 
thermal radiation the simplest case is a blackbody, which has the ideal property 
that it absorbs all the radiation falling on it and reflects none. The simplest way 
to construct a blackbody is to drill a small hole in the wall of a hollow container 
as shown in Figure 3.8. Radiation entering the hole will be reflected around in-
side the container and then eventually absorbed. Only a small fraction of the 
entering rays will be reemitted through the hole. If the blackbody is in thermal 
equilibrium, then it must also be an excellent emitter of radiation.

Blackbody radiation is theoretically interesting because of its universal char-
acter: the radiation properties of the blackbody (that is, the cavity) are indepen-
dent of the particular material of which the container is made. Physicists can study 
the previously mentioned properties of intensity versus wavelength (called spec-
tral distribution) at fixed temperatures without having to understand the details 
of emission or absorption by a particular kind of atom. The question of precisely 
what the thermal radiation actually consisted of was also of interest, although it 
was assumed, for lack of evidence to the contrary (and correctly, it turned out!), 
to be electromagnetic radiation.

The intensity I(l, T ) is the total power radiated per unit area per unit wave-
length at a given temperature. Measurements of I(l, T ) for a blackbody are 
displayed in Figure 3.9. Two important observations should be noted:

1.  The maximum of the distribution shifts to smaller wavelengths as the tem-
perature is increased.

2.  The total power radiated increases with the temperature.

Radiation emission and 
absorption

Blackbody radiation is 
unique

Figure 3.8 Blackbody radiation. 
Electromagnetic radiation (for 
example, light) entering a small 
hole reflects around inside the 
container before eventually being 
absorbed.
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   3.5 Blackbody Radiation 97

The first observation is expressed in Wien’s displacement law:

 lmaxT ! 2.898 $ 10#3 m # K  (3.14)

where lmax is the wavelength of the peak of the spectral distribution at a given 
temperature. We can see in Figure 3.9 that the position of lmax varies with tem-
perature as prescribed by Equation (3.14). Wilhelm Wien received the Nobel 
Prize in 1911 for his discoveries concerning radiation. We can quantify the sec-
ond observation by integrating the quantity I(l, T ) over all wavelengths to find 
the power per unit area at temperature T.

 R 1T 2 ! $
q

0

I1l, T 2  dl (3.15)

Josef Stefan found empirically in 1879, and Boltzmann demonstrated theoreti-
cally several years later, that R(T ) is related to the temperature by

 R 1T 2 ! PsT 4  (3.16)

This is known as the Stefan-Boltzmann law, with the constant s experimentally 
measured to be 5.6705 $ 10#8 W/(m2 # K4). The Stefan-Boltzmann law equation 
can be applied to any material for which the emissivity is known. The emissivity P 
(P ! 1 for an idealized blackbody) is simply the ratio of the emissive power of an 
object to that of an ideal blackbody and is always less than 1. Thus, Equa-
tion (3.16) is a useful and valuable relation for practical scientific and engineer-
ing work.

Wien’s displacement law

Stefan-Boltzmann law

lmax
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Figure 3.9 Spectral distribution of radiation emitted from a blackbody for different blackbody 
temperatures.
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98 Chapter 3 The Experimental Basis of Quantum Physics

A furnace has walls of temperature 1600°C. What is the 
wavelength of maximum intensity emitted when a small 
door is opened?

Strategy We assume the furnace with a small door open is 
a blackbody so that we can determine lmax from 
Equation (3.14).

Solution We first convert the temperature to kelvin.

 T ! 11600 " 273 2  K ! 1873 K

Equation (3.14) gives

 lmax11873 K 2 ! 2.898 $ 10#3 m # K
  lmax ! 1.55 $ 10#6 m ! 1550 nm

The peak wavelength is in the infrared region.

 EXAMPLE 3 .4

The wavelength of maximum intensity of the sun’s  radiation 
is observed to be near 500 nm. Assume the sun to be a black-
body and calculate (a) the sun’s surface temperature, 
(b) the power per unit area R(T ) emitted from the sun’s 
surface, and (c) the energy received by the Earth each day 
from the sun’s radiation.

Strategy (a) We use Equation (3.14) with lmax to de-
termine the sun’s surface temperature. (b) We assume 
the sun is a blackbody. We use the temperature T with 
Equation (3.16) to determine the power per unit area R(T ). 
(c) Because we know R(T ), we can determine the amount of 
the sun’s energy intercepted by the Earth each day.

Solution (a) From Equation (3.14) we calculate the sun’s 
surface temperature with lmax ! 500 nm.

 
 1500 nm 2Tsun ! 2.898 $ 10#3 m # K 

109 nm
m

 
 Tsun !

2.898 $ 106

500
 K ! 5800 K  (3.17)

(b) The power per unit area R(T ) radiated by the sun is 

  R 1T 2 ! sT 4 ! 5.67 $ 10#8
 

W
m2 # K4 15800 K 24

  ! 6.42 $ 107 W/m2  (3.18)

(c) Because this is the power per unit surface area, we need 
to multiply it by 4pr 2, the surface area of the sun. The radius 
of the sun is 6.96 $ 105 km.

 Surface area (sun) ! 4p(6.96 $ 108 m)2 ! 6.09 $ 1018 m2

Thus the total power, Psun, radiated from the sun’s surface is

  Psun ! 6.42 $ 107
 
W
m2 16.09 $ 1018 m2 2

  ! 3.91 $ 1026 W  (3.19)

The fraction F of the sun’s radiation received by Earth is 
given by the fraction of the total area over which the radia-
tion is spread.

 F !
pr E

2

4pR 
2
Es

where rE ! radius of Earth ! 6.37 $ 106 m, and REs ! mean 
Earth-sun distance ! 1.49 $ 1011 m. Then

 F !
pr E

2

4pR 
2
Es

!
16.37 $ 106 m 22

411.49 $ 1011 m 22 ! 4.57 $ 10#10

Thus the radiation received by the Earth from the sun is

  PEarth 1received 2 ! 14.57 $ 10#10 2 13.91 $ 1026 W 2
  ! 1.79 $ 1017 W

and in one day the Earth receives

  UEarth ! 1.79 $ 1017
  
J
s
 
60 s
min

 
60 min

h
 
24 h
day

  ! 1.55 $ 1022 J  (3.20)

The power received by the Earth per unit of exposed area is

 R Earth !
1.79 $ 1017 W
p 16.37 $ 106 m 22 ! 1400 W/m2 (3.21)

 EXAMPLE 3 .5
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   3.5 Blackbody Radiation 99

Attempts to understand and derive from basic principles the shape of the 
blackbody spectral distribution (Figure 3.9) were unsuccessful throughout the 
1890s and presented a serious dilemma to the best scientists of the day. The nature 
of the dilemma can be understood from classical electromagnetic theory, together 
with statistical thermodynamics. The radiation emitted from a blackbody can be 
expressed as a superposition of electromagnetic waves of different frequencies 
within the cavity. That is, radiation of a given frequency is represented by a stand-
ing wave inside the cavity. The equipartition theorem of thermodynam ics (Chap-
ter 9) assigns equal average energy kT to each possible wave configuration.

Lord Rayleigh used the classical theories of electromagnetism and thermo-
dynamics to show in June 1900 that the blackbody spectral distribution should 
have a 1/!4 dependence, which is completely inconsistent with the experimental 
result at low wavelength shown in Figure 3.9. Later, in 1905, after Sir James Jeans 
helped Rayleigh determine the factor in front of this distribution, they presented 
their complete result to be

 I1l,T 2 !
2pckT
l4  (3.22)

This result is known as the Rayleigh-Jeans formula, and it is the best formulation 
that classical theory can provide to describe blackbody radiation. For long wave-
lengths there are few confi gurations through which a standing wave can form 
inside the cavity. However, as the wavelength becomes shorter the number of 
standing wave possibilities increases, and as ! S 0, the number of possible con-
fi gurations increases without limit. This means the total energy of all confi gura-
tions is infi nite, because each standing wave confi guration has the nonzero en-
ergy kT. We show a graph of the Rayleigh-Jeans result compared with experimental 
data in Figure 3.10, and although the prediction approaches the data at long 
wavelengths, it deviates badly at short wavelengths. In 1911 Paul Ehrenfest 
dubbed this situation the “ultraviolet catastrophe,” and it was one of the out-
standing exceptions that classical physics could not explain.

Rayleigh-Jeans formula

This is the source of most of our energy on Earth. Measure-
ments of the sun’s radiation outside the Earth’s atmosphere 
give a value near 1400 W/m2, so our calculation is fairly ac-

curate. Apparently the sun does act as a blackbody, and the 
energy received by the Earth comes primarily from the sur-
face of the sun.

0 2000 4000 6000 8000

In
te

ns
ity

 

Wavelength (nm)

1200 K

l

Experimental data

Rayleigh-Jeans!
formula

I

Figure 3.10 The spectral distribution calculated by the Rayleigh-Jeans formula is compared with 
blackbody radiation experimental data at 1200 K. The formula approaches the data at large wave-
lengths but disagrees badly at low wavelengths.
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100 Chapter 3 The Experimental Basis of Quantum Physics

In the 1880s the German Max Planck, who was an expert on the second law 
of thermodynamics, rejected Boltzmann’s statistical version of thermodynamics 
and even doubted the atomic theory of matter or “atomism.” Planck was ap-
pointed Professor of Physics at the University of Berlin in 1889, and his views 
began to change. He was not quite ready to accept atomism, but he set out in 
1895 to examine the irreversibility of radiation processes. He thought he had 
shown that laws of electromagnetism distinguished between past and present, 
but Boltzmann showed in 1897 that there could be no difference. Planck then 
began to consider blackbody radiation. Planck tried various functions of wave-
length and temperature until he found a single formula that fi t the measure-
ments of I(l, T ) over the entire wavelength range. It is not clear that Planck was 
even aware of Lord Rayleigh’s result. Planck was simply looking for a formula 
that fi t the known blackbody spectral distribution. Planck reported his formula 
in October 1900, but he realized a month later it was nothing but an inspired 
guess. By then Planck had accepted Boltzmann’s view. Planck followed Hertz’s 
work using oscillators to confi rm the existence of Maxwell’s electromagnetic 
waves, and lacking detailed information about the atomic composition of the 
cavity walls, Planck assumed that the radiation in the cavity was emitted (and 
absorbed) by some sort of “oscillators” that were contained in the walls. When 
adding up the energies of the oscillators, he assumed (for convenience) that 
each one had an energy that was an integral multiple of hf, where f is the fre-
quency of the oscillating wave and h is a constant. He was applying a technique 
invented by Boltzmann, and Planck ultimately expected to take the limit h S 0, 
to include all the possibilities. However, he noticed that by keeping h nonzero, 
he arrived at the equation needed for I(l, T ):

 I 1l, T 2 !
2pc 2h
l5  

1
e hc /lkT # 1

 (3.23)

Equation (3.23) is Planck’s radiation law, which he reported in December 1900. 
The derivation of Equation (3.23) is suf fi ciently complicated that we have omit-
ted it here, but we revisit it in Chapter 9. No matter what Planck tried, he could 
arrive at agreement with the experimental data only by making two important 
modifications of classical theory:

1.  The oscillators (of electromagnetic origin) can only have certain discrete 
energies determined by En ! nhf, where n is an integer, f is the frequency, 
and h is called Planck’s constant and has the value

 h ! 6.6261 $ 10#34 J # s (3.24)

2.  The oscillators can absorb or emit energy in discrete multiples of the fun-
damental quantum of energy given by

 %E ! hf (3.25)

Planck found these results quite disturbing and spent several years trying to find 
a way to keep the agreement with experiment while letting h S 0. Each attempt 
failed, and Planck’s quantum result became one of the cornerstones of modern 
science.

Planck’s radiation law

Planck’s constant h

Max Planck (1858– 1947) spent 
most of his productive years as a 
professor at the University of 
 Berlin (1889– 1928). Planck was 
one of the early theoretical physi-
cists and did work in optics, ther-
modynamics, and statistical me-
chanics. His theory of the quantum 
of action was slow to be accepted. 
Finally, after Einstein’s photo-
electric effect explanation and 
Rutherford and Bohr’s atomic 
model, Planck’s contribution be-
came widely acclaimed. He re-
ceived many honors, among them 
the Nobel Prize in Physics in 1918.
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Show that Wien’s displacement law follows from Planck’s 
radiation law.

Strategy Wien’s law, Equation (3.14), refers to the wave-
length for which I(l, T ) is a maximum for a given tem-
perature. From calculus we know we can find the maximum 
value of a function for a certain parameter by taking the 
derivative of the function with respect to the parameter, set 
the derivative to zero, and solve for the parameter.

Solution Therefore, to find the value of the Planck radi-
ation law for a given wavelength we set dI/dl ! 0 and solve 
for l.

 
dI1l, T 2

dl
! 0  for l ! lmax

 2pc 2h 
d

dl
 3l#51e hc /lkT # 1 2#1 4 `  

lmax

! 0

#5l#6
max1e hc /lmaxkT # 1 2#1 # l#5

max1e hc /lmaxkT # 1 2#2

$ a #hc
kTl2

max
b e hc /lmaxkT ! 0

Multiplying by l6
max1e hc /lmaxkT # 1 2  results in

 #5 "
hc
lmaxkT

 a e hc /lmaxkT

e hc /lmaxkT # 1
b ! 0

Let

 x !
hc

lmaxkT

Then

 #5 "
xe x

e x # 1
! 0

and

 xe x ! 51e x # 1 2
This is a transcendental equation and can be solved numeri-
cally (try it!) with the result x ! 4.966, and therefore

 
hc
lmaxkT

! 4.966

 lmaxT !
hc

4.966 k
!

1240 eV #  nm

4.966 a8.617 $ 10#5
 
eV
K
b  

10#9 m
nm

and finally,

 lmaxT ! 2.898 $ 10#3 m # K
which is the empirically determined Wien’s displacement 
law.

 EXAMPLE 3 .6

Use Planck’s radiation law to fi nd the Stefan-Boltzmann law.

Strategy We determine R(T ) by integrating I(l, T ) over 
all wavelengths.

Solution

  R 1T 2 ! $
q

0

I1l, T 2  dl
  ! 2pc 2h$

q

0

1
l5 

1
e hc /lkT # 1

 dl

Let

 x !
hc
lkT

Then

 dx ! # 
hc
kT

 
dl
l2

Now we have

  R 1T 2 ! #2pc 2h$
0

q
a kT

hc
b 6

 x 5
 

1
e x # 1

 
1
x 2 a hc

kT
b 2

 dx

  ! "2pc 2h a kT
hc
b 4

$
q

0

x 3

e x # 1
 dx

We look up this integral in Appendix 7 and find it to be 
p4/15.

  R 1T 2 ! 2pc 2h a kT
hc
b 4

 
p4

15

  R 1T 2 !
2p5k4

15h3c 2 T  
4

Putting in the values for the constants k, h, and c results in

 R 1T 2 ! 5.67 $ 10#8
 T  

4
 

W
m2 # K4

 EXAMPLE 3 .7
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102 Chapter 3 The Experimental Basis of Quantum Physics

Show that the Planck radiation law agrees with the Rayleigh-
Jeans formula for large wavelengths.

Strategy We use Equation (3.23) for the Planck radiation 
law, let l S q for the term involving the exponential, and 
see whether the result agrees with Equation (3.22).

Solution We follow the strategy and find the result for the 
term involving the exponential.

1
e hc /lkT # 1

!
1c1 "

hc
lkT

" a hc
lkT
b 2

 
1
2

" p d # 1
 S  
lkT
hc

  for large l

Equation (3.23) now becomes

 I1l, T 2 !
2pc 2h
l5  

lkT
hc

!
2pckT
l4

which is the same as the Rayleigh-Jeans result in 
Equation (3.22).

 EXAMPLE 3 .8

Show that Planck’s radiation law resolves the ultraviolet 
catastrophe.

Strategy The ultraviolet catastrophe occurs because the 
number of configurations through which a standing wave can 
form inside the cavity becomes infinite as l S 0. We want to 
find out what happens to I(l, T ) if we let l S 0. We also 
need to investigate the total energy of the system, especially 
for the large number of small-wavelength oscillators.

Solution If we let l S 0 in Equation (3.23), the value of 
e hc/lkT S q. The exponential term dominates the l5 term as 
l S 0, so the denominator in Equation (3.23) is infinite, 
and the value of I(l, T ) S 0. Note that as the wavelength 
decreases, the frequency increases ( f ! c/l), and hf  W kT. 
Few oscillators will be able to obtain such large energies, 
partly because of the large energy necessary to take the en-
ergy step from 0 to hf. The probability of occupying the 
states with small wavelengths (large frequency and high 
energy) is vanishingly small, so the total energy of the system 
remains finite. The ultraviolet catastrophe is avoided.

 EXAMPLE 3 .9

3.6  Photoelectric Effect
Perhaps the most compelling, and certainly the simplest, evidence for the quan-
tization of radiation energy comes from the only acceptable explanation of the 
photoelectric effect. While Heinrich Hertz was performing his famous experi-
ment in 1887 that confirmed Maxwell’s electromagnetic wave theory of light, he 
noticed that when ultraviolet light fell on a metal electrode, a charge was pro-
duced that separated the leaves of his electroscope. Although Hertz recognized 
this discovery of what would become known as the photoelectric effect, it was of 
little use to him at the time, and he left the exploitation of the effect to others, 
particularly Philipp Lenard. The photoelectric effect is one of several ways in 
which electrons can be emitted by materials. By the early 1900s it was known that 
electrons are bound to matter. The valence electrons in metals are “free”—they 
are able to move easily from atom to atom but are not able to leave the surface 
of the material. The methods known now by which electrons can be made to 
completely leave the material include
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   3.6 Photoelectric Effect 103

1.  Thermionic emission: Application of heat allows electrons to gain enough 
energy to escape.

2.  Secondary emission: The electron gains enough energy by transfer from a 
high-speed particle that strikes the material from outside.

3.  Field emission: A strong external electric field pulls the electron out of 
the material.

4.  Photoelectric effect: Incident light (electromagnetic radiation) shining 
on the material transfers energy to the electrons, allowing them to escape.

It is not surprising that electromagnetic radiation interacts with electrons 
within metals and gives the electrons increased kinetic energy. Because elec-
trons in metals are weakly bound, we expect that light can give electrons enough 
extra kinetic energy to allow them to escape. We call the ejected electrons photo-
electrons. The minimum extra kinetic energy that allows electrons to escape the 
material is called the work function f. The work function is the minimum bind-
ing energy of the electron to the material (see Table 3.3 for work function values 
for several elements).

Experimental Results of Photoelectric Effect
Experiments carried out around 1900 showed that photoelectrons are produced 
when visible and/or ultraviolet light falls on clean metal surfaces. Photoelectricity 
was studied using an experimental apparatus shown schematically in Figure 3.11. 
Incident light falling on the emitter (also called the photocathode or cathode) 

Methods of electron 
emission

Photoelectrons

Work function

Element ! (eV) Element ! (eV) Element ! (eV)

 Ag 4.64 K 2.29 Pd 5.22
 Al 4.20 Li 2.93 Pt 5.64
 C 5.0 Na 2.36 W 4.63
 Cs 1.95 Nd 3.2 Zr 4.05
 Cu 4.48 Ni 5.22
 Fe 4.67 Pb 4.25

From Handbook of Chemistry and Physics, 90th ed. Boca Raton, Fla.: CRC Press (2009– 10), 
pp. 12-114.

Tab le  3 .3   Work Functions

Incident!
light

Ammeter

I

A

Collector

e"

Emitter

Vacuum tube

Power supply

(Voltage V )

Figure 3.11 Photoelectric ef-
fect. Electrons emitted when light 
shines on a surface are collected, 
and the photocurrent I is mea-
sured. A negative voltage, relative 
to that of the emitter, can be ap-
plied to the collector. When this 
retarding voltage is sufficiently 
large, the emitted electrons are 
repelled, and the current to the 
collector drops to zero.
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104 Chapter 3 The Experimental Basis of Quantum Physics

ejects electrons. Some of the electrons travel toward the collector (also called the 
anode), where either a negative (retarding) or positive (accelerating) applied 
voltage V is imposed by the power supply. The current I measured in the am-
meter (photocurrent) arises from the flow of photoelectrons from emitter to 
collector.

The pertinent experimental facts about the photoelectric effect are these:

1.  The kinetic energies of the photoelectrons are independent of the light 
intensity. In other words, a stopping potential (applied voltage) of #V0 
is suf fi cient to stop all photoelectrons, no matter what the light intensity, as 
shown in Figure 3.12. For a given light intensity there is a maximum pho-
tocurrent, which is reached as the applied voltage increases from negative 
to positive values.

2.  The maximum kinetic energy of the photoelectrons, for a given emitting 
material, depends only on the frequency of the light. In other words, for 
light of different frequency (Figure 3.13) a different retarding potential 
#V0 is required to stop the most energetic photoelectrons. The value of 
V0 depends on the frequency f but not on the intensity (see Figure 3.12).

3.  The smaller the work function f of the emitter material, the lower is the 
threshold frequency of the light that can eject photoelectrons. No photo-
electrons are produced for frequencies below this threshold frequency, no 
matter what the intensity. Data similar to Millikan’s results (discussed later) 

Photoelectric experimental 
results

Figure 3.13 The photoelectric 
current I is shown as a function of 
applied voltage for three different 
light frequencies. The retarding 
potential #V0 is different for each 
f and is more negative for larger f.

Photoelectric!
current

f1 & f2 & f3

f1 f2 f3

Photon intensity I! constant

Applied voltage

I

#V01 #V02 #V03

V

Figure 3.12 The photoelectric current I is shown as a function of the voltage V applied between 
the emitter and collector for a given frequency f of light for three different light intensities. Notice 
that no current flows for a retarding potential more negative than #V0 and that the photocurrent 
is constant for potentials near or above zero (this assumes that the emitter and collector are closely 
spaced or in spherical geometry to avoid loss of photoelectrons).

Photocurrent Light frequency f ! constant

I! 3I0

I! 2I0

I! I0

0 Applied voltage#V0
V

I
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   3.6 Photoelectric Effect 105

are shown in Figure 3.14, where the threshold frequencies f0 are measured 
for three metals.

4.  When the photoelectrons are produced, however, their number is pro-
portional to the intensity of light as shown in Figure 3.15. That is, the 
maximum photocurrent is proportional to the light intensity.

5.  The photoelectrons are emitted almost instantly ()3 $ 10#9 s) follow-
ing illumination of the photocathode, independent of the intensity of the 
light.

Except for result 5, these experimental facts were known in rudimentary form by 
1902, primarily due to the work of Philipp Lenard, who had been an assistant to 
Hertz in 1892 after Hertz had moved from Karlsruhe to Bonn. Lenard, who ex-
tensively studied the photoelectric effect, received the Nobel Prize in Physics in 
1905 for this and other research on the identification and behavior of 
electrons.

Classical Interpretation
As stated previously, classical theory allows electromagnetic radiation to eject 
photo electrons from matter. However, classical theory predicts that the total 
amount of energy in a light wave increases as the light intensity increases. There-
fore, according to classical theory, the electrons should have more kinetic energy 
if the light intensity is increased. However, according to experimental result 1 

f0

Retarding
potential
energy

Light frequency

Slope # h

Intercept # !f

Ag

Li
Cs

f

eV0

Figure 3.14 The retarding po-
tential energy eV0 (maximum 
electron kinetic energy) is plotted 
versus light frequency for three 
emitter materials.

Figure 3.15 The photoelectric 
current I is a linear function of 
the light intensity for a constant f 
and V.Light intensity

Light frequency f ! constant!
Voltage V ! constant

Photoelectric!
current

I

I
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106 Chapter 3 The Experimental Basis of Quantum Physics

and Figure 3.12, a characteristic retarding potential #V0 is sufficient to stop all 
photoelectrons for a given light frequency f, no matter what the intensity. Clas-
sical electromagnetic theory is unable to explain this result. Similarly, classical 
theory cannot explain result 2, because the maximum kinetic energy of the 
photo electrons depends on the value of the light frequency f and not on the 
intensity.

The existence of a threshold frequency, shown in experimental result 3, is 
completely inexplicable in classical theory. Classical theory cannot predict the 
results shown in Figure 3.14. Classical theory does predict that the number of 
photoelectrons ejected will increase with intensity in agreement with experimen-
tal result 4.

Finally, classical theory would predict that for extremely low light intensities, 
a long time would elapse before any one electron could obtain sufficient energy 
to escape. We observe, however, that the photoelectrons are ejected almost im-
mediately. For example, experiments have shown that a light intensity equivalent 
to the illumination produced over a 1-cm2 area by a 100-watt incandescent bulb at 
a distance of 1000 km is sufficient to produce photoelectrons within a second.

Photoelectrons may be emitted from sodium (f ! 2.36 eV) 
even for light intensities as low as 10#8 W/m2. Calculate clas-
sically how much time the light must shine to produce a 
photoelectron of kinetic energy 1.00 eV.

Strategy We will assume that all of the light is absorbed in 
the first layer of atoms in the surface. Then we calculate the 
number of sodium atoms per unit area in a layer one atom 
thick. We assume that each atom in a single atomic layer 
absorbs equal energy, but a single electron in each of these 
atoms receives all the energy. We then calculate how long it 
takes these electrons to attain the energy (2.36 eV " 1.00 eV 
! 3.36 eV) needed for the electron to escape.

Solution We first find the number of Na atoms/volume:

Avogadro’s number
Na gram molecular weight

$ density

!
number of Na atoms

volume

6.02 $ 1023 atoms/mol
23 g/mol

$ 0.97 
g

cm3

! 2.54 $ 1022 
atoms
cm3 ! 2.54 $ 1028 

atoms
m3   (3.26)

To estimate the thickness of one layer of atoms, we assume 
a cubic structure.

 
1 atom

d 3 ! 2.54 $ 1028 
atoms

m3

  d ! 3.40 $ 10#10 m

  ! thickness of one layer of sodium atoms

If all the light is absorbed in the first layer of atoms, the 
number of exposed atoms per m2 is

 2.54 $ 1028 
atoms

m3 $ 3.40 $ 10#10 m ! 8.64 $ 1018 
atoms

m2

With the intensity of 10#8 W/m2, each atom will receive 
energy at the rate of

1.00 $ 10#8 
W
m2 $

1
8.64 $ 1018 atoms/m2

! 1.16 $ 10#27 W

 ! 1.16 $ 10#27
  
J
s

$
1

1.6 $ 10#19 J/eV

 ! 7.25 $ 10#9 eV/s

If energy is absorbed at the rate of 7.25 $ 10#9 eV/s for a 
single electron, we can calculate the time t needed to absorb 
3.36 eV:

 t !
3.36 eV

7.25 $ 10#9 eV/s
! 4.63 $ 108 s ! 14.7 years

Based on classical calculations, the time required to eject a 
photoelectron should be 15 years!

 EXAMPLE 3 .10
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   3.6 Photoelectric Effect 107

Einstein’s Theory
Albert Einstein was intrigued by Planck’s hypothesis that the electromagnetic 
radiation field must be absorbed and emitted in quantized amounts. Einstein 
took Planck’s idea one step further and suggested that the electromagnetic radia-
tion field itself is quantized and that “the energy of a light ray spreading out from 
a point source is not continuously distributed over an increasing space but con-
sists of a fi nite number of energy quanta which are localized at points in space, 
which move without dividing, and which can only be produced and absorbed as 
complete units.”* We now call these energy quanta of light photons. According 
to Einstein each photon has the energy quantum

 E ! hf  (3.27)

where f is the frequency of the electromagnetic wave associated with the light, 
and h is Planck’s constant. Notice that Equation (3.27) is consistent with Planck’s 
relation for quantum of energy presented in Equation (3.25). The photon trav-
els at the speed of light c in a vacuum, and its wavelength is given by

 lf ! c (3.28)

In other words, Einstein proposed that in addition to its well-known wavelike 
aspect, amply exhibited in interference phenomena, light should also be considered 
to have a particle-like aspect. Einstein suggested that the photon (quantum of light) 
delivers its entire energy hf to a single electron in the material. To leave the ma-
terial, the struck electron must give up an amount of energy f to overcome its 
binding in the material. The electron may lose some additional energy by inter-
acting with other electrons on its way to the surface. Whatever energy remains 
will then appear as kinetic energy of the electron as it leaves the emitter. The 
conservation of energy requires that

 hf ! f " K.E. 1electron 2  (3.29)

Because the energies involved here are on the order of electron volts, we are safe 
in using the nonrelativistic form of the electron’s kinetic energy, 12 mv 2. The elec-
tron’s kinetic energy will be degraded as it passes through the emitter material, 
so, strictly speaking, we want to experimentally detect the maximum value of the 
kinetic energy.

 hf ! f " 1
2 mv 2

max (3.30)

The retarding potentials measured in the photoelectric effect are thus the op-
posing potentials needed to stop the most energetic electrons.

 eV0 ! 1
2 mv 2

max (3.31)

Quantum Interpretation
We should now reexamine the experimental results of the photoelectric effect 
to see whether Einstein’s quantum interpretation can explain all the data. The 
first and second experimental results (which indicate that the kinetic energies of 

Photons

Energy quantum

*For an English translation of A. Einstein, Annalen der Physik 17, 132 (1905), see A. B. Arons and 
M. B. Peppard, American Journal of Physics 33, 367 (1965).
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108 Chapter 3 The Experimental Basis of Quantum Physics

the photoelectrons depend on the light frequency, but not the light intensity) 
can be explained. The kinetic energy of the electrons, K.E. (electron) ! hf # f 
[see Equation (3.29)], does not depend on the light intensity at all, but only on 
the light frequency and the work function of the material.

 1
2 mv 2

max ! eV0 ! hf # f (3.32)

A potential slightly more positive than #V0 will not be able to repel all the elec-
trons, and, for a close geometry of the emitter and collector, practically all the 
electrons will be collected when the retarding voltage is near zero. For very large 
positive potentials all the electrons will be collected, and the photocurrent levels  
off as shown in Figure 3.12. If the light intensity increases, there will be more 
photons per unit area, more electrons ejected, and therefore a higher photocur-
rent, as displayed in Figure 3.12.

If a different light frequency is used, say f2, then a different stopping potential 
is required to stop the most energetic electrons [see Equation (3.32)], eV02 ! hf2 # 
f. For a constant light intensity (more precisely, a constant number of photons/
area/time), a different stopping potential V0 is required for each f, but the maxi-
mum photocurrent will not change, because the number of photoelectrons 
ejected is constant (see Figure 3.13). The quantum theory easily explains Fig-
ure 3.15, because the number of photons increases linearly with the light inten-
sity, producing more photoelectrons and hence more photocurrent.

Equation (3.32), proposed by Einstein in 1905, predicts that the stopping 
potential will be linearly proportional to the light frequency, with a slope h/e, 
where h is the same constant found by Planck. The slope is independent of the metal 
used to construct the photocathode. Equation (3.32) can be rewritten

 eV0 ! 1
2 mv 2

max ! hf # hf0 ! h 1  f # f0 2  (3.33)

where f ! hf0 represents the negative of the y intercept. The frequency f0 repre-
sents the threshold frequency for the photoelectric effect (when the kinetic en-
ergy of the electron is precisely zero). The data available in 1905 were not suf fi-
ciently accurate either to prove or disprove Einstein’s theory, and even Planck 
himself, among others, viewed the theory with skepticism. R. A. Millikan, then at 
the University of Chicago, tried to show that Einstein was wrong by undertaking 
a series of elegant experiments that required almost 10 years to complete. In 
1916 Millikan reported data shown in Figure 3.16 that confirmed Einstein’s pre-
diction. Millikan found the value of h from the slope of the line in Figure 3.16 
to be 4.1 $ 10#15 eV # s, in good agreement with the value of h determined for 
blackbody radiation by Planck. Einstein’s theory of the photoelectric effect was 
gradually accepted after 1916; finally in 1922 he received the Nobel Prize for the 
year 1921, primarily for his explanation of the photoelectric effect.*

We should summarize what we have learned about the quantization of the 
electromagnetic radiation field. First, electromagnetic radiation consists of pho-
tons, which are particle-like (or corpuscular), each consisting of energy

 E ! hf !
hc
l

 (3.34)

Quantization of electro-
magnetic radiation field

*R. A. Millikan also received the Nobel Prize in Physics in 1923, partly for his precise study of the 
photo electric effect and partly for measuring the charge of the electron. Millikan’s award was the last 
in a series of Nobel Prizes spanning 18 years that honored the fundamental efforts to measure and 
understand the photoelectric effect: Lenard, Einstein, and Millikan.

Figure 3.16 Millikan published 
data in 1916 for the photoelectric 
effect in which he shone light of 
varying frequency on a sodium 
electrode and measured the max-
imum kinetic energies of the 
photoelectrons. He found that no 
photoelectrons were emitted be-
low a frequency of 4.39 $ 1014 Hz 
(or longer than a wavelength of 
683 nm). The results were inde-
pendent of light intensity, and the 
slope of a straight line drawn 
through the data produced a 
value of Planck’s constant in ex-
cellent agreement with Planck’s 
theory. Even though Millikan ad-
mitted his own data were suf fi-
cient proof of Einstein’s photo-
electric effect equation, Millikan 
was not convinced of the photon 
concept for light and its role in 
quantum theory.
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   3.6 Photoelectric Effect 109

where f and l are the frequency and wavelength of the light, respectively. The 
total energy of a beam of light is the sum total of the energy of all the photons 
and for monochromatic light is an integral multiple of hf (generally the integer 
is very large).

This representation of the photon picture must be true over the entire 
electro magnetic spectrum from radio waves to visible light, x rays, and even 
high-energy gamma rays. This must be true because, as we saw in Chapter 2, a 
photon of given frequency, observed from a moving system, can be redshifted or 
blue shifted by an arbitrarily large amount, depending on the system’s speed and 
direction of motion. We examine these possibilities later. During emission or 
absorption of any form of electromagnetic radiation (light, x rays, gamma rays, 
and so on), photons must be created or absorbed. The photons have only one 
speed: the speed of light (! c in vacuum).

Light of wavelength 400 nm is incident upon lithium (f  ! 
2.93 eV). Calculate (a) the photon energy and (b) the stop-
ping potential V0.

Strategy (a) Light is normally described by wavelengths 
in nm, so it is useful to have an equation to calculate the 
energy in terms of l.

  E ! hf !
hc
l

  !
16.626 $ 10#34 J # s 2 12.998 $ 108 m/s 2
l11.602 $ 10#19 J/eV 2 110#9 m/nm 2

  E !
1.240 $ 103 eV # nm

l
 (3.35)

(b) We use Equation (3.32) to determine the stopping po-
tential once we know the frequency f and work function f.

Solution (a) For a wavelength of l ! 400 nm we use 
Equation (3.35) to determine the photon’s energy

 E !
1.240 $ 103 eV # nm

400 nm
! 3.10 eV

(b) For the stopping potential, Equation (3.32) gives

  eV0 ! hf # f ! E # f ! 3.10 eV # 2.93 eV ! 0.17 eV

  V0 ! 0.17 V

A retarding potential of 0.17 V will stop all photoelectrons.

 EXAMPLE 3 .11

(a)  What frequency of light is needed to produce electrons 
of kinetic energy 3.00 eV from illumination of lithium?
(b)  Find the wavelength of this light and discuss where it is 
in the electromagnetic spectrum.

Strategy We have enough information to determine the 
photon energy needed from Equation (3.30), and we can 
determine the frequency from E ! hf.

Solution From Equation (3.30), we have

  hf ! f " 1
2 mv 2

max

  ! 2.93 eV " 3.00 eV ! 5.93 eV

The photon frequency is now found to be

  f !
E
h

!
15.93 eV 2 11.60 $ 10#19 J/eV 216.626 $ 10#34 J # s 2

 ! 1.43 $ 1015 s#1 ! 1.43 $ 1015 Hz

(b) The wavelength of the light can be found from c ! lf .

l !
c
f

!
3.00 $ 108 m/s
1.43 $ 1015 Hz

! 2.10 $ 10#7 m ! 210 nm

This is ultraviolet light, because the wavelength 210 nm is 
below the range of visible wavelengths 400 to 700 nm.

 EXAMPLE 3 .12

03721_ch03_084-126.indd   10903721_ch03_084-126.indd   109 9/29/11   9:30 AM9/29/11   9:30 AM



110 Chapter 3 The Experimental Basis of Quantum Physics

The photoelectric effect is responsible for many applications in the detec-
tion of light. These include the photomultiplier tube for counting individual 
light pulses, photoelectric cells for light-activated devices (such as door openers 
and intrusion alarms), and solar panels.

3.7  X-Ray Production
In the photoelectric effect, a photon gives up all of its energy to an electron, 
which may then escape from the material in which it was bound. Can the inverse 
process occur? Can an electron (or any charged particle) give up its energy and 
create a photon? The answer is yes, but the process must be consistent with the 
laws of physics. Recall that photons must be created or absorbed as whole units. 
A photon cannot give up half its energy; it must give up all its energy. If in some 
physical process only part of the photon’s energy were required, then a new pho-
ton would be created to carry away the remaining energy.

Unlike a photon, an electron may give up part or all of its kinetic energy and 
still be the same electron. When an electron interacts with the strong electric 
field of the atomic nucleus and is consequently accelerated, the electron radiates 
electromagnetic energy. According to classical electromagnetic theory, it should 
do so continuously. In the quantum picture we must think of the electron as 
emitting a series of photons with varying energies; this is the only way that the 
inverse photoelectric effect can occur. An energetic electron passing through 
matter will radiate photons and lose kinetic energy. The process by which pho-
tons are emitted by an electron slowing down is called brems strahlung, from the 
German word for “braking radiation.” The process is shown schematically in 
Figure 3.17 where an electron of energy Ei passing through the electric field of 

Bremsstrahlung process

For the light intensity of Example 3.10, I ! 10#8 W/m2, 
a wavelength of 350 nm is used. What is the number of 
photons/(m2 # s) in the light beam?

Strategy We first find the photon energy, and because we 
know the intensity, we will be able to determine the photon 
flux.

Solution From Equation (3.35) we find the photon 
energy E:

 E !
1.240 $ 103 eV # nm

350 nm
! 3.5 eV

The intensity I is the product of the photon flux N and 
photon energy E:

  Intensity I! cN a photons
m2 # s b d cE  a energy

photon
b d

  ! NE  a energy
m2 # s b

where we have put the units of N and E in parentheses. We 
solve this for N:

  N !
I

E
!

1.0 $ 10#8 J # s#1 m#211.6 $ 10#19 J/eV 2 13.5 eV/photon 2
  ! 1.8 $ 1010 

photons
m2 # s

Thus even a low-intensity light beam has a large flux of pho-
tons, and even a few photons can produce a photocurrent 
(albeit a very small one!).

 EXAMPLE 3 .13

03721_ch03_084-126.indd   11003721_ch03_084-126.indd   110 9/29/11   9:30 AM9/29/11   9:30 AM



   3.7 X-Ray Production 111

a nucleus is accelerated and produces a photon of energy E ! hf. The final en-
ergy of the electron is determined from the conservation of energy to be

 Ef ! Ei # hf  (3.36)

Because linear momentum must be conserved, the nucleus absorbs very little 
energy, and it is ignored. One or more photons may be created in this way as 
electrons pass through matter.

In Section 3.1 we mentioned Röntgen’s discovery of x rays. The x rays are 
produced by the bremsstrahlung effect in an apparatus shown schematically in 
Figure 3.18. Current passing through a filament produces copious numbers of 
electrons by thermionic emission. These electrons are focused by the cathode 
structure into a beam and are accelerated by potential differences of thousands 
of volts until they impinge on a metal anode surface, producing x rays by brems-
strah lung (and other processes) as they stop in the anode material. Much of the 
electron’s kinetic energy is lost by heating the anode material and not by brems-
strah lung. The x-ray tube is evacuated so that the air between the filament and 
anode will not scatter the electrons. The x rays produced pass through the sides 
of the tube and can be used for a large number of applications, including medi-
cal diagnosis and therapy, fundamental research in crystal and liquid structure, 
and engineering diagnoses of flaws in large welds and castings.

X rays from a standard tube include photons of many wavelengths. By scat-
tering x rays from crystals we can produce strongly collimated monochromatic 
(single-wavelength) x-ray beams. Early x-ray spectra produced by x-ray tubes of 
accelerating potential 35 kV are shown in Figure 3.19. These particular tubes 
had targets of tungsten, molybdenum, and chromium. The smooth, continuous 
x-ray spectra are those produced by bremsstrahlung, and the sharp “characteris-
tic x rays” are produced by atomic excitations and are explained in Section 4.6. 
X-ray wavelengths typically range from 0.01 to 1 nm. However, high-energy ac-
celerators can produce x rays with wavelengths as short as 10#6 nm.

Notice that in Figure 3.19 the minimum wavelength lmin for all three targets 
is the same. The minimum wavelength lmin corresponds to the maximum 
frequency fmax. If the electrons are accelerated through a voltage V0, then their 
kinetic energy is eV0. The maximum photon energy therefore occurs when 
the electron gives up all of its kinetic energy and creates one photon (this is 

Figure 3.17 Bremsstrahlung is 
a process through which an elec-
tron is accelerated while under 
the in flu ence of the nucleus. The 
accelerated electron emits a 
photon.

#

Nucleus

Electron!
Ei

Ef

Photon, hf

X rays

e"
Hot filament

Target

Evacuated!
tube

High-voltage!
power supply

Filament!
supply

#

#

"

"

Figure 3.18 Schematic of x-ray tube where x rays are produced by the bremsstrahlung process 
of energetic electrons.
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112 Chapter 3 The Experimental Basis of Quantum Physics

relatively unlikely, however). This process is the inverse photoelectric effect. The 
conservation of energy requires that the electron kinetic energy equal the maxi-
mum photon energy (where we neglect the work function f because it is nor-
mally so small compared with eV0).

 eV0 ! hfmax !
hc
lmin

or

 lmin !
hc
e  

1
V0

!
1.240 $ 10#6 V # m

V0
 (3.37)

The relation Equation (3.37) was first found experimentally and is known as the 
Duane-Hunt rule (or limit). Its explanation in 1915 by the quantum theory is 
now considered further evidence of Einstein’s photon concept. The value lmin 
depends only on the accelerating voltage and is the same for all targets.

Only the quantum hypothesis explains all of these data. Because the heavier ele-
ments have stronger nuclear electric fields, they are more effective in accelerating 
electrons and making them radiate. The intensity of the x rays increases with the 
square of the atomic number of the target. The intensity is also approximately pro-
portional to the square of the voltage used to accelerate the electrons. This is why 
high voltages and tungsten anodes are so often used in x-ray machines. Tungsten 
also has a very high melting temperature and can withstand high electron-beam 
currents.

Duane-Hunt rule

Figure 3.19 The relative inten-
sity of x rays produced in an x-ray 
tube is shown for an accelerating 
voltage of 35 kV. Notice that lmin 
is the same for all three targets. 
From C. T. Ulrey, Physical Review 11, 
405 (1918).
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3.8 Compton Effect 113

3.8  Compton Effect
When a photon enters matter, it is likely to interact with one of the atomic elec-
trons. According to classical theory, the electrons will oscillate at the photon 
frequency because of the interaction of the electron with the electric and mag-
netic field of the photon and will reradiate electromagnetic radiation (photons) 
at this same frequency. This is called Thomson scattering. However, in the early 
1920s Arthur Compton experimentally confirmed an earlier observation by J. A. 
Gray that, especially at backward-scattering angles, there appeared to be a com-
ponent of the emitted radiation (called a modified wave) that had a longer 
wavelength than the original primary (unmodified) wave. Classical electromag-
netic theory cannot explain this modified wave. Compton then attempted to 
understand theoretically such a process and could find only one explanation: 
Einstein’s photon particle concept must be correct. The scattering process is shown in 
Figure 3.20.

Compton proposed in 1923 that the photon is scattered from only one elec-
tron, rather than from all the electrons in the material, and that the laws of the 
conservation of energy and momentum apply as in any elastic collision between 
two particles. We recall from Chapter 2 that the momentum of a particle moving 
at the speed of light (photon) is given by

p !
E
c !

hf
c !

h
l

(3.38)

Thomson scattering

Explain how the Duane-Hunt rule can be used to determine 
the electron bombarding energy in a device such as a scan-
ning electron microscope.

Solution If we look closely at Equation (3.37), we can see 
that any reduction in the acceleration voltage V0 will lead to 
an increase in the value of lmin. A careful analysis of the 

minimum value of the wavelength should be in agreement 
with the expected voltage V0. If the value of lmin varies over 
time, for example depending on the electron beam current, 
it may be due to anomalous charging effects in the beam 
acceleration/transport system. Solutions for problems like 
this require painstaking efforts and may dictate the experi-
mental conditions, such as using lower beam currents to 
avoid problems.

CONCEPTUAL EXAMPLE 3 .14

If we have a tungsten anode (work function f ! 4.63 eV) 
and electron acceleration voltage of 35 kV, why do we ig-
nore in Equation (3.36) the initial kinetic energy of the 
electrons from the filament and the work functions of the 
filaments and anodes? What is the minimum wavelength of 
the x rays?

Strategy We can ignore the initial electron kinetic ener-
gies and the work functions, because they are on the order 
of a few electron volts (eV), whereas the kinetic energy of 
the electrons due to the accelerating voltage is 35,000 eV. 

The error in neglecting everything but eV0 is small. We will 
use Equation (3.37) to determine the minimum 
wavelength.

Solution We use the Duane-Hunt rule of Equation (3.37) 
to determine

lmin !
1.240 $ 10#6 V # m

35.0 $ 103 V
! 3.54 $ 10#11 m

which is in good agreement with the data of Figure 3.19.

EXAMPLE 3 .15
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114 Chapter 3 The Experimental Basis of Quantum Physics

We treat the photon as a particle with a definite energy and momentum. Scat-
tering takes place in a plane, which we take to be the xy plane in Figure 3.20. 
Both x and y components of momentum must be conserved, because of the vec-
tor nature of the linear momentum. The energy and momentum before and 
after the collision (treated relativistically) are given in Table 3.4. The incident 
and scattered photons have frequencies f and f *, respectively. The recoil elec-
tron has energy Ee and momentum pe.

In the final system the electron’s total energy is related to its momentum by 
Equation (2.70):

 Ee
2 ! 1mc 2 22 " pe

2c 2 (3.39)

We can write the conservation laws now, initial = fi nal, as

 Energy   hf " mc 2 ! hf œ " Ee  (3.40a)

  px    
h
l

!
h
lœ  cos u " pe cos f (3.40b)

  py    
h
lœ  sin u ! pe sin f  (3.40c)

We will relate the change in wavelength ¢l ! lœ # l to the scattering angle u of 
the photon. We first eliminate the recoil angle f by squaring Equations (3.40b) 
and (3.40c) and adding them, resulting in

 pe
2 ! a h

l
b 2

" a h
lœ b 2

# 2 a h
l
b a h
lœ b cos u (3.41)

h!
l

p !

h!
l*

E ! hf *

p !

Target!
electron!
Ei ! mc2 Recoil electron!

Ef ! Ee

Incident photon

E ! hf y
x

Scattered photon

f

u

Figure 3.20 Compton scatter-
ing of a photon by an electron es-
sentially at rest.

Arthur Compton (1892– 1962) is 
shown here in 1931 looking into 
an ionization chamber that he de-
signed to study cosmic rays in 
the atmosphere. Compton re-
ceived his degrees from the Col-
lege of Wooster and Princeton 
University. He spent most of his 
career at the University of Chi-
cago and Washington University, 
St. Louis. After his early work 
with x rays for which he received 
the Nobel Prize in 1927, he was a 
pioneer in high-energy physics 
through his cosmic ray studies. 
Compton was also a leader in the 
establishment of the Manhattan 
Project to produce 
the atomic bomb during World 
War II and, afterwards, for 
nuclear power generation. 

Energy or Momentum Initial System Final System

Photon energy hf hf *

Photon momentum in x direction (px) 
h
l

 
h
lœ  cos u

Photon momentum in y direction (py) 0 
h
lœ  sin u

Electron energy mc 2 Ee ! mc2 " K.E.
Electron momentum in x direction (px) 0 pe cos f
Electron momentum in y direction (py) 0 #pe sin f

Tab le  3 .4   Results of Compton Scattering
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   3.8 Compton Effect 115

Then we substitute Ee from Equation (3.40a) and pe from Equation (3.41) into 
Equation (3.39) (setting l ! c/f ).

 3h 1  f # f œ 2 " mc 2 42 ! m 2c 4 " 1hf 22 " 1hf œ 22 # 21hf 2 1hf œ 2cos u

Squaring the left-hand side and canceling terms leaves

 mc 21  f # f œ 2 ! hf f œ11 # cos u 2
Rearranging terms gives

 
h

mc 2 11 # cos u 2 !
f # f œ

f f œ !

c
l

#
c
lœ

c 2

llœ

!
1
c  1lœ # l 2

or

 ¢l ! lœ # l !
h

mc  11 # cos u 2  (3.42)

which is the result Compton found in 1923 for the increase in wavelength of the 
scattered photon.

Compton then proceeded to check the validity of his theoretical result by 
performing a careful experiment in which he scattered x rays of wavelength 
0.071 nm from carbon at several angles. He showed that the modified wave-
length was in good agreement with his prediction.* A part of his data is shown 
in  Figure 3.21, where both the modified (lœ) and unmodified (l) scattered waves 
are identified.

Compton effect

*An interesting personal account of Compton’s discovery can be found in A. H. Compton, American 
Journal of Physics 29, 817– 820 (1961).

Figure 3.21 Compton’s origi-
nal data showing (a) the primary 
x-ray beam from Mo unscattered 
and (b) the scattered spectrum 
from carbon at 135° showing both 
the modified and unmodified 
wave. Adapted from Arthur H. Comp-
ton, Physical Review 22, 409-413 
(1923).

Molybdenum Ka!
line, primary

Modified
Scattered!
from carbon!
at 135°!Unmodified

Glancing angle from calcite!
(proportional to wavelength)
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116 Chapter 3 The Experimental Basis of Quantum Physics

The kinetic energy and scattering angle of the recoiling electron can also be 
calculated. Experiments in which the recoiling electrons were detected were 
soon carried out, thus completely confirming Compton’s theory. The process of 
elastic photon scattering from electrons is now called the Compton effect. Note 
that the difference in wavelength, ¢l ! lœ # l, depends only on the constants 
h, c, and me in addition to the scattering angle u. The quantity lC ! h/mec ! 2.426 
$ 10#3 nm is called the Compton wavelength of the electron. Only for wave-
lengths on the same order as lC (or shorter) will the fractional shift %l/l be 
large. For visible light, for example with l ! 500 nm, the maximum %l/l is on 
the order of 10#5 and %l would be difficult to detect. The probability of the oc-
currence of the Compton effect for visible light is also quite small. However, for 
x rays of wavelength 0.071 nm used by Compton, the ratio of %l/l is %0.03 and 
could easily be observed. Thus, the Compton effect is important only for x rays 
or g-ray photons and is small for visible light.

The physical process of the Compton effect can be described as follows. The 
photon elastically scatters from an essentially free electron in the material. (The 
photon’s energy is so much larger than the binding energy of the almost free 
electron that the atomic binding energy can be neglected.) The newly created 
scattered photon then has a modified, longer wavelength. What happens if the 
photon scatters from one of the tightly bound inner electrons? Then the binding 
energy is not negligible, and the electron might not be dislodged. The scattering 
in this case is effectively from the entire atom (nucleus " electrons). Then the 
mass in Equation (3.42) is several thousand times larger than me, and %l is cor-
respondingly smaller. Scattering from tightly bound electrons results in the 
unmodified photon scattering (l ! lœ), which is also observed in Figure 3.21. 
Thus, the quantum picture also explains the existence of the unmodified wave-
length predicted by the classical theory (Thomson scattering) alluded to 
earlier.

The success of the Compton theory convincingly demonstrated the cor-
rectness of both the quantum concept and the particle nature of the photon. 
The use of the laws of the conservation of energy and momentum applied rela-
tivistically to pointlike scattering of the photon from the electron finally con-
vinced the great majority of scientists of the validity of the new modern physics. 
Compton received the Nobel Prize in Physics for this discovery in 1927.

Compton wavelength

An x ray of wavelength 0.050 nm scatters from a gold target. 
(a) Can the x ray be Compton-scattered from an electron 
bound by as much as 62 keV ? (b) What is the largest wave-
length of scattered photon that can be observed? (c) What 
is the kinetic energy of the most energetic recoil electron 
and at what angle does it occur?

Strategy We first determine the x-ray energy to see if it 
has enough energy to dislodge the electron. We use Equa-
tion (3.42) with both the atomic and electron mass to 
 determine the scattered photon wavelength. We then use 
the conservation of energy to determine the recoil electron 
kinetic energy.

Solution From Equation (3.35) the x-ray energy is

 E x ray !
1.240 $ 103 eV # nm

0.050 nm
! 24,800 eV ! 24.8 keV

Therefore, the x ray does not have enough energy to dis-
lodge the inner electron, which is bound by 62 keV. In this 
case we have to use the atomic mass in Equation (3.42), 
which results in little change in the wavelength (Thomson 
scattering).

Scattering may still occur from outer electrons, so we 
examine Equation (3.42) with the electron mass. The lon-
gest wavelength lœ ! l " %l occurs when %l is a maximum 
or when u ! 180°.

 EXAMPLE 3 .16
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   3.9 Pair Production and Annihilation 117

3.9  Pair Production and Annihilation
A guiding principle of scientific investigation, if not a general rule of nature, is 
that if some process is not absolutely forbidden (by some law such as conserva-
tion of energy, momentum, or charge), then we might expect that it will eventu-
ally occur. In the photoelectric effect, bremsstrahlung, and the Compton effect, 
we have studied exchanges of energy between photons and electrons. Have we 
covered all possible mechanisms? For example, can the kinetic energy of a pho-
ton be converted into particle mass and vice versa? It would appear that if none 
of the conservation laws are violated, then such a process should be possible.

First, let us consider the conversion of photon energy into mass. The electron, 
which has a mass (m ! 0.511 MeV/c 2), is the lightest particle within an atom. If a 
photon can create an electron, it must also create a positive charge to balance 
charge conservation. In 1932, C. D. Anderson (Nobel Prize in Physics, 1936) ob-
served a positively charged electron (e") in cosmic radiation. This particle, called a 
positron, had been predicted to exist several years earlier by P. A. M. Dirac (Nobel 
Prize in Physics, 1933). It has the same mass as the electron but an opposite charge. 
Positrons are also observed when high-energy gamma rays (photons) pass through 
matter. Experiments show that a photon’s energy can be converted entirely into an 
electron and a positron in a process called pair production. The reaction is

 gS e " " e # (3.43)

However, this process occurs only when the photon passes through matter, be-
cause energy and momentum would not be conserved if the reaction took place 
in isolation. The missing momentum must be supplied by interaction with a 
nearby massive object such as a nucleus.

Positron

Pair production

Show that a photon cannot produce an electron-positron 
pair in free space as shown in Figure 3.22a.

Strategy We need to look carefully at the conservation of 
momentum and energy to see whether pair production can 
occur in free space.

Solution Let the total energy and momentum of the elec-
tron and the positron be E#, p# and E", p", respectively. The 
conservation laws are then

 Energy    hf ! E" " E#   (3.44a)

 Momentum, px    
hf
c

! p# cos u# " p" cos u"  (3.44b)

 Momentum, py   0 ! p# sin u# # p" sin u"   (3.44c)

 EXAMPLE 3 .17

  lœ ! l "
h

me c
 11 # cos 180°2 ! l "

2h
me c

  ! 0.050 nm " 210.00243 nm 2 ! 0.055 nm

The energy of the scattered photon is then a minimum and 
has the value

 E œ
x ray !

1.240 $ 103 eV # nm
0.055 nm

! 2.25 $ 104 eV ! 22.5 keV

The difference in energy of the initial and final photon 
must equal the kinetic energy of the electron (neglecting 
binding energies). The recoil electron must scatter in the 

forward direction at f ! 0° when the final photon is in the 
backward direction (u ! 180°) to conserve momentum. The 
kinetic energy of the electron is then a maximum.

  E x ray ! E œ
x ray " K.E. 1electron 2

  K.E. 1electron 2 ! E x ray # E œ
x ray

  ! 24.8 keV # 22.5 keV ! 2.3 keV

Because %l does not depend on l or lœ, we can determine 
the wavelength (and energy) of the incident photon by 
merely observing the kinetic energy of the electron at for-
ward angles (see Problem 60).
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118 Chapter 3 The Experimental Basis of Quantum Physics

Consider the conversion of a photon into an electron and a positron that 
takes place inside an atom where the electric field of a nucleus is large. The 
nucleus recoils and takes away a negligible amount of energy but a considerable 
amount of momentum. The conservation of energy will now be

 hf ! E" " E# " K.E. 1nucleus 2  (3.47)

A diagram of the process is shown in Figure 3.22b. The photon energy must be 
at least equal to 2mec 2 in order to create the masses of the electron and 
positron.

 hf & 2me c 2 ! 1.022 MeV    (for pair production) (3.48)

The probability of pair production increases dramatically both with higher pho-
ton energy and with higher atomic number Z of the atom’s nucleus because of 
the correspondingly higher electric field that mediates the process.

The next question concerns the new particle, the positron. Why is it not 
commonly found in nature? We also need to answer the question posed earlier: 
can mass be converted to energy?

Positrons are found in nature. They are detected in cosmic radiation and as 
products of radioactivity from several radioactive nuclei. However, their exis-
tences are doomed because of their interaction with electrons. When positrons 
and electrons are in proximity for even a short time, they annihilate each other, 
producing photons. A positron passing through matter will quickly lose its ki-
netic energy through atomic collisions and will likely annihilate with an electron. 
After a positron slows down, it is drawn to an electron by their mutual electric 
attraction, and the electron and positron may then form an atomlike configuration 
called pos itronium, in which they orbit around their common center of mass. 

Equation (3.44b) can be written as

 hf ! p#c cos u# " p"c cos u" (3.45)

If we insert E'
2 ! p'

2c 2 " m 2c 4  into Equation (3.44a), we 
have

 hf ! 2p"
2c 2 " m 2c 4 " 2p#

2c 2 " m 2c 4 (3.46)

The maximum value of hf is, from Equation (3.45),

 hfmax ! p#c " p"c

However, from Equation (3.46), we also have

 hf & p#c " p"c

Equations (3.45) and (3.46) are inconsistent and cannot si-
multaneously be valid. Equations (3.44), therefore, do not 
describe a possible reaction. The reaction displayed in Fig-
ure 3.22a is not possible, because energy and momentum 
are not simultaneously conserved.

Figure 3.22 (a) A photon 
cannot decay into an electron-
positron pair in free space, but 
(b) if a nucleus is nearby, the 
nucleus can absorb sufficient 
linear momentum to allow the 
process to proceed.

Photon

Before
(a)

After
e#

e"

u"

u#

Free space (cannot occur)

Photon

Nucleus Nucleus

Before After

e#

e"

u

f

(b)  Beside nucleus
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   3.9 Pair Production and Annihilation 119

Eventually the electron and positron annihilate each other (typically in 10#10 s), 
producing electromagnetic radiation (photons). The process e" " e# S g " g is 
called pair annihilation.

Consider a positronium “atom” at rest in free space. It must emit at least two 
photons to conserve energy and momentum. If the positronium annihilation 
takes place near a nucleus, it is possible that only one photon will be created, 
because the missing momentum can be supplied by nucleus recoil as in pair 
production. Under certain conditions three photons may be produced. Because 
the emission of two photons is by far the most likely annihilation mode, let us 
consider this mode, displayed in Figure 3.23. The conservation laws for the pro-
cess 1e "e # 2 atom S g " g will be (we neglect the atomic binding energy of about 
6.8 eV)

  Energy    2me c 2 ! hf1 " hf2 (3.49a)

  Momentum   0 !
hf1

c #
hf2

c  (3.49b)

By Equation (3.49b), the frequencies are identical, so we left f1 ! f2 ! f . 
Thus Equation (3.49a) becomes

 2me c 2 ! 2hf

or

 hf ! me c 2 ! 0.511 MeV (3.50)

In other words, the two photons from positronium annihilation will move in op-
posite directions, each with energy 0.511 MeV. This is exactly what is observed 
experimentally.

The production of two photons in opposite directions with energies just over 
0.5 MeV is so characteristic a signal of the presence of a positron that it has useful 
applications. Positron emission tomography (PET) scanning has become a stan-
dard diagnostic technique in medicine. A positron-emitting radioactive chemi-
cal (containing a nucleus such as 15O, 11C, 13N, or 18F) injected into the body 
causes two characteristic annihilation photons to be emitted from the points 
where the chemical has been concentrated by physiological processes. The 
 location in the body where the photons originate is identified by measuring the 
directions of two gamma-ray photons of the correct energy that are detected in 
coincidence, as shown in Figure 3.24. Measurement of blood flow in the brain is 
an example of a diagnostic tool used in the evaluation of strokes, brain tumors, 
and other brain lesions.

Pair annihilation

PET scan

Figure 3.23 Annihilation of positronium atom (consisting of an electron and positron), produc-
ing two photons.

#

"

(a)
mc2

mc2

Positronium,!
before decay!

(schematic only)

! hf2

hf1

(b) After annihilation
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120 Chapter 3 The Experimental Basis of Quantum Physics

Before leaving the subject of positrons we should pursue briefly the idea of 
antiparticles. The positron is the antiparticle of the electron, having the opposite 
charge but the same mass.* In 1955 the antiproton was discovered by E. G. Segrè 
and O. Chamberlain (Nobel Prize, 1959), and today, many antiparticles are known. 
We now believe that every particle has an antiparticle. In some cases, as for photons 
or neutral pi-mesons, the particle and antiparticle are the same, but for most other 
particles, the particle and anti particle are distinct. For example, both the neutron 
and proton have anitparticles called the antineutron and antiproton.

We know that matter and antimatter cannot exist together in our world, 
because their ultimate fate will be annihilation. However, we may let our specu-
lation run rampant! If we believe in symmetry, might there not be another world, 
perhaps in a distant galaxy, that is made of antimatter? Because galaxies are so 
far apart in space, annihilation would be infrequent. However, if a large chunk 
of antimatter ever struck the Earth, it would tend to restore the picture of a sym-
metric universe. As we see from Problem 59, however, in such an event there 
would be no one left to receive the appropriate Nobel Prize.

Antiparticles

Fluorine-18 is a radioactive nuclide that is a e" emitter and 
is used with blood flow within the brain to study brain dis-
orders. Positron emission tomography (PET) scans rely on 
gamma rays (photons) being emitted in opposite directions 
for detection in scans. How is it possible for gamma rays to 
be simultaneously emitted in opposite directions?

Solution When fluorine-18 emits a e", the e" soon binds 
with an electron to form a positronium atom, which has a 
relatively low energy and linear momentum. When the an-
nihilation occurs, 1.022 MeV is available, and both the con-
servation of energy and linear momentum must be obeyed. 
Conservation of momentum requires the photons (gamma 
rays) to emerge in precisely opposite directions with equal 
energies if the initial linear momentum is zero.

 CONCEPTUAL EXAMPLE 3 .18

Figure 3.24 Positron emission tomography (PET) is a useful medical diagnostic tool to study the 
path and location of a positron-emitting radiopharmaceutical in the human body. (a) Appropriate 
radiopharmaceuticals are chosen to concentrate by physiological processes in the region to be exam-
ined. (b) The positron travels only a few millimeters before annihilation, which produces two pho-
tons that can be detected to give the positron position. (c) PET scan of a normal brain. (a) and (b) are 
after G. L. Brownell et al., Science 215, 619 (1982)

(a) (b)
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*Other particle properties (for example, spin) are described later (particularly in Chapters 7 and 
14) and also need to be considered.
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S u m m a r y

In 1895 Röntgen discovered x rays, and in 1897 Thomson 
proved the existence of electrons and measured their charge-
to-mass ratio. Finally, in 1911 Millikan reported an accurate 
determination of the electron’s charge. Experimental stud-
ies resulted in the empirical Rydberg equation to calculate 
the wavelengths of the hydrogen atom’s spectrum:

 
1
l

! RH a 1
n 2 #

1
k 

2 b  k & n (3.13)

where RH ! 1.096776 $ 107 m#1.
In order to explain blackbody radiation Planck pro-

posed his quantum theory of radiation in 1900, which sig-
naled the era of modern physics. From Planck’s theory we 
can derive Wien’s displacement law:

 lmaxT ! 2.898 $ 10#3 m # K (3.14)

and the Stefan-Boltzmann law:

 R 1T 2 ! PsT 4 (3.16)

Planck’s radiation law gives the power radiated per unit area 
per unit wavelength from a blackbody.

 I1l, T 2 !
2pc 2h
l5  

1
e hc /lkT # 1

 (3.23)

The oscillators of the electromagnetic radiation field can 
change energy only by quantized amounts given by %E ! hf, 
where h ! 6.6261 $ 10#34 J # s is called Planck’s constant.

Classical theory could not explain the photoelectric ef-
fect, but in 1905 Einstein proposed that the electromagnetic 
radiation field itself is quantized. We call these particle-like 
quanta of light photons, and they each have energy E ! hf 
and momentum p ! h/l. The photoelectric effect is easily 
explained by the photons each interacting with only one 
electron. The conservation of energy gives

 hf ! f " 1
2 mv 2

max (3.30)

where f is the work function of the emitter. The retarding 
potential required to stop all electrons depends only on the 
photon’s frequency

 eV0 ! 1
2 mv 2

max ! hf # hf0 (3.33)

where f ! hf0. Millikan showed experimentally in 1916 that 
Einstein’s theory was correct.

Bremsstrahlung radiation (x rays) is emitted when 
charged particles (for example, electrons) pass through 
matter and are accelerated by the nuclear field. These x rays 
have a minimum wavelength

 lmin !
hc
eV0

 (3.37)

where electrons accelerated by a voltage of V0 impinge on a 
target.

In the Compton effect a photon scatters from an elec-
tron with a new photon created, and the electron recoils. 
For an incident and an exit photon of wavelength l and lœ, 
respectively, the change in wavelength is

 ¢l ! lœ # l !
h

mc
 11 # cos u 2  (3.42)

when the exit photon emerges at angle u to the original 
photon direction. The Compton wavelength of the elec-
tron is lC ! h/mec ! 2.426 $ 10#3 nm. The success of the 
Compton theory in 1923 convincingly demonstrated the 
particle-like nature of the photon.

Finally, photon energy can be converted into mass in 
pair production:

 gS e " " e # (3.43)

where e" is the positron, the antiparticle of the electron. 
Similarly, a particle and antiparticle annihilate catastrophi-
cally in the process

 e " " e # S g " g

called pair annihilation.

Q u e s t i o n s

 1. How did the ionization of gas by cathode rays prevent 
H. Hertz from discovering the true character of 
electrons?

 2. In Thomson’s e/m experiment, does it matter whether 
the electron passing through interacts fi rst with the 

electric fi eld or with the magnetic fi eld or both simul-
taneously? Explain.

 3. Women in the late 1890s were terrifi ed about the pos-
sible misuse of the new Röntgen x rays. What use do 
you think they envisioned?
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122 Chapter 3 The Experimental Basis of Quantum Physics

 4. In the late 1890s many people had x rays taken of 
their body. X-ray machines were common in shoe 
stores in the late 1940s and early 1950s for people to 
examine how their shoes fi t; customers enjoyed seeing 
pictures of their bones. Discuss the safety of these 
undertakings.

 5. Parents tell their children not to sit close to the televi-
sion screen. Can x rays be produced in old, cathode-
ray-type televisions? Explain.

 6. In Example 3.2, why would you be concerned about 
observing a cluster of several balls in the Millikan 
electron charge experiment?

 7. In Figure 3.5, why are the histogram peaks more dif-
fi cult to identify as the charge increases?

 8. How is it possible for the plastic balls in Example 3.2 
to have both positive and negative charges? What is 
happening?

 9. Why do you suppose Millikan tried several kinds of 
oil, as well as H2O and Hg, for his oil-drop 
experiment?

 10. In the experiment of Example 3.2, how could you 
explain an experimental value of q  !  0.8  $  10#19 C?

 11. Why do you suppose scientists worked so hard to de-
velop better diffraction gratings?

 12. Why was helium discovered in the sun’s spectrum 
before being observed on Earth? Why was hydrogen 
observed on Earth fi rst?

 13. Do you believe there is any relation between the wave-
lengths of the Paschen (1908) and Pfund (1924) se-
ries and the respective dates they were discovered? 
Explain.

 14. It is said that no two snowfl akes look exactly alike, but 
we know that snowfl akes have a quite regular, al-
though complex, crystal structure. Discuss how this 
could be due to quantized behavior.

 15. Why do we say that the elementary units of matter or 
“building blocks” must be some basic unit of mass-
energy rather than only of mass?

 16. Why is a red-hot object cooler than a white-hot one of 
the same material?

 17. Why did scientists choose to study blackbody radiation 
from something as complicated as a hollow container 
rather than the radiation from something simple, 
such as a thin, solid cylinder (such as a dime)?

 18. Why does the sun’s radiation output match that of a 
blackbody?

 19. Astronomers determine the surface temperature of a 
star by measuring its brightness at different frequen-
cies. Explain how they can then use the Planck radia-
tion law to obtain the surface temperature.

 20. In a typical photoelectric effect experiment, consider 
replacing the metal photocathode with a gas. What 
difference would you expect?

 21. What do the work functions of Table 3.3 tell us about 
the properties of particular metals? Which have the 
most tightly and least tightly bound electrons?

 22. Why is it important to produce x-ray tubes with high 
accelerating voltages that are also able to withstand 
electron currents?

 23. For a given beam current and target thickness, why 
would you expect a tungsten target to produce a 
higher x-ray intensity than targets of molybdenum or 
chromium?

 24. List all possible known interactions between photons 
and electrons discussed in this chapter. Can you think 
of any more?

 25. Discuss why it is diffi cult to see the Compton effect 
using visible light.

 26. What do you believe to be an optimum lifetime for a 
positron-emitting radioactive nuclide used in brain 
tumor diagnostics? Explain.

P r o b l e m s

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

3.1 Discovery of the X Ray and the Electron
 1. Describe the design features of an apparatus that will 

produce the correct magnetic fi eld needed in Figure 
3.2.

 2. For an electric fi eld of 2.5  $  105 V/m, what is the 
strength of the magnetic fi eld needed to pass an elec-
tron of speed 2.2  $  106 m/s with no defl ection? Draw 
the mutually perpendicular v, E, and B directions that 
allow this to occur.

 3. Across what potential difference does an electron 
have to be accelerated to reach the speed v  !  1.8  $  
107 m/s? Work the problem both nonrelativistically 
and relativistically and compare the results.

 4. An electron entering Thomson’s e/m apparatus (Fig-
ures 3.2 and 3.3) has an initial velocity (in horizontal 
direction only) of 4.0  $  106 m/s. In the lab is a per-
manent horseshoe magnet of strength 12 mT, which 
you would like to use. (a) What electric fi eld will you 
need in order to produce zero defl ection of the elec-
trons as they travel through the apparatus? (b) The 
length of nonzero E and B fi elds is 2.0 cm. When the 
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magnetic fi eld is turned off, but the same electric fi eld 
remains, how far in the vertical direction will the elec-
tron beam be defl ected over this length?

3.2 Determination of Electron Charge
 5. Consider the following possible forces on an oil 

drop in Millikan’s experiment: gravitational, electri-
cal, frictional, and buoyant. Draw a diagram indicat-
ing the forces on the oil drop (a) when the electric 
fi eld is turned off and the droplet is falling freely and 
(b) when the electric fi eld causes the droplet to rise.

 6. Neglect the buoyancy force on an oil droplet and 
show that the terminal speed of the droplet is vt  !  
mg/b, where b is the coeffi cient of friction when the 
droplet is in free fall. (Remember that the frictional 
force Ff is given by Ff  !  #bv where velocity is a 
vector.)

 7. Stokes’s law relates the coeffi cient of friction b to the 
radius r of the oil drop and the viscosity h of the me-
dium the droplet is passing through: b !6"#r. Show 
that the radius of the oil drop is given in terms of the 
terminal velocity vt (see Problem 6), h, g, and the 
density of the oil by r  !  32hnt 

/2g r.
 8. In a Millikan oil-drop experiment the terminal veloc-

ity of the droplet is observed to be 1.3 mm/s. The 
density of the oil is r  !  900 kg/m3, and the viscosity 
of air is h  !  1.82  $  10#5 kg/m #   s. Use the results of 
the two previous problems to calculate (a) the droplet 
radius, (b) the mass of the droplet, and (c) the coef-
fi cient of friction.

3.3 Line Spectra
 9. What is the series limit (that is, the smallest wave-

length) for (a) the Lyman series and (b) the Balmer 
series?

 10. Light from a slit passes through a transmission diffrac-
tion grating of 400 lines/mm, which is located 3.0 m 
from a screen. What are the distances on the screen 
(from the unscattered slit image) of the three bright-
est visible (fi rst-order) hydrogen lines?

 11. A transmission diffraction grating with 420 lines/mm 
is used to study the light intensity of different orders 
(n). A screen is located 2.8 m from the grating. What 
are the positions on the screen of the three brightest 
red lines for a hydrogen source?

 12. Calculate the four largest wavelengths for the Brackett 
and Pfund series for hydrogen.

 13. Josef von Fraunhofer made the fi rst diffraction grat-
ing in 1821 and used it to measure the wavelengths of 
specifi c colors as well as the dark lines in the solar 
spectrum. His fi rst diffraction grating consisted of 262 
parallel wires. Assume that the wires were 0.20 mm 
apart and that Fraunhofer could resolve two spectral 
lines that were defl ected at angles 0.50 min of arc 
apart. Using this grating, what is the minimum separa-

tion (in wavelength) that can be resolved of two fi rst-
order spectral lines near a wavelength of 400 nm?

 14. Suppose that a detector in the Hubble Space Tele-
scope was capable of detecting visible light in the 
wavelength range of 400 to 700 nm. (a) List all the 
wavelengths for the hydrogen atom that are in this 
range and their series name. (b) The detector mea-
sures visible wavelengths of 537.5 nm, 480.1 nm, and 
453.4 nm that researchers believe are due to the hy-
drogen atom. Why are all the known visible hydrogen 
lines not detected? (c) Use these data to calculate the 
speed of the stellar object that emitted the spectra. 
Assume that the object is not rotating. Why might 
rotation be an issue?

 15. The Spitzer Space Telescope was launched in 2003 
to detect infrared radiation. Suppose a particular de-
tector on the telescope is sensitive over part of the 
near-infrared region of wavelengths 980 to 1920 nm. 
Astronomers want to detect the radiation being 
emitted from a red giant star and decide to concen-
trate on wavelengths from the Paschen series of the 
hydrogen atom. (a) What are the known wavelengths 
in this wavelength region? (b) The detector measures 
wavelengths of 1334.5, 1138.9, and 1046.1 nm be-
lieved to be from the Paschen series. Why are these 
wavelengths different from those found in part (a)? 
(c) How fast is the star moving with respect to us?

3.4 Quantization
 16. Quarks have charges 'e/3 and '2e/3. What combi-

nation of three quarks could yield (a) a proton, (b) a 
neutron?

3.5 Blackbody Radiation
 17. Calculate !max for blackbody radiation for (a) liquid 

helium (4.2 K), (b) room temperature (293 K), (c) a 
steel furnace (2500 K), and (d) a blue star (9000 K).

 18. Calculate the temperature of a blackbody if the spec-
tral distribution peaks at (a) gamma rays, !  !  1.50  $  
10#14 m; (b) x rays, 1.50 nm; (c) red light, 640 nm; 
(d) broadcast television waves, !  !  1.00 m; and (e) 
AM radio waves, !  !  204 m.

 19. (a) A blackbody’s temperature is increased from 900 K 
to 2300 K. By what factor does the total power radiated 
per unit area increase? (b) If the original temperature 
is again 900 K, what fi nal temperature is required to 
double the power output?

 20. (a) At what wavelength will the human body radiate 
the maximum radiation? (b) Estimate the total power 
radiated by a person of medium build (assume an 
area given by a cylinder of 175-cm height and 13-cm 
radius). (c) Using your answer to (b), compare the 
energy radiated by a person in one day with the en-
ergy intake of a 2000-kcal diet.
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 21. White dwarf stars have been observed with a surface 
temperature as hot as 200,000°C. What is the wave-
length of the maximum intensity produced by this star?

 22. For a temperature of 5800 K (the sun’s surface tem-
perature), fi nd the wavelength for which the spectral 
distribution calculated by the Planck and Rayleigh-
Jeans results differ by 5%.

 23. A tungsten fi lament of a typical incandescent light-
bulb operates at a temperature near 3000 K. At what 
wavelength is the intensity at its maximum?

 24. Use a computer to calculate Planck’s radiation law for 
a temperature of 3000 K, which is the temperature of a 
typical tungsten fi lament in an incandescent lightbulb. 
Plot the intensity versus wavelength. (a) How much of 
the power is in the visible region (400–700 nm) com-
pared with the ultraviolet and infrared? (b) What is the 
ratio of the intensity at 400 nm and 700 nm to the 
wavelength with maximum intensity?

 25. Show that the ultraviolet catastrophe is avoided for 
short wavelengths (! S 0) with Planck’s radiation law 
by calculating the limiting intensity I(!, T) as ! S 0.

 26. Estimate the power radiated by (a) a basketball at 
20°C and (b) the human body (assume a temperature 
of 37°C).

 27. At what wavelength is the radiation emitted by the hu-
man body at its maximum? Assume a temperature of 
37°C.

 28. If we have waves in a one-dimensional box, such that 
the wave displacement +(x, t)  !  0 for x  !  0 and x  !  
L, where L is the length of the box, and

  
1
c

 
02°
0t 2 #

02°
0x 2 ! 0  1wave equation 2

  show that the solutions are of the from

  ° 1x, t 2 !  a 1t 2sin a npx
L
b  1n ! 1,2,3,... 2

  and a(t) satisfi es the (harmonic-oscillator) equation

  
d 

2a 1t 2
dt2 " vn

2a 1t 2 ! 0

  where vn ! npc/L is the angular frequency 2"f.
 29. If the angular frequencies of waves in a three-dimen-

sional box of sides L generalize to
  v !

pc
L
1n 2

x " n 2
y " n 2

z 21/2

  where all n are integers, show that the number of 
distinct states in the frequency interval f(!  $/2") to 
f  "  %f is given by (where f is large)

  dN ! 4p
L3

c 3  f 2df

 30. Let the energy density in the frequency interval f to 
f  "  df within a blackbody at temperature T be dU(f, T). 
Show that the power emitted through a small hole of 
area %A in the container is

  
c
4

dU1f,T 2¢A

 31. Derive the Planck radiation law emitted by a black-
body. Remember that light has two directions of po-

larization and treat the waves as an ensemble of har-
monic oscillators.

3.6 Photoelectric Effect
 32. An FM radio station of frequency 98.1 MHz puts out 

a signal of 50,000 W. How many photons/s are 
emitted?

 33. How many photons/s are contained in a beam of 
electromagnetic radiation of total power 180 W if 
the source is (a) an AM radio station of 1100 kHz, 
(b) 8.0-nm x rays, and (c) 4.0-MeV gamma rays?

 34. What is the threshold frequency for the photoelectric 
effect on lithium (f  !  2.93 eV)? What is the stopping 
potential if the wavelength of the incident light is 
380 nm?

 35. What is the maximum wavelength of incident light 
that can produce photoelectrons from silver (f  !  
4.64 eV)? What will be the maximum kinetic energy of 
the photoelectrons if the wavelength is halved?

 36. A 2.0-mW green laser (!  !  532 nm) shines on a ce-
sium photocathode (f  !  1.95 eV). Assume an effi -
ciency of 10#5 for producing photoelectrons (that is, 
one photoelectron produced for every 105 incident 
photons) and determine the photoelectric current.

 37. An experimenter fi nds that no photoelectrons are 
emitted from tungsten unless the wavelength of light 
is less than 270 nm. Her experiment will require pho-
toelectrons of maximum kinetic energy 2.0 eV. What 
frequency of light should be used to illuminate the 
tungsten?

 38. The human eye is sensitive to a pulse of light contain-
ing as few as 100 photons. For orange light of wave-
length 610 nm, how much energy is contained in the 
pulse?

 39. In a photoelectric experiment it is found that a stop-
ping potential of 1.00 V is needed to stop all the 
electrons when incident light of wavelength 260 nm 
is used and 2.30 V is needed for light of wavelength 
207 nm. From these data determine Planck’s constant 
and the work function of the metal.

 40. Find the wavelength of light incident on a tungsten 
target that will release electrons with a maximum 
speed of 1.4  $  106 m/s.

3.7 X-Ray Production
 41. What is the minimum x-ray wavelength produced for 

a dental x-ray machine operated at 30 kV?
 42. The Stanford Linear Accelerator can accelerate elec-

trons to 50 GeV (50  $  109 eV). What is the minimum 
wavelength of photon it can produce by bremsstrah-
lung? Is this photon still called an x ray?

 43. A cathode-ray tube in a scanning electron microscope 
operates at 25 keV. What is !min for the continuous x-
ray spectrum produced when the electrons hit the 
target?
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 44. Calculate !min for all three elements shown in Figure 
3.19. Use the value of the work function for tungsten 
in Table 3.3 and calculate the percentage error in 
neglecting the work function for the Duane-Hunt 
rule using the data of Figure 3.19.

 45. The two peaks for the molybdenum spectra of Figure 
3.19 are characteristic spectral lines for the molybde-
num element. What is the minimum potential differ-
ence needed to accelerate electrons in an x-ray tube 
to produce both of these lines?

3.8 Compton Effect
 46. Calculate the maximum ¢l/l of Compton scattering 

for blue light (l  !  480 nm). Could this be easily 
observed?

 47. A photon having 40 keV scatters from a free electron 
at rest. What is the maximum energy that the electron 
can obtain?

 48. If a 7.0-keV photon scatters from a free proton at rest, 
what is the change in the photon’s wavelength if the 
photon recoils at 90°?

 49. Is it possible to have a scattering similar to Compton 
scattering from a proton in H2 gas? What would be the 
Compton wavelength for a proton? What energy pho-
ton would have this wavelength?

 50. An instrument has resolution ¢l/l  !  0.40%. What 
wavelength of incident photons should be used in 
order to resolve the modifi ed and unmodifi ed scat-
tered photons for scattering angles of (a) 30°, (b) 90°, 
and (c) 170°?

 51. Derive the relation for the recoil kinetic energy of the 
electron and its recoil angle f in Compton scattering. 
Show that

  K.E. 1electron 2 !
¢l/l

1 " 1¢l/l 2hf

   cot  f ! a1 "
hf

mc 2 b  tan 

u

2

 52. A 650-keV gamma ray Compton-scatters from an elec-
tron. Find the energy of the photon scattered at 110°, 
the kinetic energy of the scattered electron, and the 
recoil angle of the electron.

 53. A photon of wavelength 2.0 nm Compton-scatters 
from an electron at an angle of 90°. What is the modi-
fi ed wavelength and the fractional change, ¢l/l?

3.9 Pair Production and Annihilation
 54. How much photon energy is required to produce a 

proton-antiproton pair? Where could such a high-
energy photon come from?

 55. What is the minimum photon energy needed to cre-
ate an e#-e" pair when a photon collides (a) with a 
free electron at rest and (b) with a free proton at rest?

General Problems
 56. What wavelength photons are needed to produce 

30.0-keV electrons in Compton scattering?
 57. A typical person can detect light with a minimum in-

tensity of 4.0  $  10#11 W/m2. For light of this intensity 
and !  !  550 nm, how many photons enter the eye 
each second if the pupil is open wide with a diameter 
of 9.0 mm?

 58. A copper wire carrying a high current glows “red hot” 
just before the wire melts at a temperature of 1085°C. 
(a) What is the peak wavelength of the emitted radia-
tion? (b) Given your answer to part (a), how can the 
wire be “red hot”?

 59. The gravitational energy of Earth is approximately 
0.51GM 

2
E 
/RE 2  where ME is the mass of Earth. This is 

approximately the energy needed to blow the planet 
into small fragments (the size of asteroids). How large 
would an antimatter meteorite the density of nickel-
iron (% ! 5  $  103 kg/m3) have to be in order to blow 
up Earth when it strikes? Compute the energy in-
volved in the particle-antiparticle annihilation and 
compare it with the total energy in all the nuclear 
arsenals of the world [~5000 megatons (MT), where 
1 MT  !  4.2  $  1015 J].

 60. Show that the maximum kinetic energy of the recoil 
electron in Compton scattering is given by

K.E.max (electron) ! hf  

2hf

mc 2

1 "
2hf

mc 2

  At what angles & and f does this occur? If we detect a 
scattered electron at f  !  0° of 100 keV, what energy 
photon was scattered?

 61. Use the Wien displacement law to make a log-log plot 
of !max (from 10#8 m to 10#2 m) versus temperature 
(from 100 K to 105 K). Mark on the plot the regions of 
visible, ultraviolet, infrared, and microwave wave-
lengths. Put the following points on the line: sun (5800 
K), furnace (1900 K), room temperature (300 K), and 
the background radiation of the universe (2.7 K). Dis-
cuss the electromagnetic radiation that is emitted from 
each of these sources. Does it make sense?

 62. (a) What is the maximum possible energy for a 
Compton-backscattered x ray (&  !  180°)? Express 
your answer in terms of !, the wavelength of the in-
coming photon. (b) Evaluate numerically when the 
incoming photon’s energy is 100 keV.

 63. The naked eye can detect a stellar object of sixth mag-
nitude in the night sky. With binoculars, we can see an 
object of the ninth magnitude. The sun’s brightness 
at Earth is 1400 W/m2. The Hubble Space Telescope 
can detect an object of the 30th magnitude, which 
amounts to a brightness of about 2  $  10#20 W/m2. 
(a) Consider a detector in the Hubble Space Tele-
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scope with a collection area of 0.30 m2. If you assume 
hydrogen light of frequency 486 nm (blue-green), 
how many photons/s enter the telescope from a 30th-
magnitude star? (b) An increase of magnitude one 
represents a decrease in brightness by a factor of 
1001/5. Estimate how many photons/s from a sixth-
magnitude star would enter your eye if the diameter 
of your pupil is 6.5 mm.

 64. Original data from Millikan’s pivotal photoelectric ex-
periment that confi rmed Einstein’s quantum explana-
tion is shown in Figure 3.16 [from R. A. Millikan, Physi-
cal Review 7, 362 (1916)]. Sodium was the photocathode. 
Use the data to fi nd the work function for sodium and 
Planck’s constant.

 65. A prototype laser weapon tested in 2010 used a laser 
with an infrared wavelength of 1.06 ,m, because the 
atmosphere is fairly transparent at that wavelength. 
The laser’s continuous output was 25 kW. How many 
photons per second were produced?

 66. A typical chemical reaction such as an explosive com-
bustion releases about 5 MJ of energy per kg fuel 
used. At the sun’s current rate of energy production, 
how much time would the sun last at that rate? Com-
pare your answer with the sun’s estimated lifetime of 
10 billion years.

 67. The bright star Sirius A has a diameter 1.6 times the 
sun’s and surface temperature 9600 K. (a) What is the 
peak wavelength of radiation emitted from the sur-

face? (Note: Sirius has a distinctive blue tint when 
viewed with the naked eye.) (b) Find the net power 
output from the surface of Sirius A and compare with 
that from the sun.

 68. In developing Equation (3.36), we argued that the 
recoiling nucleus could be ignored. Consider again 
the x-ray tube described in Example 3.15 with 35-keV 
electrons striking a tungsten target. Suppose an elec-
tron is defl ected through a negligible angle and its 
kinetic energy drops to 30 keV in a scattering event 
with a nucleus. Assuming that the nucleus was initially 
at rest, use conservation of momentum to fi nd the 
kinetic energy of the recoiling nucleus and comment 
on the result.

 69. The Fermi Gamma-ray Space Telescope, launched in 
2008, can detect gamma rays with energies ranging 
from 10 keV to 300 MeV. For each of those energy ex-
tremes, fi nd the resulting kinetic energy and speed of 
an electron created by the gamma ray as part of an 
electron-positron pair. Assume that the electron has 
half of the gamma ray’s energy.

 70. Gamma-ray detectors like the one described in the 
preceding problem often use calorimetry to determine 
gamma-ray energies. Suppose a beam of 100-MeV 
gamma rays strikes a target with a mass of 2.5 kg and 
specifi c heat 430 J/(kg # K). How many gamma rays are 
needed to raise the target’s temperature by 10 mK?
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By the end of the nineteenth century most physicists and chemists (with a few 
notable exceptions) believed in an atomic theory of matter, even though no one 
had ever observed an atom directly. Origins of atomic theory date back to the 
Greek philosophers, who imagined atoms to be featureless hard spheres. Even 
though scientists of the late nineteenth century did not have technology to see 
things as small as atoms, they believed that atoms were composite structures hav-
ing an internal structure. There are considerable similarities between how physi-
cists addressed their atomic theories in the late nineteenth century and how el-
ementary particle physicists still search for the underlying structure of the 
building blocks of matter.

We mention three pieces of evidence that physicists and chemists had in 
1900 to indicate that the atom was not a fundamental unit. First, there seemed to 
be too many kinds of atoms, each belonging to a distinct chemical element. The 
original Greek idea was that there were four types of atoms—earth, air, water, 
and fire—which combined to make the various kinds of matter we observe. But 
the development of chemistry made it clear that there were at least 70 kinds of 
atoms, far too many for them all to be the ultimate elementary constituents of 
matter.

Second, it was found experimentally that atoms and electromagnetic phe-
nomena were intimately related. For example, molecules can be dissociated into 
their component atoms by electrolysis. Some kinds of atoms form magnetic ma-
terials, and others form electrical conductors and insulators. All kinds of atoms 
emit light (which was known to be electromagnetic in nature) when they are 
heated, as well as when an electrical discharge passes through them. The visible 
light emitted by free or nearly free atoms of the chemical elements is not a con-
tinuum of frequencies but rather a discrete set of characteristic colors, so sub-
stances can be analyzed according to their chemical composition using their 
flame spectra. The existence of characteristic spectra (Section 3.3) pointed to an 
internal structure distinguishing the elements.

C H A P T E R

4

127

Structure of 
the Atom

Bohr’s different. He’s a football (U.S. soccer) player!

Ernest Rutherford, giving an uncharacteristic 
compliment to a theorist—Niels Bohr in this case.
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Third, there was the problem of valence—why certain elements combine 
with some elements but not with others, and when they do combine, why they 
do so in varying proportions determined by the valences of the atoms. The char-
acteristics of valence suggested that the forces between atoms are specific in 
nature, a characteristic that hinted at an internal atomic structure.

Finally, there were the discoveries of radioactivity, of x rays, and of the elec-
tron, all of which were at variance with earlier ideas of indivisible and elementary 
atoms. Because of these tantalizing indirect hints that the atom had a structure, 
the most exciting frontier of science in the early part of the twentieth century 
developed into an investigation of the atom and its internal composition.

The subject of this chapter is the beginning of quantum physics and its rela-
tion to the first cohesive theories of atomic structure. Although we now have a 
more complete theoretical framework with which to understand the early experi-
ments than was available to scientists at the time, it is worth knowing some of the 
scientists’ reasoning, both for historical interest and to illustrate how science pro-
gresses by trying to extend well-established ideas into unknown terrain.

In this chapter we discuss the atomic models of Thomson and Rutherford 
and learn how Rutherford discerned the correct structure of the atom by per-
forming alpha-particle scattering experiments. We see that Bohr presented a 
model of the hydrogen atom based on the new quantum concept that correctly 
produced the Rydberg equation, and we study the successes and failures of 
Bohr’s theory. We also learn the origin of characteristic x-ray spectra and the 
concept of atomic number. Finally, we show that electron scattering (the 
Franck-Hertz experiment) also confirmed the quantized structure of the atom.

4.1  The Atomic Models of 
Thomson and Rutherford

In the years immediately following J. J. Thomson’s discovery of the electron in 
1897, Thomson and others tried to unravel the mystery of the atomic structure. 
Scientists knew that electrons were much less massive than atoms and that for 
many atoms, the number of electrons was equal or slightly less than half the 
number representing atomic mass. The central question was, “How are the elec-
trons arranged and where are the positive charges that make the atom electri-
cally neutral?” (Note that protons had not been yet discovered.) Thomson pro-
posed a model wherein the positive charges were spread uniformly throughout 
a sphere the size of the atom, with electrons embedded in the uniform back-
ground. His model, which was likened to raisins in plum pudding, is shown 
schematically in Fig ure 4.1. The arrangement of charges had to be in stable 
equilibrium. In Thomson’s view, when the atom was heated, the electrons could 
vibrate about their equilibrium positions, thus producing electromagnetic radia-
tion. The emission frequencies of this radiation would fall in the range of visible 
light if the sphere of positive charges were of diameter !10!10 m, which was 
known to be the approximate size of an atom. Nevertheless, even though he 
tried for several years, Thomson was unable to calculate the light spectrum of 
hydrogen using his model.

The small size of the atoms made it impossible to see directly their internal 
structure. In order to make further progress in deciphering atomic structure, a 
new approach was needed. The new direction was supplied by Ernest Rutherford, 
who was already famous for his Nobel Prize– winning work on radioactivity. 
Rutherford projected very small particles onto thin material, some of which 

Thomson’s 
“plum-pudding” 

model of the atom

!

! !
!

!

!!

!
!

!

!
!

Figure 4.1 Schematic of 
J. J. Thomson’s model of the atom 
(later proved to be incorrect). 
The electrons are embedded in a 
homogeneous positively charged 
mass much like raisins in plum 
pudding. The electric force on 
the electrons is zero, so the elec-
trons do not move around rap-
idly. The oscillations of the elec-
trons give rise to electromagnetic 
radiation.
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collided with atoms and eventually exited at various angles. Rutherford, assisted 
by Hans Geiger, conceived a new technique for investigating the structure of 
matter by scattering energetic alpha (a) particles* (emitted by radioactive 
sources) from atoms. Together with a young student, Ernest Marsden, and work-
ing in Rutherford’s lab, Geiger showed in 1909 that surprisingly many a particles 
were scattered from thin gold-leaf targets at backward angles greater than 90° 
(see Figure 4.2).

Rutherford had pondered the structure of the atom for several years. He was 
well aware of Thomson’s model because he had worked for Thomson at the 
Cavendish Laboratory as a research student from 1895 to 1898, after receiving 
his undergraduate education in his native New Zealand. Although he greatly 
respected Thomson, Rutherford could see that Thomson’s model agreed nei-
ther with spectroscopy nor with Geiger’s latest experiment with a particles.

The experiments of Geiger and Marsden were instrumental in the develop-
ment of Rutherford’s model. A simple thought experiment with a .22-caliber 
rifle that fires a bullet into a thin black box is a model for understanding the 
problem. If the box contains a homogeneous material such as wood or water (as 
in Thomson’s plum-pudding model), the bullet will pass through the box with 
little or no deviation in its path. However, if the box contains a few massive steel 
ball bearings, then occasionally a bullet will be deflected backward, similar to 
what Geiger and Marsden observed with a scattering.

Geiger and Marsden (1909) observed backward-scattered 
(u " 90°) a particles when a beam of energetic a particles 
was directed at a piece of gold foil as thin as 6.0 # 10!7 m. 
Assuming an a particle scatters from an electron in the foil, 
what is the maximum scattering angle?

Strategy We consider elastic scattering between the inci-
dent a particle and an electron in the gold foil. The colli-
sion must obey the laws of conservation of momentum and 
energy. We find the maximum scattering angle correspond-
ing to the maximum momentum change for the a particle. 
Assume the incident a particle has mass Ma and velocity va, 
and the mass of the electron is me. The maximum momen-
tum transfer occurs when the a particle hits the electron (at 
rest) head-on, as shown in Figure 4.3.

Solution Conservation of momentum (nonrelativistically) 
gives

 Mava $ Mav a
œ % mev e

œ

Because the a particle is so much more massive than the 
electron (Ma/me " 4 # 1837 " 7000), the a particle’s veloc-
ity is hardly affected and v œ

a " va. In an elastic collision with 
such unequal masses, ve& " 2va to conserve both energy and 
linear momentum (see Problem 3). Thus the maximum 
momentum change of the a particle is simply

 ¢pa $ Mava ! Mav a
œ $ mev e

œ

 EXAMPLE 4 .1

*Rutherford had already demonstrated that the a particle is an ionized helium atom.

Figure 4.2 Schematic diagram 
of apparatus used by Geiger and 
Marsden to observe scattering of 
a particles past 90°. “A small frac-
tion of the a particles falling 
upon a metal foil have their di-
rections changed to such an ex-
tent that they emerge again at the 
side of incidence.” The scattered 
a particle struck a scintillating 
screen where the brief fl ash was 
observed through the microscope. 
From H. Geiger and E. Marsden, Pro-
ceedings of Royal Society (London) 
82, 495 (1909).

Figure 4.3 Schematic diagram (before and after) of an a parti-
cle of speed v $ va and mass Ma making a head-on collision with 
an electron initially at rest. Because the a particle is so much more 
massive than the electron, the a particle’s velocity is hardly 
reduced.

a-particle source

Lead plate
Metal
foil

u

Microscope

Screen

va $ v

Ma

Before

me

ve $ 0 va& " v

Ma

After

me

ve& " 2v
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What would happen if an a particle were scattered by many electrons in the 
target? Multiple scattering is possible, and a calculation for random multiple 
scattering from N electrons results in an average scattering angle 8u9total " 1N u. 
The a particle is as likely to scatter on one side of its direction as the other side 
for each collision. We can estimate the number of atoms across the thin gold 
layer of 6 # 10!7 m used by Geiger and Marsden.

Number of molecules
cm3 $ a6.02 # 1023

  
molecules

mol
b a 1 mol

197 g
b a19.3  

g
cm3 b

 $ 5.9 # 1022
  
molecules

cm3 $ 5.9 # 1028
  
atoms

m3

If there are 5.9 # 1028 atoms/m3, then each atom occupies (5.9 # 1028)!1 m3 of 
space. Assuming the atoms are equidistant, the distance d between centers is 
d $ (5.9 # 1028)!1/3 m $ 2.6 # 10!10 m. In the foil, then, there are

 N $
6 # 10!7 m

2.6 # 10!10 m
$ 2300 atoms

along the a particle’s path. If we assume the a particle interacts with one elec-
tron from each atom, then

 8u9total $ 22300  10.016°2 $ 0.8°

where we have used the result for umax from Example 4.1. Even if the a particle 
scattered from all 79 electrons in each atom of gold, 8u9total $ 6.8°.

Rutherford reported* in 1911 that the experimental results were not consis-
tent with a-particle scattering from the atomic structure proposed by Thomson 
and that “it seems reasonable to suppose that the deflection through a large 
angle is due to a single atomic encounter.” Rutherford proposed that an atom 
consisted mostly of empty space with a central charge, either positive or negative. 
Rutherford wrote in 1911, “Considering the evidence as a whole, it seems sim-
plest to suppose that the atom contains a central charge distributed through a 
very small volume, and that the large single deflections are due to the central 
charge as a whole, and not to its constituents.” Rutherford worked out the scat-
tering expected for the a particles as a function of angle, thickness of material, 

Multiple scattering 
from electrons

Rutherford’s atomic model

or for the head-on collision shown in Figure 4.3

 ¢pmax $ 2meva

Although this maximum momentum change is along 
the direction of motion, let’s determine an upper limit for 
the angular deviation u by letting 'pmax be perpendicular 
to the direction of motion as shown in Figure 4.4. (This 
value of u is larger than can actually be observed because we 
know that the 'pa we calculated was for a head-on collision, 
and the 'pa for a glancing collision would be smaller.) Thus

 umax $
¢pa
pa

$
2meva
Mava

$
2me

Ma

$ 2.7 # 10!4 rad $ 0.016°
Thus it is impossible for an a particle to be deflected through 
a large angle by a single encounter with an electron.

Figure 4.4 Vector diagram illustrating the change in momen-
tum 'pa of the a particle after scattering from the electron.

pa& (final)
'pa

u

pa (initial)
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   4.2 Rutherford Scattering 131

velocity, and charge. Geiger and Marsden immediately began an experimental 
investigation of Rutherford’s ideas and reported† in 1913, “we have completely 
verified the theory given by Prof. Rutherford.” In that same year, Rutherford was 
the first to use the word nucleus for the central charged core and definitely de-
cided that the core (containing most of the mass) was positively charged, sur-
rounded by the negative electrons.

The popular conception of an atom today, often depicted as in Figure 4.5, 
is due to Rutherford. An extremely small positively charged core provides a Cou-
lomb attraction for the negatively charged electrons flying at high speeds around 
the nucleus; this is the “solar system” or “planetary” model. We now know that the 
nucleus is composed of positively charged protons and neutral neutrons, each 
having approximately the same mass, and the electrons do not execute pre-
scribed orbital paths.

4.2  Rutherford Scattering
Rutherford’s “discovery of the nucleus” laid the foundation for many of today’s 
atomic and nuclear scattering experiments. By means of scattering experiments 
similar in concept to those of Rutherford and his assistants, scientists have eluci-
dated the electron structure of the atom, the internal structure of the nucleus, 
and even the internal structures of the nuclear constituents, protons and neu-
trons. Rutherford’s calculations and procedures are well worth studying in some 
detail because of their applicability to many areas of physical and biological 
science.

Scattering experiments help us study matter on an atomic scale, which is too 
small to be observed directly. The material to be studied is bombarded with rap-
idly moving particles (such as the 5- to 8-MeV a particles used by Geiger and 
Marsden) in a well-defined and collimated beam. Although the present discus-
sion is limited to charged-particle beams, the general procedure also applies to 
neutral particles such as neutrons; only the interaction between the beam par-
ticles and the target material is different.

The scattering of charged particles by matter is called Coulomb or Ruther-
ford scattering when it takes place at low energies, where only the Coulomb 
force is important. At higher beam energies other forces (for example, nuclear 
interactions) may become important. A typical scattering experiment is dia-
grammed in Figure 4.6 (page 132). A charged particle of mass m, charge Z1e, and 
speed v0 is incident on the target material or scatterer of charge Z2e. The dis-
tance b is called the classical impact parameter ; it is the closest distance of ap-
proach between the beam particle and scatterer if the projectile had continued 
in a straight line. The angle u between the incident beam direction and the direc-
tion of the deflected particle is called the scattering angle. Normally detectors 
are positioned at one or more scattering angles to count the particles scattered 
into the small cones of solid angle subtended by the detectors (see Figure 4.7, 
page 132).

Depending on the functional form of the interaction between the particle 
and the scatterer, there will be a particular relationship between the impact pa-
rameter b and the scattering angle u. In the case of Coulomb scattering between 

The nucleus

Basic scattering 
experiments

Rutherford or 
Coulomb scattering

Scattering angle

*E. Rutherford, Philosophical Magazine 21, 669 (1911).
†Hans Geiger and Ernest Marsden, Philosophical Magazine 25, 604 (1913).

Figure 4.5 Solar or planetary 
model of the atom. Rutherford 
proposed that there is a massive, 
central core with a highly electric 
positive charge. According to 
Bohr, the electrons orbit around 
this nucleus. Although this is a 
common graphic, we now know 
this schematic is too simplistic.
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132 Chapter 4 Structure of the Atom

a positively charged a particle and a positively charged nucleus, the trajectories 
resemble those in Figure 4.7. When the impact parameter is small, the distance 
of closest approach rmin is small, and the Coulomb force is large. Therefore, the 
scattering angle is large, and the particle is repelled backward. Conversely, for 
large impact parameters the particles never get close together, so the Coulomb 
force is small and the scattering angle is also small.

An important relationship for any interaction is that between b and u. We 
wish to find this dependence for the Coulomb force. We will make the same as-
sumptions as Rutherford:

1.  The scatterer is so massive that it does not significantly recoil; therefore 
the initial and final kinetic energies of the a particle are practically equal.

2.  The target is so thin that only a single scattering occurs.
3.  The bombarding particle and target scatterer are so small that they may 

be treated as point masses and charges.
4.  Only the Coulomb force is effective.

Assumption 1 means that K # K.E.initial " K.E.final for the a particle. For 
central forces such as the Coulomb force, the angular momentum, mv0b, where 
v0 is the initial velocity of the particle, is also conserved (see Problem 52). This 
means that the trajectory of the scattered particle lies in a plane.

We define the instantaneous position of the particle by the angle f and the 
distance r from the force center, where f $ 0 (which defines the zœ axis) when 
the distance r is a minimum, as shown in Figure 4.6. The change in momentum 
is equal to the impulse.

 ¢p $ $F¢p dt (4.1)

Scattering assumptions

b

b

m v0

r

Z2e!
Scatterer

Z1e

u

u

Positive f

f

z& axis!
f $ 0

Figure 4.6 Representation of 
Coulomb or Rutherford scat-
tering. The projectile of mass m 
and charge Z1e scatters from a 
particle of charge Z2e at rest. The 
parameters r and f, which de-
scribe the projectile’s orbit, are 
defined as shown. The angle 
f $ 0 corresponds to the position 
of closest approach. The impact 
parameter b and scattering angle 
u are also displayed.

Figure 4.7 The relationship be-
tween the impact parameter b and 
scattering angle u. Particles with 
small impact parameters ap-
proach the nucleus most closely 
(rmin) and scatter to the largest 
angles. Particles within the range 
of impact parameters 'b will be 
scattered within 'u.

'u

'bb

u4

u1

Detector

Scatterer

Particles 4
3
2
1

rmin (particle 4)
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   4.2 Rutherford Scattering 133

where F¢p is the force along the direction of ¢p . The massive scatterer absorbs 
this (small) momentum change without gaining any appreciable kinetic energy 
(no recoil). We use the diagram of Figure 4.8 to show

 ¢p $ pf ! pi (4.2)

where the subscripts i and f indicate the initial and final values of the projectile’s 
momentum, respectively. Because pf " pi $ mv0, the triangle between pf , pi, and 
¢p  is isosceles. We redraw the triangle in Figure 4.8b, indicating the bisector of 
angle u. The magnitude 'p of the vector ¢p  is now

 ¢p $ 2mv0 sin 
u

2
 (4.3)

The direction of ¢p  is the zœ axis (where f $ 0), so we need the component of 
F along zœ in Equation (4.1). The Coulomb force F is along the instantaneous di-
rection of the position vector r (unit vector ê r, where ˆ indicates a unit vector).

 F $
1

4pP0
 
Z 1Z 2e 2

r 2  êr (4.4)

and

 F¢p $ F cos f (4.5)

where F'p is the component of the force F along the direction of ¢p  that we 
need.

Substituting the magnitudes from Equations (4.3) and (4.5) into the com-
ponents of Equation (4.1) along the zœ axis (f $ 0) gives

 
 ¢p $ 2mv0 sin 

u

2
$ $F cos f dt $

Z1Z 2e2

4pP0
$ cos f

r 2  dt

The instantaneous angular momentum must be conserved, so

 mr 2
  
df
dt

$ mv0b

and

 r 2 $
v0b

df /dt

Therefore,

  2mv0 sin 
u

2
$

Z1Z 2e 2

4pP0
$ cos f

v0b
 
df
dt

 dt

  $
Z1Z 2e 2

4pP0v0b $
ff

fi

 cos f d f

We let the initial angle fi be on the negative side and the final angle ff be on 
the positive side of the zœ axis (f $ 0, see Figure 4.6). Then we have fi $ !ff , 
and !fi % ff % u $ p, so fi $ !(p ! u)/2 and ff $ %(p ! u)/2.

pi

pf
pf

pi

'p

'p

uu

mv0

(b)

(a)

mv0u!
2

p!u!
2

u!
2

Figure 4.8 (a) The scattering 
angle u and momentum change 
'p are determined from the ini-
tial and final values of the a parti-
cle’s momentum. (b) Because pf, 
pi, and p almost exactly form an 
isosceles triangle, we determine 
the magnitude of 'p by bisecting 
the angle u and finding the 
length of the triangle leg opposite 
the angle u/2.
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8pP0mv0
2b

Z1Z2e 
2  sin 

u

2
$ $

%1 p!u2  /2

!1p!u2  /2

 cos f d f $ 2 cos 
u

2

We now solve this equation for the impact parameter b.

 b $
Z1Z 2e 2

4pP0mv 0
2 cot 

u

2

This equation becomes

 b $
Z1Z 2e 2

8pP0K
 cot 
u

2
 (4.6)Relation between b and U

Special Topic

Lord Rutherford of Nelson

E rnest Rutherford* was born of Scottish parents 
on August 30, 1871, near the town of Nelson, 

New Zealand. Rutherford, one of eleven children, 
obtained both a bachelor’s and a master’s degree in 
1894 from the University of New Zealand in Christ-
church. He constructed a magnetic detector that was 
able to receive electromagnetic waves over a distance 
of 60 feet through walls, quite a feat at the time.

In 1895 Rutherford won a competition to bring 
able men to British universities and went to work for 
the famous Professor J. J. Thomson of the Cavendish 
Laboratory at Cambridge University. Thomson was 
quite impressed by Rutherford’s continuing research 
on the transmission and detection of “wireless waves” 
and encouraged him to publish his results and make 
presentations at scientific meetings. Rutherford also 
began investigations with Thomson on the effects of 
X-ray radiation from uranium in various gases. In 
1898 Rutherford applied for and received a chaired 
appointment as Professor of Physics at McGill Univer-
sity in Montreal, Canada.

Barely 27 years of age, he arrived in Montreal 
in 1898 to take up his new duties in the Macdonald 
Physics Laboratories. Rutherford’s studies on radio-
activity continued, and he had frequent correspon-
dence and occasional visits with scientists from abroad. 
Early in 1900 he published a paper in Philosophical 
Magazine in which he named alpha, beta, and gamma as 
the three types of radiation from thorium and ura-
nium. Rutherford attracted the aid of a young re-
search chemist, Frederick Soddy of Oxford, who had 
arrived at McGill in 1900. Rutherford and Soddy dis-
covered in 1902 that the elements, heretofore consid-
ered immute, actually decayed to other elements. 
During the next few years Rutherford investigated a 
particles and the radioactive decay chains of radium, 
thorium, and uranium.

In 1907 Rutherford returned to England as pro-
fessor of physics at the University of Manchester 
where he did his greatest work. His first success was 
the proof that a particles were indeed helium ions. In 
1908 Rutherford received word that he had won the 
Nobel Prize for the work he and Soddy had done, but 
Rutherford was startled and amused to learn it was in 
chemistry, not physics.

It was during the next few years that Rutherford 
carried out his research into the nature of the atom 
that culminated with his discovery of the nucleus. In 
1912 Rutherford wrote to a colleague, “Bohr, a Dane, 
has pulled out of Cambridge and turned up here to 
get some experience in radioactive work.” That mo-
mentous trip resulted in the “Rutherford-Bohr atom.” 

*This account is taken from A. S. Eve, Rutherford, New York: Mac-
millan(1939); and H. A. Boorse and L. Motz, eds., The World of the 
Atom, New York: Basic Books (1966).
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where K $ mv 0
2

 /2 is the kinetic energy of the bombarding particle. This is the 
fundamental relationship between the impact parameter b and scattering angle 
u that we have been seeking for the Coulomb force.

We are not able to select individual impact parameters b in a given experi-
ment. When we put a detector at a particular angle u, we cover a finite 'u, which 
corresponds to a range of impact parameters 'b. The bombarding particles are 
incident at varied impact parameters all around the scatterer as shown in Fig-
ure 4.9 (page 136). All the particles with impact parameters less than b0 will be 
scattered at angles greater than u0. Any particle with an impact parameter inside 
the area of the circle of area pb 0

2 (radius b0) will be similarly scattered. For the case 
of Coulomb scattering, we denote the cross section by the symbol s, where

 s $ pb2 (4.7)
is the cross section for scattering through an angle u or more. The cross section 

The work of Rutherford at Manchester together with 
Hans Geiger, Ernest Marsden, and Henry Moseley was 
to have dramatic consequences. Rutherford used the 
word proton to describe the fast hydrogen nuclei pro-
duced when he bombarded hydrogen and nitrogen 
with fast a particles.

World War I broke up the family of research stu-
dents working at Manchester, and in 1919 Rutherford 
accepted the Cavendish Professorship at Cambridge, 
the post just vacated by J. J. Thomson, who remained 
as Master of Trinity College. Being the successor at 
Cambridge to Maxwell, Rayleigh, and Thomson was 
no small feat, and Rutherford continued to do impor-
tant research until the time of his death in 1937 at age 
66. Rutherford was knighted in 1914, and in 1931 he 
was made a baron, choosing the town of Nelson near 
his boyhood home to become “Lord Rutherford of 
Nelson.” He was the greatest experimental physicist of 
his day, yet he was said to have “never made an enemy 
and never lost a friend.”

Figure A Ernest Rutherford, on the right, talking with J. A. 
Ratcliffe in the Cavendish Laboratory in 1936. The sign above 
Rutherford reads “TALK SOFTLY PLEASE” because the detectors 
being used were very sensitive to vibrations and noise. Rutherford, 
whose deep booming voice disturbed the detectors more than 
anyone else’s, didn’t seem to think the warning applied to him 
and was in a loud conversation when this photo was taken. AI
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136 Chapter 4 Structure of the Atom

s is related to the probability for a particle being scattered by a nucleus. If we have 
a target foil of thickness t with n atoms/volume, the number of target nuclei per 
unit area is nt. Because we assumed a thin target of area A and all nuclei are 
exposed as shown in Figure 4.10, the number of target nuclei is simply ntA. The 
value of n is the density r (g/cm3) times Avogadro’s number NA (molecules/
mol) times the number of atoms/molecule NM divided by the gram-molecular 
weight Mg (g/mol).

 n $

ra g
cm3 bNA amolecules

mol
bNM a atoms

molecule
b

Mg a g
mol
b $

rNANM

Mg
 
atoms
cm3  (4.8)

The number of scattering nuclei per unit area is nt.

 nt $
rNANMt

Mg
 
atoms
cm2  (4.9)

If we have a foil of area A, the number of target nuclei Ns is

 Ns $ ntA $
rNANMtA

Mg
 atoms (4.10)

The probability of the particle being scattered is equal to the total target area 
exposed for all the nuclei divided by the total target area A. If s is the cross sec-
tion for each nucleus, then ntAs is the total area exposed by the target nuclei, 
and the fraction of incident particles scattered by an angle of u or greater is

 f $
target area exposed by scatterers

total target area
$

nt As
A

  $ nt s $ nt pb 
2  (4.11)

 f $ pnt a Z1Z2e 2

8pP0K
b 2

 cot2
 
u

2
 (4.12)

In a typical experiment, however, a detector is positioned over a range of 
angles from u to u  % 'u, as shown in Figure 4.11. Thus we need to find the number 
of particles scattered between u and u % du that corresponds to incident particles 
with impact parameters between b and b % db as displayed in Figure 4.12. The 

u0

b0

Scattering!
nucleus

Figure 4.9 All particles with im-
pact parameters less than b0 will 
scatter at angles greater than u0.

u % 'u
u f

Detector

Beam of!
incident!
particles Target

Figure 4.11 In most experi-
ments, the detectors cover only a 
small angular range, from u to 
u % 'u, and measurements are 
made for different u. The detec-
tor also usually covers a small an-
gular range in f (angle around 
beam direction). Because there is 
usually symmetry about the beam 
axis, the f angle is not normally 
varied.

Figure 4.10 The target is as-
sumed to be so thin that all nuclei 
are exposed to the bombarding 
particles. No nucleus is hidden 
behind another.
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   4.2 Rutherford Scattering 137

fraction of the incident particles scattered between u and u % du is df. The deriva-
tive of Equation (4.12) is

 df $ !pnt a Z1Z2e 2

8pP0K
b 2

 cot 
u

2
 csc2 

u

2
 d u

If the total number of incident particles is Ni, the number of particles scattered 
into the ring of angular width du is Ni 0df 0 . The area dA into which the particles 
scatter is (r du)(2pr sin u) $ 2pr 2 sin u du. Therefore, the number of particles 
scattered per unit area, N(u), into the ring at scattering angle u is

  N 1u 2 $
Ni 0df 0

dA
$

Ni 
pnt a Z1Z2e 2

8pP0K
b 2

2pr 2 sin u d u
 cot 
u

2
 csc2 

u

2
 d u

  N 1u 2 $
Nint
16

 a e 2

4pP0
b 2

 
Z1

2Z2
2

r 2K 2 sin41u /2 2  (4.13)
Rutherford 
scattering equation

Find the fraction of 7.7-MeV a particles that is deflected at 
an angle of 90° or more from a gold foil of 10!6 m 
thickness.

Strategy We can use Equation (4.12) to calculate the 
fraction, but first we need to calculate n, the number of 
atoms/cm3. We do that using Equation (4.8).

Solution The density of gold is 19.3 g/cm3, and the atomic 
weight is 197 u. Equation (4.8) determines n.

  n $

a19.3 
g

cm3 b a6.02 # 1023 
molecules

mol
b a1 

atom
molecule

b
197 g/mol

  $ 5.90 # 1022 
atoms
cm3 $ 5.90 # 1028 

atoms
m3

We insert this value of n into Equation (4.12) and find

  f $ p a5.90 # 1028 
atoms

m3 b 110!6 m 2
  # c 179 2 12 2 11.6 # 10!19 C 2219 # 109 N #  m2

 /C2 2
217.7 MeV 2 11.60 # 10!13 J /MeV 2 d 2

  # 1cot 45°22
 $ 4 # 10!5

One a particle in 25,000 is deflected by 90° or greater.

 EXAMPLE 4 .2

du
db

b

du

r sin ur

r

u

Figure 4.12 Particles over the 
range of impact parameters from 
b to b % db will scatter into the 
angular range u to u % du (with db 
positive, du will be negative).
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138 Chapter 4 Structure of the Atom

Equation (4.13) is the famous Rutherford scattering equation. The 
important points are the following:

1.  The scattering is proportional to the square of the atomic num-
ber of both the incident particle (Z1) and the target scatterer 
(Z2).

2.  The number of scattered particles is inversely proportional to 
the square of the kinetic energy K of the incident particle.

3.  The scattering is inversely proportional to the fourth power of 
sin(u/2), where u is the scattering angle.

4.  The scattering is proportional to the target thickness for thin 
targets.

These specific predictions by Rutherford in 1911 were confirmed 
experimentally by Geiger and Marsden in 1913. The angular depen-
dence is particularly characteristic and can be verified in a well-
equipped undergraduate physics laboratory, as we see from some ac-
tual data shown in Figure 4.13.

Calculate the fraction per mm2 area of 7.7-MeV a particles 
scattered at 45° from a gold foil of thickness 2.1 # 10!7 m at 
a distance of 1.0 cm from the target.

Strategy We use Equation (4.13) to determine the frac-
tion per unit area N(u)/Ni. We calculated n $ 5.90 # 1028 
atoms/m3 in Example 4.2.

 EXAMPLE 4 .3

Solution We insert the values into Equation (4.13).

  
N 1u 2

Ni
$

a5.90 # 1028 
atoms

m3 b 12.1 # 10!7 m 2 c  11.6 # 10!19 C 22a9 # 109 
N # m2

C
2 b d 2

16

  #
12 22179 2211.0 # 10!2 m 22a7.7 MeV #

106 eV
MeV

#
1.6 # 10!19 J

eV
b 2

 
1

sin4145° /2 2
  

N 1u 2
Ni

$ 3.2 # 10!1 m!2 $ 3.2 # 10!7 mm!2

This is the theoretical basis for the experiment per-
formed by Geiger and Marsden in 1913 to check the validity 
of Rutherford’s calculation. Our calculated result agrees 

with their experimental result of 3.7 # 10!7 mm!2 when the 
experimental uncertainty is taken into account.
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Figure 4.13 Results of undergraduate laboratory experiment of scattering 1-MeV 
protons from a gold target. The solid line shows the 1/sin4(u/2) angular dependence 
of the data, verifying Rutherford’s calculation.
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   4.3 The Classical Atomic Model 139

4.3  The Classical Atomic Model
After Rutherford presented his calculations of charged-particle scattering in 1911 
and the experimental verification by his group in 1913, it was generally con-
ceded that the atom consisted of a small, massive, positively charged “nucleus” 
surrounded by moving electrons. Thomson’s plum-pudding model was 
definitively excluded by the data. Actually, Thomson had previously considered 
a planetary model resembling the solar system (in which the planets move in 
elliptical orbits about the sun) but rejected it because, although both gravita-
tional and Coulomb forces vary inversely with the square of the distance, the 
planets attract one another while orbiting around the sun, whereas the electrons 
would repel one another. Thomson considered this to be a fatal flaw from his 
knowledge of plane tary theory.

How can we find the distance of closest approach between a 
bombarding particle and a target scatterer of like charge?

Solution We can find this distance of closest approach for 
a given kinetic energy K and impact parameter b. The mini-
mum separation occurs for a head-on collision. The bom-
barding particle turns around and scatters backward at 180°. 
At the instant the particle turns around, the entire kinetic 
energy has been converted into Coulomb potential energy. 
By setting the original (maximum) kinetic energy equal to 

the Coulomb potential energy when r $ rmin, we can then 
solve the resulting equation for rmin. Let K be the original 
kinetic energy of the bombarding particle.

 K $
1Z 1e 2 1Z 2e 2
4pP0rmin

 (4.14)

We solve this equation to determine rmin.

 rmin $
Z 1Z 2e 2

4pP0K
 (4.15)

 CONCEPTUAL EXAMPLE 4 .4

Rutherford found deviations from his Equation (4.13) at 
backward angles when he scattered 7.7-MeV a particles 
(Z1 $ 2) on aluminum (Z2 $ 13). He suspected this was 
because the a particle might be affected by approaching the 
nucleus so closely. Estimate the size of the nucleus based on 
these data.

Strategy We have just determined the distance of closest 
approach for the a particle, which occurs for a head-on col-
lision or scattering angle of 180°. We propose that the rmin 
in this case is close to the sum of the a particle (4He nu-
cleus) radius and the aluminum nuclear radius.

Solution We insert the values for the a particle incident on 
aluminum into Equation (4.15) to find rmin.

  rmin $
Z 1Z 2e 2

4pP0K

  $
12 2 113 2 11.60 # 10!19 C 2218.99 # 109 N # m2 # C!2 217.7 MeV 2 11.60 # 10!13 J/MeV 2

  $ 4.9 # 10!15 m

We find the sum of the 4He and aluminum nuclear radii to 
be about 5 # 10!15 m.

We will see in Chapter 12 that aluminum’s nuclear radius 
is about twice as large as that of 4He, and our approximate 
result here is in fair agreement with modern data. We now 
know that nuclear radii vary from 1 # 10!15 to 8 # 10!15 m. 
Thus when a particles scatter from aluminum, an a particle 
may approach the nucleus close enough to be affected by 
the nuclear force (see Chapter 12).

 EXAMPLE 4 .5
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140 Chapter 4 Structure of the Atom

In order to examine the failure of the planetary model, let us examine the 
simplest atom, hydrogen. We will assume circular electron orbits for simplicity 
rather than the more general elliptical ones. The force of attraction on the elec-
tron due to the nucleus (charge $ %e) is

 Fe $
!1

4pP0
 
e 2

r 2 ê r (4.16)

where the negative sign indicates the force is attractive and ê r is a unit vector in 
the direction from the nucleus to the electron. This electrostatic force provides 
the centripetal force needed for the electron to move in a circular orbit at con-
stant speed. Its radial acceleration is

 ar $
v 2

r  (4.17)

where v is the tangential velocity of the electron. Newton’s second law now gives

 
1

4pP0
 
e 2

r 2 $
mv 2

r  (4.18)

and

 v $
e14pP0mr

 (4.19)

where we are using m without a subscript to be the electron’s mass. When it is 
not clear what particle m refers to, we write the electron mass as me.

Are we justified in using a nonrelativistic treatment for the 
speed of an electron in the hydrogen atom?

Strategy We use Equation (4.19) to calculate the elec-
tron’s speed. If it is less than 1% of the speed of light, we are 
justified in using a nonrelativistic treatment. One difficulty 
is knowing the radius of the hydrogen atom. The size of an 
atom was thought to be about 10!10 m, so we let r $ 0.5 # 
10!10 m to estimate the electron’s velocity.

Solution Equation (4.19) gives

  v "
11.6 # 10!19 C 2 19 # 109 N # m2

 /C2 21/219.11 # 10!31 kg 21/210.5 # 10!10 m 21/2

  " 2.2 # 106 m/s ( 0.01c

This justifies a nonrelativistic treatment.

 EXAMPLE 4 .6

The kinetic energy of the system is due to the electron, K $ mv2/2. The 
nucleus is so massive compared with the electron (mproton $ 1836m) that the 
nucleus may be considered to be at rest. The potential energy V is simply 
!e2/4pP0r, so the total mechanical energy is

 E $ K % V $
1
2

 mv 2 !
e 2

4pP0r
 (4.20)

If we substitute for v from Equation (4.19), we have

 E $
e 2

8pP0r
!

e 2

4pP0r
$

!e 2

8pP0r
 (4.21)

The total energy is negative, indicating a bound system.
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   4.4 The Bohr Model of the Hydrogen Atom 141

Thus far, the classical atomic model seems plausible. The problem arises 
when we consider that the electron is accelerating due to its circular motion 
about the nucleus. We know from classical electromagnetic theory that an ac-
celerated electric charge continuously radiates energy in the form of electromag-
netic radiation. If the electron is radiating energy, then the total energy E of the 
system, Equation (4.21), must decrease continuously. In order for this to hap-
pen, the radius r must decrease. The electron will continuously radiate energy as 
the electron orbit becomes smaller and smaller until the electron crashes into 
the nucleus! This process, displayed in Figure 4.14, would occur in about 10!9 s 
(see Problem 18).

Thus the classical theories of Newton and Maxwell, which had served 
Rutherford so well in his analysis of a-particle scattering and had thereby en-
abled him to discover the nucleus, also led to the failure of the planetary model 
of the atom. Physics had reached a decisive turning point like that encountered 
in 1900 with Planck’s revolutionary hypothesis of the quantum behavior of radia-
tion. In the early 1910s, however, the answer would not be long in coming, as we 
shall see in the next section.

4.4  The Bohr Model
of the Hydrogen Atom

Shortly after receiving his Ph.D. from the University of Copenhagen in 1911, the 
26-year-old Danish physicist Niels Bohr traveled to Cambridge University to work 
with J. J. Thomson. He subsequently went to the University of Manchester to 
work with Rutherford for a few months in 1912 where he became particularly 
involved in the mysteries of the new Rutherford model of the atom. Bohr returned 
to the University of Copenhagen in the summer of 1912 with many questions 
about atomic structure. Like several others, he believed that a fundamental length 
about the size of an atom (10!10 m) was needed for an atomic model. This funda-
mental length might somehow be connected to Planck’s new constant h. The 
pieces finally came together during the fall and winter of 1912-1913 when Bohr 
learned of new precise measurements of the hydrogen spectrum and of the em-
pirical formulas describing them. He set out to find a fundamental basis from 
which to derive the Balmer formula [Equation (3.12)], the Ryd berg equation 
[Equation (3.13)], and Ritz’s combination principles (see Problem 19).

Bohr was well acquainted with Planck’s work on the quantum nature of ra-
diation. Like Einstein, Bohr believed that quantum principles should govern 
more phenomena than just the blackbody spectrum. He was impressed by 
Einstein’s application of the quantum theory to the photoelectric effect and to 
the specific heat of solids (see Chapter 9 for the latter) and wondered how the 
quantum theory might affect atomic structure.

In 1913, following several discussions with Rutherford during 1912 and 
1913, Bohr published the paper* “On the Constitution of Atoms and Mole-
cules.” He subsequently published several other papers refining and restating his 
“assumptions” and their predicted results. We will generally follow Bohr’s papers 
in our discussion.

Planetary model 
is doomed.

Electron

Nucleus
%e

Figure 4.14 The electromag-
netic radiation of an orbiting 
electron in the planetary model 
of the atom will cause the elec-
tron to spiral inward until it 
crashes into the nucleus.

*Niels Bohr, Philosophical Magazine 26, 1 (1913) and 30, 394 (1915).
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142 Chapter 4 Structure of the Atom

Niels Bohr (1885– 1962) was 
more than just a discoverer of 
modern physics theories. Born in 
Denmark, he was the son of a 
uni versity professor and began 
high school at about the time 
Planck announced his results. Af-
ter his education in Denmark, 
Bohr traveled to England in 1911 
where he worked first with J. J. 
Thomson and later with Ernest 
Rutherford. Bohr nurtured many 
young theoretical physicists in 
his Institute of Theoretical Phys-
ics (now called the Niels Bohr In-
stitute) formed in Copenhagen in 
1921, the year before Bohr won 
the Nobel Prize. 

Bohr assumed that electrons moved around a massive, positively charged 
nucleus. We will assume for simplicity (as did Bohr at first) that the electron 
orbits are circular rather than elliptical and that the nuclear mass is so much 
greater than the electron’s mass that it may be taken to be infinite. The electron 
has charge !e and mass m and revolves around a nucleus of charge %e in a circle 
of radius a. The size of the nucleus is small compared with the atomic radius a.

Bohr’s model may best be summarized by the following “general assumptions” 
of his 1915 paper:

A.  Certain “stationary states” exist in atoms, which differ from the classi-cal sta-
ble states in that the orbiting electrons do not continuously radiate electro-
magnetic energy. The stationary states are states of definite total energy.

B.  The emission or absorption of electromagnetic radiation can occur only 
in conjunction with a transition between two stationary states. The fre-
quency of the emitted or absorbed radiation is proportional to the differ-
ence in energy of the two stationary states (1 and 2):

 E $ E1 ! E2 $ hf

 where h is Planck’s constant.
C.  The dynamical equilibrium of the system in the stationary states is gov-

erned by classical laws of physics, but these laws do not apply to transitions 
between stationary states.

D.  The mean value K of the kinetic energy of the electron-nucleus system 
is given by K $ nhforb/2, where forb is the frequency of rotation. For a 
circular orbit, Bohr pointed out that this assumption is equivalent to the 
angular momentum of the system in a stationary state being an integral 
multiple of h/2p. (This combination of constants occurs so often that we 
give it a separate symbol, U # h/2p, pronounced “h bar.”)

These four assumptions were all that Bohr needed to derive the Rydberg 
equation. Bohr believed that Assumptions A and C were self-evident because 
atoms were stable: atoms exist and do not continuously radiate energy (therefore 
Assumption A). It also seemed that the classical laws of physics could not explain 
the observed behavior of the atom (therefore Assumption C).

Bohr later stated (1915) that Assumption B “appears to be necessary in order 
to account for experimental facts.” Assumption D was the hardest for Bohr’s crit-
ics to accept. It is central to the derivation of the binding energy of the hydrogen 
atom in terms of fundamental constants; hence Bohr restated and defended it 
in several ways in his papers. We have emphasized here the quantization of an-
gular momentum aspect of Assumption D. This leads to a particularly simple 
derivation of the Rydberg equation.

Bohr chose his four assumptions to keep as much as possible of classical phys-
ics by introducing just those new ideas that were needed to explain experimental 
data. Bohr’s recognition that something new was needed and his attempt to tie this 
to Planck’s quantum hypothesis represented an advance in understanding per-
haps even greater than Einstein’s theory of the photoelectric effect.

Let us now proceed to derive the Rydberg equation using Bohr’s assump-
tions. The total energy (potential plus kinetic) of a hydrogen atom was derived 
previously in Equation (4.21). For circular motion, the magnitude of the angular 
momentum L of the electron is

 L $ %r # p % $ mvr

Bohr’s general assumptions

AI
P/

Ni
el

s 
Bo

hr
 L

ib
ra

ry
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Assumption D states this should equal nU:

 L $ mvr $ nU  (4.22a)

where n is an integer called the principal quantum number. We solve the previ-
ous equation for the velocity and obtain

 v $
nU
mr  (4.22b)

Equation (4.19) yields an independent relation between v and r. If we determine 
v2 from Equations (4.19) and (4.22b) and set them equal, we find

 v 2 $
e 2

4pP0mr
$

n2U2

m 2r 2 (4.23)

From Equation (4.23) we see that only certain values of r are allowed.

 rn $
4pP0n2U2

me 2 # n2a0 (4.24)

where the Bohr radius a0 is given by

 a0 $
4pP0U2

me 2

  $
11.055 # 10!34 J # s 2 2a8.99 # 109 

N # m2

C2 b 19.11 # 10!31 kg 2 11.6 # 10!19 C 22
  $ 0.53 # 10!10 m

Notice that the smallest diameter of the hydrogen atom is 2r1 $ 2a0 " 10!10 m, 
the suspected (now known) size of the hydrogen atom! Bohr had found the 
fundamental length a0 that he sought in terms of the fundamental constants P0, 
h, e, and m. This fundamental length is determined for the value n $ 1. Note 
from Equation (4.24) that the atomic radius is now quantized. The quantization 
of various physical values arises because of the principal quantum number n. 
The value n $ 1 gives the radius of the hydrogen atom in its lowest energy state 
(called the “ground” state). The values of n ) 1 determine other possible radii 
where the hydrogen atom is in an “excited” state.

The energies of the stationary states can now be determined from Equa-
tions (4.21) and (4.24).

 En $ ! 
e 2

8pP0rn
$ ! 

e 2

8pP0a0n2 # ! 
E0

n2 (4.25)

The lowest energy state (n $ 1) is E1 $ !E0 where

 E0 $
e 2

8pP0a0
$

e 218pP0 2  me 2

4pP0U2 $
me 4

2U214pP0 22 $ 13.6 eV (4.26)

This is the experimentally measured ionization energy of the hydrogen atom. 
Bohr’s Assumptions C and D imply that the atom can exist only in “stationary 
states” with definite, quantized energies En, displayed in the energy-level diagram 
of Figure 4.15 (page 144). Emission of a quantum of light occurs when the atom 
is in an excited state (quantum number n $ nu) and decays to a lower energy 

Principal quantum number

Bohr radius

Quantized energy states
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144 Chapter 4 Structure of the Atom

state (n $ n/). A transition between two energy levels is schematically illustrated 
in Figure 4.15. According to Assumption B we have

 hf $ Eu ! E/ (4.27)

where f is the frequency of the emitted light quantum (photon). Because lf $ c, 
we have

  
1
l

$
f
c $

Eu ! E/

hc

  $
!E0

hc
a 1

nu
2 !

1
n /

2 b $
E0

hc
a 1

n /
2 !

1
nu

2 b  (4.28)

where

 
E0

hc
$

me 4

4pc U314pP0 22 # Rq (4.29)

This constant R q is called the Rydberg constant (for an infinite nuclear mass). 
Equation (4.28) becomes

 
1
l

$ Rq a 1
n /

2 !
1

nu
2 b  (4.30)

which is similar to the Rydberg equation (3.13). The value of R q $ 1.097373 # 
107 m!1 calculated from Equation (4.29) agrees well with the experimental val-
ues given in Chapter 3, and we will obtain an even more accurate result in the 
next section.

Bohr’s model predicts the frequencies (and wavelengths) of all possible 
transitions in atomic hydrogen. Several of the series are shown in Figure 4.16. 
The Lyman series represents transitions to the lowest state with n/ $ 1; the 
Balmer series results from downward transitions to the stationary state n/ $ 2; 
and the Paschen series represents transitions to n/ $ 3. As mentioned in Sec-
tion 3.3, not all of these series were known experimentally in 1913, but it was 
clear that Bohr had successfully accounted for the known spectral lines of 
hydrogen.

The frequencies of the photons in the emission spectrum of an element are 
directly proportional to the differences in energy of the stationary states. When 
we pass white light (composed of all visible photon frequencies) through atomic 
hydrogen gas, we find that certain frequencies are absent. This pattern of dark 
lines is called an absorption spectrum. The missing frequencies are precisely the 
ones observed in the corresponding emission spectrum. In absorption, certain 
photons of light are absorbed, giving up energy to the atom and enabling the 
electron to move from a lower (/) to a higher (u) stationary state. Equations 
(4.27) and (4.30) describe the frequencies and wavelengths of the absorbed 
photons. The atom will remain in the excited state for only a short time (on the 
order of 10!10 s) before emitting a photon and returning to a lower stationary 
state. Thus, at ordinary temperatures practically all hydrogen atoms exist in the 
lowest possible energy state, n $ 1, and only the absorption spectral lines of the 
Lyman series are normally observed. However, these lines are not in the visible 
region. The sun produces electromagnetic radiation over a wide range of wave-
lengths, including the visible region. When sunlight passes through the sun’s 

Bohr predicted new 
hydrogen wavelengths

Absorption and 
emission spectrum

Energy

E (eV)

0.00
!0.85
!1.51

!3.40

n

∞
4
3

2

!13.61

nu

n!

Figure 4.15 The energy-level di-
agram of the hydrogen atom. The 
principal quantum numbers n are 
shown on the left, with the energy 
of each level indicated on the right. 
The ground-state energy is 
!13.6 eV; negative total energy 
indicates a bound, attractive system. 
When an atom is in an excited state 
(for example, nu $ 3) and decays to 
a lower stationary state (for exam-
ple, n/ $ 2), the hydrogen atom 
must emit the energy difference in 
the form of electromagnetic radia-
tion; that is, a photon emerges.
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outer atmosphere, its hydrogen atoms absorb the wavelengths of the Balmer 
series (visible region), and the absorption spectrum has dark lines at the known 
wavelengths of the Balmer series.

We can determine the electron’s velocity in the Bohr model from Equa-
tions (4.22b) and (4.23).

 vn $
nU
mrn

$
nU

mn2a0
$

1
n 

U
ma0

 (4.31)

or

 vn $
1
n 

e 2

4pP0U
The value of v1 is U/ma0 $ 2.2 # 106 m/s, which is less than 1% of the speed of 
light. We define the dimensionless quantity ratio of v1 to c as

 a #
v1

c $
U

ma0c
$

e 2

4pP0Uc
"

1
137

 (4.32)

This ratio is called the fine structure constant. It appears often in atomic struc-
ture calculations.

We insert a word of caution at this point. Bohr’s atomic model of quantized 
energy levels represented a significant step forward in understanding the struc-
ture of the atom. Although it had many successes, we know now that, in principle, 
it is wrong. We will discuss some of its successes and failures in the next section 
and discuss the correct quantum theory in Chapter 6. Nevertheless, Bohr’s 
atomic model is useful in our first attempt in understanding the structure of the 
atom.

Fine structure constant

Figure 4.16 Transitions be-
tween many of the stationary 
states in the hydrogen atom are 
indicated. Transitions (ultravio-
let) to the n $ 1 state from the 
higher-lying states are called the 
Lyman series. The transitions 
shown to the n $ 2 state (Balmer 
series) were discovered first be-
cause they are in the visible wave-
length range. The Paschen series 
(transitions to n $ 3) are in the 
infrared. The energies of each 
state as well as the binding ener-
gies are noted.

Energy (eV) Binding energy (eV)

Paschen!
seriesBalmer!

series

Lyman!
series

0!
!0.38!
!0.54!
!0.85!
!1.51

0!
0.38!
0.54!
0.85!
1.51

n $ 6!
n $ 5!
n $ 4!
n $ 3

!3.40 3.40n $ 2

!13.6 13.6n $ 1
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146 Chapter 4 Structure of the Atom

The Correspondence Principle
Early in the 1900s physicists had trouble reconciling well-known and well-
understood classical physics results with the new quantum ones. Sometimes com-
pletely different results were valid in their own domains. For example, there 
were two radiation laws: one used classical electrodynamics to determine the 
properties of radiation from an accelerated charge, but another explanation was 
expressed in Bohr’s atomic model. Physicists proposed various kinds of corre-
spondence principles to relate the new modern results with the old classical ones 
that had worked so well in their own domain. In his 1913 paper Bohr proposed 
perhaps the best correspondence principle to guide physicists in developing new 
theories. This principle was refined several times over the next few years.

Bohr’s correspondence principle: In the limits where classical and quantum theo-
ries should agree, the quantum theory must reduce to the classical result.

To illustrate this principle, let us examine the predictions of the two radia-
tion laws. The frequency of the radiation produced by the atomic electrons in 
the Bohr model of the hydrogen atom should agree with that predicted by clas-
sical electrodynamics in a region where the finite size of Planck’s constant is 
unimportant—for large quantum numbers n where quantization effects are 
minimized. To see how this works we recall that classically the frequency of the 
radi ation emitted is equal to the orbital frequency forb of the electron around the 
nucleus:

 fclassical $ forb $
v

2p
$

1
2p

 
v
r  (4.33a)

where for circular motion the angular velocity is v $ v/r. If we substitute for v 
from Equation (4.19), we find

 fclassical $
1

2p
 a e 2

4pP0mr 3 b 1 /2

 (4.33b)

We make the connection to the Bohr model by inserting the orbital radius 
r from Equation (4.24) into Equation (4.33b). We then know the classical 

Bohr’s correspondence 
principle

Determine the longest and shortest wavelengths observed in 
the Paschen series for hydrogen. Which are visible?

Strategy We use Equation (4.30) to determine the wave-
lengths. The lowest energy state n/ (see Figure 4.16) is 3. We 
calculate the wavelengths for nu  $  4 and q to obtain the 
extreme longest (maximum) and shortest (minimum) 
wavelengths.

Solution We insert the values of n into Equation (4.30) 
with the Rydberg constant to obtain

1
lmax

$ 11.0974 # 107 m!1 2 a 1
32 !

1
42 b $ 5.335 # 105 m!1

lmax $ 1875 nm

The maximum wavelength, 1875 nm, is not visible and is in 
the infrared.

1
lmin

$ 11.0974 # 107 m!1 2 a 1
32 !

1
q b $ 1.219 # 106 m!1

lmax $ 820 nm
The minimum wavelength, 820 nm, is not visible and also in 
the infrared.

 EXAMPLE 4 .7
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frequency in terms of fundamental constants and the principal quantum num-
ber n.

 fclassical $
me 4

4P0
2h3 

1
n3 (4.34)

In the Bohr model, the nearest we can come to continuous radiation is a 
cascade of transitions from a level with principal quantum number n % 1 to the 
next lowest and so on:

 n % 1 S n S n ! 1 S p

The frequency of the transition from n % 1 S n is

  f Bohr $
E0

h
 c 1

n2 !
11n % 1 22 d

  $
E0

h
 c n2 % 2n % 1 ! n2

n21n % 1 22 d $
E0

h
 c 2n % 1

n21n % 1 22 d
which for large n becomes

 f Bohr "
2n E0

hn4 $
2E0

hn3

If we substitute E0 from Equation (4.26), the result is

 f Bohr $
me 4

4P0
2h3 

1
n3 $ fclassical (4.35)

so the frequencies of the radiated energy agree between classical theory and the 
Bohr model for large values of the quantum number n. Bohr’s correspondence 
principle is verified for large orbits, where classical and quantum physics should 
agree.

By 1915, as Bohr’s model gained widespread acceptance, the critics of the 
quantum concept were finding it harder to gain an audience. Bohr had demon-
strated the necessity of Planck’s quantum constant in understanding atomic struc-
ture, and Einstein’s conception of the photoelectric effect was generally ac-
cepted as well. The assumption of quantized angular momentum Ln $ nU  led to 
the quantization of other quantities r, v, and E. We collect the following three 
equations here for easy reference.

 Orbital radius   rn $
4pP0U2

me2  n2 $ n2a0 (4.24)

 Velocity   vn $
nU
mrn

 (4.22b)

 Energy   En $ ! 

e 2

8pP0a0n2  (4.25)

4.5  Successes and Failures 
of the Bohr Model

As we briefly mentioned in the previous section, the Bohr atomic model was a 
first step in understanding the structure of the atom. We discuss the correct 
description of the hydrogen atom in Chapter 7 after we introduce quantum 

Equivalence of Bohr 
and classical frequencies
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148 Chapter 4 Structure of the Atom

theory in Chapter 6. Wavelength measurements for the atomic spectrum of hy-
drogen are precise and exhibit a small disagreement with the Bohr model results 
just presented. These disagreements can be corrected by looking more carefully 
at our original assumptions, one of which was to assume an infinite nuclear mass.

Reduced Mass Correction
The electron and hydrogen nucleus actually revolve about their mutual center 
of mass as shown in Figure 4.17. This is a two-body problem, and our previous 
analysis should be in terms of re and rM instead of just r. A straightforward analysis 
derived from classical mechanics shows that this two-body problem can be re-
duced to an equivalent one-body problem in which the motion of a particle of 
mass me moves in a central force field around the center of mass. The only 
change required in the results of Section 4.4 is to replace the electron mass me 
by its reduced mass me where

 me $
me 

M
me % M

$
me

1 %
me

M

 (4.36)

and M is the mass of the nucleus (see Problem 53). In the case of the hydro-
gen atom, M is the proton mass, and the correction for the hydrogen atom is 
me $ 0.999456 me. This difference can be measured experimentally. The Rydberg 
constant for infinite nuclear mass, R q, defined in Equation (4.29), should be 
replaced by R, where

 R $
me

me
 Rq $

1

1 %
me

M

 Rq $
me e 4

4pc U314pP0 22 (4.37)

The Rydberg constant for hydrogen is R H $ 1.096776 # 107 m!1.

Reduced mass

me
Electron

rerM

r

M
Nucleus Center of mass

Figure 4.17 Because the nu-
cleus does not actually have an 
infinite mass, the electron and 
nucleus rotate about a common 
center of mass that is located very 
near the nucleus. This diagram is 
a very simplistic view of a hydro-
gen atom.
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The Bohr model may be applied to any single-electron atom (hydrogen-
like) even if the nuclear charge is greater than 1 proton charge (%e), for ex-
ample He% and Li%%. The only change needed is in the calculation of the Cou-
lomb force, where e2 is replaced by Ze2 to account for the nuclear charge of %Ze. 
The Rydberg Equation (4.30) now becomes

 
1
l

$ Z  2R a 1
n /

2 !
1

nu
2 b  (4.38)

where the Rydberg constant is given by Equation (4.37). Bohr applied his model 
to the case of singly ionized helium, He%.  We emphasize that Equation (4.38) is 
valid only for single-electron atoms (H, He%, Li%%, and so on) and does not ap-
ply to any other atoms (for example He, Li, Li%). Charged atoms, such as He%, 
Li%, and Li%%, are called ions.

In his original paper of 1913, Bohr predicted the spectral lines of He% al-
though they had not yet been identified in the lab. He showed that certain lines 
(generally ascribed to hydrogen) that had been observed by Pickering in stellar 
spectra, and by Fowler in vacuum tubes containing both hydrogen and helium, 
could be identified as singly ionized helium. Bohr showed that the wavelengths 
predicted for He% with n/ $ 4 are almost identical to those of H for n/ $ 2, ex-
cept that He% has additional lines between those of H (see Problem 35). The 
correct explanation of this fact by Bohr gave credibility to his model.

Calculate the wavelength for the nu $ 3 S n/ $ 2 transition 
(called the Ha line) for the atoms of hydrogen, deuterium, 
and tritium.

Strategy We use Equation (4.30) but with R q replaced by 
the Rydberg constant expressed in Equation (4.37). In or-
der to use Equation (4.37) we will need the masses for hy-
drogen, deuterium, and tritium.

Solution The following masses are obtained by subtract-
ing the electron mass from the atomic masses given in Ap-
pendix 8.

  Proton $ 1.007276 u

  Deuteron $ 2.013553 u

  Triton 1tritium nucleus 2 $ 3.015500 u

The electron mass is me $ 0.0005485799 u. The Rydberg 
constants are

 RH $
1

1 %
0.0005486
1.00728

 Rq $ 0.99946Rq   Hydrogen

  RD $
1

1 %
0.0005486
2.01355

 Rq $ 0.99973Rq   Deuterium

  RT $
1

1 %
0.0005486
3.01550

 Rq $ 0.99982Rq   Tritium

The calculated wavelength for the Ha line is

  
1
l

$ R a 1
22 !

1
32 b $ 0.13889R

  l1Ha, hydrogen 2 $ 656.47 nm

  l1Ha, deuterium 2 $ 656.29 nm

 l1Ha, tritium 2 $ 656.23 nm

Deuterium was discovered when two closely spaced spec-
tral lines of hydrogen near 656.4 nm were observed in 1932. 
These proved to be the Ha lines of atomic hydrogen and 
deuterium.

 EXAMPLE 4 .8
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150 Chapter 4 Structure of the Atom

Other Limitations
As the level of precision increased in optical spectrographs, it was observed that 
each of the lines, originally believed to be single, actually could be resolved into 
two or more lines, known as fi ne structure. Arnold Sommerfeld adapted the spe-
cial theory of relativity (assuming some of the electron orbits were elliptical) to 
Bohr’s hypotheses and was able to account for some of the “splitting” of spectral 
lines. Subsequently it has been found that other factors (especially the electron’s 
spin, or intrinsic angular momentum) also affect the fine structure of spectral lines.

It was soon observed that external magnetic fields (the Zeeman effect) and 
external electric fields (the Stark effect) applied to the radiating atoms affected 
the spectral lines, splitting and broadening them. Although classical electromag-
netic theory could quantitatively explain the (normal) Zeeman effect (see Chap-
ter 7), it was unable to account for the Stark effect; for this the quantum model 
of Bohr and Sommerfeld was necessary.

Although the Bohr model was a great step forward in the application of the 
new quantum theory to understanding the tiny atom, it soon became apparent 
that the model had its limitations:

1.  It could be successfully applied only to single-electron atoms (H, He%, 
Li%%, and so on).

2.  It was not able to account for the intensities or the fine structure of the 
spectral lines.

3.  Bohr’s model could not explain the binding of atoms into molecules.

We discuss in Chapter 7 the full quantum mechanical theory of the hydro-
gen atom, which accounts for all of these phenomena. The Bohr model was an 
ad hoc theory to explain the hydrogen spectral lines. Although it was useful in 
the beginnings of quantum physics, we now know that the Bohr model does not 
correctly describe atoms. Despite its flaws, Bohr’s model should not be deni-
grated. It was the first step from a purely classical description of the atom to the 
correct quantum explanation. As usually happens in such tremendous changes 
of understanding, Bohr’s model simply did not go far enough—he retained too 
many classical concepts. Einstein, many years later, noted* that Bohr’s achieve-
ment “appeared to me like a miracle and appears as a miracle even today.”

Fine structure

Limitations of Bohr model

Calculate the shortest wavelength that can be emitted by the 
Li%% ion.

Strategy The shortest wavelength occurs when the elec-
tron changes from the highest state (unbound, nu $ q) to 
the lowest state (n/ $ 1). We use Equation (4.38) to calcu-
late the wavelength.

Solution Equation (4.38) gives

  
1
l

$ 13 22R a 1
12 !

1
q b $ 9R

  l $
1

9R
$ 10.1 nm

When we let nu $ q, we have what is known as the series 
limit, which is the shortest wavelength possibly emitted for 
each of the named series.

 EXAMPLE 4 .9

*P. A. Schillp, ed., Albert Einstein, Philosopher-Scientist, La Salle, IL: The Open Court, 1949.
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4.6  Characteristic X-Ray Spectra 
and Atomic Number

By 1913 when Bohr’s model was published, little progress had been made in 
understanding the structure of many-electron atoms. It was believed that the 
general characteristics of the Bohr-Rutherford atom would prevail. We discussed 
the production of x rays from the bombardment of various materials by electrons 
in Section 3.7. It was known that an x-ray tube with an anode made from a given 
element produced a continuous spectrum of bremsstrahlung x rays on which are 
superimposed several peaks with frequencies characteristic of that element (see 
Figure 3.19).

We can now understand these characteristic x-ray wavelengths by adopting 
Bohr’s electron shell hypothesis. Bohr’s model suggests that an electron shell based 
on the radius rn can be associated with each of the principal quantum numbers 
n. Electrons with lower values of n are more tightly bound to the nucleus than 
those with higher values. The radii of the electron orbits increase in proportion 
to n2 [Equation (4.24)]. A specific energy is associated with each value of n. We 
may assume that when we add electrons to a fully ionized many-electron atom, the 
inner shells (low values of n) are filled before the outer shells. We have not yet 
discussed how many electrons each shell contains or even why electrons tend to 
form shells. Historically, the shells were given letter names: the n $ 1 shell was 
called the K shell, n $ 2 was the L shell, and so on. The shell structure of an atom 
is indicated in Figure 4.18. In heavy atoms with many electrons, we may suppose 
that several shells contain electrons. What happens when a high-energy electron 
in an x-ray tube collides with one of the K-shell electrons (we shall call these K 
electrons) in a target atom? If enough energy can be transferred to the K electron 
to dislodge it from the atom, the atom will be left with a vacancy in its K shell. 
The atom is most stable in its lowest energy state or ground state, so it is likely that 
an electron from one of the higher shells will change its state and fill the inner-
shell vacancy at lower energy, emitting radiation as it changes its state. When this 
occurs in a heavy atom we call the electromagnetic radiation emitted an x ray, 
and it has the energy

 E  1x ray 2 $ Eu ! E/ (4.39)

The process is precisely analogous to what happens in an excited hydrogen 
atom. The photon produced when the electron falls from the L shell into the 
K shell is called a Ka x ray; when it falls from the M shell into the K shell, the 
photon is called a Kb x ray. This scheme of x-ray identification is diagrammed in 
Figure 4.18. The relative positions of the energy levels of the various shells differ 
for each element, so the characteristic x-ray energies of the elements are simply 
the energy differences between the shells. The two strong peaks in the molybde-
num spectrum of Figure 3.19 are the Ka and Kb x rays.

This simple description of the electron shells, which will be modified later in 
Chapters 7 and 8 by the full quantum mechanical treatment, was not understood 
by early 1913. The experimental field of x-ray detection was beginning to flourish 
(see Section 3.3), and the precise identification of the wavelengths of characteris-
tic x rays was possible. In 1913 H. G. J. Moseley, working in Rutherford’s Manches-
ter laboratory, was engaged in cataloguing the characteristic x-ray spectra of a 
series of elements. He concentrated on the K- and L-shell x rays produced in an 
x-ray tube. Physicists in Rutherford’s Manchester lab had already fully accepted 
the concept of the atomic number, although there was no firm experimental 

Characteristic 
x-ray wavelengths

n $ 5
n $ 4

n $ 3

L

K

M

MaMbMg

La Lb Lg Ld

Ka Kb Kg Kd Ke

N
O

n $ 2

n $ 1

Figure 4.18 Historically, the 
stationary states were also given 
letter identifications: K shell 
(n $ 1), L shell (n $ 2), M shell 
(n $ 3), and so on. The x rays 
emitted when an atom changes 
energy states are given different 
names depending on the initial 
and final states. The Greek letter 
subscripts indicate the value of 
'n and the roman letters the 
value of n for the final state.
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152 Chapter 4 Structure of the Atom

evidence for doing so. Most of the European physicists still believed that atomic 
weight A was the important factor, and the periodic table of elements was so struc-
tured. The atomic number Z is the number of protons in the nucleus. The makeup 
of the nucleus was unknown at the time, so Z was related to the positive charge of 
the nucleus.

Moseley compared the frequencies of the characteristic x rays with the then 
supposed atomic number of the elements and found empirically an amazing 
linear result when he plotted the atomic number Z versus the square root of the 
measured frequency as shown in Figure 4.19:

 fKa $
3cR
4

 1Z ! 1 2 2 (4.40)

This result holds for the Ka x rays, and a similar result was found for the L shell. 
The data shown in Figure 4.19 are known as a Moseley plot. Moseley began his 
work in 1913 in Manchester and, after moving to Oxford late in 1913, completed 
the investigation in early 1914. Although it is clear that Bohr and Moseley dis-
cussed physics and even corresponded after Bohr left for Copenhagen, Moseley 
does not mention Bohr’s model in his 1914 paper. Thus, it is not known whether 
Bohr’s ideas had any influence on Moseley’s work.

Using Bohr’s model we can understand Moseley’s empirical result, Equa-
tion (4.40). If a vacancy occurs in the K shell, there is still one electron remaining 
in the K shell. (We will see in Chapter 8 that, at most, two electrons can occupy 
the K shell.) An electron in the L shell will feel an effective charge of (Z ! 1)e 
due to %Ze from the nucleus and !e from the remaining K-shell electron, be-
cause the L-shell orbit is normally outside the K-shell orbit. The other electrons 
outside the K shell hardly affect the L-shell electron. The x ray produced when 
a transition occurs from the n $ 2 to the n $ 1 shell has the wavelength, from 
Equation (4.38), of

 
1
lK a

$ R 1Z ! 1 2 2 a 1
12 !

1
22 b $

3
4

 R 1Z ! 1 2 2 (4.41)

or

 fKa $
c
lK a

$
3cR
4

 1Z ! 1 2 2 (4.42)

which is precisely the equation Moseley found describing the Ka-shell x rays. We 
can write Equation (4.41) in a more general form for the K series of x-ray 
wavelengths:

 
1
lK

$ R 1Z ! 1 2 2 a 1
12 !

1
n2 b $ R 1Z ! 1 2 2 a1 !

1
n2 b  (4.43)

Moseley correctly concluded that the atomic number Z was the determining 
factor in the ordering of the periodic table, and this reordering was more con-
sistent with chemical properties than one based on atomic weight. It put potas-
sium (Z $ 19, A $ 39.10) after argon (Z $ 18, A $ 39.95) by atomic number 
rather than the reverse by atomic weight. Moseley concluded that the atomic 
number of an element should be identified with the number of positive units of 
electricity in the nucleus (that is, the number of protons). He tabulated all the 
atomic numbers between Al (Z $ 13) and Au (Z $ 79) and pointed out there 
were still three elements (Z $ 43, 61, and 75) yet to be discovered! The element 
promethium (Z $ 61) was finally discovered around 1940.

Significance of 
atomic number

Henry G. J. Moseley (1887–
 1915), shown here working in 
1910 in the Balliol-Trinity labora-
tory of Oxford University, was a 
brilliant young experimental 
physicist with varied interests. 
Unfortunately, he was killed in 
action at the young age of 27 
during the English expedition to 
the Dardanelles. Moseley vol-
unteered and insisted on combat 
duty in World War I, despite the 
attempts of Rutherford and oth-
ers to keep him out of action.
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8

79 Au
78 Pt
77 Ir
76 Os
75
74 W
73 Ta
72 Lu
71 Yb
70 TmII
69 Tm I
68 Er
67 Dy
66 Ho
65 Tb
64 Gd
63 Eu
62 Sm
61
60 Nd
59 Pr
58 Ce
57 La
56 Ba
55 Cs
54 Xe
53 I
52 Te
51 Sb
50 Sn
49 In
48 Cd
47 Ag
46 Pd
45 Rh
44 Ru
43
42 Mo
41 Nb
40 Zr
39 Y
38 Sr
37 Rb
36 Kr
35 Br
34 Se
33 As
32 Ge
31 Ga
30 Zn
29 Cu
28 Ni
27 Co
26 Fe
25 Mn
24 Cr
23 V
22 Ti
21 Sc
20 Ca
19 K
18 Ar
17 Cl
16 S
15 P
14 Si
13 Al

6 5 4 3 2

L series

La

1.5
Wavelength (!10!10 m)

1 0.9 0.8 0.7 0.6

A
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um
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K series

Ka

Kb

6 8 10 12 14

Square root of frequency (!108 Hz1/2)

16 18 20 22 24

Moseley’s research helped put the Rutherford-Bohr model of the atom on a 
firmer footing. It clarified the importance of the electron shells for all the ele-
ments, not just for hydrogen. It also helped show that the atomic number was 
the significant factor in the ordering of the periodic table, not the atomic weight.

Figure 4.19 Moseley’s original 
data indicating the relationship 
between the atomic number Z 
and the characteristic x-ray fre-
quencies. Notice the missing en-
tries for elements Z $ 43, 61, and 
75, which had not yet been iden-
tified. There are also a few errors 
in the atomic number designa-
tions for the elements. © From 
H. G. J. Moseley, Philosophical Maga-
zine (6), 27, 703 (1914).

03721_ch04_127-161.indd   15303721_ch04_127-161.indd   153 9/29/11   9:36 AM9/29/11   9:36 AM



154 Chapter 4 Structure of the Atom

4.7  Atomic Excitation by Electrons
All the evidence for the quantum theory discussed so far has involved quanta of 
electromagnetic radiation (photons). In particular, the Bohr model explained 
measured optical spectra of certain atoms. Spectroscopic experiments were typi-
cally performed by exciting the elements, for example, in a high-voltage dis-
charge tube, and then examining the emission spectra.

The German physicists James Franck and Gustav Hertz decided to study 
electron bombardment of gaseous vapors to study the phenomenon of ioniza-
tion. They set out in 1914 explicitly to study the possibility of transferring a part 
of an electron’s kinetic energy to an atom. Their measurements would provide 
a distinctive new technique for studying atomic structure.

An experimental arrangement similar to that used by Franck and Hertz is 
shown in Figure 4.20. This particular arrangement is one actually used in a typi-
cal undergraduate physics laboratory experiment. Electrons are emitted ther-
mionically from a hot cathode (filament) and are then accelerated by an electric 
field with its intensity determined by a variable (0- to 45-V) power supply. After 
passing through a grid consisting of wire mesh, the electrons are subjected to a 
decelerating voltage (typically 1.5 V) between grid and anode (collector). If the 
electrons have greater than 1.5 eV after passing through the grid, they will have 
enough energy to reach the collector and be registered as current in an ex-
tremely sensitive ammeter (called an electrometer). A voltmeter measures the ac-
celerating voltage V. The experiment consists of measuring the current I in the 
electrometer as a function of V.

The accelerating electrons pass through a region containing mercury (Hg) 
vapor (a monatomic gas). Franck and Hertz found that as long as the accelerat-
ing voltage V was below about 5 V (that is, the maximum kinetic energy of the 
electrons was below 5 eV), the electrons apparently did not lose energy. The 

Moseley found experimentally that the equation describing 
the frequency of the La spectral line was

 f La $
5
36

 cR 1Z ! 7.4 22 (4.44)

How can the Bohr model explain this result? What is the 
general form for the L-series wavelengths lL?

Strategy We follow the general procedure that we used to 
find Equation (4.42). The La x ray results from a transition 
from the M shell (nu $ 3) to the L shell (n/ $ 2). There may 
be several electrons in the L shell and two electrons in the K 
shell that shield the nuclear charge %Ze from the M-shell 
electron making the transition to the L shell. Let’s assume 
the effective charge that the electron sees is %Zeffe. Then we 
can use Equation (4.38) to find both Zeff and the general 
form for the lL series of wavelengths.

Solution We replace Z by Zeff in Equation (4.38) and find

  f La $
c
lLa

$ cR Z 2
eff a 1

22 !
1
32 b  (4.45)

  f La $
5cR Z 2

eff

36

According to Moseley’s data the effective charge Zeff must be 
Z ! 7.4. This result is within the spirit of the Bohr model, 
which applied primarily to hydrogen-like atoms.

We rewrite Equation (4.45) to determine lL for the 
entire series:

1
lL

$ R Z 2
eff a 1

22 !
1
n 2 b $ R 1Z ! 7.4 22a 1

4
!

1
n 2 b   (4.46)

 EXAMPLE 4 .10

James Franck (1882– 1964), 
shown here on the left with 
Gustav Hertz in Tübingen, 
Germany, in 1926, came to 
America in 1935 to avoid Nazi 
persecution and became an 
important American scientist who 
trained many experimental physi-
cists. Gustav Hertz (1887– 1975), 
the nephew of Heinrich Hertz who 
discovered electromagnetic 
waves, worked in German univer-
sities and industrial labs before 
going to the Soviet Union in 
1945. They received the Nobel 
Prize for Physics for the experi-
ment named after them (Franck-
Hertz experiment) in 1925. 
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   4.7 Atomic Excitation by Electrons 155

electron current registered in the electrometer continued to increase as V in-
creased. However, as the accelerating voltage increased above 5 V, there was a 
sudden drop in the current (see Figure 4.21, which was constructed using data 
taken by students performing this experiment). As the accelerating voltage con-
tinued to increase above 5 V, the current increased again, but suddenly dropped 
above 10 V. Franck and Hertz first interpreted this behavior as the onset of ion-
ization of the Hg atom; that is, an atomic electron is given enough energy to 
remove it from the Hg, leaving the atom ionized. They later realized that the Hg 
atom was actually being excited to its first excited state.

We can explain the experimental results of Franck and Hertz within the 
context of Bohr’s picture of quantized atomic energy levels. In the most popular 
representation of atomic energy states, we say that the atom, when all the elec-
trons are in their lowest possible energy states, is the ground state. We define this 
energy E0 to be zero. The first quantized energy state above the ground state is 
called the first excited state, and it has energy E1. The energy difference E1 ! 0 
$ E1 is called the excitation energy of the state E1. We show the position of one 

Collector

Filament!
power!
supply

Voltmeter

Grid

Hg vapor
e!

Filament

V
A Electrometer

1.5 V

 0 – 45 V
Accelerating power supply

!

%
%

%

!

!

Figure 4.20 Schematic diagram of apparatus used in an undergraduate physics laboratory for 
the Franck-Hertz experiment. The hot filament produces electrons, which are accelerated through 
the mercury vapor toward the grid. A decelerating voltage between grid and collector prevents the 
electrons from registering in the electrometer unless the electron has a certain minimum energy.

Figure 4.21 Data from an un-
dergraduate student’s Franck-
Hertz experiment using appara-
tus similar to that shown in 
Figure 4.20. The energy differ-
ence between peaks is about 5 V, 
but the first peak is not at 5 V be-
cause of the work function differ-
ences of the metals used for the 
filament and grid.

0

0.1

0.2

0.3

0.4

C
ol

le
ct

or
 c

ur
re

nt
 (

nA
)

0.5

0.6

V (volts)
0 10 20 30 40 50 60

03721_ch04_127-161.indd   15503721_ch04_127-161.indd   155 9/29/11   9:36 AM9/29/11   9:36 AM



156 Chapter 4 Structure of the Atom

electron in an energy-level diagram of Hg in Figure 4.22 in both the ground 
state and first excited state. The first excited state of Hg is at an excitation energy 
of 4.88 eV. As long as the accelerating electron’s kinetic energy is below 4.88 eV, 
no energy can be transferred to Hg because not enough energy is available to 
excite an electron to the next energy level in Hg. The Hg atom is so much more 
massive than the electron that almost no kinetic energy is transferred to the re-
coil of the Hg atom; the collision is elastic. The electron can only bounce off the 
Hg atom and continue along a new path with about the same kinetic energy. If 
the electron gains at least 4.88 eV of kinetic energy from the accelerating poten-
tial, it can transfer 4.88 eV to an electron in Hg, promoting it to the first excited 
state. This is an inelastic collision. A bombarding electron that has lost energy in 
an inelastic collision then has too little energy (after it passes the grid) to reach 
the collector. Above 4.88 V, the current dramatically drops because the inelasti-
cally scattered electrons no longer reach the collector.

When the accelerating voltage is increased to 7 or 8 V, even electrons that 
have already made an inelastic collision have enough remaining energy to reach 
the collector. Once again the current increases with V. However, when the ac-
celerating voltage reaches 9.8 V, the electrons have enough energy to excite two 
Hg atoms in successive inelastic collisions, losing 4.88 eV in each (2 # 4.88 eV $ 
9.76 eV). The current drops sharply again. As we see in Figure 4.21, even with 
student apparatus it is possible to observe several successive excitations as the 
accelerating voltage is increased. Notice that the energy differences between 
peaks are typically 4.9 eV. The first peak does not occur at 4.9 eV because of the 
difference in the work functions between the dissimilar metals used as cathode 
and anode. Other highly excited states in Hg can also be excited in an inelastic 
collision, but the probability of exciting them is much smaller than that for the 
first excited state. Franck and Hertz, however, were able to detect them.

The Franck-Hertz experiment convincingly proved the quantization of 
atomic electron energy levels. The bombarding electron’s kinetic energy can 
change only by certain discrete amounts determined by the atomic energy levels 
of the mercury atom. They performed the experiment with gases of several other 
elements and obtained similar results.

Would it be experimentally possible to observe radiation 
emitted from the first excited state of Hg after it was pro-
duced by an electron collision?

Solution If the collision of the bombarding electron with 
the mercury atom is elastic, mercury will be left in its ground 
state. If the collision is inelastic, however, the mercury atom 
will end up in its excited state at 4.9 eV (see Figure 4.22). 
The mercury atom will not exist long in its first excited state 

and should decay quickly (!10!8 s) back to the ground 
state. Franck and Hertz considered this possibility and looked 
for x rays. They observed no radiation emitted when the 
electron’s kinetic energy was below about 5 V, but as soon as 
the current dropped as the voltage went past 5 V, indicating 
excitation of Hg, an emission line of wavelength 254 nm 
(ultraviolet) was observed. Franck and Hertz set E $ 4.88 eV 
$ hf $ (hc)/l and showed that the value of h determined 
from l $ 254 nm was in good agreement with values of 
Planck’s constant determined by other means.

 CONCEPTUAL EXAMPLE 4 .11

Ground !
state

E2

E1

0
First!

excited!
state

Mercury

Figure 4.22 A valence electron 
is shown in the ground state of 
mercury on the left. On the right 
side the electron has been ele-
vated to the first excited state af-
ter a bombarding electron scat-
tered inelastically from the 
mercury atom.
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We have learned in this chapter about the Rutherford-Bohr concept of the 
atom. Rutherford showed that the atom consisted of an object with most of the 
mass in the positively charged nucleus. Electrons apparently orbit the nucleus. 
Bohr was able to derive the important Rydberg equation by proposing his quan-
tized shell model of the atom and explaining how electrons can have stable or-
bits around the nucleus. The experiment of Franck and Hertz confirmed the 
quantized shell behavior. Nevertheless, it was clear that Bohr’s model was primar-
ily effective for hydrogen-like atoms and that a full and complete description for 
the majority of the atomic elements was lacking. Before pursuing that in Chap-
ters 6– 8, we must first return to investigate the wave properties of matter in 
Chapter 5, where even more surprises await us.

S u m m a r y

Rutherford proposed a model of the atom consisting of a 
massive, compact (relative to the size of the atom), positively 
charged nucleus surrounded by electrons. His assistants, 
Geiger and Marsden, performed scattering ex periments 
with energetic alpha particles and showed that the number 
of backward-scattered a particles could be accounted for 
only if the model were correct. The relation between the 
impact parameter b and scattering angle u for Coulomb scat-
tering is

 b $
Z 1Z 2e 2

8pP0K
 cot 
u

2
 (4.6)

Rutherford’s equation for the number of particles scattered 
at angle u is

 N 1u 2 $
Nint
16
a e 2

4pP0
b 2 Z 1

2Z 2
2

r 2K 2 sin41u /2 2  (4.13)

where the dependence on charges Z1e and Z2e, the kinetic 
energy K, the target thickness t, and the scattering angle u 
were verified experimentally. The classical planetary atomic 
model predicts the rapid demise of the atom because of 
electromagnetic radiation.

Niels Bohr was able to derive the empirical Rydberg 
formula for the wavelengths of the optical spectrum of hy-
drogen by using his “general assumptions.” This led to the 
quantization of various physical parameters of the hydrogen 
atom, including the radius, rn $ n2a0, where a0 $ 0.53 # 
10!10 m, and the energy, En $ !E0/n2, where E0 $ 13.6 eV. 

The Rydberg equation

 
1
l

$ R a 1
n /

2 !
1

nu
2 b

gives the wavelengths, where n/ and nu are the quantum 
numbers for the lower and upper stationary states, respec-
tively. The Bohr model could explain the optical spectra of 
hydrogen-like atoms such as He% and Li%%, but could not 
account for the characteristics of many-electron atoms. This 
indicated that the model was incomplete and only approxi-
mate. Bohr’s correspondence principle relates quantum 
theories to classical ones in the limit of large quantum 
numbers.

By examining the characteristic x-ray spectra of the 
chemical elements, Moseley proved the fundamental sig nifi-
cance of the atomic number. We can derive the empirical 
Moseley relation

 fKa $
3cR
4

 1Z ! 1 22 (4.40)

from the structure of the atom proposed by Rutherford, 
together with Bohr’s model of hydrogen-like energy levels.

Another way of studying atomic structure is by using 
electron scattering rather than photon or optical methods. 
Franck and Hertz were able to confirm the quantized struc-
ture of the atom and determine a value of Planck’s constant 
h in good agreement with other methods.
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158 Chapter 4 Structure of the Atom

 1. Thomson himself was perhaps the biggest critic of the 
model referred to as “plum pudding.” He tried for 
years to make it work. What experimental data could 
he not predict? Why couldn’t he make the planetary 
model of Rutherford-Bohr work?

 2. Does it seem fortuitous that most of the successful 
physicists who helped unravel the secrets of atomic 
structure (Thomson, Rutherford, Bohr, Geiger, and 
Moseley) worked either together or in close proximity 
in England? Why do you suppose we don’t hear 
names of physicists working on this idea in other Eu-
ropean countries or in the United States?

 3. Could the Rutherford scattering of ! particles past 
90° be due to scattering from electrons collected to-
gether (say, 100 e!) in one place over a volume of di-
ameter 10!15 m? Explain.

 4. In an intense electron bombardment of the hydrogen 
atom, signifi cant electromagnetic radiation is pro-
duced in all directions upon decay. Which emission 
line would you expect to be most intense? Why?

 5. Why are peaks due to higher-lying excited states in 
the Franck-Hertz experiment not more observable?

 6. As the voltage increases above 5 V in the Franck-Hertz 
experiment, why doesn’t the current suddenly jump 
back up to the value it had below 5 V?

 7. Using Hg gas in the Franck-Hertz experiment, ap-
proximately what range of voltages would you expect 
for the fi rst peak? Explain.

 8. When are photons likely to be emitted in the Franck-
Hertz experiment?

 9. Is an electron most strongly bound in an H, He%, or 
Li%% atom? Explain.

 10. Why do we refer to atoms as being in the “ground” state 
or “stationary”? What does an “excited” state mean?

 11. What lines would be missing for hydrogen in an ab-
sorption spectrum? What wavelengths are missing for 
hydrogen in an emission spectrum?

 12. Why can’t the Bohr model be applied to the neutral 
He atom? What diffi culties do you think Bohr had in 
modifying his model for He?

 13. Describe how the hydrogen atom might absorb a pho-
ton of energy less than 13.6 eV. Describe a process by 
which a 9.8-eV photon might be absorbed. What 
about a 15.2-eV photon?

Q u e s t i o n s

P r o b l e m s

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

4.1 The Atomic Models of Thomson and Rutherford
 1. In Thomson’s plum-pudding model, devise an atomic 

composition for carbon that consists of a pudding of 
charge %6e along with six electrons. Try to confi gure 
a system in which the charged particles move only 
about points in stable equilibrium.

 2. How large an error (in percent) in the velocity do we 
make by treating the velocity of a 7.7-MeV alpha par-
ticle nonrelativistically?

 3. In Example 4.1, show that the electron’s velocity must 
be v&e  "  2v* in order to conserve energy and linear 
momentum.

 4. Thomson worked out many of the calculations for mul-
tiple scattering. If we fi nd an average scattering angle 
of 1° for alpha-particle scattering, what would be the 
probability that the alpha particle could scatter by as 
much as 80° because of multiple scattering? The prob-
ability for large-angle scattering is exp(  !  ("/8u9)2). 
Geiger and Marsden found that about 1 in 8000 ! 
particles were defl ected past 90°. Can multiple scat-

tering explain the experimental results of Geiger and 
Marsden? Explain.

4.2 Rutherford Scattering
 5. Calculate the impact parameter for scattering a 

7.7-MeV ! particle from gold at an angle of (a) 1° and 
(b) 90°.

 6. A beam of 8.0-MeV ! particles scatters from a thin 
gold foil. What is the ratio of the number of ! parti-
cles scattered to angles greater than 1° to the number 
scattered to angles greater than 2°?

 7. For aluminum (Z  $  13) and gold (Z  $  79) targets, what 
is the ratio of an alpha particle scattering at any angle 
for equal numbers of scattering nuclei per unit area?

 8. What fraction of 5-MeV ! particles will be scattered 
through angles greater than 8° from a gold foil (Z  $  79, 
density  $  19.3 g/cm3) of thickness 10!8 m?

 9. In an experiment done by scattering 5.5-MeV ! par-
ticles from a thin gold foil, students fi nd that 10,000 ! 
particles are scattered at an angle greater than 50°. 
(a) How many of these * particles will be scattered 
greater than 90°? (b) How many will be scattered be-
tween 70° and 80°?
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 10. Students want to construct a scattering experiment 
using a powerful source of 5.5-MeV ! particles to scat-
ter from a gold foil. They want to be able to count 
1 particle/s at 50°, but their detector is limited to a 
maximum count rate of 2000 particles/s. Their detec-
tor subtends a small angle. Will their experiment work 
without modifying the detector if the other angle they 
want to measure is 6°? Explain.

 11. The nuclear radii of aluminum and gold are approxi-
mately r  $  3.6 fm and 7.0 fm, respectively. The radii 
of protons and alpha particles are 1.3 fm and 2.6 fm, 
respectively. (a) What energy ! particles would be 
needed in head-on collisions for the nuclear surfaces 
to just touch? (This is about where the nuclear force 
becomes effective.) (b) What energy protons would 
be needed? In both (a) and (b), perform the calcula-
tion for aluminum and for gold.

 12. Consider the scattering of an alpha particle from the 
positively charged part of the Thomson plum-
pudding model. Let the kinetic energy of the * par-
ticle be K (nonrelativistic) and let the atomic radius 
be R. (a) Assuming that the maximum transverse 
Coulomb force acts on the ! particle for a time 
't  $  2R/v (where v is the initial speed of the ! parti-
cle), show that the largest scattering angle we can 
expect from a single atom is

u $
2Z2e 2

4pP0KR
  (b) Evaluate " for an 8.0-MeV ! particle scattering 

from a gold atom of radius 0.135 nm.
 13. Using the results of the previous problem, (a) fi nd the 

average scattering angle of a 10-MeV ! particle from 
a gold atom (R  "  10!10 m) for the positively charged 
part of the Thomson model. (b) How does this com-
pare with the scattering from the electrons?

4.3 The Classical Atomic Model
 14. The radius of a hydrogen nucleus is believed to be 

about 1.2  #  10!15 m. (a) If an electron rotates around 
the nucleus at that radius, what would be its speed ac-
cording to the planetary model? (b) What would be the 
total mechanical energy? (c) Are these reasonable?

 15. Make the (incorrect) assumption that the nucleus is 
composed of electrons and that the protons are out-
side. (a) If the size of an atom were about 10!10 m, 
what would be the speed of a proton? (b) What would 
be the total mechanical energy? (c) What is wrong 
with this model?

 16. Calculate the speed and radial acceleration for a 
ground-state electron in the hydrogen atom. Do the 
same for the He% ion and the Li%% ion.

 17. Compute and compare the electrostatic and gravita-
tional forces in the classical hydrogen atom, assuming 
a radius 5.3  #  10!11 m.

 18. Calculate the time, according to classical laws, it 
would take the electron of the hydrogen atom to radi-

ate its energy and crash into the nucleus. [Hint: The 
radiated power P is given by (1/4#$0)(2Q2/3c3)1d 2r/dt 2 22 where Q is the charge, c the speed of light, 
and r the position vector of the electron from the 
center of the atom.]

4.4 The Bohr Model of the Hydrogen Atom
 19. The Ritz combination rules express relationships be-

tween observed frequencies of the optical emission 
spectra. Prove one of the more important ones:

f(K!)  %  f(L!)  $  f(K%)
  where K! and K% refer to the Lyman series and L* to 

the Balmer series of hydrogen (Figure 4.18).
 20. (a) Calculate the angular momentum in kg # m2/s for 

the lowest electron orbit in the hydrogen atom. Com-
pare the result with Planck’s constant h. (b) Repeat 
for an electron in the n  $  2 state of hydrogen.

 21. Use the known values of $0, h, m, and e to calculate the 
following to fi ve signifi cant fi gures: hc (in eV # nm), 
e2/4#$0 (in eV # nm), mc2 (in keV), a0 (in nm), and E0 
(in eV).

 22. What is the total mechanical energy for a ground-
state electron in H, He%, and Li%% atoms? For which 
atom is the electron most strongly bound? Why?

 23. A hydrogen atom in an excited state absorbs a photon 
of wavelength 410 nm. What were the initial and fi nal 
states of the hydrogen atom?

 24. A hydrogen atom in an excited state emits a photon 
of wavelength 95 nm. What are the initial and fi nal 
states of the hydrogen atom?

 25. What is the binding energy of the electron in the 
ground state of (a) deuterium, (b) He%, and (c) 
Be%%%?

 26. The isotope shift of spectral lines refers to the shift in 
wavelengths (or frequencies) due to the different 
isotopic masses of given elements. Find the isotope 
shifts for each of the four visible Balmer series wave-
lengths for deuterium and tritium compared with 
hydrogen.

 27. Find the isotope shift (see Problem 26) of the ground-
state energy for deuterium and tritium compared with 
the ground-state energy of hydrogen. Express the 
answer in eV.

 28. Describe the visible absorption spectra for (a) a hy-
drogen atom and (b) an ionized helium atom, He%.

 29. A hydrogen atom exists in an excited state for typically 
10!8 s. How many revolutions would an electron make 
in an n  $  3 state before decaying?

 30. Light from a Nd: Yag laser with a wavelength of 397 
nm is incident upon a hydrogen atom in the n  $  2 
state at rest. What is the highest state to which hydro-
gen can be excited?

 31. A muonic atom consists of a muon (mass m  $  
106 MeV/c2 and charge q  $  !e) in place of an elec-
tron. For the muon in a hydrogen atom, what is (a) 
the smallest radius and (b) the binding energy of the 
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160 Chapter 4 Structure of the Atom

muon in the ground state? (c) Calculate the series 
limit of the wavelength for the fi rst three series.

 32. Positronium is an atom composed of an electron and a 
positron (mass m  $  me, charge q  $  %e). Calculate the 
distance between the particles and the energy of 
the lowest energy state of positronium. (Hint: what is 
the reduced mass of the two particles? See Problem 53.)

 33. (a) Find the Bohr radius of the positronium atom 
described in the previous problem. (b) Find the wave-
length for the transition from nu  $  2 to n/  $  1 for 
positronium.

 34. What is the difference in the various Bohr radii rn for 
the hydrogen atom (a) between r1 and r2, (b) between 
r5 and r6, and (c) between r10 and r11? (d) Show that 
for Rydberg atoms (hydrogen atoms with large n, dis-
cussed in Chapter 8) the difference between succes-
sive radii is approximately 2na0.

4.5 Successes and Failures of the Bohr Model
 35. Compare the Balmer series of hydrogen with the se-

ries where n/  $  4 for the ionized helium atom He%. 
What is the difference between the wavelengths of the 
L! and L% line of hydrogen and the nu  $  6 and 8 of 
He%? Is there a wavelength of the Balmer series that is 
very similar to any wavelength values where n/  $  4 in 
He%? Explain.

 36. Calculate the Rydberg constant for the single-
electron (hydrogen-like) ions of helium, potassium, 
and uranium. Compare each of them with Rq and 
determine the percentage difference.

 37. In 1896 Pickering found lines from the star Zeta Pup-
pis that had not been observed on Earth. Bohr 
showed in 1913 that the lines were due to He%. Show 
that an equation giving these wavelengths is

  
1
l

$ R a 1
n2

/
!

1
n2

u
b

  What value should the Rydberg constant R have in 
this case?

4.6 Characteristic X-Ray Spectra and Atomic 
Number

 38. What wavelengths for the L! lines did Moseley predict 
for the missing Z  $  43, 61, and 75 elements? (See 
Example 4.10.)

 39. If the resolution of a spectrograph is '&  $  10!12 m, 
would it be able to separate the K! lines for lead and 
bismuth? Explain.

 40. Determine the correct equation to describe the K% 
frequencies measured by Moseley. Compare that with 
Moseley’s equation for K! frequencies. Does the result 
agree with the data in Figure 4.19? Explain.

 41. Calculate the K! and K% wavelengths for He and Li.
 42. (a) Calculate the ratio of K! wavelengths for uranium 

and carbon. (b) Calculate the ratio of L! wavelengths 
for platinum and calcium.

 43. Calculate the three longest wavelengths and the series 
limit for the molybdenum atom.

 44. An unknown element is used as a target in an x-ray 
tube. Measurements show that the characteristic spec-
tral lines with the longest wavelengths are 0.155 nm 
and 0.131 nm. What is the element? (Hint: you will 
fi nd the answer to Problem 40 to be useful.)

4.7 Atomic Excitation by Electrons
 45. If an electron of 45 eV had a head-on collision with an 

Hg atom at rest, what would be the kinetic energy of 
the recoiling Hg atom? Assume an elastic collision.

 46. In the Franck-Hertz experiment, explain why the 
small potential difference between the grid and col-
lector plate is useful. Redraw the data of Figure 4.21 
the way the data would appear without this small re-
tarding potential.

 47. Calculate the value of Planck’s constant determined 
by Franck and Hertz when they observed the 254-nm 
ultraviolet radiation using Hg vapor.

 48. Consider an element having excited states at 3.6 eV 
and 4.6 eV used as a gas in the Franck-Hertz experi-
ment. Assume that the work functions of the materials 
involved cancel out. List all the possible peaks that 
might be observed with electron scattering up to an 
accelerating voltage of 18 V.

General Problems
 49. The redshift measurements of spectra from magne-

sium and iron are important in understanding distant 
galaxies. What are the K! and L! wavelengths for mag-
nesium and iron?

 50. In the early 1960s the strange optical emission lines 
from starlike objects that also produced tremendous 
radio signals confused scientists. Finally, in 1963 
Maarten Schmidt of the Mount Palomar observatory 
discovered that the optical spectra were just those of 
hydrogen but redshifted because of the tremendous 
velocity of the object with respect to Earth. The object 
was moving away from Earth at a speed of 50,000 
km/s! Compare the wavelengths of the normal and 
redshifted spectral lines for the K! and K% lines of the 
hydrogen atom.

 51. A beam of 8.0-MeV ! particles scatters from a gold foil 
of thickness 0.32 +m. (a) What fraction of the ! par-
ticles is scattered between 1.0° and 2.0°? (b) What is 
the ratio of ! particles scattered through angles 
greater than 1° to the number scattered through an-
gles greater than 10°? Greater than 90°?

 52. In Rutherford scattering we noted that angular mo-
mentum is conserved. The angular momentum of the 
incident ! particle relative to the target nucleus is 
mv0b where m is the mass, v0 is the initial velocity of the 
! particle, and b is the impact parameter. Start with 
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L  $  r  #  p and show that angular momentum is con-
served, and the magnitude is given by mv0b along the 
entire path of the ! particle while it is scattered by the 
Coulomb force from a gold nucleus.

 53. The proton (mass M) and electron (mass m) in a hy-
drogen atom actually rotate about their common 
center of mass as shown in Figure 4.17. The distance 
r  $  re  %  rM is still defi ned to be the electron-nucleus 
distance. Show that Equation (4.24) is only modifi ed 
by substituting for m by

m $  
m

1 %  m/M
 54. In Bohr’s Assumption D, he assumed the mean value 

K of the kinetic energy of the electron-nucleus system 
to be nhforb/2 where forb is the orbital frequency of the 
electron around the nucleus. Calculate forb in the 
ground state in the following ways: (a) Use fclassical in 
Equation (4.34). (b) Use Equation (4.33a), but fi rst 
determine v and r. (c) Show that the mean value K is 
equal to the absolute value of the electron-nucleus 
system total energy and that this is 13.6 eV. Use this 
value of K to determine forb from the relation for K 
stated above.

 55. Show that the quantization of angular momentum 
L $ nU  follows from Bohr’s Assumption D that the 
mean value K of the kinetic energy of the electron-
nucleus system is given by K  $  nhforb/2. Assume a cir-
cular orbit.

 56. (a) Calculate the energies of the three lowest states of 
positronium. (b) Determine the wavelengths of the 
K!, K%, L!, and L% transitions.

 57. Careful measurements of light from a distant galaxy 
show that the longest observed wavelength in the Ly-
man series of hydrogen is 137.15 nm. If the galaxy is 
moving directly away from us, what is its velocity?

 58. Consider a two-electron atom in which the electrons, 
orbiting a nucleus of charge %Ze, follow Bohr-like 
orbits of the same radius r, with the electrons always 
on opposite sides of the nucleus. (a) Show that the 
net force on each electron is toward the nucleus and 
has magnitude

F $
e 2

4pP0r 2 aZ !
1
4
b

  (b) Use the fact that this is the centripetal force to 
show that the square of each electron’s orbital speed 
v is given by

v 2 $
e 2

4pP0mr
aZ !

1
4
b

  (c) Use the result of part (b) along with Bohr’s rule 
that the angular momentum of each of the two elec-
trons is L $ U  in the ground state to show that

r $
P 0h2

pme 2aZ !
1
4
b

  (d) Show that the atom’s total energy (kinetic plus 
potential) is

E $ !
me 4

8P 
2
0h2 a2Z !

1
2
b aZ !

1
4
b

  (e) The energy needed to remove both electrons is 
just the negative of the energy you found in part (d). 
Compute the energy needed to remove both elec-
trons in helium, and then repeat for Li%. Compare 
your results with the experimental values of 79.0 eV 
and 198 eV, respectively.

 59. It may be argued on theoretical grounds that the ra-
dius of the hydrogen atom should depend only on the 
fundamental constants h, e, the electrostatic force 
constant k  $  1/4#$0, and m (the electron’s mass). Use 
dimensional analysis to show that the combination of 
these factors that yields a result with dimensions of 
length is h2/kme2. Discuss this result is relation to 
Equation (4.24).

 60. A Rydberg atom (discussed in more detail in Chapter 
8) is a single-electron atom with a large quantum 
number n. Rydberg states are close together in energy 
(see Figure 4.15), so transitions between adjacent 
Rydberg states produce long-wavelength photons. 
Consider a transition from a state n  %  1 to a state n in 
hydrogen. (a) Starting with Equation (4.30), use the 
binomial expansion to show that this transition pro-
duces a photon with wavelength approximately n3/2R. 
(b) Obtain the same result as in part (a), this time 
starting with Equation (4.25) and computing dE/dn. 
The result, dE/dn, can then be approximated by 
'E/'n, with 'n  $  1 for this transition and 'E  $  hc/& 
for the emitted photon. (c) Using the approximate 
expression you derived in (a) and (b), compute the 
wavelength for a transition from n  $  101 to n  $  100 
in hydrogen. (Use Rq and ignore the reduced-mass 
correction.) Compare your answer with the exact 
wavelength for this transition, computed using Equa-
tion (4.30).

 61. (a) Calculate the K! and K% x-ray wavelengths for mo-
lybdenum and compare the results with those shown 
in the graph in Figure 3.19. (b) Why don’t the L-
series x rays show up in that graph?
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Chapter 3 presented compelling evidence that light (electromagnetic radia-
tion) must be particle-like to explain phenomena such as the photoelectric ef-
fect and Compton scattering. The emission and absorption of photons in atoms 
allow us to understand the optical spectra of hydrogen atoms.

In this chapter we discuss so many new, surprising results that an overview of 
them here is in order. For example, we already know that photons, as electromag-
netic radiation, demonstrate wavelike properties. The only way we can interpret 
certain experimental observations is to conclude that wavelike properties are also 
exhibited by “particles” of matter. We begin the chapter by discussing experiments 
that prove that photons, in the form of x rays, behave as waves when passing through 
crystals. De Broglie’s suggestion that particles may also behave as waves was verified 
by the electron-scattering experiments of Davisson and Germer.

We then present a short review of wave phenomena, including a description 
of the localization of a particle in terms of a collection of waves. Physicists in the 
first part of the twentieth century had considerable difficulty understanding how 
wavelike and particle-like properties can occur in nature in the same entity. We 
now face the same hurdle. Niels Bohr’s principle of complementarity convinces 
us that both wavelike and particle-like properties are needed to give a complete 
description of matter (electrons, protons, and so on) and radiation (photons). 
We shall see that certain physical observables can only be expressed in terms 
of probabilities, with those probabilities determined by using wave functions 
!(x, t). Heisenberg’s uncertainty principle plays a major role in our understand-

C H A P T E R

5 Wave Properties of Matter 
and Quantum Mechanics I

I thus arrived at the following overall concept which guided my studies: 
for both matter and radiations, light in particular, it is necessary to in-
troduce the corpuscle concept and the wave concept at the same time.

Louis de Broglie, 1929

We regard quantum mechanics as a complete theory for which the fun-
damental physical and mathematical hypotheses are no longer suscepti-
ble of modification.

Werner Heisenberg and Max Born, 
paper delivered to the Solvay Congress, 1927

162
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   5.1 X-Ray Scattering 163

ing of particle-like and wavelike behavior. This principle prohibits the precise, 
simultaneous knowledge of both momentum and position or of both energy and 
time. We will see that no experiment requires us to utilize both wave and particle 
properties simultaneously. Although modern quantum theory is applicable pri-
marily at the atomic level, there are many macroscopic observations of its 
effects.

5.1  X-Ray Scattering
Following Röntgen’s discovery of x rays in 1895, intense efforts were made to 
determine the nature and origin of the new penetrating radiation. Charles 
Barkla (Nobel Prize, 1917) made many x-ray measurements at Liverpool Univer-
sity during the early 1900s and is given credit for discovering that each element 
emits x rays of characteristic wavelengths and that x rays exhibit properties of 
polarization.

By 1912 it became clear that x rays were a form of electromagnetic radiation 
and must therefore have wave properties. However, because it had proved 
difficult to refract or diffract x rays as easily as visible light, it was suggested that 
their wavelengths must be much shorter than those of visible light. Max von 
Laue (1879– 1960, Nobel Prize for Physics, 1914), a young theoretical physicist at 
the University of Munich, became interested in the nature of x rays primarily 
because of the presence at Munich of Röntgen and the theorist Arnold 
Sommerfeld (1868– 1951), who would later play an important role in under-
standing atomic structure. Wilhelm Wien (1864– 1928) and Sommerfeld, among 
others, estimated the wavelength of an x ray to be between 10!10 and 10!11 m. 
Knowing the distance between atoms in a crystal to be about 10!10 m, Laue made 
the brilliant suggestion that x rays should scatter from the atoms of crystals. He 
suggested that, if x rays were a form of electromagnetic radiation, interference 
effects should be observed. From the study of optics, we know that wave proper-
ties are most easily demonstrated when the sizes of apertures or obstructions are 
about equal to or smaller than the wavelength of the light. We use gratings in 
optics to separate light by diffraction into different wavelengths. Laue suggested 
that crystals might act as three-dimensional gratings, scattering the waves and 
producing observable interference effects.

Laue designed the experiment and convinced two experimental physicists at 
Munich, Walter Friedrich and Paul Knipping, to perform the measurement. A 
schematic diagram of the transmission Laue process is shown in Figure 5.1 (page 
164), along with one of Friedrich and Knipping’s earliest experimental results. 
When they rotated the crystals, the positions and intensities of the diffraction 
maxima were shown to change. Laue performed the complicated analysis neces-
sary to prove that x rays were scattered as waves from a three-dimensional crystal 
grating. Though the primary purpose of Laue’s proposal was to prove the wave 
nature of x rays, he ended up also demonstrating the lattice structure of crystals, 
which led to the origin of solid-state physics and the development of modern 
electronics.

Two English physicists, William Henry Bragg and his son, William Lawrence 
Bragg, fully exploited the wave nature of x rays and simplified Laue’s analysis. 
W. L. Bragg pointed out in 1912 that each of the images surrounding the bright 
central spot of the Laue photographs could be interpreted as the reflection of 
the incident x-ray beam from a unique set of planes of atoms within the crystal. 
Each dot in the pattern corresponds to a different set of planes in the crystal (see 
Figure 5.1b).

Laue proved wave nature 
of x rays and emphasized 
lattice structure of crystals

Max von Laue (1879– 1960) was 
born, educated, and worked most 
of his life in Germany. After 
studying at Strasburg, Göttingen, 
and Munich, he received his doc-
torate in 1903 from the University 
of Berlin where he studied under 
Max Planck. He subsequently 
worked at several German univer-
sities and did his Nobel Prize–
 winning work on x-ray diffraction 
at Munich. He spent most of his 
productive career as a theoretical 
physicist in Berlin, where he had 
considerable in fluence on the de-
velopment of sci entific research 
in Germany.
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164 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Is x-ray scattering from atoms within crystals consistent with what we know 
from classical physics? From classical electromagnetic theory we know that the 
oscillating electric field of electromagnetic radiation polarizes an atom, causing 
the positively charged nucleus and negatively charged electrons to move in op-
posite directions. The result is an asymmetric charge distribution, or electric 
dipole. The electric dipole oscillates at the same frequency as the incident wave 
and in turn reradiates electromagnetic radiation at the same frequency but in 
the form of spherical waves. These spherical waves travel throughout the matter 
and, in the case of crystals, may constructively or destructively interfere as the 
waves pass through different directions in the crystal.

If we consider x rays scattered from a simple rock salt crystal (NaCl, shown 
in Figure 5.2), we can, by following the Bragg simplification, determine con-
ditions necessary for constructive interference. We study solids in Chapter 10, but 
for now note that the atoms of crystals like NaCl form lattice planes, called Bragg 
planes. We can see from Figure 5.3 that it is possible to have many Bragg planes 
in a crystal, each with different densities of atoms. Figure 5.4 shows an incident 

Photographic!
plate

Sample

Incident x rays

(a) (b)

Figure 5.1 (a) Schematic diagram of Laue diffraction transmission method. A wide range of x-ray 
wavelengths scatters from a crystal sample. The x rays constructively interfere from certain planes, 
producing dots. (b) One of the first results of Friedrich and Knipping in 1912 showing the sym metric 
placement of Laue dots of x-ray scattering from ZnS. The analysis of these results by Laue, although 
complex, convincingly proved that x rays are waves.

Figure 5.2 The crystal structure of NaCl (rock salt) showing two of the possible sets of lattice 
planes (Bragg planes).

William Lawrence Bragg (1890–
 1971) (left) and William Henry 
Bragg (1862– 1942) (right) were 
a son-father team, both of whom 
were educated at Cambridge. The 
father spent 22 years at the Uni-
versity of Adelaide in Australia, 
where his son was born. Both fa-
ther and son initially studied 
mathematics but eventually 
changed to physics. The father 
was a skilled experimen ter, and 
the son was able to conceptualize 
physical problems and express 
them mathematically. They did 
their important work on x-ray 
crystallography in 1912– 1914 
while the father was at the Uni-
versity of Leeds and the son was 
a graduate student at Cambridge 
working under J. J. Thomson. 
Both physicists had long and dis-
tinguished careers, with the son 
being director of the famous Cav-
endish Laboratory at Cambridge 
from 1938 to 1953. W. Lawrence 
Bragg received his Nobel Prize at 
age 25.
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   5.1 X-Ray Scattering 165

plane wave of monochromatic x rays of wavelength l scattering from two adja-
cent planes. There are two conditions for constructive interference of the scat-
tered x rays:

1.  The angle of incidence must equal the angle of reflection of the outgoing 
wave.

2.  The difference in path lengths (2d sin u) shown in Figure 5.4 must be an 
integral number of wavelengths.

We will not prove condition 1 but will assume it.* It is referred to as the law 
of reflection (uincidence " ureflection), although the effect is actually due to diffraction 
and interference. Condition 2 will be met if

 nl " 2d sin u  1n " integer 2  (5.1)

as can be seen from Figure 5.4, where D is the interatomic spacing (distance 
between atoms) and d is the distance between lattice planes. Equation (5.1) was 
first presented by W. L. Bragg in 1912 after he learned of Laue’s results. The 
integer n is called the order of reflection, following the terminology of ruled diffrac-
tion gratings in optics. Equation (5.1) is known as Bragg’s law and is useful for 
determining either the wavelength of x rays or the interplanar spacing d of the 
crystal if l is already known.

W. H. Bragg and W. L. Bragg (who shared the 1915 Nobel Prize) constructed 
an apparatus similar to that shown in Figure 5.5 (page 166), called a Bragg spec-
trometer, and scattered x rays from several crystals. The intensity of the diffracted 
beam is determined as a function of scattering angle by rotating the crystal and 
the detector. The Braggs’ studies opened up a whole new area of research that 
continues today.

Conditions for constructive 
interference

Bragg’s law

d2

d3

d1 " D

Cl

Na

d " D

d sin u

2d sin u

b

a

u

u u

2u

Incident!
plane!
wave

  






Figure 5.3 Top view of NaCl 
(cubic crystal), indicating possible 
lattice planes. D is the interatomic 
spacing and the di are the dis-
tances between lattice planes.

Figure 5.4 Schematic diagram 
illustrating x-ray scattering from 
Bragg lattice planes. The path dif-
ference of the two waves illus-
trated is 2d sin u. Notice that the 
actual scattering angle from the 
incident wave is 2u.

*See L. R. B. Elton and D. F. Jackson, American Journal of Physics 34, 1036 (1966), for a proof.
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166 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Laue diffraction is primarily used to determine the orientation of single 
crystals by mounting the large crystals in a precisely known orientation. Radia-
tion of many wavelengths (“white” light) is projected parallel to a high-symmetry 
direction of the crystal and, in the transmission method, produces arrays of in-
terference maxima spots indicative of a particular plane in the crystal. These 
techniques are used to determine the complete structure of crystalline materials 
including a wide range of novel compounds from simple inorganic solids to 
complex macromolecules, such as proteins. Bragg and Laue x-ray diffraction 
techniques tell us almost everything we know about the structures of solids, liq-
uids, and even complex molecules such as DNA (see Figure 5.6).

If a single large crystal is not available, then many small crystals may be used. 
If these crystals are ground into a powdered form, the small crystals will then 
have random orientations. When a beam of x rays passes through the powdered 
crystal, the interference maxima appear as a series of rings. This technique, 
called powder x-ray diffraction (XRD), is widely used to determine the structure 
of unknown solids, including the crystallographic structure and size. A schematic 
diagram of the powder techniques is shown in Figure 5.7a, along with the film 
arrangement to record powder photographs in Figure 5.7b. The lines indicated 
in part (b) are sections of rings called the Debye-Scherrer pattern, named after the 
discoverers. Figure 5.7c is a sequence of four photographs, each with an increas-
ingly larger number of crystals, which indicates the progression from the Laue 
dots to the rings characteristic of the powder photographs.

Example 5.1 shows the value of x-ray crystallography and its tremendous 
usefulness. The technique pioneered by physicists in the first part of the twenti-
eth century continues to be useful to many scientists in varied fields today.

Powder technique

u
2u

Crystal

Collimators

!

e!

#

X-ray tube!

X rays

Detector

Figure 5.5 Schematic diagram of Bragg spectrometer. X rays are produced by electron bombard-
ment of metal target. The x rays are collimated by lead, scatter from a crystal, and are detected as a 
function of the angle 2u.

(a)

(b)

Figure 5.6 (a)  A computer 
graphic of the DNA double helix 
is shown. (b)  This complex struc-
ture was understood only after 
hundreds of x-ray diffraction 
photos like this one by Rosalind 
Franklin were studied. Franklin, 
who worked at King’s College in 
London in the early 1950s, pro-
duced the images of the DNA 
molecule that helped Watson and 
Crick unravel the DNA structure. 
Franklin died in 1958 at the age 
of 37, four years before the Nobel 
Prize was awarded to Watson and 
Crick.
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   5.1 X-Ray Scattering 167

X rays scattered from rock salt (NaCl) are observed to have 
an intense maximum at an angle of 20° from the incident 
direction. Assuming n " 1 (from the intensity), what must 
be the wavelength of the incident radiation?

Strategy We will use Equation (5.1) to find l, but we need 
to know d, the lattice spacing, and the angle u. Notice that 
the angle between the incident beam and scattered wave for 
constructive interference is always 2u (see Figures 5.4 and 
5.5), and because 2u " 20°, we have u " 10°. We can use the 
density of NaCl to help find d, because the volume taken up 
by one atom is d3.

Solution In Section 4.1 we showed that

 
Number of molecules

Volume
"

NA r

M

where NA is Avogadro’s number, r is the density, and M is 
the gram-molecular weight. For NaCl, r " 2.16 g/cm3 and 
M " 58.5 g/mol.

  
NA 
r

M
"

a6.02 $ 1023 
molecules

mol
b a2.16 

g
cm3 b

58.5 
g

mol

 
NAr

M
 " 2.22 $ 1022 

molecules
cm3

 " 4.45 $ 1022 
atoms
cm3

 " 4.45 $ 1028 
atoms

m3

Because NaCl has a cubic array, we take d as the distance 
between Na and Cl atoms, so we have a volume of d3 per 
atom.

 
1

d 3 " 4.45 $ 1028 
atoms

m3

  d " 2.82 $ 10!10 m " 0.282 nm

This technique of calculating the lattice spacing works for 
only a few cases because of the variety of crystal structures, 
many of which are noncubic.

We use Equation (5.1) to find l.

 l "
2d sin u

n
"
12 2 10.282 nm 2 1sin 10°2

1
" 0.098 nm

which is a typical x-ray wavelength. NaCl is a useful crystal 
for determining x-ray wavelengths and for calibrating ex-
perimental apparatus.

 EXAMPLE 5 .1

P ow
de

r
lin

e

Diffra
cted!

x rays

Powder!
specimen

2u
2u

Incident!
x rays

Undeviated!
x rays

Film

Specimen

Powder line
Photographic!

plate

(a) (b)

Incident!
x rays

(c)
Figure 5.7 (a) Diagram showing the experimental arrangement of producing powder photo-
graphs from random-oriented crystals. (b) Film arrangement to record powder photographs. 
(c) The four photos show a progression of x-ray photographs for fluorite from a single crystal 
(clearly showing dots), through a few crystals, to a large number of crystals, which gives the rings 
the characteristic of an ideal powder photograph. (a) and (b) from N. F. M. Henry, H. Lipson, and W. A. 
Wooster, The Interpretation of X-ray Diffraction Photographs, London: MacMillan (1960).
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168 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

5.2  De Broglie Waves
By 1920 it was established that x rays were electromagnetic radiation that exhib-
ited wave properties. X-ray crystallography and its usefulness in studying the 
crystalline structure of atoms and molecules was being established. However, a 
detailed understanding of the atom was still lacking. Many physicists believed 
that a new, more general theory was needed to replace the rudimentary Bohr 
model of the atom. An essential step in this development was made by a young 
French graduate student, Prince Louis V. de Broglie, who began studying the 
problems of the Bohr model in 1920.

De Broglie was well versed in the work of Planck, Einstein, and Bohr. He was 
aware of the duality of nature expressed by Einstein in which matter and energy 
were not independent but were in fact interchangeable. De Broglie was particularly 
struck by the fact that photons (electromagnetic radiation) had both wave (x-ray 
crystallography) and corpuscular (photoelectric effect) properties. The concept of 
waves is needed to understand interference and diffraction (Section 5.1), but local-
ized corpuscles are needed to explain phenomena like the photoelectric effect 
(Section 3.6) and Compton scattering (Section 3.8). If electromagnetic radiation 
must have both wave and particle properties, then why should material particles not have 
both wave and particle properties as well? According to de Broglie, the symmetry of 
nature encourages such an idea, and no laws of physics prohibit it.

When de Broglie presented his new hypothesis in a doctoral thesis to the Uni-
versity of Paris in 1924, it aroused considerable interest. De Broglie used Einstein’s 
special theory of relativity together with Planck’s quantum theory to establish the 
wave properties of particles. His fundamental relationship is the prediction

 l "
h
p

 (5.2)

That is, the wavelength to be associated with a particle is given by Planck’s con-
stant divided by the particle’s momentum.

De Broglie was guided by the concepts of phase and group velocities of waves 
(see Section 5.4) to arrive at Equation (5.2). Recall that for a photon E " pc, and 
E " hf, so that

 hf " pc " plf

 h " pl

and

 l "
h
p

 (5.3)

De Broglie extended this relation for photons to all particles. Particle waves were 
called matter waves by de Broglie, and the wavelength expressed in Equation 
(5.2) is now called the de Broglie wavelength of a particle.

De Broglie wavelength 
of a particle

Matter waves

Calculate the de Broglie wavelength of (a) a tennis ball of 
mass 57 g traveling 25 m/s (about 56 mph) and (b) an elec-
tron with kinetic energy 50 eV.

Strategy The calculation for both of these wavelengths is 
a straightforward application of Equation (5.2).

 EXAMPLE 5 .2

After serving in World War I, 
Prince Louis V. de Broglie 
(1892– 1987) resumed his 
studies toward a doctoral degree 
at the University of Paris in 1924, 
where he reported his concept of 
matter waves as part of his doc-
toral dissertation. De Broglie 
spent his life in France where 
he enjoyed much success as an 
author and teacher.
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   5.2 De Broglie Waves 169

How can we show whether such objects as the tennis ball or the electron in the 
previous example exhibit wavelike properties? The best way is to pass the objects 
through a slit having a width of the same dimension as the object’s wavelength. We 
expect it to be virtually impossible to demonstrate interference or diffraction for 
the tennis ball, because we cannot find a slit as narrow as 10!34 m. It is unlikely we 
will ever be able to demonstrate the wave properties of the tennis ball. But the 
de Broglie wavelength of the 50-eV electron, about 0.2 nm, is large enough that 
we should be able to demonstrate its wave properties. Because of their small mass, 
electrons can have a small momentum and in turn a large wavelength (l " h/p). 
Electrons offer our best chance of observing effects due to matter waves.

Bohr’s Quantization Condition
One of Bohr’s assumptions concerning his hydrogen atom model was that the an-
gular momentum of the electron-nucleus system in a stationary state is an integral 
multiple of h/2p. Let’s now see if we can predict this result using de Broglie’s result. 
Represent the electron as a standing wave in an orbit around the proton. The con-
dition for a standing wave in this confi guration is that the entire length of the stand-
ing wave must just fi t around the orbit’s circumference. We show an example of this 
in Figure 5.8. In order for it to be a correct standing wave, we must have

 n l " 2pr

where r is the radius of the orbit. Now we use the de Broglie relation for the 
wavelength and obtain

 2pr " n l " n 
h
p

The angular momentum of the electron in this orbit is L " rp, so we have, using 
the above relation,

 L " r p "
nh
2p

" nU

We have arrived at Bohr’s quantization assumption by simply applying de 
 Broglie’s wavelength for an electron in a standing wave. This result seemed to 
justify Bohr’s assumption. De Broglie’s wavelength theory for particles was a 
crucial step toward the new quantum theory, but experimental proof was lack-
ing. As we will see in the next section, this was soon to come.

"

Figure 5.8 A schematic diagram 
of standing waves in an electron 
orbit around a nucleus. An inte-
gral number of wavelengths fits in 
the orbit. Note that the electron 
does not “wiggle” around the nu-
cleus. The displacement from the 
dashed line represents its wave 
amplitude.

Solution (a) For the tennis ball, m " 0.057 kg, so

 l "
h
p

"
6.63 $ 10!34 J # s10.057 kg 2 125 m/s 2 " 4.7 $ 10!34 m

(b) For the electron, it is more convenient to use eV units, 
so we rewrite the wavelength l as

 l "
h
p

"
h12mK 

"
hc221mc 2 2K

 l "
1240 eV # nm212 2 10.511 $ 106 eV 2 150 eV 2 " 0.17 nm

Note that because the kinetic energy of the electron is so 
small, we have used a nonrelativistic calculation. Calcula-
tions in modern physics are normally done using eV units, 
both because it is easier and also because eV values are more 
appropriate for atoms and nuclei (MeV, GeV) than are 
joules. The values of hc and some masses can be found in-
side the front cover.
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Special Topic

Cavendish Laboratory

B efore the 1870s most of our scientific knowledge 
resulted from the research of people working in 

their own private laboratories. William Thomson (who 
would later become Lord Kelvin) established a labora-
tory at the University of Glasgow in the 1840s, and in 
the 1860s efforts began at both Oxford and  Cambridge 
to build physical laboratories. In 1871 James Clerk 
Maxwell was called from his Scottish home to become 
the first Cavendish Professor at Cambridge Univer-
sity. Maxwell began planning and supervising the 
construction of the laboratory on Free School Lane in 
central Cambridge with an unexpected fervor while 
he gave regular lectures to students. The most impor-
tant work of the day was to demonstrate the existence 
of Maxwell’s electromagnetic waves, but they were 
“scooped” by Heinrich Hertz in Germany.  Maxwell’s 
successor was Lord Rayleigh, who published 50 pa-
pers during his five years at Cavendish before return-
ing to his estate farm where he made most of his dis-
coveries (including the noble gases) at his private 
laboratory.

The appointment of the young J. J. Thomson at 
age 28 as Cavendish Professor in 1884 was the begin-
ning of a long and fruitful era in atomic physics. The 
discovery of the electron in 1897, the arrival of the 
young Ernest Rutherford from New Zealand as a stu-
dent, and the early work of C. T. R. Wilson that led to 
the development of the cloud chamber all helped 
the Cavendish Laboratory expand, prosper, and grow 
in stature under Thomson’s leadership. Thomson’s 
35-year leadership was remarkable in many ways, par-
ticularly in the manner he stepped down in 1919 
upon the opportunity of attracting Rutherford back to 
 Cav en dish to be the next Professor.

During Rutherford’s 19-year reign, the Cavendish 
became the most renowned center of science in the 
world. It attracted the best students, researchers, and 
visitors from all over the world. Rutherford was a team 
leader, and he surrounded himself with a collection of 
young physicists whom he called “his boys.” By the end 
of the Rutherford era in 1937, the laboratory was mov-

ing into new directions with particle accelerators and 
cryogenic labs.

World War II would change the face of the 
 Cavendish forever. Physicists spread out to perform 
wartime research, particularly on the development of 
the atomic bomb and radar, both of which played 
large roles in the allied victory. William Lawrence 
Bragg returned to Cambridge as Cavendish Professor 
to succeed Rutherford in 1937, and the field of x-ray 
crystallography flourished. The Cavendish scientists 
have had an uncanny ability to choose productive re-
search areas. It has been said that the fields of molecu-
lar biology and radio astronomy started at the Caven-
dish in the late 1940s, and Bragg must be given credit 
for the foresight to support these fledgling subjects in 
the face of “Big Science” in the United States. Bragg’s 
tenure as Cavendish Professor ended in 1953 just 
when Watson and Crick succeeded in discovering the 
DNA structure. Bragg also supported J. A. Ratcliffe 
and Martin Ryle, who had worked on radar at the 
Cavendish during the war, to construct the first radio 
telescope. This effort led to the discovery of quasars 
and pulsars.

When Sir Nevill Mott succeeded Bragg as 
 Cav endish Professor in 1954, the lab made a turn to-
ward solid state physics. Mott had worked on collision 
theory and nuclear problems in the 1930s but eventu-
ally turned to theoretical investigations of electronic 
systems. Brian Josephson did his pioneering theoreti-
cal work (see Chapter 10) on the supercurrent through 
a tunnel barrier while a student, graduating in 1964 
with his Ph.D. In 1974 the Cavendish moved to a new 
site in West Cambridge. Condensed matter physics 
now accounts for the greater part of research at the 
Cavendish, but the groups in radio astronomy and 
high-energy physics are still important. The Caven-
dish Laboratory has set a standard that other labora-
tories can only hope to emulate.

We end with a list of Nobel Prizes awarded to 
those who did their most important work at the 
Cavendish Laboratory. The asterisks (for example, 
Rutherford and Rayleigh) indicate Nobel Prizes awarded 
primarily for work done elsewhere to people who are 
still widely associated with the Cavendish Laboratory.

170
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Cavendish Laboratory Nobel Prizes

1904 Physics Lord Rayleigh* Density of gases, discovery of argon
1906 Physics Sir J. J. Thomson Investigations of electricity in gases
1908 Chemistry Lord Rutherford* Element disintegration
1915 Physics Sir William Lawrence Bragg X-ray analysis of crystals
1917 Physics Charles G. Barkla Secondary x rays
1922 Chemistry Francis W. Aston Isotopes discovery
1927 Physics Charles T. R. Wilson Cloud chamber
1928 Physics Sir Owen W. Richardson Thermionic emission
1935 Physics Sir James Chadwick Neutron discovery
1937 Physics Sir George P. Thomson Electron diffraction
1947 Physics Sir Edward V. Appleton* Upper atmosphere investigations
1948 Physics Lord Patrick M. S. Blackett Discoveries in nuclear physics
1951 Physics Sir John D. Cockcroft and  Nuclear transmutation
    Ernest T. S. Walton
1962 Physiology  Francis H. C. Crick and  DNA discoveries
   or Medicine   James D. Watson
1962 Chemistry Max Perutz and Sir John Kendrew Structures of globular proteins
1973 Physics Brian D. Josephson Supercurrent in tunnel barriers
1974 Physics Sir Martin Ryle and Antony Hewish Radio astrophysics, pulsars
1977 Physics Sir Nevill F. Mott Magnetic and disordered systems
1978 Physics P. L. Kapitsa* Low-temperature physics
1982 Chemistry Sir Aaron Klug Nucleic acid– protein complexes

Figure A Upper left, the old Cavendish Laboratory on Free School 
Lane in Cambridge. The original building is to the left of the gate. The 
first four Cavendish professors: James Clerk Maxwell, upper right; Lord 
Rayleigh, bottom left; and Sir J. J. Thomson (left) and Lord Rutherford, 
bottom right.
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172 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

5.3  Electron Scattering
In 1925 a laboratory accident led to experimental proof for de Broglie’s wave-
length hypothesis. C. Davisson and L. H. Germer of Bell Telephone Laboratories 
(now part of Alcatel-Lucent) were investigating the properties of metallic sur-
faces by scattering electrons from various materials when a liquid air bottle ex-
ploded near their apparatus. Because the nickel target they were currently using 
was at a high temperature when the accident occurred, the subsequent breakage 
of their vacuum system caused significant oxidation of the nickel. The target had 
been specially prepared and was rather expensive, so they tried to repair it by, 
among other procedures, prolonged heating at various high temperatures in 
hydrogen and under vacuum to deoxidize it.

A simple diagram of the Davisson-Germer apparatus is shown in Figure 5.9. 
Upon putting the refurbished target back in place and continuing the experi-
ments, Davisson and Germer found a striking change in the way electrons were 
scattering from the nickel surface. They had previously seen a smooth variation 
of intensity with scattering angle, but the new data showed large numbers of 
scattered electrons for certain energies at a given scattering angle. Davisson and 
Germer were so puzzled by their new data that after a few days, they cut open the 
tube to examine the nickel target. They found that the high temperature had 
modified the polycrystalline structure of the nickel. The many small crystals of 
the original target had been changed into a few large crystals as a result of the 
heat treatment. Davisson surmised it was this new crystal structure of nickel—
the arrangement of atoms in the crystals, not the structure of the atoms—that 
had caused the new intensity distributions. Some 1928 experimental results of 
Davisson and Germer for 54-eV electrons scattered from nickel are shown in 
Figure 5.10. The scattered peak occurs for f " 50°.

The electrons were apparently being diffracted much like x rays, and 
 Davisson, being aware of de Broglie’s results, found that the Bragg law applied 
to their data as well. Davisson and Germer were able to vary the scattering angles 
for a given wavelength and vary the wavelength (by changing the electron ac-
celerating voltage and thus the momentum) for a given angle.

The relationship between the incident electron beam and the nickel crystal 
scattering planes is shown in Figure 5.11. In the Bragg law, 2u is the angle 
between the incident and exit beams. Therefore, f " p ! 2u " 2a. Because 
sin u " cos(f/2) " cos a, we have for the Bragg condition, nl " 2d cos a. 

Clinton J. Davisson (1881– 1958) 
is shown here in 1928 (right) 
looking at the electronic diffrac-
tion tube held by Lester H. 
Germer (1896– 1971). Davisson 
received his undergraduate de-
gree at the University of Chicago 
and his doctorate at Princeton. 
They performed their work at Bell 
Telephone Laboratory located in 
New York City. Davisson received 
the Nobel Prize in Physics in 
1937.

Filament

Movable
electron
detector

Electron
beam

Target

f

Scattered electrons

Figure 5.9 Schematic diagram 
of Davisson-Germer experiment. 
Electrons are produced by the 
hot filament, accelerated, and fo-
cused onto the target. Electrons 
are scattered at an angle f into a 
detector, which is movable. The 
distribution of electrons is mea-
sured as a function of f. The en-
tire apparatus is located in a 
vacuum.
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   5.3 Electron Scattering 173

However, d is the lattice plane spacing and is related to the interatomic distance 
D by d " D sin a so that

  nl " 2d sin u " 2d cos a " 2D sin a cos a

 nl " D sin 2a " D sin f  (5.4)

or

 l "
D sin f

n  (5.5)

For nickel the interatomic distance is D " 0.215 nm. If the peak found by 
 Davisson and Germer at 50° was n " 1, then the electron wavelength should be

 l " (0.215 nm)(sin 50°) " 0.165 nm

Determine the de Broglie wavelength for a 54-eV electron 
used by Davisson and Germer.

Strategy We shall use the de Broglie wavelength Equation 
(5.2) to determine the wavelength l. We need to find the 
momentum of a 54-eV electron, but because the energy is so 
low, we can do a nonrelativistic calculation. We shall do a 

general calculation for the wavelength of any electron ac-
celerated by a voltage of V0.

Solution We write the kinetic energy K.E. in terms of the 
final momentum of the electron and the voltage V0 across 
which the electron is accelerated.

 
p 2

2m
" K .E. " eV0 (5.6)

 EXAMPLE 5 .3

Intensity "

Peak
Data

50°!

44 eV
0

48 eV 54 eV 64 eV 68 eV

radial distance along dashed!
line to data at angle f

f

Figure 5.10 Davisson and Germer data for scattering of electrons from Ni. The peak f " 50° 
builds dramatically as the energy of the electron nears 54 eV. From C. J. Davisson, Franklin Institute Journal 
205, 597– 623 (1928).

Figure 5.11 The scattering of 
electrons by lattice planes in a 
crystal. This figure is useful to 
compare the scattering relations 
nl " 2d sin u and nl " D sin f  
where u and f are the angles 
shown, D " interatomic spacing, 
and d " lattice plane spacing.

Scattered beam

Incident beam

2u

d

D
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174 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

We note that the value of the de Broglie wavelength 0.167 nm found in the previ-
ous example is in good agreement with that found experimentally (0.165 nm) 
by Davisson and Germer for the peak at 50°. This is an important result and 
shows that electrons have wavelike properties.

Shortly after Davisson and Germer reported their experiment, George P. 
Thomson (1892– 1975), son of J. J. Thomson, reported seeing the effects of electron 
diffraction in transmission experiments. The first target was celluloid, and soon 
after that gold, aluminum, and platinum were used. The randomly oriented poly-
crystalline sample of beryllium produces rings (see Figure 5.12b). Davisson and 
Thomson received the Nobel Prize in 1937 for their investigations, which clearly 
showed that particles exhibited wave properties. In the next few years hydrogen and 
helium atoms were also shown to exhibit wave diffraction. An important modern 
measurement technique uses diffraction of neutrons to study the crystal and mo-
lecular structure of biologically important substances. All these experiments are 
consistent with the de Broglie hypothesis for the wavelength of a particle with mass.

In introductory physics, we learned that a particle (ideal 
gas) in thermal equilibrium with its surroundings has a ki-
netic energy of 3kT/2. Calculate the de Broglie wavelength 
for (a) a neutron at room temperature (300 K) and (b) a 
“cold” neutron at 77 K (liquid nitrogen).

Strategy In both of these cases we will use Equation (5.2) 
to find the de Broglie wavelength. First, we will need to de-
termine the momentum, and we note in both cases the en-
ergies of the particles will be so low that we can perform a 
nonrelativistic calculation. Neutrons have a rest energy of 
almost 1000 MeV, and their kinetic energies at these tem-
peratures will be quite low (0.026 eV at 300 K).

Solution We begin by finding the de Broglie wavelength of 
the neutron in terms of the temperature.

 
p 2

2m
" K .E. "

3
2

 kT  (5.8)

  p " 13mkT

  l "
h
p

"
h13mkT

"
hc231mc 2 2kT

  "
1

T 1/2 
1240 eV # nm231938 $ 106 eV 2 18.62 $ 10!5 eV/K 2  

It again has been convenient to use eV units.

  l "
2.52
T 

1/2 nm # K1/2

  l1300 K 2 "
2.52 nm # K1/21300 K

" 0.145 nm
 

(5.9)

  l177 K 2 "
2.52 nm # K1/2177 K

" 0.287 nm

These wavelengths are thus suitable for diffraction by crys-
tals. “Supercold” neutrons, used to produce even larger 
wavelengths, are useful because extraneous electric and 
magnetic fields do not affect neutrons nearly as much as 
electrons.

 EXAMPLE 5 .4

We find the momentum from this equation to be p " 212m 2 1eV0 2 . The de Broglie wavelength from Equation 
(5.2) is now

 l "
h
p

"
hc
pc

"
hc212mc 2 2 1eV0 2

  "
1240 eV # nm212 2 10.511 $ 106 eV 2 1eV0 2

  l "
1.226 nm # V1/22V0

 (5.7)

where the constants h, c, and m have been evaluated and V0 
is the voltage. For V0 " 54 V, the wavelength is

 l "
1.226 nm # V 1/2154 V 

" 0.167 nm
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   5.4 Wave Motion 175

5.4  Wave Motion
Because particles exhibit wave behavior, as shown in the last section for electron 
diffraction, it must be possible to formulate a wave description of particle mo-
tion. This is an essential step in our progress toward understanding the behavior 
of matter—the quantum theory of physics. Our development of quantum theory 
will be based heavily on waves, so we now digress briefly to review the physics of 
wave motion, which we shall soon apply to particles.

In introductory physics, we study waves of several kinds, including sound 
waves and electromagnetic waves (including light). The simplest form of wave 
has a sinusoidal form; at a fixed time (say, t " 0) its spatial variation looks like

 ° 1x, t 2 0 t"0 " A sin a 2p
l

 x b  (5.10)

as shown in Figure 5.13 (p. 176). The function %(x, t) represents the instanta-
neous amplitude or displacement of the wave as a function of position x and time 
t. In the case of a traveling wave moving down a string, % is the displacement of 
the string from equilibrium; and in the case of electromagnetic radiation, % is 
the magnitude of the electric field E or magnetic field B. The maximum dis-
placement A is normally called the amplitude, but a better term for a harmonic 
wave such as we are considering may be harmonic amplitude.

As time increases, the position of the wave will change, so the general ex-
pression for the wave is

 ° 1x, t 2 " A sin c 2p
l

 1x ! vt 2 d  (5.11) Wave form

(a) (b)

Figure 5.12 Examples of transmission electron diffraction photographs. (a) Produced by scatter-
ing 120-keV electrons on the quasicrystal Al80Mn20. (b) Electron diffraction pattern on beryllium. 
Notice that the dots in (a) indicate that the sample was a crystal, whereas the rings in (b) indicate 
that a randomly oriented sample (or powder) was used.
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176 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

The position at time t " t0 is also shown in Figure 5.13. The wavelength l is 
defined to be the distance between points in the wave with the same phase, for 
example, positive wave crests. The period T is the time required for a wave to 
travel a distance of one wavelength l. Because the velocity [actually phase veloc-
ity, see Equation (5.17)] of the wave is v, we have l " vT. The frequency f  (" 
1/T ) of a harmonic wave is the number of times a crest passes a given point 
(a complete cycle) per second. A traveling wave of the type described by Equation 
(5.11) satisfies the wave equation*

 
02°
0x 2 "

1
v 2 

02°
0t 2  (5.12)

If we use l " vT, we can rewrite Equation (5.11) as

 ° 1x, t 2 " A sin c2p a x
l

!
t
T
b d  (5.13)

We can write Equation (5.13) more compactly by defining† the wave number k 
and angular frequency v by

 k !
2p
l
  and  v "

2p
T

 (5.14)

Equation (5.13) then becomes

 %(x, t) " A sin(kx ! vt) (5.15)

This is the mathematical description of a sine curve traveling in the positive x 
direction that has a displacement % " 0 at x " 0 and t " 0. A similar wave travel-
ing in the negative x direction has the form

 %(x, t) " A sin(kx # vt) (5.16)

The phase velocity vph is the velocity of a point on the wave that has a given 
phase (for example, the crest) and is given by

 vph "
l

T
"
v

k
 (5.17)

If the wave does not have % " 0 at x " 0 and t " 0, we can describe the wave 
using a phase constant !:

 %(x, t) " A sin(kx ! vt # f) (5.18)

For example, if f " p/2, Equation (5.18) can be written

 %(x, t) " A cos(kx ! vt) (5.19)

Observation of many kinds of waves has established the general result that 
when two or more waves traverse the same region, they act indepen dently of each 
other. According to the principle of superposition, we add the displacements of 

Wave number and angular 
frequency

Phase velocity

Phase constant

Principle of superposition

Figure 5.13 Wave form of a 
wave moving to the right at speed 
v shown at t " 0 and t " t0.

l
%(x,t)

vt0 t " 0

x !

t " t0

*The derivation of the wave equation is presented in most introductory physics textbooks for a wave 
on a string, although it is often an optional section and might have been skipped. It would be worth-
while for the student to review its derivation now, especially the use of the partial derivatives.

†The term “wave number” has two common usages. Spectroscopists often use “wave number” as the 
reciprocal of the wavelength (1/"), so that it’s simply the number of waves that fi t into a meter of 
length. The convention we adopt here (# " 2$/") is also common and makes some of the formulas 
we use more compact and easier to use.
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   5.4 Wave Motion 177

all waves present. A familiar example is the superposition of two sound waves of 
nearly equal frequencies: The phenomenon of beats is  observed. Examples of 
superposition are shown in Figure 5.14. The net displacement  depends on the 
harmonic amplitude, the phase, and the frequency of each of the individual 
waves. When we add waves at a given position and time, we simply add their 
instantaneous displacements. This can lead to constructive and destructive inter-
ference effects like we saw in x-ray scattering in Section 5.1.

In quantum theory (or quantum mechanics as it is sometimes called to reflect 
its differences from classical mechanics), we will soon learn that we will use waves 
to represent a moving particle. How can we do that? In Figure 5.14 we see that 
when two waves are added together, we obtain regions of relatively large (and 
small) displacement. If we add many waves of different amplitudes and frequen-
cies in particular ways, it is possible to obtain what is called a wave packet. The 
important property of the wave packet is that its net amplitude differs from zero 

Wave packet

p!
20

p!
20

4u!
3

u!
3

u!
3

1!
2

1!
2

2.5

0

0

Sum " sin u # sinau #     b

p 2p 3p 4p 5p 6p
!2.5

(a)

2.5

0

0

Sum " sina   b #     sin(3u) !     sin(0.9u)

p 2p 3p 4p 5p 6p
!2.5

(e)

5.5

0

0

Sum " sin u # 4 sin u

p 2p 3p 4p 5p 6p
!5.5

(c)

2.5

0

0

Sum " sin(5u) # sin(7u)

p 2p
!2.5

Theta (u)Theta (u)

2.5

0

0 p 2p 3p 4p 5p 6p
!2.5

1.5

0

0

Sum " sin u ! sinau #     b

Sum " sina     b # sina   b
p 2p 3p 4p 5p 6p

!1.5

(b)

(f)

(d)

Figure 5.14 Superposition of waves. The heavy blue line is the resulting wave. (a) Two waves of 
equal frequency and amplitude that are almost in phase. The result is a larger wave. (b) As in (a) 
but the two waves are almost out of phase. The result is a smaller wave. (c) Superposition of two 
waves with the same frequency, but different amplitudes. (d) Superposition of two waves of equal 
amplitude but different frequencies. (e) Superposition of three waves of different amplitudes and 
frequencies. (f) Superposition of two waves of almost the same frequency over many wavelengths, 
creating the phenomenon of beats. The blue dashed line indicates an envelope that denotes the 
maximum displacement of the combined waves.
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178 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

only over a small region &x as shown in Figure 5.15. We can localize the position 
of a particle in a particular region by using a wave packet description (see Prob-
lem 67 for a calculation of this effect).

Let us examine in detail the superposition of two waves. Assume both waves 
have the same harmonic amplitude A but different wave numbers (k1 and k2) and 
angular frequencies (v1 and v2). The superposition of the two waves is the sum

  ° 1x, t 2 " °11x, t 2 # °21x, t 2
  " A cos1k1x ! v1t 2 # A cos1k2x ! v2t 2
  " 2A cos c 1

2
 1k1 ! k2 2x !

1
2

 1v1 ! v2 2 t d cos c 1
2

 1k1 # k2 2x !
1
2

 1v1 # v2 2 t d
  " 2A cos a ¢k

2
 x !

¢v
2

 t b cos1kavx ! vavt 2  

where &k " k1 ! k2, &v " v1 ! v2, kav " (k1 # k2)/2, and vav " (v1 # v2)/2. We 
display similar waves in Figure 5.14a– d, where the heavy solid line indicates the 
sum of the two waves. In Figure 5.14f the blue dashed line indicates an envelope, 
which denotes the maximum displacement of the combined waves. The com-
bined (or summed) wave % oscillates within this envelope with the wave number 
kav and angular frequency vav. The envelope is described by the first cosine factor 
of  Equation (5.21), which has the wave number &k/2 and angular frequency 
&v/2. The individual waves %1 and %2 each move with their own phase velocity: 
v1/k1 and v2/k2. The combined wave has a phase velocity vav/kav. When combin-
ing many more than two waves, one obtains a pulse, or wave packet, which moves 
at the group velocity, as shown later. Only the group velocity, which describes the 
speed of the envelope (ugr " &v/&k), is important when dealing with wave 
packets.

In contrast to the pulse or wave packet, the combination of only two waves is 
not localized in space. However, for purposes of illustration, we can identify a “lo-
calized region” &x " x2 ! x1 where x1 and x2 represent two consecutive points where 
the envelope is zero (or maximum, see Figure 5.14f). The term &k # x/2 in Equation 
(5.21) must be different by a phase of p for the values x1 and x2, because x2 ! x1 
represents only one half of the wavelength of the envelope confining the wave.

  
1
2

 ¢k x2 !
1
2

 ¢k x1 " p

 ¢k 1x2 ! x1 2 " ¢k ¢x " 2p 
(5.22)

Similarly, for a given value of x we can determine the time &t over which the wave 
is localized and obtain

 ¢v ¢t " 2p (5.23)

The results of Equations (5.22) and (5.23) can be generalized for a case in which 
many waves form the wave packet (see Problem 67). The equations, &k &x " 2p 
and &v &t " 2p, are significant because they tell us that in order to know pre-
cisely the position of the wave packet envelope (&x small), we must have a large 
range of wave numbers (&k large). Similarly, to know precisely when the wave is 
at a given point (&t small), we must have a large range of frequencies (&v large). 
Equation (5.23) is the origin of the bandwidth relation, which is important in 
electronics. A particular circuit component must have a large bandwidth &v in 
order for its signal to respond in a short time &t.

!x

Figure 5.15 An idealized wave 
packet localized in space over a 
region &x is the superposition of 
many waves of different ampli-
tudes and frequencies. (5.20)

(5.21)

03721_ch05_162-200.indd   17803721_ch05_162-200.indd   178 9/29/11   9:48 AM9/29/11   9:48 AM



   5.4 Wave Motion 179

If we are to treat particles as matter waves, we have to be able to describe the 
particle in terms of waves. An important aspect of a particle is its localization in 
space. That is why it is so important to form the wave packet that we have been 
discussing. We extend Equation (5.20) by summing over many waves with pos-
sibly different wave numbers, angular frequencies, and amplitudes.

 ° 1x, t 2 " a
i

Ai cos1kix ! vit 2  (5.24)

Such a result is called a Fourier series. When dealing with a continuous spec-
trum, it may be desirable to extend Equation (5.24) to the integral form called 
a Fourier integral.

 ° 1x, t 2 " "A~1k 2cos1kx ! vt 2  dk (5.25)

The amplitudes Ai and A~1k 2  may be functions of k. The use of Fourier series and 
Fourier integrals is at a more advanced level of mathematics than we want to pur-
sue now.* We can, however, illustrate their value by one important example.

Gaussian Wave Packet Gaussian wave packets are often used to represent the 
position of particles, as illustrated in Figure 5.16, because the associated integrals 
are relatively easy to evaluate. At a given time t, say t " 0, a Gaussian wave can be 
expressed as

 ° 1x, 0 2 " c1x 2 " Ae !¢k 
2 x 

2
 cos1k0x 2  (5.26)

where &k expresses the range of wave numbers used to form the wave packet. The 
cos(k0x) term describes the wave oscillating inside the envelope bounded by the 
(Gaussian) exponential term e !¢k 

2 x 
2
. The intensity distribution I(k) for the wave 

numbers leading to Equation (5.26) is shown in Figure 5.16a. There is a high prob-
ability of a particular measurement of k being within one standard deviation of the 
mean value k0. The function c(x) is shown in Figure 5.16b. For simplicity, let the 
constant A be 1. There is a good probability of finding the particle within the values 
of x " 0 [c(x) " 1] and x " &x/2 [c(x) " exp((!&k2 &x2)/4)]. Roughly, the value 
of c(x) at the position x " &x/2 is about 0.6 (see Figure 5.16b), so we have

 e !¢k 
2 ¢x 

2
 /4 # 0.6

Fourier series and integral

Gaussian function

&x

s " &k

(b)(a)

c(x)

(k) x !

k
k0

Gaussian

cos k0x

e!&k2&x2

*See John D. McGervey, Introduction to Modern Physics, Chap. 4, Orlando, FL: Academic Press (1983).
Figure 5.16 The form of the 
probability distribution or inten-
sity I(k) shown in (a) is taken to 
have a Gaussian shape with a 
standard deviation of &k [deter-
mined when the function 
exp[!(k ! k0)2/ 2s2] has k " k0 
' &k and &k " s, the standard 
deviation]. This I(k) leads to 
c(x), as shown in (b). The enve-
lope for c(x) is described by the 
exp(!&k2 x2) term with the oscil-
lating term cos(k0x) contained by 
the envelope. At the given time t 
" 0, the wave packet (particle) is 
localized to the area x # 0 ' &x 
with wave numbers k # k0 ' &k.
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180 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

We take the logarithm of both sides and find

 
¢k2

 ¢x 2

4
# 0.5    or    ¢k ¢x # 1.4 (5.27)

This has been a rough calculation, and the result depends on the assump-
tions we have made. A more detailed calculation gives &k &x " 1/2. The impor-
tant point is that with the Gaussian wave packet, we have arrived at a result simi-
lar to Equation (5.22), namely, that the product &k &x is on the order of unity. 
The localization of the wave packet over a small region &x to describe a particle 
requires a large range of wave numbers; that is, &k is large. Conversely, a small 
range of wave numbers cannot produce a wave packet localized within a small 
distance.

To complete our study of waves and the representation of particles by wave 
packets, we must be convinced that the superposition of waves is actually able to 
describe particles. We found earlier for the superposition of two waves that the 
group velocity, ugr " &v/&k, represented the motion of the envelope. We can 
generalize this for the case of the wave packet and find that the wave packet 
moves with the group velocity ugr given by

 ugr "
dv
dk

 (5.28)

Because the wave packet consists of many wave numbers, we should remember 
to evaluate this derivative at the center of the wave packet (that is, k " k0).

For a de Broglie wave, we have E " hf and p " h/l. We can rewrite both of 
these equations in terms of U.

  E " hf " U 12pf 2 " Uv (5.29)

  p "
h
l

" U 2p
l

" Uk (5.30)

where we have used the relations v " 2pf and k " 2p/l. If we multiply the de-
nominator and numerator in Equation (5.28) by U, we have

 ugr "
dv
dk

"
d 1 Uv 2
d 1 Uk 2 "

dE
dp

We use the relativistic relation E2 " p2c 2 # m2c4 and its derivative to find

 2E dE " 2pc 2 dp

or

 ugr "
dE
dp

"
pc 2

E
 (5.31)

This is the velocity of a particle of momentum p and total energy E. Thus, it is 
plausible to assume that the group velocity of the wave packet can be associated 
with the velocity of a particle.

The phase velocity of a wave is represented by

 vph " lf "
v

k
 (5.32)

so that v " kvph.

#

#

#

#

#

#

#

#

#

#

l0

Water

Rock

Figure 5.17 Progression with 
time of wave packet for which 
ugr " vph/2. Note how the indi-
vidual wave (arrow and dot alter-
nately) moves through the wave 
packet (symbol $) with time.
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Then, the group velocity is related to the phase velocity by

 ugr "
dv
dk

"
d
dk

 1vphk 2 " vph # k 
dvph

dk
 (5.33)

Thus, the group velocity may be greater or less than the phase velocity. A me-
dium is called nondispersive when the phase velocity is the same for all frequen-
cies and ugr " vph. An example is electromagnetic waves in vacuum. Water waves 
are a good example of waves in a dispersive medium. When one throws a rock in 
a still pond, the envelope of the waves moves more slowly than the individual 
waves moving outward (Figure 5.17).

Dispersion plays an important role in the shape of wave packets. For exam-
ple, in the case of the Gaussian wave packet shown in Figure 5.16 at t " 0, the 
wave packet will spread out as time progresses. A packet that is highly localized 
at one time will have its waves added together in a considerably different manner 
at another time because of the superposition of the waves.

Does the preceding discussion agree with our classical ideas? Consider a 
particle of mass m moving nonrelativistically with speed v. The phase velocity of 
this particle, if we treat it as a de Broglie wave, can be found by

 vph " l
 
f "

h
p

 
E
h

"
E
p

"
p2/2m

p
"

p
2m

"
mv
2m

"
v
2

 (5.34)

The phase velocity is half of the particle’s velocity, so the particle does not move 
with the phase velocity. In Problem 28 you will show that a relativistic treatment 
gives a different relationship between the phase and group velocities, but they 
are still not equal to each other.

We just saw that the speed of a nonrelativistic particle of 
mass m is not equal to its phase velocity. Show that the par-
ticle speed is equal to the group velocity.

Strategy We can use the relation for the group velocity in 
Equation (5.28) or (5.31). Either should work, and using 
both equations will be instructive.

Solution First, we look at Equation (5.31) for our nonrela-
tivistic particle:

 ugr "
pc 2

E
"

mvc 2

mc 2 " v (5.35)

In order to use Equation (5.28) we utilize the results in 
Equations (5.29) and (5.30) for v and k.

 ugr "
d v

dk
"

d 1E / U 2
d 1p / U 2 "

d E
dp

"
d
dp

 
p 2

2m
"

2p
2m

" v

We agree that the particle, when acting as a wave, moves 
with the group velocity, not the phase velocity.

 EXAMPLE 5 .5

Newton showed that deep-water waves have a phase velocity 
of 1gl /2p. Find the group velocity of such waves and dis-
cuss the motion.

Strategy We use Equation (5.33) to relate the group and 
phase velocities, but first we need to find the phase velocity 
vph in terms of k.

 EXAMPLE 5 .6
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182 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

5.5  Waves or Particles?
By this point it is not unusual for a student to be a little confused. We have 
learned that electromagnetic radiation behaves sometimes as waves (as in inter-
ference and diffraction) and other times as particles (as in the photoelectric and 
Compton effects). We have been presented evidence in this chapter that parti-
cles also behave as waves (electron diffraction). Can all this really be true? If a 
particle is a wave, what is waving? In the preceding section we learned that, at 
least mathematically, we can describe particles by using wave packets. Can we 
represent matter as waves and particles simultaneously? And can we represent 
electromagnetic radiation as waves and particles simultaneously? We must an-
swer these questions about the wave-particle duality before proceeding with our 
study of quantum theory.

Double-Slit Experiment with Light To better understand the differences and 
similarities of waves and particles, we analyze Young’s double-slit diffraction 
experiment, which is studied in detail in introductory physics courses (lectures 
and labs) to show the interference character of light. Figure 5.18a shows a 
schematic diagram of the experiment. This experiment is easily performed with 
the use of a low-power laser. With both slits open, a nice interference pattern is 
observed, with bands of maxima and minima. When one of the slits is covered, 
this interference pattern is changed, and a rather broad peak is observed (see 

Solution If we use l " 2p/k, we have

 vph " B gl
2p

" Bg
k

" 2g k!1/2

Now we can take the necessary derivative for Equation 
(5.33).

  ugr " Bg
k

# k 
d
dk
a2g k!1/2b " Bg

k
# k2g a!

1
2

 k!3/2b

  ugr " Bg
k

!
1
2Bg

k
"

1
2Bg

k
"

1
2

 vph

The group velocity is determined to be one half of the phase 
velocity. Such an effect can be observed by throwing a rock 
in a still pond. As the circular waves move out, the individual 
waves seem to run right through the wave crests and then 
disappear (see Figure 5.17).

(b)

(a)

y " 0
y " 0

y

y

d u

!
Screen

Incident!
light waves

Figure 5.18 (a) Schematic dia-
gram of Young’s double-slit ex-
periment. This experiment is eas-
ily performed with a laser as the 
light source (and / W d, where 
d " distance between slit cen-
ters). (b) The solid line  indicates 
the interference pattern due to 
both slits. If either of the slits is 
covered, single-slit diffraction 
gives the result shown in the 
dashed curve.
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Figure 5.18b). Thus, we conclude that the double-slit interference pattern is due 
to light passing through both slits—a wave phenomenon.

However, if the light intensity is reduced, and we observe the pattern on a 
screen, we learn that the light arriving on the screen produces flashes at various 
points, entirely representative of particle behavior! If we take pictures of the 
screen after varying lengths of time, the pictures will look like those shown in 
Figure 5.19. Eventually the interference pattern characteristic of wave behavior 
emerges. There is therefore no contradiction in this experiment. If we want to 
know the precise location of the light (photon), we must use the particle de-
scription and not the wave description.

Electron Double-Slit Experiment Now let us examine a similar double-slit 
experiment that uses electrons rather than light. If matter also behaves as waves, 
then shouldn’t the same experimental results be obtained if we use electrons 
rather than light? The answer is yes, and physicists did not doubt the eventual 
result. This experiment is not as easy to perform as the similar one with light. 
The difficulty arises in constructing slits narrow enough to exhibit wave 
phenomena. This requires l $ a, where a is the slit width. For light of l " 600 
nm, slits can be produced mechanically. However, for electrons of energy 50 keV, 
l " 5 $ 10!3 nm, which is smaller than a hydrogen atom ($0.1 nm). Nevertheless, 
in 1961 C. Jönsson* of Tübingen, Germany, succeeded in showing double-slit 
interference effects for electrons (Figure 5.20) by constructing very narrow slits 
and using relatively large distances between the slits and the observation screen. 
Copper slits were made by electrolytically depositing copper on a polymer strip 
printed on silvered glass plates. This experiment demonstrated that precisely the 
same behavior occurs for both light (waves) and electrons (particles). We have 
seen similar behavior previously from the Debye-Scherrer rings produced by the 
diffraction of x rays (waves) and electrons (particles).

(a) 20 counts (b) 100 counts

(c) 500 counts (d) $4000 counts

Figure 5.19 Computer simulation of Young’s double-slit interference experiment for light or 
electrons. This calculation was performed for slit width a " 4l and slit distance d " 20l. The four 
pictures are for increasing number of counts: 20, 100, 500, 4000. The interference pattern has 
clearly emerged for 500 counts.

Figure 5.20 Demonstration of 
electron interference using two 
slits similar in concept to Young’s 
double-slit experiment for light. 
This result by Claus Jönsson 
clearly shows that electrons 
exhibit wave behavior (see also 
Example 5.7).

*C. Jönsson, American Journal of Physics 42, 4 (1974), translation of Zeitschrift für Physik 161, 454 (1961).
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184 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Another Gedanken Experiment If we were to cover one of the slits in the pre-
ceding Jönsson experiment, the double-slit interference pattern would be 
 destroyed—just as it was when light was used. But our experience tells us the 
electron is a particle, and we believe that it can go through only one of the slits. 
Let’s devise a gedanken experiment, shown in Figure 5.21, to determine which slit 
the electron went through. We set up a light shining on the double slit and use 
a powerful  microscope to look at the region. After the electron passes through 
one of the slits, light bounces off the electron; we observe the reflected light, so 
we know which slit the electron came through.

To do this experiment, we need to use light having wavelength smaller than 
the slit separation d, in order to determine which slit the electron went through. 
We use a subscript “ph” to denote variables for light (photon). Therefore, we 
have lph ( d. The momentum of the photon is

 pph "
h
lph

)
h
d

In the experiment by Jönsson, 50-keV electrons impinged 
on slits of width 500 nm separated by a distance of 2000 nm. 
The observation screen was located 350 mm beyond the 
slits. What was the distance between the first two maxima?

Strategy The equation specifying the orders of maxima 
and the angle u from incidence is (see Figure 5.18) given by

 d sin u " nl (5.36)

The first maximum is of order n " 0 and occurs for u " 0. 
The next maximum, at angle u, occurs for n " 1:

 sin u "
l

d
"

l

2000 nm

We need to determine the wavelength l to find the angle u. 
Once we know u, we can find the distance between the two 
maxima on the observation screen.

Solution We have already calculated the wavelength for 
electrons of energy eV0 in Equation (5.7).

 l "
1.226 nm # V1/2250 $ 103 V

" 5.48 $ 10!3 nm

Because 50 keV may be too high an energy for a nonrelativ-
istic calculation such as that done in Equation (5.7), we 
should perform a relativistic calculation to be certain. We 
first find the momentum and insert that into l " h/p.

  1  pc 22 " E 2 ! E   2
0 " 1K # E 0 22 ! E   2

0

  " 150 $ 103 eV # 0.511 $ 106 eV 22
  ! 10.511 $ 106 eV 22
  " 10.231 $ 106 eV 22
Now we can determine the wavelength.

 l "
h
p

"
hc
pc

"
1240 eV # nm

0.231 $ 106 eV
" 5.36 $ 10!3 nm

Therefore, we find the more accurate relativistic value to be 
somewhat less (2%) than the nonrelativistic value. Now we 
can determine the angle.

 sin u "
5.36 $ 10!3 nm

2000 nm
" 2.68 $ 10!6

The distance of the first maximum along the screen is y " 
/ tan u, but for such a small angle, sin u # tan u.

  y " / tan u # / sin u " 350 mm12.68 $ 10!6 2
  " 9.38 $ 10!4 mm 

106 nm
mm

" 938 nm

Such a diffraction pattern is too small to be viewed by the 
naked eye. Jönsson magnified the pattern by a series of elec-
tronic lenses and then observed a fluorescent screen with a 
10-power optical microscope to see the diffraction pattern 
as expected.

 EXAMPLE 5 .7
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   5.5 Waves or Particles? 185

For us to show the interference effects for the electrons passing through the slits, 
the electrons must also have a wavelength on the order of the slit separation d, 
lel $ d. The momentum of the electrons will be on the order of

 pel "
h
lel

$
h
d

The difficulty is that the momentum of the photons used to determine which 
slit the electron went through is sufficiently great to strongly modify the momen-
tum of the electron itself, thus changing the direction of the electron! The attempt 
to identify which slit the electron is passing through will in itself change the inter-
ference pattern. We will take a closer look at this experiment in Section 5.6. In 
trying to determine which slit the electron went through, we are examining the 
particle-like behavior of the electron. When we are examining the interference 
pattern of the electron, we are using the wavelike behavior of the electron.

Bohr resolved this dilemma by pointing out that the particle-like and wave-
like aspects of nature are complementary. Both are needed—they just can’t be 
observed simultaneously.

Bohr’s principle of complementarity: It is not possible to describe physical 
observables simultaneously in terms of both particles and waves.

Physical observables are those quantities such as position, velocity, momentum, 
and energy that can be experimentally measured. In any given instance we must 
use either the particle description or the wave description. Usually the choice is 
clear. The interference pattern of the double-slit experiment suggests that the 
light (or electron) had to go through both slits, and we must use the wave de-
scription. In our description of nature, we cannot describe phenomena by dis-
playing both particle and wave behavior at the same time.

By the use of the principle of complementarity, we can better understand 
the wave-particle duality problem, which has been plaguing us. It is not unusual 
for students to feel uncomfortable with this duality, which does not exist in clas-
sical physics. However, as a “principle” and not a “law,” the complementarity 
principle does seem to describe nature, and, as such, we use it. We must pay close 
attention to the fact that we do not use waves and particles simultaneously to 
describe a particular phenomenon. Experiments dictate what actually happens 
in nature, and we must draw up a set of rules to describe our observations. These 
rules naturally lead to a probability interpretation of experimental observations. 
If we set up a series of small detectors along the screen in the electron double-slit 
experiment, we can speak of the probability of the electron being detected by 
one of the detectors. The interference pattern can guide us in our probability 
determinations. But once the electron has been registered by one of the detec-

Principle of 
complementarity

Physical observables

Solution of wave-particle 
duality

Slits

Source!
of light

Screenpy

e! e!u

Figure 5.21 An attempt to de-
termine which slit an electron 
passes through in the double-slit 
experiment. A powerful light 
source scatters a photon from the 
electron, and the scattered pho-
ton is observed. The motion of 
the electron is affected.
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186 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

tors, the probability of its being seen in the other detectors is zero. Matter and 
radiation propagation is described by wavelike behavior, but matter and radia-
tion interact (that is, undergo creation/annihilation or detection) as particles.

5.6  Uncertainty Principle
In Section 5.4, when we discussed the superposition of waves, we learned that to 
localize a wave packet over a small region &x, we had to use a large range &k 
of wave numbers. For the case of two waves, we found in Equation (5.22) that 
&k &x " 2p. If we examine a Gaussian wave packet closely, we would find that 
the product &k &x " 1/2. The minimum value of the product &k &x is obtained 
when Gaussian wave packets are used.

In Section 5.4 we learned that it is impossible to measure simultaneously, 
with no uncertainty, the precise values of k and x for the same particle. The wave 
number k may be rewritten as

 k "
2p
l

"
2p
h/p

" p 
2p
h

"
p
U  (5.37)

and

 ¢k "
¢p
U  (5.38)

so that, in the case of the Gaussian wave packet,

 ¢k ¢x "
¢p
U  ¢x "

1
2

or

 ¢p ¢x "
U
2

 (5.39)

for Gaussian wave packets.
The relationship in Equation (5.39) was first presented in 1927 by the Ger-

man physicist Werner Heisenberg, who won the Nobel Prize for Physics in 1932. 
This uncertainty applies in all three dimensions, so we should put a subscript on 
&p to indicate the x direction &px. Heisenberg’s uncertainty principle can there-
fore be written

 ¢px ¢x *
U
2

 (5.40)

which establishes limits on the simultaneous knowledge of the values of px and x.* 
The limits on &px and &x represent the lowest possible limits on the uncertainties 
in knowing the values of px and x, no matter how good an experimental measure-
ment is made. It is possible to have a greater uncertainty in the values of px and x, 
but it is not possible to know them with more precision than allowed by the un-
certainty principle. The uncertainty principle does not apply to the products of &pz 
and &x or to that of &py and &z. The value of &pz &x can be zero. Equation (5.40) 
is true not only for specific waves such as water or sound, but for matter waves as 

Heisenberg uncertainty 
principle for px and x

*In some representations of the uncertainty principle, the factor 12 is absent. Our form represents the 
lower limit of uncertainty.
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   5.6 Uncertainty Principle 187

well. It is a consequence of the de Broglie wavelength of matter. If we want to know 
the position of a particle very accurately, then we must accept a large uncertainty 
in the momentum of the particle. Similarly, if we want to know the precise value of 
a particle’s momentum, it is not possible to specify the particle’s location precisely. 
The uncertainty principle represents another sharp digression with classical phys-
ics, where it is assumed that it is possible to specify simultaneously and precisely 
both the particle’s position and momentum. Because of the small value of U, the 
uncertainty principle becomes important only on the atomic level.

Consider a particle for which the location is known within a width of / along 
the x axis. We then know the position of the particle to within a distance 
¢x + / /2. The uncertainty principle specifies that &p is limited by

 ¢p *
U

2 ¢x
*

U
/  (5.41)

Because p " mv, we have ¢p " m ¢v, and

 ¢v "
¢p
m *

U
m/ (5.42)

These results have some interesting implications. For example, consider a 
particle with low energy. What is the minimum kinetic energy such a particle can 
have? We can use nonrelativistic equations, so we have K " p2/2m. Equation 
(5.41) indicates there is an uncertainty in the momentum, so we can assume the 
minimum value of the momentum will be at least as large as its uncertainty and 
pmin * ¢p to find the minimum value of the kinetic energy Kmin.

 Kmin "
p2

min

2m
*
1¢p 22
2m

*
U2

2m/2 (5.43)

Note that this equation indicates that if we are uncertain as to the exact position 
of a particle, for example, an electron somewhere inside an atom of diameter /, 
the particle can’t have zero kinetic energy.

Werner Heisenberg (1901– 1976) 
was born in Germany, where he 
spent his entire career at vari-
ous universities including Mu-
nich, Leip zig, and Berlin. He was 
appointed director of the Kaiser 
Wilhelm Institute in Berlin in 
1942, the highest scientific posi-
tion in Germany. After World 
War II Hei sen berg spent much of 
his effort supporting research 
and opportunities for young 
physicists and speaking out 
against the atomic bomb. 

Calculate the momentum uncertainty of (a) a tennis ball 
constrained to be in a fence enclosure of length 35 m sur-
rounding the court and (b) an electron within the smallest 
diameter of a hydrogen atom.

Strategy We will use Equation (5.40) to find &px. The 
position uncertainty &x is approximately half of the 
en closure.

Solution (a) If we insert the uncertainty of the location of 
the tennis ball, &x " (35 m)/2, into Equation (5.40), we have

 ¢px *
1
2

 
U

¢x
"

1.05 $ 10!34 J # s
2 135 m 2/2

" 3 $ 10!36 kg # m/s

We will have no problem specifying the momentum of the 
tennis ball!

(b) The diameter of the hydrogen atom in its lowest 
energy state (smallest radius) is 2a0. We arbitrarily take the 
uncertainty &x to be half the diameter or equal to the ra-
dius, &x " a0.

  ¢x " a 0 " 0.529 $ 10!10 m

  ¢px *
1
2

 
U

¢x
"

1.05 $ 10!34 J # s
2 10.529 $ 10!10 m 2

  " 1 $ 10!24 kg # m/s

This may seem like a small momentum, but for an electron 
with a mass of about 10!30 kg, it corresponds to a speed of 
about 106  m/s, which is not insignifi cant! Note that this is 
comparable to the speed of the electron in the fi rst Bohr 
orbit [Equation (4.31)].

 EXAMPLE 5 .8
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188 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Energy-Time Uncertainty Principle Equation (5.40) is not the only form of the 
uncertainty principle. We can find another form by using Equation (5.23) from 
our study of wave motion. When we superimposed two waves to form a wave 
packet we found &v &t " 2p. If we evaluate this same product using Gaussian 
packets, we will find

 ¢v ¢t "
1
2

 (5.44)

just as we did for the product &k &x. A relationship like this is easy to understand. 
If we are to localize a wave packet in a small time &t (instead of over an infinite 
time as for a single wave), we must include the frequencies of many waves to have 
them cancel everywhere but over the time interval &t. Because E " hf, we have 
for each wave

 ¢E " h ¢f " h 
¢v
2p

" U  ¢v

Therefore

 ¢v "
¢E
U   and  ¢v ¢t "

¢E
U  ¢t "

1
2

We can therefore obtain another form of Heisenberg’s uncertainty principle:

 ¢E ¢t *
U
2

 (5.45)

Other conjugate variables similar to px and x in Equation (5.40) also form un-
certainty principle relations. The product of conjugate variables (such as px and 
x or E and t) must have the same dimensions as Planck’s constant. Conjugate 
variable pairs include the angular momentum L and angle u, as well as the rota-
tional inertia I and angular velocity v. Similar uncertainty relations can be written 
for them.

We once again must emphasize that the uncertainties expressed in Equations 
(5.40) and (5.45) are intrinsic. They are not due to our inability to construct better 
measuring equipment. No matter how well we can measure, no matter how accu-

Heisenberg uncertainty 
principle for energy 

and time

Treat the hydrogen atom as a one-dimensional entity of 
length 2a0 and determine the electron’s minimum kinetic 
energy.

Strategy We will use the uncertainty principle to deter-
mine Kmin. Equation (5.43) gives us the minimum kinetic 
energy for a particle known to be located within a distance 
/.

Solution Equation (5.43) gives

  Kmin "
U 2

2m/2 "
1 Uc 22

2mc 2/2

 
 "

1197 eV # nm 2212 2 10.511 $ 106 eV 2 12 $ 0.0529 nm 22 " 3.4 eV

A calculation considering three dimensions would give a 
result about twice this value. This simple calculation gives a 
reasonable value for the kinetic energy of the ground state 
electron of the hydrogen atom.

 EXAMPLE 5 .9
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   5.6 Uncertainty Principle 189

rate an instrument we build, and no matter how long we measure, we can never 
do any better than the uncertainty principle allows. Many people, including Ein-
stein, have tried to think of situations in which it is violated, but they have not 
succeeded. At the 1927 Solvay conference Bohr and Einstein had several discus-
sions about the uncertainty principle. Every morning at breakfast Einstein would 
present a new gedanken experiment that would challenge the uncertainty princi-
ple. In his careful, deliberate manner, Bohr would refute each objection. Eventu-
ally Einstein conceded—he could not provide a valid example of contradiction. 
These discussions continued off and on into the 1930s, because Einstein had 
difficulty accepting the idea that the quantum theory could give a complete de-
scription of physical phenomena. He believed that quantum theory could give a 
statistical description of a collection of particles but could not describe the motion 
of a single particle. Einstein presented several paradoxes to support his ideas. Bohr 
was able to analyze each paradox and present a reasonable answer. Bohr stressed 
his complementarity principle, which precludes a simultaneous explanation in 
terms of waves and particles, as well as Heisenberg’s uncertainty principle.

Let’s return to the previous discussion of determining which slit an electron 
passes through in the double-slit experiment (see Figure 5.21). We again shine light 
on the electrons passing through the slits and look with a powerful microscope. 
This time we will use the uncertainty principle and make a more detailed calcula-
tion. Photons from the shining light bounce off the electron as the electron passes 
through one of the slits. Photons then scatter into the microscope where we observe 
them. We must be able to locate the electron’s position in y to at least within 
&y ( d/2 (where d is the distance between the two slits) to know which slit each 
electron went through. If the position of the electron is uncertain to less than d/2, 
then according to the uncertainty principle, the electron’s momentum must be 
uncertain to at least &py ) U/d. Just by scattering photons off the electrons to know 
which slit the electron went through, we introduce an uncertainty in the electron’s 
momentum. This uncertainty has been caused by the measurement itself.

Consider an electron originally moving in a particular direction; let us 
choose u " 0 for convenience. By scattering the photon from the electron we now 
have an uncertainty in the angle u due to the “kick” given the electron by the 
photon in the measurement process. The uncertainty in the electron’s angle due 
to a possible momentum change along the y axis is &u " &py/p, but because p " 
h/l, we have

 ¢u "
¢py

p
"
1¢py 2l

h
"
1 U 2l
hd

"
l

2pd

According to Equation (5.36) the first interference maximum will be at sin u " 
l/d and the first minimum at sin u " l/2d. For small angle scattering, sin u # u, 
and the angle of the first minimum is umin # l/2d. Note that the position of the 
first minimum is on the same order as our uncertainty in &u, so the interference 
pattern is washed out. If we insist on identifying the electrons as particles and 
knowing which slit the electrons pass through, the wave characteristics of the 
electron disappear. We cannot simultaneously treat the electron as both a par-
ticle and a wave. This limitation seems to be a fundamental characteristic of the 
laws of nature. Only the smallness of Planck’s constant h keeps us from encoun-
tering this limitation in everyday life.

Niels Bohr tried to turn this limitation into a philosophical principle. When 
he was awarded the Danish Order of the Elephant, he featured on his coat of 
arms (see Figure 5.22) the Chinese yin-yang symbol, which stands for the two 

Bohr and Einstein 
discussions

Figure 5.22 Niels Bohr’s coat of 
arms was designed in 1947 when he 
was awarded the Danish Order of 
the Elephant. This award was nor-
mally given only to royalty and for-
eign presidents. Bohr chose the 
Chinese yin-yang symbol because it 
stands for the two opposing but in-
separable elements of nature. The 
translation of the Latin motto is 
“Opposites are complementary.” It 
was hung near the king’s coat of 
arms in the church of Frederiks-
borg Castle at Hillerod.
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190 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

opposing but inseparable elements in nature. The Latin motto on the center of 
the coat of arms means “Opposites are complementary.”

Calculate the minimum kinetic energy of an electron that is 
localized within a typical nuclear radius of 6 $ 10!15 m.

Strategy Let’s assume the minimum electron momentum 
is equal to that determined by the uncertainty principle for 
an electron constrained within the distance &x equal to the 
nuclear radius (&x " 'r). We can then determine the mini-
mum electron energy from the minimum momentum.

Solution Given that ¢x # r " 6 $ 10!15 m, we have

  ¢p *
U

2 ¢x
"

6.58 $ 10!16 eV # s
1.2 $ 10!14 m

  * 15.48 $ 10!2 eV # s/m 2 a 3 $ 108 m/s
c

b
  * 1.64 $ 107 eV/c

Because we assumed that the momentum p is at least as large 
as the uncertainty in p, we have

 p # ¢p * 1.64 $ 107 eV/c

Because we don’t yet know the electron’s energy, let’s be 
careful and calculate it relativistically.

  E 2 " 1pc 2 2 # E 0
2

  " c  a1.64 $ 107 
eV
c
b c d 2 # 10.511 MeV 22

  " 116.4 MeV 22 # 10.511 MeV 22
  E " 16.4 MeV

  K .E. " E ! E0 " 16.4 MeV ! 0.51 MeV

  " 15.9 MeV

Note that because E W E0, a relativistic calculation was 
needed.

 EXAMPLE 5 .10

We found in the last example that if an electron is confined 
within the size of a nuclear radius, the uncertainty principle 
suggests that the minimum kinetic energy of the electron 
must have a minimum value of about 16 MeV. What does 
this indicate about the possibility of electrons existing within 
the nucleus?

Solution The value of 16 MeV for the electron’s kinetic 
energy is larger than that observed for electrons emitted 
from nuclei in beta decay. We conclude that electrons are 
not confined within the nucleus. Electrons emitted from the 
nucleus (during beta decay) must actually be created when 
they are emitted.

 CONCEPTUAL EXAMPLE 5 .11

An atom in an excited state normally remains in that state 
for a very short time ($10!8 s) before emitting a photon 
and returning to a lower energy state. The “lifetime” of the 
excited state can be regarded as an uncertainty in the time 
&t associated with a measurement of the energy of the state. 

This, in turn, implies an “energy width,” namely, the corre-
sponding energy uncertainty &E. Calculate (a) the charac-
teristic “energy width” of such a state and (b) the uncer-
tainty ratio of the frequency &f/f if the wavelength of the 
emitted photon is 300 nm.

 EXAMPLE 5 .12
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5.7  Probability, Wave Functions, and the 
Copenhagen Interpretation

We learned in elementary physics that the instantaneous wave intensity of elec-
tromagnetic radiation (light) is P0cE 2 where E is the electric field. Thus the prob-
ability of observing light is proportional to the square of the electric field. In the 
double-slit light experiment we can be assured that the electric field of the light 
wave is relatively large at the bright spots on the screen and small in the region 
of the dark places.

If Young’s double-slit experiment is performed with very low intensity levels 
of light, individual flashes can be seen on the observing screen. We show a simula-
tion of the experiment in Figure 5.19. After only 20 flashes (Figure 5.19a) we 
cannot make any prediction as to the eventual pattern, but we still know that the 
probability of observing a flash is proportional to the square of the electric field. 
We now briefly review this calculation that is normally given in introductory 
physics courses. If the distance from the central ray along the screen we are ob-
serving in an experiment like that depicted in Figure 5.18a is denoted by y, the 
probability for the photon to be found between y and y # dy is proportional to 
the intensity of the wave (E 2) times dy. For Young’s double-slit experiment, the 
value of the electric field E produced by the two interfering waves is large where 
the flash is likely to be observed and small where it is not likely to be seen. By 
counting the number of flashes we relate the energy flux I (called the intensity) 
of the light to the number flux, N per unit area per unit time, of photons having 
energy hf. In the wave description, we have I " P0c 8E 29, and in what appears to 
be the particle description, I " Nhf. The flux of photons N, or the probability P 
of observing the photons, is proportional to the average value of the square of 
the electric field 8E 29.

How can we interpret the probability of finding the electron in the wave 
description?

Strategy (a) We use the uncertainty principle, Equation 
(5.45), to determine &E because we know &t.

(b) We can determine &f from the energy uncertainty 
&E by using E " hf : &E " h &f. We can determine the fre-
quency by f " c/l.

Solution (a) Equation (5.45) gives

 ¢E *
U

2 ¢t
"

6.58 $ 10!16 eV # s12 2 110!8 s 2 " 3.3 $ 10!8 eV

This is a small energy, but many excited energy states have 
such energy widths. For stable ground states, t " q, and 
&E " 0. For excited states in the nucleus, the lifetimes 
can be as short as 10!20 s (or shorter) with energy widths of 
100 keV (or more).

(b) The frequency is found to be

 f "
c
l

"
3 $ 108 m/s

300 $ 10!9 m
" 1015 Hz (5.46)

The uncertainty &f is

 ¢f "
¢E
h

"
3.3 $ 10!8 eV

4.136 $ 10!15 eV # s " 8 $ 106 Hz (5.47)

The uncertainty ratio of the frequency &f/f is

 
¢f
f

"
8 $ 106 Hz

1015 Hz
" 8 $ 10!9

Modern instruments are capable of measuring ratios ap-
proaching 10!17, or 1 Hz in a frequency of 1017 Hz! Experi-
mental physicists have managed to improve this ratio by an 
irregular factor of 100 every three years over the past two 
decades. The experimental limitations are considerably bet-
ter than needed to measure the energy widths.
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192 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

First, let’s remember that the localization of a wave can be accomplished by 
using a wave packet. We used a function  %(x, t) to denote the superposition of 
many waves to describe the wave packet. We call this function %(x, t) the wave 
function. In the case of light, we know that the electric field E and magnetic field 
B satisfy a wave equation. In electrodynamics either E or B serves as the wave 
function %. For particles (say electrons) a similar behavior occurs. In this case 
the wave function %(x, t) determines the probability, just as the flux of photons 
N arriving at the screen and the electric field E determined the probability in the 
case of light.

For matter waves having a de Broglie wavelength, it is the wave function % 
that determines the likelihood (or probability) of finding a particle at a particu-
lar position in space at a given time. The value of the wave function % has no 
physical significance itself, and as we will see later, it can have a complex value 
(containing both real and imaginary numbers). The quantity 0° 0 2 is called the 
probability density and represents the probability of finding the particle in a 
given unit volume at a given instant of time.

In general, %(x, y, z, t) is a complex quantity and depends on the spatial 
coordinates x, y, and z as well as time t. The complex nature will be of no concern 
to us: we use % times its complex conjugate %* when finding probabilities. We 
are interested here in only a single dimension y along the observing screen and 
for a given time t. In this case %*% dy " 0° 0 2 dy is the probability of observing 
an electron in the interval between y and y # dy at a given time, and we call this 
P(y) dy.

 P 1y 2  dy " 0° 1y, t 2 0 2 dy (5.48)

Because the electron has to have a probability of unity of being observed 
somewhere along the screen, we integrate the probability density over all space by 
integrating over y from !q to q. This process is called normalization.

 "
q

!q
P 1y 2  dy " "

q

!q
0° 1y, t 2 0 2 dy " 1 (5.49)

Max Born (Nobel Prize, 1954), one of the founders of the quantum theory, 
first proposed this probability interpretation of the wave function in 1926. The 
determination of the wave function %(x, t) is discussed in much more detail in 
the next chapter.

The use of wave functions %(x, y, z, t) rather than the classical positions x(t), 
y(t), z(t) represents a clean break between classical and modern physics. Physi-
cists have developed a set of rules and procedures in quantum theory to deter-
mine physical observables like position, momentum, and energy (see Section 
6.2).

The Copenhagen Interpretation
Erwin Schrödinger and Werner Heisenberg worked out independent and sepa-
rate mathematical models for the quantum theory in 1926. We examine 
Schrödinger’s theory in Chapter 6, because it is somewhat easier to understand 
and is based on waves. Paul Dirac reported his relativistic quantum theory in 
1928. Today there is little disagreement about the mathematical formalism of 
quantum theory. That is not the case regarding its interpretation.

We want to examine the Copenhagen interpretation, because it is the mainstream 
interpretation of quantum theory. Werner Heisenberg announced his uncertainty 

Wave function

Probability density

Normalization
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   5.7 Probability, Wave Functions, and the Copenhagen Interpretation 193

principle in early 1927 while he was a lecturer in Bohr’s Institute of Theoretical 
Physics. At first Bohr, the mentor, thought Heisenberg’s uncertainty principle was 
too narrow, and he pointed out a mistake in Heisenberg’s paper concerning a 
gedanken experiment about a gamma-ray microscope used by Heisenberg to prove 
his point. Heisenberg, the 25-year-old rising star, strongly objected at first to Bohr’s 
opinion and refused Bohr’s suggestion to withdraw his paper on the uncertainty 
principle. Bohr and Heisenberg had many discussions in 1927 formulating the in-
terpretation of quantum mechanics now known as the “Copenhagen interpreta-
tion,” “Copenhagen school,” or sometimes unkindly as “Copenhagen orthodoxy.” 
It was strongly supported by Max Born and Wolfgang Pauli (profiled in Chapter 8).

There are various formulations of the interpretation, but it is generally 
based on the following:

1.  The uncertainty principle of Heisenberg
2.  The complementarity principle of Bohr
3.  The statistical interpretation of Born, based on probabilities determined 

by the wave function

Together these three concepts form a logical interpretation of the physical 
meaning of quantum theory. According to the Copenhagen interpretation, 
physics depends on the outcomes of measurement. Consider a single electron 
passing through the two-slit experiment. We can determine precisely where the 
electron hits the screen by noting a flash. The Copenhagen interpretation re-
jects arguments about where the electron was between the times it was emitted 
in the apparatus (and subsequently passed through the two slits) and when it 
flashed on the screen. The measurement process itself randomly chooses one of 
the many possibilities allowed by the wave function, and the wave function in-
stantaneously changes to represent the final outcome. Bohr argued that it is not 
the task of physics to find out how nature is, because we can never understand 
the quantum world or assign physical meaning to the wave function. Bohr and 
Heisenberg argued that measurement outcomes are the only reality in physics.

Many physicists objected (and some still do!) to the Copenhagen interpreta-
tion for widely varying reasons. One of the basic objections is to its nondetermin-
istic nature. Some also object to the vague measurement process that converts 
probability functions into nonprobabilistic measurements. Famous physicists 
who objected to the Copenhagen interpretation were Albert Einstein, Max 
Planck, Louis de Broglie, and Erwin Schrödinger. Einstein and Schrödinger 
never accepted the Copenhagen interpretation. Einstein was particularly both-
ered by the reliance on probabilities, and he wrote Born in 1926 that “God does 
not throw dice.” Nonetheless, it is fair to say that the great majority of physicists 
today accept the Copenhagen interpretation as the primary interpretation of 
quantum mechanics. In the past decade physicists have used feedback systems to 
demonstrate that quantum indeterminism can be reduced by guiding the out-
come of a probabilistic quantum process toward a deterministic outcome.*

Several paradoxes have been proposed by physicists to refute the Copenha-
gen interpretation. They include the famous Schrödinger cat paradox,† the 

*See, for example, J. M. Geremia, J. K. Stockton, and H. Mabuchi, Science 304, 270 (2004).

†Schrödinger published an essay in 1935, “The Present Situation in Quantum Mechanics,” in which 
he described a thought experiment where a cat in a closed box either lived or died according to 
whether a quantum event occurred. The paradox was that it was not possible to know whether the 
cat was dead or alive until an observer opened the box, an apparent contradiction to the intuitive 
notion that the cat is either alive or dead at any moment.

Max Born (1882– 1970) was born 
a German in what is now Poland. 
After studying at several Euro-
pean universities he received his 
degree in 1907 from the Univer-
sity of Göttingen. After visiting 
several universities and serving in 
World War I, he became a profes-
sor at Göttingen in 1921 where he 
did his most important work on 
the sta tistical meaning of the new 
quantum theory (Nobel Prize in 
Physics, 1954). He and his stu-
dent, Werner Heisenberg, collab-
orated on the matrix mechanics 
version of quantum mechanics. 
Born, a Jew, was forced to emi-
grate from Germany in 1933, and 
after visiting Italy, Cambridge, 
and India, he settled at the Uni-
versity of Edinburgh in 1936, 
from which he retired in 1953. 
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194 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Einstein-Podolsky-Rosen paradox,* and Bell’s theorem (or inequality).† Space 
does not allow us to describe these paradoxes (see Problems 49-51). A Princeton 
University graduate student, Hugh Everett III, announced an alternate interpre-
tation to the Copenhagen view in 1957. In Everett’s “Many Worlds” interpreta-
tion, the concept of parallel universes is invoked—in itself such a weird idea that 
it has not gained wide acceptance, but it overcomes some objections to the Co-
penhagen interpretation. Since 1957 there have been several versions of the 
Many Worlds interpretation presented, and some physicists prefer it over the 
Copenhagen interpretation. Nevertheless, the Copenhagen interpretation re-
mains the favored interpretation.

5.8  Particle in a Box
Let’s now consider the situation of a particle of mass m trapped in a one-dimen-
sional box of width /. We have already used the uncertainty principle in Equation 
(5.43) to calculate the minimum kinetic energy of such a particle. Now let’s deter-
mine the possible energies of such a particle. Because of our discussion in the previ-
ous section we want to use the wave nature of the particle in this determination.

First, what is the most probable location of the particle in the state with the 
lowest energy at a given time, say t " 0, so that %(x, 0) " %(x)? To find the prob-
able location, we will treat the particle as a sinusoidal wave. The particle cannot 
be physically outside the confines of the box, so the amplitude of the wave motion 
must vanish at the walls and beyond. In the language of the wave function, its 
probability of being outside is zero, so the wave function must vanish outside. 
The wave function must be continuous, and the probability distribution can have 
only one value at each point in the box. For the probability to vanish at the walls, 
we must have an integral number of half wavelengths l/2 fit into the box. Note 
that all the possible waves shown in Figure 5.23 fit this requirement.

The requirement of an integral number of half wavelengths l/2 means that

 
nl
2

" /  or  ln "
2/
n   1n " 1, 2, 3, . . . 2  (5.50)

The possible wavelengths are quantized, and the wave shapes will have sin(npx//) 
factors. If we treat the problem nonrelativistically and assume there is no poten-
tial energy, the energy E of the particle is

 E " K .E. "
1
2

 mv 2 "
p2

2m
"

h2

2ml2

If we insert the values for ln, we have

 En "
h2

2m
a n

2/ b 2

" n2 
h2

8m /2  1n " 1, 2, 3, . . . 2  (5.51)

Therefore, the possible energies of the particle are quantized, and each of these 
energies En is a possible energy level. Note that the lowest energy is E1 " h2/8m/2. 
Because we assumed the potential energy to be zero, En is also equal to the ki-
netic energy. We previously found in Equation (5.43) a value for Kmin " U2

 /2m/2, 

*A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be 
considered complete? Physical Review 47, 777 (1935).

†J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964).
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   5.8 Particle in a Box 195

which differs by a factor 1/p2 from the value of E1. Why the difference? Equa-
tion (5.51) is based on the wave theory of physics, and as we shall see in the next 
chapter, it is a better calculation than the result in Equation (5.43), which used 
approximations.

The probability of observing the particle between x and x # dx in each state 
is Pn dx r 0cn 1x 2 0 2 dx. Notice that E0 " 0 is not a possible state, because n " 0 
corresponds to c0 " 0. The lowest energy level is therefore E1, with a probability 
density P1 r 0c11x 2 0 2, shown in Figure 5.23. The most probable location for the 
particle in the lowest energy state is in the middle of the box.

This particle-in-a-box model is more important than it might seem. It is our 
first application of what we call “quantum theory” or “quantum mechanics.” No-
tice how the quantization of energy arises from the need to fit a whole number of 
half-waves into the box and how we obtained the corresponding probability densi-
ties of each of the states. The concept of energy levels, as first discussed in the Bohr 
model, has surfaced in a natural way by using waves. The procedure followed is the 
same as finding the allowed modes of standing waves inside the box. We can use 
all the results that we learned about waves in elementary physics.

Find the quantized energy levels of an electron constrained 
to move in a one-dimensional atom of size 0.1 nm.

Strategy We previously found the minimum kinetic en-
ergy of an electron in a similar situation in Example 5.9. In 
the present case we want to use quantum theory, so we use 
Equation (5.51) for the energy levels.

Solution We use Equation (5.51) and insert the appropri-
ate values for m and /.

  En " n 2 
h2

8m/2 " n 2 
h 2c 2

8mc 2/2

 
 " n 2

 

11239.8 eV # nm 2218 2 10.511 $ 106 eV 2 10.1 nm 22
  " n 2138 eV 2
The first three energy levels are E1 " 38 eV, E2 " 152 eV, 
and E3 " 342 eV.

 EXAMPLE 5 .13

Figure 5.23 Possible ways of 
fitting waves into a one-
dimensional box of length /. 
The left side shows the wave 
functions for the four lowest en-
ergy values. The right side shows 
the corresponding probability 
distributions.x
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196 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Max von Laue suggested the scattering of x rays from matter, 
thereby firmly establishing the wave nature of x rays and the 
lattice structure of crystals. W. H. Bragg and W. L. Bragg 
exploited the wave behavior of x rays by utilizing x-ray scat-
tering to determine the spacing d between crystal planes 
according to Bragg’s law:

 nl " 2d sin u (5.1)

In an important conceptual leap, de Broglie suggested that 
particles might also exhibit wave properties, with a wave-
length l determined by their momentum:

 l "
h
p

  de Broglie wavelength (5.2)

Davisson and Germer, and G. P. Thomson independently, 
demonstrated the wave characteristics of particles by dif-
fracting low-energy electrons from crystals.

Particles may be described using waves by representing 
them as wave packets, the superposition of many waves 
of different amplitudes and frequencies. The group velocity 
ugr " dv/dk represents the speed of the particle described 
by the wave packet.

Niels Bohr proposed a principle of complementarity, 
stating that it is not possible to describe physical behavior 

simultaneously in terms of both particles and waves. We 
must use either one form of description or the other, thus 
resolving (or avoiding) the wave-particle duality problem.

We describe particles exhibiting wave behavior by using 
wave functions %, which in general may be complex-valued 
functions of space and time. The probability of observing a 
particle between x and x # dx at time t is 0° 1x, t 2 0 2 dx.

Werner Heisenberg pointed out that it is not possible 
to know simultaneously both the exact momentum and po-
sition of a particle or to know its precise energy at a precise 
time. These relationships

  ¢px ¢x * U/2 (5.40)

  ¢E ¢t * U/2 (5.45)

are called Heisenberg’s uncertainty principle and are consistent 
with Bohr’s complementarity principle. No experiment, re-
gardless of how clever, can measure p, x, E, and t better than 
the uncertainties expressed in Equations (5.40) and (5.45). 
The mainstream interpretation of quantum theory is the 
Copenhagen interpretation, which depends on the uncer-
tainty principle, the complementarity principle, and the 
statistical interpretation.

Energy levels naturally arise when a particle in a box is 
considered to have wave behavior.

 1. In 1900, did it seem clear that x rays were electromag-
netic radiation? Give reasons for your answer. Was it 
important to perform further experiments to verify 
the characteristics of x rays?

 2. In the early 1900s it was found that x rays were more 
diffi cult to refract or diffract than visible light. Why 
did this lead researchers to suppose that the wave-
lengths of x rays were shorter rather than longer than 
those of light?

 3. What determines whether a given photon is an x ray? 
Could an x ray have a wavelength longer than some 
ultraviolet light?

 4. For a single crystal, transmission x-ray scattering will 
produce dots. However, if there are randomly ori-
ented crystals, as in powder, concentric rings appear. 
Explain the difference qualitatively.

 5. How many particles do you think might be shown 
experimentally to exhibit wavelike properties? List at 
least four and discuss possible experiments to show 
this behavior.

 6. Why are neutrons more widely used than protons for 
studying crystal structure? What about using a hydro-
gen atom?

 7. Why are “cold” neutrons useful for studying crystal 
structure? How could one obtain “cold” neutrons?

 8. It has been said that many experimental discoveries 
are made as a result of accidents (for example, that of 
Davisson and Germer). This statement may have some 
truth, but what traits and abilities must good scientists 
possess to take advantage of their accidents?

 9. Images taken with transmission electron microscopes 
are produced by passing very high energy electrons 
(40–100 keV) through matter. Why are the images 
always in black and white (or any two colors)?

 10. Are the following phenomena wave or particle be-
haviors? Give your reasoning. (a) Television picture, 
(b) rainbows, (c) football sailing between goal posts, 
(d) telescope observing the moon, (e) police radar.

 11. The experiment by Jönsson that showed the wavelike 
properties of electrons passing through a double slit 

S u m m a r y

Q u e s t i o n s
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is considered a pedagogically interesting experiment 
but not a landmark experiment. Why do you suppose 
this is true?

 12. Can you think of an experiment other than those 
mentioned in this chapter that might show the wave-
like properties of particles? Discuss it.

 13. Why doesn’t the uncertainty principle restriction ap-
ply between the variables pz and x?

 14. How does the uncertainty principle apply to a known 
stable atomic system that apparently has an infi nite 
lifetime? How well can we know the energy of such a 
system?

 15. According to the uncertainty principle, can a particle 
having a kinetic energy of exactly zero be confi ned 
somewhere in a box of length L? Explain.

 16. What is similar about the conjugate variable pairs 
(px, x), (E, t), (L, %), and (I, &)?

 17. What are the dimensions of the wave function % (x, t) 
that describes matter waves? Give your reasoning.

 18. Soon after their discovery, Davisson and Germer were 
using their experimental technique to describe new 
crystal structures of nickel. Do you think they were 
justifi ed? Explain how you think their results allowed 
them to make such statements.

 19. Albert Einstein was a dissenter to the Copenhagen 
Interpretation and what it represented until the day 
he died. In a letter to Max Born in December 1926, 
Einstein wrote, “The theory yields a lot, but it hardly 
brings us any closer to the secret of the Old One. In 
any case I am convinced that God does not throw 
dice.” What do you think Einstein meant by this state-
ment? Who or what is the Old One?

 20. It has been said that the energy-time version of the 
uncertainty principle allows a violation of the conserva-
tion of energy. The argument is that the uncertainty &E 
allows the possibility that we may not know that energy 
conservation is violated during a small time &t. Discuss 
arguments pro and con concerning this possibility.

 21. The Fifth Solvay Congress, held in Brussels in October 
1927, was dedicated to the quantum theory. A photo 
taken of the famous participants is often reproduced. 
Identify at least 10 participants and discuss what their 
contributions were to quantum physics, either experi-
mentally or theoretically.

 22. Summarize the discussions that Einstein and Bohr had 
at the 1927 Solvay Congress. List at least three objections 
that Einstein had to the Copenhagen interpretation of 
quantum mechanics and give Bohr’s explanation.

P r o b l e m s

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

5.1 X-Ray Scattering
 1. X rays scattered from a crystal have a fi rst-order 

diffraction peak at %  "  12.5°. At what angle will the 
second- and third-order peaks appear?

 2. X rays of wavelength 0.207 nm are scattered from 
NaCl. What is the angular separation between fi rst- 
and second-order diffraction peaks? Assume scatter-
ing planes that are parallel to the surface.

 3. Potassium chloride is a crystal with lattice spacing of 
0.314 nm. The fi rst peak for Bragg diffraction is 
observed to occur at 12.8°. What energy x rays were 
diffracted? What other order peaks can be observed 
(%  +  90°)?

 4. A cubic crystal with interatomic spacing of 0.24 nm is 
used to select ' rays of energy 100 keV from a radioac-
tive source containing a continuum of energies. If the 
incident beam is normal to the crystal, at what angle 
do the 100-keV ' rays appear?

5.2 De Broglie Waves
 5. Calculate the de Broglie wavelength of a 1.2-kg rock 

thrown with a speed of 6.0 m/s into a pond. Is this 

wavelength similar to that of the water waves pro-
duced? Explain.

 6. Calculate the de Broglie wavelength of a typical nitro-
gen molecule in the atmosphere on a hot summer 
day (37°C). Compare this with the diameter (less than 
1 nm) of the molecule.

 7. Transmission electron microscopes that use high-
energy electrons accelerated over a range from 40 to 
100 kV are employed in many applications including 
the study of biological samples (like a virus) and 
nanoscience research and development (alloy parti-
cles and carbon nanotubes, for example). What would 
be the spatial limitation for this range of electrons? It 
is often true that resolution is limited by the optics of 
the lens system, not by the intrinsic limitation due to 
the de Broglie wavelength.

 8. A 3.0-MV transmission electron microscope has been 
in operation at Osaka University in Japan for several 
years. The higher-energy electrons allow for deeper 
sample penetration and extremely high resolution. 
What is the resolution limit for these electrons?

 9. Work out Example 5.2b strictly using SI units of m, J, 
kg, and so on, and compare with the method of the 
example using eV units.
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198 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

 10. Assume that the total energy E of an electron greatly 
exceeds its rest energy E0. If a photon has a wave-
length equal to the de Broglie wavelength of the elec-
tron, what is the photon’s energy? Repeat the prob-
lem assuming E  "  2E0 for the electron.

 11. Determine the de Broglie wavelength of a particle of 
mass m and kinetic energy K. Do this for both (a) a 
relativistic and (b) a nonrelativistic particle.

 12. The Stanford Linear Accelerator accelerated electrons 
to an energy of 50 GeV. What is the de Broglie wave-
length of these electrons? What fraction of a proton’s 
diameter (d  #  2  $  10!15 m) can such a particle probe?

 13. Find the kinetic energy of (a) photons, (b) electrons, 
(c) neutrons, and (d) ( particles that have a de 
Broglie wavelength of 0.13 nm.

 14. Find the de Broglie wavelength of neutrons in equi-
librium at the temperatures (a) 5.0 K and (b) 0.010 K.

 15. An electron initially at rest is accelerated across a po-
tential difference of 3.00 kV. What are its wavelength, 
momentum, kinetic energy, and total energy?

 16. What is the wavelength of an electron with kinetic 
energy (a) 40 eV, (b) 400 eV, (c) 4.0 keV, (d) 40 keV, 
(e) 0.40 MeV, and (f) 4.0 MeV? Which of these ener-
gies are most suited for study of the NaCl crystal 
structure?

 17. Calculate the de Broglie wavelength of (a) an oxygen 
(O2) molecule darting around the room at 480 m/s 
and (b) an Escherichia coli bacterium of mass 6.5  $  
10!13 kg, which has been measured to move at a speed 
of 1.0  $  10!5 m/s.

 18. (a) What is the de Broglie wavelength of the 1.0-TeV 
protons accelerated in the Fermilab Tevatron accel-
erator? These high-energy protons are needed to 
probe elementary particles (see Chapter 14). (b) Re-
peat for the 7.0-TeV protons produced at CERN.

5.3 Electron Scattering
 19. In an electron-scattering experiment, an intense re-

fl ected beam is found at !  "  32° for a crystal with an 
interatomic distance of 0.23 nm. What is the lattice 
spacing of the planes responsible for the scattering? 
Assuming fi rst-order diffraction, what are the wave-
length, momentum, kinetic energy, and total energy 
of the incident electrons?

 20. Davisson and Germer performed their experiment 
with a nickel target for several electron bombarding 
energies. At what angles would they fi nd diffraction 
maxima for 48-eV and 64-eV electrons?

 21. A beam of 2.0-keV electrons incident on a crystal is 
refracted and observed (by transmission) on a screen 
35 cm away. The radii of three concentric rings on the 
screen, all corresponding to fi rst-order diffraction, are 
2.1 cm, 2.3 cm, and 3.2 cm. What is the lattice-plane 
spacing corresponding to each of the three rings?

 22. A beam of thermal neutrons (kinetic energy  "  0.025 
eV) scatters from a crystal with interatomic spacing 0.45 
nm. What is the angle of the fi rst-order Bragg peak?

5.4 Wave Motion
 23. Generating plants in some power systems drop 10% of 

their load when the AC frequency changes by 0.30 Hz 
from the standard of 60 Hz. How often must the read-
ing be monitored in order for the automatic operat-
ing system to be able to take corrective action? Let the 
time between measurements be at least half that de-
termined by the bandwidth relation.

 24. Consider electrons of kinetic energy 6.0 eV and 
600 keV. For each electron, fi nd the de Broglie wave-
length, particle speed, phase velocity (speed), and 
group velocity (speed).

 25. A wave, propagating along the x direction according 
to Equation (5.18), has a maximum displacement of 
4.0 cm at x  "  0 and t  "  0. The wave speed is 5.0 cm/s, 
and the wavelength is 7.0 cm. (a) What is the fre-
quency? (b) What is the wave’s amplitude at x  "  10 
cm and t  "  13 s?

 26. A wave of wavelength 4.0 cm has a wave speed of 
4.2 cm/s. What is its (a) frequency, (b) period, (c) 
wave number, and (d) angular frequency?

 27. Two waves are traveling simultaneously down a long 
Slinky. They can be represented by %1 (x, t)  "  0.0030 
sin(6.0x  !  300t) and %2 (x, t)  "  0.0030 sin(7.0x  !  
250t). Distances are measured in meters and time in 
seconds. (a) Write the expression for the resulting 
wave. (b) What are the phase and group velocities? 
(c) What is &x between two adjacent zeros of %? 
(d) What is &k &x?

 28. A wave packet describes a particle having momentum 
p. Starting with the relativistic relationship 
E 

2 " p2c 
2 # E 

2
0, show that the group velocity is )c 

and the phase velocity is c/) (where )  "  v/c). How 
can the phase velocity physically be greater than c?

 29. For waves in shallow water the phase velocity is about 
equal to the group velocity. What is the dependence 
of the phase velocity on the wavelength?

 30. Find the group and phase velocities of 10-MeV pro-
tons and 10-MeV electrons (see Problem 28).

 31. Use Equation (5.25) with Ã(k)  "  A0 for the range of 
k  "  k0  !  &k/2 to k0  #  &k/2, and Ã(k)  "  0 elsewhere, 
to determine %(x, 0), that is, at t  "  0. Sketch the en-
velope term, the oscillating term, and |%(x, 0)|2. Ap-
proximately what is the width &x over the full-width-
half-maximum part of |%(x, 0)|2? What is the value of 
&k &x?

 32. Use Equation (5.31) to show that ugr correctly repre-
sents the velocity of the particle both relativistically 
and classically.

5.5 Waves or Particles?
 33. Light of intensity I0 passes through two sets of appara-

tus. One contains one slit and the other two slits. The 
slits have the same width. What is the ratio of the out 
going intensity amplitude for the central peak for the 
two-slit case compared to the single slit?
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 34. Design a double-slit electron-scattering experiment 
using 1.0-keV electrons that will provide the fi rst 
maximum at an angle of 1°. What will be the slit sepa-
ration d?

 35. You want to design an experiment similar to the one 
done by Jönsson that does not require magnifi cation 
of the interference pattern in order to be seen. Let 
the two slits be separated by 2000 nm. Assume that 
you can discriminate visually between maxima that 
are as little as 0.3 mm apart. You have at your disposal 
a lab that allows the screen to be placed 80 cm away 
from the slits. What energy electrons will you require? 
Do you think such low-energy electrons will represent 
a problem? Explain.

5.6 Uncertainty Principle
 36. A proton is confi ned in a uranium nucleus of radius 

7.2  $  10!15 m. Determine the proton’s minimum ki-
netic energy according to the uncertainty principle if 
the proton is confi ned to a one-dimensional box that 
has length equal to the nuclear diameter.

 37. A neutron is confi ned in a deuterium nucleus (deu-
teron) of diameter 3.1  $  10!15 m. Use the energy-
level calculation of a one-dimensional box to calcu-
late the neutron’s minimum kinetic energy. What is 
the neutron’s minimum kinetic energy according to 
the uncertainty principle?

 38. What is the ratio uncertainty of the velocities (&v/v) 
of (a) an electron and (b) a proton confi ned to a one-
dimensional box of length 1.8 nm?

 39. Show that the uncertainty principle can be expressed 
in the form ¢L ¢u * U/2, where % is the angle and 
L the angular momentum. For what uncertainty in L 
will the angular position of a particle be completely 
undetermined?

 40. Some physics theories indicate that the lifetime of the 
proton is about 1036 years. What would such a predic-
tion say about the energy of the proton?

 41. What is the bandwidth && of an amplifi er for radar if 
it amplifi es a pulse of width 2.4 ,s?

 42. Find the minimum uncertainty in the speed of a bac-
terium having mass 3.0  $  10!15 kg if we know the 
position of the bacterium to within 1.0 ,m, that is, to 
about its own size.

 43. An atom in an excited state of 4.7 eV emits a photon 
and ends up in the ground state. The lifetime of the 
excited state is 1.0  $  10!13 s. (a) What is the energy 
uncertainty of the emitted photon? (b) What is the 
spectral line width (in wavelength) of the photon?

 44. An electron microscope is designed to resolve objects 
as small as 0.14 nm. What energy electrons must be 
used in this instrument?

 45. Rayleigh’s criterion is used to determine when two 
objects are barely resolved by a lens of diameter d. The 
angular separation must be greater than %R where

  uR " 1.22
l

d

  In order to resolve two objects 4000 nm apart at a 
distance of 20 cm with a lens of diameter 5 cm, what 
energy (a) photons or (b) electrons should be used? 
Is this consistent with the uncertainty principle?

 46. Calculate the de Broglie wavelength of a 5.5-MeV a 
particle emitted from an 241Am nucleus. Could this 
particle exist inside the 241Am nucleus (diameter  #  
1.6  $  10!14 m)? Explain.

 47. Show that the minimum energy of a simple harmonic 
oscillator is Uv/2. What is the minimum energy in 
joules for a mass of 28 g oscillating on a spring with a 
spring constant of 8.2 N/m?

5.7 Probability, Wave Functions, 
and the Copenhagen Interpretation

 48. The wave function of a particle in a one-dimensional 
box of width L is *(x)  "  A sin($x/L). If we know the 
particle must be somewhere in the box, what must be 
the value of A?

 49. Write a cogent description of the Schrödinger cat 
paradox. Discuss variations of the paradox and the 
current status of its experimental verifi cation.

 50. Write a cogent description of the Einstein-Podolsky-
Rosen paradox. Discuss variations of the paradox and 
the current status of its experimental verifi cation.

 51. Write a cogent description of the Bell inequality. Dis-
cuss variations and the current status of its experi-
mental verifi cation.

5.8 Particle in a Box
 52. Write down the normalized wave functions for the 

fi rst three energy levels of a particle of mass m in a 
one-dimensional box of width L. Assume there are 
equal probabilities of being in each state.

 53. A particle in a one-dimensional box of length L has a 
kinetic energy much greater than its rest energy. What 
is the ratio of the following energy levels En: E2/E1, E3/
E1, E4/E1? How do your answers compare with the 
nonrelativistic case?

General Problems
 54. Consider a wave packet having the product ¢p ¢x " U  

at a time t  "  0. What will be the width of such a wave 
packet after the time m1¢x 22/ U?

 55. Analyze the Gaussian wave packet carefully and show 
that &k &x  "  1/2. You must justify the assumptions 
you make concerning uncertainties in k and x. Take 
the Gaussian form given in Equation (5.26). (Hint: 
the linear “spread” of the wave packet &x is given by 
one standard deviation, at which point the probability 
amplitude (|%|2) has fallen to one half its peak value.)

 56. An electron emitted in the beta decay of bismuth-210 
has a mean kinetic energy of 390 keV. (a) Find the de 
Broglie wavelength of the electron. (b) Would such 
an electron be useful in a Davisson-Germer type scat-
tering experiment? Address this question by deter-
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200 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

mining the angle at which a fi rst-order diffraction 
maximum would be found using the same nickel tar-
get as Davisson and Germer.

 57. Electrons produced at the Thomas Jefferson National 
Accelerator Facility have a maximum energy of 6.0 GeV. 
(a) What is the de Broglie wavelength of each electron? 
(b) In what part of the electromagnetic spectrum do 
you fi nd a photon of comparable wavelength?

 58. The artifi cially created nuclear isotope tritium (3H) is 
important in many applications. This isotope under-
goes beta decay, emitting an electron with a mean 
kinetic energy of 5.7 keV. (a) What is the de Broglie 
wavelength of such an emitted electron? (b) Is it likely 
that the electron existed inside the 3.4-fm-diameter 
nucleus just before it was emitted? Explain.

 59. As you saw in Chapter 4, the size of the hydrogen 
atom grows in proportion to n2, where n is the quan-
tum state. For an atom in the n  "  10 state, model the 
electron as confi ned to a one-dimensional box of 
length equal to the atom’s diameter. Find the mini-
mum energy of the electron is this box.

 60. An oboe player tunes the orchestra with the “Concert 
A” note, which has a frequency of 440 Hz. If she plays 
the note for 2.5 s, what minimum range of frequen-
cies is heard during this time?

 61. As we learned in Section 3.9, an electron and positron 
can annihilate each other completely and form two 
gamma rays. (a) If the electron and positron were 
initially at rest, what are the wavelengths of the two 
emitted gamma rays? (b) Repeat if the electron and 
positron were each traveling at a speed of 0.30c mea-
sured in the lab and collided head-on.

 62. Most of the particles known to physicists are unstable. 
For example, the lifetime of the neutral pion, $0, is 
about 8.4  $  10!17 s. Its mass is 135.0 MeV/c2. a) What 
is the energy width of the $0 in its ground state? 
b) What is the relative uncertainty &m/m of the pion’s 
mass?

 63. The range of the nuclear strong force is believed to be 
about 1.2  $  10!15 m. An early theory of nuclear phys-
ics proposed that the particle that “mediates” the 
strong force (similar to the photon mediating the 
electromagnetic force) is the pion. Assume that the 
pion moves at the speed of light in the nucleus, and 
calculate the time &t it takes to travel between nucle-
ons. Assume that the distance between nucleons is 
also about 1.2  $  10!15 m. Use this time &t to calculate 
the energy &E for which energy conservation is vio-
lated during the time &t. This &E has been used to 
estimate the mass of the pion. What value do you de-
termine for the mass? Compare this value with the 
measured value of 135 MeV/c2 for the neutral pion.

 64. The planes of atoms in a particular cubic crystal lie 
parallel to the surface, 0.80 nm apart. X rays having 
wavelength 0.50 nm are directed at an angle % to the 
surface. (a) For what values of % will there be a strong 
refl ection? (b) What energy electrons could give the 
same result?

 65. Aliens visiting Earth are fascinated by baseball. They 
are so advanced that they have learned how to vary U  
to make sure that a pitcher cannot throw a strike with 
any confi dence. Assume the width of the strike zone is 
0.38 m, the speed of the baseball is 35 m/s, the mass 
of the baseball is 145 g, and the ball travels a distance 
of 18 m. What value of U  is required? (Hint: there are 
two uncertainties here: the width of the strike zone 
and the transverse momentum of the pitched ball.)

 66. Neutrons from nuclear reactors are used in neutron 
diffraction experiments to measure interplanar spac-
ings of a crystal lattice. The interplanar spacing can be 
measured as an indication of strain in the sample. 
Neutrons are particularly useful because they are less 
destructive than x rays and are able to penetrate deep 
into the sample. Their magnetic moment allows their 
use to study magnetic properties of matter. To study a 
particular polycrystalline sample with a planar spacing 
of 0.156 nm, a detector is mounted at an angle of 26° 
from the incident neutron beam. What energy neu-
trons from the reactor must be used in this experi-
ment? An accelerator-based spallation neutron source 
is in operation at Oak Ridge National Laboratory.

 67. Use a computer program to produce a wave packet 
using the function *n  "  An cos (2$nx) where the inte-
ger n ranges from 9 to 15. Let the amplitude A12  "  1 
with the amplitudes An decreasing symmetrically by 
1/2, 1/3, 1/4 on either side of A12 (for example, 
A10  "  1/3 and A15  "  1/4). (a) Plot the wave packet 
*  "  -n*n versus x and each wave *n over a wide 
enough range in x to see repeatable behavior for the 
wave packet. (b) Where is the wave packet centered? 
Over what value of x is the wave packet repeated?

 68. Most elementary particles (see Chapter 14) are not 
stable, and physicists have measured their mean life-
time +. Consider the uncertainty that this places on 
their mass-energy. The energy spread . is the full 
width of the particle’s energy distribution at half its 
maximum value. (a) If we relate +  "  &t and .  "  2 &E, 
what is the relation ./ in terms of the uncertainty 
principle? (b) What is the energy spread in the mass-
energy of the following particles with their mean life-
times in parentheses: neutron (886 s), charged pion 
$! or $# (2.6  $  10!8 s), and upsilon (1.2  $  10!20 s)?

 69. “Ultrafast” lasers produce bursts of light that last only 
on the order of 10 fs. Because of the uncertainty prin-
ciple, such short bursts have a relatively large uncer-
tainty in frequency and wavelength. A particular ultra-
fast laser produces a 10-fs burst of light from a 
532-nm laser. (a) Find the uncertainty &f in the light’s 
frequency and the ratio &f/f. (b) What is the range &" 
of wavelengths produced? (c) Compare your answer 
to part (b) with the original wavelength and with the 
length of the light pulse that is generated in 10 fs.

 70. An ultrafast laser (see the preceding problem) has a 
central wavelength of 550 nm. What pulse duration 
would result in a spread of wavelengths that just cov-
ered the visible spectrum, 400 nm to 700 nm?
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As we discussed in Chapter 5, tremendous progress was made during the 1920s 
to correct the deficiencies of Bohr’s atomic model. The origination of the quan-
tum theory, also called quantum mechanics, is generally credited to Werner 
Heisenberg and Erwin Schrödinger, whose answers were clothed in very differ-
ent mathematical formulations. Heisenberg (along with Max Born and Pascual 
Jordan) presented the matrix formulation of quantum mechanics in 1925 and 
1926. The mathematical tools necessary to introduce matrix mechanics are not 
intrinsically difficult, but they would require too lengthy an exposition for us to 
study them here. The other solution, proposed in 1926 by Schrödinger, is called 
wave mechanics; its mathematical framework is similar to the classical wave de-
scriptions we have already studied in elementary physics. Paul Dirac and 
Schrödinger himself (among others) later showed that the matrix and wave me-
chanics formulations give identical results and differ only in their mathematical 
form. We shall study only the wave theory of Schrödinger here.

In Chapter 5 we discussed the Copenhagen interpretation of quantum theory 
and the lack of universal agreement among physicists. Quantum theory is indeed 
a complex subject, and its probabilistic nature is contrary to the direct cause and 
effect seen in classical physics. We will do what thousands before us have done: 
“Shut up and calculate!”* In this chapter we determine wave functions for some 

C H A P T E R

6

201

Quantum Mechanics II

I think it is safe to say that no one understands quantum mechanics. Do 
not keep saying to yourself, if you can possibly avoid it, “But how can it be 
like that?” because you will get “down the drain” into a blind alley from 
which nobody has yet escaped. Nobody knows how it can be like that.

Richard Feynman

Those who are not shocked when they first come across quantum me-
chanics cannot possibly have understood it.

Niels Bohr

*Many people credit this to Richard Feynman, but David Mermin (Physics Today, May 2004) says that 
this quote should not be attributed to Feynman. Certainly many students studying quantum physics 
have heard similar phrases uttered by their professors.
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202 Chapter 6 Quantum Mechanics II

simple potentials and use these wave functions to predict the values of physical 
observables such as position and energy. We will see that particles are able to 
tunnel through potential barriers to exist in places that are not allowed by clas-
sical physics. Nuclear alpha decay and electronic tunnel diodes are examples of 
tunneling we will discuss.

6.1  The Schrödinger Wave Equation
The Austrian physicist Erwin Schrödinger (Nobel Prize, 1933) was presenting a 
seminar at the University of Zurich in November 1925 on de Broglie’s wave 
theory for particles when Peter Debye suggested that there should be a wave 
equation. Within a few weeks Schrödinger had found a suitable wave equation 
based on what he knew about geometrical and wave optics.

In our previous study of elementary physics, we learned that Newton’s laws, 
especially the second law of motion, govern the motion of particles. We need a 
similar set of equations to describe the wave motion of particles; that is, we need 
a wave equation that is dependent on the potential field (for example, the Cou-
lomb or strong force field) that the particle experiences. We can then find the 
wave function ! (discussed in Chapter 5) that will allow us to calculate the prob-
able values of the particle’s position, energy, momentum, and so on.

We point out that although our procedure is similar to that followed in clas-
sical physics, we will no longer be able to calculate and specify the exact position, 
energy, and momentum simultaneously. Our calculations now must be consis-
tent with the uncertainty principle and the notion of probability. It will take time 
and experience to get used to these new ideas (see the Feynman and Bohr 
quotes at the beginning of this chapter), and we will strive to give you that expe-
rience in this chapter.

There are several possible paths through which we could plausibly obtain 
the Schrödinger wave equation. Because none of the methods is actually a deri-
vation, we prefer to present the equation and indicate its usefulness. Its ultimate 
correctness rests on its ability to explain and describe experimental results. The 
Schrödinger wave equation in its time-dependent form for a particle moving in 
a potential V in one dimension is

 iU
0° 1x, t 2

0t
" # 

U2

2m
 
02° 1x, t 2

0x 2 $ V ° 1x, t 2  (6.1)

where i " 1#1 is an imaginary number and we have used partial derivatives. 
Both the potential V and wave function ! may be functions of space and time, 
V(x, t) and !(x, t).

The extension of Equation (6.1) into three dimensions is fairly straight-
forward.

 iU 0°
0t

" # 

U2

2m
a 02°

0x 2 $
02°
0y2 $

02°
0z2 b $ V ° 1x, y, z, t 2  (6.2)

We will restrict ourselves to the one-dimensional form until Section 6.5.
Let’s compare Equation (6.1) with the classical wave equation given by

 
02° 1x, t 2

0x 2 "
1

v 2 
02° 1x, t 2

0t 2  (6.3)

Time-dependent 
Schrödinger wave equation

Erwin Schrödinger (1887– 1961) 
was an Austrian who worked at 
several European universities be-
fore fleeing Nazism in 1938 and 
accepting a position at the Uni-
versity of Dublin, where he re-
mained until his retirement in 
1956. His primary work on the 
wave equation was performed 
during the period he was in Zur-
ich from 1920 to 1927. 
Schrödinger worked in many 
fields including philosophy, biol-
ogy, history, literature, and 
language.
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   6.1 The Schrödinger Wave Equation 203

In Equation (6.3) the wave function may be as varied as the amplitude of a water 
wave, a guitar-string vibration, or even the electric field E or magnetic field B. 
Notice that the classical wave equation contains a second-order time derivative, 
whereas the Schrödinger wave equation contains only a first-order time deriva-
tive. This already gives us some idea that we are dealing with a somewhat differ-
ent phenomenon.

Because the time-dependent Schrödinger Equation (6.1) is such a departure 
from our known physical laws, there is no derivation for it. We need new physical 
principles. Despite the fact that the Schrödinger wave equation has not been de-
rived, it is still a useful tool because it describes experimental results. In science, 
and especially in physics, the test of a theoretical calculation is that it agrees with 
what we observe. In most of the remainder of this chapter, we apply the 
Schrödinger wave equation to several simple situations to illustrate its usefulness.

The wave equation must be linear so that we can use the 
superposition principle to form wave packets using two or 
more waves. Prove that the wave function in Equation (6.1) 
is linear by showing that it is satisfied for the wave function

 !(x, t) " a! 1(x, t) $ b! 2(x, t)

where a and b are constants, and ! 1 and ! 2 describe two 
waves each satisfying Equation (6.1).

Strategy We take the derivatives needed for Equation 
(6.1) and insert them in a straightforward manner. If Equa-
tion (6.1) is satisfied, then the wave equation is linear.

Solution We take each of the derivatives needed for Equa-
tion (6.1).

  
0°
0t

" a  

0°1

0t
$ b  

0°2

0t

  
0°
0x

" a  

0°1

0x
$ b  

0°2

0x

  
0 2°
0x 2 " a  

0 2°1

0x 2 $ b  

0 2°2

0x 2

We insert these derivatives into Equation (6.1) to yield

 iU aa  

0°1

0t
$ b  

0°2

0t
b " # 

U 2

2m
aa  

0 2°1

0x 2 $ b  

0 2°2

0x 2 b
 $ V 1a°1 $ b°2 2
Rearrangement of this equation gives

a a iU
0°1

0t
$

U 2

2m
 
02°1

0x 2 # V °1b
" #b a iU

0°2

0t
$

U 2

2m
 
02°2

0x 2 # V °2b
Because ! 1 and ! 2 each satisfy Equation (6.1), the quanti-
ties in parentheses are identically zero, and therefore ! is 
also a solution.

 EXAMPLE 6 .1

In Section 5.4 we discussed wave motion and the formation of wave packets 
from waves. For a wave of wave number k and angular frequency v moving in the 
$x direction, the wave function is

 !(x, t) " A sin(kx # vt $ f) (5.18)

Equation (5.18) is not the most general form of a wave function, which may in-
clude both sines and cosines. Our wave function is also not restricted to being 
real. Only the physically measurable quantities must be real, and Equation (6.1) 
already has an imaginary number. A more general form of wave function is

 !(x, t) " Aei(kx#vt) " A[cos(kx # vt) $ i sin(kx # vt)] (6.4)

which also describes a wave moving in the $x direction. In general the ampli-
tude A may also be complex.
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204 Chapter 6 Quantum Mechanics II

We showed in Example 6.2 that ei(kx#vt) represents an acceptable solution to 
the Schrödinger wave equation. It is not true that all functions of sin(kx # vt) 
and cos(kx # vt) are solutions. We show this in the following example.

Determine whether !(x, t) " A sin(kx # vt) is an accept-
able solution to the time-dependent Schrödinger wave 
equation.

Strategy We again take the derivatives needed for Equa-
tion (6.1) and insert them into the equation to see whether 
it is satisfied.

Solution

  
0°
0t

" #vA cos1kx # vt 2
 

0°
0x

" k A cos1kx # vt 2

  
02°
0x 2 " #k2A sin1kx # vt 2 " #k2°

After we insert these relations into Equation (6.1), we have

  #iUv cos1kx # vt 2 " a U 2k2

2m
$ V b°

  " a U2k2

2m
$ V bA sin1kx # vt 2

 
(6.5)

 (not true)

This equation is generally not satisfied for all x and t, and 
A sin(kx # vt) is, therefore, not an acceptable wave func-
tion. This function is, however, a solution to the classical 
wave equation [Equation (6.3)].

 EXAMPLE 6 .3

Show that Aei(kx#vt) satisfies the time-dependent Schrödinger 
wave equation.

Strategy We take appropriate derivatives needed for 
Equation (6.1) and insert them into Equation (6.1) to see 
whether it is satisfied.

Solution

  
0°
0t

" #i vAe i 1kx#vt2 " #i v°

  
0°
0x

" ik°

 
02°
0x 2 " i2k2° " #k2°

We insert these results into Equation (6.1) to yield

  iU 1#i v° 2 " # 

U 2

2m
 1#k2° 2 $ V °

  a Uv #
U2k2

2m
# V b° " 0

If we use E " hf " Uv and p " Uk, we obtain

 aE #
p2

2m
# V b° " 0

which is zero in our nonrelativistic formulation, because E " 
K $ V " p2/2m $ V. Thus e i(kx#vt) appears to be an accept-
able solution at this point.

 EXAMPLE 6 .2

Normalization and Probability
We begin by reviewing the probability interpretation of the wave function that 
we discussed in Section 5.7. The probability P(x) dx of a particle being between 
x and x $ dx was given in Equation (5.48).
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 P(x) dx " !*(x, t)!(x, t) dx (6.6)

The probability of the particle being between x1 and x2 is given by

 P " !
x 2

x1

°*° dx (6.7)

The wave function must also be normalized so that the probability of the particle 
being somewhere on the x axis is 1.

 !
q

#q
°*1x, t 2° 1x, t 2  dx " 1 (6.8)

Probability

Normalization

Consider a wave packet formed by using the wave function 
Ae #a 0x 0, where A is a constant to be determined by normaliza-
tion. Normalize this wave function and find the probabilities 
of the particle being between 0 and 1/a, and between 1/a 
and 2/a.

Strategy This wave function is sketched in Figure 6.1. We 
will use Equation (6.8) to normalize !. Then we will find 
the probability by using the limits in the integration of 
Equation (6.7).

Solution If we insert the wave function into Equation 
(6.8), we have

 !
q

#q
A2e #2a 0x 0 dx " 1

Because the wave function is symmetric about x " 0, we can 
integrate from 0 to q, multiply by 2, and drop the absolute 
value signs on |x |.

 2!
q

0

A2e #2ax dx " 1 "
2A2

#2a
 e #2ax 2 q

0

  1 "
#A2

a
  10 # 1 2 "

A2

a

The coefficient A " 1a, and the normalized wave func-
tion ! is

 ° " 1ae #a 0x 0
We use Equation (6.7) to find the probability of the particle 
being between 0 and 1/a, where we again drop the absolute 
signs on |x | because x is positive.

 P " !
1 /a

0

ae #2ax dx

The integration is similar to the previous one.

 P "
a

#2a
 e #2ax 2 1/a

0
" # 

1
2

 1e #2 # 1 2 " 0.432

The probability of the particle being between 1/a and 2/a 
is

  P " !
2 /a

1 /a

ae #2ax dx

  P "
a

#2a
 e #2ax 2 2 /a

1/a
" # 

1
2

 1e #4 # e #2 2 " 0.059

We conclude that the particle is much more likely to be 
between 0 and 1/a than between 1/a and 2/a. This is to be 
expected, given the shape of the wave function shown in 
Figure 6.1.

 EXAMPLE 6 .4

Wave function

A

x
0

Position

Ae#a#x #

#5
a

#4
a

#3
a

#2
a

#1
a

1
a

2
a

3
a

4
a

5
a

Figure 6.1 The wave function Ae#a 0x 0 is plotted as a function 
of x. Note that the wave function is symmetric about x " 0.
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206 Chapter 6 Quantum Mechanics II

The wave function ei(kx#vt) represents a particle under zero net force 
(constant V ) moving along the x axis. There is a problem with this wave func-
tion, because if we try to normalize it, we obtain an infinite result for the integral. 
This occurs because there is a finite probability for the particle to be anywhere 
along the x axis. Over the entire x axis, these finite probabilities add up, when 
integrated, to infinity. The only other possibility is a zero probability, but that is 
not an interesting physical result. Because this wave function has precise k and v 
values, it represents a particle having a definite energy and momentum. Accord-
ing to the uncertainty principle, because %E " 0 and %p " 0, we must have %t " 
q and %x " q. We cannot know where the particle is at any time. We can still 
use such wave functions if we restrict the particle to certain positions in space, 
such as in a box or in an atom. We can also form wave packets from such func-
tions in order to localize the particle.

Properties of Valid Wave Functions
Besides the Schrödinger wave equation, there are certain properties (often called 
boundary conditions) that an acceptable wave function ! must also satisfy:

1.  In order to avoid infinite probabilities, ! must be finite everywhere.
2.  In order to avoid multiple values of the probability, ! must be single 

valued.
3.  For finite potentials, ! and 0!/0x must be continuous. This is required 

because the second-order derivative term in the wave equation must be 
single valued. (There are exceptions to this rule when V is infinite.)

4.  In order to normalize the wave functions, ! must approach zero as x ap-
proaches &q.

Solutions for ! that do not satisfy these properties do not generally correspond 
to physically realizable circumstances.

Time-Independent Schrödinger Wave Equation
In many cases (and in most of the cases discussed here), the potential will not 
depend explicitly on time. The dependence on time and position can then be 
separated in the Schrödinger wave equation. Let

 ° 1x, t 2 " c1x 2 f  1t 2  (6.9)

We insert this !(x, t) into Equation (6.1) and obtain

 iUc1x 2 0f  1t 2
0t

" # 

U2f  1t 2
2m

 
02c1x 2

0x 2 $ V 1x 2c1x 2 f  1t 2
We divide by c(x)f (t) to yield

 iU 1
f  1t 2  df  1t 2

dt
" # 

U2

2m
 

1
c1x 2  d 2c1x 2

dx 2 $ V 1x 2  (6.10)

The left side of Equation (6.10) depends only on time, and the right side de-
pends only on spatial coordinates. We have changed the partial derivatives to 
ordinary derivatives, because each side depends on only one variable. It follows 
that each side must be equal to a constant (which we label B), because one vari-
able may change independently of the other. We integrate the left side of Equa-
tion (6.10) in an effort to determine the value of B.

Boundary conditions
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  iU 1
f
 
df
dt

" B

  iU ! df
f

" !B dt

We integrate both sides and find

 iU  ln f " Bt $ C

where C is an integration constant that we may choose to be 0. Therefore

 ln f "
Bt
iU

From this equation we determine f to be

 f  1t 2 " e Bt /iU " e #iBt /U (6.11)

If we compare this function for f (t) to the free-particle wave function that has 
the time dependence e#ivt, we see that B " Uv " E. This is a general result.

We now have, from the left and right sides of Equation (6.10),

  iU 1
f  1t 2  df  1t 2

dt
" E (6.12)

  # 

U2

2m
 
d 2c1x 2

dx 2 $ V 1x 2c1x 2 " E c1x 2  (6.13)

Equation (6.13) is known as the time-independent Schrödinger wave equation, 
and it is a fundamental equation in quantum mechanics.

Equation (6.11) can be rewritten as

 f  1t 2 " e #i vt (6.14)

and the wave function !(x, t) becomes

 ° 1x, t 2 " c1x 2e #i vt (6.15)

We will restrict our attention for the present to time-independent potentials in 
one space dimension. Many important and useful results can be obtained from 
this nonrelativistic and one-dimensional form of quantum mechanics, because 
usually only the spatial part of the wave function c(x) is needed. Therefore, we 
need only use Equation (6.13), the time-independent form of the Schrödinger 
wave equation.

Let’s examine the probability density !*! discussed in Section 5.7. For the 
case of Equation (6.15), where the potential does not depend on time, we have

 °*° " c21x 2 1e i vte #i vt 2
 °*° " c21x 2  (6.16)

The probability distributions are constant in time. We have seen in introduc-
tory physics the phenomenon of standing waves (for example, oscillations of 
strings fixed at both ends). Such standing waves can be formed from traveling 
waves moving in opposite directions. In quantum mechanics, we say the system 
is in a stationary state.

Time-independent 
Schrödinger wave equation
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208 Chapter 6 Quantum Mechanics II

Comparison of Classical and Quantum Mechanics We can gain insight by 
looking briefly at the similarities and differences between classical and quantum 
mechanics. Newton’s second law (F " dp /dt) and Schrödinger’s wave equation 
are both differential equations. They are both postulated to explain certain 
observed behavior, and experiments show that they are successful. Newton’s 
second law can be derived from the Schrödinger wave equation, so the latter is 
the more fundamental. Newton’s laws may seem more fundamental—because 
they describe the precise values of the system’s parameters, whereas the wave 
equation only produces wave functions that give probabilities—but by now we 
know from the uncertainty principle that it is not possible to know simultaneously 
precise values of both position and momentum and of both energy and time. 
Classical mechanics only appears to be more precise because it deals with 
macroscopic phenomena. The underlying uncertainties in macroscopic 
measurements are just too small to be significant.

An interesting parallel between classical mechanics and wave mechanics can 
be made by considering ray optics and wave optics. Throughout the 1700s, sci-
entists argued about which of the optics formulations was the more fundamen-
tal; Newton favored ray optics. Finally, it was shown early in the 1800s that wave 
optics was needed to explain the observed phenomena of diffraction and inter-
ference. Ray optics is a good approximation as long as the wavelength of the 
radiation is much smaller than the dimensions of the apertures and obstacles it 
passes. Rays of light are characteristic of particle-like behavior. However, in or-
der to describe interference phenomena, wave optics is required. Similarly for 
macroscopic objects, the de Broglie wavelength is so small that wave behavior is 
not apparent. However, advances in instrumentation and experimentation made 
it possible to observe behavior at the atomic level, and eventually the wave de-
scriptions and quantum mechanics were required to understand all the data. 
Classical mechanics is a good macroscopic approximation and is accurate 
enough in the limit of large quantum numbers, but as far as we know now, there 
is only one correct theory, and that is quantum mechanics.

Consider a metal in which there are free electrons, and the 
potential is zero. What mathematical form does the wave 
function c(x) take?

Strategy This is our first attempt to solve Equation (6.13), 
the time-independent Schrödinger wave equation. We let 
V(x) " 0 in Equation (6.13) and try to solve the differential 
equation for c(x).

Solution If we let V(x) " 0 in Equation (6.13), we have

 # 

U 2

2m
 
d 2c1x 2

dx 2 " E c1x 2

We drop the x dependence notation on c(x) and rewrite 
this equation as

 
d 2c

dx 2 " # 

2m E
U 2  c " #k 2c

We have seen the differential equation d 2c /dx 2 " #k 2c 
several times in calculus and in introductory physics. It oc-
curs in small angle oscillations for pendula and in simple 
harmonic motion. If the energy E is positive, then k2 is real, 
and the wave function solution is sinusoidal 3c1x 2 "
A sin kx $ B cos kx 4 . However, for negative energy E, then k2 
is negative, and k is imaginary. An exponential wave func-
tion 3c1x 2 " Ce ikx 4  is appropriate.

 EXAMPLE 6 .5
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   6.2 Expectation Values 209

6.2  Expectation Values
In order to be useful, the wave equation formalism must be able to determine 
values of measurable quantities, including position, momentum, and energy. In 
this section we will discuss how the wave function is able to provide this informa-
tion. We will do this here in only one dimension, but the discussion can be ex-
tended to three dimensions. We will also evaluate the values of the physical 
quantities for a given time t, because in general the whole system, including the 
values of the physical quantities, evolves with time.

Consider a measurement of the position x of a particular system (for exam-
ple, the position of a particle in a box—see Section 5.8). If we make three mea-
surements of the position, we are likely to obtain three different results. Never-
theless, if our method of measurement is inherently accurate, then there is some 
physical significance to the average of our measured values of x. Moreover, the 
precision of our result improves as more measurements are made. In quantum 
mechanics we use wave functions to calculate the expected result of the average 
of many measurements of a given quantity. We call this result the expectation 
value; the expectation value of x is denoted by 8x 9. Any measurable quantity for 
which we can calculate the expectation value is called a physical observable. The 
expectation values of physical observables (for example, position, linear mo-
mentum, angular momentum, and energy) must be real, because the experi-
mental results of measurements are real.

Let’s first review the method of determining average values. Consider a par-
ticle that is constrained to move along the x axis. If we make many measurements 
of the particle, we may find the particle N1 times at x1, N2 times at x2, Ni times at 
xi, and so forth. The average value of x, denoted by x  [or (x)av], is then

 x "
N1x1 $ N2x2 $ N3x3 $ N4x4 $ p

N1 $ N2 $ N3 $ N4 $ p "
a

i
Nixi

a
i

Ni

We can change from discrete to continuous variables by using the probability 
P(x, t) of observing the particle at a particular x. The previous equation then 
becomes

 x "

!
q

#q
x P 1x 2  dx

!
q

#q
P 1x 2  dx

 (6.17)

In quantum mechanics we must use the probability distribution given in 
Equation (6.6), P(x) dx " !*(x, t)!(x, t) dx, to determine the average or expec-
tation value. The procedure for finding the expectation value 8x9 is similar to that 
followed in Equation (6.17):

 8x 9 " !
q

#q
x°*1x, t 2° 1x, t 2  dx

!
q

#q
°*1x, t 2° 1x, t 2  dx

 (6.18)

Expectation value

Physical observables
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210 Chapter 6 Quantum Mechanics II

The denominator of Equation (6.18) is the normalization equation, previously 
shown as Equation (6.8). If the wave function is normalized, the denominator 
becomes 1. The expectation value is then given by

 8x 9 " !
q

#q
x°*1x, t 2° 1x, t 2  dx (6.19)

If the wave function has not been normalized, then Equation (6.18) should be 
used.

The same general procedure can be used to find the expectation value of 
any function g(x) for a normalized wave function !(x, t).

 8  g 1x 2 9 " !
q

#q
°*1x, t 2g 1x 2° 1x, t 2  dx (6.20)

We emphasize again that the wave function can provide only the expectation 
value of a given function g(x) that can be written as a function of x. It cannot give 
us the value of each individual measurement. When we say the wave function 
provides a complete description of the system, we mean that the expectation 
values of the physical observables can be determined.

Any knowledge we might have of the simultaneous values of the position x 
and momentum p must be consistent with the uncertainty principle. To find the 
expectation value of p, we first need to represent p in terms of x and t. As an 
example, let’s consider once more the wave function of the free particle, !(x, t) 
" ei(kx#vt). If we take the derivative of !(x, t) with respect to x, we have

 
0°
0x

"
0
0x

 3e i 1kx#vt2 4 " ike i 1kx#vt2 " ik°

But because k " p/ U , this becomes

 
0°
0x

" i  

p
U  °

After rearrangement, this yields

 p 3° 1x, t 2 4 " #iU
0° 1x, t 2

0x

An operator is a mathematical operation that transforms one function into an-
other. For example, an operator, denoted by Q̂, transforms the function f (x) by 
Q̂  f  1x 2 " g  1x 2 . In the previous wave function equation, the quantity #iU 10/0x 2  
is operating on the function !(x, t) and is called the momentum operator p ˆ, where 
the ˆ sign over the letter p indicates an operator.

 p ˆ " #iU 0
0x

 (6.21)

The existence of the momentum operator is not unique. Each of the physi-
cal observables has an associated operator that is used to find that observable’s 
expectation value. In order to compute the expectation value of some physical 
observable Q , the operator Q̂  must be placed between !* and ! so that it operates 
on !(x, t) in the order shown:

 8Q  9 " !
q

#q
°*1x, t 2 Q̂° 1x, t 2  dx (6.22)

Operators
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Thus, the expectation value of the momentum becomes

 8p9 " #iU !
q

#q
°*1x, t 2  0° 1x, t 2

0x
 dx (6.23)

The position x is its own operator. Operators for observables that are functions 
of both x and p can be constructed from x and p ˆ.

Now let’s take the time derivative of the free-particle wave function.

 
0°
0t

"
0
0t

 3e i 1kx#vt2 4 " #i ve i 1kx#vt2 " #i v°

We substitute v " E / U , and then rearrange to find

 E 3° 1x, t 2 4 " iU
0° 1x, t 2

0t
 (6.24)

We call the quantity operating on !(x, t) the energy operator.

 Ê " iU 0
0t

 (6.25)

It is used to find the expectation value 8E 9 of the energy.

 8E 9 " iU !
q

#q
°*1x, t 2  0° 1x, t 2

0t
 dx (6.26)

Although we have found the momentum and energy operators for only the free-
particle wave functions, they are general results. We shall have occasion later to 
use these operators to determine the physical observables (position, momentum, 
and energy, for example) and compare with experimental results.

Use the momentum and energy operators with the conser-
vation of energy to produce the Schrödinger wave 
equation.

Strategy We first find the energy E as the sum of the ki-
netic and potential energies. Our treatment is entirely non-
relativistic. We want to use the operator functions, so we 
write the kinetic energy in terms of momentum. 

Solution The energy is

 E " K $ V "
p2

2m
$ V  (6.27)

We allow the operators of both sides of this equation to act 
on the wave function. The left side gives

 E ˆ ° " iU 0°
0t

 (6.28)

The application of the operators on the right side of Equa-
tion (6.27) on ! gives

  c 1
2m

  1p ˆ 22 $ V d° "
1

2m
a#iU 0

0x
b 2

° $ V °

  " # 

U 2

2m
 
02°
0x2 $ V °

Notice that the operator 1p ˆ 22 implies two successive applica-
tions of the p ˆ operator, not the algebraic square of one p ˆ 
operator. Now we set the previous equation equal to Equa-
tion (6.28) and obtain

 iU 0°
0t

" # 

U 2

2m
 
02°
0x 2 $ V ° (6.29)

which is the time-dependent Schrödinger wave equation, 
Equation (6.1). It should be noted that this example is not 
a determination of the Schrödinger wave equation, but 
rather a verification of the consistency of the definitions.

 EXAMPLE 6 .6
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212 Chapter 6 Quantum Mechanics II

6.3  Infinite Square-Well Potential
We have thus far established the time-independent Schrödinger wave equation 
and have discussed how the wave functions can be used to determine the physi-
cal observables. Now we would like to find the wave function for several possible 
potentials and see what we can learn about the behavior of a system having those 
potentials. In the process of doing this we will find that some observables, includ-
ing energy, have quantized values. We begin by exploring the simplest such 
system—that of a particle trapped in a box with infinitely hard walls that the 
particle cannot penetrate. This is the same physical system as the particle in a 
box we presented in Section 5.8, but now we present the full quantum-mechan-
ical solution.

The potential, called an infinite square well, is shown in Figure 6.2 and is given 
by

 V 1x 2 " bq x ' 0, x ( L
0 0 ) x ) L

 (6.30)

The particle is constrained to move only between x " 0 and x " L, where the 
particle experiences no forces. Although the infinite square-well potential is 
simple, we will see that it is useful because many physical situations can be ap-
proximated by it. We will also see that requiring the wave function to satisfy 
certain boundary conditions leads to energy quantization. We will use this fact to 
explore energy levels of simple atomic and nuclear systems.

As we stated previously, most of the situations we encounter allow us to use 
the time-independent Schrödinger wave equation. Such is the case here. If 
we  insert V " q in Equation (6.13), we see that the only possible solution for the 
wave function is c(x) " 0. Therefore, there is zero probability for the particle to 
be located at x ' 0 or x ( L. Because the kinetic energy of the particle must be 
finite, the particle can never penetrate into the region of infinite potential. How-
ever, when V " 0, Equation (6.13) becomes, after rearranging,

 
d 2c

dx 2 " # 

2m E
U2  c " #k2c

where we have used Equation (6.13) with V " 0 and let the wave number k " 22mE / U2. A suitable solution to this equation that satisfies the properties given 
in Section 6.1 is

 c1x 2 " A sin kx $ B cos kx (6.31)

where A and B are constants used to normalize the wave function. The wave 
function must be continuous, which means that c(x) " 0 at both x " 0 and x " 
L as already discussed. The proposed solution in Equation (6.31) therefore must 
have B " 0 in order to have c(x " 0) " 0. If c(x " L) " 0, then A sin(kL) " 0, 
and because A " 0 leads to a trivial solution, we must have

 kL " np (6.32)

where n is a positive integer. The value n " 0 leads to c " 0, a physically unin-
teresting solution, and negative values of n do not give different physical solu-
tions than the positive values. The wave function is now

 cn 1x 2 " A sin a npx
L
b  1n " 1, 2, 3, . . . 2  (6.33)

V(x)

x !
0

Position

∞ ∞

L

Figure 6.2 Infinite square-well 
potential. The potential is V " q 
everywhere except the region 
0 ) x ) L, where V " 0.
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   6.3 Infinite Square-Well Potential 213

The property that dc/dx must be continuous is not satisfied in this case, because 
of the infinite step value of the potential at x " 0 and x " L, but we were warned 
of this particular situation in Section 6.1, and it creates no problem. We normal-
ize our wave function over the total distance #q ) x ) q.

 !
q

#q
c*n  1x 2cn 1x 2  dx " 1

Substitution of the wave function yields

 A2!
L

0

sin2 a npx
L
b  dx " 1

This is a straightforward integral (with the help of integral tables, see Appendix 
3) and gives L/2, so that A2 1L /2 2 " 1 and A " 12/L.

The normalized wave function becomes

 cn 1x 2 " B 2
L

 sin a npx
L
b  1n " 1, 2, 3, . . . 2  (6.34)

These wave functions are identical to the ones obtained for a vibrating string 
with its ends fixed that are studied in elementary physics. The application of the 
boundary conditions here corresponds to fitting standing waves into the box. It 
is not a surprise to obtain standing waves in this case, because we are consid ering 
time-independent solutions. Because kn " np/L from Equation (6.32), we have

 kn "
np
L

" B2m En

U2

Notice the subscript n on kn and En denoting that they depend on the integer n 
and have multiple values. This equation is solved for En to yield

 En " n2
 

p2U2

2mL2  1n " 1, 2, 3, . . . 2  (6.35)

The possible energies En of the particle are quantized, and the integer n is a 
quantum number. Notice that the results for the quantized energy levels in 
Equation (6.35) are identical to those obtained in Equation (5.51) of Section 
5.8, when we treated a particle in a one-dimensional box as a wave. The quanti-
zation of the energy occurs in a natural way from the application of the boundary 
conditions (standing waves) to possible solutions of the wave equation. Each 
wave function cn(x) has associated with it a unique energy En. In Figure 6.3 (page 
214) we show the wave function cn, probability density 0cn 0 2, and energy En for 
the lowest three values of n (1, 2, 3).

The lowest energy level given by n " 1 is called the ground state, and its en-
ergy is given by

 E1 "
p2U2

2m L2

Note that the lowest energy cannot be zero because we have ruled out the pos-
sibility of n " 0 (c0 " 0). Classically, the particle can have zero or any positive 
energy. If we calculate En for a macroscopic object in a box (for example, a ten-
nis ball in a tennis court), we will obtain a very small number for E1. Adjacent 

Quantized energy levels
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214 Chapter 6 Quantum Mechanics II

energy levels would be so close together that we could not measure their differ-
ences. Macroscopic objects must have very large values of n.

Classically, the particle has equal probability of being anywhere inside 
the box. The classical probability density (see Section 6.2) is P(x) " 1/L (for 
0 ) x ) L, zero elsewhere) for the probability to be 1 for the particle to be in 
the box. According to Bohr’s correspondence principle (see Section 4.4), we 
should obtain the same probability in the region where the classical and quan-
tum results should agree, that is, for large n. The quantum probability density is 
(2/L)sin2(knx). For large values of n, there will be many oscillations within the 
box. The average value of sin2 u over one complete cycle is 1/2. The average 
value of sin2 u over many oscillations is also 1/2. Therefore, the quantum prob-
ability approaches 1/L in this limit, in agreement with the classical result.

Figure 6.3 Wave functions cn, 
probability densities 0cn 0 2, and en-
ergy levels En for the lowest quan-
tum numbers for the infinite 
square-well potential.

0 L0 L
Position

#c3#2

#c2#2

#c1#2

c3

c2

c1

Energy

25

16

9
4

E1

E1

E1

E1
E1

∞ ∞

Show that the wave function !n(x, t) for a particle in an 
infinite square well corresponds to a standing wave in the 
box.

Strategy We have just found the wave function cn(x) in 
Equation (6.34). According to Equation (6.14), we can obtain 
!n(x, t) by multiplying the wave function cn(x) by e #i vnt.

Solution The product of cn(x) from Equation (6.34) and 
f (t) " e #i vnt gives

 °n 1x, t 2 " B 2
L

 sin1knx 2e #i vnt

We can write sin(knx) as

 sin1knx 2 "
e iknx # e #iknx

2i

so that the wave function* becomes

 °n 1x, t 2 " B 2
L

 
e i 1knx#vnt2 # e #i 1knx$vnt2

2i

This is the equation of a standing wave for a vibrating string, 
for example. It is the superposition of a wave traveling to the 
right with a wave traveling to the left. They interfere to pro-
duce a standing wave of angular frequency vn.

 EXAMPLE 6 .7

*The imaginary number i should be of no concern, because the 
probability values are determined by a product of c*c, which gives 
a real number.
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Determine the expectation values for x, x2, p, and p2 of a 
particle in an infinite square well for the first excited state.

Strategy The first excited state corresponds to n " 2, be-
cause n " 1 corresponds to the lowest energy state or the 
ground state. Equation (6.34) gives us the wave function that 
we need to find the expectation values given in Section 6.2.

Solution The wave function for this case, according to 
Equation (6.34), is

 c21x 2 " B 2
L

 sin a 2px
L
b

The expectation value 8x 9n"2 is

 8x 9n"2 "
2
L !

L

0

x  sin2a 2px
L
b  dx "

L
2

We evaluate all these integrations by looking up the integral 
in Appendix 3. As we expect, the average position of the 
particle is in the middle of the box (x " L/2), even though 
the actual probability of the particle being there is zero (see 0c 0 2 in Figure 6.3).

The expectation value 8x 29n"2 of the square of the posi-
tion is given by

 8x 29n"2 "
2
L !

L

0

x 2 sin2a 2px
L
b  dx " 0.32L2

The value of 28x 29n"2 is 0.57L, larger than 8x 9n"2 " 0.5L. 
Does this seem reasonable? (Hint: look again at the shape of 
the wave function in Figure 6.3.)

The expectation value 8p9n"2 is determined by using 
Equation (6.23).

 8p9n"2 " 1#iU 2 2
L !

L

0

sin a 2px
L
b c d

dx
 sin a 2px

L
b d  dx

which reduces to

 8p9n"2 " # 

4iU
L2 !

L

0

sin a 2px
L
b cos a 2px

L
b  dx " 0

Because the particle is moving left as often as right in the 
box, the average momentum is zero.

The expectation value 8p29n"2 is given by

  8p29n"2 "
2
L !

L

0

sin a 2px
L
b a#iU d

dx
b a#iU d

dx
b sin a 2px

L
b  dx

  " 1#iU 22 

2
L !

L

0

sin a 2px
L
b a 2p

L
 

d
dx
b cos a 2px

L
b  dx

  " #1#U2 28p2

L3 !
L

0

sin a 2px
L
b sin a 2px

L
b  dx

  "
4p2U 2

L2

This value can be compared with E2 [Equation (6.35)]:

 E2 "
4p2U 2

2mL2 "
8p29n"2

2m

which is correct, because nonrelativistically we have E " 
p2/2m $ V and V " 0.

 EXAMPLE 6 .8

A typical diameter of a nucleus is about 10#14 m. Use the 
infinite square-well potential to calculate the transition en-
ergy from the first excited state to the ground state for a 
proton confined to the nucleus. Of course, this is only a 
rough calculation for a proton in a nucleus.

Strategy To find the transition energy between the 
ground and first excited energy states, we use Equation 
(6.35) to find E1 and E2.

Solution The energy of the ground state, from Equation 
(6.35), is

  E1 "
p2U 2c 2

2mc 2L2 "
1

mc 2 
p21197.3 eV # nm 22

2110#5 nm 22
  "

1
mc 2 11.92 * 1015 eV 

2 2
The mass of the proton is 938.3 MeV/c2, which gives

 E1 "
1.92 * 1015 eV 

2

938.3 * 106 eV
" 2.0 MeV

The first excited state energy is found [again from Equation 
(6.35)] to be E2 " 4E1 " 8 MeV, and the transition energy 
is %E " E2 # E1 " 6 MeV. This is a reasonable value for 
protons in the nucleus.

 EXAMPLE 6 .9
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216 Chapter 6 Quantum Mechanics II

If we had done a calculation, similar to that in the previous example, for an 
electron in the nucleus, we would find energies on the order of 104 MeV, much 
larger than the rest energy of the electron. A correct relativistic treatment is 
necessary, and it would give electron energies significantly less than 104 MeV but 
still much larger than those of electrons actually observed being emitted from 
the nucleus in b decay. Such reasoning indicates that electrons do not exist in-
side the nucleus.

6.4  Finite Square-Well Potential
We gained some experience in the last section in dealing with the time-
independent Schrödinger wave equation. Now we want to look at a more real-
istic potential—one that is not infinite. The finite square-well potential is simi-
lar to the infinite one, but we let the potential be V0 rather than infinite in the 
region x ' 0 and x ( L.

 V 1x 2 " c 

V0 x ' 0 region I
0 0 ) x ) L region II
V0 x ( L region III

 (6.36)

The three regions of the potential are shown in Figure 6.4. We will consider a 
particle of energy E ) V0 that classically is bound inside the well. We will find that 
quantum mechanics allows the particle to be outside the well. We set the potential 
V " V0 in the time-independent Schrödinger Equation (6.13) for regions I and 
III outside the square well. This gives

 # 

U2

2m
 
1
c

 
d 2c

dx 2 " E # V0    regions I, III (6.37)

We rewrite this using a2 " 2m 1V0 # E 2/ U2, a positive constant.

 
d 2c

dx 2 " a2c

The solution to this differential equation has exponentials of the form eax and 
e#ax. In the region x + L, we can reject the positive exponential term, because it 
would become infinite as x S q. Similarly, the negative exponential can be re-
jected for x ) 0. The wave functions become

  cI1x 2 " Ae ax    region I, x ) 0 (6.38)

  cIII1x 2 " Be #ax    region III, x + L (6.39)

0
0

L
x

Position

Region IIRegion I Region III

V(x)
V0

Figure 6.4 A finite square-well 
potential has the value V0 every-
where except 0 ) x ) L, where 
V " 0. The three regions I, II, 
and III are indicated.
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   6.4 Finite Square-Well Potential 217

Inside the square well, where the potential V is zero, the wave equation 
becomes

 
d 2c

dx 2 " #k2c

where k " 212m E 2/ U2. Instead of a sinusoidal solution, we can write it as

 cII " Ce ikx $ De #ikx    region II, 0 ) x ) L (6.40)

We now want to satisfy the boundary-value properties listed in Section 6.1. 
We have already made sure that all but properties 2 and 3 have been satisfied. 
The wave functions are finite everywhere, both inside and outside the well. In 
order for the wave functions to be single valued, we must have cI " cII at x " 0 
and cII " cIII at x " L. Both c and 0c/0x must be continuous at x " 0 and 
x " L. We will not perform these tedious procedures here, but the results for the 
wave functions are presented graphically in Figure 6.5.

The application of the boundary conditions leads to quantized energy val-
ues En and to particular wave functions cn(x). One remarkable result is that the 
particle has a finite probability of being outside the square well, as indicated by 
Figure 6.5. Notice that the wave functions join smoothly at the edges of the well 
and approach zero exponentially outside the well.

What other differences can we easily discern between the infinite and finite 
square well? For example, by examination of Figures 6.5 and 6.3, we can see that 
the de Broglie wavelength is larger for the finite square well because the waves 
extend past the square well. This in turn leads to a smaller momentum and lower 
energy levels. The number of energy levels will, of course, be limited because of 
the potential height V0 (see Figure 6.5). When E + V0 the particle is unbound, a 
situation that will be discussed in Section 6.7.

The occurrence of the particle outside the square well is clearly prohibited 
classically, but it occurs naturally in quantum mechanics. Note that because of 
the exponential decrease of the wave functions cI and cIII, the probability of the 
particle penetrating a distance greater than dx " 1/a begins to decrease 
markedly.

 dx "
1
a

"
U22m 1V0 # E 2  (6.41)

We call dx the penetration depth. However, later we will find values of dx as large as 
10/a and 20/a for electrons tunneling through semiconductors (Example 6.14) 

V0

E

E3

E2

E1

0 L
x

00 L
x

x

x

PositionPosition

Wave function
En

er
gy

c3

c2

c1

Exponential

Figure 6.5 The energy levels En 
and wave functions cn for the low-
est quantum numbers for the 
finite square-well potential. No-
tice that c extends past x ) 0 and 
x + L, where classically the parti-
cle is forbidden. From Quantum 
Physics of Atoms, Molecules, Solids, 
Nuclei, and Particles, 2nd ed., by 
Robert Eisberg and Robert Resnick. 
Copyright 1985 by John Wiley & Sons, 
Inc. Reproduced with permission of John 
Wiley & Sons, Inc.
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218 Chapter 6 Quantum Mechanics II

and for nuclear alpha decay (Example 6.17), respectively. The fraction of parti-
cles that successfully tunnel through in these cases is exceedingly small, but the 
results have important applications, especially in electronics.

It should not be surprising to find that the penetration distance that violates 
classical physics is proportional to Planck’s constant U. This result is also consis-
tent with the uncertainty principle because in order for the particle to be in the 
barrier region, the uncertainty %E of the energy must be very large. According 
to the uncertainty principle (%E %t ( U/2), this can occur for only a very short 
period of time %t.

6.5  Three-Dimensional 
Infinite-Potential Well

In order to use quantum theory to solve the atomic physics problems that we 
shall face in Chapters 7 and 8, it is necessary to extend the Schrödinger equation 
to three dimensions. This is easily accomplished with the operator notation al-
ready developed in Section 6.2. After obtaining the three-dimensional equation, 
we shall use it to study the problem of a three-dimensional infinite-potential 
well.

We anticipate that there will be time-independent solutions, so we shall start 
with the time-independent Schrödinger wave equation. The wave function c 
must be a function of all three spatial coordinates, that is, c " c(x, y, z). We 
could just directly modify Equation (6.13) to three dimensions, but there is a 
simple method to arrive at the Schrödinger equation. We begin with the conser-
vation of energy:

 E " K $ V "
p2

2m
$ V

We multiply this equation times the wave function c, which gives

 
p2

2m
 c $ V c " E c (6.42)

We now use Equation (6.21) to express p2 as an operator to act on c. But be-
cause p2 " p x

2 $ p y
2 $ p z

2, we must apply the momentum operator in all three 
dimensions.

  p ˆx 
c " #iU

0c
0x

  p ˆy 
c " #iU

0c
0y

  p ˆz 
c " #iU

0c
0z

The application of p̂  2 in Equation (6.42) gives

 # 

U2

2m
a 02c

0x 2 $
02c

0y2 $
02c

0z2 b $ Vc " E c  (6.43)

This is the time-independent Schrödinger wave equation in three dimensions.

Time-independent 
Schrödinger wave equation 

in three dimensions
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   6.5 Three-Dimensional Infinite-Potential Well  219

You may recognize the expression in parentheses as the Laplacian operator 
in mathematics. It is usually written with the shorthand notation

 § 
2 "

02

0x 2 $
02

0y2 $
02

0z2 (6.44)

With this notation, we can write

 # 

U2

2m
§ 

2c $ Vc " E c (6.45)

Consider a free particle inside a box with lengths L1, L2, and 
L3 along the x, y, and z axes, respectively, as shown in Figure 
6.6. The particle is constrained to be inside the box. Find 
the wave functions and energies. Then find the ground-
state energy and wave function and the energy of the first 
excited state for a cube of sides L.

Strategy We employ some of the same strategies to solve 
this problem as we used for the one-dimensional case. First, 
because we are considering the walls of the box to be abso-
lutely closed, they are infinite potential barriers, and the 
wave function c must be zero at the walls and beyond. We 
expect to see standing waves similar to Equation (6.31).

But how should we write the wave function so as to 
properly include the x, y, and z dependence of the wave 
function? In this case the mathematics will follow from the 
physics. The particle is free within the box. Therefore, the 
x-, y-, and z-dependent parts of the wave function must be 
independent of each other. Inside the box V " 0, so the 
wave equation we must solve is

 # 

U 2

2m
§ 

2c " E c (6.46)

It is therefore reasonable to try a wave function of the form

 c1x, y, z 2 " A sin1k1x 2sin1k2y 2sin1k3z 2  (6.47)

where A is a normalization constant. The quantities ki (i " 
1, 2, 3) are determined by applying the appropriate bound-
ary conditions. To find the energies, we substitute the wave 
function into the Schrödinger equation and solve for E.

Solution The condition that c " 0 at x " L1 requires that 
k1L1 " n1p or k1 " n1p/L1. The values for the ki are

 k1 "
n1p

L1
   k2 "

n2p

L2
   k3 "

n3p

L3
 (6.48)

where n1, n2, and n3 are integers. Not surprisingly, we have 
found that in three dimensions, it is necessary to use three 
quantum numbers to describe the physical state.

In order to find the energies using Equation (6.43), we 
first need to take the appropriate derivatives of the wave 
function. We do this first for the variable x.

  
0c
0x

"
0
0x

 3A sin1k1x 2sin1k 2y 2sin1k 3z 2 4
  " k1A cos1k1x 2sin1k 2y 2sin1k 3z 2
  

02c

0x2 "
0
0x

 3k1A cos1k1x 2sin1k 2y 2sin1k 3z 2 4
  " #1k1 22A sin1k1x 2sin1k 2y 2sin1k 3z 2
 " #k 1

2c

The derivatives for y and z are similar, and Equation (6.43) 
becomes

 
U 2

2m
  1k1

2 $ k2
2 $ k3

2 2c " E c

This gives

 E "
U 2

2m
 1k 1

2 $ k 2
2 $ k 3

2 2
We substitute the values of ki from Equation (6.48) in this 
equation to obtain

 E "
p2U 2

2m
a n1

2

L1
2 $

n2
2

L2
2 $

n3
2

L3
2 b  (6.49)

 EXAMPLE 6 .10

Figure 6.6 A three-dimensional box that contains a free parti-
cle. The potential is infinite outside the box, so the particle is con-
strained to be inside the box.

0 L

L3

L2

y

z

x  !
1
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220 Chapter 6 Quantum Mechanics II

In physics we say that a given state is degenerate when there is more than one 
wave function for a given energy. We have this situation in Example 6.10, where 
all three possible wave functions for the first excited state have the same energy. 
The degeneracy in this case is a result of the symmetry of the cube. If the box 
had sides of three different lengths, we say the degeneracy is removed, because the 
three quantum numbers in different orders (211, 121, 112) would result in three 
different energies. Degeneracy is not a new phenomenon. It also occurs in clas-
sical physics, for example, in planetary motion, where orbits with different ec-
centricities may have the same energy. Degeneracy results from particular prop-
erties of the potential energy function that describes the system. A perturbation of 
the potential energy can remove the degeneracy. Energy levels can be split (and 
the degeneracy removed) by applying external magnetic fields (Zeeman effect, 
Section 7.4) and external electric fields (Stark effect, discussed in the Chapter 8 
Special Topic, “Rydberg Atoms”).

6.6  Simple Harmonic Oscillator
Because of their common occurrence in nature, we now want to examine simple 
harmonic oscillators. In introductory physics you studied the case of a mass oscil-
lating in one dimension on the end of a spring. Consider a spring having spring 
constant* k that is in equilibrium at x " x0. The restoring force (see Figure 6.7a) 
along the x direction is F " #k(x # x0), and the potential energy stored in the 
spring is V " k(x # x0)2/2 (see Figure 6.7b). The resulting motion is called simple 
harmonic motion (SHM), and the equations describing it are well known.

Besides springs and pendula (small oscillations), many phenomena in na-
ture can be approximated by SHM, for example, diatomic molecules and atoms 
in a solid lattice of atoms. Systems can also be approximated by SHM in a general 
way. As an example, consider a lattice in which the force on the atoms depends 
on the distance x from some equilibrium position x0. If we expand the potential 
in a Taylor series in terms of the distance (x # x0) from equilibrium, we obtain

Degenerate state

The allowed energy values depend on the values of the 
three quantum numbers n1, n2, and n3.

For the cubical box, with L1 " L2 " L3 " L. The energy 
values of Equation (6.49) can be expressed as

 E "
p2U 2

2mL2 1n1
2 $ n2

2 $ n3
2 2  (6.50)

For the ground state we have n1 " n2 " n3 " 1, so the 
ground state energy is

 Egs "
3p2U 2

2mL2  (6.51)

and the ground state wave function is

 cg s " A sin apx
L
b sin apy

L
b sin apz

L
b  (6.52)

What is the energy of the first excited state? Higher 
values of the quantum numbers ni correspond to higher 
energies; therefore, it is logical to try something like n1 " 2, 
 n2 " 1, and n3 " 1. But we could just as well assign quantum 
numbers n1 " 1, n2 " 2, n3 " 1 to the first excited state, or 
n1 " 1, n2 " 1, n3 " 2. In each of these cases the total energy 
is

 E1st "
p2U 2

2mL2 122 $ 12 $ 12 2 "
3p2U 2

mL2

*We let the lowercase Greek letter kappa (k) be the spring constant in this section rather than the 
normal k to avoid confusion with the wave number. It is important to note the context in which vari-
ables such as k and k are used, because either might be used as wave number or spring constant.
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   6.6 Simple Harmonic Oscillator 221

 V 1x 2 " V0 $ V11x # x0 2 $ 1
2V21x # x0 22 $ p (6.53)

where V0, V1, and V2 are constants, and we have kept only the three lowest terms 
of the series, because (x # x0) " 0 for small excursions from the equilibrium 
position x0. At x " x0 we have a minimum of the potential, so dV/dx " 0 at x " 
x0. This requires that V1 " 0, and if we redefine the zero of potential energy to 
require V0 " 0, then the lowest term of the potential V(x) is

 V 1x 2 " 1
2V21x # x0 22

This is the origin of the V " kx2/2 potential energy term that occurs so often. 
Near the equilibrium position a parabolic form as displayed in Figure 6.8 may 
approximate many potentials.

We want to study the quantum description of simple harmonic motion by 
inserting a potential V " kx2/2 (we let x0 " 0, see Figure 6.9a, page 222) into 
Equation (6.13), the time-independent Schrödinger wave equation.

 
d 2c

dx 2 " # 

2m
U2 aE #

kx 2

2
bc " a# 

2m E
U2 $

m kx 2

U2 bc (6.54)

If we let

 a2 "
m k

U2  (6.55a)

and

 b "
2m E

U2  (6.55b)

x x0

F "#k(x #x0)  

x
0

Position
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l e
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Equilibrium!
position

V(x)

x
x0

k(x #x0)21
2

Simple!
harmonic!
motion

Diatomic!
molecule

Po
te
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l e
ne

rg
y V(r)

r
r0

Figure 6.7 (a) The restoring 
force for a spring having a spring 
constant k is F " #k(x # x0). 
(b) The potential energy has the 
form k(x # x0)2/2.

Figure 6.8 Many potentials in 
nature can be approximated near 
their equilibrium position by the 
simple harmonic potential (black 
dashed curve). Such is the case 
here for the potential energy V(r) 
of a diatomic molecule near its 
equilibrium position r0 (blue 
curve).
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222 Chapter 6 Quantum Mechanics II

then

 
d 2c

dx 2 " 1a2x 2 # b 2c (6.56)

Before discussing the solution of Equation (6.56), let us first examine what 
we can learn about the problem qualitatively. Because the particle is confined to 
the potential well, centered at x " 0, it has zero probability of being at x " &q. 
Therefore, c(x) S 0 as x S &q.

What is the lowest energy level possible for the harmonic oscillator? Is E " 0 
possible? If E " 0, then x " 0 and V " 0 to allow E ( V. But if E and V are zero, 
then the kinetic energy K " 0, and the momentum p " 0. Simultaneously having 
both x " 0 and p " 0 (that is, both x and p are known exactly) violates the un-
certainty principle. Therefore, the minimum energy E cannot be zero. In fact, 
the energy levels must all be positive, because E + V ( 0. The state having the 
lowest energy, denoted here by E0, as shown in Figure 6.9a, and the wave func-
tion c0 for that state will most likely be a simple wave fitting inside the region 
defined by the potential (see Figure 6.9b). Let E0 " V0 " ka2/2. The distances &a 
define the classical limits of the particle, but we know from the previous section 
that the particle has a small probability of being outside the potential well di-
mensions of &a. Therefore, the wave function will not be zero at x " &a but will 
have a finite value that decreases rapidly to zero on the other side of the barrier. 
Thus a plausible guess for the lowest-order wave function c0 is like that shown in 
Figure 6.9b. We shall find the minimum energy E0, called the zero-point energy, in 
the following example.

Exponential

c(x)

c0

(b)
Po

te
nt

ia
l e

ne
rg

y

V(x)

x
a#a

(a)

x
a

Position
#a

E0

kx2"V 1
2

Figure 6.9 (a) The potential 
V " kx2/2 for a simple harmonic 
oscillator. The classical turning 
points &a are determined for the 
ground state when the lowest en-
ergy E0 is equal to the potential 
energy. (b) Notice that the wave 
function c0(x) for the ground 
state is symmetric and decays ex-
ponentially outside &a where 
V + E0.

Estimate the minimum energy of the simple harmonic oscil-
lator allowed by the uncertainty principle.

Strategy In introductory physics you learned that the av-
erage kinetic energy is equal to the average potential energy 

for simple harmonic oscillators over the range of motion 
(from #x to $x), and both the average potential and kinetic 
energies are equal to one half the total energy. By relating 
the mean square deviation values to the uncertainty values 
%x and %p, we will determine the minimum energy.

 EXAMPLE 6 .11
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   6.6 Simple Harmonic Oscillator 223

The wave function solutions cn for Equation (6.56) are

 cn " Hn 1x 2e #ax 
2

 /2 (6.57)

where Hn(x) are polynomials of order n, and n is an integer ( 0. The functions 
Hn(x) are related by a constant to the Hermite polynomial functions tabulated in 
many quantum mechanics books. The first few values of cn and 0cn 0 2 are shown 
in Figure 6.10. In contrast to the particle in a box, where the oscillatory wave 
function is a sinusoidal curve, in this case the oscillatory behavior is due to the 
polynomial, which dominates at small x. The exponential tail is provided by the 
Gaussian function, which dominates at large x.

The energy levels are given by

 En " 1n $ 1
2 2 U1k /m " 1n $ 1

2 2 Uv (6.58)

where v2 " k/m, and v is the classical angular frequency. From Equation (6.58) 
we see that the zero-point energy E0 is

 E0 "
1
2

 Uv (6.59)

Notice that this result for E0 is precisely the value found in Example 6.11 by using 
the uncertainty principle. The uncertainty principle is responsible for the mini-
mum energy of the simple harmonic oscillator. In Section 5.6 we mentioned that 
the minimum value (that is, the equality sign) of the uncertainty principle is found 
for Gaussian wave packets. We note here that the wave functions for the simple 
harmonic oscillators are of just the Gaussian form (see Figure 6.10, page 224). The 
minimum energy E0 allowed by the uncertainty principle, sometimes called the 
Heisenberg limit, is found for the ground state of the simple harmonic oscillator.

Finally, let us compare the motion as described by classical and quantum 
theory. We recall the classical motion of the mass at the end of a spring. The 
speed is greatest as it passes through its equilibrium position. The speed is lowest 
(zero) at the two ends (compressed or extended positions of the spring), when 
the mass stops and reverses direction. Classically, the probability of finding the 
mass is greatest at the ends of motion and smallest at the center (that is, propor-
tional to the amount of time the mass spends at each position). The classical 
probability is shown by the black dashed line in Figure 6.11 (page 224).

The quantum theory probability density for the lowest energy state (c0
2, see 

Figure 6.10) is contrary to the classical one. The largest probability for this lowest 
energy state is for the particle to be at the center. We are not surprised to see such 
a marked difference between classical and quantum predictions (see Section 4.4). 

Solution The energies are related by

 Kav "
1
2

 E "
1
2

 k1x 2 2 av "
1

2m
 1p2 2 av

The mean value of x is zero, but the mean value of (x2)av is 
the mean square deviation (%x)2. Similarly, (p2)av " (%p)2. 
From the previous equation, we therefore have the energy 
E " k(%x)2 " (%p)2/m and, as a result, we must have 
¢x " ¢p /1m k. From the uncertainty principle we have 
¢p ¢x ( U  /2, so the minimum value of ¢x " U  / 12 ¢p 2 . 
Now we have for the lowest energy E0

  E0 " k1x 2 2 av " k1¢x 22 " k a ¢p1mk
b a U

2 ¢p
b

  E0 "
U
2B km "

Uv
2

Our estimate for the zero-point energy of the harmonic os-
cillator is Uv /2. This agrees with the zero-point energy 
found by more rigorous means.

The zero-point energy is not just a curious oddity. For 
example, the zero-point energy for 4He is large enough to 
prevent liquid 4He from freezing at atmospheric pressure, 
no matter how cold the system, even near 0 K.
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However, from the correspondence principle we would expect the classical and 
quantum probabilities to be similar as the quantum number n becomes very 
large. In Figure 6.11 we show cn

2 for the case of n " 10, and we see that the average 
probabilities become similar. As n continues to increase, the peaks and valleys of 
the quantum probabilities are hardly observable, and the average value ap-
proaches the classical result.
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Figure 6.10 Results for simple 
harmonic oscillator potential. 
(a) The energy levels for the low-
est four energy states are shown 
with the corresponding wave 
functions listed. (b) The wave 
functions for the four lowest en-
ergy states are displayed. Notice 
that even quantum numbers have 
symmetric cn(x), and the odd 
quantum numbers have antisym-
metric cn(x). (c) The probability 
densities 0cn 0 2 for the lowest four 
energy states are displayed.

Figure 6.11 The probability 
distribution 0c10 0 2 for the n " 10 
state is compared with the classi-
cal probability (dashed line). As n 
increases, the two probability dis-
tributions become more similar.
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   6.6 Simple Harmonic Oscillator 225

Normalize the ground state wave function c0 for the simple 
harmonic oscillator and find the expectation values 8x 9 and 8x 2 9.
Strategy We can use Equation (5.49) for the normaliza-
tion process. Let’s assume that all we know about the wave 
function c0 is the form given in Equation (6.57). H0(x) has 
no dependence on x, so we take it to be a constant A. We 
find the expectation values as discussed in Section 6.2.

Solution If we let H0(x) " A, the ground state wave func-
tion becomes

 c01x 2 " Ae #ax 
2

 /2

The normalization determines A.

  !
q

#q
c*0 1x 2c01x 2  dx " 1

  A2!
q

#q
e #ax 

2
 dx " 1

  2A2!
q

0

e #ax 
2
 dx " 1

We determine this integral with the help of integral tables 
(see Appendix 6), with the result

  2A2a 1
2Bpa b " 1

  A2 " B ap
  A " a a

p
b 1 /4

For the ground state wave function, this gives

 c01x 2 " a a
p
b 1 /4

e #ax 
2

 /2 (6.60)

This is precisely the wave function given in Figure 6.10 and 
is of the Gaussian form.

The expectation value of x is

 
 8x9 " !

q

#q
c*0 1x 2x c01x 2  dx

 
 " B ap !

q

#q
xe #ax 

2
 dx

The value of 8x 9 must be zero, because we are integrating an 
odd function of x over symmetric limits from #q to $q 
(see Appendix 6). Both classical and quantum mechanics 
predict the average value of x to be zero because of the sym-
metric nature of the potential, kx2/2.

The expectation value 8x 2 9, however, must be positive, 
because x2 is never negative.

  8x 29 " !
q

#q
c*0 1x 2x 2c01x 2  dx

  " B ap !
q

#q
x 2e #ax 

2
 dx

  " 2B ap !
q

0

x 2e #ax 
2
 dx

This integral can be found in a table of integrals (see Ap-
pendix 6), and the result is

 8x 29 " 2B ap a 2p4a3 /2 b "
1

2a

Inserting the value of the constant a from Equation (6.55a) 
gives

 8x 29 " U
22mk

Because v " 2k /m, we have

 8x 29 " U
2m v

 (6.61)

In Example 6.11 we argued that

 1x 
2 2 av " 1¢x 22 "

E0

k

and showed that E0 " Uv /2, the minimum energy allowed 
by the uncertainty principle. We can now see that these re-
sults are consistent, because

 8x 29 " 1x 2 2 av "
E 0

k
"

Uv
2k

"
Uv

2m v2 "
U

2m v

as we determined in Equation (6.61).

 EXAMPLE 6 .12
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226 Chapter 6 Quantum Mechanics II

6.7  Barriers and Tunneling
The methods we have already seen for studying particles in potential wells can 
be applied to the problem of a particle approaching a potential barrier. As you 
will see, potential barriers are real physical phenomena, and our results have 
immediate applications.

Potential Barrier with E + V0

Consider a particle of energy E approaching a potential barrier of height V0 
for 0 ) x ) L. The potential elsewhere is zero. First, let us consider the case 
where the particle’s energy is E + V0 as shown in Figure 6.12. Classically we 
know the particle would pass the barrier, moving with reduced velocity in the 
region of V0 (K " mv 2/2 " E # V0, rather than K " mv 2/2 " E ). On the other 
side of the barrier, where V " 0, the particle will have its original velocity 
again. According to quantum mechanics, the particle will behave differently 
because of its wavelike character. In regions I and III (where V " 0) the wave 
numbers are

 kI " kIII "
22m E

U     where V " 0 (6.62a)

In the barrier region, however, we have

 kII "
22m 1E # V0 2

U     where V " V0 (6.62b)

We consider an analogy with optics. When light in air penetrates another 
medium (for example, glass), the wavelength changes because of the index of 
refraction. Some of the light will be reflected, and some will be transmitted into 
the medium. Because we must consider the wave behavior of particles interacting 
with potential barriers, we might expect similar behavior. The wave function will 
consist of an incident wave, a reflected wave, and a transmitted wave (see Fig-
ure 6.13). These wave functions can be determined by solving the Schrödin ger 
wave equation, subject to appropriate boundary conditions. The difference from 
classical wave theories is that the wave function allows us to compute only 
probabilities.

Classical mechanics allows no reflection if E + V0 and total reflection for 
E ) V0. Quantum mechanics predicts almost total transmission for E W V0 and 
almost complete reflection for E V V0. In the regime where E is comparable to V0, 
unusual nonclassical phenomena may appear.

The potentials and the Schrödinger equation for the three regions are as 
follows:

 Region I (x ) 0) V " 0 
d 2cI

dx 2 $
2m
U2  E  cI " 0

 Region II (0 ) x ) L) V " V0 
d 2cII

dx 2 $
2m
U2  1E # V0 2cII " 0

 Region III (x + L) V " 0 
d 2cIII

dx 2 $
2m
U2  E  cIII " 0

Figure 6.12 A particle having 
energy E approaches a potential 
barrier of width L and height V0 
with E + V0. The one-dimensional 
space is divided into three regions 
as shown.

Figure 6.13 The incident parti-
cle in Figure 6.12 can be either 
transmitted or reflected.

x

V(x)

0

Region I Region II Region III

L

E

V0

Particle

x

V(x)

0 L
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Transmitted
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   6.7 Barriers and Tunneling 227

The wave functions obtained for these equations are

 Region I (x ) 0)     cI " Ae ik Ix $ Be #ik Ix  (6.63a)

 Region II (0 ) x ) L)  cII " Ce ik IIx $ De #ik IIx (6.63b)

 Region III (x + L)    cIII " Fe ik Ix $ Ge #ik Ix  (6.63c)

We assume that we have incident particles coming from the left moving along the 
$x direction. In this case the term Ae ik Ix in region I represents the incident par-
ticles. The term Be #ik Ix represents the reflected particles moving in the #x direc-
tion. In region III there are no particles initially moving along the #x direction, 
so the only particles present must be those transmitted through the barrier. Thus 
G " 0, and the only term in region III is Fe ik Ix. We summarize these wave func-
tions as follows:

 Incident wave      cI1incident 2 " Ae ik Ix  (6.64a)

 Reflected wave  cI1reflected 2 " Be #ik Ix (6.64b)

 Transmitted wave  cIII1transmitted 2 " Fe ik Ix  (6.64c)

The probability of particles being reflected or transmitted is determined by 
the ratio of the appropriate c*c. The probabilities are

  R "
0cI 
1reflected 2 0 20cI 
1incident 2 0 2 "

B *B
A*A

 (6.65)

  T "
0cIII 
1transmitted 2 0 20cI 
1incident 2 0 2 "

F *F
A*A

 (6.66)

where R and T are reflection and transmission probabilities, respectively. Be-
cause the particles must be either reflected or transmitted, we must have R $ 
T " 1, the probability of the wave being either reflected or transmitted has to be 
unity.

The values of R and T are found by applying the properties (boundary con-
ditions) of Section 6.1 as x S & q, x " 0, and x " L. These conditions will result 
in relationships between the coefficients A, B, C, D, and F. We will not go through 
the long algebra steps here, but the result for the transmission probability is

 T " c1 $
V 0

2 sin21kIIL 2
4E 1E # V0 2 d#1

 (6.67)

Notice that there is a situation in which the transmission probability is 1. 
This occurs when kIIL " np, where n is an integer. It is possible for particles mov-
ing along the $x direction to be reflected both at x " 0 and x " L. Their path 
difference back toward the #x direction is 2L. When 2L equals an integral num-
ber of the wavelengths inside the potential barrier, the incident and reflected 
wave functions are precisely out of phase and cancel completely.

Potential Barrier with E ) V0

Now we consider the situation in which classically the particle does not have 
enough energy to surmount the potential barrier, E ) V0. We show the situation 
in Figure 6.14. In the classical situation, the particle cannot penetrate the barrier 
because its kinetic energy (K " E # V0) is negative. The particle is reflected at 
x " 0 and returns. The quantum mechanical result, however, is one of the most 

Probability of reflection

Probability of transmission

Figure 6.14 A particle having 
energy E approaches a potential 
barrier of height V0 with E ) V0. 
Classically, the particle is always 
reflected.
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gy

E

L
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228 Chapter 6 Quantum Mechanics II

remarkable features of modern physics, and there is ample experimental proof 
of its existence. There is a small, but finite, probability that the particle can pen-
etrate the barrier and even emerge on the other side. Such a surprising result 
requires a careful inspection of the wave functions. Fortunately, there are only a 
few changes to the equations already presented, and they occur in region II. The 
wave function in region II becomes cII " Ce kx $ De #kx where

 k "
22m 1V0 # E 2

U  (6.68)

The parameter k is a positive, real number, because V0 + E. The application of 
the boundary conditions will again relate the coefficients of the wave functions.

The equations for the reflection and transmission probabilities of Equations 
(6.65) and (6.66) are unchanged, but the results will be modified by changing 
ikII S k. Quantum mechanics allows the particle to actually be on the other side 
of the potential barrier despite the fact that all the incident particles came in 
from the left moving along the $x direction (Figure 6.15). This effect is called 
tunneling. The result for the transmission probability in this case is

 T " c1 $
V 0

2 sinh21kL 2
4E 1V0 # E 2 d#1

 (6.69)

Note that the sine function in Equation (6.67) has been replaced by the hyper-
bolic sine (sinh). When kL W 1, the transmission probability equation (6.67) 
reduces to

 T " 16  

E
V0
a1 #

E
V0
b e #2kL (6.70)

Tunneling

Figure 6.15 According to 
quantum mechanics, the particle 
approaching the potential barrier 
of Figure 6.14 may actually pass 
into the barrier and has a small 
probability of tunneling through 
the barrier and emerging at x " 
L. The particle may also be 
reflected at each boundary.

x

c(x)

0 L

Quantum!
behavior

Exponential

Sinusoidal
Sinusoidal

Which is more effective in preventing tunneling, the barrier 
potential height or the barrier width?

Solution The probability of penetration is dominated by 
the exponentially decreasing term. The exponential factor 
in Equation (6.70) depends linearly on the barrier width but 

only on the square root of the potential barrier height 1k $ 1V0 # E 2 . Thus, the width of the barrier is more ef-
fective than the potential height in preventing tunneling. It 
comes as no surprise that tunneling is observed only at the 
smallest distances on the atomic scale.

 CONCEPTUAL EXAMPLE 6 .13
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   6.7 Barriers and Tunneling 229

A simple argument based on the uncertainty principle helps us understand 
tunneling. Inside the barrier region (where 0 ) x ) L), the wave function cII is 
dominated by the e #kx term, and 0cII 0 2 " e #2kx, so that over the interval %x " k#1, 
the probability density of observing the particle has decreased markedly (e#2 " 
0.14). Because ¢p ¢x ( U , we have ¢p ( U  /¢x " Uk. The minimum kinetic 
energy in this interval must be

In a particular semiconductor device, electrons that are ac-
celerated through a potential of 5 V attempt to tunnel 
through a barrier of width 0.8 nm and height 10 V. What 
fraction of the electrons are able to tunnel through the bar-
rier if the potential is zero outside the barrier?

Strategy We use either Equation (6.69) or (6.70) to cal-
culate the tunneling probability, depending on the value of 
kL. We need to know V0, k, L, and E. We are given L and the 
fact that the potential barrier has V0 " 10 eV and is zero 
outside the barrier. We determine from the accelerating 
voltage that the energy E of the electrons is K " 5 eV. We 
find the value of k from a variation of Equation (6.62b) 
where we let ikII S k.

Solution We determine k by using the mass of the electron 
and the appropriate energies.

  k "
22m 1V0 # E 2

U

  "
2210.511 * 106 eV /c 2 2 110 eV # 5 eV 2

6.58 * 10#16 eV # s
  "

3.43 * 1018 s#1

c
"

3.43 * 1018 s#1

3 * 108 m/s
" 1.15 * 1010 m#1

The value of kL " (1.15 * 1010 m#1)(0.8 * 10#9 m) " 9.2, 
which might be considered to be much greater than 1, so we 
can try Equation (6.70). Let’s calculate the transmission 
probability using both equations. The approximate Equa-
tion (6.70) gives

 T " 16 a 5 eV
10 eV

b a1 #
5 eV
10 eV

b e #18.4 " 4.1 * 10#8

The more accurate Equation (6.69) gives

 T " c 1 $ 110 eV 22 sinh219.2 2
415 eV 2 15 eV 2 d#1

" 4.1 * 10#8 (6.71)

The approximate equation, valid when kL W 1, works well 
in this case.

 EXAMPLE 6 .14

Consider Equation (6.70) and let all the factors multiplying 
the exponential term be denoted by M:

 T " 16 

E
V0
a1 #

E
V0
b e #2kL " Me #2kL (6.72)

Consider the value of M and assign an average value. Calcu-
late the probability of the electron tunneling through the 
barrier of the previous example.

Strategy We first consider a range of values E/V0 and es-
timate an average value. Then we use Equation (6.72) to 
determine the tunneling probability and compare with the 
value found in Equation (6.71) of Example 6.14.

Solution The maximum value of

 M " 16 

E
V0
a1 #

E
V0
b

will be M " 4 when E/V0 " 0.5. The values of M are sym-
metric around E/V0 " 0.5, and M " 1.4 when E/V0 " 0.1. A 
typical value of M might be 2, so Equation (6.72) becomes

 T " 2e #2kL (6.73)

We emphasize that Equation (6.73) is only an estimate to 
give an order of magnitude value for the tunneling 
probability.

For the values in Example 6.14, kL " 9.2, and we have

 T " 2e #219.22 " 2e #18.4 " 2 * 10#8

As we expected, Equation (6.73) gives a result that agrees in 
order of magnitude with Example 6.14.

 EXAMPLE 6 .15
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230 Chapter 6 Quantum Mechanics II

 Kmin "
1¢p 22
2m

"
p2k2

2m
" V0 # E

where we have substituted for k in the last step. The violation allowed by the 
uncertainty principle (K min) is equal to the negative kinetic energy required! The 
particle is allowed by quantum mechanics and the uncertainty principle to pen-
etrate into a classically forbidden region.

Let us return briefly to our analogy with wave optics. If light passing through a 
glass prism reflects from an internal surface with an angle greater than the critical 
angle, total internal reflection occurs as seen in Figure 6.16a. However, the elec-
tromagnetic field is not exactly zero just outside the prism. If we bring another 
prism very close to the first one, experiment shows that the electromagnetic wave 
(light) appears in the second prism (see Figure 6.16b). The situation is analogous 
to the tunneling described here. This effect was observed by Newton and can be 
demonstrated with two prisms and a laser. The intensity of the second light beam 
decreases exponentially as the distance between the two prisms increases.*

(a) (b)

Figure 6.16 (a) A light wave 
will be totally reflected inside a 
prism if the reflection angle is 
greater than the critical angle. 
(b) If a second prism is brought 
close to the first, there is a small 
probability for the wave to pass 
through the air gap and emerge 
in the second prism.

Figure 6.17 A particle of energy E approaches a potential bar-
rier from the left. The step potential is V " 0 for x ) 0 and V " V0 
for x + 0.

Consider a particle of kinetic energy K approaching the step 
function of Figure 6.17 from the left, where the potential bar-
rier steps from 0 to V0 at x " 0. Find the penetration distance 
%x, where the probability of the particle penetrating into the 
barrier drops to 1/e. Calculate the penetration distance for a 
5-eV electron approaching a step barrier of 10 eV.

Strategy We use the results of this section to find the wave 
functions in the two regions x ) 0 and x + 0.

  cI " Ae ikx $ Be #ikx   x ) 0

  cII " Ce kx $ De #kx   x + 0

where

  k "
12m E

U "
12mK

U

  k "
22m 1V0 # E 2

U
Because the wave function cII must go to zero when x S q, 
the coefficient C " 0, so we have

 cII " De #kx  x + 0

The probability distribution for x + 0 is given by 0cII 0 2. 
We need to find the value of x when the probability has 
dropped to e#1. Let’s call this distance /.

Solution For the penetration distance /, we have

 e #1 "
cII

21x " / 2
cII

21x " 0 2 " e #2k/

From this equation we have 1 " 2k/, and the penetration 
distance becomes

 / "
1

2k
"

U
222m 1V0 # E 2

This is the result we needed.
Now we find the penetration distance for the E " K " 

5-eV electron.

  / "
Uc

222mc 21V0 # E 2
  "

197.3 eV # nm

22210.511 * 106 eV 2 110 eV # 5 eV 2 " 0.044 nm

Electrons do not penetrate very far into the classically for-
bidden region.

 EXAMPLE 6 .16

x

V(x)

0
Position

E

V0

Particle

*See D. D. Coon, American Journal of Physics 34, 240 (1966).
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Potential Well
Consider a particle of energy E + 0 passing through the potential well region 
(Figure 6.18), rather than into a potential barrier. Let V " #V0 in the region 
0 ) x ) L and zero elsewhere. Classically, the particle would accelerate passing 
the well region, because K " mv2/2 " E $ V0. According to quantum mechanics, 
reflection and transmission may occur, but the wavelength inside the potential 
well is smaller than outside. When the width of the potential well is precisely 
equal to half-integral or integral units of the wavelength, the reflected waves may 
be out of phase or in phase with the original wave, and cancellations or reso-
nances may occur. The reflection/cancellation effects can lead to almost pure 
transmission or pure reflection for certain wavelengths. For example, at the sec-
ond boundary (x " L) for a wave passing to the right, the wave may reflect and 
be out of phase with the incident wave. The effect would be a cancellation of the 
wave function inside the well.

Alpha-Particle Decay
The phenomenon of tunneling explains the alpha-particle decay of radioactive 
nuclei. Many nuclei heavier than lead are natural emitters of alpha particles, but 
their emission rates vary over a factor of 1013, whereas their energies tend to 
range only from 4 to 8 MeV. Inside the nucleus, an alpha particle feels the 
strong, short-range attractive nuclear force as well as the repulsive Coulomb 
force. An approximate potential well is shown in Figure 6.19. The nuclear force 
dominates inside the nuclear radius rN, and the potential can be approximated 
by a square well. However, outside the nucleus, the Coulomb force dominates. 
The so-called Coulomb potential energy barrier of Figure 6.19 can be several 
times the typical kinetic energy K ($5 MeV) of an alpha particle.

The alpha particle therefore is trapped inside the nucleus. Classically, it does 
not have enough energy to surmount the Coulomb potential barrier. According 
to quantum mechanics, however, the alpha particle can “tunnel” through the bar-
rier. The widely varying rates of alpha emission from radioactive nuclei can be 
explained by small changes in the potential barrier (both height and width). A 
small change in the barrier can manifest itself greatly in the transmission probabil-
ity (see Conceptual Example 6.13), because of the exponential behavior in e#2kL.

x

V(x)

0

E

L

V " 0

V " #V0

V " 0

Particle

r

V(r)

VC

V ,C

r ," rN $L
Radius

Coulomb potential!
energy

En
er

gy

Ea

rN

Figure 6.18 A particle of en-
ergy E approaches a potential 
well from the left. The potential is 
V " 0 everywhere except between 
0 ) x ) L, where V " #V0.

Figure 6.19 An a particle of 
energy Ea is trapped inside a 
heavy nucleus by the large nu-
clear potential. Classically, it can 
never escape, but quantum me-
chanics allows it to tunnel 
through and escape.
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Special Topic

Scanning Probe Microscopes

S canning probe microscopes allow a computer-
generated contour map of a surface, atom by 

atom (see Figure 1.7). They consist of two types, scan-
ning tunneling microscopes (STM) and atomic force 
microscopes (AFM), which have revolutionized the 
imaging of atomic surfaces. Gerd Binnig and Heinrich 
Rohrer (Nobel Prize, 1986) invented the STM in the 
early 1980s at the IBM Research Laboratory in Zurich, 
Switzerland. Later while Binnig was on leave at Stan-
ford University and IBM’s Almaden Research Center, 
he thought up the concept of the AFM, which he de-
veloped in 1985 with Christoph Gerber of IBM and 
Calvin Quate of Stanford.

In the most common form of the STM a constant 
bias voltage of appropriate polarity is applied between 
the atoms of a tip and the sample to be examined (Fig-
ure A). As the tip runs over the surface of the sample 
just an atom’s diameter away, electrons attracted to 
the needle tunnel across the gap, and the sensitivity of 
the tunneling current to the gap distance is the key 
to the STM capability. This tunneling current can be as 
small as a few pA (10#12 A), and a change in the tunnel-
ing gap of only 0.4 nm can cause a factor of 104 in the 
tunneling current. A highly sensitive feedback mecha-
nism regulates the position of the tip to maintain a 
steady current of electrons. The resulting up and down 
movements of the tip effectively trace the contours of 
the sample atoms, producing something like a topo-
graphic map. The resulting image (path of the tip) is 
shown by the solid black line in Figure A.

The AFM depends on the interatomic forces be-
tween the tip and sample atoms as shown in Fig ure B. In 
some systems, the sample atoms are scanned horizon-
tally while the sample is moved up and down to keep the 
force between the tip and sample atoms constant. The 
interatomic forces cause the very sensitive cantilever to 
bend. A laser is reflected off the end of the cantilever 
arm into an optical sensor, and the feedback signal 
from this sensor controls the sample height, giving the 
topography of the atomic surface. The tip is scanned 
over the surface for a constant cantilever deflection and 
a constant interatomic force between tip and atom.

The interaction between tip and sample is much 
like that of a record player stylus moving across the 

record but is about a million times more sensitive. The 
optical feedback system prevents the tip from actually 
damaging or distorting the sample atoms. Cantilevers 
having spring constants as small as 0.1 N/m have been 
microfabricated from silicon and silicon compounds. 
The cantilever lateral dimensions are on the order of 
100 -m with thicknesses of about 1 -m. In comparison 
the spring constant of a piece of household aluminum 
foil 4 mm by 1 mm is about 1 N/m. The tapered tips may 
have an end dimension of only 50 nm. The tracking 
forces felt by the cantilever can be as small as 10#9 N.

Advantages of the AFM compared with the STM 
are that a conducting surface is not required, and 
neither special sample preparation nor expensive 

Tunneling!
electrons

Sample!
atoms

Tip!
atoms

z

Ammeter
I Bias!

voltage

Figure A Highly schematic diagram of the scanning tunneling 
microscope process. Electrons, represented in the figure as small 
dots, tunnel across the gap between the atoms of the tip and sam-
ple. A feedback system that keeps the tunneling current constant 
causes the tip to move up and down, tracing the contours of the 
sample atoms.

Heinrich Rohrer (right, 1933– ) 
and Gerd Binnig (1947– ) re-
ceived the Nobel Prize for Phys-
ics in 1986 for their design of 
the scanning tunneling micro-
scope. The Swiss Rohrer was 
educated at the Swiss Federal 
Institute of Technology in Zur-
ich and joined the IBM Re-
search Laboratory in Zurich in 
1963. The German Binnig re-
ceived his doctorate from the 
University of Frankfurt (Germany) in 1978 and then joined the same 
IBM Research Laboratory. He moved to the IBM Physics Group in 
Munich in 1984.
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vacuum equipment is needed. Because the AFM works 
for both insulators and conductors, it can be used for 
ceramics, polymers, optical surfaces, and biological 
specimens. However, special vibrational insulation is 
needed for AFM to dampen air currents and even hu-
man voices. Figure 1.7 is a photo indicating individual 
atoms that was taken using an STM. Those atoms can 
be individually moved as shown in Figure C.

In addition to providing individual atomic im-
ages, the STM and AFM open tremendous possibilities 
for investigation of a variety of atomic surface fea-
tures. The topographical images produced by these 
microscopes allow scientists to examine the gross fea-
tures of a sample, such as the flatness of materials, 
grain structures, and the breakup of thin films. Indus-
trial applications of this technology include the in-
spections of magnetic bit shapes, integrated circuit 
topography, lubricant thicknesses, optical disk stamp-
ers (Figure D), and measurement of line widths on 
integrated circuit masks. Biological applications of 
AFM include the imaging of amino acids, DNA, pro-
teins, and even leaf sections from a plant. The AFM 

has been used to observe the polymerization of fibrin, 
a blood-clotting protein. Real-time imaging of bio-
logical samples offers incredible possibilities, for ex-
ample, the attachment of the AIDS virus onto cell 
membranes. Now that STM and AFM instruments are 
both available commercially, new applications for this 
revolutionary technology are being developed that 
include such diverse techniques as developing x-ray 
mirrors by moving atoms to increase reflectivity, 
“nanoengineering” electronics to improve performance, 
and repairing organic molecules on an atomic basis.

Sample!
 atoms

Path of tip

Tip
Cantilever

Mirror

Lens

Laser

Laser beam!
position!
detector

Figure B Highly schematic diagram of the atomic 
force microscope. A feedback signal from the detec-
tion of the laser beam reflecting off the mirror that 
is mounted on the cantilever provides a signal to 
move the sample atoms up or down to keep the can-
tilever force constant. The movement of the sample 
atoms traces the contours of the sample atoms.

Figure C These three photos, taken with an STM, show xenon atoms placed on a 
nickel surface. The xenon atoms are 0.16 nm high and adjacent xenon atoms are 
0.5 nm apart (the vertical scale has been exaggerated). The small force between the 
STM tip and an atom is enough to drag one xenon atom at a time across the nickel. 
The nickel atoms are represented by the black-and-white stripes on the horizontal 
surface. See also Figure 1.7. The image is magnified about 5 million times.

Figure D An atomic force mi-
croscope scan of a live cancer cell, 
size 50 -m * 50 -m. This lung 
cancer cell was grown for four 
days.
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234 Chapter 6 Quantum Mechanics II

Consider the a-particle emission from a 238U nucleus, which 
emits a 4.2-MeV a particle. We represent the potentials as 
shown in Figure 6.19. The a particle is contained inside the 
nuclear radius of rN " 7 * 10#15 m. Find the barrier height 
and the distance the a particle must tunnel and use a 
square-top potential to calculate the tunneling probability.

Strategy We shall calculate the barrier height [VC (r " rN) 
in Figure 6.19] by calculating the Coulomb potential be-
tween an a particle and the remainder of the uranium nu-
cleus for a separation of the nuclear radius, 7 * 10#15 m. We 
find the tunneling distance by setting the kinetic energy 
equal to the Coulomb potential and then use Equation 
(6.70) to determine the tunneling probability.

Solution The Coulomb potential is

  VC "
Z 1Z 2e 2

4pP0rN

  "
2192 2 11.6 * 10#19 C 22 19 * 109 N # m2

 /C2 2
7 * 10#15 m

  
 *

10#6 MeV
1.6 * 10#19 J

  " 38 MeV

We determine the distance r œ through which the a 
particle must tunnel by setting K " VC (r " r œ) at that dis-
tance (see Figure 6.19). Because K " 4.2 MeV, we have

 4.2 MeV "
Z 1Z 2e 2

4pP0r œ

We solve this equation for r œ:

 r œ "
38 MeV
4.2 MeV

 rN " 6.3 * 10#14 m " 63 fm

where we have used the values above for VC and rN.
We make a simple, but rough, approximation of a 

square-top potential where V " 38 MeV for 7 fm ) r ) 63 fm. 
We then find

  k "
22m 1V # E 2

U

  "
2213727 MeV /c 2 2 138 MeV # 4.2 MeV 2

6.58 * 10#22 MeV # s
  " 2.5 * 1015 m#1

where the mass of the a particle is 3727 MeV/c2. The barrier 
width L is the difference between r œ and rN.

  L " r œ # rN

 " 63 fm # 7 fm " 56 fm

The value of kL " (2.5 * 1015 m#1)(56 * 10#15 m) " 
140. Because kL W 1, we use Equation (6.70) to calculate 
the tunneling probability.

  T " 16 a 4.2 MeV
38 MeV

b  a1 #
4.2 MeV
38 MeV

b e #280

 " 1.6e #280 " 4 * 10#121

which is an extremely small number.
Our assumption of a square-top potential of the full 

height and full width is unrealistic. A closer approximation 
to the potential shown in Figure 6.19 would be a square-top 
potential of only half the maximum Coulomb potential 
(19 MeV rather than 38 MeV) and a barrier width of only 
half L (28 fm rather than 56 fm). If we use 19 MeV in the 
calculation of k we obtain 1.7 * 1015 m#1. The tunneling 
probability now becomes

  T " 16 

4.2 MeV
18 MeV

a1 #
4.2 MeV
18 MeV

b
  * exp 3#211.7 * 1015 m#1 2 12.8 * 10#14 m 2 4
  " 2.8 exp1#95 2 " 1.5 * 10#41

This still seems like a very low probability, but let us see 
if we can determine how much time it takes the a particle to 
tunnel out. If the a particle has a kinetic energy of 4.2 MeV, 
its speed is determined nonrelativistically by

  K "
1
2

 mv 2

  v " B2K
m

" B 2 14.2 MeV 2
3727 MeV /c 2 " 0.047c " 1.4 * 107 m/s

The diameter of the nucleus is about 1.4 * 10#14 m, so it takes 
the a particle (1.4 * 10#14 m)/(1.4 * 107 m/s) " 10#21 s to 
cross. The a particle must make many traverses back and 
forth across the nucleus before it can escape. According to 
our probability calculation it must make about 1041 at-
tempts, so we estimate the a particle may tunnel through in 
about 1020 s. The half-life of a 238U nucleus is 4.5 * 109 y or 
about 1017 s. Our rough estimate does not seem all that bad.

 EXAMPLE 6 .17
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Werner Heisenberg and Erwin Schrödinger developed 
modern quantum theory in the 1920s. The time-dependent 
Schrö dinger wave equation for the wave function !(x, t) is 
expressed as

 iU  

0° 1x, t 2
0t

" # 

U 2

2m
 
02° 1x, t 2

0x 2 $ V ° 1x, t 2  (6.1)

The time-independent form for the spatial dependence (in 
one dimension) of c(x), where ° 1x, t 2 " c1x 2e #iEt /U, is

 # 

U 2

2m
 
d 2c1x 2

dx 2 $ V 1x 2c1x 2 " E c1x 2  (6.13)

Certain properties of ! and 0!/0x lead to quantized be-
havior. The wave function !(x, t) must be finite, single val-
ued, and continuous; 0!/0x must be continuous. The wave 
function must be normalized for use in determining 
probabilities.

Average values of the physical observables are deter-
mined by calculating the expectation values using the wave 
functions. The expectation value of a function g(x) is found 
from

 8g 1x 2 9 " !
q

#q
°*1x, t 2g 1x 2° 1x, t 2  dx (6.20)

To find the expectation values of the momentum and en-
ergy, we need to know the appropriate operators. In these 
two cases the operators are

  p ˆ " #iU  

0
0x

 (6.21)

  E ˆ " iU  

0
0t

 (6.25)

and the expectation values 8p9 and 8E 9 are

  8p9 " #iU !
q

#q
°*1x, t 2  0° 1x, t 2

0x
 dx (6.23)

  8E 9 " iU !
q

#q
°*1x, t 2  0° 1x, t 2

0t
 dx  (6.26)

The infinite square-well potential is a particularly sim-
ple application of the Schrödinger wave equation, and it 
leads to quantized energy levels and quantum numbers. The 
three-dimensional infinite square-well potential leads to the 
concept of degenerate states, different physical states with 
the same energy.

The simple harmonic oscillator, where the potential is 
V(x) " kx2/2, is an important application of the Schrö din ger 
wave equation because it approximates many complex sys-
tems in nature but is exactly soluble. The energy levels of 
the simple harmonic oscillator are En " 1n $ 1

2 2 Uv, where 
n " 0 represents the ground state energy E0 " Uv /2. The 
fact that the minimum energy is not zero—that the oscilla-
tor exhibits zero-point motion—is a consequence of the 
uncertainty principle.

Finite potentials lead to the possibility of a particle en-
tering a region that is classically forbidden, where V0 + E 
(negative kinetic energy). This quantum process is called 
tunneling and is studied by considering various potential 
barrier shapes. Important examples of quantum tunneling 
are alpha decay and tunnel diodes. Tunneling is consistent 
with the uncertainty principle and occurs only for short 
distances.

Tunnel Diode An extremely useful application of tunneling is that of a tunnel 
diode, which is a special kind of semiconductor. The tunnel diode was discovered 
by a Japanese Ph.D. student, Leo Esaki, in 1957. He received the Nobel Prize in 
Physics in 1973 for his discovery. In a tunnel diode, electrons may pass from one 
region through a junction into another region. We can depict the behavior by 
considering a potential barrier over the region of the junction, which may be 
only 10 nm wide. Both positive and negative bias voltages may be applied to 
change the barrier height to allow the electrons to tunnel either way through the 
barrier. In a normal semiconductor junction, the electrons (and holes) diffuse 
through, a relatively slow process. In a tunnel diode, the electrons tunnel 
through quite rapidly when the tunneling probability is relatively high. Because 
the applied bias voltage can be changed rapidly, a tunnel diode is an extremely 
fast device. It has had important uses in switching circuits and high-frequency 
oscillators but is rarely used now except for space applications, in which its 
longevity and resistance to radiation make it particularly useful.

S u m m a r y
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236 Chapter 6 Quantum Mechanics II

 1. Why can we use the nonrelativistic form of the kinetic 
energy in treating the structure of the hydrogen atom?

 2. How do you reconcile the fact that the probability 
density for the ground state of the quantum harmonic 
oscillator (Figure 6.10c) has its peak at the center and 
its minima at its ends, whereas the classical harmonic 
oscillator’s probability density (Figure 6.11) has a 
minimum at the center and peaks at each end? If you 
do this experiment with an actual mass and spring, 
what experimental result for its position distribution 
would you expect to obtain? Why?

 3. Notice for the fi nite square-well potential that the wave 
function ! is not zero outside the well despite the fact 
that E  )  V0. Is it possible classically for a particle to be 
in a region where E  )  V0? Explain this result.

 4. In a given tunnel diode the pn junction (see Chapter 
11) width is fi xed. How can we change the time re-
sponse of the tunnel diode most easily? Explain.

 5. A particle in a box has a fi rst excited state that is 3 eV 
above its ground state. What does this tell you about 
the box?

 6. Does the wavelength of a particle change after it tun-
nels through a barrier as shown in Figure 6.15? 
Explain.

 7. Can a particle be observed while it is tunneling 
through a barrier? What would its wavelength, mo-
mentum, and kinetic energy be while it tunnels 
through the barrier?

 8. Is it easier for an electron or a proton of the same 
energy to tunnel through a given potential barrier? 
Explain.

 9. Can a wave packet be formed from a superposition of 
wave functions of the type ei(kx#!t)? Can it be 
normalized?

 10. Given a particular potential V and wave function !, 
how could you prove that the given ! is correct? 
Could you determine an appropriate energy E if the 
potential is independent of time?

 11. Compare the infi nite square-well potential with the 
fi nite one. Where is the Schrödinger wave equation 
the same? Where is it different?

 12. Tunneling can occur for an electron trying to pass 
through a very thin tunnel diode. Can a baseball tun-
nel through a very thin window? Explain.

 13. For the three-dimensional cubical box, the ground 
state is given by n1  "  n2  "  n3  "  1. Why is it not possible 
to have one ni  "  1 and the other two equal to zero?

Q u e s t i o n s

P r o b l e m s

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

6.1 The Schrödinger Wave Equation
 1. Try to normalize the wave function e 

i  1kx#vt2. Why can’t 
it be done over all space? Explain why this is not 
possible.

 2. (a) In what direction does a wave of the form A sin(kx  
#  !t) move? (b) What about B sin(kx  $  !t)? (c) Is 
e i 1kx#vt2 a real number? Explain. (d) In what direction 
is the wave in (c) moving? Explain.

 3. Show directly that the trial wave function ! (x, t)  "  
e i 1kx#vt2 satisfi es Equation (6.1).

 4. Normalize the wave function e i 1kx#vt2 in the region x  "  
0 to a.

 5. Normalize the wave function Are#r/" from r  "  0 to q 
where " and A are constants. See Appendix 3 for use-
ful integrals.

 6. Property 2 of the boundary conditions for wave func-
tions specifi es that ! must be continuous in order to 
avoid discontinuous probability values. Why can’t we 
have discontinuous probabilities?

 7. Consider the wave function Ae #a 0x 0 that we used in 
Example 6.4. (a) Does this wave function satisfy the 
boundary conditions of Section 6.1? (b) What does 
your analysis in part (a) imply about this wave func-
tion? (c) If the wave function is unacceptable as is, 
how could it be fi xed?

6.2 Expectation Values
 8. A set of measurements has given the following result 

for the measurement of x (in some units of length): 
3.4, 3.9, 5.2, 4.7, 4.1, 3.8, 3.9, 4.7, 4.1, 4.5, 3.8, 4.5, 4.8, 
3.9, and 4.4. Find the average value of x, called x or 8x9, 
and average value of x2, represented by 8x 29. Show that 
the standard deviation of x, given by

  s " B a 1xi # x 22
N

  where xi is the individual measurement and N is the 
number of measurements, is also given by 
s " 28x 29 # 8x92. Find the value of # for the set of 
data given here.
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 9. If the potential V(x) for a one-dimensional system is 
independent of time, show that the expectation value 
for x is independent of time.

 10. A wave function ! is A1e ix $ e #ix 2  in the region 
#$  )  x  )  $ and zero elsewhere. Normalize the wave 
function and fi nd the probability of the particle being 
(a) between x  "  0 and x  "  $/8, and (b) between 
x  "  0 and x  "  $/4.

 11. A wave function has the value A sin x between x  "  0 
and $ but zero elsewhere. Normalize the wave 
function and fi nd the probability that the particle 
is (a) between x  "  0 and x  "  $/4 and (b) between 
x  "  0 and $/2.

6.3 Infi nite Square-Well Potential
 12. Find an equation for the difference between adjacent 

energy levels (%En  "  En$1  #  En) for the infi nite 
square-well potential. Calculate %E1, %E8, and %E800.

 13. Determine the average value of c2
n1x 2  inside the well 

for the infi nite square-well potential for n  "  1, 5, 10, 
and 100. Compare these averages with the classical 
probability of detecting the particle inside the box.

 14. A particle in an infi nite square-well potential has 
ground-state energy 4.3 eV. (a) Calculate and sketch 
the energies of the next three levels, and (b) sketch 
the wave functions on top of the energy levels.

 15. We can approximate an electron moving in a nano-
wire (a small, thin wire) as a one-dimensional infi nite 
square-well potential. Let the wire be 2.0 -m long. 
The nanowire is cooled to a temperature of 13 K, and 
we assume the electron’s average kinetic energy is 
that of gas molecules at this temperature ("  3kT/2). 
(a) What are the three lowest possible energy levels of 
the electrons? (b) What is the approximate quantum 
number of electrons moving in the wire?

 16. An electron moves with a speed v  "  1.25  *  10#4c in-
side a one-dimensional box (V  "  0) of length 48.5 
nm. The potential is infi nite elsewhere. The particle 
may not escape the box. What approximate quantum 
number does the electron have?

 17. For the infi nite square-well potential, fi nd the proba-
bility that a particle in its ground state is in each third 
of the one-dimensional box: 0  '  x  '  L/3, L/3  '  x  '  
2L/3, 2L/3  '  x  '  L. Check to see that the sum of the 
probabilities is one.

 18. Repeat the previous problem using the fi rst excited 
state.

 19. Repeat Example 6.9 for an electron inside the nu-
cleus. Assume nonrelativistic equations and fi nd the 
transition energy for an electron. (See Example 6.9 
for an interpretation of the result.)

 20. What is the minimum energy of (a) a proton and 
(b) an " particle trapped in a one-dimensional region 
the size of a uranium nucleus (radius  "  7.4  *  10#15 m)?

 21. An electron is trapped in an infi nite square-well po-
tential of width 0.70 nm. If the electron is initially in 

the n  "  4 state, what are the various photon energies 
that can be emitted as the electron jumps to the 
ground state?

6.4 Finite Square-Well Potential
 22. Consider a fi nite square-well potential well of width 

3.00  *  10#15 m that contains a particle of mass 
1.88 GeV/c2. How deep does this potential well need 
to be to contain three energy levels? (This situation 
approximates a deuteron inside a nucleus.)

 23. Compare the results of the infi nite and fi nite square-
well potentials. (a) Are the wavelengths longer or 
shorter for the fi nite square well compared with the 
infi nite well? (b) Use physical arguments to decide 
whether the energies (for a given quantum number 
n) are (i) larger or (ii) smaller for the fi nite square 
well than for the infi nite square well? (c) Why will 
there be a fi nite number of bound energy states for 
the fi nite potential?

 24. Apply the boundary conditions to the fi nite square-
well potential at x  "  0 to fi nd the relationships be-
tween the coeffi cients A, C, and D and the ratio C/D.

 25. Apply the boundary conditions to the fi nite square-
well potential at x  "  L to fi nd the relationship be-
tween the coeffi cients B, C, and D and the ratio C/D.

6.5 Three-Dimensional Infi nite-Potential Well
 26. Find the energies of the second, third, fourth, and 

fi fth levels for the three-dimensional cubical box. 
Which energy levels are degenerate?

 27. Write the possible (unnormalized) wave functions for 
each of the fi rst four excited energy levels for the cu-
bical box.

 28. Find the normalization constant A for the ground 
state wave function for the cubical box in Equation 
(6.52).

 29. Complete the derivation of Equation (6.49) by substi-
tuting the wave function given in Equation (6.47) into 
Equation (6.46). What is the origin of the three quan-
tum numbers?

 30. Find the normalization constant A [in Equation 
(6.47)] for the fi rst excited state of a particle trapped 
in a cubical potential well with sides L. Does it matter 
which of the three degenerate excited states you 
consider?

 31. A particle is trapped in a rectangular box having sides 
L, 2L, and 4L. Find the energy of the ground state and 
fi rst three excited states. Are any of these states 
degenerate?

6.6 Simple Harmonic Oscillator
 32. In Figure 6.9 we showed a plausible guess for the wave 

function c0 for the lowest energy level E0 of the simple 
harmonic oscillator. Explain the shape of the wave 
function and explain why it is a maximum at x  "  0 
and not zero when E  "  V0.
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238 Chapter 6 Quantum Mechanics II

 33. What is the energy level difference between adjacent 
levels %En  "  En  $  1  #  En for the simple harmonic oscil-
lator? What are %E0, %E2, and %E20? How many pos-
sible energy levels are there?

 34. The wave function for the fi rst excited state c1 for the 
simple harmonic oscillator is c1  "  Axe#ax2/ 2. Normal-
ize the wave function to fi nd the value of the constant 
A. Determine 8x9, 8x 29 and %x  "  28x 29 # 8x92.

 35. A nitrogen atom of mass 2.32  *  10#26 kg oscillates in 
one dimension at a frequency of 1013 Hz. What are its 
effective force constant and quantized energy levels?

 36. One possible solution for the wave function cn for the 
simple harmonic oscillator is

  cn " A12ax 2 # 1 2e #ax2/2

  where A is a constant. What is the value of the energy 
level En?

 37. What would you expect for 8p9 and 8p29 for the ground 
state of the simple harmonic oscillator? (Hint: Use 
symmetry and energy arguments.)

 38. Show that the energy of a simple harmonic oscillator 
in the n  "  1 state is 3Uv/2 by substituting the wave 
function c1  "  Axe #ax2/2 directly into the Schrödinger 
equation.

 39. An H2 molecule can be approximated by a simple 
harmonic oscillator with a force constant k  "  1.1  *  
103 N/m. Find (a) the energy levels and (b) the pos-
sible wavelengths of photons emitted when the H2 
molecule decays from the third excited state eventu-
ally to the ground state.

6.7 Barriers and Tunneling
 40. The creation of elements in the early universe and in 

stars involves protons tunneling through nuclei. Find 
the probability of the proton tunneling through 12C 
when the temperature of the star containing the pro-
ton and carbon is 12,000 K.

 41. Compare the wavelength of a particle when it passes a 
barrier of height (a) $V0 (see Figure 6.12) and (b) #V0 
where E + 0V0 0  (see Figure 6.18). Calculate the mo-
mentum and kinetic energy for both cases.

 42. (a) Calculate the transmission probability of an " 
particle of energy E  "  5.0 MeV through a Coulomb 
barrier of a heavy nucleus that is approximated by a 
square barrier with V0  "  15 MeV and barrier width 
L  "  1.3  *  10#14 m. Also, calculate the probability (b) 
by doubling the potential barrier height and (c) by 
using the original barrier height but doubling the 
barrier width. Compare all three probabilities.

 43. Consider a particle of energy E trapped inside the 
potential well shown in the accompanying fi gure. 
Make an approximate sketch of possible wave func-
tions inside and outside the potential well. Explain 
your sketch.

x

V(x)

V

0

#V0

Position

En
er

gy

E

 44. When a particle of energy E approaches a potential 
barrier of height V0, where E W V0, show that the 
refl ection coeffi cient is about {[V0 sin(kL)]/2E }2.

 45. Let 12.0-eV electrons approach a potential barrier of 
height 4.2 eV. (a) For what barrier thickness is there 
no refl ection? (b) For what barrier thickness is the 
refl ection a maximum?

 46. A 1.0-eV electron has a 2.0  *  10#4 probability of tun-
neling through a 2.5-eV potential barrier. What is the 
probability of a 1.0-eV proton tunneling through the 
same barrier?

 47. An electron is attempting to tunnel through a square 
barrier potential. (a) Draw a potential function with 
zero potential on either side of a square-top potential 
similar to Figure 6.12. Draw the wave function before, 
after, and inside the barrier. (b) Let the barrier be 
twice as wide and repeat part (a). (c) Let the barrier 
be about twice as tall as in (a) and repeat (a). Do not 
perform calculations; make estimates only.

 48. Use the approximate Equation (6.73) to estimate the 
probability of (a) a 1.4-eV electron tunneling through 
a 6.4-eV-high barrier of width 2.8 nm, and (b) a 4.4-
MeV " particle tunneling through a uranium nucleus 
where the potential barrier is 19.2 MeV and 7.4 fm 
wide. (c) Discuss whether the approximation was valid 
for these two cases. Explain.

General Problems
 49. Check to see whether the simple linear combination 

of sine and cosine functions

  c " A sin 1kx 2 $ B cos 1kx 2
  satisfi es the time-independent Schrödinger equation 

for a free particle (V  "  0).
 50. (a) Check to see whether the simple linear combina-

tion of sine and cosine functions

  ° 1x,t 2 " A sin 1kx # vt 2 $ B cos 1kx # vt 2

Problem 43 A potential well is infi -
nite for x ' 0 but increases linearly 
from V " #V0 at x " 0.
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  where A and B are real numbers, satisfi es the time-
dependent Schrödinger equation for a free particle 
(V  "  0). (b) Repeat for the modifi ed version

  ° 1x,t 2 " A cos 1kx # vt 2 # iA sin 1kx # vt 2
 51. A particle of mass m is trapped in a three-dimensional 

rectangular potential well with sides of length L, 
L/22, and 2L. Inside the box V  "  0, outside V  "  q. 
Assume that

  c " A sin 1k1x 2  sin 1k 2y 2  sin 1k 3z 2
  inside the well. Substitute this wave function into the 

Schrödinger equation and apply appropriate bound-
ary conditions to fi nd the allowed energy levels. Find 
the energy of the ground state and fi rst four excited 
levels. Which of these levels are degenerate?

 52. For a region where the potential V  "  0, the wave func-
tion is given by 22/a  sin 13px/a 2 . Calculate the en-
ergy of this system.

 53. Consider the semi-infi nite-well potential in which V  "  
q for x  '  0, V  "  0 for 0  )  x  )  L, and V  "  V0 for x ( L. 
(a) Show that possible wave functions are A sin kx inside 
the well and Be#%x for x  +  L, where k " 22mE/ U  and 
k " 22m 1V0 # E 2/ U . (b) Show that the application of 
the boundary conditions gives k tan 1kL 2 " #k.

 54. Assume that V0 " U 2/2mL2 and show that the ground 
state energy of a particle in the semi-infi nite well of 
the previous problem is given by 0.04U 2/2mL2.

 55. Prove that there are a limited number of bound solu-
tions for the semi-infi nite well.

 56. Use the semi-infi nite-well potential to model a deu-
teron, a nucleus consisting of a neutron and a proton. 
Let the well width be 3.5  *  10#15 m and V0  #  E  "  
2.2 MeV. Determine the energy E. How many excited 
states are there, and what are their energies?

 57. Consider as a model of a hydrogen atom a particle 
trapped in a one-dimensional, infi nite potential well 
of width 2a0 (the ground-state hydrogen atom’s diam-
eter). Find the electron’s ground-state energy and 
comment on the result.

 58. (a) Repeat the preceding problem using a cubical 
infi nite potential well, with each side of the cube 
equal to 2a0.

 59. In the lab you make a simple harmonic oscillator with 
a 0.15-kg mass attached to a 12-N/m spring. (a) If the 
oscillation amplitude is 0.10 m, what is the corre-
sponding quantum number n for the quantum har-
monic oscillator? (b) What would be the amplitude of 
the quantum ground state for this oscillator? (c) What 
is the energy of a photon emitted when this oscillator 
makes a transition between adjacent energy levels? 
Comment on each of your results.

 60. In gravity-free space, a 2.0-mg dust grain is confi ned 
to move back and forth between rigid walls 1.0 mm 
apart. (a) What is the speed of the dust grain if it is in 
the quantum ground state? (b) If it is actually moving 
at a speed of 0.25 mm/s, what is the quantum number 
associated with its quantum state?

 61. The wave function for the n  "  2 state of a simple har-
monic oscillator is A11 # 2ax 2 2e #ax2/2. (a) Show that its 
energy level is 5Uv/2 by substituting the wave function 
into the Schrödinger equation. (b) Find 8x9 and 8x 29.

 62. A particle is trapped inside an infi nite square-well 
potential between x  "  0 and x  "  L. Its wave function 
is a superposition of the ground state and fi rst excited 
state. The wave function is given by

  c1x 2  "  
1
2

 c11x 2  $  
23
2

 c21x 2
  Show that the wave function is normalized.
 63. The Morse potential is a good approximation for a real 

potential to describe diatomic molecules. It is given by 
V 1r 2 " D 11 # e#a1r#re2 22 where D is the molecular dis-
sociation energy, and re is the equilibrium distance 
between the atoms. For small vibrations, r  #  re is small, 
and V(r) can be expanded in a Taylor series to reduce 
to a simple harmonic potential. Find the lowest term 
of V(r) in this expansion and show that it is quadratic 
in (r  #  re).

 64. Show that the vibrational energy levels Ev for the 
Morse potential of the previous problem are given by

  Ev " Uv an $
1
2
b #

U 2v2

4D
an $

1
2
b 2

  where

  !  "  a B2D
mr

  and n is the vibrational quantum number, mr is the 
reduced mass, and Ev V D. Find the three lowest 
energy levels for KCl where D  "  4.42 eV, and a  "  
7.8 nm#1.

 65. Consider a particle of mass m trapped inside a two-
dimensional square box of sides L aligned along the x 
and y axes. Show that the wave function and energy 
levels are given by

  &(x, y)  "  
2
L

sin 
nxpx

L
  sin  

nypy

L

  E "  
U 2p2

2mL2 1nx
2 $ ny

2 2
  Plot the fi rst six energy levels and give their quantum 

numbers.
 66. Make a sketch for each of the following situations for 

both the infi nite square-well and fi nite square-well 
potentials in one dimension: (a) the four lowest en-
ergy levels and (b) the probability densities for the 
four lowest states. (c) Discuss the differences between 
the two potentials and why they occur.

 67. Two nanowires are separated by 1.3 nm as measured 
by STM. Inside the wires the potential energy is zero, 
but between the wires the potential energy is greater 
than the electron’s energy by only 0.9 eV. Estimate the 
probability that the electron passes from one wire to 
the other.
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240 Chapter 6 Quantum Mechanics II

 68. The WKB approximation is useful to obtain solutions 
to the one-dimensional time-independent Schrödinger 
equation in cases where E  +  V(x) and the potential 
V(x) changes slowly and gradually with x. In this case 
the wavelength '(x) varies with x because of the V(x) 
dependence on x. (a) Argue that we can write the 
wavelength as

  l1x 2  "  
h22m %E #  V 1x 2 &

  for a particle of mass m in a potential V(x). (b) By 
considering the number of oscillations that can be fi t 
into a distance dx, show that the following equation 
is valid, where n is an integer and represents the 
number of standing waves that fi t inside the poten-
tial well.

  2!22m %E # V 1x 2 &dx " nU  where n is an integer (6.74)

  This is the WKB approximation. (Hint: the equation

! dx
l1x 2  "  

n
2

  might be helpful.)
 69. Use the WKB approximation of Equation (6.74) in 

the previous problem with the potential shown in the 
accompanying fi gure. V(x)  "  q for x ' 0, and V(x)  "  
Ax for x  +  0. (a) Find the quantized energy values, 
and (b) sketch the wave functions on top of the V(x) 
function for the three lowest states.

x

V(x)

0 Position

Po
te

nt
ia

l

Problem 69 The potential V(x)  "  q 
for x ' 0 and V(x)  "  Ax for x  )  0.

 70. In the special topic box in Section 6.7, the extreme 
sensitivity of scanning tunneling microscopes (STM) 
was described. It was reported that a change in the 
tunneling gap of only 0.4 nm between STM sample 
and probe can change the tunneling current by a fac-
tor of 104. Check the plausibility of this statement by 
using the “wide-barrier” approximation in Equation 
(6.70) to fi nd the difference between the electron 
energy and barrier height that would produce such a 
situation. Report your answer in eV and comment in 
the result.
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   7.1 Application of the Schrödinger Equation to the Hydrogen Atom 241

Because it is the simplest atom, the hydrogen atom has been the object of 
more experimentation and study than any other atom. The hydrogen line spec-
tra discussed in Chapter 3 and the Bohr model of the hydrogen atom in Chapter 
4 resulted in significant breakthroughs in physics. In Chapter 6 we studied the 
Schrödinger equation and its application to several model systems. We now have 
the tools to apply quantum mechanics to real physical systems, which we will do 
in the next few chapters. Our first major subject is atomic physics, and we natu-
rally begin by applying the Schrödinger equation to the hydrogen atom. We will 
find that several quantum numbers are needed to explain experimental results. 
Although we generally confine ourselves to hydrogen in this chapter, we occa-
sionally digress—for example, for the Stern-Gerlach experiment in Section 
7.4—in order to incorporate an important experimental result that we need for 
our understanding of the hydrogen atom. Two sections in this chapter (Sections 
7.2 and 7.6) are advanced topics and may be skipped without losing continuity.

7.1  Application of the Schrödinger 
Equation to the Hydrogen Atom

The hydrogen atom is the first system we shall consider that requires the full 
complexity of the three-dimensional Schrödinger equation. To a good approxi-
mation the potential energy of the electron-proton system is electrostatic:

 V 1r 2 ! " 

e 2

4pP0r
 (7.1)

C H A P T E R

7

241

The Hydrogen Atom

By recognizing that the chemical atom is composed of single separable 
electric quanta, humanity has taken a great step forward in the investi-
gation of the natural world.

Johannes Stark
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242 Chapter 7 The Hydrogen Atom

We rewrite the three-dimensional time-independent Schrödinger Equation 
(6.43) as

 " 

U2

2m
 

1
c 1x, y, z 2 c 02c 1x, y, z 2

0x 2 #
02c 1x, y, z 2

0y2 #
02c 1x, y, z 2

0z2 d ! E " V 1r 2  (7.2)

As discussed in Chapter 4, the correct mass value m to be used is the reduced 
mass m of the proton-electron system. We can also study other hydrogen-like 
(called hydrogenic) atoms such as He# or Li## by inserting the appropriate re-
duced mass m and by replacing e2 in Equation (7.1) with Ze2, where Z is the 
atomic number.

We note that the potential V(r) in Equation (7.2) depends only on the dis-
tance r between the proton and electron. The potential in this case is due to the 
central force—perhaps the most important in quantum mechanics. To take ad-
vantage of the radial symmetry, we transform to spherical polar coordinates. The 
transformation is given in Figure 7.1, where the relationships between the Carte-
sian coordinates x, y, z and the spherical polar coordinates r, u, f are shown. The 
transformation of Equation (7.2) into spherical polar coordinates is straightfor-
ward. After inserting the Coulomb potential into the transformed Schrödinger 
equation, we have

 
 
1
r 2 

0
0r
a r2

 

0c
0r
b #

1
r 2 sin u

 
0
0u a sin u 

0c
0u b #

1
r 2 sin2 u

 
02c

0f2 #
2m
U2  1E " V 2c ! 0

The wave function c is now a function of r, u, f [c(r, u, f)], but we will write it 
simply as c for brevity. In the terminology of partial differential equations, Equa-
tion (7.3) is separable, meaning a solution may be found as a product of three 
functions, each depending on only one of the coordinates r, u, f. (This is exactly 
analogous to our separating the time-dependent part of the Schrödinger equa-
tion solution as e"iEt/U.) Let us try a solution of the form

 c 1r, u, f 2 ! R 1r 2 f  1u 2g 1f 2  (7.4)

This substitution allows us to separate the partial differential in Equation (7.3) 
into three separate differential equations, each depending on one coordinate: r, 
u, or f.

We have a good idea from Chapter 6 what to expect the results to look like. 
For each of the three differential equations we must apply appropriate boundary 
conditions on the functions R(r), f(u), and g(f). This will lead to three quantum 
numbers, one for each of the three separate differential equations. Notice that 
there is one quantum number for each dimension of motion; recall that in 
Chapter 6 we obtained one quantum number for one-dimensional motion and 
three quantum numbers for three-dimensional motion.

7.2  Solution of the Schrödinger Equation 
for Hydrogen

The first step is to substitute the trial solution, Equation (7.4), into Equa-
tion (7.3). Then we can separate the resulting equation into three equations: 
one for R(r), one for f(u), and one for g(f). The solutions to those equations will 

Schrödinger equation in 
spherical coordinates

z!
r
y!
x

x

z

y ! r sin u sin f
z ! r cos u

x ! r sin u cos f

u ! cos"1     (Polar angle)

f ! tan"1     (Azimuthal angle)

r !   x2 # y2 # z2

y

P

(x, y)

(r, u, f)!
(x, y, z)

u

f

r

√!w
Figure 7.1 Relationship be-
tween spherical polar coordinates 
(r, u, f) and Cartesian coordi-
nates (x, y, z).

(7.3)
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   7.2 Solution of the Schrödinger Equation for Hydrogen 243

then allow us to understand the structure of the hydrogen atom, in the ground 
state and in the excited states as well.

Separation of Variables
Starting with Equation (7.4), we find the necessary derivatives to be

 
0c
0r

! fg   

0R
0r
      

0c
0u ! Rg   

0f
0u      

02c

0f2 ! Rf   

02g
0f2 (7.5)

We substitute these results into the Schrödinger Equation (7.3) and find

 

fg
r 2 

0
0r
a r 2

 

0R
0r
b #

Rg
r 2 sin u

 
0
0u a sin u 

0f
0u b #

Rf
r 2 sin2 u

 
02g
0f2 #

2m
U2  1E " V 2  Rfg ! 0

 (7.6)

Next we multiply both sides of Equation (7.6) by r2 sin2 u/Rfg  and rearrange to 
have

" 

sin2 u
R

 
0
0r
a r 2

 

0R
0r
b "

2m
U2  r 2 sin2 u1E " V 2 "

sin u
f

 
0
0u a sin u 

0f
0u b !

1
g  

02g
0f2

 
(7.7)

Look closely at Equation (7.7). Notice that only the variables r and u (and 
their functions R and f ) appear on the left side, whereas only f and its function 
g appear on the right side. We have achieved a separation of variables, com-
pletely isolating f. What does this mean? The left side of the equation cannot 
change as f changes, because it does not contain f or any function depending 
on f. Similarly, the right side cannot change with either r or u. The only way for 
this to be true is for each side of Equation (7.7) to be equal to a constant. We 
choose now to let this constant have the value "m /

2 so that we can more easily 
introduce a new quantum number in Equation (7.15). If we set the constant "m /

2 
equal to the right side of Equation (7.7), we have

 
1
g  

02g
0f2 ! "m /

2

or, after rearranging,

 
d 2g
d f2 ! "m /

2g  (7.8)

Notice that because f is the only variable, we have replaced the partial derivative 
with the ordinary derivative. Because the angle f in spherical coordinates cor-
responds to the azimuth angle in astronomy, Equation (7.8) is traditionally re-
ferred to as the azimuthal equation. This is simply the equation of a harmonic 
oscillator that we have studied in introductory physics, and the solutions for g(f) 
will take the form of sines and cosines or exponential functions. We find it con-
venient to choose a solution of the form eim/f.

One may easily verify by direct substitution that eim/f satisfies Equation (7.8) 
for any value of m/. However, in order to have a physically valid solution for any 
value of f, it is necessary that the solution be single valued, that is, g(f) ! 
g(f # 2p). This means, for example, that g(f ! 0) ! g(f ! 2p), which requires 
that e0 ! e2pim/. The only way for this to be true is for m/ to be zero or an integer 
(either positive or negative). The quantum number m/ is therefore restricted to 
be zero or a positive or negative integer. If the sign on the right-hand side of 

Azimuthal equation
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244 Chapter 7 The Hydrogen Atom

Equation (7.8) were positive rather than negative, the solution would not be 
physically realized. It could not be normalized and would not be single valued in 
f. We shall defer further discussion of solutions for Equation (7.8) until later. 
For now it is sufficient to realize that readily obtainable solutions exist.

Now we set the left side of Equation (7.7) equal to the constant "m /
2 and 

rearrange to have

 
1
R

 
0
0r

 a r 2
 

0R
0r
b #

2mr 2

U2  1E " V 2 !
m /

2

sin2 u
"

1
f sin u

 
0
0u a sin u 

0f
0u b  (7.9)

Notice that we have again achieved a successful separation of variables, with ev-
erything depending on r on the left side and everything depending on u on the 
right side. We can set each side of Equation (7.9) equal to a constant, which this 
time we call /(/ # 1). Doing so with each side of the equation in succession 
yields (after more rearrangement) the two equations

 
1
r 2 

d
dr

 a r 2
 
dR
dr
b #

2m
U2  cE " V "

U2

2m
 
/1/ # 1 2

r 2 dR ! 0  (7.10)

and

 
1

sin u
 

d
d u
a sin u 

df
d u
b # c /1/ # 1 2 "

m /
2

sin2 u
d  f ! 0  (7.11)

where, after separation, we have again replaced the partial derivatives with the 
ordinary ones.

The process of separation of variables is now complete. The original 
 Schrö dinger equation has been separated into three ordinary second-order dif-
ferential equations [Equations (7.8), (7.10), and (7.11)], each containing only 
one variable.

Solution of the Radial Equation
Equation (7.10), appropriately called the radial equation, is another differential 
equation for which solutions are well known. It is called the associated Laguerre 
equation after the French mathematician Edmond Nicolas Laguerre (1834–
 1886). The solutions R to this equation that satisfy the appropriate boundary 
conditions are called associated Laguerre functions. We shall consider these solu-
tions in some detail in Section 7.6. We can obtain some idea of how the ground-
state wave function looks if we assume that the ground state has the lowest pos-
sible quantum number / ! 0 of the system. We will soon see that this requires 
the value m/ ! 0. Notice that / ! 0 greatly simplifies the radial wave Equation 
(7.10) to be

 
1
r 2 

d
dr
a r 2

 
dR
dr
b #

2m
U2  1E " V 2R ! 0 (7.12)

The derivative of the bracketed expression in the first term of Equation (7.12) 
yields two terms by using the derivative product rule. We write out both of those 
terms and insert the Coulomb potential energy, Equation (7.1), to find

 
d 2R
dr 2 #

2
r  

dR
dr

#
2m
U2 aE #

e 2

4pP0r
bR ! 0 (7.13)

Radial equation

Angular equation
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   7.2 Solution of the Schrödinger Equation for Hydrogen 245

Those students with some experience in solving differential equations will rec-
ognize that an exponential solution is required. We try a solution having the 
form

 R ! Ae "r /a 0

where A is a normalization constant and a0 is a constant with the dimension of 
length (we shall see that it was no accident that we chose the constant a0!). It is 
reasonable to try to verify the trial solution by inserting it into the radial equation 
(7.13). The first and second derivatives are

 
dR
dr

! " 

1
a0

 R    
d 2R
dr 2 !

R
a0

2

We insert these derivatives into Equation (7.13) and rearrange terms to yield

 a 1
a0

   2 #
2m
U2  Eb # a 2me 2

4pP0U2 "
2
a0
b 1

r ! 0 (7.14)

By the same reasoning that we applied in the separation of variables method, 
the only way for Equation (7.14) to be satisfied for any value of r is for each of the 
two expressions in parentheses to be equal to zero. We set the second expression 
in parentheses equal to zero and solve for a0 to find

 a0 !
4pP0U2

me 2

We see that a0 is in fact equal to the Bohr radius [see Equation (4.24)]! Now we 
set the first bracketed term in Equation (7.14) equal to zero and solve for E to 
find

 E ! " 

U2

2ma0
2 ! "E0

Again this is the Bohr result, with E0 having the value 13.6 eV.
Because we are not prepared to deal with the full scope of the associated 

Laguerre functions in this book, we shall not consider higher energy states here 
but will summarize some of the key results.

Introduction of Quantum Numbers The full solution to the radial wave 
equation requires (not surprisingly) the introduction of a quantum number, 
which we shall call n, such that n is a positive integer (but not zero). Equation 
(7.11), which we shall call the angular equation, was first solved by the famous 
mathematician Adrien-Marie Legendre (1752– 1833). It is well known in the 
theory of differential equations as the associated Legendre equation. Application 
of the appropriate boundary conditions (see Section 6.1) to Equations (7.10) 
and (7.11), a process too lengthy to present here, leads to the following 
restrictions on the quantum numbers / and m/:

  / ! 0, 1, 2, 3, . . .  
(7.15)

 m/ ! "/, "/ # 1, . . . , "2, "1, 0, 1, 2, . . . , / " 1, /

That is, the quantum number / must be zero or a positive integer, and the quan-
tum number m/ must be a positive or negative integer, or zero, subject to the 
 restriction that 0m/ 0 $ /. The choice of /(/ # 1) as the constant for Equa-
tion (7.9) provides us with the succinct results in Equation (7.15). There is a 
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246 Chapter 7 The Hydrogen Atom

further  restriction that the quantum number / can only take on values less than 
n. The consequences of this, along with a full consideration of allowed sets of the 
three quantum numbers n, /, and m/, will be explained in Section 7.3. Let us 
note, however, that the predicted energy levels turn out to be

 En ! " 

E0

n2

in agreement with the Bohr result.
With the introduction of the quantum numbers, we are prepared to present 

the wave functions. The first few radial wave functions Rn/ are listed in Table 7.1, 
where a0 ! Bohr radius ! 5.29 % 10"11 m. Note the subscripts on R specify the 
values of n and /.

Solution of the Angular and Azimuthal Equations
We now return to the azimuthal Equation (7.8). We note that its solutions can 
be expressed in exponential form as e im/f or e "im/f. But because the angular equa-
tion also contains the quantum number m/, solutions to the angular and azi-
muthal equations are linked. It is customary to group these solutions together 
into functions called the spherical harmonics Y(u, f), defined as

 Y 1u, f 2 ! f  1u 2g 1f 2  (7.16)

The f(u) part of the Y(u, f) is always a polynomial function of sin u and cos u of 
order /. See Table 7.2 for a listing of the normalized spherical harmonics up to 
/ ! 3.

Spherical harmonics

Show that the spherical harmonic function Y11(u, f) satisfies 
the angular Equation (7.11).

Strategy We insert the value for Y11(u, f) into Equation 
(7.11) with / ! 1 and m/ ! 1. Because Y(u, f) ! f(u)g(f) [see 
Equation (7.16)], and u and f are independent variables, 
we will be able to separate the constants and variable f from 
the factors involving u.

Solution We first write the value of Y11(u, f) from Table 
7.2 and separate the factor involving u from all the other 
factors.

 Y111u, f 2 ! " 

1
2

 B 3
2p

 sin u e 
i f ! A sin u

where the term A includes no factors involving u.
After inserting the values of /, m/, and Y11(u, f) into 

Equation (7.11), we have

 
1

sin u
 

d
d u
cA sin u 

d 1sin u 2
d u

d # a2 "
1

sin2 u
b  A sin u ! 0

We divide by A and take the derivative inside the square 
bracket and find

 
1

sin u
 

d
d u

 1sin u cos u 2 # 2 sin u "
1

sin u
! 0

We take the final derivative and rewrite the resulting term in 
square brackets.

  
1

sin u
 3cos2 u " sin2 u 4 # 2 sin u "

1
sin u

! 0

  
1

sin u
 31 " 2 sin2 u 4 # 2 sin u "

1
sin u

! 0

  
1

sin u
" 2 sin u # 2 sin u "

1
sin u

! 0

 0 ! 0

So we indeed found that Equation (7.11) is satisfied by 
Y11(u, f).

 EXAMPLE 7 .1
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n O RnO(r)

1 0 
21a0 23/2 e"r /a 0

2 0 a2 "
r
a0
b e"r /2a 012a0 23/2

2 1 
r
a0

 
e"r /2a 01312a0 23/2

3 0 
11a0 23/2 

2
8113

 a27 " 18 
r
a0

# 2 

r 
2

a0
2 b e"r /3a

 
 0

3 1 
11a0 23/2 

4
8116

 a6 "
r
a0
b  

r
a0

 e"r /3a 0

3 2 
11a0 23/2 

4
81130

 
r 

2

a0
2 e"r /3a 0

Tab le  7 .1   Hydrogen Atom Radial Wave Functions

O mO Y!m !

0 0 
1

21p
1 0 

1
2

 B 3
p

 cos u

1 &1 '
1
2

 B 3
2p

 sin u e&i f

2 0 
1
4

 B 5
p

 13 cos2 u " 1 2
2 &1 '

1
2

 B 15
2p

 sin u cos u e&i f

2 &2 
1
4

 B 15
2p

 sin2 u e&2i f

3 0 
1
4

 B 7
p

 15 cos3 u " 3 cos u 2
3 &1 '

1
8

 B21
p

 sin u 15 cos2 u " 1 2  e&i f

3 &2 
1
4

 B105
2p

 sin2 u cos u e&2i f

3 &3 '
1
8

 B35
p

 sin3 u e&3i f

Tab le  7 .2   Normalized Spherical Harmonics Y(!, ")
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248 Chapter 7 The Hydrogen Atom

We discussed probability densities in Sections 5.7 and 6.1. From Equation 
(6.16), we see that the probability density for the electron in the hydrogen atom 
is given by c*c. Therefore, the spherical harmonics together with the radial 
wave function R will determine the overall shape of the probability density for 
the various quantum states. The total wave function c(r, u, f) depends on the 
quantum numbers n, /, and m/. We can now write the wave function as

 cn /m /
1r, u, f 2 ! Rn /1r 2Y/m /

1u, f 2  (7.17)

where we indicate by the subscripts that Rn/(r) depends only on n and /, and Y/m/

(u, f) depends only on / and m/. We shall look at these wave functions again in 
Section 7.6.

Show that the hydrogen wave function c211 is normalized.

Strategy We refer to Equation (6.8) in Chapter 6 where 
we normalized the wave function in one dimension. Now we 
want to normalize the wave function in three dimensions in 
spherical polar coordinates. The normalization condition is

!c*
n /m /
cn /m /

 d t ! 1 ! !c*
211c211r 2 sin u d r d u d f (7.18)

where dt ! r 2 sin u dr du df is the volume element. We look 
up the wave function c211 using Tables 7.1 and 7.2.

 c211 ! R21Y11 ! c r
a 0

 
e "r /2a 023 12a 0 23/2

d c 1
2

 B 3
2p

 sin ue i f d
Solution We insert the wave function c211 into Equation 
(7.18), insert the integration limits for r, u, and f, and do 
the integration. First we find c2

*
11c211:

 c*
211c211 !

1
64pa0

5 r 
2e"r /a 0 sin2 u

where we have combined factors. The normalization condi-
tion from Equation (7.18) becomes

!c*
211c211r 2 sin u dr d u d f

  !
1

64pa    5
0

 !
q

0

r 4e "r /a 0 dr !
p

0

sin3 d u !
2p

0

d f

 
 !

1
64pa    5

0
 324a    5

0 4 c 43 d 32p 4
 ! 1

We have not shown all the steps in the integration, but we 
have shown the results of each integration in each of the 
square brackets. The integrals needed are in Appendix 3. 
The wave function is indeed normalized.

 EXAMPLE 7 .2

7.3  Quantum Numbers
The three quantum numbers obtained from solving Equation (7.3) are

n Principal quantum number

O Orbital angular momentum quantum number

mO Magnetic quantum number

Their values are obtained by applying the boundary conditions to the wave func-
tion c(r, u, f) as discussed in Section 6.1. The boundary conditions require that 

Boundary conditions were 
given in Section 6.1.
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the wave functions have acceptable properties, including being single valued and 
finite. The restrictions imposed by the boundary conditions are

  n ! 1, 2, 3, 4, . . .     Integer

  / ! 0, 1, 2, 3, . . . , n " 1     Integer (7.19)

 m/ ! "/, "/ # 1, . . . , 0, 1, . . . , / " 1, /    Integer

These three quantum numbers must be integers. The orbital angular momen-
tum quantum number must be less than the principal quantum number, / ( n, 
and the magnitude of the magnetic quantum number (which may be positive or 
negative) must be less than or equal to the orbital angular momentum quantum 
number, 0m/ 0  $ /. We can summarize these conditions as

  n ) 0

  / ( n (7.20)

  0m/ 0 $ /

The lowest value of n is 1, and for n ! 1, we must have / ! 0, m/ ! 0. For n ! 2, 
we may have / ! 0, m/ ! 0 as well as / ! 1, m/ ! "1, 0, #1.

What are the possible quantum numbers for the state n ! 4 
in atomic hydrogen?

Solution We want to apply the restrictions for the quan-
tum numbers given in Equations (7.19) and (7.20). If n ! 4, 
then the possible values of / are / ! 0, 1, 2, 3, because 
/max ! n " 1. For each value of /, m/ goes from "/ to #/. 
We show the results in tabular form.

 n O mO

 4 0 0
 4 1 "1, 0, 1
 4 2 "2, "1, 0, 1, 2
 4 3 "3, "2, "1, 0, 1, 2, 3

 CONCEPTUAL EXAMPLE 7 .3

As yet these quantum numbers may seem to have little physical meaning. Let 
us examine each of them more carefully and try to find classical analogies where 
possible.

Principal Quantum Number n
The principal quantum number n results from the solution of the radial wave 
function R(r) in Equation (7.4). Because the radial equation includes the poten-
tial energy V(r), it is not surprising to find that the boundary conditions on R(r) 
quantize the energy E. The result for this quantized energy is

 En !
"m

2
a e 2

4pP0U b 2 1
n2 ! " 

E0

n2 (7.21)

which is precisely the value found in Chapter 4 from the Bohr theory [Equations 
(4.25) and (4.26)]. So far, the energy levels of the hydrogen atom depend only 

03721_ch07_241-271.indd   24903721_ch07_241-271.indd   249 9/29/11   4:44 PM9/29/11   4:44 PM



250 Chapter 7 The Hydrogen Atom

on the principal quantum number n. The negative value of the energy E indi-
cates that the electron and proton are bound together.

It is perhaps surprising that the total energy of the electron does not depend 
on the angular momentum. However, a similar situation occurs for planetary 
motion, where the energy depends on the semimajor axis of the elliptical plan-
etary orbits and not on the eccentricity of the orbits. This peculiarity occurs for 
the solar system and the hydrogen atom because both the gravitational and Cou-
lomb forces are central; they also both have inverse-square-law dependences on 
distance.

Orbital Angular Momentum Quantum Number O
The orbital angular momentum quantum number / is associated with the R(r) 
and f(u) parts of the wave function. The electron-proton system has orbital an-
gular momentum as the particles pass around each other. Classically, this orbital 
angular momentum is L ! r % p with magnitude L ! mvorbitalr, where vorbital is the 
orbital velocity, perpendicular to the radius. The quantum number / is related 
to the magnitude of the orbital angular momentum L by

 L ! 2/ 1/ # 1 2 U  (7.22)

This curious dependence of L on / [L2 " /(/ # 1) rather than /2] is a wave 
phenomenon—it results from the application of the boundary conditions on 
c(r, u, f). We will present a justification for it later in this section. The quantum 
result disagrees with the elementary Bohr theory of the hydrogen atom, where 
L ! nU. This is most obvious in an / ! 0 state, where L ! 1011 2  U ! 0. Based 
on these results, we will have to discard Bohr’s semiclassical “planetary” model 
of electrons orbiting a nucleus.

We show in Figure 7.2 several classical orbits corresponding to the same total 
energy. For an electron in an atom, the energy depends on n; for planetary mo-
tion, the energy depends on the semimajor axis. Do not take the elliptical orbits 
literally for electrons; only probability functions can describe the electron posi-
tions, which must be consistent with the uncertainty principle. We say that a 
certain energy level is degenerate with respect to / when the energy is independent 
of the value of / (see Section 6.5). For example, the energy for an n ! 3 level is 
the same for all possible values* of / (/ ! 0, 1, 2).

It is customary to use letter names for the various / values. These are

 / ! 0 1 2 3 4 5 . . .

Letter ! s p d f g h . . .

These particular letter designations for the first four values resulted from em-
pirical visual observations from early experiments: sharp, principal, diffuse, and 
fundamental. After / ! 3 ( f state), the letters follow alphabetical order.

Atomic states are normally referred to by their n number and / letter. Thus 
a state with n ! 2 and / ! 1 is called a 2p state. Examples of other various atomic 
states are 1s (n ! 1, / ! 0), 2s (n ! 2, / ! 0), 4d (n ! 4, / ! 2), and 6g (n ! 6, 
/ ! 4). A state such as 2d is not possible, because this refers to n ! 2 and / ! 2. 
Our boundary conditions require n ) /.

*This statement is true for single-electron atoms such as hydrogen. We will learn later in Chapter 8 
that for many-electron atoms (atoms with more than 1 electron), electrons with lower / values lie 
lower in energy for a given n value.

Figure 7.2 Various possible 
electron (or planetary) classical 
orbits. The energy depends only 
on the principal quantum num-
ber n and not on the angular mo-
mentum of the hydrogen atom. 
There is a finite probability for an 
/ ! 0 electron to be present 
within the nucleus. Of course, 
none of the planets has / ! 0, 
and (obviously) they do not pass 
through the sun.
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Magnetic Quantum Number mO
The orbital angular momentum quantum number / determines the magnitude 
of the angular momentum L, but because L is a vector, it also has a direction. 
Classically, because there is no torque in the hydrogen atom system in the ab-
sence of external fields, the angular momentum L is a constant of the motion 
and is conserved. The solution to the Schrödinger equation for f(u) specified 
that / must be an integer, and therefore the magnitude of L is quantized.

The angle f is a measure of the rotation about the z axis. The solution for 
g(f) specifies that m/ is an integer and related to the z component of the angular 
momentum L.

 Lz ! m/U  (7.23)

The relationship of L, Lz, /, and m/ is displayed in Figure 7.3 for the value / ! 2. 
The magnitude of L is fixed 3L ! 1/1/ # 1 2 U ! 16U 4 . Because Lz is quantized, 
only certain orientations of L are possible, each corresponding to a different m/ 
(and therefore Lz). This phenomenon is called space quantization because only 
certain orientations of L are allowed in space.

We can ask whether we have established a preferred direction in space by 
choosing the z axis. The choice of the z axis is completely arbitrary unless there 
is an external magnetic field to define a preferred direction in space. It is cus-
tomary to choose the z axis to be along B if there is a magnetic field. This is why 
m/ is called the magnetic quantum number.

Will the angular momentum be quantized along the x and y axes as well? 
The answer is that quantum mechanics allows L to be quantized along only one 
direction in space. Because we know the magnitude of L, the knowledge of a 
second component would imply a knowledge of the third component as well 
because of the relation L2 ! Lx

2 # Ly
2 # Lz

2. The following argument shows that 
this would violate the Heisenberg uncertainty principle: If all three components 
of L were known, then the direction of L would also be known. In this case we 
would have a precise knowledge of one component of the electron’s position in 
space, because the electron’s orbital motion is confined to a plane perpendicu-
lar to L. But confinement of the electron to that plane means that the electron’s 

Space quantization

Figure 7.3 Schematic diagram 
of the relationship between L and 
Lz with the allowed values of m/.

Lz

L !  "(" #1)*

m" ! 2

m" ! 1

m" ! "1

m" ! "2

m" ! 0

ww   !  6*

"2*

0

2*

"*

*
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252 Chapter 7 The Hydrogen Atom

momentum component along L is exactly zero. This simultaneous knowledge of 
the same component of position and momentum is forbidden by the uncertainty 
principle.

Only the magnitude #L # and Lz may be specified simultaneously. The values 
of Lx and Ly must be consistent with L2 ! Lx

2 # Ly
2 # Lz

2 but cannot be specified 
individually. Physicists refer to the known values of L and Lz as “sharp” and the 
unknown Lx and Ly as “fuzzy.” The angular momentum vector L never points in 
the z direction (see Figure 7.3) because L ! 1/1/ # 1 2 U  and #L # ) # Lz # max ! /U . 
Our results from solving the Schrödinger equation for the hydrogen atom are 
consistent with the uncertainty principle.

The space quantization just mentioned is an experimental fact. The values 
of Lz range from "/ to #/ in steps of 1, for a total of 2/ # 1 allowed values. 
Because there is nothing special about the three directions x, y, and z, we expect 
the average of the angular momentum components squared in the three direc-
tions to be the same, 8Lx

2
 9 ! 8Ly

2
 9 ! 8Lz

2
 9. The average value of 8L2

 9 is equal to 
three times the average value of the square of any one of the components, so we 
choose the z component, 8L2

 9 ! 3 8Lz
2

 9. To find the average value of Lz
2, we just 

have to sum all the squares of the quantum numbers for Lz and divide by the 
total number, 2/ # 1.

 8L2
 9 ! 3 8Lz

2
 9 ! 3

2/ # 1
 a

/

m /!"/
m /

2U2 ! /1/ # 1 2 U2 (7.24)

where we have used a math table for the summation result. This rather simple 
argument to explain the /(/ # 1) dependence for the expectation value of L2 
(rather than using a sophisticated quantum-mechanical calculation) was origi-
nally due to Richard Feynman and simplified by P. W. Milonni.*

What is the degeneracy of the n ! 3 level? That is, how 
many different states are contained in the energy level 
E3 ! "E0/9?

Strategy This is a good opportunity to review the quan-
tum numbers we have been discussing. The energy eigenval-
ues for atomic hydrogen depend only on the principal 
quantum number n (in the absence of a magnetic field). 
For each value of n, there can be n different orbital angular 
momentum / states (/ ! 0, 1, . . . , n " 1). For each value 
of /, there are 2/ # 1 different magnetic quantum states 
(m/ ! "/, "/ # 1, . . . , 0, 1, . . . , #/).

Solution To find the total degeneracy for n ! 3 we have to 
add all the possibilities.

n O mO 2O ! 1

3 0 0 1
3 1 "1, 0, 1 3
3 2 "2, "1, 0, 1, 2 5
            Total ! 9

The n ! 3 level is degenerate (in the absence of a magnetic 
field) because all nine states have the same energy but dif-
ferent quantum numbers. Their wave functions, however, 
are quite different. You may notice that, in general, the de-
generacy is n2 (see Problem 16).

 EXAMPLE 7 .4

*P. W. Milonni, American Journal of Physics 58, 1012 (1990).
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7.4  Magnetic Effects on Atomic Spectra—
The Normal Zeeman Effect

It was shown as early as 1896 by the Dutch physicist Pieter Zeeman that the spec-
tral lines emitted by atoms placed in a magnetic field broaden and appear to 
split. The splitting of an energy level into multiple levels in the presence of an 
external magnetic field is called the Zeeman effect. When a spectral line is split 
into three lines, it is called the normal Zeeman effect. But more often a spectral 
line is split into more than three lines; this effect is called the anomalous Zeeman 
effect. The normal Zeeman effect, discussed here, can be understood by consid-
ering the atom to behave like a small magnet. We will return to our discussion 
of the anomalous Zeeman effect, which is more complicated, in Section 8.3. By 
the 1920s considerable fine structure of atomic spectral lines from hydrogen and 
other elements had been observed. Fine structure refers to the splitting of a 
spectral line into two or more closely spaced lines.

As a rough model, think of an electron circulating around the nucleus as a 
circular current loop. The current loop has a magnetic moment m ! IA where A 
is the area of the current loop and the current I ! dq/dt is simply the electron 
charge (q ! "e) divided by the period T for the electron to make one revolution 
(T ! 2pr/v). Thus

 m ! IA !
q
T

 A !
1"e 2  pr 2

2pr /v
!

"e r v
2

! " 

e
2m

 L (7.25)

where L ! mvr is the magnitude of the orbital angular momentum. Both the 
magnetic moment m and angular momentum L are vectors so that

 m ! " 

e
2m

 L  (7.26)

The relationship between m and L is displayed in Figure 7.4.
In the absence of an external magnetic field to align them, the magnetic 

moments m of atoms point in random directions. In classical electromagnetism, 
if a magnetic dipole having a magnetic moment m is placed in an external mag-
netic field, the dipole will experience a torque t ! m % B tending to align the 
dipole with the magnetic field. The dipole also has a potential energy VB in the 
field given by

 VB ! "m # B  (7.27)

According to classical physics, if the system can change its potential energy, the 
magnetic moment will align itself with the external magnetic field to minimize 
energy.

Note the similarity with the case of the spinning top in a gravitational field. 
A child’s spinning top is said to precess about the gravitational field; that is, the 
axis (around which the spinning top is rotating) itself rotates about the direction 
of the gravitational force (vertical). The gravitational field is not parallel to the 
angular momentum, and the force of gravity pulling down on the spinning top 
results in a precession of the top about the field direction. Precisely the same thing 
happens with the magnetic moment of an atom in a magnetic field. The angular 
momentum is aligned with the magnetic moment, and the torque between m 
and B causes a precession of m about the magnetic field (see Figure 7.5), not an 

The Dutch physicist Pieter 
Zeeman (1865– 1943) studied at 
the University of Leiden under the 
famous physicists H. Kamerlingh 
Onnes and H. A. Lorentz and 
received his degree in 1890. While 
at Leiden he showed that atomic 
spectral lines were split under the 
influence of an applied magnetic 
field. After this discovery he left 
Leiden in 1897 to go to the Univer-
sity of Amsterdam, where he re-
mained until 1935. He shared the 
1902 Nobel Prize for Physics with 
his mentor Lorentz.
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Figure 7.4 Representation of 
the orbital angular momentum L 
and magnetic moment m of the 
hydrogen atom due to the elec-
tron orbiting the proton. The di-
rections of L and m are opposite 
because of the negative electron 
charge.

Proton

e"

m

L
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254 Chapter 7 The Hydrogen Atom

alignment. The magnetic field establishes a preferred direction in space along 
which we customarily define the z axis. Then we have

 mz !
e U
2m

 m/ ! "mBm/ (7.28)

where mB ! e U/2m is a unit of magnetic moment called a Bohr magneton. Be-
cause of the quantization of Lz and the fact that L ! 1/1/ # 1 2 U ) m/U , we 
 cannot have #m # ! mz; the magnetic moment cannot align itself exactly in the z 
direction. Just like the angular momentum L, the magnetic moment m has only 
certain allowed quantized orientations. Note also that in terms of the Bohr 
 magneton, m ! "mBL / U .

Bohr magneton

What about the energy of the orbiting electron in a magnetic field? It takes 
work to rotate the magnetic moment away from B. With B along the z direction, 
we have from Equation (7.27)

 VB ! "mzB ! #mBm/B (7.31)

The potential energy is thus quantized according to the magnetic quantum number 
m/; each (degenerate) atomic level of given / is split into 2/ # 1 different energy 
states according to the value of m/. The energy degeneracy of a given n/ level is 

Determine the precessional frequency of an atom having 
magnetic moment m in an external magnetic field B. This 
precession is known as the Larmor precession.

Strategy We have already seen that the torque t is equal 
to m % B, but we also know from classical mechanics that the 
torque is dL/dt. The torque in Figure 7.5 is perpendicular to 
m, L, and B and is out of the page. This must also be the 
direction of the change in momentum dL as seen in Figure 
7.5. Thus L and m precess about the magnetic field. The 
Larmor frequency vL is given by df/dt.

Solution The magnitude of dL is given by L sin u df (see 
Figure 7.5), so vL is given by

 vL !
df
dt

!
1

L sin u
 
dL
dt

 (7.29)

We now insert the magnitude of L ! 2mm/e from Equation 
(7.26). The value of dL/dt, the magnitude of m % B, can be 
determined from Figure 7.5 to be mB sin u. Equation (7.29) 
becomes

 vL ! a e
2m m sin u

bmB sin u !
eB
2m

 (7.30)

 EXAMPLE 7 .5

u

u

df
fL sin u

z B

m

L

dL

Figure 7.5 An atom having magnetic moment m feels a torque 
t ! m % B due to an external magnetic field B. This torque must 
also be equal to dL/dt. The vectors m and L are antiparallel, so the 
vector dL/dt must be perpendicular to m, B, and L. As shown in 
the figure, dL/dt requires both m and L to precess (angle f) about 
the magnetic field B.

03721_ch07_241-271.indd   25403721_ch07_241-271.indd   254 9/29/11   4:44 PM9/29/11   4:44 PM
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removed by a magnetic field (see Figure 7.6a). If the degenerate energy of a state 
is given by E0, the three different energies in a magnetic field B for a / ! 1 state 
are
 mO Energy

 1 E0 # mBB

 0 E0

 "1 E0 " mBB

Figure 7.6 The normal Zeeman 
effect. (a) An external magnetic 
field removes the degeneracy of a 
2p level and reveals the three dif-
ferent energy states. (b) There 
are now transitions with three dif-
ferent energies between an ex-
cited 2p level and the 1s ground 
state in atomic hydrogen. The en-
ergy +E has been grossly exagger-
ated along the energy scale.

02p

1s

Energy

!1

! " 1

! " 0

! " 1

! " 1

(a) (b)

#E " mB B

#E

B  " 0

B " B0kB " 0

n " 2

m!

0

11

!1

m!

ˆ

B " B0k̂

What is the value of the Bohr magneton? Use that value to 
calculate the energy difference between the m/ ! 0 and m/ 
! #1 components in the 2p state of atomic hydrogen placed 
in an external field of 2.00 T.

Strategy To find the Bohr magneton we insert the known 
values of e, U, and m into the equation for mB [see text after 
Equation (7.28)]. The energy difference is determined 
from Equation (7.31).

Solution The Bohr magneton is determined to be

  mB !
e U
2m

  !
11.602 % 10"19 C 2 11.055 % 10"34 J # s 2

2 19.11 % 10"31 kg 2
  mB ! 9.27 % 10"24 J/T  (7.32)

 EXAMPLE 7 .7

What is the lowest n/ state in the hydrogen atom that has a 
degeneracy of 5?

Solution We want to find the lowest energy n/ state that 
has five m/ states. This is true for a / ! 2 state, because 2/ # 
1 ! 5. The lowest possible / ! 2 state will be 3d, because 
n ) / is required.

 CONCEPTUAL EXAMPLE 7 .6
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256 Chapter 7 The Hydrogen Atom

The splitting of spectral lines, called the normal Zeeman effect, can be par-
tially explained by the application of external magnetic fields (see Figure 7.6). 
When a magnetic field is applied, the 2p level of atomic hydrogen is split into 
three different energy states (Figure 7.6a) with the energy difference given by 
Equation (7.33). A transition for an electron in the excited 2p level to the 1s 
ground state results in three different energy transitions as shown (greatly exag-
gerated) in Figure 7.6b. The energy differences between the three spectral lines 
shown in Figure 7.6b are quite small and were first observed by Pieter Zeeman 
in 1896. The application of external magnetic fields eliminates much of the en-
ergy degeneracy, because quantized states that previously had the same energy 
now have slight differences. When electrons make the transition between these 
states, the photons absorbed or produced have more widely varying energies. We 
will see in Section 7.6 that the selection rule for m/ does not allow more than 
three different spectral lines in the normal Zeeman effect (see Problem 33).

Efforts were begun in the 1920s to detect the effects of space quantization (m/) 
by measuring the energy difference +E as in Example 7.7. In 1922 O. Stern and W. 
Gerlach reported the results of an experiment that clearly showed evidence for 
space quantization. If an external magnetic field is inhomogeneous—for example, 
if it is stronger at the south pole than at the north pole—then there will be a net 
force on a magnet placed in the field as well as a torque. This force is represented 
in Figure 7.7, where the net force on m (direction of S to N in bar magnet) is dif-
ferent for different orientations of m in the inhomogeneous magnetic field B.

The international system of units has been used (T ! tesla 
for magnetic field). The energy splitting is determined from 
Equation (7.31) (see also Figure 7.6a):

 ¢E ! mBB ¢m/ (7.33)

where +m/ ! 1 " 0 ! 1. Hence, we have

 ¢E ! 19.27 % 10"24 J/T 2 12.00 T 2 ! 1.85 % 10"23 J

  ! 1.16 % 10"4 eV

An energy difference of 10"4 eV is easily observed by optical 
means.

NNet!
force

Net!
force

Bgreater

B lower

S

S

N

North

South

Figure 7.7 An inhomogeneous 
magnetic field is created by the 
smaller south pole. Two bar mag-
nets representing atomic mag-
netic moments have m in opposite 
directions. Because the force on 
the top of the bar magnets is 
greater than that on the bottom, 
there will be a net translational 
force on the bar magnets 
(atoms).

Otto Stern (1888– 1969) was 
born in a part of Germany (now 
in Poland), where he was edu-
cated. He worked in several uni-
versities until he left Germany in 
1933 to avoid Nazi persecution 
and emigrated to the United 
States. He was educated and 
trained as a theorist but changed 
to experimentation when he be-
gan his molecular beam experi-
ments in 1920 at the University of 
Frankfurt with Walter Gerlach. He 
continued his distinguished ca-
reer in Hamburg and later at 
Carnegie Institute of Technology 
in Pittsburgh. He received the No-
bel Prize in 1943.
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   7.4 Magnetic Effects on Atomic Spectra—The Normal Zeeman Effect 257

If we pass an atomic beam of particles in the / ! 1 state through a magnetic 
field along the z direction, we have from Equation (7.31) that VB ! "mzB, and 
the force on the particles is Fz ! "(dVB/dz) ! mz(dB/dz). There will be a differ-
ent force on atoms  in each of the three possible m/ states. A schematic diagram 
of the Stern-Gerlach experiment is shown in Figure 7.8. The m/ ! #1 state will 
be deflected down, the m/ ! "1 state up, and the m/ ! 0 state will be undeflected.

Stern and Gerlach performed their experiment with silver atoms and ob-
served two distinct lines, not three. This was clear evidence of space quantiza-
tion, although the number of m/ states is always odd (2/ # 1) and should have 
produced an odd number of lines if the space quantization were due to the 
magnetic quantum number m/.

Figure 7.8 Schematic diagram of expected result of Stern-Gerlach experiment if atoms in a p 
state are used. Three patterns of atoms, due to m/ ! &1, 0, are expected to be observed on the 
screen. The magnet poles are arranged to produce a magnetic field gradient as shown in Figure 
7.7. The experiment performed by Stern and Gerlach reported only two lines, not three (see Sec-
tion 7.5).

North

South

Atomic!
beam!
oven

p-state!
atoms

Screen

m" ! "1

m" ! 0

m" ! #1

m

In 1927 T. E. Phipps and J. B. Taylor of the University of 
Illinois reported an important experiment similar to the 
Stern-Gerlach experiment but using hydrogen atoms in-
stead of silver. This was done because hydrogen is the sim-
plest atom, and the separation of the atomic beam in the 
inhomogeneous magnetic field would allow a clearer inter-
pretation. The atomic hydrogen beam was produced in a 
discharge tube having a temperature of 663 K. The highly 
collimated beam passed along the x direction through an 
inhomogeneous field (of length 3 cm) having an average 
gradient of 1240 T/m along the z direction. If the magnetic 
moment of the hydrogen atom is 1 Bohr magneton, what is 
the separation of the atomic beam?

Strategy The force can be found from the potential en-
ergy of Equation (7.31).

 Fz ! " 

dV
dz

! mz 
dB
dz

The acceleration of the hydrogen atom along the z direction 
is az ! Fz/m. The separation of the atom along the z direc-
tion due to this acceleration is d ! azt2/2. The time that the 
atom spends within the inhomogeneous field is t ! +x/vx 
where +x is the length of the inhomogeneous field, and vx is 

the constant speed of the atom within the field. The separa-
tion d is therefore found from

 d !
1
2

 azt 2 !
1
2

 a Fz

m
b t 2 !

1
2m

 amz 

dB
dz
b a ¢x

vx
b 2

We know all the values needed to determine d except the 
speed vx, but we do know the temperature of the hydrogen 
gas. The average energy of the atoms collimated along the x 
direction is 1

2 m 8v x
2

 9 ! 3
2 kT .

Solution We calculate 8v x
2

 9 to be

  v x
2 !

3kT
m

!
3 11.38 % 10"23 J/K 2 1663 K 2

1.67 % 10"27 kg

  ! 1.64 % 107 m2
 /s2

The separation d of the one atom is now determined to be

  d !
1

211.67 % 10"27 kg 2  19.27 % 10"24 J/T 2 11240 T/m 2
  %  

10.03m 2211.64 % 107 m2
 /s2 2 ! 0.19 % 10"3 m

 EXAMPLE 7 .8
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258 Chapter 7 The Hydrogen Atom

Phipps and Taylor found only two distinct lines, as did Stern 
and Gerlach for silver atoms, and the separation of the lines 
from the central ray with no magnetic field was 0.19 mm as 

we just calculated! The total separation of the two lines (one 
deflected up and one down) was 0.38 mm. The mystery re-
mained as to why there were only two lines.

7.5  Intrinsic Spin
It was clear by the early 1920s that there was a problem with space quantization 
and the number of lines observed in the Stern-Gerlach experiment. Wolfgang 
Pauli was the first to suggest that a fourth quantum number (after n, /, m/) as-
signed to the electron might explain the anomalous optical spectra discussed in 
Section 7.4. His reasoning for four quantum numbers was based on relativity, in 
which there are four coordinates—three space and one time. The physical 
significance of this fourth quantum number was not made clear.

In 1925 Samuel Goudsmit and George Uhlenbeck, two young physics gradu-
ate students in Holland, proposed that the electron must have an intrinsic angular 
momentum and therefore a magnetic moment (because the electron is charged). 
Classically, this corresponds in the planetary model to the fact that the Earth 
rotates on its own axis as it orbits the sun. However, this simple classical picture 
runs into serious difficulties when applied to the spinning charged electron. In 
order to achieve the angular momentum needed, Paul Ehrenfest showed that 
the surface of the spinning electron (or electron cloud) would have to be mov-
ing at a velocity greater than the speed of light! If such an intrinsic angular 
momentum exists, we must regard it as a purely quantum-mechanical result (see 
Problems 44 and 45).

To explain experimental data, Goudsmit and Uhlenbeck proposed that the 
electron must have an intrinsic spin quantum number s ! 1/2. The spinning 
electron reacts similarly to the orbiting electron in a magnetic field. Therefore, 
we should try to find quantities analogous to the angular momentum variable L, 
Lz, /, and m/. By analogy, there will be 2s # 1 ! 2(1/2) # 1 ! 2 components of 
the spin angular momentum vector S. Thus the magnetic spin quantum number 
ms has only two values, ms ! &1/2. The electron’s spin will be oriented either 
“up” or “down” in a magnetic field (see Figure 7.9), and the electron can never 
be spinning with its magnetic moment ms exactly along the z axis (the direction of 
the external magnetic field B).

For each atomic state described by the three quantum numbers (n, /, m/) 
discussed previously, there are now two distinct states, one with ms ! #1/2 and one 
with ms ! "1/2. These states are degenerate in energy unless the atom is in an 
external magnetic field. In a magnetic field these states will have different energies 
due to an energy separation like that of Equation (7.33). We say the splitting of 
these energy levels by the magnetic field has removed the energy degeneracy.

Intrinsic spin 
quantum number

Magnetic spin 
quantum number

3!
4

1!
2

1!
2

(b)(a)

S

S !        *

ms ! #

z

ms ! "

wFigure 7.9 (a) A purely classical 
schematic of the intrinsic spin 
angular momentum, S, of a spin-
ning electron. (b) The quantiza-
tion of S, which can have only two 
positions in space relative to z 
(direction of external magnetic 
field). The z component of S is 
Sz ! &U/2.
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   7.5 Intrinsic Spin 259

The intrinsic spin angular momentum vector S has a magnitude of #S # ! 2s 1s # 1 2 U ! 23 /4U . The magnetic moment is ms ! "1e/m 2S , or "2mBS/ U . 
The fact that the coefficient of S/ U  is "2mB rather than "mB as with the orbital 
angular momentum L is a consequence of the theory of relativity (Dirac equa-
tion), and we will not pursue the matter further here. This numerical factor re-
lating the magnetic moment to each angular momentum vector is called the 
gyromagnetic ratio. It is designated by the letter g with the appropriate subscript 
(/ or s), so that g/ ! 1 and gs ! 2. In terms of the gyromagnetic ratios, then,

  m/ ! " 

g/mBL
U ! " 

mBL
U  (7.34a)

  ms ! " 

gs  
mBS
U ! "2 

mBS
U  (7.34b)

The z component of S is Sz ! msU ! &U/2.
We can now understand why the experiment of Stern and Gerlach produced 

only two distinct lines. If the atoms were in a state with / ! 0, there would be no 
splitting due to m/. However, there is still space quantization due to the  intrinsic 
spin that would be affected by the inhomogeneous magnetic field. The same ar-
guments used previously for m/ (we now use the subscript / to indicate the mag-
netic moment due to the orbiting electron and the subscript s to indicate the 
magnetic moment due to intrinsic spin) can now be applied to ms, and the poten-
tial energy, Equation (7.27), becomes

 VB ! "ms # B ! #
e
m  S # B  (7.35)

If we look at the hydrogen atom in the frame of the orbiting electron, we have 
the classical result shown in Figure 7.10. This classical picture indicates that the 
orbiting proton creates a magnetic field at the position of the electron. There-
fore, even without an external magnetic field, the electron will feel the effects of 
an internal magnetic field, and Equation (7.35) predicts an energy difference 
depending on whether the electron’s spin is up or down. Many levels are effec-
tively split into two different states called doublets.

The relativistic quantum theory proposed by P. A. M. Dirac in 1928 showed 
that the intrinsic spin of the electron required a fourth quantum number as a 
consequence of the theory of relativity.

Intrinsic spin angular 
momentum vector

Gyromagnetic ratios

Figure 7.10 The hydrogen 
atom in the frame of reference of 
the electron. In this case, the or-
biting proton creates a magnetic 
field at the position of the 
electron.

B

B

e"

p

How many distinctly different states (and therefore wave 
functions) exist for the 4d level of atomic hydrogen?

Strategy As shown in Example 7.4, the degeneracy of 
each level is n2, before spin is taken into account. In the 
absence of an applied magnetic field, the fourth quantum 
number for intrinsic spin makes the degeneracy of the nth 
quantum level 2n2. The number of states has increased 
significantly.

Solution For the 4d level (n ! 4, / ! 2) there are 2/ # 1 ! 
5 different values of m/. For each of these values of m/ ("2, 
"1, 0, 1, 2), there are two ms states (&1/2). Therefore there 
are 10 different states for a 4d level of atomic hydrogen.

 EXAMPLE 7 .9
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7.6  Energy Levels and Electron 
Probabilities

We are now in a position to discuss a more complete description of the hydrogen 
atom. Every possible state of the hydrogen atom has a distinct wave function that 
is completely specified by four quantum numbers: n, /, m/, ms. In many cases the 
energy differences associated with the quantum numbers m/ and ms are 
insignificant (that is, the states are nearly degenerate), and we can describe the 
states adequately by n and / alone: for example, 1s, 2p, 2s, 3d, and so on. Gener-
ally, capital letters (that is, S, P, D) are used to describe the orbital angular 

Special Topic

Hydrogen and the 21-cm Line 
Transition

B oth the proton and the electron in the hydrogen 
atom have intrinsic spin. We can think of each of 

these spinning particles as behaving like a small mag-
net. We show a schematic picture of the hydrogen 
atom in Figure A in two cases: one with the proton and 
electron spins (magnetic moments) aligned and one 
opposed. We know from introductory physics that 
when the spins are opposed, the system (the hydrogen 
atom in this case) is in a lower energy state. We men-
tioned this effect in our discussion of Equation (7.35). 
All you have to do is hold two bar magnets in your 
hands and see in which configuration the bar magnets 
want to be when you bring them close. They will want 
to have their magnetic fields in opposite directions, in 
effect just like that shown on the right side of Figure 
A. When the electron changes its spin from aligned to 
opposed, the process is called a spin-flip transition.

During the German occupation of the Nether-
lands in World War II, Jan Oort (1900– 1992), the great 
Dutch astronomer, wanted to find a radio spectral line 
that would allow him to detect objects more than a few 
thousand lightyears away. He wanted a spectral line 
that would allow the Doppler shift of the line to be eas-
ily observed, and he suggested to his graduate student, 
H. C. van de Hulst, that hydrogen might be a good 
candidate. In 1944 Hulst decided that a transition be-
tween the parallel (aligned) and antiparallel (op-
posed) con figurations of the n ! 1 line in atomic hy-
drogen might work. The parallel configuration 

(magnetic moments are aligned) has an energy of only 
5.9 % 10"6 eV greater than the antiparallel one. Such 
small energy differences are called hyperfine structures. 
When the  hydrogen atom is excited into the parallel 
state and eventually decays to the antiparallel ground 
state, the photon emitted has a frequency of 1420 MHz 
and wavelength of 21.1 cm. This is the origin of the 21-
cm line transition of atomic hydrogen, which was first 
detected by Harold Ewen and Edward Purcell at Har-
vard University in 1951.

The interstellar medium is the space between stars 
that contains a diffuse medium of gas and dust. About 

Magnetic!
moments!
aligned

N

S

N

S
Higher energy state

Magnetic!
moments!
opposite

N

S

S

N
Lower energy state

Figure A The state (n ! 1) for the hydrogen atom when the pro-
ton and electron spins are aligned (left side) is a slightly higher 
energy state than when they are opposed (right side). When the 
electron spin changes from the aligned to the opposed state 
(called a spin-flip transition), a photon having a characteristic 21-
cm wavelength is emitted.

260
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momentum of atomic states and lowercase letters (that is, s, p, d) are used to 
describe those for individual electrons. For hydrogen it makes little difference 
because each state has only a single electron, and we will use either specification.

We show an energy-level diagram in Figure 7.11 (p. 262) for hydrogen in 
the absence of an external magnetic field. The energy levels are degenerate 
with respect to /, m/, and ms, but in a magnetic field this degeneracy is removed. 
For heavier atoms with several electrons, the degeneracy is removed—either 
because of internal magnetic fields within the atom or because the average 
potential energy due to the nucleus plus electrons is non-Coulombic. In atoms 
with Z ) 1 the smaller / values tend to lie at a lower energy level for a given n 
(see Section 8.1). For example, in sodium or potassium, the energy states are 

90% of this medium is in the form of hydrogen (atomic 
and molecular). The Milky Way Galaxy contains neu-
tral hydrogen gas with a density of about 1 atom/cm3 
and temperatures of 100 K or greater. This is enough 
hydrogen so that about every 500 years a given hydro-
gen atom collides with another, and one of the hydro-
gen atoms is excited into the higher energy spin-
aligned state in n ! 1. Somewhat later (perhaps 20 
million or so years!), the state jumps back to the 
ground state and emits the electromagnetic radiation 
of wavelength 21 cm. There is so much hydrogen in 
interstellar space that even with the rare collisions and 
long decay time, there are still many transitions to 
observe. The narrow line width of the excited state 
allows precise Doppler shift measurements to be made 
of the emitted radiation. This allows the velocity of 
the interstellar gas to be measured, including various 
rotations of galaxies. Estimated distances to gas clouds 
allow astronomers to map the distribution of matter in 
the galaxy. The 21-cm line radiation is the best way to 
map the structure of our Milky Way Galaxy.

In 1959 Philip Morrison and Giuseppe Cocconi 
suggested that the best frequency to search for signals 
from intelligent extraterrestrials is 1420 MHz, corre-
sponding to the 21-cm line of the hydrogen atom. 
The search for extraterrestrial intelligence (SETI) has 
been ongoing since 1960 when Frank Drake pointed 
a radio telescope to the sky to search for evidence of 
the 21-cm line from Tau Ceti and Epsilon Eridani, two 
stars that are relatively close and sunlike. The first 
signals from Earth seeking contact were sent by the 
large radio telescope at Arecibo, Puerto Rico, in 1974. 
Four spacecraft, Pioneer 10, Pioneer 11, and Voyagers 1 
and 2, are exiting the solar system and have messages 

on board for extraterrestrials (see Figure B). Note that 
the 21-cm line transition is prominently displayed in 
the upper left in Figure B.

Hyperfine transition of
neutral hydrogen

Silhouette of
spacecraft

Binary equivalent
of decimal 8

Position of sun
relative to 14

pulsars and the
center of the galaxy

Planets of solar
system and binary
relative distances

Figure B This plaque with a pictorial message from mankind is 
on board the Pioneer 10 spacecraft (and Pioneer 11). Astronomers 
Carl Sagan and Frank Drake designed the plaque (23 cm by 
15 cm) that was first launched on Pioneer 10 in 1972. The explana-
tions of some of the symbolism on the plaque are shown here, but 
are not on the plaque. The Pioneer 10 left the solar system in the 
1980s and is estimated to be  1.5 % 1010 km from Earth. It was last 
heard from in 2002, and its power source is now too weak to trans-
mit to us.
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262 Chapter 7 The Hydrogen Atom

E(4S) ( E(4P) ( E(4D) ( E(4F ). For hydrogen, the energy levels depend only 
on the principal quantum number n and are predicted with great accuracy by 
the Bohr theory.

We have previously learned that atoms emit characteristic electromagnetic 
radiation when they make transitions to states of lower energy. An atom in its 
ground state cannot emit radiation; it can absorb electromagnetic radiation, or 
it can gain energy through inelastic bombardment by particles, especially elec-
trons. The atom will then have one or more of its electrons transferred to a 
higher energy state.

Selection Rules
We can use the wave functions obtained from the solution of the Schrödinger 
equation to calculate transition probabilities for the electron to change from one 
state to another. The results of such calculations show that electrons absorbing or 
emitting photons are much more likely to change states when +/ ! &1. Such 
transitions are called allowed. Other transitions, with +/ , &1, are theoretically 
possible but occur with much smaller probabilities and are called forbidden transi-
tions. There is no selection rule restricting the change +n of the principal quan-
tum number. The selection rule for the magnetic quantum number is +m/ ! 0, 
&1. The magnetic spin quantum number ms can (but need not) change between 
1/2 and "1/2. We summarize the selection rules for allowed transitions:

  ¢n ! anything

  ¢/ ! &1  (7.36)

  ¢m/ ! 0, &1

Some allowed transitions are diagrammed in Figure 7.11. Notice that there are 
no transitions shown for 3P S 2P, 3D S 2S, and 3S S 1S because those transi-
tions violate the +/ ! &1 selection rule.

If the orbital angular momentum of the atom changes by U when absorption 
or emission of radiation takes place, we must still check that all conservation laws 

Allowed and 
forbidden transitions

Selection rules

P!
1

Energy!
(eV)

0
"0.8
"1.5

"3.4

4
3

2

"13.6 1

S series
D series

F series

P series

D!
2

F!
3

G!
4

S!
" ! 0n!

∞

Figure 7.11 Energy-level dia-
gram of hydrogen atom with no 
external magnetic field. Also 
shown are allowed photon transi-
tions between some levels.
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   7.6 Energy Levels and Electron Probabilities 263

are obeyed. What about the conservation of angular momentum? The only ex-
ternal effect on the atom during the absorption or emission process is that due 
to the photon being absorbed or emitted. If the state of the atom changes, then 
the photon must possess energy, linear momentum, and angular momentum. 
The selection rule +/ ! &1 strongly suggests that the photon carries one unit 
(U) of angular momentum. By applying quantum mechanics to Maxwell’s equa-
tions, it is possible to show* that electromagnetic radiation is quantized into 
photons having energy E ! hf and intrinsic angular momentum of U.

*See Leonard Schiff, Quantum Mechanics, 3rd ed., New York: McGraw-Hill (1968) for a discussion of 
both the semiclassical and quantum treatment of radiation.

†It may be useful at this time to review Section 5.7, where the relationships between probability and 
wave functions were discussed.

Which of the following transitions for quantum numbers (n, 
/, m/, ms) are allowed for the hydrogen atom, and for those 
allowed, what is the energy involved?
 (a) (2, 0, 0, 1/2) S (3, 1, 1, 1/2)
 (b) (2, 0, 0, 1/2) S (3, 0, 0, 1/2)
 (c) (4, 2, "1, "1/2) S (2, 1, 0, 1/2)

Strategy We want to compare +/ and +m/ with the selec-
tion rules of Equation (7.36). If allowed, the energies may 
be obtained from Equation (7.21) with E0 ! 13.6 eV.

Solution
 (a) +/ ! #1, +m/ ! 1; allowed.

   ¢E ! E3 " E2 ! "13.6 eV a 1
32 "

1
22 b

 
 ! 1.89 eV, corresponding to absorption

  of a 1.89-eV photon

(b) +/ ! 0, +m/ ! 0; not allowed, because +/ , &1.
 (c)  +/ ! "1, +m/ ! 1; allowed. Notice that +n ! "2 and 

+ms ! #1 does not affect whether the transition is al-
lowed.

 ¢E ! E2 " E4 ! "13.6 eV a 1
22 "

1
42 b

  ! "2.55 eV, corresponding to
 emission of a 2.55-eV photon

 EXAMPLE 7 .10

Probability Distribution Functions
In the Bohr theory of the hydrogen atom, the electrons were pictured as orbiting 
around the nucleus in simple circular (or elliptical) orbits. The position vector r 
of the electron was well defined. In the wave picture of the atom, we must use 
wave functions to calculate the probability distributions† of the electrons. The 
“position” of the electron is therefore spread over space and is not well defined. 
The distributions can be found by examining the separable wave functions R(r), 
f(u), and g(f). The g(f) distribution is simplest because it leads to uniform 
probability—all values of f are equally likely. It is easy to see why. Because the 
azimuthal part of the wave function is always of the form eim/f, the probability 
density c*c contains a corresponding factor of (eim/f)*eim/f ! e"im/f#im/f ! e0 ! 1. 
(Remember that c* means we take the complex conjugate of c.)

We may use the radial wave function R(r) to calculate radial probability dis-
tributions of the electron (that is, the probability of the electron being at a given 
r). As discussed in Section 5.7, the probability dP of finding the electron in a dif-
ferential volume element dt is

 dP ! c*1r, u, f 2  c1r, u, f 2  dt (7.37)
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264 Chapter 7 The Hydrogen Atom

We are interested in finding the probability P(r) dr of the electron being between 
r and r # dr. The differential volume element in spherical polar coordinates is

 d t ! r 2 sin u dr d u d f

Therefore,

 P 1r 2  dr ! r 2R *1r 2R 1r 2  dr!
p

0

0
 
f  1u 2 0 2 sin u d u !

2p

0

0g 1f 2 0 2 d f (7.38)

We are integrating over u and f, because we are only interested in the radial 
dependence. If the integrals over f(u) and g(f) have already been normalized to 
unity, the probability of finding the electron between r and r # dr reduces to

 Pn/ 1r 2  dr ! r 
2 0Rn/ 1r 2 0 2 dr  (7.39)

The radial probability density Pn/ is

 Pn/ 1r 2 ! r 
2 0Rn/1r 2 0 2 (7.40)

This probability density Pn/ depends only on n and / through the radial wave 
functions Rn/. In Figure 7.12 we display both Rn/(r) and Pn/(r) for the lowest-lying 
states of the hydrogen atom.

Radial probability

Radial wave functions (Rn")

R10

0 5 10 15
0

1

2

Radial probability distribution (Pn")

P10

0 5 10 15 20
0

0.3

0.6

P20

P21

0 5 10 15 20
0

0.1

0.2

P30

P31

P32

0 5 10 15 20
0

0.1

0.2

R20

R21

0 5 10 15
"0.1

0

0.4

0.8

R30

R31 R32

0 5
Radius (a0)

(a)

Radius (a0)

(b)

10 15
"0.1

0

0.2

0.4

Figure 7.12 (a) The radial wave 
function Rn/(r) plotted as a func-
tion of radius (in units of Bohr ra-
dius a0) for several states of the hy-
drogen atom. (b) The radial 
probability distribution Pn/, which 
gives the probability of the elec-
tron being between r and r # dr.
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   7.6 Energy Levels and Electron Probabilities 265

Find the most probable radius for the electron of a hydro-
gen atom in the 1s and 2p states.

Strategy To find the maximum and minimum of a func-
tion we take the derivative of the function with respect to the 
variable and set the derivative equal to zero. To find the most 
probable radial value we take the derivative of the probability 
density P(r) (see Equation (7.39)) with respect to r and set it 
equal to zero. We use the Rn/ (r) from Table 7.1.

Solution We use Equation (7.40) for the probability den-
sity for both the 1s and 2p states and fi nd theRn/ values from 
Table 7.1.

P10 !
4r 

2

a0
3

 e"2r/a0

P21 !
r 

4

24a0
5

 e"r/a0

1s state:

 
 
d
dr

 P10 1r 2 ! 0 !
d
dr

 a 4e"2r /a 0

a 0 3
 r 2b

 
 0 !

4
a0

3 a" 

2
a0

  r 2 # 2r b e"2r /a 0

 

 
2r 2

a 0
! 2r

  r ! a 0 Most probable radius  (7.41)
 for 1s state electron

2p state:

d
dr

P211r 2 !  
d
dr
c r4

24a0
5e"r/a0 d ! 0

e"r/a0

24a0
5 a4r 

3 "
r 

4

a0
b ! 0

 
r 4

a0
! 4r 3

r ! 4a0   Most probable radius  (7.42)
for 2p state electron

Notice that the most probable radii for the 1s and 2p states 
agree with the Bohr radii. This occurs only for the largest 
possible / value for each n (see Problem 36).

 EXAMPLE 7 .11

Calculate the average orbital radius of a 1s electron in the 
hydrogen atom.

Strategy To find the average value, we shall find the ex-
pectation value.

Solution The expectation (or average) value of r is (see 
Section 6.2)

 
 8r 9 ! !c*1r, u, f 2r c1r, u, f 2  d t ! !rP 1r 2  dr

where we have again integrated over u and f. We use Equa-
tion (7.39) for the probability density and fi nd the radial 
wave function R1s(r) in Table 7.1.

 8r 9 ! !
q

0

4
a0

3 e"2r /a 0 r3 dr

We look up this integral in Appendix 3 and determine

 !
q

0

r3e"2r /a 0 dr !
3a 0

4

8

so that

 8r 9 ! 4
a0

3 
3a0

4

8
!

3
2

 a0    For the 1s state electron

Therefore, the average electron radius in the 1s state is 
larger than the most probable value, the Bohr radius. We 
can see that this result is reasonable by examining the radial 
probability distribution for the 1s state displayed in Figure 
7.12. The maximum (or most probable) value occurs at a0, 
but the average is greater than a0 because of the shape of 
the “tail” of the distribution.

 EXAMPLE 7 .12

What is the probability of the electron in the 1s state of the 
hydrogen atom being at a radius greater than the Bohr ra-
dius a0?

Strategy In order to find the probability, we integrate the 
radial probability distribution from r ! a0 to q, because P(r) 
is already normalized (that is, it has a unit probability of be-
ing somewhere between 0 and q).

 EXAMPLE 7 .13
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266 Chapter 7 The Hydrogen Atom

Illustrations of the probability density 0c1r,u,f 2 02 for the electron position of 
the hydrogen atom are shown in Figure 7.13. The probability distributions for the 
/ ! 0 state electrons are spherically symmetric because the wave functions have no 
u or f dependence (see Table 7.2). For / ) 0 the distributions are more interest-
ing because of the f  1u 2  dependence. For example, consider the p orbital. If we 
refer to Table 7.2, we see that there are two possibilities for the angular part of the 
wave function. If / ! 1 and m/ ! 0, Y10 " cos u will be a factor in the wave func-
tion, and the probability density c*c " cos2 u In this case the probability density 
will be highest near 0° and 180°, that is, near the #z axis and "z axis. We see 
this for the 2p and 3p probability densities in Figure 7.13 where m/ ! 0. The other 

Solution

 Probability ! !
q

a 0

P 1r 2  dr

  !
4

a0
3 !

q

a 0

e"2r /a 0 r 2 dr

We look up the integral in Appendix 3 (see the indefi nite 
integral I2 and let # = a0/2 and evaluate to find the result

 Probability !
4

a0
3 a 5

4
  a0

3e"2b ! 5e"2 $ 0.68

The probability of the electron being outside the Bohr ra-
dius in a 1s state is greater than 50%. This explains why we 
found 8r 91s ! 1.5 a 0. This result is consistent with the shape 
of the 1s curve in Figure 7.12b.

(a) Calculate the average orbital radius of a 3d electron in 
the hydrogen atom. Compare with the Bohr radius for a 
n  !  3 electron. (b) What is the probability of a 3d electron 
in the hydrogen atom being at a greater radius than the 
n  !  3 Bohr electron?

Strategy We used a similar strategy in Example 7.12 to 
fi nd the expectation (or average) value of r. We determine 
the probability of a 3d electron being in a certain radial 
position (greater than r3  !  n2a0  !  32a0  !  9a0) by integrating 
over the probability density from 9a0 to q.

Solution (a) The expectation value of the radial position 
of a 3d electron is8r3d9 ! !

q

0

rP 1r 2dr ! !
q

0

r3%R3d 
1r 2 %2dr

where we have used Equations (6.20) and (7.39). We look up 
R3d 
1r 2  in Table 7.1 and obtain8r3d 

9 ! 1
a0

7 a 4

81230
b 2

!
q

0

r 
7e"2r/3a0dr

We use the integral !
q

0

x ne "x/adx ! n!an#1 from Appendix 

3 to determine8r3d 
9 ! 1

a0
7 a 4

81230
b 2

7! a 3a0

2
b 8

! 10.5a0

The average value of r3d is more than 15% larger than the 
Bohr value of 9a0. We see in Figure 7.12b that the most 
probable value of P32 is 9a0, but because of the tail of the P32 
distribution for increasing radius, it is likely that the average 
value of r32 (r3d) is somewhat larger, consistent with a value 
of 10.5a0.
(b) The probability of the electron in the 3d state of the 
hydrogen atom being at a radius greater the Bohr radius 9a0 
is (see Example 7.13)

P ! !
q

9a0

P1r 2dr ! !
q

9a0

r2%R3d 
1r 2 %2dr

We again look up R3d 
1r 2  in Table 7.1 and obtain

P !
1

a0
7 a 4

81230
b 2

!
q

9a0

r 
6e"2r/3a0dr

This integral is somewhat more diffi cult (that is, tedious) 
than the one we did in (a). We must use an indefi nite 
integral from Appendix 3, because the lower integra-
tion limit is 9a0, not zero. If we use the integral formula 

!x me bxdx ! e bxa
m

k!0
1 " 1 2 k m!x m"k1m " k 2 !bk#1, we end up with seven 

terms and a high probability of making an error. This in-
tegral is a good candidate for computer integration, which 
gives a value of 0.606. The result for the probability P is 61%, 
which seems reasonable given the shape of the distribution.

 EXAMPLE 7 .14
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   7.6 Energy Levels and Electron Probabilities 267

possible combinations for the quantum numbers of an electron in a p orbital 
are / ! 1 and m/ ! &1. The wave function will contain Y1;1 " sin u, and 
c*c " sin2 u. The probability is highest at u ! 90!, that is, in the xy plane. The 
fl attened toroidal shape for 2p, m/ ! &1 in Figure 7.13b is consistent with this 
analysis.

When we look at d orbitals, the situation becomes a bit more complicated, but 
a similar analysis will allow us to see at what angles u the probability density is maxi-
mized. For the / ! 2, m/ ! 0 state, we see that 0Y20 0 2 must have a maximum around 
u ! 0° and 180°. Once again, these results are shown in Figure 7.13. Similarly, 0Y2&2 0 2 (corresponding to the / ! 2, m/ ! &2 states) has a maximum in the xy 
plane. For the / ! 2, m/ ! &1 states, we find a factor sin2 u cos2 u coming from 0Y2&1 0 2. For these states the probability maxima are at u ! 45° and 135°.

It is interesting to consider in which state (for a given n) the electron is closest 
to the origin. We can calculate 8r 9 for the 2s and 2p states (see Problem 40) and 
find that the 2p average radius is smaller. However, because the P(r) for the 2s state 
has two maxima, one with r ( a0, the electron in the 2s state will actually spend 
more time very close to the nucleus than will one in the 2p state. This effect can 

be seen in Figure 7.12, where 
the radial distribution for P(r) 
in the 2s state extends farther 
out than that for 2p, but there 
is a secondary maximum for 
P(r) for the 2s state near a0.

There are still minor cor-
rections to be made to our 
model of the hydrogen atom. 
For example, in Section 8.2 of 
the next chapter we discuss 
the effects of spin-orbit cou-
pling. Also in Chapter 8 we 
continue our study of the 
subfield of physics called 
atomic physics and consider 
multielectron atoms.

(a)

1s

2s

3s

2p

3p 3d

   n " 3
   ! " 2
 m! " 0

z

  n " 3
  ! " 1
m! " 0

z

n " 2
! " 1

 m! " $1

z

(b)

Figure 7.13 The illustrations 
display probability densities 0c1r,u,f 2 02 for the hydrogen atom, 
as viewed from within the xy 
plane. There is axial symmetry 
about the vertical z axis in each 
case. (a) The quantum numbers 
n/ are shown, and the magnetic 
quantum number m/ ! 0 for 
these cases. The likely electron 
position is indicated by the 
brighter areas. Note the spherical 
symmetry for the s states. (b) Se-
lected three-dimensional repre-
sentations of hydrogen probability 
densities.]
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268 Chapter 7 The Hydrogen Atom

 1. Do the radial wave functions depend on m/? Explain 
your answers.

 2. Would the radial wave functions be different for a 
potential V(r) other than the Coulomb potential? 
Explain.

 3. For what energy levels in the hydrogen atom will we 
not fi nd /  !  2 states?

 4. What are the differences and similarities between 
atomic levels, atomic states, and atomic spectral lines? 
When do spectral lines occur?

 5. What are the differences and similarities between the 
quantization of angular momentum in the Bohr 
model and the Schrödinger theory?

 6. Can the magnetic moment of an atom line up exactly 
with an external magnetic fi eld? Explain.

 7. What are the possible magnetic quantum numbers for 
an f state?

 8. List all the reasons why a fourth quantum number 
(intrinsic spin) might have helped explain the com-
plex optical spectra in the early 1920s.

 9. Is it possible for the z component of the orbital mag-
netic moment to be zero, but not the orbital angular 
momentum? Explain.

 10. A close examination of the spectral lines coming from 
starlight can be used to determine the star’s magnetic 
fi eld. Explain how this is possible.

 11. If a hydrogen atom in the 2p excited state decays to 
the 1s ground state, explain how the following prop-
erties are conserved: energy, linear momentum, and 
angular momentum.

The Schrödinger wave theory is applied to atomic physics, 
beginning with the hydrogen atom. The application of the 
boundary conditions leads to three quantum numbers:

n Principal quantum number
/ Orbital angular momentum quantum number
m/    Magnetic quantum number

with the values and restrictions (all are integers)

  n ! 1, 2, 3, 4, . . .                            n ) 0

  / ! 0, 1, 2, 3, . . . , n " 1                     / ( n

  m/ ! "/, "/ # 1, . . . , 0, 1, . . . , / " 1, /     0m/ 0 $ /
 (7.19)

The energy of the electron-proton system is quantized 
and depends to first order only on n. The orbital angular 
momentum L is quantized by L ! 1/1/ # 1 2 U  and not by 
nU  as in the Bohr theory. We use letter names s, p, d, f, g, 
h, . . . to indicate the / value for a given electron.

The z component of L is quantized, and Lz ! m /U. This 
is referred to as space quantization, because L can only have 
certain orientations in space. In the absence of a magnetic 
field, the energy is degenerate with respect to / and m/. In 

an external magnetic field each n/ level is split into 2/ # 1 
different energy states (normal Zeeman effect).

In order to explain increasingly complex atomic spec-
tra, Goudsmit and Uhlenbeck introduced a fourth quantum 
number. This quantum number s is related to the electron’s 
intrinsic angular momentum, commonly referred to as spin. 
The electron spin quantum number is s ! 1/2, and the 
values of the magnetic spin quantum number ms are &1/2. 
Stern and Gerlach observed in 1922 the effects of intrinsic 
spin, although at the time it was confused with orbital angu-
lar momentum.

The selection rules for allowed transitions for a change 
from one state to another are

  ¢n ! anything

  ¢/ ! &1  (7.36)

  ¢m/ ! 0, &1

The probability of finding an electron between r and 
r # dr is P(r) dr ! r2 0R 1r 2 0 2 dr where R(r) is the radial wave 
function.

S u m m a r y

Q u e s t i o n s
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Note: The more challenging problems have their problem 
numbers shaded by a blue box.

7.1 Application of the Schrödinger Equation 
to the Hydrogen Atom

 1. Assume that the electron in the hydrogen atom is 
constrained to move only in a circle of radius a in the 
xy plane. Show that the separated Schrödinger equa-
tion for " becomes

  
1
a2

d 
2c

df2 #
2m
U 2  %E %c ! 0

  where " is the angle describing the position on the 
circle. Explain why this is similar to the Bohr 
assumption.

 2. Solve the equation in the previous problem for $. 
Find the allowed energies and angular momenta. 
Compare your results with the Bohr theory.

 3. After separating the Schrödinger equation using $  !  
R(r)f(!)g("), the equation for " is

  "
1
g

  

d 2g

df2 ! k2

  where k  !  constant. Solve for g(") in this equation 
and apply the appropriate boundary conditions. Show 
that k must be 0 or a positive or negative integer (k  !  
m/, the magnetic quantum number).

 4. Using the transformation equations between Carte-
sian coordinates and spherical polar coordinates 
given in Figure 7.1, transform the Schrödinger Equa-
tion (7.2) from Cartesian to spherical coordinates as 
given in Equation (7.3).

7.2 Solution of the Schrödinger Equation 
for Hydrogen

 5. Show that the radial wave function R20 for n  !  2 and 
/  !  0 satisfi es Equation (7.13). What energy E results? 
Is this consistent with the Bohr model?

 6. Show that the radial wave function R21 for n  !  2 and 
/  !  1 satisfi es Equation (7.10). What energy results? Is 
this consistent with the Bohr model?

 7. Show that the radial wave function R21 for n  !  2 and 
/  !  1 is normalized.

 8. The wave function $ for the ground state of hydrogen 
is given by

  c1001r,u,f 2 ! Ae "r/a0

  Find the constant A that will normalize this wave func-
tion over all space.

7.3 Quantum Numbers
 9. List all the possible quantum numbers 1n,/,m/ 2  for the 

n  !  5 level in atomic hydrogen.

 10. For a 3p state give the possible values of n,/,m/, L, Lz, 
Lx, and Ly.

 11. List all the wave functions for the 3p level of hydro-
gen. Identify the wave functions by their quantum 
numbers. Use the solutions in Tables 7.1 and 7.2.

 12. Prove that 8L29  !  /1/ # 1 2 U 2 by performing the sum-
mation for Equation (7.24).

 13. What is the degeneracy of the n  !  6 shell of atomic 
hydrogen considering 1n,/,m/ 2  and no magnetic fi eld?

 14. Draw for a 3d state all the possible orientations of the 
angular momentum vector L . What is Lx 

2 # Ly 
2  for 

the m/  !  "1 component?
 15. What is the smallest value that / may have if L is within 

10° of the z axis?
 16. Prove that the degeneracy of an atomic hydrogen 

state having principal quantum number n is n2. (Ig-
nore the spin quantum number.)

 17. Write out the hydrogen wave functions cn/m/
 for n/m/

values of (2, 1, "1), (2, 1, 0), and (3, 2, "1).
 18. Show that the hydrogen wave functions $200 and $21"1 

are normalized. If the integrals required are not in 
Appendix 3, consult a table of integrals or use com-
puter integration.

7.4 Magnetic Effects on Atomic Spectra—The Nor-
mal Zeeman Effect

 19. Calculate the possible z components of the orbital 
angular momentum for an electron in a 3p state.

 20. For hydrogen atoms in a 4d state, what is the maximum 
difference in potential energy between atoms when 
placed in a magnetic fi eld of 3.5 T? Ignore intrinsic 
spin.

 21. Show that the wavelength difference between adja-
cent transitions in the normal Zeeman effect is given 
approximately by

  ¢l !
l0

2 -BB
hc

 22. For hydrogen atoms in a d state, sketch the orbital 
angular momentum with respect to the z axis. Use 
units of U  along the z axis and calculate the allowed 
angles of L with respect to the z axis.

 23. For a hydrogen atom in the 6f state, what is the mini-
mum angle between the orbital angular momentum 
vector and the z axis?

 24. The red line of the Balmer series in hydrogen (%  !  
656.5 nm) is observed to split into three spectral lines 
with +%  !  0.040 nm between two adjacent lines when 
placed in a magnetic fi eld B. What is the value of B if 
+% is due to the energy splitting between two adjacent 
m/ states?

 25. A hydrogen atom in an excited 5f state is in a mag-
netic fi eld of 3.00 T. How many energy states can the 

P r o b l e m s
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270 Chapter 7 The Hydrogen Atom

electron have in the 5f subshell? (Ignore the magnetic 
spin effects.) What is the energy of the 5f state in the 
absence of a magnetic fi eld? What will be the energy 
of each state in the magnetic fi eld?

 26. The magnetic fi eld in a Stern-Gerlach experiment var-
ies along the vertical direction as dBz/dz  !  20.0 T/cm. 
The horizontal length of the magnet is 7.10 cm, and 
the speed of the silver atoms averages 925 m/s. The 
average mass of the silver atoms is 1.81  %  10"25 kg. 
Show that the z component of its magnetic moment is 
1 Bohr magneton. What is the separation of the two 
silver atom beams as they leave the magnet?

 27. An experimenter wants to separate silver atoms in a 
Stern-Gerlach experiment by at least 1 cm (a large 
separation) as they exit the magnetic fi eld. To heat 
the silver she has an oven that can reach 1000°C and 
needs to order a suitable magnet. What should be the 
magnet specifi cations (magnet length and magnetic 
fi eld gradient)?

7.5 Intrinsic Spin
 28. In an external magnetic fi eld, can the electron spin 

vector S point in the direction of B? Draw a diagram 
with B  !  B0k̂ showing S and Sz.

 29. Use all four quantum numbers 1n,/,m/,ms 2  to write 
down all possible sets of quantum numbers for the 4f 
state of atomic hydrogen. What is the total degeneracy?

 30. Use all four quantum numbers 1n,/,m/,ms 2  to write 
down all possible sets of quantum numbers for the 5d 
state of atomic hydrogen. What is the total degeneracy?

 31. The 21-cm line transition for atomic hydrogen results 
from a spin-fl ip transition for the electron in the par-
allel state of the n  !  1 state. What temperature in in-
terstellar space gives a hydrogen atom enough energy 
(5.9  %  10"6 eV) to excite another hydrogen atom in a 
collision?

 32. Prove that the total degeneracy for an atomic hydro-
gen state having principal quantum number n is 2n2.

7.6 Energy Levels and Electron Probabilities
 33. Show that for transitions between any two n states of 

atomic hydrogen, no more than three different spec-
tral lines can be obtained for the normal Zeeman 
effect.

 34. Find whether the following transitions are allowed, 
and if they are, fi nd the energy involved and whether 
the photon is absorbed or emitted for the hydrogen 
atom:

  (a) (5, 2, 1, 1
2) S (5, 2, 1, "1

2)
  (b) (4, 3, 0, 1

2) S (4, 2, 1, "1
2)

  (c) (5, 2, "2, "1
2) S (1, 0, 0, "1

2)
  (d) (2, 1, 1, 1

2) S (4, 2, 1, 1
2)

 35. In Figure 7.12, the radial distribution function P(r) 
for the 2s state of hydrogen has two maxima. Find the 
values of r (in terms of a0) where these maxima 
occur.

 36. Find the most probable radial position for the elec-
tron of the hydrogen atom in the 2s state. Compare 
this value with that found for the 2p state in Example 
7.11.

 37. Sketch the probability function as a function of r for 
the 2s state of hydrogen. At what radius is the position 
probability equal to zero?

 38. Calculate the probability of an electron in the ground 
state of the hydrogen atom being inside the region of 
the proton (radius  !  1.2  %  10"15 m). (Hint: Note that 
r V a 0.)

 39. Calculate the probability that an electron in the 
ground state of the hydrogen atom can be found be-
tween 0.95a0 and 1.05a0.

 40. Find the expectation value of the radial position for 
the electron of the hydrogen atom in the 2s and 2p 
states.

 41. Calculate the probability of an electron in the 2s state 
of the hydrogen atom being inside the region of the 
proton (radius $ 1.2  %  10"15 m). Repeat for a 2p elec-
tron. (Hint: Note that r V a 0.)

 42. Find the most probable radial position of an electron 
in the 3d state of the hydrogen atom.

 43. What is the probability that an electron in the 3d state 
is located at a radius greater than a0?

General Problems
 44. Assume the following (incorrect!) classical picture of 

the electron intrinsic spin. Take the electrical energy 
of the electron to be equal to its mass energy concen-
trated into a spherical shell of radius R:

  
e 

2

4pP 0R
! mc 

2

  Calculate R (called the classical electron radius). Now let 
this spherical shell rotate and calculate the tangential 
speed v along the sphere’s equator in order to obtain 
the electron intrinsic spin. Use the equation

  Angular momentum ! Iv ! I 

v
R

!
U
2

  where I  !  moment of inertia of a spherical shell  !  
2mR2/3. Is the value of v obtained in this manner 
consistent with the theory of relativity? Explain.

 45. As in the previous problem, we want to calculate the 
speed of the rotating electron. Now let’s assume that 
the diameter of the electron is equal to the Compton 
wavelength of an electron. Calculate v and comment 
on the result.

 46. Consider a hydrogen-like atom such as He# or Li## 
that has a single electron outside a nucleus of charge 
#Ze. (a) Rewrite the Schrödinger equation with the 
new Coulomb potential. (b) What change does this new 
potential have on the separation of variables? (c) Will 
the radial wave functions be affected? Explain. (d) Will 
the spherical harmonics be affected? Explain.

 47. For the preceding problem fi nd the wave function 
c100.
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 48. Consider a hydrogen atom in the 3p state. (a) At what 
radius is the electron probability equal to zero? (b) At 
what radius will the electron probability be a maxi-
mum? (c) For m/  !  1, at what angles ! will the 
electron probability be equal to zero? What about for 
m/  !  "1?

 49. Consider a “muonic atom,” which consists of a proton 
and a negative muon, symbol &". Compute the 
ground-state energy following the methods used for 
the hydrogen atom.

 50. The lifetime of the excited component of the n  !  1 
state (parallel spins) that produces the 21-cm line 
transition in stellar hydrogen is approximately 107 
years. What is the energy line width of this state?

 51. One way to establish which transitions are forbidden 
is to compute the expectation value of the electron’s 
position vector r using wave functions for both the 
initial and fi nal states in the transition. That is, 
compute

  &c*
f r  cidt

  where &d' represents an integral over all space, and $f 
and $i are the fi nal and initial states. If the value of the 

integral is zero, then the transition is forbidden. Use 
this procedure to show that a transition from one /  !  0 
state to another /  !  0 state is forbidden. (Transitions 
considered this way are sometimes called electric dipole 
transitions, because the electric dipole moment p ! qr  
is proportional to r.) (Hint: It is helpful to break the 
vector r into its Cartesian components x, y, and z.)

 52. Use the same method as in the preceding problem to 
show that a transition from a / ! 2,m/ ! 0 state to a 
/  !  0 state is forbidden.

 53. Use the same method as in the two preceding prob-
lems to argue that a transition from a / ! 1,m/ ! 0 to 
a /  !  0 state should be allowed.

 54. For the 3d state of hydrogen, at what radius is the 
electron probability a maximum? Compare your an-
swer with the radius of the Bohr orbit for n  !  3.

 55. (a) Find the average orbital radius for the electron in 
the 3p state of hydrogen. Compare your answer with 
the radius of the Bohr orbit for n  !  3. (b) What is the 
probability that this electron is outside the radius 
given by the Bohr model?
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C H A P T E R

8 Atomic Physics

What distinguished Mendeleev was not only genius, but a passion for 
the elements. They became his personal friends; he knew every quirk 
and detail of their behavior.

J. Bronowski

For me too, the periodic table was a passion. . . . As a boy, I stood in 
front of the [Science Museum, London] display for hours, thinking how 
wonderful it was that each of these metal foils and jars of gas had its 
own distinct personality.

Freeman Dyson

We began our study of atomic physics in Chapter 7 with a study of the hydro-
gen atom. Now we examine more complex atoms with multiple electrons. Physi-
cists and chemists have been studying the properties of the elements for centu-
ries. We know much about atomic sizes, chemical behavior, ionization energies, 
magnetic moments, and spectroscopic properties, including x-ray spectra. In 
1869 the Russian chemist Dmitri Mendeleev arranged the just over 60 known ele-
ments into a periodic table that systematized many of their chemical properties. 
His table generally had the elements arranged in order of atomic weight. When 
he put the elements in rows, a definite pattern appeared, but only if he 
left vacancies. Based on his systematization of elements known at the time, 
Mendeleev was able to predict several hitherto unknown elements. His result was 
initially looked on with some skepticism, but after the discovery of three of the 
predicted elements, gallium (in 1875), scandium (1879), and germanium 
(1886), the value of Mendeleev’s periodic table was widely accepted. The eluci-
dation of the underlying physical basis of his (empirical) periodic table became 
one of the outstanding goals of science. This goal was finally attained by the end 
of the 1920s and was one of the significant achievements of quantum mechanics. 
We shall also discover how even a qualitative understanding of atomic structure 
allows us to explain some of the physical and chemical properties of the 
elements.

Dmitri Ivanovich Men-
deleev (1834– 1907), born the 
14th child of an educated family 
in Siberia, entered the University 
of St. Petersburg (Russia) at age 
16, where he eventually earned 
his doctorate. He remained a 
chemist at St. Petersburg for 
most of his life and announced 
his periodic table there in 1869. 
He successfully predicted the 
properties of several elements 
that were eventually discovered: 
gallium (1875), scandium (1879), 
and germanium (1886).
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   8.1 Atomic Structure and the Periodic Table 273

8.1  Atomic Structure and the Periodic 
Table

We now have a good basis for understanding the hydrogen atom. How do we 
proceed to understand atoms with more than one electron? The obvious proce-
dure is to add one more electron (helium atom) to the Schrödinger equation 
and solve for the wave functions. We soon run into formidable mathematical 
problems. Not only do we now have a nucleus with charge !2e attracting two 
electrons, but we also have the interaction of the two electrons repelling one 
another. The energy levels obtained previously for the single electron in the 
hydrogen atom will be changed because of these new interactions. In general the 
problem of many-electron atoms cannot be solved exactly with the Schrödinger 
equation because of the complex potential interactions. Modern computers 
have allowed us to make great progress, and numerical calculations can be car-
ried out with great precision for various models. We will see in this section that 
we can understand many experimental results without actually computing the 
wave functions of many-electron atoms. We can learn a great deal about atoms 
by carefully applying the boundary conditions and selection rules.

In the early decades of the 1900s it was already known that atoms and mole-
cules with even numbers of electrons were more plentiful and stable than those 
with odd numbers. It was suggested that the periodic table could be explained if 
the electrons in an atom were grouped somehow in “closed shells.” Bohr updated 
his model of the atom in 1922 by proposing that groupings of 2, 8, and 18 elec-
trons corresponded to stable closed shells. At the same time, the rise of quantum 
physics was accompanied by a vast accumulation of precise atomic spectroscopic 
data for optical frequencies. Wolfgang Pauli (Nobel Prize in Physics, 1945) set out 
in the early 1920s to understand the spectroscopic data and empirical electron 
numbers. He eventually realized that the closed-shell electrons could be explained 
by having only one electron in an electron state defi ned by four quantum num-
bers. His result, called the Pauli exclusion principle, ranks as one of the most im-
portant achievements of quantum physics. He reported his result in 1925:

Pauli exclusion principle: No two electrons in an atom may have the same 
set of quantum numbers (n, /, m/, ms).

This principle has far-reaching implications. We can use it to describe in a reason-
able, precise fashion the organization of atomic electrons to form the elements. 
Pauli’s exclusion principle applies to all particles of half-integer spin, which are 
called fermions, and can be generalized to include particles in the nucleus, where 
it is crucial to nuclear structure because neutrons and protons are both fermi-
ons. You will learn more about the properties of fermions in Chapter 9.

The atomic electron structure* leading to the observed ordering of the pe-
riodic table can be understood by the application of two rules:

1.  The electrons in an atom tend to occupy the lowest energy 
levels available to them.

2.  Only one electron can be in a state with a given (complete) 
set of quantum numbers (Pauli exclusion principle).

(8.1)

Wolfgang Pauli (1900– 1958) was 
born in Austria, studied at Munich 
under Arnold Sommerfeld, and 
spent brief periods at Göttingen 
(with Max Born), Copenhagen 
(with Niels Bohr), and Hamburg 
before accepting an appointment 
at Zurich in 1925 where he re-
mained, except for brief periods 
at American universities including 
Princeton University during World 
War II. Pauli was a brilliant theo-
retical physicist who formulated 
the exclusion princi ple named af-
ter him, proposed a quantum spin 
number for the electron, and rec-
ognized the existence of the neu-
trino to explain nuclear beta de-
cay. He received the Nobel Prize in 
1945 for discovering the exclusion 
principle.
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*The use of hydrogenic quantum numbers for other atoms implies a hydrogen-like central field for 
the outer electrons of these atoms.
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274 Chapter 8 Atomic Physics

Let us apply these rules to the first few atoms in the periodic table. Hydrogen 
has quantum numbers (n, /, m/, ms) equal to (1, 0, 0, "1/2) when it is in its low-
est energy state (ground state). In the absence of a magnetic field, the ms # 1/2 
state is degenerate with the ms # $1/2 state. In neutral helium the quantum 
numbers must be different for the two electrons, so if the quantum numbers are 
(1, 0, 0, 1/2) for the first electron, those for the second electron must be (1, 0, 
0, $1/2). Direct experimental evidence shows that the two electrons in the He 
atom have their spins antialigned (spin angular momentum opposed) rather 
than aligned. This confi rms the Pauli exclusion principle. These two electrons 
form a rather stable confi guration with their spin angular momentum anti-
aligned. We speak of two electrons having the same quantum numbers n, /, m/ 
but with their spin angular momentum antialigned (ms # !1/2 and ms # $1/2) 
as being paired, and the total spin of the pair is zero.

The principal quantum number n has also been given letter codes:

  n # 1   2   3   4 p  (8.2) Letter # K  L  M  N p

Because the binding energies depend mainly on n, the electrons for a given n 
are said to be in shells. We speak of the K shell, L shell, and so on (recall from 
Chapter 4 that this was nomenclature used to describe Moseley’s x-ray results). 
The n/ descriptions are called subshells. We have 1s, 2p, 3d subshells. Both elec-
trons in the He atom are in the K shell and 1s subshell (which is a shell in itself). 
We use a superscript to denote the number of electrons in each subshell. The 
hydrogen atom description is 1s1 or 1s (the superscript 1 is sometimes omitted), 
and the helium atom is 1s2.

The next atom in the table is lithium. The K shell has no more space because 
only two electrons are allowed. The next shell is the L shell (n # 2), and the 
possible subshells are 2s and 2p. Rule 1 says the electrons will occupy the state 
with the lowest energy. Remember that semiclassically the 2s state (with zero 
angular momentum) has an orbit through the nucleus, whereas the 2p state has 
a more nearly circular orbit. An electron in the 2p subshell (Li) will experience 
a !3e nuclear charge, but the positive nuclear charge will be partially screened* 
by the two electrons in the 1s shell. The effective charge that the 2p electron sees 
(or feels) will therefore be Zeff ! !1e. The 2s electron, on the other hand, 
spends more time than a 2p electron actually passing near the nucleus; hence 
the effective charge it experiences will be Zeff % !1e. Therefore, an electron in 
the 2s subshell will experience a more attractive potential than a 2p electron and 
will thus lie lower in energy. The electronic structure of Li is 1s22s1. The third 
electron has the quantum numbers (2, 0, 0, "1/2).

How many electrons may be in each subshell in order not to violate the Pauli 
exclusion principle?

  Total

 For each m/: two values of ms 2
 For each /: (2/ ! 1) values of m/ 2(2/ ! 1)

Thus each n/ subshell can have 2(2/ ! 1) electrons. The 1s, 2s, 3s, 4s subshells 
can have only two electrons. The 2p, 3p, 4p subshells can have up to six. The 3d, 
4d, 5d subshells can have up to ten, and so on.

Electron shells

Electron subshells

*Screened” in this case means the electron will react to both the !3e nucleus charge and $2e elec-
tron charge within its own orbit.

03721_ch08_272-297.indd   27403721_ch08_272-297.indd   274 9/29/11   10:12 AM9/29/11   10:12 AM



   8.1 Atomic Structure and the Periodic Table 275

We can now describe the electronic configurations of many-electron atoms. 
Although there are effects due to internal magnetic fields, in the absence of 
external magnetic fields, the m/ and ms quantum numbers do not affect the 
atom’s total energy. Thus, the different states available within the same subshell 
are nearly degenerate. For a qualitative understanding we need only refer to n/.

The filling of electrons in an atom generally proceeds until each subshell is 
full. When a subshell has its maximum number of electrons, we say it is closed or 
filled. Electrons in outer shells with lower / values spend more time inside the 
(inner) closed shells. Classically, we understand this result, because the lower / 
values have more elliptical orbits than the higher / values. The electrons with 
higher / values are therefore more shielded from the nuclear charge !Ze, feel 
less Coulomb attraction, and lie higher in energy than those with lower / values. 
For a given n the subshells fill in the order s, p, d, f, g, . . . This shielding effect 
becomes so pronounced that the 4s subshell actually fills before the 3d subshell 
even though it has a larger n. This happens often as the higher-lying shells fill 
with electrons. Experimental evidence shows that the order of subshell filling 
given in Table 8.1 is generally correct. Some important variations from this order 
produce the rare earth lanthanides and actinides. A schematic diagram of the 
subshell energy levels is shown in Figure 8.1.

One nomenclature for identifying atoms is ZX where Z is the atomic number 
of the element (the number of protons), and X is the chemical symbol that 
identifies the element. The Z notation is superfluous because every element has 
a unique Z. For example, 8O and O stand for the same element, because oxygen 
always has Z # 8. In Chapter 12 we discuss isotopes of elements in which the mass 
number of the element varies because the number of neutrons in the nucleus is 
different. Note that in a neutral atom, the number of electrons is equal to Z.

   Subshell Total Electrons in
n O Subshell Capacity All Subshells

1 0 1s  2   2
2 0 2s  2   4
2 1 2p  6  10
3 0 3s  2  12
3 1 3p  6  18
4 0 4s  2  20
3 2 3d 10  30
4 1 4p  6  36
5 0 5s  2  38
4 2 4d 10  48
5 1 5p  6  54
6 0 6s  2  56
4 3 4f 14  70
5 2 5d 10  80
6 1 6p  6  86
7 0 7s  2  88
5 3 5f 14 102
6 2 6d 10 112

Tab le  8 .1    Order of Electron Filling 
in Atomic Subshells

Energy

n!

7p
6d
5f
7s

6p

5p

5d

4d

4s
3d
4p

3p

2p
2s

1s

3s

5s

4f
6s

Figure 8.1 Approximate energy 
ordering of the subshells for the 
outermost electron in an atom. 
This representation assumes that 
the given subshell is receiving its 
first electron and that all lower 
subshells are full and all higher 
subshells are empty.
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276 Chapter 8 Atomic Physics

Give the electron configuration and the n/ value of the last 
electrons in the subshell (called valence electrons) for the 
following atoms: 11Na, 18Ar, 20Ca, 35Br.

Strategy We can use the rules of Equation (8.1), the shell 
and subshell nomenclature, and the results just discussed 
about electron subshell ordering. We utilize the ordering 
given in Figure 8.1 and Table 8.1.

Solution 11Na: Sodium has 11 electrons, so we start filling 
them in the correct order. Two electrons go in the 1s sub-
shell, two go in the 2s subshell, and six go in the 2p subshell. 
That gives us 10 electrons in the filled 1s22s22p6 subshells, 
which is called the core because it is filled. According to the 
order of filling given in Table 8.1 and Figure 8.1, the extra 
electron must be in the 3s subshell with n # 3, / # 0. The 
electronic configuration is then 1s22s22p63s1. The chemical 
properties of Na are determined almost exclusively by the 
one extra electron outside the core. The core is rather inert 
with the orbital and intrinsic angular momenta of the elec-
trons paired to zero.

18Ar: From Table 8.1 we see that 18 electrons complete 
the 3p subshell, so the 18th and last electron has n # 3, 
/ # 1, and the electronic configuration is 1s22s22p63s23p6. 
Argon has completely closed subshells and no extra 
(valence) electrons. This is the reason argon, one of the 
inert gases, is chemically inactive.

20Ca: After Ar the next two electrons go into the 4s sub-
shell, so n # 4, / # 0, and the electronic configuration for 
calcium is 1s22s22p63s23p64s2. There is a large energy gap 
between the 3p subshell and the 4s and 3d subshells (see 
Figure 8.1). The two electrons in the 4s subshell are situated 
precariously outside the inert core of Ar and can react 
strongly with other atoms.

35Br: One more electron added to 35Br finishes the 4p 
subshell and makes the strongly inert gas krypton. The last 
electron in 35Br has n # 4 and / # 1, and the electronic 
configuration of the last few subshells is 3p64s23d104p5. Bro-
mine badly needs one more electron to complete its subshell 
and is very active chemically with a high electron affinity—
searching for that last electron to fill its 4p subshell.

 EXAMPLE 8 .1

It is now relatively easy to understand the structure of the periodic table 
shown in Figure 8.2. The ordering of electrons into subshells follows from the 
two rules of Equation (8.1). In Figure 8.2 the horizontal groupings are according 
to separate subshells. Atomic electron configurations are often denoted by only 
the last subshell, and all previous subshells are assumed to be filled. In Figure 8.2 
only the last unfilled subshell configurations are shown within the element box. 
In some cases a smooth order does not occur. For example, 40Zr has 5s24d2, that 
is, the 5s subshell is filled, but the next element, 41Nb, has the structure 5s14d 4. 
An electron has been taken from the 5s subshell and placed in the 4d subshell 
with an additional electron to make a total of four electrons in the 4d subshell. 
Several such unusual cases occur as the atomic number increases. These details 
reflect the complex electron-electron interactions in a system of many 
particles.

Let us briefly review some of the special arrangements of the periodic table. 
The vertical columns (or groups) have similar chemical and physical properties. 
This occurs because they have the same valence electron structure—that is, they 
have the same number of electrons in an / orbit and can form similar chemical 
bonds. The horizontal rows are called periods, and they correspond to filling of 
the subshells. For example, in the fourth row the 4s subshell is filled first with 2 
electrons, next the 3d subshell is filled with 10 electrons, and finally the 4p sub-
shell is filled with 6 electrons. The fourth row consists of 18 elements and the 
filling of the 4s, 3d, and 4p subshells.

In order to compare some properties of elements we show the ionization 
energies of elements in Figure 8.3 (page 278) and atomic radii in Figure 8.4 
(page 279). (The ionization energy is the energy required to remove the weakest 

Groups

Periods
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bound electron, forming a positive ion.) The electrical conductivity and resistiv-
ity also show subshell effects. Good electrical conductors need free electrons that 
are only weakly bound to their nuclei. In Chapter 10 we shall see similar patterns 
in superconducting properties. The differences according to subshells are 
remarkable.

shells Alkalis
Alkaline

Periodic Table of Elements

Transition elements

Lanthanides

Actinides
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Figure 8.2 The atomic number and element symbol are given in the top of each box. The elec-
tron configuration for each element is specified by giving the values of the principal quantum 
numbers n, the angular momentum quantum numbers / (s, p, d, or f ), and the number of elec-
trons outside closed shells. The configuration of some of the closed shells is given on the left.
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Inert Gases
The last group of the periodic table is the inert gases. They are unique in that 
they all have closed subshells. For all inert gases except helium the closed sub-
shell is a p subshell. They have no valence electrons, and the p subshell is tightly 
bound. These elements therefore are chemically inert. They do not easily form 
chemical bonds with other atoms. They have zero net spin, large ionization en-
ergy (Figure 8.3), and poor electrical conductivity. Their boiling points are quite 
low, and at room temperature they are monatomic gases, because their atoms 
interact so weakly with each other.

Alkalis
Hydrogen and the alkali metals (Li, Na, K, and so on) form Group 1 of the peri-
odic table. They have a single s electron outside an inert core. This electron can 
be easily removed, so the alkalis easily form positive ions with a charge !1e. There-
fore, we say that their valence is !1. Figure 8.3 shows that the alkali metals have the 
lowest ionization energies. The drop in ionization energies between the inert gases 
and the alkalis is precipitous. The alkali metals are relatively good electrical con-
ductors, because the valence electrons are free to move around from one atom to 
another.

Alkaline Earths
The alkaline earths are in Group 2 of the periodic table. These elements (Be, 
Mg, Ca, Sr, and so on) have two s electrons in their outer subshell, and although 
these subshells are filled, the s electrons can extend rather far from the nucleus 
and can be relatively easily removed. The alkali metals and alkaline earths have 
the largest atomic radii (Figure 8.4), because of their loosely bound s electrons. 
The ionization energies (Figure 8.3) of the alkaline earths are also low, but their 
electrical conductivity is high. The valence of these elements is !2, and they are 
rather active chemically.
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Figure 8.3 The ionization ener-
gies of the elements are shown 
versus the atomic numbers. The 
element symbols are shown for 
the peaks and valleys with the 
subshell closure in parentheses 
where appropriate. When a single 
electron is added to the p and d 
subshells, the ionization energy 
significantly decreases, indicating 
the shell effects of atomic 
structure.
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Halogens
Immediately to the left of the inert gases, Group 17 is one electron short of having 
a filled outermost subshell. These elements (F, Cl, Br, I, and so on) all have a valence 
of $1 and are chemically very active. They form strong ionic bonds (for example, 
NaCl) with the alkalis (valence !1) by gaining the electron easily given up by the 
alkali atom. In effect, a compound such as NaCl consists of Na! and Cl$ ions strongly 
bound by their mutual Coulomb interaction. The groups to the immediate left of 
the halogens have fewer electrons in the p shell. In Figure 8.4 it is apparent that the 
radii of the p subshell decrease as electrons are added. A more stable configuration 
occurs in the p subshell as it is filled, resulting in a more tightly bound atom.

Transition Metals
The three rows of elements in which the 3d, 4d, and 5d subshells are being filled 
are called the transition elements or transition metals. Their chemical properties are 
similar—primarily determined by the s electrons, rather than by the d subshell be-
ing filled. This occurs because the s electrons, with higher n values, tend to have 
greater radii than the d electrons. The filling of the 3d subshell leads to some im-
portant characteristics for elements in the middle of the period. These elements 
(for example Fe, Co, and Ni) have d-shell electrons with unpaired spins (as dic-
tated by Hund’s rules, see Section 8.2). The spins of neighboring atoms in a crystal 
lattice align themselves, producing large magnetic moments and the ferro magnetic 
properties of these elements (see Section 10.4). As the d subshell is filled, the elec-
tron spins eventually pair off, and the magnetic moments, as well as the tendency 
for neighboring atoms to align spins, are reduced.

Lanthanides
The lanthanides (58Ce to 71Lu), also called the rare earths, all have similar chemi-
cal properties. This occurs because they all have the outside 6s2 subshell com-
pleted while the smaller 4f subshell is being filled. The ionization energies 
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Figure 8.4 Atomic radii from 
“covalent” data determined from 
bond lengths in the molecules of 
chemical compounds. The small-
est radii occur when the subshells 
are filled. From Darrell D. Ebbing, 
General Chemistry, 3rd ed., Houghton 
Mifflin (1990).
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Special Topic

Rydberg Atoms

R y dberg atoms are highly excited atoms with 
their outermost electron at a high energy level, 

very near ionization. They are named after Johannes 
Rydberg, who developed the empirical relation bear-
ing his name that produces the correct wavelengths of 
the hydrogen atom [Equation (3.13)]. Rydberg atoms 
appear somewhat like hydrogen atoms because the 
highly excited electron is in such an extreme orbit 
that it stays well outside the orbits of the other elec-
trons. A Rydberg atom of atomic number Z has 
an electron far outside a positive core of charge !e 
[Z protons and (Z $ 1) electrons], just like the hydro-
gen atom. In principle any atom can become a Ryd-
berg atom.

Rydberg atoms are gigantic, as much as 100,000 
times larger than normal atoms. Despite being in such 
a highly excited energy state, they are surprisingly 
long-lived because the selection rules given in Equa-
tion (7.36) do not allow them to decay easily to lower 
energy levels (especially because of their high / val-
ues). Their lifetime can be as long as a second, which 
is over a million times the lifetime of a normal excited 
atom. On the atomic scale, these long-lived Rydberg 
atoms live almost forever.

We recall from Chapter 4 that the energy levels of 
the hydrogen atom are given by $E0/n2 and the ra-
dius is given by n2a0, where E0 # 13.6 eV and a0 # 
5.3 & 10$11 m. Rydberg atoms have been observed in 
radio astronomy measurements from outer space with 
n values near 400, but those produced in the laboratory 
are rarely larger than 100 and are more commonly 
studied near 30. Note that a Rydberg atom acting like 
hydrogen and having n # 400 would have a diameter 
of 105 & 10$10 m or 10 mm, an incredibly large atom! A 
transition from n # 401 S 400 results in a 4 & 10$7 eV 
photon emission having a wavelength near 3 m, a radio 
wave.

Rydberg atoms can be made in the laboratory by 
bombarding gaseous atoms with charged particles. A 
revolution in their study came about, however, from 
the use of tunable lasers (see Chapter 10), which al-
lows specific states to be excited by transferring a laser 
photon of precise energy to an electron. The density 
of atoms must be kept low because a collision between 
Rydberg atoms and normal atoms may quickly lead to 
de-excitation. The reason Rydberg atoms are so easily 
found (relatively speaking, of course) in interstellar 
space is because once created, a Rydberg atom has a 
poor chance of colliding with another atom.

The German physicist Johannes Stark discovered 
in 1913 the effect, named after him, that atomic spec-
tral lines are split when subjected to a strong, external 
electric field. The most dramatic, and most useful, 
property of Rydberg atoms is due to this Stark effect. 
Because of their large n values, Rydberg atoms are 
highly degenerate. Remember that two states are de-
generate when they have different quantum numbers 
but have the same energy. Many states can have the 
same high value of n but have different values of / and 
m/. In highly degenerate Rydberg atoms, the Stark ef-
fect is signifi cant because the splitting of the many 
energy levels varies linearly with the electric field as 
shown in Figure A. It requires only a weak electric 
field to either ionize or change the energy level of a 
Rydberg atom.

Electric field

Stark shift

En
er

gy

Figure A The thin black line represents the degenerate energy 
level, and the blue lines represent the maximum energy shift for a 
given electric field. Because of the large degeneracy, states may 
have many of the energies between the extremes.
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(see Figure 8.3) are similar for the lanthanides. As occurs in the 3d subshell, the 
electrons in the 4f subshell often have unpaired electrons. These unpaired elec-
trons align themselves, and because there can be so many electrons in the f 
subshell, large magnetic moments may occur. The large orbital angular momen-
tum (/ # 3) also contributes to the large ferromagnetic effects that some of the 
lanthanides have. The element holmium can have an extremely large internal 
magnetic field at low temperatures, much larger than even that of iron.

Actinides
The actinides (90Th to 103Lr) are similar to the lanthanides in that inner subshells 
are being filled while the 7s2 subshell is complete. It is difficult to obtain reliable 
chemical data for these elements, because they are all radioactive. A few actinide 
isotopes can be kept in significant quantities because they have longer half-lives. 
Examples of these are thorium-232, uranium-235, and uranium-238, which oc-
cur naturally, and neptunium-237 and plutonium-239, which are produced in 
the laboratory.

Copper and silver have the two highest electrical conductivi-
ties. Explain how the electronic configurations of copper and 
silver account for their very high electrical conductivities.

Solution We need to refer to Figure 8.2 to investigate their 
electron configurations. We see that 28Ni has the structure 
3d84s2, but 29Cu has the structure 3d104s1 and the next ele-
ment, 30Zn, has 3d104s2. Copper is unique in that one elec-
tron from the 4s subshell has changed to the 3d subshell. 
The remaining 4s electron is very weakly bound—in fact it is 
almost free.

Something similar happens to 47Ag in the next period. 
The elements on either side have completed the 4d10 sub-
shell, and for 47Ag the 5s electron is only weakly bound. The 
elements 41Nb through 45Rh have an unpaired 5s electron, 
but incomplete 4d subshells, and so less screening—their 5s 
electrons are less free to wander than that of 47Ag.

Copper and silver have one very weakly bound electron 
outside a closed subshell core. The electron is practically 
free and is able to move around easily in the metal.

 CONCEPTUAL EXAMPLE 8 .2

8.2  Total Angular Momentum
If an atom has an orbital angular momentum and a spin angular momentum 
due to one or more of its electrons, we expect that, as is true classically, these 
angular momenta combine to produce a total angular momentum. We saw previ-
ously, in Section 7.5, that an interaction between the orbital and spin angular 
momenta in one-electron atoms causes splitting of energy levels into doublets, 
even in the absence of external magnetic fields. In this section we examine how 
the orbital and spin angular momenta combine and see how this results in 
energy-level splitting.

Single-Electron Atoms
We initially discuss only atoms having a single electron outside an inert core (for 
example, the alkalis). For an atom with orbital angular momentum L and spin 
angular momentum S, the total angular momentum J is given by

 J # L ! S  (8.3) Total angular momentum

   8.2 Total Angular Momentum 281
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Because L, Lz, S, and Sz are quantized, the total angular momentum and its 
z component Jz are also quantized. If j and mj are the appropriate quantum num-
bers for the single electron we are considering, quantized values of J and Jz are, 
in analogy with the single electron of the hydrogen atom,

  J # 2j 1  j ! 1 2 U  (8.4a)

 Jz # mjU  (8.4b)

Because m/ is integral and ms is half-integral, mj will always be half-integral. Just 
as the value of m/ ranges from $/ to /, the value of mj ranges from $j to j, and 
therefore j will be half-integral.

The quantization of the magnitudes of L, S, and J are all similar.

 L # 2/1/ ! 1 2 U
 S # 2s 1s ! 1 2 U  (8.5)

 J # 2j 1  j ! 1 2 U
The total angular momentum quantum number for the single electron can only 
have the values

 j # / " s  (8.6)

which, because s # 1/2, can only be / ! 1/2 or / $ 1/2 (but j must be 1/2 if 
/ # 0). The relationships of J, L, and S are shown in Figure 8.5. For an / value 
of 1, the quantum number j is 3/2 or 1/2, depending on whether L and S are 
aligned or antialigned. The notation commonly used to describe these states is

 nLj (8.7)

where n is the principal quantum number, j is the total angular momentum 
quantum number, and L is an uppercase letter (S, P, D, and so on) representing 
the orbital angular momentum quantum number.

In Section 7.5 we briefly mentioned that the single electron of the hydrogen 
atom can feel an internal magnetic field Binternal due to the proton, because in 
the rest system of the electron, the proton appears to be circling the electron 
(see Figure 7.10). A careful examination of this effect shows that the spins of the 
electron and the orbital angular momentum interact, an effect called spin-orbit 
coupling. As usual the dipole potential energy Vs/ is equal to $ ms # Binternal. The 
spin magnetic moment is proportional to $S, and B internal is proportional to 
L, so that Vs/ " S # L # SL cos a, where a is the angle between S and L. The result 
of this effect is to make the states with j # / $ 1/2 slightly lower in energy than 
for j # / ! 1/2, because a is smaller when j # / ! 1/2. The same applies for 
the atom when placed in an external magnetic field. The same effect leads us to 
accept j and mj as better quantum numbers than m/ and ms, even for single-
electron atoms like hydrogen. We mean “better” because j and mj are more 
directly related to a physical observable. A given state having a definite energy 
can no longer be assigned a definite Lz and Sz, but it can have a definite Jz. The 
wave functions now depend on n, /, j, and mj. The spin-orbit interaction splits 
the 2P level into two states, 2P3/2 and 2P1/2, with 2P1/2 being lower in energy. 
There are additional relativistic effects, not discussed here, that give corrections 
to the spin-orbit effect.

In the absence of an external magnetic field, the total angular momentum has 
a fixed magnitude and a fixed z component. Remember that only Jz can be known; 
the uncertainty principle forbids Jx or Jy from being known at the same time as Jz. 

Spin-orbit coupling

1!
2

3!
2

1!
2

1!
2

j # ! ! s
# 1 ! 

S

S

L

L

J

J

#

#

j # ! $  s
# 1 $ 

Figure 8.5 When forming the 
total angular momentum from 
the orbital and spin angular mo-
menta, the addition must be done 
vectorially, J # L ! S. We show 
schematically the addition of L 
and S with / # 1 and s # 1/2 to 
form vectors J with quantum 
numbers j # 1/2 and 3/2.
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The vectors L and S will precess around J (see Figure 8.6a). In an external mag-
netic field, however, J will precess about Bext, while L and S still precess about J as 
shown in Figure 8.6b. The motion of L and S then becomes quite complicated.

Optical spectra are due to transitions between different energy levels. We 
have already discussed transitions for the hydrogen atom in Section 7.6 and gave 
the rules listed in Equation (7.36). For single-electron atoms, we now add the 
selection rules for 'j. The restriction of '/ # "1 will require 'j # "1 or 0. The 
allowed transitions for a single-electron atom are

  ¢n # anything   ¢/ # "1 
(8.8)

  ¢mj # 0, "1   ¢j # 0, "1

The selection rule for 'mj follows from our results for 'm/ in Equation (7.36) 
and from the result that mj # m/ ! ms, where ms is not affected.

Figure 7.11 presented an energy-level diagram for hydrogen showing many 
possible transitions. Figure 8.7 is a highly exaggerated portion of the hydrogen 
energy-level diagram for n # 2 and n # 3 levels showing the spin-orbit splitting. 
All of the states (except for the s states) are split into doublets. What appeared 

Single-electron atom 
allowed transitions

(a) (b)

J 

L 
S

J # L ! S

L 

S

BextBext

z

mj(

Figure 8.6 (a) The vectors L 
and S precess around J. The total 
angular momentum J can have 
a fixed value in only one direc-
tion in space—not shown in this 
figure. (b) However, with an 
external magnetic field Bext along 
the z axis, J will precess around 
the z direction ( Jz is fixed), and 
both L and S precess around J. We 
have shown the case where L and 
S are aligned.

Figure 8.7 (a) The unper-
turbed Ha line is shown due to a 
transition between the n # 3 and 
n # 2 shells of the hydrogen 
atom. (b) The more detailed level 
structure (not to scale) of the hy-
drogen atom leads to optical fine 
structure. The spin-orbit interac-
tion splits each of the / ! 0 states.(a) (b)

Unperturbed

n#3

n#2

Energy Ha

3D5/23P3/2

3D3/2

2P3/2
2P1/22S1/2

3P1/2

3S1/2

Fine structure
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in Figure 7.11 to be one transition is now actually seven different transitions. The 
splitting is quite small, but measurable—typically on the order of 10$5 eV in 
hydrogen. For example, the splitting between the 2P3/2 and 2P1/2 levels has been 
found to be 4.5 & 10$5 eV.

We show in Figure 8.8 the energy levels of a single-electron atom, sodium, 
compared with those of hydrogen. The single electron in sodium is 3s1, and the 
energy levels of sodium should be similar to those of n # 3 and above for hydro-
gen. However, the strong attraction of the electrons with small / values causes 
those energy levels to be considerably lower than for higher /. Notice in Figure 
8.8 that the 5f and 6f energy levels of sodium closely approach the hydrogen 
energy levels, but the 3s energy level of sodium is considerably lower. The transi-
tions between the energy levels of sodium displayed in Figure 8.8 are consistent 
with the selection rules of Equation (8.8).

The fine splitting of the levels for different j is too small to be seen in Figure 
8.8. Nevertheless these splittings are important, and they are easily detected in 
the optical spectrum of sodium. The energy levels 3P3/2 and 3P1/2 are separated 
by 2.1 & 10$3 eV, for example. This splits the 3p S 3s ("2.1 eV) optical line into 
a doublet: the famous yellow sodium doublet, with l # 589.0 nm and 589.6 nm 
(see also Example 8.8).

Energy
(eV)

0

$1

$2

2

$3

3 3

3

$4

$5
$5.12 3

4

4

4 4
5

5

5
6

6
6

5
6

4

5
6

s p d f

Sodium levels
Hydrogen

levels

Figure 8.8 The energy-level di-
agram of sodium (a single elec-
tron outside an inert core) is 
compared to that of hydrogen. 
Coulomb effects cause the lower / 
states of sodium to be lower than 
the corresponding levels of hy-
drogen. Several allowed transi-
tions are shown for sodium.
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Many-Electron Atoms
The interaction of the various spins and angular momenta becomes formidable 
for more than two electrons outside an inert core. Various empirical rules help 
in applying the quantization results to such atoms. The best-known rule set is 
called Hund’s rules, introduced in 1925 by the German physicist Friedrich Hund 
(1896– 1997), who is known mainly for his work on the electronic structure of 
atoms and molecules. We consider here the case of two electrons outside a 
closed shell (for example, helium and the alkaline earths).*

The order in which a given subshell is filled is governed by Hund’s rules:

Rule 1.  The total spin angular momentum S should be maximized to the 
extent possible without violating the Pauli exclusion principle.

Rule 2.  Insofar as rule 1 is not violated, L should also be maximized.
Rule 3.  For atoms having subshells less than half full, J should be minimized.

For example, the first five electrons to occupy a d subshell should all have the 
same value of ms. This requires that each one has a different m/ (because the al-
lowed m/ values are $2, $1, 0, 1, 2). By rule 2 the first two electrons to occupy a 
d subshell should have m/ # 2 and m/ # 1 or m/ # $2 and m/ # $1.

Besides the spin-orbit interaction already discussed, there are now spin-spin 
and orbital-orbital interactions. There are also effects due to the spin of the 
nucleus that lead to hyperfine structure (see Special Topic “Hydrogen and the 
21-cm Line Transition” in Chapter 7), but the nuclear effects are much smaller 
than the ones we are currently considering. For the two-electron atom, we label 
the electrons 1 and 2 so that we have L1, S1 and L2, S2. The total angular momen-
tum J is the vector sum of the four angular momenta:

 J # L1 ! L 2 ! S1 ! S 2 (8.9)

There are two schemes, called LS coupling and j j coupling, for combining the 
four angular momenta to form J. We shall discuss these next. The decision of 

Hund’s rules

Show that an energy difference of 2 & 10$3 eV for the 3p 
subshell of sodium accounts for the 0.6-nm splitting of a 
spectral line at 589.3 nm.

Strategy The wavelength l of a photon is related to the 
energy of a transition by

 E #
hc
l

For a small splitting, we approximate 'E by using a 
dif ferential:

 dE #
$hc
l2  dl

Then, letting 'E # dE and 'l # dl and taking absolute 
values yields

 0¢E 0 # hc
l2 0¢l 0   or  0¢l 0 # l2

hc
 0¢E 0

Solution We insert the values of l, 'E, and hc to obtain

 0¢l 0 # 1589.3 nm 22 12 & 10$3 eV 2
1.240 & 103 eV # nm

# 0.6 nm

The value of 0.6 nm agrees with the experimental measure-
ment for sodium.

 EXAMPLE 8 .3

*See H. G. Kuhn, Atomic Spectra, 2nd ed., New York: Academic Press (1969), or H. E. White, Introduc-
tion to Atomic Spectra, New York: McGraw-Hill (1934) for further study.
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286 Chapter 8 Atomic Physics

which scheme to use depends on relative strengths of the various interactions. 
We shall see that jj coupling predominates for heavier elements.

LS Coupling
The LS coupling scheme, also called Russell-Saunders coupling, is used for most 
atoms when the magnetic field is weak. The orbital angular momenta L1 and L2 
combine to form a total orbital angular momentum L and similarly for S :

  L # L1 ! L 2 (8.10)

  S # S1 ! S 2 (8.11)

Then L and S combine to form the total angular momentum:

 J # L ! S  (8.12)

One of Hund’s rules states that the electron spins combine to make S a maxi-
mum. Physically, this occurs because of the mutual repulsion of the electrons, 
which want to be as far away from each other as possible to have the lowest en-
ergy. If two electrons in the same subshell have the same ms, they must then have 
different m/, normally indicating different spatial distributions. Similarly, the 
lowest energy states normally occur with a maximum L. We can understand this 
physically, because the electrons would revolve around the nucleus in the same 
direction if aligned, thus staying as far apart as possible. If L1 and L2 were anti-
aligned, the electrons would pass each other more often and therefore would 
tend to have a higher interaction energy.

For the case of two electrons in a single subshell, the total spin angular mo-
mentum quantum number* may be S # 0 or 1 depending on whether the spins 
are antiparallel or parallel. For a given value of L, there are 2S ! 1 values of J, 
because J goes from L $ S to L ! S (for L % S ). For L ) S there are fewer than 
2S ! 1 possible values of J (see Examples 8.4, 8.5, and 8.7). The value of 2S ! 1 
is called the multiplicity of the state.

The notation nLj discussed before for a single-electron atom becomes

 n2S!1LJ  (8.13)

The letters and numbers used in this notation are called spectroscopic or term sym-
bols. For two electrons we have singlet states (S # 0) and triplet states (S # 1), 
which refer to the multiplicity 2S ! 1. Recall that a single-electron state (with 
s # 1/2) is a doublet, with 2s ! 1 # 2.

Consider two electrons: One is in the 4p and one is in the 4d subshell. For 
the atomic states shown in Table 8.2, we have the following possibilities: S1 # 1/2, 
S2 # 1/2, L1 # 1, and L2 # 2. A schematic diagram showing the relative energies 
of these states appears in Figure 8.9. The spin-spin interaction breaks the unper-
turbed state into the singlet and triplet states. The Coulomb effect, due to the 
electrons, orders the highest L value for each of these states to be lowest in en-
ergy. Finally, the spin-orbit splitting causes the lowest J value to be lowest in en-
ergy (L and S antialigned).

Multiplicity

Spectroscopic symbols

*It is customary to use capital letters L, S, and J for the angular momentum quantum numbers of 
many-electron atoms. This can lead to confusion, because we are accustomed to thinking, for ex-
ample, S # # S  #. To avoid confusion, remember that the magnitude of an angular momentum vector 
is always some number times U, but the new angular momentum quantum numbers, L, S, and J are 
simply integers or half-integers.
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As an example of the optical spectra obtained from two-electron atoms, we 
consider the energy-level diagram of magnesium in Figure 8.10 (page 288). The 
most obvious characteristic of this figure is that we have separated the energy 
levels according to whether they are S # 0 or S # 1. This is because allowed transi-
tions must have 'S # 0, and no allowed transitions are possible between singlet 
and triplet states. This does not mean that it is impossible for such transitions to 
occur. Transitions that are not allowed, called forbidden transitions, occur, but 
with much lower probability than allowed transitions.

   Spectroscopic
S L J Symbol

 1 1 41P1

0 (singlet) 2 2 41D2

 3 3 41F3

  2 43P2

1 (triplet) 1 1 43P1

  0 43P0

  3 43D3

1 (triplet) 2 2 43D2

  1 43D1

  4 43F4

1 (triplet) 3 3 43F3

  2 43F2

Tab le  8 .2    Spectroscopic Symbols for Two 
Electrons: One in 4p and One in 4d

4p

Unperturbed!
state

Spin-spin!
correlation!

energy
! Spin-orbit!

energy!Residual!
electrostatic!

energy
!

4d

S # 1
(Triplets)

S # 0

1P

1D

1F

1P1

3P0,1,2

3D1,2,3

3F2,3,4

1
0

2

1
2
3

2
3

4

1D2

1F3

3P

3D

3F

(Singlets)

Figure 8.9 Schematic diagram indicating the increasing fine-structure splitting due to different 
effects. This case is for an atom having two valence electrons, one in the 4p and the other in the 4d 
state. The energy is not to scale. From R. B. Leighton, Principles of Modern Physics, New York: McGraw-
Hill (1959), p. 261. Used with permission.
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The two electrons in magnesium outside the closed 2p subshell are 3s2. 
Therefore, the ground state of magnesium is 31S0 (S # 0, L # 0, and J # 0). The 
33S1 state (S # 1, J # 1) cannot exist because ms # 1/2 for both electrons in order 
to have S # 1, and this is forbidden by the exclusion principle. A 3S1 state is al-
lowed if one of the electrons is in a higher n shell. The energy-level diagram of 
Figure 8.10 is generated by one electron remaining in the 3s subshell while the 
other electron is promoted to the subshell indicated on the diagram. The al-
lowed transitions (for the LS coupling scheme) are

  ¢L # " 1      ¢S # 0

  ¢J # 0, " 1    1   J # 0 S J # 0 is forbidden 2  (8.14)

A magnesium atom excited to the 3s3p triplet state has no lower triplet state 
to which it can decay. The only state lower in energy is the 3s2 ground state, 
which is singlet. Such an excited triplet state may exist for a relatively long time 

Figure 8.10 Energy-level dia-
gram for magnesium (two-
electron atom) with one electron 
in the 3s subshell and the other 
electron excited into the n/ sub-
shell indicated. The singlet and 
triplet states are separated, be-
cause transitions between them 
are not allowed by the 'S # 0 se-
lection rule. Several allowed tran-
sitions are indicated.

Energy

Singlets

3sns

1S0
1P1

1D2
1F3

3snp 3snd 3snf 3sns

3S1
3P0,1,2

3D1,2,3
3F2,3,4

3snp 3snd 3snf

Triplets

Term symbol

Electron configuration

(eV) Continuum Continuum

0

$1

$2

$3

$4

$5

$6

$7

$7.64 3s

3p

3p

4s
4s

5s
5s

5p 5p

4p
4p

4d 4d

3d
3d

5d 5d5f

4f
5f

4f
6s 6s

7s
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(W10$8 s) before it finally decays to the ground state as a forbidden transition. 
Such a 3s3p triplet state is called metastable, because it lives for such a long time 
on the atomic scale.

j j Coupling
This coupling scheme predominates for the heavier elements, where the nuclear 
charge causes the spin-orbit interactions to be as strong as the forces between 
the individual Si and the individual Li. The coupling order becomes

 J1 # L1 ! S1 (8.15a)

 J2 # L 2 ! S 2 (8.15b)

and then

 J # a
i

Ji (8.16)

The spectroscopic or term notation is also used to describe the final states in this 
coupling scheme.

Metastable states

What are the total angular momentum and the spectro-
scopic notation for the ground state of helium?

Solution The two electrons for helium are both 1s elec-
trons. Because helium is a light atom, we use the LS cou-

pling scheme. We have L1 # 0 and L2 # 0, and therefore 
L # 0. We can have S # 0 or 1 for two electrons, but not in 
the same subshell. The spins must be antialigned and S # 0. 
Therefore J # 0 also. We can write the ground-state spectro-
scopic symbol for helium as 11S0.

 CONCEPTUAL EXAMPLE 8 .4

Consider two electrons in an atom with orbital quantum 
numbers /1 # 1 and /2 # 2. Use LS coupling and find all 
possible values for the total angular momentum quantum 
numbers for J.

Strategy We first find all the ways LI and L2 combine to 
form the total orbital angular momentum L. We find all the 
possible vectors for the spin angular momentum S, which 
will be S # 0 or 1, because the two electrons can only be 
aligned or antialigned, and s # 1/2. Then we add L and S to 
find the quantum numbers for J.

Solution The total orbital angular momentum quan tum 
number ranges from 0/1 $ /2 0  to 0/1 ! /2 0 , so we have values 
of L that are 1, 2, and 3. We show the vectors for L in Figure 
8.11a (page 290). We also show in Figure 8.11b how S1 and 
S2 form to have S values of 0 and 1. Now J # L ! S and the 
range of quantum numbers for J range from 0L $ S 0  to 0L ! S 0 , so we have values of J # 0, 1, 2, 3, 4.

 EXAMPLE 8 .5
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L1

L

L # 1

L2

L

L2

L1

L # 3

L

L2

L1

L # 2
(a)

S
S2

S1

S # 1
(b)

S2

S # 0

S1

Figure 8.11 (a) Two electrons having orbital angular momentum quantum numbers of 1 and 2 
combine to form L values of 1, 2, 3. (b) Two electrons having spin angular quantum numbers of 
1/2 and $1/2 form S values of 0 and 1.

What are the L, S, and J values for the first few excited states 
of helium?

Strategy The lowest excited states of helium must be 
1s12s1 or 1s12p1—that is, one electron is promoted to either 
the 2s1 or 2p1 subshell. It turns out that all excited states of 

helium are single-electron states, because to excite both 
electrons requires more than the ionization energy. We 
expect the excited states of 1s12s1 to be lower than those of 
1s12p1, because the subshell 2s1 is lower in energy than the 
2p1 subshell.

 EXAMPLE 8 .7

Figure 8.12 S and L are antialigned and form J # L ! S. Both S 
and L precess about J, while J precesses about the z axis.

Consider the values L # 3 and S # 1 in Example 8.5, and 
choose the minimum value of J. Draw the coupling of the 
vectors for the case of no magnetic field. Show the preces-
sion of the vectors.

Strategy We showed in Figure 8.6a how the vectors com-
bine in LS coupling. In this case we have the situation in 
which L and S are antialigned, because we are considering 
only the minimum value of J.

Solution We are using the situation in Example 8.5 where 
L1 and L2 are aligned to form the maximum value of L, and 
S1 and S2 are aligned to form the maximum value of S. But 
the value of J is a minimum. The vectors L and S both pre-
cess about J. The vector J precesses around the z axis; only 
the component Jz is fixed in space. We show the result in 
Figure 8.12.

 EXAMPLE 8 .6

J 
L 

S

z
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Solution The possibilities are

 1s12s1    L # 0

 If S # 0, then J # 0

 If S # 1, then J # 1

with S # 1 being lowest in energy. The lowest excited state 
is 3S1 and then comes 1S0.

 1s12p1    L # 1

 If S # 0, then J # 1

 If S # 1, then J # 0, 1, 2

The state 3P0 has the lowest energy of these states, followed 
by 3P1, 3P2, and 1P1. The energy-level diagram for helium is 
shown in Figure 8.13.

Figure 8.13 The low-lying atomic states of helium are shown. 
The ground state (1S0) is some 20 eV below the grouping of the 
lowest excited states. The level indicated by 3P0,1,2 is actually three 
states (3P0, 3P1, 3P2), but the separations are too small to be 
indicated.

Energy
Singlet

(Ground state)

1s3s 31S0

(1s)2 11S0

21P1 23P0,1,2

23S1

21S0

33S1

1s2s
1s2p

Triplet(eV)
0

$1

$2

$3

$4

$5

$23

$24

$25

If the spin-orbit splitting of the 3P3/2 and 3P1/2 states of so-
dium is 0.0021 eV, what is the internal magnetic field caus-
ing the splitting?

Strategy The potential energy due to the spin magnetic 
moment is

 V # $ ms # B  (8.17)

By analogy with Equations (7.34), the z component of the 
total magnetic moment is

 mz # $gz a e U
2m
b Jz

U  (8.18)

where we have used the gyromagnetic ratio gs # 2, because 
this splitting is actually due to spin. We associate the energy 
splitting, denoted 'E, with the potential energy, 'E # V. We 
determine the value of mz in Equation (8.18) and insert this 

into Equation (8.17) to find B, because we are given the 
energy splitting 'E.

Solution The difference in spins between the 3P3/2 and 
3P1/2 states is U so that

 ¢E # gs a e U
2m
b U

U B #
e U
m

B

Then

  B #
m ¢E
e U #

19.11 & 10$31 kg 2  10.0021 eV 211.6 & 10$19 C 2  16.58 & 10$16 eV # s 2
  # 18 T

This is a large magnetic field, as internal magnetic fi elds 
often are.

 EXAMPLE 8 .8

What are the possible energy states for atomic carbon?

Strategy The element carbon has two 2p subshell elec-
trons outside the closed 2s2 subshell. Both electrons have 

/ # 1, so we have L # 0, 1, or 2 using the LS coup ling 
scheme. The spin angular momentum is S # 0 or 1.

 EXAMPLE 8 .9
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8.3  Anomalous Zeeman Effect
In Section 7.4 we discussed the normal Zeeman effect and showed that the 
splitting of an optical spectral line into three components in the presence of 
an external magnetic field could be understood by considering the interaction 
(m/ # Bext) of the orbital angular momentum magnetic moment m/ and the exter-
nal magnetic field. Soon after the discovery of this effect by Zeeman in 1896, it 
was found that often more than three closely spaced optical lines were observed. 
This observation was called the anomalous Zeeman effect. We are now able to 
explain both Zeeman effects. We shall see that the anomalous effect depends on 
the effects of electron intrinsic spin.

The interaction that splits the energy levels in an external magnetic field Bext is 
caused by the m # B interaction. However, the magnetic moment is due not only to 
the orbital contribution m/; it also depends on the spin magnetic moment ms. The 
2J ! 1 degeneracy (due to mJ) for a given total angular momentum state J is re-
moved by the effect of the external magnetic field. If the external field Bext is small 
in comparison with the internal magnetic field (say Bext ) 0.1 T), then L and S (us-
ing the LS coupling scheme) precess about J, whereas J precesses slowly about Bext.

We can see this more easily by calculating m in terms of L, S, and J. The total 
magnetic moment m is

  m # m/ ! ms  (8.19)

  # $ 

e
2m

L $
e
mS  (8.20)

where m/  is obtained from Equation (7.26) and ms  from Section 7.5.

 m # $ 

e
2m

  1L ! 2S 2 # $ 

e
2m

  1   J ! S 2  (8.21)

The vectors $m and J are along the same direction only when S # 0. We show 
schematically in Figure 8.14 what is happening. The vector Bext defines the z di-
rection. We plot $m instead of !m to emphasize the relationship between m and 
J. In a weak magnetic field the precession of m around J is much faster than the 

We list the possible states:

    Spectroscopic
 S L J Notation

 0 0 0 1S0

  1 1 1P1 Not allowed
  2 2 1D2

 1 0 1 3S1 Not allowed
  1 0, 1, 2 3P0, 1, 2

  2 1, 2, 3 3D1, 2, 3 Not allowed

Solution The 3S1 state is not allowed by the Pauli exclusion 
principle, because both electrons in the 2p2 subshell would 
have ms # !1/2 and m/ # 0. Similarly, the 3D1, 2, 3 states are 
not allowed, because both electrons would have ms # !1/2 
and m/ # 1. According to Hund’s rules, the triplet states S
 # 1 will be lowest in energy, so the ground state will be one 
of the 3P0,1,2 states. The spin-orbit interaction then indicates 

the 3P0 state to be the ground state; the others are excited 
states.

The fact that the 1P1 state is not allowed is a result of the 
antisymmetrization of the wave function, which we will dis-
cuss in Chapter 9. This rule, which requires electrons to have 
antisymmetric wave functions, is basically an extension of the 
Pauli exclusion principle for this example, and it allows the 
states in which the m/ of the two electrons are equal to com-
bine only with S # 0 states. The m/ values for the electrons 
forming the S # 1 state must be unequal. This rule is the 
theoretical basis for Hund’s rules, described previously. It 
precludes the 1P, 3S, and 3D states from existing for 2p2 elec-
trons. The states with one electron having m/ # 1, ms # $1/2 
and the other having m/ # 0, ms # $1/2 still exist, but they 
can be included in the 1D2 state, for example, because ms # 0 
and m/ # 2, 1, 0, $1, $2.

The low-lying excited states of carbon are then 3P1, 3P2, 
1D2, and 1S0.
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   8.3 Anomalous Zeeman Effect 293

precession of J around Bext. Therefore, we first find the average mav about J and 
then find the interaction energy of mav with Bext. We leave this as an exercise for 
the student (see Problem 31). The result is

 V #
e UBext

2m
 g mJ # mBBext 

g mJ  (8.22)

where mB is the Bohr magneton and

 g # 1 !
J 1   J ! 1 2 ! S 1S ! 1 2 $ L 1L ! 1 2

2J 1   J ! 1 2  (8.23)

is a dimensionless number called the Landé g factor. The magnetic total angular 
momentum numbers mJ range from $J to J in integral steps. The external field 
Bext splits each state J into 2J ! 1 equally spaced levels separated by 'E # V, with 
V determined in Equation (8.22), each level being described by a different mJ.

In addition to the previous selection rules [Equation (8.14)] for photon 
transitions between energy levels, we must now add one for mJ :

 ¢mJ # "1, 0 (8.24)

but mJ1
# 0 S mJ2

# 0 is forbidden when 'J # 0.

Whole system!
precesses slowly!
around Bext

m precesses!
fast around J

($m)

Bext

z

L

S
J

J ! S

S

Figure 8.14 Relationships be-
tween S, L, J, and m are indicated. 
The vector Bext is in the z direc-
tion. The magnetic moment m 
precesses fast around J as J pre-
cesses more slowly around the 
weak Bext. After J. D. McGervey, Intro-
duction to Modern Physics, New 
York: Academic Press (1983), p. 329.

Show that the normal Zeeman effect should be observed for 
transitions between the 1D2 and 1P1 states.

Strategy Because 2S ! 1 # 1 for both states, then S # 0 
and J # L. The g factor from Equation (8.23) is equal to 1 (as 
it will always be for S # 0). The 1D2 state splits into five equally 
spaced levels, and the 1P1 state splits into three (see Figure 
8.15). We use the selection rules from Equations (8.14) and 
(8.24) to determine which transitions are allowed.

Solution We start with every level in the 1D2 state and deter-
mine using the selection rules which transitions to levels in 
the 1P1 state are allowed. We show in Figure 8.15 that there 
are only nine allowed transitions. The other transitions are 
disallowed by the selection rule for 'mJ. Even though there 
are nine different transitions, there are only three different 
energies for emitted or absorbed photons, because transition 
energies labeled 1, 3, 6 are identical, as are 2, 5, 8, and also 4, 
7, 9. Thus the three equally spaced transi tions of the normal 
Zeeman effect are observed whenever S # 0.

 CONCEPTUAL EXAMPLE 8 .10

Bext

mJ

!2

!1
1D2

e (
#

1P1

'E

'E

0

$1

!1

1 2 3 4 5 6 7 8 9

0

$1

$2

Energy

2m

Figure 8.15 Examples of transitions for the normal Zeeman ef-
fect. The nine possible transitions are labeled, but there are only 
three distinctly different energies because the split energy levels 
are equally spaced ('E ) for both the 1D2 and 1P1 states.
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The anomalous Zeeman effect is a direct result of intrinsic spin. Let us con-
sider transitions between the 2P and 2S states of sodium as shown in Figure 8.16. 
In a completely unperturbed state the 2P3/2 and 2P1/2 states are degenerate. How-
ever, the internal spin-orbit interaction splits them, with 2P1/2 being lower in en-
ergy. The 2S1/2 state is not split by the spin-orbit interaction because / # L # 0.

When sodium is placed in an external magnetic field, all three states are split 
into 2J ! 1 levels with different mJ (see Figure 8.16). The appropriate Landé g 
factors are

 2S1/2     g # 1 !
1
2 112 ! 1 2 ! 1

2 112 ! 1 2
2 # 1

2 112 ! 1 2 # 2
 

 2P1/2     g # 1 !
1
2 112 ! 1 2 ! 1

2 112 ! 1 2 $ 111 ! 1 2
2 # 1

2 112 ! 1 2 # 0.67

 2P3/2     g # 1 !
3
2 132 ! 1 2 ! 1

2 112 ! 1 2 $ 111 ! 1 2
2 # 3

2 132 ! 1 2 # 1.33

All g factors are different, and the energy-splitting 'E calculated using Equation 
(8.22) for the three states are different. The allowed transitions using the selec-
tion rules are shown in Figure 8.16. There are four different energy transitions 
for 2P1/2 S 2S1/2 and six different energy transitions for 2P3/2 S 2S1/2.

If the external magnetic field is increased, then L and S precess too rapidly 
about Bext and our averaging procedure for m around Bext breaks down. In that 
case, the equations developed in this section are incorrect. This occurrence, 
called the Paschen-Back effect, must be analyzed differently. We will not pursue 
this calculation further.*

*See H. E. White, Introduction to Atomic Spectra, New York: McGraw-Hill (1934) for more information.

Bext

mJ

2P

2P3/2

2P1/2

2S1/22S

Energy

Unperturbed
states

Bext ! 0

With With
spin-orbit
interaction

Bext ! 0

3
2"

"

#

#

1
2
1
2
3
2

"
1
2

"
1
2

#
1
2

#
1
2

Figure 8.16 Schematic diagram 
of anomalous Zeeman effect for 
sodium (energy levels not to 
scale). With Bext # 0 for the un-
perturbed states, there is only one 
transition. With the spin-orbit in-
teraction splitting the 2P state 
into two states, there are two pos-
sible transitions when Bext # 0. Fi-
nally, Bext splits J into 2J ! 1 com-
ponents, each with a different mJ. 
The energy splitting 'E for each 
major state is different because 
'E # gmJ (e U2m)Bext and the 
Landé g factor for g['E(2S1/2)] % 
g['E(2P3/2)] % g['E(2P1/2)]. All 
allowed transitions are shown.
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The Pauli exclusion principle states that no two electrons in 
an atom may have the same set of quantum numbers (n, /, 
m/, ms). Because electrons normally occupy the lowest en-
ergy state available, the Pauli exclusion principle may be 
used to produce the periodic table and understand many 
properties of the elements.

The total angular momentum J is the vector sum of L 
and S, J # L ! S. The coupling of S and L, called the spin-
orbit interaction, leads to lower energies for smaller values 
of J. For two or more electrons in an atom we can couple the 
Li and Si of the valence electrons by either LS or jj coupling. 
The spectroscopic notation for an atomic state is n2S!1LJ.

The allowed transitions now have

 ¢L # "1 ¢S # 0 
(8.14)

  ¢J # 0, "1  1   J # 0 S J # 0 is forbidden 2
The anomalous Zeeman effect is explained by the removal of 
the 2J ! 1 degeneracy when an atom is placed in a weak 
magnetic field. Each state has a different mJ, which has the 
selection rule for transitions of 'mJ # "1, 0 (with excep-
tions). The normal Zeeman effect (three spectral lines) oc-
curs when S # 0.

S u m m a r y

Q u e s t i o n s

P r o b l e m s

 1. Explain in terms of the electron shell confi guration 
why it is dangerous to throw sodium into water.

 2. Why are the inert gases in gaseous form at room tem-
perature? Why doesn’t helium at atmospheric pres-
sure form a solid at any temperature?

 3. Which groups of elements have the best and which 
the poorest electrical conductivities? Explain.

 4. Why are the elements with good electrical conductivi-
ties also generally good thermal conductors?

 5. Boron, carbon, and aluminum are not part of the al-
kalis or alkaline earths, yet they are generally good 
electrical conductors. Explain.

 6. The alkali metals have the lowest ionization energies 
(Figure 8.3), yet they have the largest atomic radii 
(Figure 8.4). Is this consistent? Explain.

 7. Refer to Figure 8.3 and explain why there are signifi -
cant decreases in ionization energy between some 
adjacent elements, such as argon and potassium. Why 

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

8.1 Atomic Structure and the Periodic Table
 1. A lithium atom has three electrons. Allow the elec-

trons to interact with each other and the nucleus. 
Label each electron’s spin and angular momentum. 
List all the possible interactions.

is the drop from argon to potassium much larger than 
the drop from zinc to gallium?

 8. List four compounds that you believe should be 
strongly bound. Explain why.

 9. Explain why the transition metals have good thermal 
and electrical conductivities.

 10. Why do the alkaline earths have low resistivities?
 11. Why is there no spin-orbit splitting for the ground 

state of hydrogen?
 12. Is it possible for both atoms in a hydrogen molecule 

to be in the (1, 0, 0, $1/2) state? Explain.
 13. Discuss in your own words the differences between L 

and /, between m/ and ms, and between Jz and mj.
 14. Why do Rydberg atoms live so long? (Hint: Consider 

the selection rules and the values of their quantum 
numbers.)

 15. Discuss whether the atomic state represented by 32D7/2 
exists, and give reasons.

 2. For all the elements through neon, list the electron 
descriptions in their ground state using n/ notation 
(for example, helium is 1s2).

 3. How many subshells are in the following shells: L, N, 
and O?

 4. What electron confi guration would you expect 1n/ 2  
for the fi rst excited state of neon and xenon?

 5. Use Table 8.1 and Figure 8.2 to list the electron con-
fi guration (n/ notation) of the following elements: 
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296 Chapter 8 Atomic Physics

potassium, arsenic, niobium, palladium, samarium, 
polonium, and uranium.

 6. Use Figure 8.2 to list all the (a) inert gases, (b) alkalis, 
(c) halogens, and (d) alkaline earths.

 7. The 3s state of Na has an energy of $5.14 eV. Deter-
mine the effective nuclear charge.

 8. List the quantum numbers 1n,/,m/,ms 2  for all the elec-
trons in a carbon atom.

 9. What atoms have the confi guration (a) 1s22s22p5, 
(b) 1s22s22p63s2, (c) 3s23p6? Explain.

 10. What are the electronic confi gurations for the ground 
states of the elements Ag, Hf, and Sb?

 11. What atoms have the confi guration (a) 4s24p4, 
(b) 4p64d105s, and (c) 5s25p64f 12? Explain.

8.2 Total Angular Momentum
 12. If the zirconium atom ground state has S  #  1 and 

L  #  3, what are the permissible values of J? Write the 
spectroscopic notation for these possible values of S, 
L, and J. Which one of these is likely to represent the 
ground state?

 13. Use the information in Table 8.2 to determine the 
ground state spectroscopic symbol for indium.

 14. List all the elements through calcium that you would 
expect not to have a spin-orbit interaction that splits 
the ground-state energy. Explain.

 15. For the hydrogen atom in the 4d excited state fi nd the 
possible values of n,/,m/,ms, and mj. Give the term 
notation for each possible confi guration.

 16. What are S, L, and J for the following states: 1S0, 2D5/2, 
5F1, 3F4?

 17. What are the possible values of Jz for the 82G7/2 state?
 18. (a) What are the possible values of Jz for the 62F7/2 

state? (b) Determine the minimum angle between the 
total angular momentum vector and the z axis for this 
state.

 19. Explain why the spectroscopic term symbol for lith-
ium in the ground state is 2S1/2.

 20. What is the spectroscopic term symbol for gallium in 
its ground state? Explain.

 21. The 4P state in potassium is split by its spin-orbit 
interaction into the 4P3/2 (!  #  766.41 nm) and 4P1/2 

(!  #  769.90 nm) states. (The wavelengths are for the 
transitions to the ground state.) Calculate the spin-
orbit energy splitting and the internal magnetic fi eld 
causing the splitting.

 22. Draw the energy-level diagram for the states of carbon 
discussed in Example 8.9. Draw lines between states 
that have allowed transitions and list 'L, 'S, and 'J.

 23. An n  #  2 shell (L shell) has a 2s state and two 2p states 
split by the spin-orbit interaction. Careful measure-
ments of the K" x-ray (n  #  2 S n  #  1) transition re-
veal only two spectral lines. Explain.

 24. What is the energy difference between a spin-up state 
and spin-down state for an electron in an s state if the 
magnetic fi eld is 2.55 T?

 25. Which of the following elements can have either (or 
both) singlet and triplet states and which have nei-
ther: He, Al, Ca, Sr? Explain.

 26. If the minimum angle between the total angular mo-
mentum vector and the z axis is 32.3° (in a single-
electron atom), what is the total angular momentum 
quantum number?

 27. Use the Biot-Savart law to fi nd the magnetic fi eld in 
the frame of an electron circling a nucleus of charge 
Ze. If the velocity of the electron around the nucleus 
is v and the position vector of the proton with respect 
to the electron is r, show that the magnetic fi eld at the 
electron is

B #  
Ze

4pP0
 

L
mc 2r 3

  where m is the electron mass and L is the angular 
momentum, L # mr & v .

 28. Use the internal magnetic fi eld of the previous prob-
lem to show that the potential energy of the spin 
magnetic moment #s interacting with B internal is given 
by

Vs/ #   
Ze 2

4pP0
 

  S !  L
m 2c 2r 3

  There is an additional factor of 1/2 to be added from 
relativistic effects called the Thomas factor.

 29. The difference between the 2P3/2 and 2P1/2 doublet 
in hydrogen due to the spin-orbit splitting is 
4.5  &  10$5 eV. (a) Compare this with the potential 
energy given in the preceding problem. (b) Compare 
this with a more complete calculation giving the po-
tential energy as

V #  $
Z 4a4

2n 3  mc 2
 a 2

2j !  1
 $  

3
4n
b

  where " is the fi ne-structure constant, " $ 1/137.

8.3 Anomalous Zeeman Effect
 30. For which L and S values does an atom exhibit the 

normal Zeeman effect? Does this apply to both ground 
and excited states? Can an atom exhibit both the nor-
mal and anomalous Zeeman effects?

 31. Derive Equations (8.22) and (8.23). First fi nd the av-
erage value of mS and J. Use

m
S

av #  1mS # J
S 2  J

S

J
S # J

S  and  V #  $m
S

av # B
S

  [Remember @ JS @ 2 # J 1   J ! 1 2 U2.]
 32. In the early 1900s the normal Zeeman effect was use-

ful to determine the electron’s e/m if Planck’s con-
stant was assumed known. Calcium is an element that 
exhibits the normal Zeeman effect. The difference 
between adjacent components of the spectral lines is 
observed to be 0.0168 nm for !  #  422.7 nm when 
calcium is placed in a magnetic fi eld of 2.00 T. From 
these data calculate the value of eU/m  and compare 
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with the accepted value today. Calculate e/m using this 
experimental result along with the known value of U .

 33. Calculate the Landé g factor for an atom with a single 
(a) s electron, (b) p electron, (c) d electron.

 34. An atom with the states 2G9/2 and 2H11/2 is placed in a 
weak magnetic fi eld. Draw the energy levels and indi-
cate the possible allowed transitions between the two 
states.

 35. Repeat the preceding problem for 3P1 and 3D2 states.
 36. With no magnetic fi eld, the spectral line representing 

the transition from the 2P1/2 state to the 2S1/2 state in 
sodium has the wavelength 589.76 nm (see Figure 
8.16). This is one of the two strong yellow lines in so-
dium. Calculate the difference in wavelength between 
the shortest and longest wavelength between these 
two states when placed in a magnetic fi eld of 2.50 T.

 37. When sodium in the 2P3/2 state is placed in a magnetic 
fi eld of 1.20 T, the energy level splits into four levels 
(see Figure 8.16). Calculate the energy difference 
between these levels.

General Problems
 38. (a) Write down the confi gurations for the ground 

states of calcium and aluminum. (b) What are the LS 
coupling quantum numbers for the outside subshell 
electrons? Write the spectroscopic symbol for each 
atom.

 39. (a) Write down the confi gurations for the ground 
states of the ionized ions Y$ and Al$. (b) What are the 
LS coupling quantum numbers for the outside sub-
shell electrons? Write the spectroscopic symbol for 
each atom.

 40. Consider a 3D3/2 state. (a) What are the possible values 
of S, L, J, and Jz? (b) What is the minimum angle be-
tween J and the z axis?

 41. What is the spectroscopic term symbol for cobalt in its 
ground state? Explain.
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Statistics are important in a number of areas of physics, one of which is atomic 
physics. The position of the electron in the hydrogen atom was described in Sec-
tion 7.6 in terms of a probability distribution. Another important application of 
the concept of probability to atomic physics arises for transitions between atomic 
states. Like most atomic systems, the hydrogen atom may be in the ground state 
or in one of a number of excited states. An atom in an excited state is likely to 
make a transition to a lower energy state and eventually to the ground state. The 
question that arises logically is: just how likely are each of the allowed transitions? 
One may also ask: what are the relative probabilities of finding an atom in any 
particular state? These are not simple questions, and the answers require knowl-
edge of the wave functions for each of the states involved. We shall not attempt 
to solve these problems here. We should simply be aware of the fact that transi-
tions between quantum states must usually be described in probabilistic terms 
because there is no simple causal mechanism we can use to track the electron(s) 
from one level to another.

There is a simpler way to begin to understand how statistics and probability 
theory are used in physics. Historically, the need for these mathematical tools 
became apparent to those studying problems in heat and thermodynamics. Ac-
cordingly, we begin this chapter with a review of how probability and statistics 
found their way into physics in the nineteenth century. The important results of 
Maxwell and Boltzmann are outlined and used to derive some of the basic laws 
of the kinetic theory of gases. Then we look at how quantum statistics differ from 
classical statistics. The last two sections deal with applications of quantum statis-
tics (Fermi-Dirac and Bose-Einstein) to a number of problems in modern phys-
ics. The use of statistics in quantum systems, particularly in solids, will be contin-
ued in more detail in Chapter 10.

298

C H A P T E R

9 Statistical Physics

Ludwig Boltzmann, who spent much of his life studying statistical me-
chanics, died in 1906 by his own hand. Paul Ehrenfest, carrying on his 
work, died similarly in 1933. Now it is our turn to study statistical me-
chanics. Perhaps it will be wise to approach the subject cautiously.

David L. Goodstein (States of Matter, Mineola, New York: Dover, 1985)
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9.1  Historical Overview
At the beginning of the nineteenth century, physicists were generally not in-
clined to use probability and statistics to describe physical processes. Indeed, 
there was a strong tendency to view the universe as a machine run by strict, 
unvarying, deterministic laws. This mechanistic view was due in large part to 
Newton and to the successful run of Newtonian physics through the eighteenth 
and nineteenth centuries. New mathematical methods developed by Lagrange 
around 1790 and Hamilton around 1840 added significantly to the computa-
tional power of Newtonian mechanics. They enabled physicists to describe com-
plex physical systems with relatively simple second-order differential equations.

An extreme defender of the absolute power of classical mechanics—and one 
of its greatest practitioners—was Pierre-Simon de Laplace (1749– 1827). Laplace 
held that it should be possible in principle to have perfect knowledge of the 
physical universe. Such knowledge would come from measuring precisely at 
one time the position and velocity of every particle of matter and then applying 
Newton’s physical laws. Because of the absolute immutability of Newton’s laws, 
this knowledge could be extended indefinitely into the future and the past, even 
to the creation of the universe. We realize now that Heisenberg’s uncertainty 
principle (Section 5.6) creates serious problems for Laplace’s position. A famous 
but perhaps apocryphal story demonstrates the conviction of the defenders of 
the mechanistic view. Laplace once presented the principle of perfect knowl-
edge just described to Emperor Napoleon. After hearing it in some detail, 
Napoleon asked where God fit into this mechanistic system. Laplace is supposed 
to have answered, “I have no need of this hypothesis.” That was a rather extreme 
statement for anyone to make in the early nineteenth century, but it should in-
dicate the great sense of confidence felt by those true believers in the Newtonian 
program.

In fairness to Laplace we must point out that he did make major contribu-
tions to the theory of probability. He may have been inspired to study probability 
by his understanding of the practical limits of measurement in classical mechan-
ics. His 1812 treatise Théorie analytique des probabilités was the standard reference 
on the subject for much of that century.

The development of statistical physics in the nineteenth century was tied 
closely to the development of thermodynamics (which in turn was driven by the 
Industrial Revolution). In 1800 the common view of heat was as a material sub-
stance known as caloric, a fluid that could flow through bodies to effect changes 
in temperature. In 1798 Benjamin Thompson (Count Rumford) put forward the 
idea that what we call heat is merely the motion of individual particles in a sub-
stance. Rumford’s idea was essentially correct, but it was not accepted quickly. 
His work was too sketchy and qualitative, although it planted the seeds that later 
blossomed in the work of Maxwell and Boltzmann. In 1822 Joseph Fourier pub-
lished his theory of heat, which was the first truly mathematical treatise on the 
subject. It was not statistical in nature, but it provided a quantitative basis for 
later work.

The concept of energy is central to modern thermodynamics. Of supreme 
importance in the history of energy is the work of James Prescott Joule (1818–
 1889). Joule is well known for his experiment demonstrating the mechanical 
equivalent of heat, first performed in about 1843. In that experiment (Figure 
9.1, page 300) a falling weight was used to turn a paddle wheel through water. 
Joule showed conclusively that the energy of the falling weight was transferred to 
internal energy in the water.
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James Clerk Maxwell did the great work of bringing the mathematical theories 
of probability and statistics to bear on thermodynamics. Using the understanding 
of energy gained by Joule and others, Maxwell derived expressions for the distribu-
tions of velocities and speeds of molecules in an ideal gas and used these distri-
butions to derive the observed macroscopic phenomena (see Sections 9.2– 9.4). 
Recall that he also developed Maxwell’s equations, which combine electricity 
and magnetism in a single electromagnetic theory. There are some similarities 
between Maxwell’s electromagnetic and thermodynamic theories. They are 
both highly mathematical. They are also very mechanical, in keeping with the 
Newtonian tradition. In thermodynamics he believed that all relevant properties 
were due to the motions of individual molecules. These similarities are important, 
because the extraordinary success of Maxwell’s electromagnetic theory played a 
role in winning scientists over to the statistical view of thermodynamics.

But it was not until the early twentieth century that statistical mechanics won 
the day. In 1905 Einstein (perhaps in his spare time after developing special rela-
tivity and his theory of the photoelectric effect!) published a theory of Brownian 
(random) motion, a theory that helped support the view that atoms are real. 
Experiments done several years later by Perrin confirmed Einstein’s results. 
Soon after this came Bohr’s atomic model, and then the quantum theory we 
have developed in previous chapters of this book.

We conclude this section with a brief discussion of the philosophy of statisti-
cal physics. Some people have difficulty accepting some of the uses of probability 
and statistics because of what they perceive as a lack of determinism or causality. 
It is perhaps difficult to reconcile this indeterminism with the fairly strict deter-
minism still found in much of physics. Can the probabilistic laws governing the 
behavior of atoms and subatomic particles really be that different from our ev-
eryday experience of cause and effect? No less a figure than Einstein worried 
about this. He said, “God does not play dice,” implying that some causal mecha-
nism is at work that is simply beyond our understanding. This philosophical 
discussion is an interesting and ongoing one, but it should be made clear that 
statistical physics is necessary regardless of the ultimate nature of physical reality. 
This is true for at least three reasons. First, even as simple a problem as deter-
mining the outcome of the toss of a coin is so complex that it is most often useful 

Figure 9.1 A schematic drawing of J. P. Joule’s paddle wheel apparatus used to determine the 
mechanical equivalent of heat. Falling weights were used to turn paddle wheels through water (in 
the center drum), which raised the temperature of the water. Joule concluded that a weight of 
772 lb (mass ! 350.2 kg) must fall through a distance of 1 ft (30.48 cm) in order to raise the 
temperature of 1 lb of water (0.45 kg) by 1°F (5

9 "C).
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to reduce it to statistical terms. Air resistance, rotational dynamics, and restitu-
tion problems make predicting the outcome of a coin toss a formidable mechan-
ics problem. Other problems, particularly in quantum theory, are even more 
challenging. Second, when the number of particles is large (for example, on the 
order of 1023 particles for a modest sample of an ideal gas), it is highly impracti-
cal to study individual particles if one is more interested in the overall behavior 
of a system of particles—for example, the pressure, temperature, or specific heat 
of an ideal gas. This is made clear in subsequent sections of this chapter. Third, 
as Heisenberg showed, uncertainties are inherent in physics, and they are of 
significant size in atomic and subatomic systems. Therefore, it appears that sta-
tistics will always be an important part of physics.

9.2  Maxwell Velocity Distribution
As Laplace pointed out, we could, in principle, know everything about an ideal 
gas by knowing the position and instantaneous velocity of every molecule. This 
entails knowing six parameters per molecule, three for position (x, y, z) and 
three for velocity (vx, vy, vz). Many relevant physical quantities must depend on 
one or more of these six parameters. In physics we sometimes think of these 
parameters as the components of a six-dimensional phase space.

Maxwell focused on the three velocity components because he was most in-
terested in the thermal properties of ideal gases. The velocity components of the 
molecules of an ideal gas are more important than the (random) instantaneous 
positions, because the energy of a gas should depend only on the velocities and 
not on the instantaneous positions. The crucial question for Maxwell was: what 
is the distribution of velocities for an ideal gas at a given temperature? Let us 
define a velocity distribution function f(v ) (see Appendix 5) such that

 f 1v 2  d 3v ! the probability of finding a particle with
 velocity between v and v # d 3v

where d3v ! dvx dvy dvz. Note that because v is a vector quantity, the preceding 
statement implies three separate conditions. The vector v has components vx, vy, 
and vz. Therefore f(v ) d3v is the probability of finding a particle with vx between 
vx and vx # dvx, with vy between vy and vy # dvy, and with vz between vz and vz # 
dvz. We can think of the distribution function f(v ) as playing a role analogous to 
the probability density $*$ in quantum theory.

Maxwell was able to prove* that the probability distribution function is pro-
portional to exp1% 

1
2 mv 2/kT 2 , where m is the molecular mass, v is the molecular 

speed, k is Boltzmann’s constant, and T is the absolute temperature. Therefore, 
we may write

 f  1v 2  d 3v ! C exp 1% 
1
2 bmv 2 2  d 3v  (9.1)

where C is a proportionality factor and b ! (kT)%1. (Don’t confuse this param-
eter b in thermal physics with b ! v/c from relativity.) We can easily rewrite 
Equation (9.1) in terms of the three velocity components, because v 2 ! v x

2 # vy
2 

# vz
2. Then

 f 1v 2  d 3v ! C exp 1% 
1
2 bmvx

2 % 1
2 bmvy

2 % 1
2 bmvz

2 2  d 3v  (9.2)

Phase space

Velocity distribution 
function

*There are numerous ways of demonstrating that the distribution is proportional to exp(% 
1
2 mv2/kT 2 . 

See, for example, Daniel Schroeder, Thermal Physics, Addison-Wesley (1999), pp. 220– 223.
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302 Chapter 9 Statistical Physics

Equation (9.2) can be rewritten in turn as the product of three factors, each of 
which contains one of the three velocity components. Let us define them as

  g 1vx 2  dvx ! C œ exp 1% 
1
2 bmvx

2 2  dvx

  g 1vy 2  dvy ! C œ exp 1% 
1
2 bmvy

2 2  dvy (9.3)

  g 1vz 2  dvz ! C œ exp 1% 
1
2 bmvz

2 2  dvz

with a new constant C& ! C1/3. Equations (9.3) give us the distributions of the 
three velocity components.

In order to perform any useful calculations using the distributions of Equa-
tions (9.3), we will need to know the value of the constant C&. Now g(vx) dvx is 
simply the probability that the x component of a gas molecule’s velocity lies be-
tween vx and vx # dvx. If we sum (or integrate) g(vx) dvx over all possible values 
of vx, the result must be 1, because every molecule has a velocity component vx 
somewhere in this range. This is the same process of normalization that we have 
followed throughout our study of quantum theory in Chapters 5– 7. Performing 
the integral (see Appendix 6) yields

 "
q

%q
g 1vx 2  dvx ! C œ a 2p

bm
b 1/2

! 1 (9.4)

Then

 C œ ! a bm
2p
b 1/2

and

 g 1vx 2  dvx ! a bm
2p
b 1/2

 exp a% 

1
2

 bmvx
2 b  dvx  (9.5)

With this distribution we can calculate the mean value of vx (see Appendix 5):

 vx ! "
q

%q
vx g 1vx 2  dvx ! C œ"

q

%q
vx exp a% 

1
2

 bmvx
2 b  dvx ! 0 (9.6)

because vx is an odd function (see Appendix 6). This result makes sense physi-
cally, because in a random distribution of velocities one would expect the veloc-
ity components to be distributed evenly around the peak at vx ! 0 (Figure 9.2).

Similarly, the mean value of vx
2 is

  vx
2 ! C œ"

q

%q
vx

2 exp a% 

1
2

 bmvx
2 b  dvx

  ! 2C œ"
q

0

vx
2 exp a% 

1
2

 bmvx
2 b  dvx

  vx
2 ! a bm

2p
b 1/2

 
1p
2
a 2
bm
b 3/2

!
1
bm

!
kT
m

 (9.7)

Of course there is nothing special about the x direction (the gas makes no dis-
tinction among x, y, and z), so the results for the x, y, and z velocity components 
are identical. The three components may be used together to find the mean 
translational kinetic energy of a molecule:

 K !
1
2

 mv 2 !
1
2

 m (v x
2 # v y

2 # v z
2) !

1
2

 m a 3kT
m b !

3
2

 kT  (9.8)

0.5g(0)

g(0)

g(vx)

! √
kT!
m

vx

√
1!
bm

0

Figure 9.2 The Maxwell velocity 
distribution as a function of one 
velocity dimension (vx). Notice 
that at vx ! 21/bm ! 2kT /m 
we have g(vx) ! g(0)e%1/2 # 
0.607g(0).
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We have just confirmed one of the principal results of kinetic theory! The fact 
that we have done so from purely statistical considerations is good evidence of 
the validity of this statistical approach to thermodynamics.

Compute the mean translational kinetic energy of (a) a 
single ideal gas molecule in eV, and (b) a mole of ideal gas 
in J, both at room temperature 293 K.

Strategy The mean kinetic energy of a single molecule is 
given by Equation (9.8). For an entire mole, it’s necessary to 
multiply the result by Avogadro’s number NA, the number of 
atoms in a mole.

Solution (a) For a single molecule, Equation (9.8) gives

 K ! 3
2 kT ! 3

2 11.38 ' 10%23 J/K 2  1293 K 2 ! 6.07 ' 10%21 J

Because of the small size of this energy, it may be useful to 
convert to units of electron volts.

 K ! 6.07 ' 10%21 J '
1 eV

1.60 ' 10%19 J
! 0.038 eV

The mean molecular energy at room temperature is about 
1/25 eV. This is a good number to remember, because this 
computation applies for any ideal gas at room temperature.

(b) For an entire mole, the mean kinetic energy is a 
factor of NA larger:

  K ! 6.07 ' 10%21 J ' NA

  ! 16.07 ' 10%21 J 2 16.02 ' 1023 2 ! 3650 J

for one mole.

 EXAMPLE 9 .1

9.3  Equipartition Theorem
The results of Section 9.2 can be extended into a rather general statement relat-
ing the internal energy of a thermodynamic system to its temperature. Accord-
ing to Equation (9.7)

 1
2 mvx

2 ! 1
2 kT  (9.9)

Similarly, an average energy 12 kT  is associated with each of the other two velocity 
components, producing a net average translational kinetic energy of 3

2 kT  per 
molecule. In a monatomic gas such as helium or argon, virtually all of the gas’s 
energy is in this form. But consider instead a diatomic gas, such as oxygen (O2). 
If we think of this molecule as two oxygen atoms connected by a massless rod, 
then this molecule can also have rotational kinetic energy. How much rotational 
energy is there, and how is it related to temperature?

The answer to this question is provided by the equipartition theorem, which 
we state without proof.

Equipartition theorem: In equilibrium a mean energy of  1
2 kT  per molecule is 

associated with each independent quadratic term in the molecule’s energy.

The independent quadratic terms may be quadratic in coordinate, velocity com-
ponent, angular velocity component, or anything else that when squared is pro-
portional to energy. Each independent phase space coordinate is called a degree 
of freedom for the system.

For example, in a monatomic ideal gas (such as helium), each molecule has 
a kinetic energy

 K ! 1
2 mv 2 ! 1

2 m 1vx
2 # vy

2 # vz
2 2

Equipartition theorem

Degree of freedom
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304 Chapter 9 Statistical Physics

There are three independent phase space coordinates (vx, vy, and vz). Thus there 
are three degrees of freedom, and the equipartition theorem predicts a mean 
kinetic energy of 3 112 kT 2 ! 3

2 kT  per molecule.
How can we check our calculation of 3

2 kT ? This is done by measuring heli-
um’s heat capacity at constant volume. In a gas of N helium molecules the total 
internal energy should be

 U ! NE ! 3
2 N kT

The heat capacity at constant volume is C  V ! 10U /0T 2V, or

 C V ! 3
2 N k

We will use the standard notation of uppercase C V for the heat capacity of a general 
amount (such as N molecules) of a substance, and lowercase cV when describing 
the heat capacity for 1 mole. For 1 mole, N ! NA, Avogadro’s number, and

 c V ! 3
2 NAk ! 3

2 R ! 12.5 J/K (9.10)

where we have used the fact that NAk ! R ! 8.31 J/K, the ideal gas constant.
The measured molar heat capacity of He is very close to this value. In Table 9.1 

the molar heat capacities of a number of gases are listed. For monatomic gases the 
measured heat capacities match the value predicted in Equation (9.10).

However, the heat capacities of diatomic gases are significantly greater. We 
can explain this by considering the rigid rotator model of the oxygen molecule 
described earlier and shown in Figure 9.3 and by applying the equipartition theo-
rem to it. The molecule is free to rotate about either the x or y axis, and the cor-
responding rotational energies can be written in terms of rotational inertia and 
angular velocity components as 1

2 Ix vx
2 and 1

2 Iy vy
2. Each of these is quadratic in 

angular velocity, so the equipartition theorem tells us that we should add 
2 112 kT 2 ! kT  per molecule to the translational kinetic energy, for a total of 52 kT . 
Stated another way, there are five degrees of freedom (three translational and two 
rotational), so the energy per molecule is 5 112 kT 2 ! 5

2 kT .

Rigid rotator model

Gas c V (J/K) c V/R

Ar 12.5 1.50
He 12.5 1.50
CO 20.7 2.49
H2 20.4 2.45
HCl 21.4 2.57
N2 20.6 2.49
NO 20.9 2.51
O2 21.1 2.54
Cl2 24.8 2.98
CO2 28.2 3.40
CS2 40.9 4.92
H2S 25.4 3.06
N2O 28.5 3.42
SO2 31.3 3.76

Tab le  9 .1    Molar Heat Capacities for 
Selected Gases at 15°C and 
1 Atmosphere

Figure 9.3 The rigid rotator 
model of the O2 molecule, with 
the two oxygen atoms connected 
by a rigid, massless rod along the 
z axis.

x

z Oxygen atom

Oxygen atom

Rigid connector!
(massless)

y
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Why don’t we include rotations about the z axis? The answer lies in quantum 
theory. In quantum theory of the rigid rotator the allowed energy levels are

 E !
L2

2I
!

U2/ 1/ # 1 2
2I

where I is the rotational inertia and / is a quantum number equal to zero or a posi-
tive integer. Notice that this result is consistent with the quantization of angular 
momentum given previously in Equation (7.22). Here the kinetic energy of a rota-
tor with angular momentum L is equal to L2/(2I ). Consider again our diatomic 
molecule modeled in Figure 9.3. Because almost all of each atom’s mass is confi ned 
to a small nucleus at the atom’s center, the diatomic molecule’s rotational inertia 
(Iz) about the axis connecting the two atoms is orders of magnitude smaller than Ix 
and Iy. A small value of Iz in the denominator of the energy equation given above 
leads to a high energy, relative to that obtained with Ix or Iy and comparable quan-
tum numbers. Thus, when the rotational energy is relatively low and small quantum 
numbers are required, only rotations about the x and y axes are allowed.*

Therefore, oxygen should have an average kinetic energy of 5
2 kT  per mole-

cule, which translates to a molar heat capacity of 5
2 R. The measured molar heat 

capacity of O2 is reasonably close to this value. Look again at the measured heat 
capacities in Table 9.1. For most diatomic gases the measured heat capacities are 
similar to the value predicted by the equipartition theorem, 5

2 R per mole. Some 
of the diatomic gases (principally Cl2) do not match up as well, however. Why 
not? The physics of the two-atom molecule is evidently not as simple as we have 
pictured it. From our study of atomic physics we know that atoms are complex 
systems and that the quantum theory must be used to replace classical mechanics 
when studying atomic systems. Further, we have not even begun to discuss the 
nature of molecular bonding; the solid massless rod joining the two atoms is 
undoubtedly a crude approximation. Given all these approximations it is a won-
der that the equipartition theorem serves as well as it does!

In some circumstances it is a better approximation to think of atoms con-
nected to each other by a massless spring rather than a rigid rod. How many 
degrees of freedom does this add? One may be tempted to say just one, because 
of the potential energy 1

2 k 1r % r0 22, where k is the spring’s force constant, r the 
separation between atoms, and r0 the equilibrium separation between atoms. But 
another degree of freedom is associated with the vibrational velocity (dr/dt), 
because the vibrational kinetic energy is 1

2 m 1dr/dt 2 2. This makes sense because 
in classical physics the average kinetic energy is equal to the average potential 
energy for a harmonic oscillator (see Problem 53). If the molecule is still free to 
rotate, there is now a total of seven degrees of freedom: three translational, two 
rotational, and two vibrational. The resulting molar heat capacity is 7

2 R.
Is this vibrational mode ever a factor? Yes, it is, but high temperatures are 

normally required to excite the vibrational modes in diatomic gases. In fact, the 
heat capacities of diatomic gases are temperature dependent, indicating that the 
different degrees of freedom are “turned on” at different temperatures. One of 
the more striking examples is H2 (see Figure 9.4, page 306). At temperatures just 
above its boiling point (about 20 K), the molar heat capacity is about 32 R. At just 
under 100 K the rotational mode is excited, and c V then increases gradually until 
it reaches 5

2 R, where it remains from about 250 K up to about 1000 K. At that 

*A more complete description of why quantum theory overrules the classical equipartition theorem 
in this case is given by Clayton A. Gearhart, American Journal of Physics 64, 995– 1000 (1996).
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306 Chapter 9 Statistical Physics

point the vibrational mode becomes effective (also gradually). We can see that 
c V is beginning to approach 7

2 R, but the curve terminates at this point because 
the molecule dissociates.

Apparently it is difficult to excite the vibrational mode in a diatomic gas. In 
a polyatomic gas, we may choose to think of the molecule as consisting of a num-
ber of masses (atoms) connected by springs. In classical mechanics such systems 
have a frequency corresponding to each “normal mode” of oscillation, with the 
number of normal modes increasing as the number of masses in the system in-
creases. Therefore polyatomic systems may have a number of different vibration 
frequencies, each turning on at a different temperature. This can cause the vi-
brational spectra of polyatomic molecules to be quite complex.

Let us briefly turn our attention to the thermal molecular motion in a solid. 
Now the vibrational mode is the only one acting, because the atoms in a solid are 
not free to translate or rotate. As an example, we consider a sample of pure cop-
per, the atoms of which are arranged in a face-centered cubic lattice, as shown in 
Figure 9.5. How many degrees of freedom are in this system? It is possible to think 
of each atom as a three-dimensional harmonic oscillator. As described earlier, a 
one-dimensional harmonic oscillator has two degrees of freedom, one coming 
from the kinetic energy and one from the potential energy. Therefore there are 
six degrees of freedom for our three-dimensional oscillator, and the molar heat 
capacity is 6 112 R 2 ! 3R. The experimental value of molar heat capacity is almost 
exactly 3R for copper near room temperature. It is also observed that, near room 
temperature, the molar heat capacity increases slightly with increasing tempera-
ture. As we will see in Section 9.6, this can be attributed to the conduction elec-
trons, which we neglected in our consideration of the equipartition theorem.

20
0

1

2

c V
/R

3

4

50 100 200 500
Temperature (K)

Translation

Rotation

Vibration

1000 2000 5000 10,000

7!–!2

5!–!2

3!–!2

Figure 9.4 Molar heat capacity 
c V as a function of temperature 
for H2, a typical diatomic gas. The 
heat capacity c V equals 3R/2 at 
low temperatures, rises to 5R/2 at 
higher temperatures as the rota-
tional mode is excited, and finally 
approaches 7R/2 when the mole-
cule dissociates at very high 
temperatures.

Figure 9.5 The lattice structure 
of copper, an example of the 
face-centered cubic lattice.

Consider the gases HF and Ne, both at a (room) temperature 
of 300 K. Compare the average translational kinetic energy 
and total kinetic energy of the two types of molecules.

Solution The HF and Ne molecules have about the same 
molecular mass, about 20 u, where recall 1 u ! 1 atomic 
mass unit ! 1.66054 ' 10%27 kg. According to the equiparti-

tion theorem, the molecules’ translational kinetic energies 
are the same, 32 kT  per molecule or 32 RT  per mole. However, 
the diatomic HF has two rotational degrees of freedom, so 
its total kinetic energy is predicted to be 3

2 RT # RT ! 5
2 RT  

per mole. The monatomic Ne gas has no rotational degrees 
of freedom, so its total kinetic energy is 3

2 RT  per mole.

 CONCEPTUAL EXAMPLE 9 .2
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9.4  Maxwell Speed Distribution
Let us return to the Maxwell velocity distribution in the form

 f 1v 2  d 3v ! C exp 1% 
1
2 bmv 2 2  d 3v  (9.1)

where we know that

 C ! 1C œ 23 ! a bm
2p
b 3/2

 (9.11)

Even though f (v) is a function of the speed (v) and not the velocity (v), this is 
still a velocity distribution because the probability equation, Equation (9.1), 
contains the differential velocity element. It will be useful for us to turn this ve-
locity distribution into a speed distribution F(v) where, by the usual definition,

 F 1v 2  dv ! the probability of finding a particle
 with speed between v and v # dv

As we shall soon see, it is not possible simply to assume that f (v) ! F(v).
This is just the kind of problem for which the phase space concept is useful. 

Consider the analogous problem in normal three-dimensional (x, y, z) space. 
Suppose there exists some distribution of particles f (x, y, z), as in Figure 9.6a. A 
particle at the point (x, y, z) is a distance r ! (x2 # y2 # z2)1/2 from the ori-
gin, and r is a position vector directed from the origin to the point (x, y, z). Then 
f (x, y, z) d3r ! the probability of finding a particle between r and r # d3r with 
d3r  ! dx dy dz. Now let us change to a radial distribution F(r), such that

 F 1r 2  dr ! the probability of finding a particle between r and r # dr

The space between r and r # dr is a spherical shell. Therefore this problem is 
simply one of counting all of the particles in a spherical shell of radius r and 
thickness dr. The volume (d3r ) of a spherical shell is 4pr 2 dr. Thus we may write

 F 1r 2  dr ! f 1x, y, z 24pr 2 dr  (9.12)

Returning to our problem of obtaining a speed distribution F(v) from a ve-
locity distribution f (v), we see that all we have to do is count the number of 
particles in a spherical shell in velocity space. Simply replace the coordinates x, 
y, and z with the velocity space coordinates (that is, the velocity components) vx, 
vy, and vz (Figure 9.6b). The speed v ! (vx

2 # vy
2 # vz

2)1/2 is the velocity space 
analog of radius r ! (x2 # y2 # z2)1/2. The preceding analysis indicates that the 
“volume” of our spherical shell in velocity space is 4pv2 dv, and the desired speed 
distribution is F(v) where

 F 1v 2  dv ! f 1v 24pv 2 dv (9.13)

Using Equation (9.1) we obtain the Maxwell speed distribution:

 F 1v 2  dv ! 4pC exp 1% 
1
2 bmv 2 2v 2 dv  (9.14)

A graph of a typical Maxwell speed distribution is shown in Figure 9.7 (page 
308). There is a qualitative similarity between this distribution and some of the 
radial probability distributions we encountered in Chapter 7 (see for example 
Figure 7.12). There is a quantitative distinction, however, in that the quadratic 
(v2) argument in the exponential in Equation (9.14) differs from the linear (r) 
relationship found throughout Section 7.6. Notice also that the speed distribu-
tion is qualitatively different from the velocity distribution in that it is not 

Maxwell speed distribution

Figure 9.6 (a) A distribution of 
particles in three-dimensional 
space. The distribution function 
f (r) is proportional to the num-
ber of particles in a spherical 
shell, between r and r # dr. 
(b) A similar distribution in three-
dimensional velocity space. This 
shows that the speed distribution 
f (v) must be proportional to the 
number of particles found in a 
spherical shell in velocity space 
between v and v # dv.

x
dr

y
r

z

(a)

vx

vz

vy

dv

v

(b)
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symmetric about its peak. You can show that F(v) approaches zero in the limiting 
cases of very high and very low speeds (Problem 8). Because it was derived from 
purely classical considerations, the Maxwell speed distribution gives a nonzero 
probability of finding a particle with a speed greater than c (Problem 5). We 
know particle speeds cannot exceed the speed of light. Therefore, Equation 
(9.14) is valid only in the classical limit. This presents no serious problems in 
using the distribution because (you should convince yourself of this) the pre-
dicted probability of v ( c is extremely low at any reasonable temperature. Fur-
ther, the other formulas we use in the kinetic theory of ideal gases (for example, 
K .E. ! 1

2 mv 2) already restrict us to the classical limit.
The asymmetry of the distribution curve leads to an interesting result: the 

most probable speed v*, the mean speed v, and the root-mean-square speed vrms 
are all slightly different from each other. The most probable speed v* corre-
sponds to the peak of the curve. We fi nd v* by taking the derivative of F(v) with 
respect to v and setting it to zero.

  
d
dv

 c4pC exp a% 

1
2

 bmv 2 b v 2 d `
v!v  *

! 0

  exp a% 

1
2

 bmv*2 b  12v* 2 %
1
2

 bm 12v* 2  exp a% 

1
2

 bmv*2 b  v*2 ! 0

We solve the preceding equation for v*.

 v* ! B 2
bm

! B2kT
m  (9.15)

A curious corollary of this result is that the kinetic energy of a molecule moving 
with the most probable speed v* is

 K* ! 1
2 mv*2 ! kT  (9.16)

which is exactly two thirds of the mean kinetic energy.

Most probable speed v*

0
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v
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F(v)

Relative speed

Figure 9.7 The Maxwell speed 
distribution, expressed in terms 
of the most probable speed v*. 
Note the positions of v  and vrms 
relative to v*.
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The mean speed v  is the average or

 v ! "
q

0

v F 1v 2  dv ! 4pC"
q

0

v 3 exp a% 

1
2

 bmv 2 b  dv

See Appendix 6 for an evaluation of this integral. The result is

 
v ! 4pC c 1

2 112 bm 22 d ! 8p a bm
2p
b 3/2 a 1

bm
b 2

 
v !

412p
 BkT

m  (9.17)

Comparing the results (9.15) and (9.17), we see that

 
v
v* ! B 4

p
# 1.13 (9.18)

In other words, v  is about 13% greater than v* at any temperature.
We define the root-mean-square (rms) speed vrms to be

 vrms ! (v 2)1/2 (9.19)

In order to find the root-mean-square speed, it is first necessary to calculate v 2:

 v 2 ! "
q

0

v 2F 1v 2  dv ! 4pC"
q

0

v 4 exp a% 

1
2

 bmv 2 b  dv

  ! 4pC c 31p
8 112 bm 25/2 d !

3
bm

!
3kT
m

Then

 vrms ! (v 2)1/2 ! B3kT
m  (9.20)

As before, it is instructive to compare this result with the most probable 
speed:

 
vrms

v* ! B3
2

 # 1.22 (9.21)

The rms speed is about 22% greater than the most probable speed for any tem-
perature. Notice that the result in Equation (9.20) is again in keeping with our 
basic law of kinetic theory, namely

 K ! 1
2 mv 2 ! 3

2 kT

Finally, we calculate the standard deviation of the molecular speeds (see Ap-
pendix 5):

 sv ! (v 2 % v 2)1/2 ! a 3kT
m %

8kT
pm b 1/2

! c3 % a 8
p
b d 1/2 a kT

m b 1/2

# 0.48v* 

(9.22)

Mean speed v–

Root-mean-square speed
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310 Chapter 9 Statistical Physics

The result expressed in Equation (9.22) indicates that sv increases in proportion 
to 1T . The distribution of molecular speeds therefore widens somewhat as tem-
perature increases.

To summarize, here are the three particular speeds that are important in the 
Maxwell speed distribution:

•  The most probable speed v* is at the peak of the Maxwell speed distri-
bution.

•  The mean speed v  is the weighted average of all speeds in the distribution.
•  The rms speed vrms is the speed associated with the mean kinetic energy.

Compute the mean molecular speed v  in the light gas hy-
drogen (H2) and the heavy gas radon (Rn), both at room 
temperature 293 K. (Use the longest-lived radon isotope, 
which has a mass of 222 u.) Compare the results.

Strategy The mean speed is given by Equation (9.17) as

 v !
412p

 BkT
m

With the temperatures the same, we need to use the appro-
priate molecular masses to complete the computation. The 
lighter mass (hydrogen) will have the higher average speed.

Solution The mass of the hydrogen molecule is twice that 
of a hydrogen atom (neglecting the small binding energy), 
or 2(1.008 u) ! 2.02 u. Thus the average molecular speed 
of hydrogen is

  v !
412p

 BkT
m

  !
412p

 B 11.38 ' 10%23 J/K 2 1  293 K 212.02 u 2 11.66 ' 10%27 kg/u 2 ! 1750 m/s

The average molecular speed of radon is

  v !
412p

 B kT
m

  !
412p

 B 11.38 ' 10%23 J/K 2 1  293 K 21222 u 2 11.66 ' 10%27 kg/u 2 ! 167 m/s

The hydrogen molecule is more than 10 times faster, on 
average. That’s to be expected, because its mass is more 
than 100 times lighter. Most other gases have molecular 
masses that fall between these two extremes, so their mean 
speeds should be between the two values we computed here.

 EXAMPLE 9 .3

What fraction of the molecules in an ideal gas in equilib-
rium has speeds within )1% of v*?

Strategy Recall that F(v) dv is the probability of finding a 
particle with speed between v and v # dv. In principle we 
could integrate the distribution F(v) in Equation (9.14) 
from the limits 0.99v* to 1.01v*.

 P  1)1% 2 ! "
1.01v *

0.99v*

F 1v 2  dv (9.23)

Unfortunately, the indefinite integral cannot be done in 
closed form. We can obtain an approximate solution by 
calculating F(v*) and multiplying by dv # *v ! 0.02v*.

Solution The product F(v*)(0.02v*) gives the probability

  P  1)1% 2 # F 1v* 2  10.02v* 2
  # 4pC exp a% 

1
2

 bmv*2b v*210.02v* 2
  # 4p a bm

2p
b 3/2

e %110.02 2 a 2
bm
b 3/2

  #
41p  e %110.02 2 # 0.017

Students with computer programming experience are en-
couraged to do the integration in Equation (9.23) numeri-
cally and compare the result with this approximation. Your 
results will be more precise but should agree with this ap-
proximation to two signifi cant fi gures.

 EXAMPLE 9 .4
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   9.5 Classical and Quantum Statistics 311

9.5  Classical and Quantum Statistics
In the previous section we mentioned that the Maxwell speed distribution is only 
valid in the classical (that is, nonrelativistic) limit, and also that this fact only 
prohibits the use of the Maxwell distribution at exceptionally high temperatures. 
A more severe restriction on the use of the Maxwell distribution comes from 
quantum theory. You may have already wondered why it has not been necessary 
to apply quantum theory to the ideal gas systems we have been studying to this 
point. After all, the particles involved are of molecular and atomic size. The im-
portant point is that an ideal gas is dilute. The molecules of the gas are so far 
apart that they can be considered not to interact with each other. When colli-
sions between molecules do occur, they can be considered totally elastic, and 
therefore they have no effect on the distributions and mean values calculated in 
the previous sections of this chapter.

But what happens when matter is in the liquid or solid state, where the density 
of matter is generally several orders of magnitude higher than the density of 
gases? In liquids and solids the assumption of a collection of noninteracting par-
ticles may no longer be valid. If molecules, atoms, or subatomic particles are 
packed closely together, the Pauli exclusion principle (see Chapter 8) prevents 
two particles in identical quantum states from sharing the same space. This limits 
the allowed energy states of any particle subject to the Pauli principle, which af-
fects the distribution of energies for a system of particles.

There is another fundamental difference between classical and quantum 
energy states. In classical physics there is no restriction on particle energies, but 
in quantum systems only certain energy values are allowed. This also affects the 
overall distribution of energies.

Classical Distributions
Because energy levels are of such fundamental importance in quantum theory, 
it will be useful for us to rewrite the results of Section 9.4 in terms of energy 
rather than velocity. The Maxwell speed distribution was given by

 F 1v 2  dv ! 4pC exp 1% 
1
2 bmv 2 2v 2 dv (9.14)

Use the shape of the Maxwell speed distribution curve (Fig-
ure 9.7) to explain why vrms ( v  ( v*.

Solution The speed distribution curve shown in Figure 9.7 
is not symmetric. It could best be described as lopsided, with 
the wider part of the curve to the right of v*. This means that 
there are more molecules with speeds greater than v* than 
molecules with speeds less than v*. The computation of the 
mean speed v  is a weighted average. With more molecules 
having speeds above v* than below, this result is v  ( v*.

The root-mean-square speed vrms comes from a similar 
average, but one that uses the average square of the speed. 
In such a computation, higher speeds are weighted even 
more heavily, because the squares of numbers rise more 
rapidly than the numbers themselves. For example, the 
number 11 is 1.1 times larger than the number 10, but com-
paring the squares of these numbers, 121 (112) is 1.21 times 
larger than 100 (102). This is why vrms ( v .

 CONCEPTUAL EXAMPLE 9 .5

James Clerk Maxwell (1831–
 1879) was one of the greatest 
physi cists of the nineteenth cen-
tury. Born and educated in Scot-
land, he developed a theory that 
united electricity and magnetism, 
stating them succinctly in the set 
of four Maxwell’s equations. 
Maxwell collaborated extensively 
with other physicists of the day, 
particularly William Thomson 
(Lord Kelvin). Maxwell developed 
a successful kinetic theory of 
gases and laid the foundation for 
what is now statistical mechanics 
in his 1871 work Theory of Heat. 
Maxwell was keenly interested in 
the second law of thermodynam-
ics and proposed a thought ex-
periment, now known as 
Maxwell’s demon, as a challenge 
to the statistical nature of the 
second law of thermo dynamics.
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312 Chapter 9 Statistical Physics

For a monatomic gas the energy is all translational kinetic energy. Thus

  E ! 1
2 mv 2

  dE ! mv dv

 dv !
dE
mv !

dE12mE
 (9.24)

With Equation (9.24) the speed distribution of Equation (9.14) can be turned 
into an energy distribution (see Problem 19):

 F 1v 2  dv ! F 1E 2  dE (9.25)

where

 F 1E 2 !
8pC12m3/2 exp 1%bE 2  E 

1/2  (9.26)

Two factors in Equation (9.26) contain E. The factor E 1/2 can be traced back 
to the phase space analysis done in Section 9.4. It is a feature of this particular 
kind of distribution (that is, the distribution of molecular speeds in an ideal gas, 
for which the energy of a molecule is 1

2 mv 2). The factor exp(%bE ) is of more 
fundamental importance. Boltzmann showed that the statistical factor exp(%bE ) 
is a characteristic of any classical system, regardless of how quantities other than 
molecular speeds may affect the energy of a given state. Thus we define the 
Maxwell-Boltzmann factor for classical systems as

 FMB ! A exp 1%bE 2  (9.27)

where A is a normalization constant. The energy distribution for a classical sys-
tem will have the form

 n 1E 2 ! g 1E 2  FMB (9.28)

where n(E ) is a distribution such that n(E ) dE represents the number of particles 
with energies between E and E # dE. The function g(E ), known as the density of 
states, is the number of states available per unit energy range. Notice that n(E ) 
is proportional to g(E ). The density of states is an essential element in all distri-
butions, and we shall keep this in mind as we develop the quantum distributions. 
The factor FMB is the relative probability that an energy state is occupied at a 
given temperature.

Quantum Distributions
Now we turn our attention from classical to quantum distribution functions. In 
quantum theory, particles are described by wave functions. Identical particles 
cannot be distinguished from one another if there is a significant overlap of their 
wave functions. It is this characteristic of indistinguishability that makes quan-
tum statistics different from classical statistics.

To illustrate this point consider the following example. Suppose that we 
have a system of just two particles, each of which has an equal probability (0.5) of 
being in either of two energy states. If the particles are distinguishable (call them 
A and B), then the possible configurations we may measure are as follows:

Maxwell-Boltzmann energy 
distribution

Maxwell-Boltzmann factor

Density of states
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 State 1 State 2

 AB 
 A B
 B A
  AB

These four configurations are equally likely; therefore the probability of each is 
one fourth (0.25). However, if the two particles are indistinguishable, then our 
probability table changes:

 State 1 State 2

 XX 
 X X
  XX

Now there are only three equally likely configurations, each having a probability 
of one third ($0.33).

It turns out that two kinds of quantum distributions are needed. This is be-
cause some particles obey the Pauli exclusion principle and others do not. As 
mentioned earlier in this section, the Pauli principle has a significant impact on 
how energy states can be occupied and therefore on the corresponding energy 
distribution. It is easy to tell whether a particle will obey the Pauli principle: we 
determine the spin of the particle. Particles with half-integer spins obey the Pauli 
principle and are known collectively as fermions; those with zero or integer spins 
do not obey the Pauli principle and are known as bosons. Protons, neutrons, and 
electrons are fermions. Photons and pions are bosons. Also, atoms and molecules 
consisting of an even number of fermions must be bosons when considered as a 
whole, because their total spin will be zero or an integer. Similarly, those (relatively 
few) atoms and molecules made up of an odd number of fermions are fermions.

We state here without proof the Fermi-Dirac distribution, which is valid for 
fermions:

 n 1E 2 ! g 1E 2  FFD (9.29)

where

 FFD !
1

B FD exp 1bE 2 # 1
 (9.30)

Similarly the Bose-Einstein distribution, valid for bosons, is

 n 1E 2 ! g 1E 2  FBE (9.31)

where

 FBE !
1

B BE exp 1bE 2 % 1
 (9.32)

In each case Bi (BFD or BBE) is a normalization factor, and g(E ) is the density of 
states appropriate for a particular physical situation. Notice that the Fermi-Dirac 
and Bose-Einstein distributions look very similar; they differ only by the normaliza-
tion constant and by the sign attached to the 1 in the denominator. This sign dif-
ference causes a significant difference in the properties of bosons and fermions, 
as will become evident in Sections 9.6 and 9.7. It is also important to see that both 

Fermions and bosons

Fermi-Dirac distribution

Bose-Einstein distribution
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314 Chapter 9 Statistical Physics

the Fermi-Dirac and Bose-Einstein distributions reduce to the classical Maxwell-
Boltzmann distribution when Bi exp(bE ) is much greater than 1* (in that case the 
normalization constant A ! 1/Bi). This means that the Maxwell-Boltzmann factor 
A exp(%bE ) is much less than 1 (that is, the probability that a particular energy 
state will be occupied is much less than 1). This is consistent with our earlier use 
of Maxwell-Boltzmann statistics for a dilute, noninteracting system of particles. See 
Table 9.2 for a summary of the properties of the three distribution functions.

A comparison of the three distribution functions is shown in Figure 9.8, with 
each one graphed as a function of energy. The normalization constants for the 
distributions (A for the Maxwell-Boltzmann, BFD for the Fermi-Dirac, and BBE for 
the Bose-Einstein) depend on the physical system being considered. For conve-
nience, we set them all equal to 1 for this comparison. Notice that the Bose-
Einstein factor FBE is higher than the Fermi-Dirac factor FFD at any given energy. 
Mathematically, this is due to the difference between #1 and %1 in the denomi-
nators of the two functions. Physically, the higher value of FBE results from the 
fact that bosons do not obey the Pauli exclusion principle, so more bosons are 
allowed to fill lower energy states. Another thing to notice in Figure 9.8 is that 
the three graphs coincide at high energies—the classical limit. That is why 
Maxwell-Boltzmann statistics may be used in the classical limit, regardless of 
whether the particles in the system are fermions or bosons.

Austrian physicist Ludwig 
Boltzmann (1844– 1906) worked 
inde pen dently of Maxwell on de-
veloping the laws governing the 
statistical behavior of classical par-
ticles. Boltzmann is remembered 
most for his work on the statisti-
cal nature of entropy, and he sup-
ported the notion that the equipar-
tition theorem is a fundamental 
part of statistical physics and ther-
modynamics. On Boltzmann’s Vi-
enna tombstone is carved his fa-
mous formula for entropy: S ! k 
log W, where W is the number of 
possible ways a state can be 
configured and k is the constant 
that was named in Boltzmann’s 
honor.
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*This happens at high temperatures and low densities. A good rule of thumb is to compare the in-
terparticle spacing with the average de Broglie wavelength. If the interparticle spacing is much 
greater than the de Broglie wavelength, then Maxwell-Boltzmann statistics are fairly accurate. Oth-
erwise one should use the quantum statistics.
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Bose-Einstein FBE

Maxwell-Boltzmann FMB

Fermi-Dirac FFD
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Figure 9.8 A comparison of the three distribu-
tion functions, each drawn as a function of energy 
over the same range. The normalization constants 
A, BFD, and BBE have been set equal to 1 for conve-
nience. The Bose-Einstein distribution is higher 
than the Fermi-Dirac distribution, because bosons 
do not obey the Pauli principle. At high energies, 
the three distributions are close enough so that 
the classical Maxwell-Boltzmann distribution can 
be used to replace either quantum distribution.

 Properties of the   Distribution 
Distributors Distribution Examples Function

Maxwell- Particles are  Ideal gases FMB ! A exp 1%bE 2
Boltzmann identical but 
 distinguishable

Bose-Einstein Particles are  Liquid 4He,  FBE !
1

B BE exp 1bE 2 % 1 identical and  photons
 indistinguishable 
 with integer spin

Fermi-Dirac Particles are identical  Electron gas  FFD !
1

B FD exp 1bE 2 # 1 and indistinguishable  (free electrons 
 with half-integer spin in a conductor)

Tab le  9 .2    Classical and Quantum Distributions
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9.6  Fermi-Dirac Statistics
Introduction to Fermi-Dirac Theory
The Fermi-Dirac distribution, as expressed in Equations (9.29) and (9.30), pro-
vides the basis for our understanding of the behavior of a collection of fermions. 
Let us examine the distribution in some detail before applying it to the problem 
of electrical conduction, one of its most useful applications.

First we consider the role of the factor BFD. In principle one may compute BFD 
for a particular physical situation by integrating n(E ) dE over all allowed energies. 
Because the parameter b (! 1/kT ) is contained in FFD, the factor BFD is tempera-
ture dependent. It is possible to express this temperature dependence as

 BFD ! exp 1%bEF 2  (9.33)

where EF is called the Fermi energy. We can then rewrite the Fermi-Dirac factor 
more conveniently as

 FFD !
1

exp 3b1E % EF 2 4 # 1
 (9.34)

Equation (9.34) shows us an important fact about the Fermi energy: when E ! 
EF, the exponential term is 1, and therefore FFD ! 1

2  (exactly). In fact it is com-
mon to define the Fermi energy as the energy at which FFD ! 1

2 .
Consider now the temperature dependence of FFD, as expressed in Equa-

tion (9.34). In the limit as T S 0, it is seen (Problem 30) that

 FFD ! e1 for E + EF

0 for E ( EF
 (9.35)

The physical basis for Equation (9.35) is easily understood. At T ! 0, fermions oc-
cupy the lowest energy levels available to them. They cannot all be in the lowest level, 

Assume that the Maxwell-Boltzmann distribution is valid in a 
gas of atomic hydrogen. What is the relative number  of atoms 
in the ground state and first excited state at 293 K (room 
temperature), 5000 K (the temperature at the surface of a 
star), and 106 K (a temperature in the interior of a star)?

Strategy The desired ratio is

 
n 1E2 2
n 1E1 2 !

g 1E2 2
g 1E1 2  exp 3b1E1 % E2 2 4

In the ground state (n ! 1) of hydrogen there are two pos-
sible configurations for the electron, that is, g(E1) ! 2. 
There are eight possible configurations in the first excited 
state (see Chapter 7), so g(E2) ! 8. For atomic hydrogen 
E1 % E2 ! %10.2 eV. Therefore

 
n 1E2 2
n 1E1 2 ! 4 exp 3b1%10.2 eV 2 4 ! 4 exp 1%10.2 eV/kT 2

for a given temperature T. We need to insert numerical 
values for each of the temperatures.

Solution The desired numerical results are

  
n 1E2 2
n 1E1 2 ! 4 exp 1%404 2 # 10%175  for T ! 293 K

  ! 4 exp 1%23.7 2 # 2 ' 10%10 for 5000 K

  ! 4 exp 1%0.118 2 # 3.55  for 106 K

Notice that at very high temperatures (T W 106 K), the ex-
ponential factor approaches 1, so the ratio n(E2)/n(E1) ap-
proaches 4, the ratio of the densities of states. In fact, atomic 
hydrogen cannot exist at such high temperatures (106 K or 
greater). The electrons dissociate from the nuclei to form a 
state of matter known as a plasma.

 EXAMPLE 9 .6
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316 Chapter 9 Statistical Physics

because that would violate the Pauli principle. Rather, fermions will fill all the avail-
able energy levels up to a particular energy (the Fermi energy). Near T ! 0 there is 
little chance that thermal agitation will kick a fermion to an energy above EF.

As the temperature increases from T ! 0, more and more fermions jump to  
higher energy levels. The Fermi-Dirac factor “smears out” from the sharp step 
function in Figure 9.9a to a smoother curve, shown in Figure 9.9b. It is some-
times useful to consider a Fermi temperature, defined as TF ! EF/k. A plot of FFD 
at T ! TF is shown in Figure 9.9c. When T V TF the step function approximation 
for FFD in Equation (9.35) is reasonably accurate. When T W TF, FFD approaches 
a simple decaying exponential (see Figure 9.9d). This is just as one would ex-
pect, for at sufficiently high temperatures we expect Maxwell-Boltzmann statis-
tics to be reasonably accurate [see Equation (9.27) and the subsequent discus-
sion in Section 9.5].

We can apply the Fermi-Dirac theory to the problem of understanding elec-
trical conduction in metals. For comparison we will first present a brief review of 
the classical theory. A more complete description of the classical theory can be 
found in most good introductory physics texts.

Classical Theory of Electrical Conduction
In 1900 Paul Drude developed a theory of electrical conduction in an effort to 
explain the observed conductivity of metals. His model assumed that the elec-
trons in a metal existed as a gas of free particles. This is a fair assumption, be-
cause in a conductor the outermost electron(s)—which may be as many as sev-
eral per atom—are so weakly bound to an atom that they may be stripped away 
easily by even a very weak electric field. In the Drude model the metal is thought 
of as a lattice of positive ions with a gas of electrons free to flow through it. 
Just as in the ideal gases we considered earlier in this chapter, electrons have a 
thermal kinetic energy proportional to temperature. The mean speed of an 
electron at room temperature can be calculated [using Equation (9.17)] to be 
about 105 m/s. But remember that the velocities of the particles in a gas (elec-
trons, in this case) are directed randomly. Therefore there will be no net flow of 
electrons unless an electric field is applied to the conductor.

When an electric field is applied, the negatively charged electrons flow in 
the direction opposite that of the field. According to Drude, their flow is severely 
restricted by collisions with the lattice ions. On the basis of several simple as-
sumptions from classical mechanics, Drude was able to show that the current in 
a conductor should be linearly proportional to the applied electric field. This is 

Enrico Fermi (1901– 1954) was 
one of the outstanding physicists 
of the twentieth century. Although 
he was known primarily for his 
theoretical work, he was also an 
outstanding experimentalist. In 
1926, while still a young man 
working in Rome, he did the work 
in quantum statistics described in 
this chapter. Several years later, 
he used quantum mechanics to 
understand nuclear beta decay. He 
went on to study nuclear fission 
(both theoretically and experimen-
tally, using neutron bombard-
ment). Fermi was exiled from Italy 
in 1938 and went to the United 
States, and in 1942 he led the 
team in Chicago that built the first 
self-sustaining nuclear reactor. He 
continued to work on the Ameri-
can atomic bomb project through-
out World War II and became an 
American citizen in 1944. After the 
war he joined the faculty of the 
University of Chicago, where he 
worked until his death.
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Figure 9.9 The Fermi-Dirac 
factor FFD at various temperatures: 
(a) T ! 0, (b) T ( 0, (c) T ! TF 
! EF/k, and (d) T W TF. At T ! 
0 the Fermi-Dirac factor is a step 
function. As the temperature in-
creases, the step is gradually 
rounded. Finally, at very high 
temperatures, the distribution ap-
proaches the simple decaying ex-
ponential of the Maxwell-
Boltzmann distribution.
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consistent with Ohm’s law, a well-known experimental fact. The principal suc-
cess of Drude’s theory was that it did predict Ohm’s law.

Unfortunately, the numerical predictions of the theory were not so success-
ful. One important prediction was that the electrical conductivity could be ex-
pressed* as

 s !
n e 2t

m  (9.36)

where n is the number density of conduction electrons (see Table 9.3, page 319), 
e is the electron charge, t is the average time between electron-ion collisions, and m 
is the electronic mass. It is possible to measure n by the Hall effect (see Chapter 11). 
The parameter t is not as easy to measure, but it can be estimated using transport 
theory. The best estimates of t, when combined with the other parameters in Equa-
tion (9.36), produced a value of s that is about one order of magnitude too small 
for most conductors. The Drude theory is therefore incorrect in this prediction.

A restatement of Equation (9.36) will show another deficiency of the classi-
cal theory. The mean time between collisions t should be simply the mean dis-
tance / traveled by an electron between collisions (called the mean free path) 
divided by the mean speed v  of electrons. That is,

 t ! / /v

Then the electrical conductivity can be expressed as

 s !
n e 2/
mv

 (9.37)

Equation (9.17) shows that the mean speed is proportional to the square root of 
the absolute temperature. Hence, according to the Drude model, the conductiv-
ity should be proportional to T %1/2. But for most conductors the conductivity is 
very nearly proportional to T %1 except at very low temperatures, where it no 
longer follows a simple relation. Drude’s classical model of electrical conduction 
is not accurate.

Finally, there is the problem of calculating the electronic contribution to the 
heat capacity of a solid conductor. As discussed in Section 9.3, the heat capacity 
of a solid can be almost completely accounted for by considering the six degrees 
of freedom in the lattice vibrations. This gives a molar heat capacity of 
6 112 R 2 ! 3R. According to the equipartition theorem, we should add another 
3 112 R 2 ! 3

2 R for the heat capacity of the electron gas, giving a total of 92 R. This is 
not consistent with experimental results. The electronic contribution to the heat 
capacity depends on temperature and is typically only about 0.02R per mole at 
room temperature. Clearly a different theory is needed to account for the ob-
served values of electrical conductivity and heat capacity as well as the tempera-
ture dependence of the conductivity.

Quantum Theory of Electrical Conduction
To obtain a better solution we have to turn to quantum theory. It is necessary to 
understand how the electron energies are distributed in a conductor. Electrons are 
fermions, and therefore we need to use the Fermi-Dirac distribution described 

Mean free path

*See the introductory text, R. Serway and J. Jewett, Physics for Scientists and Engineers, 8th ed., Belmont, 
CA, Brooks/Cole Cengage Learning, 2010, p. 780. 
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318 Chapter 9 Statistical Physics

earlier in this section. The real problem we face is to find g(E ), the number of al-
lowed states per unit energy. The question is: what energy values should we use? Let 
us retain the “free electron” assumption of the Drude model and use the results 
obtained in Chapter 6 for a three-dimensional infinite square-well potential 
(which corresponds physically to a cubic lattice of ions). The allowed energies are

 E !
h2

8mL2 1n1
2 # n2

2 # n3
2 2  (9.38)

where L is the length of a side of the cube and ni are the integer quantum num-
bers. We will solve the problem at T ! 0 first and consider the effect of tempera-
ture later. It turns out that the distribution at room temperature is very much 
like the T ! 0 distribution anyway because we are in the T V TF regime (for 
example, TF # 80,000 K for copper—see Table 9.4).

Equation (9.38) can be rewritten as

 E ! r 2E1 (9.39)

where r 2 ! n1
2 # n2

2 # n3
2 and E1 ! h2/8mL2. The parameter r is the “radius” of 

a sphere in phase space and is a dimensionless quantity—it should not be confused 
with a radius in Euclidean space. Note that E1 is just a constant, not the ground 
state energy. (It is actually one third of the ground state energy.) We have defined 
r in this way in order to construct a geometric solution to the problem of counting 
the number of allowed quantum states per unit energy. Think of the ni as the “co-
ordinates” of a three-dimensional number space, as in Figure 9.10. The number 
of allowed states up to “radius” r (or up to energy E ! r 2E1) is directly related to 
the spherical “volume” 43 pr 3. The exact number of states up to radius r is

 Nr ! 12 2  1  18 2  1  43 pr 3 2  (9.40)

The extra factor of 2 is due to spin degeneracy: for each set of quantum num-
bers there may be two electrons, one with spin up and one with spin down. The 
factor of 1/8 is necessary because we are restricted to positive quantum numbers, 
and therefore to one octant of the three-dimensional number space. Equations 
(9.39) and (9.40) can be used to express Nr as a function of E:

 Nr !
1
3

 pa E
E1
b 3/2

 (9.41)

At T ! 0 the Fermi energy is the energy of the highest occupied energy level, 
as we saw in Figure 9.9a. If there are a total of N electrons, then

 N !
1
3

 pa EF

E1
b 3/2

Paul Adrien Maurice Dirac 
(1902– 1984) had a Swiss father 
and English mother and was born 
in England. While still a young 
man in 1932, he was named Lu-
casian Professor of Mathematics 
at Cam bridge, the Chair once held 
by Newton and later by Stephen 
Hawking. Dirac was one of the pi-
oneers in applying quantum me-
chanics to solve problems that 
could not be understood classi-
cally. He predicted the existence 
of antimatter before it was ob-
served experimentally. Along with 
Fermi, he developed the correct 
quantum-mechanical laws 
(Fermi-Dirac statistics) governing 
the statistics of half-integer spin 
particles, now known as 
fermions.
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Figure 9.10 The three-
dimensional number space used 
to count the number of allowed 
states within a sphere of radius 
r ! 2n1

2 # n2
2 # n3

2. We may 
also think of this as counting the 
number of unit (1 ' 1 ' 1) cubes 
within this octant of space.
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 N/V   N/V 
Element (! 1028 m"3) Element (! 1028 m"3)

Cu 8.47 Mn (a) 16.5
Ag 5.86 Zn 13.2
Au 5.90 Cd 9.27
Be 24.7 Hg (78 K) 8.65
Mg 8.61 Al 18.1
Ca 4.61 Ga 15.4
Sr 3.55 In 11.5
Ba 3.15 Sn 14.8
Nb 5.56 Pb 13.2
Fe 17.0

From N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia: 
Saunders College (1976).

Tab le  9 .3    Free-Electron Number Densities for 
Selected Elements at T ! 300 K

Element EF (eV) TF (! 104 K) uF (! 106 m/s)

Li 4.74 5.51 1.29
Na 3.24 3.77 1.07
K 2.12 2.46 0.86
Rb 1.85 2.15 0.81
Cs 1.59 1.84 0.75
Cu 7.00 8.16 1.57
Ag 5.49 6.38 1.39
Au 5.53 6.42 1.40
Be 14.3 16.6 2.25
Mg 7.08 8.23 1.58
Ca 4.69 5.44 1.28
Sr 3.93 4.57 1.18
Ba 3.64 4.23 1.13
Nb 5.32 6.18 1.37

From N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia: Saunders College (1976).

Tab le  9 .4    Fermi Energies (T ! 300 K), Fermi Temperatures, and Fermi Velocities 
for Selected Metals

Element EF (eV) TF (! 104 K) uF (! 106 m/s)

Fe 11.1 13.0 1.98
Mn 10.9 12.7 1.96
Zn 9.47 11.0 1.83
Cd 7.17 8.68 1.62
Hg 7.13 8.29 1.58
Al 11.7 13.6 2.03
Ga 10.4 12.1 1.92
In 8.63 10.0 1.74
Tl 8.15 9.46 1.69
Sn 10.2 11.8 1.90
Pb 9.47 11.0 1.83
Bi 9.90 11.5 1.87
Sb 10.9 12.7 1.96

We solve for EF to obtain

 EF ! E1 a 3N
p
b 2/3

!
h2

8m
 a 3N
pL3 b 2/3

 (9.42)

Equation (9.42) is useful because the ratio N/L3 is well known for most conduc-
tors: it is simply the number density of conduction electrons, a quantity easily 
measured using the Hall effect, which is discussed in detail in Chapter 11.
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320 Chapter 9 Statistical Physics

The density of states can be calculated by differentiating Equation (9.41) 
with respect to energy:

 g 1E 2 !
dNr

dE
!
p

2
 E1       

%3/2E 
1/2

This result can be expressed more conveniently in terms of EF rather than E1. 
Using Equation (9.42) for E1 we find

 g 1E 2 !
p

2
aE F

%3/2
 
3N
p
bE 

1/2 !
3N
2

 E F
%3/2E 

1/2 (9.43)

The distribution of electronic energies is then given by Equation (9.29). Because 
we are considering the T ! 0 case, it is possible to use the step function form of 
the Fermi-Dirac factor (Equation 9.35). Therefore at T ! 0 we have

 n 1E 2 ! e g 1E 2 for E + EF

0 for E ( EF
 (9.44)

With the distribution function n(E ) the mean electronic energy can be cal-
culated easily:

  E !
1
N "

q

0

En 1E 2  dE !
1
N "

E F

0

E g 1E 2  dE

  !
1
N "

E F

0

a 3N
2
bE F

%3/2E 
3/2 dE

  !
3
2

 E F
%3/2"

E F

0

E 
3/2 dE !

3
5

 E F (9.45)

This is a reasonable result, considering the shapes of the curves in Figure 9.11.
We can now proceed to find the electronic contribution to the heat capacity 

of a conductor. Recall that the general expression for heat capacity at constant 
volume is CV ! 0U/0T, where U is the internal energy of the system in question. 
By Equation (9.45)

 U ! NE ! 3
5 N EF

Calculate the Fermi energy and Fermi temperature for 
copper.

Strategy Equation (9.42) can be used to compute the 
Fermi energy, provided the number density of conduction 
electrons is known. That number for copper is given in Ta-
ble 9.3. (See also Problem 27.)

Solution The number density of conduction electrons in 
copper is given by Table 9.3 as 8.47 ' 1028 m%3. We use this 
value of N/L3 in Equation (9.42) to fi nd

  EF !
16.626 ' 10%34 J # s 22
819.11 ' 10%31 kg 2 c 3 18.47 ' 1028 m%3 2

p
d 2/3

  ! 1.13 ' 10%18 J ! 7.03 eV

Within rounding errors, this result is equivalent to that 
given in Table 9.4.

 TF !
EF

k
!

7.03 eV
8.62 ' 10%5 eV/K

! 8.16 ' 104 K

Fermi energies and Fermi temperatures for other common 
conductors are listed in Table 9.4. Note that EF changes little 
between T ! 0 and room temperature.

 EXAMPLE 9 .7
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at T ! 0. The important question for determining the heat capacity is how U 
increases with temperature. Because the energy levels are filled up to EF, we ex-
pect that only those electrons within about kT of EF will be able to absorb thermal 
energy and jump to a higher state. Therefore the fraction of electrons capable 
of participating in this thermal process is on the order of kT/EF. The exact num-
ber of electrons depends on temperature, because the shape of the curve n(E ) 
changes with temperature (see Figure 9.11). In general we can say that

 U !
3
5

 N EF # aN  
kT
EF

 kT  (9.46)

where a is a constant (1 due to the shape of the distribution curve. Therefore 
the electronic contribution to the heat capacity is

 C V !
0U
0T

! 2aN k2
 
T
EF

As with ideal gases it is common to express this result as a molar heat capacity c V 
(see Section 9.3). For 1 mole we have N ! NA. Then using NAk ! R (the ideal 
gas constant) and EF ! kTF, we find that

 c V ! 2aR  
T
TF

 (9.47)

Arnold Sommerfield used the correct distribution n(E ) at room temperature 
and found a value* for a of p2/4. With the value TF ! 80,000 K for copper, we 
obtain c V # 0.02R, which is just what is measured experimentally! The increase 
in c V with increasing temperature is also seen experimentally. Quantum theory 
has proved to be a success in a case in which the classical theory failed. The small 
value of the electronic contribution to the heat capacity can be attributed to the 
unique nature of the Fermi-Dirac distribution, and in particular to the Pauli 
exclusion principle, which severely restricts the number of electrons that may 
participate in heat absorption.

Turning our attention to the electrical conductivity, we can make some im-
provement by replacing the mean speed v  in Equation (9.37) with what is called 
a Fermi speed uF, defined from EF ! 1

2 muF
2. We can justify this change by noting 

that conduction electrons in a metal are those most loosely bound to their at-
oms. Therefore these electrons must be at the highest energy level. At room 
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Figure 9.11 (a) The density of 
states g 1E 2 ! 13N /2 2E F

%3/2E1/2 
and (b) distribution function 
n(E) ! g(E)FFD for an electron 
gas. The function n(E) is shown at 
T ! 0 (dashed line) and T ! 300 K 
(solid line).

*See C. Kittel, Introduction to Solid State Physics, 6th ed., New York: Wiley (1986).
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322 Chapter 9 Statistical Physics

temperature the highest energy level is close to the Fermi energy, as discussed 
previously. This means that we should use

 uF ! B2EF

m # 1.6 ' 106 m/s

for copper. Unfortunately, this is an even higher speed than v , which seems 
undesirable because the value we calculated for s using v  was already too low. It 
turns out that there is also a problem with the classical value Drude used for the 
mean free path /. He thought that because the ions were so large and occupied 
so much space in a solid, the mean free path could be no more than several 
tenths of a nanometer. But in quantum theory the ions are not hard spheres, and 
the electrons can be thought of as waves. Taking into account the wavelike prop-
erties of electrons, the mean free path can be longer than Drude estimated. 
Einstein calculated the value of / to be on the order of 40 nm in copper at room 
temperature. This gives a conductivity of

 s !
ne 2/
muF

# 6 ' 107 ,%1 # m%1

which is just right.
Finally, let us consider the temperature dependence of the electrical con-

ductivity. We have already replaced v  in Equation (9.37) with the Fermi speed 
uF, which is nearly temperature independent. However, as the temperature of a 
conductor is increased, ionic vibrations become more severe. Thus electron-ion 
collisions will become more frequent, the mean free path will become smaller, 
and the conductivity will be reduced. According to elementary transport theory 
(this result is shown in many introductory physics texts*) the mean free path is 
inversely proportional to the cross-sectional area of these ionic scatterers. Let us 
assume that the ions are harmonic oscillators. The energy of a harmonic oscilla-
tor is proportional to the square of its vibration amplitude. But the effective 
cross-sectional area should also be proportional to the square of the vibration 
amplitude. Therefore, the mean free path is inversely proportional to vibration 
energy (and temperature, because thermal energy is proportional to tempera-
ture). We may summarize this sequence of proportions by saying that

 s r / r r%2 r U  
%1 r T  

%1

In other words, the electrical conductivity varies inversely with temperature. This 
is another success for quantum theory, because electrical conductivity is ob-
served to vary inversely with temperature for most pure metals.

*See the introductory text, R. Serway and J. Jewett, Physics for Scientists and Engineers, 8th ed., Belmont, 
CA, Brooks/Cole Cengage Learning, 2010, p. 780. 

Use the Fermi theory to compute the electronic contribu-
tion to the molar heat capacity of (a) copper and (b) silver, 
each at temperature T ! 293 K. Express the results as a 
function of the molar gas constant R.

Strategy From the Fermi theory the molar heat capacity 
is c V ! 2aRT/TF. Recall that we can use a ! p2/4 at room 
temperature (T ! 293 K), so

 c V ! 2 ap2

4
bR  

T
TF

!
p2RT
2TF

 EXAMPLE 9 .8
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   9.7 Bose-Einstein Statistics 323

9.7  Bose-Einstein Statistics
Like Fermi-Dirac statistics, Bose-Einstein statistics can be used to solve problems 
that are beyond the scope of classical physics. In this section we will concentrate 
on two examples: a derivation of the Planck formula for blackbody radiation and 
an investigation of the properties of liquid helium.

Blackbody Radiation
You may wish to review Section 3.5 on blackbody radiation. We will use the ideal 
blackbody described in that section: a nearly perfectly absorbing cavity that emits 
a spectrum of electromagnetic radiation. The problem is to find the intensity of 
the emitted radiation as a function of temperature and wavelength [Equation 
(3.23)].

 I 1l, T 2 !
2pc 2h
l5  

1
e hc /lkT % 1

 (3.23)

In quantum theory we must begin with the assumption that the electromagnetic 
radiation is really a collection of photons of energy hc/l. Recall that photons are 
bosons with spin 1. Our approach to this problem is to use the Bose-Einstein 
distribution to find how the photons are distributed by energy, and then use the 
relationship E ! hc/l to turn the energy distribution into a wavelength distribu-
tion. The desired temperature dependence should already be included in the 
Bose-Einstein factor [see Equation (9.32)].

As in the previous section, the key to the problem is being able to find the 
density of states g(E ). In fact, it is possible to model the photon gas just as we did 
the electron gas: a collection of free particles within a three-dimensional infinite 
potential well. We cannot use Equation (9.38) for the energy states, however, for 
we are now dealing with massless particles. To solve this problem it is necessary 
to recast the solution to the particle-in-a-box problem in terms of momentum 
states rather than energy states. For a free particle of mass m the energy is p2/2m. 
We may rewrite Equation (9.38) in terms of momentum:

 p ! 2px
2 # py

2 # pz
2 !

h
2L

 2n1
2 # n2

2 # n3
2 (9.48)

The energy of a photon is pc, so

 E !
hc
2L

 2n1
2 # n2

2 # n3
2 (9.49)

Solution (a) Inserting numerical values (from Table 9.4, 
TF ! 8.16 ' 104 K for copper),

 c V !
p21293 K 2

2 18.16 ' 104 K 2  R ! 0.0177R

for copper, which rounds to the value 0.02R quoted in the 
text.

(b) For silver, we simply replace the Fermi tempera-
ture with 6.38 ' 104 K (Table 9.4):

 c V !
p21293 K 2

216.38 ' 104 K 2  R ! 0.0227R

We see that the electronic contribution to the molar heat 
capacity is the same order of magnitude for these two good 
conductors, and in each case it is small compared with the 
lattice contribution (Section 9.3).
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324 Chapter 9 Statistical Physics

We proceed now to calculate the density of states as we did in Section 9.6. Think 
of the ni as the coordinates of a number space and define r 2 ! n1

2 # n2
2 # n3

2. 
The number of allowed energy states within “radius” r is

 Nr ! 2 1  18 2  1  43 pr 3 2  (9.50)

where the factor 1/8 again comes from the restriction to positive values of ni. 
This time the factor of 2 is because there are two possible photon polarizations. 
Note that energy is proportional to r, namely,

 E !
hc
2L

 r  (9.51)

Thus, we can rewrite Nr in terms of E:

 Nr !
8pL3

3h3c 3 E3 (9.52)

The density of states g(E ) is

 g 1E 2 !
dNr

dE
!

8pL3

h3c 3  E2 (9.53)

The energy distribution is as always the product of the density of states and the 
appropriate statistical factor, in this case the Bose-Einstein factor:

  n 1E 2 ! g 1E 2  FBE

  !
8pL3

h3c 3  E2
 

1
e E /kT % 1

 (9.54)

Notice that the normalization factor BBE in the Bose-Einstein factor has been set 
equal to unity. This is because we have a non-normalized collection of photons. 
As photons are absorbed and emitted by the walls of the cavity, the number of 
photons is not constant. The distribution in Equation (9.54) will serve to provide 
the relative number of photons at different energies, but it is impossible to nor-
malize to a particular number of photons.*

The next step is to convert from a number distribution to an energy density 
distribution u(E ). To do this it is necessary to multiply by the factor E/L3 (that 
is, energy per unit volume):

 u 1E 2 !
En 1E 2

L3 !
8p

h3c 3 E 3
 

1
e E /kT % 1

For all photons in the range E to E # dE

 u 1E 2  dE !
8p

h3c 3 
E3 dE

e E /kT % 1
 (9.55)

Using E ! hc/l and 0dE 0  ! (hc/l2) dl,† we find

 u 1l, T 2  dl !
8phc
l5  

dl
ehc /lkT % 1

 (9.56)

*For more detail on the derivation of Equation (9.54), see F. Reif, Fundamentals of Statistical and 
Thermal Physics, New York: McGraw-Hill (1965), pp. 339– 340.
†The negative sign is dropped because it would be meaningless in a distribution in which a (positive) 
number representing a probability is required. Physically the negative sign means that energy in-
creases as wavelength decreases, but that fact is not relevant here.
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In the SI system, multiplying by a constant factor c/4 is required* to change the 
energy density [u(l, T ), energy per unit volume per unit wavelength inside the 
cavity] to a spectral intensity [I(l, T ), power per unit area per unit wavelength 
for radiation emitted from the cavity]:

 I 1l, T 2 !
2pc 2h
l5  

1
e hc /lkT % 1

 (9.57)

which is identical with Equation (3.23).
Planck did not use the Bose-Einstein distribution to derive his radiation law. 

Nevertheless, it is an excellent example of the power of the statistical approach 
to see that such a fundamental law can be derived with relative ease. This prob-
lem was first solved in 1924 by the young Indian physicist Satyendra Nath Bose 
(for whom the boson is named). Einstein’s name was added to the distribution 
because he helped Bose publish his work in the West and later applied the dis-
tribution to other problems. It is remarkable that Bose did this work before the 
full development of quantum mechanics, and in particular before the elucida-
tion of the concept of spin in quantum theory.

Liquid Helium
Helium is an element with a number of remarkable properties. It has the lowest 
boiling point of any element (4.2 K at 1 atmosphere pressure) and has no solid 
phase at normal pressures. Liquid helium has been studied extensively since its 
discovery in 1908 by Heike Kamerlingh Onnes†. It continues to be used by experi-
mental physicists as a cryogenic (cooling) device. Many effects can be observed 
only at extremely low temperatures, and liquid helium can be used to cool mate-
rials to 4.2 K and lower. In Chapter 10 we will examine low-temperature methods 
in more detail, along with our study of superconductivity, perhaps the best-known 
low-temperature phenomenon.

Liquid helium is also quite interesting in its own right, especially at tempera-
tures somewhat less than its boiling point. In 1924 Kamerlingh Onnes (along 
with J. Boks) measured the density of liquid helium as a function of temperature 
and obtained the curve shown in Figure 9.12. W. Keesom and K. Clausius mea-
sured the specific heat of liquid helium as a function of temperature in 1932. 
Their results are shown in Figure 9.13 (page 326).

Satyendra Nath Bose (1894–
 1974), who first applied the dis-
tribution that bears his name 
(along with Einstein’s) to the 
quantum statistics of photons. Af-
ter this first contact with Einstein, 
Bose col laborated with other Eu-
ropean scientists on applications 
of quantum theory. He served for 
over 30 years as a professor of 
physics, first at the University of 
Dacca (in his native Bengal re-
gion, now Bangladesh) and then 
at Calcutta University. His other 
work includes collaboration with 
the Indian physicist M. N. Saha 
on the ionization of gases in 
stars. Although shunned by some 
European physicists early in his 
career, he eventually won their re-
spect and high honors, including 
election as a Fellow of the Royal 
Society of London in 1958.
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*The factor c may be expected from dimensional analysis, because the two expressions differ in units 
by a factor of m/s. The extra factor of 1/4 comes from a geometrical analysis. For a detailed calcula-
tion see J. J. Brehm and W. J. Mullin, Introduction to the Structure of Matter, New York: Wiley (1989), 
p. 80. See also our Chapter 3, Problem 30.

†See Physics Today, March 2008, pp. 36-42.
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Figure 9.12 Density and num-
ber density versus temperature for 
liquid helium. Notice the sharp 
drop in density above the lambda 
point, T ! 2.17 K. From F. London, 
Superfluids, New York: Dover (1964). 
Reprinted with permission.
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326 Chapter 9 Statistical Physics

Clearly, something extraordinary is happening near 2.17 K. That tempera-
ture is commonly referred to as the critical temperature (Tc), transition temperature, 
or simply the lambda point, a name derived from the shape of the curve in Figure 
9.13. The visual appearance of liquid helium is sufficient to demonstrate that 
something special happens at the lambda point. As the temperature is reduced 
from 4.2 K toward the lambda point, the liquid boils vigorously. But at 2.17 K the 
boiling suddenly stops, and the liquid becomes quite calm. At lower tempera-
tures evaporation from the surface continues, but there is no further boiling.

We call what happens at 2.17 K a transition from the normal phase to the 
superfluid phase. The word superfluid comes from yet another peculiar property 
of liquid helium below the lambda point. The flow rate of liquid helium through 
a capillary tube as a function of temperature is shown in Figure 9.14. The rate of 
flow increases dramatically as the temperature is reduced (Figure 9.15). Another 
way to describe this phenomenon is to say that the superfluid has a lower viscosity 
than the normal fluid. The viscosity can be so low that superfluid helium has 
been observed to form what is called a creeping film and flow up and over the 
(vertical) walls of its container. But there is a curious note to add regarding the 
viscosity of liquid helium. If one tries to measure the viscosity by, for example, 
measuring the drag on a metal plate as it is passed over the surface of the liquid, 
the result is just about what one would get with a normal fluid, even at tempera-
tures somewhat below the lambda point. In other words, there appears to be a 
contradiction between the results of this experiment and the capillary flow ex-
periment just described.

Heike Kamerlingh Onnes (1853–
 1926), Dutch physicist who per-
formed the first important studies 
in low-temperature physics. After 
studying for a time under the 
German physicists Bunsen and 
Kirchhoff, he returned to Holland 
and eventually earned a physics 
chair at the University of Leiden. 
There, Onnes was the first to liq-
uefy helium in 1908, an advance 
that allowed him to discover the 
phenomenon of superconductivity 
in 1911. For this work he was 
awarded the 1913 Nobel Prize in 
Physics. Along with J. D. van der 
Waals and H. A. Lorentz, Onnes 
helped advance physics in the 
Netherlands.
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Figure 9.13 Specific heat of liquid helium as a function of temperature. The characteristic 
shape of this curve gives the transition point of 2.17 K the name “lambda point.” From F. London, 
Superfluids, New York: Dover (1964). Reprinted with permission.

Figure 9.14 The rate of capil-
lary flow in normal and superfl uid 
liquid helium. The capillary flow 
rate increases dramatically with 
decreasing temperature below the 
lambda point. From M. Zemansky, 
Temperatures Very Low and Very 
High, New York: Dover (1964). Re-
printed with permission.
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A solution to this conundrum is provided by a theory proposed by Fritz 
London in 1938. London claimed that liquid helium below the lambda point is 
part superfluid and part normal. The superfluid component increases as the 
temperature is reduced from the lambda point, approaching 100% superfluid as 
the temperature approaches absolute zero. It has been shown that the fraction F 
of helium atoms in the superfluid state follows fairly closely the relation

 F ! 1 % a T
Tc
b 3/2

 (9.58)

The two-fluid model can explain our viscosity paradox, if we assume that only 
the superfluid part participates in capillary flow and that enough normal fluid is 
always present to retard the motion of a metal plate dragged across its surface.

With two protons, two neutrons, and two electrons, the helium atom is a 
boson and therefore subject to Bose-Einstein statistics. Bosons are not subject to 
the Pauli exclusion principle, and therefore there is no limit to the number of 
bosons that may be in the same quantum state. Superfluid liquid helium is re-
ferred to as a Bose-Einstein condensation into a single state, in this case the 
superfluid state. All the particles in a Bose-Einstein condensate are in the same 
quantum state, which is not forbidden for bosons. As we saw in the case of the 
Fermi electron gas, fermions must “stack up” into their energy states, no more 
than two per energy state. Therefore, such a condensation process is not possible 
with fermions. As a striking demonstration of this fact, consider the isotope 3He. 
With one less neutron than the more common 4He, this isotope is a fermion. 
Liquid 3He undergoes a superfluid transition at 2.7 mK (a temperature almost a 
factor of 1000 lower than Tc in 4He!). The superfluid mechanism for the fermion 
3He is radically different from the Bose-Einstein condensation described earlier. 
It is more like the electron (fermion) pairing that one finds in the supercon-
ducting transition, which is described in Section 10.5. Although they are very 

Bose-Einstein 
condensation

Figure 9.15 (a) Liquid helium 
above the lambda point shows 
vigorous boiling. The suspended 
vessel contains holes in the bot-
tom that are so fine, they do not 
allow passage of the normal fluid. 
(b) Liquid helium below the 
lambda point no longer boils, and 
the superfluid is dripping 
through the small holes in the 
bottom of the vessel.(a) (b)
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similar chemically (as two isotopes of the same element usually are), 3He and 
4He are radically different when it comes to superfluidity, simply because one is 
a fermion and the other a boson. (See also Special Topic, “Superfluid 3He.”)

Bose-Einstein statistics may be used to estimate Tc for the superfluid phase of 
4He. Rather than derive a new density of states function for bosons, let us take 
advantage of the density of states function we have already developed for fermions. 
Using that result [Equation (9.43)] and substituting for the constant EF yields

 gFD1E 2 !
p

2
 a h2

8mL2 b%3/2

E 
1/2 (9.59)

where the FD subscript indicates a fermion distribution. The only difference for 
bosons is that they do not obey the Pauli principle, and therefore the density 

Special Topic

Superfl uid 3He

S uperfluidity in 3He was discovered in the early 
1970s. This makes it a relatively recent discovery, 

compared with superfluidity in 4He. There are good 
reasons, both experimental and theoretical, for the 
delay. The isotope 3He accounts for only 0.00013% of 
naturally occurring helium. This is not enough to 
produce sig nificant amounts of 3He for experimental 
purposes. However, it is possible to obtain 3He through 
the radioactive decay of tritium, which is produced in 
nuclear reactors. The superfluid transition in 3He oc-
curs at just 2.7 mK, a temperature not reached until 
the 1950s. Even then many physicists believed that a 
superfluid phase in 3He was impossible because the 
Bose condensation responsible for the superfluid 
phase of 4He cannot occur in 3He (a fermion).

Superfluid 3He was finally discovered in 1971 by 
Douglas Osheroff, Robert Richardson, and David Lee 
at Cornell University. As is sometimes the case in sci-
ence, they made the discovery while studying some-
thing else: the magnetic properties of solid 3He. (3He, 
like 4He, has a solid phase at extremely high pres-
sures.) Liquid 3He was present in the experiment only 
as a refrigeration ingredient. The researchers saw a 
sudden change in the rate at which the pressure in 
their apparatus changed, and they were ultimately 
able to show that a transition from normal 3He to 
superfluid 3He was responsible.

Subsequent studies showed something even more 
remarkable about 3He: it has three distinct superfluid 
phases. Two of them are shown in Figure A. The third 
phase can be produced only in the presence of a mag-

netic field (Figure B). This raises an interesting point 
about 3He: with three spin 1/2 particles in its nucleus, 
it has a net magnetic moment. The magnetic behavior 
of 3He, along with the fermion/boson distinction dis-
cussed in the text, is largely responsible for the differ-
ent behavior of the two isotopes. It also helps us dis-
tinguish between the fermion pairing mechanism in 
superfluid 3He and the fermion pairing mechanism in 
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Figure A Phase diagram for 3He with zero applied magnetic 
field. In this case there are two superfluid phases (A and B), 
and phase A exists only at very high pressures (1 bar ! 105 
Pa # 1 atm). From N. D. Mermin and D. M. Lee, “Superfluid Helium 3,” 
Scientific American 235, 68 (1976). Image copyright © George V. Kelvin. 
Used with permission.
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of states for spin-zero bosons should be less by a factor of 2. Dividing by 2 and 
rearranging, we find

 gBE1E 2 !
2pV
h3  12m 2 3/2E 

1/2 (9.60)

with V ! L3. Of course, the mass m is now the mass of a helium atom.
The number distribution n(E ) is now

 n 1E 2 ! gBE1E 2  FBE

  !
2pV
h3   12m 2 3/2 E 

1/2
 

1
B BEe 

E /kT % 1
 (9.61)

superconductors (Section 10.5). The pairs of 3He 
atoms form in such a way as to have a net spin (the 
magnetic moments of the two atoms tend to align with 
each other) and net angular momentum (they also 
tend to revolve around one another), but electron 
pairs in a superconductor have zero spin and zero 
angular momentum. However, the fact that physicists 
had previously considered the possibility of a super-
conducting state with nonzero angular momentum 
helped them quickly understand the nonzero angular 
momentum state of superfluid 3He when it was 
observed.

In the A1 phase, which exists only in the presence 
of an applied magnetic field and just below the 
superfluid transition temperature (Figure B), the 
magnetic moments align with the applied field, and 
the mutual pair revolution just described takes place 
in a plane parallel to the applied field. The A and B 
phases are more difficult to describe. They corre-
spond to various superpositions of the allowed fer-
mion wave functions. Although the A and B phases do 
not depend on the existence of an external magnetic 
field, their behavior when such a field is imposed is 
quite interesting. The superfluid is then said to exhibit 
anisotropic behavior. For example, the superfluid flow 
rate is quite different when measured parallel to the 
applied field than when measured in a plane perpen-
dicular to the applied field.

Recently physicists have been interested in study-
ing the vortex motion of superfluid 3He. Upon rotation 
the superfluid tends to break into separate vortices—
small regions of rotation with rotation patterns distinct 
from those in neighboring regions. The interesting 
thing about this discovery is that the vortex patterns are 

similar to those observed in superconductors. This new 
connection between superconductivity and superfluidity 
in 3He continues to be the subject of careful study. In 
1996 Osheroff, Richardson, and Lee were awarded 
the Nobel Prize in Physics for their discovery of 
superfluid 3He.
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Figure B Phase diagram for 3He in the presence of a strong mag-
netic field. The third superfluid phase (A1) appears in a very nar-
row band on the pressure-temperature diagram. From N. D. Mermin 
and D. M. Lee, “Superfluid Helium 3,” Scientific American 235, 68 (1976). 
Image copyright © George V. Kelvin. Used with permission.
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330 Chapter 9 Statistical Physics

In a collection of N helium atoms the normalization condition is

  N ! "
q

0

n 1E 2  dE

  !
2pV
h3   12m 2 3/2"

q

0

E 
1/2

B BEe 
E /kT % 1

 dE (9.62)

With the substitution u ! E/kT, this reduces to

 N !
2pV
h3   12mkT 2 3/2"

q

0

u1/2

B BEeu % 1
 du (9.63)

We do not know the value of BBE, but we will proceed using the minimum al-
lowed value BBE ! 1. Then the integral in Equation (9.63), when evaluated (as 
in Appendix 7), has a value of 2.315. Because we used the minimum value of BBE, 
this result will correspond to the maximum value of N. In other words

 N .
2pV
h3  12mkT 2 3/2 12.315 2  (9.64)

Rearranging, we find

 T /
h2

2mk
 c N

2pV 12.315 2 d 2/3

 (9.65)

Equation (9.65) can be evaluated numerically, because N/V is simply the number 
density of liquid helium in the normal state (2.11 ' 1028 atoms/m3). The result is

 T / 3.06 K (9.66)

The value 3.06 K is an estimate of Tc, because our analysis has predicted that 
this is the minimum temperature at which we may expect to find a normal Bose-
Einstein distribution. At lower temperatures there is condensation into the 
superfluid state. Our result is a bit off, because we used a density of states derived 
for a noninteracting gas rather than a liquid. Still, we have come within 1 kelvin 
of the correct value of Tc. As you would expect, calculations using a density of 
states constructed especially for a liquid produce even better results.

For a gas of nitrogen (N2) at room temperature (293 K) and 
1 atmosphere pressure, calculate the Maxwell-Boltzmann 
constant A and thereby show that Bose-Einstein statistics can 
be replaced by Maxwell-Boltzmann statistics in this case.

Strategy The normalization condition for a gas of N 
molecules is

 N ! "
q

0

n 1E 2  dE

where the distribution function is n(E ) ! g(E )FMB. Equa-
tion (9.60) gives the density of states for this boson gas:

 g 1E 2 !
2pV
h3  12m 23/2 E 

1/2

and the Maxwell-Boltzmann factor is FMB ! A exp(%E/kT ). 
The solution will require doing the normalization integral 
and solving for the constant A.

 EXAMPLE 9 .9
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   9.7 Bose-Einstein Statistics 331

Symmetry of Boson Wave Functions
To this point we’ve seen how the Pauli exclusion principle is key to understand-
ing the behavior of electrons in atoms (Chapter 8) and other collections of fer-
mions (Section 9.6). Similarly, the fact that bosons are not subject to the Pauli 
principle explains their behavior, as shown to this point in Section 9.7.

The properties of boson and fermion wave functions will shed further light 
on these behaviors. Consider a system of two identical particles labeled “1” and 
“2.” For now the particles may be either bosons or fermions. Call the wave func-
tion that describes the system of two particles $(1,2). Because the two particles 
are identical, interchanging them cannot change the probability density, so

 %° 11,2 2 %2 ! %° 12,1 2 %2
Solutions of this equation are

 ° 11,2 2 ! )° 12,1 2
In the case ° 11,2 2 ! ° 12,1 2 , the wave functions are called symmetric, and when 
° 11,2 2 ! %° 12,1 2  the wave functions are antisymmetric. For our purposes this 
distinction is crucial: Bosons have symmetric wave functions, and fermions have anti-
symmetric wave functions.

Let’s see what this implies in terms of the wave functions of the two indi-
vidual particles, $(1) and $(2). In a system of two noninteracting particles the 
overall wave function can be expressed as a product of individual wave functions. 
That is, ° 11,2 2 ! ° 11 2° 12 2 . Now suppose that the two particles are in different 
states, labeled a and b. The net wave function for this system is a linear combina-
tion of the two possible combinations of the particles in states a and b. The sym-
metric wave function $S is the sum, and the antisymmetric wave function $A is 
the difference:

 °S !
122

 &°a 
11 2°b 

12 2 # °a 
12 2°b 

11 2 '  and 

(9.67)

 °A !
122

 &°a 
11 2°b 

12 2 % °a 
12 2°b 

11 2 '

Symmetric and 
antisymmetric wave 
functions

Solution Putting all the factors into the normalization 
integral:

 N ! "
q

0

n 1E 2  dE

 !
2pV
h3  12m 23/2A"

q

0

E 
1/2 exp 1%E /kT 2  d E

The integral is a standard definite integral, which yields

  N !
2pV
h3   12m 23/2A 

1p
2

  1kT 23/2

  !
V
h3 12pmkT 23/2A

Therefore

 A !
h3N
V

  12pmkT 2%3/2

Under normal conditions (atmospheric pressure and room 
temperature) the number density of nitrogen gas is N/V ! 
2.50 ' 1025 m%3. Plugging this into our result for A along 
with the molecular mass of N2 and T ! 293 K yields the 
value A ! 1.8 ' 10%7. Because this is much less than unity, 
the use of Maxwell-Boltzmann statistics is justified (see the 
discussion at the end of Section 9.5).
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332 Chapter 9 Statistical Physics

where in each case the factor 1/22 is for normalization. You can verify for your-
self (Problem 42) that these wave functions satisfy the requirements for symmet-
ric and antisymmetric wave functions—that is, that $S(1,2)  !  $S(2,1) and 
$A(1,2)  !  %$A(2,1).

One immediate result of Equation (9.67) is that it justifi es the Pauli Exclu-
sion Principle. Suppose particles 1 and 2 are fermions in the same state. Then 
a  !  b, and the antisymmetric wave function is $A  !  0, consistent with the prin-
ciple that two fermions can’t occupy the same quantum state.

Bosons, on the other hand, are governed by the symmetric wave function $S 
in Equation (9.67). If two bosons are in the same state (call it state a), then that 
wave function becomes

 °S !
122

 &°a 
11 2°a 

12 2 # °a 
12 2°a 

11 2 ' !
222

 &°a 
11 2°a12 2 '

and the probability density for this state is

 °S
*°S ! a 222

b 2

&°a
* 11 2°a

* 12 2°a 
11 2°a 

12 2 '
or

 °S
*°S ! 2&°a

* 11 2°a
* 12 2°a 

11 2°a 
12 2 ' (9.68)

Thus, two bosons have a nonzero probability of occupying the same state. In 
other words, if conditions are favorable for Bose-Einstein condensation to occur, 
it is likely to happen. This result can be generalized to more than two bosons, 
consistent with the observed behavior of Bose-Einstein condensates.

Bose-Einstein Condensation in Gases
For years physicists attempted to demonstrate Bose-Einstein condensation in 
gases. They were hampered, however, by the strong Coulomb interactions 
among the gas particles. This kept researchers from obtaining the low tempera-
tures and high densities needed to produce the condensate.

Finally in 1995 success was achieved by a group led by Eric Cornell and Carl 
Wieman, working at Boulder, Colorado. Forming a Bose-Einstein condensate 
from a gas requires the achievement of extremely low temperatures, which this 
group was able to do in a two-step process. First, they used laser cooling (see the 
Special Topic box in Chapter 2) to cool their gas of 87Rb atoms to about 1 mK. 
Then they used a magnetic trap to cool the gas to a temperature of about 20 nK 
(2.0 ' 10%8 K). In their magnetic trap the researchers varied the magnetic field at 
radio frequencies in such a way that atoms with higher speeds and further from the 
center are driven away. What remained was an extremely cold, dense cloud. At 
temperatures of about 170 nK, the rubidium cloud was observed to pass through a 
transition, from a gas with a normal, broad velocity distribution to an extremely 
narrow one. It was also observed that the fraction of atoms in the condensed state 
increased as the temperature was lowered further, just as in a superfluid. Figure 
9.16 shows how a Bose-Einstein condensate forms as a gas is cooled.

Later in 1995 Bose condensation in a gas was confirmed, this time with so-
dium gas, by a group led by Wolfgang Ketterle at MIT. For sodium the transition 
to the condensed state was observed to begin at a relatively warm 2 0K. For their 
important discoveries Cornell, Ketterle, and Wieman were awarded the 2001 
Nobel Prize in Physics.
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   9.7 Bose-Einstein Statistics 333

Today physicists are striving to understand the properties of these and other 
Bose-Einstein condensates and reconcile their observations with quantum the-
ory. Some physicists are exploring possible applications of Bose-Einstein con-
densation. One application is the atom laser, fi rst demonstrated by Ketterle and 
others in 1996. The atom laser uses a collection of atoms in a Bose-Einstein con-
densate as a source of atoms, which are then emitted in a coherent beam. Note 
that this beam of particles differs from the coherent beam of electromagnetic 
radiation in a standard optical laser. The atom beam is much slower, because 
these relatively heavy particles are not accelerated to speeds anywhere near the 
speed of light. Other important differences are that new atoms cannot be cre-
ated the way photons are created in an optical laser, which limits output, and 
that atoms in the beam interact with one another, making the atomic beam less 
focused and collimated than its optical counterpart. For these reasons it is un-
likely that atom lasers will soon replace optical lasers in common applications 
such as retail scanners, CD/DVD readers, or surgery. However, atom lasers are 
used in atomic clocks and in other precision measurements, as well as thin-fi lm 
deposition, in which the laser can be used to deposit a layer of atoms on a sur-
face, and lithography, in which the beam etches the surface.

Figure 9.16 This series of graphs shows sequentially how a Bose-Einstein condensate forms as a 
sample of atoms is cooled. In these three-dimensional representations, the two horizontal axes rep-
resent velocity components, and the vertical axis represents the number of atoms having those ve-
locities. Thus, a higher and sharper peak around the center of the graph (at zero velocity) shows 
the condensation of atoms into a small velocity space. The field of view of each of the three frames 
is about 200 0m by 270 0m.
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334 Chapter 9 Statistical Physics

S u m m a r y

By the end of the nineteenth century, the work of Maxwell 
and Boltzmann had made it clear that statistics could be 
useful in describing physical processes. In particular, 
Maxwell’s statistical distribution for the velocities of mole-
cules in an ideal gas is f (v), where

 f 1v 2  d 3v ! C exp 1% 
1
2 bmvx

2 % 1
2 bmvy

2 % 1
2 bmvz

2 2  d 3v  
 (9.2)

The corresponding speed distribution F(v) is

 F 1v 2  dv ! 4pC exp 1% 
1
2 bmv 2 2  v 2 dv (9.14)

where C ! (bm/2p)3/2 and b! (kT )%1. The speed distribu-
tion can be used to predict many of the observed properties 
of ideal gases. Computing the mean kinetic energy of a 
mon atomic ideal gas molecule using the Maxwell velocity 
distribution yields

 K ! 3
2 kT  (9.8)

This result is in accord with the equipartition theorem, 
which states that in equilibrium a mean energy of 1

2 kT  is as-
sociated with each independent quadratic term in a mole-
cule’s energy. The equipartition theorem can be applied to 
the rotational and vibrational modes of a diatomic mole-
cule, and it can thereby be used to compute the heat capaci-
ties of diatomic gases at various temperatures.

Under conditions of higher densities and lower tem-
peratures the particles’ wave functions overlap, and the in-
distinguishability of the particles becomes a factor. As a re-
sult it is necessary to use quantum statistics: Fermi-Dirac 
statistics for fermions and Bose-Einstein statistics for bosons. 
These distributions differ because fermions obey the Pauli 
exclusion principle and bosons do not. The statistical fac-

tors associated with the classical (Maxwell-Boltzmann) and 
quantum distributions are given by

  FMB ! A exp 1%bE 2  (9.27)

  FFD !
1

B FD exp 1bE 2 # 1
 (9.30)

  FBE !
1

B BE exp 1bE 2 % 1
 (9.32)

where A, BFD, and BBE are normalization factors. In each 
case the distribution function n(E ) can be expressed as the 
product of the density of states g(E ) [where g(E ) is defined 
as the number of states available per unit energy range] and 
the appropriate statistical factor.

Fermi-Dirac statistics are needed in order to predict the 
correct behavior of conduction electrons in a metal. Using 
the Fermi-Dirac distribution, one can find the electrical 
conductivity (and the correct temperature dependence 
thereof) as well as the electronic contribution to the specific 
heat of a metal.

Bose-Einstein statistics can be used to derive the Planck 
law for blackbody radiation:

 I1l, T 2 !
2pc 2h
l5  

1
e 

hc /l k T % 1
 (9.57)

Bose-Einstein statistics also help us understand some of the 
properties of liquid helium, which undergoes a transition to 
the superfluid state at the critical temperature Tc ! 2.17 K. 
The extraordinarily low viscosity of a superfluid is be -
cause the molecules in a superfluid obey Bose-Einstein sta-
tistics. In recent years, Bose-Einstein condensation has been 
observed in a variety of new materials.

 1. How relevant is the Heisenberg uncertainty principle 
in frustrating Laplace’s goal of determining the be-
havior of an essentially classical system of particles 
(say, an ideal gas) through knowledge of the motions 
of individual particles?

 2. Why might the measured molar heat capacity of Cl2 
not match the prediction of the equipartition theo-
rem as well as that of O2?

 3. In a diatomic gas why should it be more diffi cult to 
excite the vibrational mode than the rotational mode?

 4. What is the physical signifi cance of the root-mean-
square speed in an ideal gas?

 5. An insulated container fi lled with an ideal gas moves 
through fi eld-free space with a constant velocity. De-
scribe the effect this has on the Maxwell velocity dis-
tributions and Maxwell speed distribution.

 6. Maxwell conceived of a device (later called Maxwell’s 
demon) that could use measurements of individual 
molecular speeds in a gas to separate faster molecules 
from slower ones. This device would operate a trap 

Q u e s t i o n s
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door between two (initially identical) compartments, 
allowing only faster molecules to pass one way and 
slower molecules the other way, thus creating a tem-
perature imbalance. Then the temperature difference 
could be used to run a heat engine, and the result 
would be the production of mechanical work with no 
energy input. Of course this would violate the laws 
of thermodynamics. Discuss reasons why you think 
Maxwell’s demon cannot work.

 7. If the distribution function f(q) for some physical 
property q is even, it follows that q ! 0. Does it also 
follow that the most probable value q*  !  0?

 8. If a collection of particles are identical, how can they 
be distinguishable?

 9. Which of the following act as fermions and which as 
bosons: hydrogen atoms, deuterium atoms, neutrinos, 
muons, table-tennis balls?

 10. Theorists tend to believe that free quarks (with charge 
) 2

3e and ) 1
3e) do not exist, but the question is by no 

means decided. If free quarks are found to exist, what 
can you say about the distribution function they 
would obey?

 11. Explain why you expect E to be greater than 1
2EF

[Equation (9.45)].
 12. Why doesn’t the total energy of a collection of fermi-

ons approach zero as the temperature approaches 
zero?

 13. How would the behavior of metals be different if elec-
trons were bosons rather than fermions?

 14. What would happen to the Planck distribution and 
the behavior of liquid helium if we let h S 0 in the 
Bose-Einstein density of states [Equation (9.53)]?

 15. If only the superfl uid component of liquid helium 
fl ows through a very fi ne capillary, is it possible to use 
capillary fl ow to separate completely the superfl uid 
component of a sample of liquid helium from the 
normal component?

 16. Why is BBE  !  1 the minimum allowed value in the 
integral in Equation (9.63)?

 17. Discuss similarities and differences between an atom 
laser and an optical laser.

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

9.2 Maxwell Velocity Distribution
 1. (a) Use Equation (9.5) to show that the one-dimen-

sional rms speed is

vx rms !  v2
x 1/2 ! a kT

m
b 1/2

  (b) Show that Equation (9.5) can be rewritten as

  g1vx 2dvx ! 12p 2%1/21vx  rms 2%1
 exp a%

1
2

 v 
2

x /v 
2

x  rms bdvx

 2. The result of Problem 1 can be used to estimate the 
relative probabilities of various velocities. Pick a small 
interval ¢vx ! 0.002vx rms. For 1 mole of an ideal gas, 
compute the number of molecules within the range 
¢vx centered at (a) vx ! 0.01vx rms, (b) vx ! 0.20vx rms, 
(c) vx ! vx rms, (d) vx ! 5vx rms, and (e) vx ! 100vx rms.

 3. Consider an ideal gas enclosed in a spectral tube. 
When a high voltage is placed across the tube, many 
atoms are excited, and all excited atoms emit electro-
magnetic radiation at characteristic frequencies. Ac-
cording to the Doppler effect, the frequencies ob-
served in the laboratory depend on the velocity of the 
emitting atom. The nonrelativistic Doppler shift of ra-
diation emitted in the x direction is f ! f011 # vx/c 2 . 
The resulting wavelengths observed in the spectro-
scope are spread to higher and lower values because 
of the (respectively) lower and higher frequencies, 
corresponding to negative and positive values of vx. 

We say that the spectral line has been Doppler broad-
ened. This is what allows us to see the lines easily in the 
spectroscope, because the Heisenberg uncertainty 
principle does not cause signifi cant line broadening 
in atomic transitions. (a) What is the mean frequency 
of the radiation observed in the spectroscope? (b) To 
get an idea of how much the spectral line is broad-
ened at particular temperatures, derive an expression 
for the standard deviation of frequencies, defi ned to 
be

Standard deviation ! &1f % f 0 22'1/2

  Your result should be a function of f0, T, and con-
stants. (c) Use your results from (b) to estimate the 
fractional line width, defi ned by the ratio of the 
standard deviation to f0, for hydrogen (H2) gas at 
T  !  293 K. Repeat for a gas of atomic hydrogen at the 
surface of a star, with T  !  5500 K.

9.3 Equipartition Theorem
 4. Consider the model of the diatomic gas oxygen (O2) 

shown in Figure 9.3. (a) Assuming the atoms are point 
particles separated by a distance of 121 pm, fi nd 
the rotational inertia Ix for rotation about the x axis. 
(b) Now compute the rotational inertia of the mole-
cule about the z axis, assuming almost all of the mass 
of each atom is in the nucleus, a nearly uniform solid 
sphere of radius 3.0  '  10%15 m. (c) Compute the ro-
tational energy associated with the fi rst (/ ! 1) quan-
tum level for a rotation about the x axis. (d) Using the 

P r o b l e m s

( )
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energy you computed in (c), fi nd the quantum num-
ber / needed to reach that energy level with a rotation 
about the z axis. Comment on the result in light of 
what the equipartition theorem predicts for diatomic 
molecules.

9.4 Maxwell Speed Distribution
 5. Using the Maxwell speed distribution, (a) write an 

integral expression for the number of molecules in an 
ideal gas that would have speed v  (  c at T  !  293 K. 
(b) Explain why the numerical result of the expres-
sion you found in (a) is negligible.

 6. Use a computer to explore the numerical value of the 
defi nite integral you constructed in the previous 
problem.

 7. It is important for nuclear engineers to know the ther-
mal properties of neutrons in a nuclear reactor. As-
suming that a gas of neutrons is in thermal equilib-
rium, fi nd v and v* for neutrons at (a) 300 K and 
(b) 630 K (a typical temperature inside a modern 
light-water nuclear reactor).

 8. Show that the Maxwell speed distribution function 
F(v) approaches zero by taking the limit as v S 0 and 
as v S q.

 9. Find v* for N2 gas in air (a) on a cold day at T  !  
%15°C and (b) on a hot day at T  !  35°C.

 10. For an ideal gas O2 at T  !  293 K fi nd the two speeds 
v that satisfy the equation 2F(v)  !  F(v*). Which of the 
two speeds you found is closer to v*? Does this make 
sense?

 11. For the ideal gas Ar at T  !  293 K, use a computer to 
show that

(q
0 F1v 2  dv ! 1

  and thereby verify that C  !  (!m/2)3/2.
 12. Consider the ideal gas H2 at T  !  293 K. Use a numeri-

cal integration program on a computer to fi nd the 
fraction of molecules with speeds in the following 
ranges: (a) 0 to 10 m/s, (b) 0 to 100 m/s, (c) 0 to 
1000 m/s, (d) 1000 m/s to 2000 m/s, (e) 2000 m/s to 
5000 m/s, and (f) 0 to 5000 m/s.

 13. (a) Find vrms for H2 gas and N2 gas, both at T  !  293 K. 
(b) Considering your answers to part (a), discuss why 
our atmosphere contains nitrogen but not hydrogen.

 14. (a) Find the total translational kinetic energy of 1 mole 
of argon atoms at T  !  273 K. (b) Would your answer be 
the same or different for 1 mole of oxygen (O2) mole-
cules? Explain.

9.5 Classical and Quantum Statistics
 15. Use the Maxwell-Boltzmann energy distribution 

Equation (9.26) to (a) fi nd the mean translational 
kinetic energy of an ideal gas and (b) compare your 
results with 1

2mv  2 and 1
2mv  2

—
.

 16. From the Maxwell-Boltzmann energy distribution, 
fi nd the most probable energy E*. Plot F(E) versus E 
and indicate the position of E* on your plot.

 17. Near the surface of a certain kind of star, approxi-
mately one hydrogen atom per 10 million is in the 
fi rst excited level (n  !  2). Assume that the other 
atoms are in the n  !  1 level. Use this information 
to estimate the temperature there, assuming that 
Maxwell-Boltzmann statistics are valid. (Hint: In this 
case, the density of states depends on the number of 
possible quantum states available on each level, which 
is 8 for n  !  2 and 2 for n  !  1.)

 18. One way to decide whether Maxwell-Boltzmann statis-
tics are valid is to compare the de Broglie wavelength 
" of a typical particle with the average interparticle 
spacing d. If lV d then Maxwell-Boltzmann statistics 
are generally acceptable. (a) Using de Broglie’s rela-
tion l ! h/p, show that

l !
h13mkT 21/2

  (b) Use the fact that N/V  !  1/d3 to show that the in-
equality lV d can be expressed as

 
N
V

 
h313mkT 23/2 V 1

  (c) Use the result of (b) to determine whether Maxwell-
Boltzmann statistics are valid for Ar gas at room tem-
perature (293 K) and for the conduction electrons in 
pure silver at T  !  293 K.

 19. Use Equation (9.24) to turn the Maxwell speed distri-
bution, Equation (9.14), into an energy distribution 
[Equations (9.25) and (9.26)].

 20. Consider an atom with a magnetic moment # and a 
total spin 1/2. The atom is placed in a uniform mag-
netic fi eld of magnitude B at temperature T. (a) 
Assuming Maxwell-Boltzmann statistics are valid at 
this temperature, fi nd the ratio of atoms with spins 
aligned with the fi eld to those aligned opposite the 
fi eld. (b) Evaluate numerically with B  !  5.0 T, for 
T  !  77 K, T  !  273 K, and T  !  900 K.

9.6 Fermi-Dirac Statistics
 21. The Fermi energy can be defi ned as the energy at 

which the Fermi factor FFD  !  0.5. Using this defi ni-
tion, show that the constant BFD in Equation (9.30) is 
equal to exp(%!EF) and that

FFD !
1

 exp &b1E % EF 2 ' # 1

  In other words, verify Equations (9.33) and (9.34).
 22. At T  !  0, what fraction of electrons have energy 

E + E?
 23. Silver has exactly one conduction electron per atom. 

(a) Use the density of silver (1.05  '  104 kg/m3) and 
the mass of 107.87 g/mol to fi nd the density of con-
duction electrons in silver. (b) At what temperature is 
A  !  1 for silver (where A is the normalization con-
stant in the Maxwell-Boltzmann distribution)? (c) At 
what temperature is A  !  10%3?
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 24. What fraction of the electrons in a good conductor 
have energies between 0.90 EF and EF at T  !  0?

 25. Use the data in Problem 23 to compute (a) EF and (b) 
uF for silver.

 26. The Fermi energy for gold is 5.51 eV at T  !  293 K. 
(a) Find the average energy of a conduction electron 
at that temperature. (b) Compute the temperature at 
which the average kinetic energy of an ideal gas mol-
ecule would equal the average energy you found in 
(a). (c) Comment on the relative temperatures in (a) 
and (b).

 27. The density of pure copper is 8.92  '  103 kg/m3, and its 
molar mass is 63.546 grams. Use the experimental value 
of the conduction electron density, 8.47  '  1028 m%3 to 
compute the number of conduction electrons per 
atom.

 28. Aluminum has a density of 2.70  '  103 kg/m3 at a 
temperature of 293 K, and its molar mass is 26.98 g. 
(a) Compute the number of aluminum atoms per 
unit volume at that temperature. (b) Use the fact that 
EF  !  11.63 eV for aluminum at 293 K to fi nd the num-
ber density of free electrons. (c) Combine your results 
from (a) and (b) to estimate the number of conduc-
tion electrons per atom—the valence number for 
aluminum.

 29. Compute the Fermi speed for (a) Ca (EF  !  4.69 eV) 
and (b) Be (EF  !  14.3 eV).

 30. Verify that Equation (9.35) is valid in the limit T S 0.
 31. Show that in general (that is, T 1 0) the energy distri-

bution of N electrons in a conductor with Fermi en-
ergy EF at temperature T is

n1E 2 !
3N
2

E 
%3/2
F  

E 
1/2

 exp &b1E % EF 2 ' # 1
 32. Use the result of Problem 31 with copper (EF  !  7.0 eV) 

to sketch n(E) at (a) T  !  0, (b) T  !  293 K, and (c) T  !  
1500 K.

 33. Use numerical integration of the function given in 
Problem 31 to verify that

(q
0 n1E 2dE ! N

  Choose the parameters T  !  300 K and use EF  !  7.00 
eV for copper.

 34. Use numerical integration of the function given in 
Problem 31 to fi nd the fraction of conduction elec-
trons with energies between 6.00 eV and 7.00 eV in 
copper at T  !  293 K. Comment on your results.

 35. In a neutron star the entire star’s mass has collapsed 
essentially to nuclear density. For a neutron star with 
radius 10 km and mass 4.50  '  1030 kg, fi nd the Fermi 
energy of the neutrons.

 36. Consider a collection of fermions at T  !  293 K. Find 
the probability that a single-particle state will be oc-
cupied if that state’s energy is (a) 0.1 eV less than EF; 
(b) equal to EF; (c) 0.1 eV greater than EF.

 37. Suppose you have an ideal gas of fermions at room 
temperature (293 K). How large must E  %  EF be for 

Fermi-Dirac and Maxwell-Boltzmann statistics to 
agree to within 1%? Do you think the agreement is 
within 1% for ideal gases under normal conditions?

 38. Gold is a dense metal, with a density of 1.93  '  
104 kg/m3 at T  !  300 K. (a) If gold has exactly one 
conduction electron per atom, what is its Fermi en-
ergy? Compare your result with the measured value in 
Table 9.4. (b) If the electrons in gold were treated as 
a classical ideal gas, what would be their mean ther-
mal energy (also at 300 K)? Explain the large discrep-
ancy between your answers in (a) and (b).

9.7 Bose-Einstein Statistics
 39. Next to helium, the lightest noble gas is neon. (a) Esti-

mate the temperature at which neon should become 
a superfl uid. (The density of the liquid is about 
1200 kg/m3.) (b) Why doesn’t neon become a super-
fl uid? Hint: its melting point at 1 atm is 24.7 K.

 40. Consider the problem of photons in a spherical cavity 
at temperature T, as described in Section 9.7. (a) For 
the entire collection of photons, what is the number 
density (number of photons per unit volume)? 
(b) Evaluate your result from (a) numerically at 
T  !  500 K and T  !  5800 K (the approximate tempera-
ture of the sun’s surface).

 41. Use numerical integration on a computer to verify the 
output of the defi nite integral in Equation (9.63).

 42. Show that the wave functions in Equations (9.67) sat-
isfy the requirements for symmetric and antisymmet-
ric wave functions: $S(1,2)  !  $S(2,1) and $A(1,2)  !  
%$A(2,1).

General Problems
 43. Assume that air is an ideal gas under a uniform gravi-

tational fi eld, so that the potential energy of a mole-
cule of mass m at altitude z is mgz. Show that the dis-
tribution of molecules varies with altitude as given by 
the distribution function f(z) dz  !  Cz exp(%!mgz) dz 
and that the normalization constant Cz  !  mg/kT. This 
distribution is referred to as the law of atmospheres.

 44. Use the law of atmospheres (Problem 43) to compare 
the air densities at sea level, Chicago (altitude 176 m), 
Denver (altitude 1610 m), and the summit of Mt. 
Rainier (altitude 4390 m), assuming the same tem-
perature 273 K in each case.

 45. Consider the law of atmospheres (Problem 43). First 
show that the pressure difference *P corresponding 
to an altitude change *z is approximately

¢P ! %rg ¢z ! %
Nmg

V
¢z

  Next, assume that the temperature is constant over 
small altitude changes and then show that 
P # P0 exp 1%bmgz 2 , where P0 is the pressure at z  !  0.

 46. Consider a thin-walled, fi xed-volume container of 
volume V that holds an ideal gas at constant tempera-
ture T. It can be shown by dimensional analysis that 
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the number of particles striking the walls of the 
container per unit area per unit time is given by 
nv/4,  where as usual n is the particle number density. 
The container has a small hole of area A in its surface 
through which the gas can leak slowly. Assume that A 
is much less than the surface area of the container. 
(a) Assuming that the pressure inside the container is 
much greater than the outside pressure (so that no 
gas will leak from the outside back in), estimate the 
time it will take for the pressure inside to drop to half 
the initial value. Your answer should contain A, V, and 
the mean molecular speed v. (b) Obtain a numerical 
result for a spherical container with a diameter of 
40 cm containing air at 293 K, if there is a circular 
hole of diameter 1.0 mm in the surface.

 47. For the situation described in Problem 46, show that 
the speed distribution of the escaping molecules is 
proportional to v3 exp(%!mv2) and that the mean 
energy of the escaping molecules is 2kT.

 48. Escape speed from near Earth’s surface is 1.1  '  104 
m/s. (a) Find the temperature required for helium 
gas to have an rms speed equal to that escape speed. 
(b) Your answer to (a) is much higher than tempera-
tures on Earth. Why then does helium escape from 
Earth’s atmosphere?

 49. The escape speed of a particle near the sun’s surface 
is 6.2  '  105 m/s. Most of the gas there is atomic hy-
drogen. Find the rms speed of a hydrogen atom, as-
suming the sun’s surface temperature is 5800 K. 
Compare your answer with the escape speed.

 50. (a) What density of conduction electrons in copper is 
needed in order for the Maxwell-Boltzmann normal-
ization constant to be A  !  1 at T  !  273 K? Use your 
result to argue why Maxwell-Boltzmann statistics are 
not valid in this case. (b) Repeat the calculation for 
He gas at the same temperature. (c) Repeat for a neu-
tron star, which is composed entirely of neutrons and 
has a temperature of 106 K. (d) The average density of 
a neutron star is on the order of 1017 kg/m3. Use your 
answer to part (c) to discuss whether Maxwell-
Boltzmann statistics are valid in this case.

 51. Starting with the Fermi energy given in Table 9.4, es-
timate the number of conduction electrons per atom 
for aluminum, which has density 2.70  '  103 kg/m3 at 
T  !  300 K.

 52. Use the method described in Appendix 6 to evaluate 
the integral

(q
0 x n

 exp 1%ax 2 2dx

  in terms of the constant a for n  !  3, 4, and 5.
 53. For a (classical) simple harmonic oscillator with fi xed 

total energy E, fi nd the mean value of kinetic energy 
K  and the mean value of potential energy V . Show 
that K ! V ! E/2.

 54. Stars similar to our sun eventually become white 
dwarfs, in which the hydrogen and helium have fused 
to form carbon and oxygen. The star has collapsed to 
a much smaller radius, which is why it is described as 
a “dwarf.” The electrons are not bound to the nuclei 
and form a degenerate Fermi gas within the white 
dwarf. Consider a white dwarf with a mass equal to the 
sun’s mass (1.99  '  1030 kg) but a radius of only 
6.96  '  106 m, which is just 1% of the sun’s present 
radius. (a) If the white dwarf consists of equal parts 
carbon and oxygen, how many electrons are present? 
(b) What is the number density of electrons? (c) Find 
the Fermi energy of the electrons (in units of eV) and 
comment on the result.

 55. An atom’s nucleus is a collection of fermions—
protons and neutrons. (a) In calculating the Fermi 
energy in a nucleus, the protons and neutrons must 
be considered separately. Why? (b) Find the Fermi 
energy of (i) the protons and (ii) the neutrons in a 
uranium nucleus, which has a radius of 7.4  '  10%15 m 
and contains 92 protons and 146 neutrons.

 56. During World War II, physicists developed methods to 
separate the uranium-235 and -238 isotopes. One 
method involved converting the uranium metal to a 
gas, UF6, and then allowing the gas to diffuse through 
a porous barrier, with the lighter gas diffusing faster. 
What is the difference in the speeds of the two UF6 gas 
species at room temperature?

 57. Find the number density N/V for Bose-Einstein con-
densation to occur in helium at room temperature 
(293 K). Compare your answer with the number den-
sity for an ideal gas at room temperature at 1 atmo-
sphere pressure.

 58. Bose-Einstein condensates of rubidium have reached 
temperatures of 20 nK. Treating rubidium as an ideal 
gas, fi nd the rms speed of a rubidium atom at that 
temperature. (Assume the most common isotope 
85Rb.) Repeat for a Bose-Einstein condensate of 
sodium, using its lowest measured temperature of 
450 pK.

 59. The 40Ar isotope of argon (its most common form) is 
a boson, like 4He. (a) Follow the methods of Section 
9.7 and estimate the temperature at which argon 
should become a Bose-Einstein condensate. Use a 
number density 2.5  '  1028 m%3 for argon. (b) Why 
isn’t argon observed to become a Bose-Einstein con-
densate? (Hint: The freezing point of argon is 84 K.)

 60. In one experiment done by Cornell and Wieman, a 
Bose-Einstein condensate contained 2000 rubidium-87 
atoms within a volume of about 10%15 m3. Estimate the 
temperature at which Bose-Einstein condensation 
should have occurred.
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In Chapters 7 and 8, you learned about the properties of individual atoms. This 
chapter builds on that knowledge to find out what happens when those atoms 
join together to form molecules and solids.

Beginning with the simplest combination of atoms, we first consider the di-
atomic molecule. Molecular spectra are quantized, just like the atomic spectra 
you’ve seen previously, and the quantum principles you’ve already learned help 
explain the observed spectra. One important application of the study of atomic 
and molecular energy levels is the use of stimulated emission in lasers. In Section 
10.2 the working mechanisms of several kinds of lasers are explained, and some 
of their many applications, including holography, are discussed.

The remainder of the chapter is devoted to the properties of solids. Solids 
can have many different crystal structures, although in some cases they lack long-
range order altogether. Thermal and magnetic properties of solids (including 
thermal expansion, thermal conductivity, and magnetic susceptibility) can be 
explained using quantum theory.

Superconductivity is a remarkable phenomenon observed in many solid 
materials at low temperatures. We present the development of superconducting 
materials, the theory of superconductivity, and the prospects for future basic 
research in this field. The final section of the chapter addresses some of the 
developed and proposed applications of superconductivity. Zero-resistance elec-
trical circuits and transmission lines, magnetic levitation, magnetic resonance 
imaging, and high-field magnets are just a few of the applications being studied. 
The amazing properties of superconductors give rise to many more exciting pos-
sibilities for the future.

339

C H A P T E R

10Molecules, Lasers, 
and Solids

The experiment left no doubt that, as far as accuracy of measurement 
went, the resistance disappeared. At the same time, however, some-
thing unexpected occurred. . . . [T]he mercury at 4.2K has entered a 
new state, which, owing to its particular electrical properties, can be 
called the state of superconductivity.

Heike Kamerlingh Onnes, Nobel Lecture (1913)
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340 Chapter 10 Molecules, Lasers, and Solids

10.1  Molecular Bonding and Spectra
How are atoms held together to form molecules? The attractive forces between 
atoms in molecules are due to the Coulomb force, because the Coulomb force is 
the only one that has both the strength and long range necessary to bind atoms at 
the distances observed (normally on the order of 10!10 m). All atoms have both posi-
tive charges (in the nucleus) and negative charges (electrons) needed to provide 
attractive forces, although not all atoms readily form molecules. Because every neu-
tral atom contains both kinds of charge, the net force of one atom on another must 
be a combination of attractive and repulsive forces. It is the combination of attractive 
and repulsive forces that creates a stable molecular structure.

As an example let us consider the bonding in a diatomic molecule (the 
mechanisms are similar, although sometimes more complex, in multiatom mole-
cules). We will find it useful to look at molecular binding using potential energy 
V. Recall that in conservative systems, force is related to potential energy by F " 
!dV/dr, where r is the distance of separation. This means that, in cases in which the 
magnitude of the force decreases with increasing distance (as it does with Cou-
lomb forces), we should associate a negative slope (dV/dr # 0) with repulsive 
forces and a positive slope (dV/dr $ 0) with attractive forces. An approximation of 
the force felt by one atom in the vicinity of another atom may then be written

 V "
A
rn !

B
rm  (10.1)

where A and B are positive constants that depend on the types of atoms involved 
and n and m are small, positive numbers. You might expect n and m to be equal 
to 1 because the forces are Coulomb, but because of the complicated shielding 
effects of the various electron shells, this is not so.

As shown in Figure 10.1, the sum of attractive and repulsive potentials pro-
duces a potential well that provides a stable equilibrium for total energy E # 0. 
The exact shape of the curve depends on the parameters A, B, n, and m from 
Equation (10.1). You should convince yourself that n $ m is required in order to 
produce the potential well shown in Figure 10.1. Vibrations are excited ther-
mally, so the exact level of E depends on temperature, with E at the bottom of 
the potential well when T " 0. Once a pair of atoms is joined, one would then 
have to supply enough energy to raise the total energy of the system to zero (ef-
fectively taking the second atom to r " q) in order to separate the molecule into 
two neutral atoms. These potential energy curves typically have a minimum 
value, and the corresponding value of r is an equilibrium separation.

The amount of energy required to separate the two atoms completely is known 
as the binding energy for that molecule. The binding energy is roughly equal to the 
depth of the potential well shown in Figure 10.2. The binding energy and well 
depth may not be exactly equal, however, because by the Heisenberg uncertainty 
principle, the ground state energy cannot lie exactly at the bottom of the well.

Molecular Bonds
The bonding mechanism for a particular molecule depends principally on the 
electronic structure of the atoms involved. The simplest of these bonding mecha-
nisms, the ionic bond, typically occurs when the two atoms involved are easily 
ionized. For example, sodium, which has the electronic configuration 1s22s22p63s1, 
readily gives up its 3s electron to become Na%, whereas chlorine, with electronic 

Binding energy

Ionic bond

A!
rn

B!
rm

!B!
rm

A!
rn

0 r
E

V(r)

V(r) " !

Figure 10.1 Attractive and re-
pulsive potentials (lightly shaded 
lines) experienced by one atom 
in the vicinity of another atom. 
The sum of attractive and repul-
sive potentials is represented by 
the solid blue line. Bound states 
can exist for a total energy E # 0.

r0
Binding!
energy

Equilibrium!
separation

V(r)

Figure 10.2 The net potential 
energy curve, showing the equi-
librium separation and binding 
energy.
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   10.1 Molecular Bonding and Spectra 341

configuration 1s 22s 22p 63s 23p 5, readily gains an electron to become Cl!. Notice 
that both Na% and Cl! have filled electronic shells. The Na% and Cl! ions are 
electrostatically attracted to form the NaCl molecule.

In a covalent bond, the atoms are not as easily ionized. Covalent bonds in a 
molecule are characterized by their atoms sharing electrons. Diatomic molecules 
formed by the combination of two identical atoms (H2, N2, O2, and so on, some-
times referred to as homopolar molecules) tend to be covalent, because neither 
atom is more likely than the other to gain or lose an electron. Larger molecules 
(like organic molecules) are formed principally with covalent bonds.

Several other bonding mechanisms are described only briefly here. The 
van der Waals bond is a relatively weak bond found mostly in liquids and solids at 
low temperatures. One common example of the van der Waals bond in action 
is in graphite, a form of pure carbon. In graphite, the carbon atoms form two-
dimensional sheets, held together by strong covalent bonds. The much weaker 
van der Waals bond holds together adjacent sheets of carbon atoms. As a result, 
one layer of atoms slides over the next layer with little friction, which you see, for 
example, when the graphite in your pencil slides easily over paper. Van der 
Waals forces act even between atoms or molecules that are nonpolar. For ex-
ample, van der Waals forces acting between atoms in an inert gas cause the gas 
to liquefy at suffi ciently low temperatures. The hydrogen bond is important in 
holding together many organic molecules. Hydrogen bonds are characterized by 
the attractive force between a hydrogen atom and an electronegative atom, typi-
cally O, N, or F. Water is an excellent example of hydrogen bonding. In a metallic 
bond essentially free valence electrons may be shared by a number of atoms.

Rotational States
Regardless of the types of molecular bonds present, we can learn much about 
the properties of molecules by studying how molecules absorb, emit, and scatter 
electromagnetic radiation. This kind of study is referred to broadly as molecular 
spectroscopy. Let us begin by considering a simple two-atom molecule, such as N2. 
As we saw in Section 9.3, we can model this molecule in different ways, depend-
ing on the physical situation. For example, one may think of the N2 molecule as 
two N atoms held together with a massless, rigid rod. This is known as the rigid 
rotator model. Because these are purely rotational modes of motion, the quan-
tum theory of angular momentum can be used to determine those energy levels. 
In a purely rotational system, the kinetic energy is expressed in terms of the an-
gular momentum L and the rotational inertia I as

 Erot "
L2

2I

The angular momentum is quantized (see Section 7.3) in the form

 L " 2/ 1/ % 1 2  U  (7.22)

where / is the angular momentum quantum number. The energy levels are de-
termined by combining the two previous equations:

 Erot "
U2/ 1/ % 1 2

2I
 (10.2)

The rotational inertia I is constant for a rigid rotator, and therefore Erot varies 
only as a function of the quantum number /, as shown in Figure 10.3.

Covalent bond

Energy levels of a simple 
rotational state

15E1

Energy

5

10E14

6E13

3E12

E11

00

E rot!

Figure 10.3 Energy levels for a 
rigid rotator. The spacing be-
tween levels increases with in-
creasing energy. The levels are 
given in terms of the / " 1 energy 
level E1, where E1 " U2/I.
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Vibrational States
In addition to rotation, there is also the possibility that a vibrational energy mode 
will be excited. As we saw in Section 9.3, there will be no thermal excitation of this 
mode in a diatomic gas at ordinary temperatures. However, it is possible to stimu-
late vibrations in molecules using electromagnetic radiation. To model vibration 
in a diatomic molecule, we again assume that the two atoms are point masses con-
nected by a massless spring, as in Figure 10.5. Then the atoms can execute simple 
harmonic motion, just as in classical physics. The energy levels must be those of 
a quantum-mechanical oscillator (see Section 6.6), namely

 Evibr " 1n % 1
2 2 Uv  (10.3)

where v is the natural (classical) angular frequency of the oscillator.
One way to estimate Evibr is to estimate v from purely classical considerations. 

From classical mechanics, the frequency of a two-particle oscillator is

 v " B km (10.4)

where m " m1m2/(m1 % m2) is the reduced mass of the system and k is a force 
(spring) constant. Now we can estimate k by assuming that the Coulomb force 
holds the masses together. If the bond were purely ionic, then the point masses 

Estimate the value of Erot for the lowest rotational energy 
state of N2, which has a bond length 0.110 nm.

Strategy If we consider the nitrogen atoms to be point 
masses (each with mass m) separated by a distance R (see Fig-
ure 10.4), then the rotational inertia about an axis passing 
through the center of the molecule and perpendicular to the 
line joining the atoms is

 I " m a R
2
b 2

% m a R
2
b 2

"
mR 

2

2

With this numerical estimate of rotational inertia I, the en-
ergy levels follow from Equation (10.2).

Solution
For nitrogen, m  "  2.33  &  10!26 kg, and R  "  1.10  &  10!10 m. 
Thus,

I "
12.33 & 10!26 kg 2 11.10 & 10!10 m 22

2

  " 1.41 & 10!46 kg ! m2

For / " 1,

Erot "
2U 2

2I
"

U 2

I
"
11.055 & 10!34 J ! s 22
1.41 & 10!46 kg ! m2

 " 7.89 & 10!23 J " 4.93 & 10!4 eV

Remember, however, that this is just the energy of the lowest 
state. The energy of the / " 4 state [with /(/ % 1) " 20] is 10 
times higher, or about 0.005 eV. This energy is still at least two 
orders of magnitude less than the energy associated with an 
electronic transition in hydrogen (the kind that produces vis-
ible photons). Therefore we can expect photons generated 
by transitions between adjacent rotational states to be in the 
infrared or microwave portion of the spectrum.

 EXAMPLE 10.1

Nitrogen atom

c.m.

Nitrogen atom

R









Figure 10.4 Schematic of a diatomic molecule (N2) as a rigid 
rotator, with an equilibrium separation R between atomic centers. 
(Center of mass is indicated as c.m.)

m2

m1

k

Figure 10.5 A model of a di-
atomic molecule with the two 
masses m1 and m2 connected by a 
massless spring with force con-
stant k.
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would be point charges %e and !e. Thus we can compute the force constant k 
(force per unit distance):

 k " ` d F
dr
` ! ` d

dr
 a e 

2

4pP0r 2 b ` "
e 

2

2pP0r 3 (10.5)

and

 v ! B e 2

2pP0 
mr 3 (10.6)

If we use r ! 10!10 m, Equation (10.5) yields a force constant of k ! 460 N/m. 
Then v " 2k /m ! 2.0 & 1014 s!1 (or f " !/2" ! 3.2 & 1013 Hz), and Equation 
(10.3) gives an energy Evibr ! 0.2 eV for the n " 1 vibrational level of N2. Actual 
values of the fundamental vibrational frequencies and effective force constants 
are shown in Table 10.1.

 Frequency (Hz),  Force Constant 
Molecule n " 0 to n " 1 (N/m)

HF 8.72 & 1013 970
HCl 8.66 & 1013 480
HBr 7.68 & 1013 410
HI 6.69 & 1013 320
CO 6.42 & 1013 1860
NO 5.63 & 1013 1530

From G. M. Barrow, The Structure of Molecules, New York: Benjamin 
(1963).

Tab le  10 .1    Fundamental Vibrational 
Frequencies and Effective 
Force Constants for Some 
Diatomic Molecules

(a) Given that the spacing between vibrational energy levels 
of the HCl molecule is 0.36 eV, calculate the effective force 
constant. (b) Find the classical temperature associated with 
this difference between vibrational energy levels in HCl.

Strategy (a) Because k " mv2 we first need to find m and 
v. The reduced mass m is given by m " m1m2/(m1 % m2). We 
also know that 'E " hf " Uv, so v " 'E/U. At the lowest 
level n " 0 and Evibr " Uv/2.

(b) Two degrees of freedom are associated with a one-
dimensional oscillator, one from the kinetic energy and one 
from the potential (see Section 9.3). Therefore we can say that

 ¢  E " Uv " 2 a kT
2
b " kT

(where k is Boltzmann’s constant), and so T " 'E/k.

Solution (a) If we assume the most common chlorine-35 
isotope, the reduced mass is

  m "
m1m2

m1 % m2
"
134.97 u 2  11.008 u 2
34.97 u % 1.008 u

  " 0.9798 u " 1.63 & 10!27 kg

Then

 v "
¢E
U "

0.36 eV
6.58 & 10!16 eV # s " 5.47 & 1014 rad/s

Putting together the calculated numerical values, the force 
constant is given by Equation (10.4) as

  k " mv2 " 11.63 & 10!27 kg 2  15.47 & 1014 rad/s 22
  " 490 N/m

which is quite close to the value in Table 10.1.

 EXAMPLE 10.2
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Vibration and Rotation Combined
In a real molecular system it is possible to excite the rotational and vibrational 
modes of motion simultaneously. We combine the previous results to produce 
the total energy of our simple vibration-rotation system:

 E " Erot % Evibr "
U2/ 1/ % 1 2

2I
% an %

1
2
b  Uv  (10.7)

A diatomic molecule that has been stimulated to an excited state will, as in 
atomic systems, emit a photon upon decaying to a lower energy state. Generally 
it is possible to observe a wide spectrum of emitted photons, corresponding to 
various rotational and vibrational transitions.

One outstanding characteristic of emission spectra can be deduced by exam-
ining Equation (10.7). Because the vibrational energies are spaced at regular 
intervals (Evibr " 12 Uv, 32 Uv, . . . ), emission features due to vibrational transitions 
appear at regular intervals. This is also the case for rotational features, although 
for a different reason. Consider, for example, a transition from the / % 1 state 
to the / state. The photon produced by that transition will have an energy

 Eph "
U2

2I
 3  1/ % 1 2  1/ % 2 2 ! / 1/ % 1 2 4

  "
U2

2I
 3/2 % 3/ % 2 ! /2 ! / 4 "

U2

I
 1/ % 1 2  (10.8)

Now we see an emission-spectrum spacing that varies with /. Specifically, the 
higher the starting energy level, the greater the photon energy for a transition 
with '/ " !1. This is consistent with the energy-level spacings shown in Figure 
10.3. Because the photon energy increases linearly with the quantum number /, 
photon energies increase at regular intervals.

As our estimates have indicated, vibrational energies are typically greater 
than rotational energies by as much as an order of magnitude. This significant 
energy difference, along with the different spacing characteristic noted earlier, 
results in the band spectrum shown in Figure 10.6. We see an evenly spaced vi-
brational spectrum with a more closely spaced rotational spectrum superim-
posed on each vibrational line.

Band spectrum

(b) Using the numerical value of 'E,

 T "
¢E
k

"
0.36 eV

8.62 & 10!5 eV/K
" 4200 K

In order to excite this vibrational state, we need a tempera-
ture of 4200 K. This is why vibrational levels of most di-
atomic molecules are not thermally excited at ordinary 
temperatures.

Wavelength

Figure 10.6 Typical section of the emission spectrum of a diatomic molecule. Equally spaced 
groups of lines correspond to the equal spacings between vibrational levels. The structure within 
each group is due to transitions between rotational levels.
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In any molecular spectrum the positions and intensities of the observed bands 
are governed by the rules of quantum mechanics. We note two features in particu-
lar. First, the relative intensities of the bands are due to different transition proba-
bilities. The probabilities of transitions from an initial state (for example, n " 5) to 
each possible final state (n " 4, 3, . . . ) are not necessarily the same. The spectral 
lines vary in brightness, with more intense lines correspond ing to more probable 
transitions. Second, some transitions are forbidden by the quantum-mechanical 
selection rule that requires '/ " (1. This must be so, because upon emission the 
photon carries away its intrinsic angular momentum of one quantum unit (U).

An interesting application of the '/ " (1 selection rule is found in the 
study of absorption spectra. When electromagnetic radiation is incident upon a 
collection of a particular kind of molecule (for example, in a closed gas cell), 
molecules can absorb photons and make transitions to a higher vibrational state 
only if the rotational state changes by '/ " (1. A schematic of the allowed tran-
sitions between two vibrational states is shown in Figure 10.7. Because 'E in-
creases linearly with / as in Equation (10.8), one expects to see absorption bands 
at regular intervals of energy (or frequency, which is proportional to energy). 
This is evident in the absorption spectrum of HCl (Figure 10.8). The regular 
spacing between the peaks can be used to compute the rotational inertia I (Prob-
lem 15a). The missing peak in the center corresponds to the forbidden '/ " 0 

Absorption spectra

! ! 4

! ! 3

! ! 2
! ! 1

n ! 1

! ! 0

! ! 4

! ! 3

! ! 2
! ! 1

"! ! #1

n ! 0

! ! 0

"! ! $1

8.00

In
te

ns
ity

8.20 8.40 8.60
Frequency (1013 Hz)

8.80 9.00 9.20
n

Figure 10.7 A schematic dia-
gram of the absorptive transitions 
between adjacent vibrational 
states (n " 0 to n " 1) in a di-
atomic molecule.

Figure 10.8 An absorption 
spectrum of a diatomic molecule, 
HCl. The spacing is regular, as 
predicted in Equation (10.7), and 
each line is split because of the 
small mass difference between the 
chlorine isotopes 35Cl and 37Cl. 
The missing central peak at f " 
8.65 & 1013 Hz corresponds to the 
forbidden '/ " 0 transition.
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346 Chapter 10 Molecules, Lasers, and Solids

transition. Therefore that central frequency f is just

 f "
1

2p
 B km

the frequency of a vibrational transition from n " 1 to n " 0.
Physicists and chemists have developed sophisticated equipment and data re-

duction methods for the sole purpose of studying molecular spectra. One of the 
most popular methods is known as Fourier transform infrared (FTIR) spectroscopy. 
Most Fourier transform spectrometers use an interferometric system based on the 
Michelson interferometer (see Chapter 2) to make precise determinations of pho-
ton wavelengths. The Fourier transform is used to analyze the spectrum. In Fou-
rier analysis, a spectrum can be decomposed into an infinite series of sine and 
cosine functions. With the proper knowledge of spectral characteristics, random 
and instrumental noise can be greatly reduced in order to produce a “clean” spec-
trum, that is, one with a high signal-to-noise ratio (see Figure 10.9).

It is not necessary that an incoming photon’s energy precisely match the 
transition energy 'E. If a photon of energy greater than 'E is absorbed by a 
molecule, the excess energy may be released in the form of a scattered photon of 
lower energy. This process is known as Raman scattering. It is possible to examine 
the spectrum of Raman-scattered photons and learn some of the properties of 
the molecules being studied (Figure 10.10). In Raman scattering the angular 

Raman scattering

Figure 10.9 FTIR spectrum comparing 
tumor cells (T) and normal cells (N) from 
human lungs. Absorption in the infrared 
region is shown as a function of wave num-
ber (2p/l), so the wavelengths range from 
36 to 68 mm. The FTIR method makes peak 
locations and intensities distinct enough so 
that this could be a useful diagnostic tool. 
From E. Benedetti et al., Applied Spectroscopy 
44, 1276– 1280 (1990). Used by permission.

2p!
l

1730 1530 1330 1130

10801240

1540

1654
T
N

930

In
te

ns
ity

Wave number       (cm#1)

Figure 10.10 Raman spectra of eye pigments from 
(a) chipmunk and (b) ground squirrel. The “Raman 
shift” is the difference in wave number, 2p/l, corre-
sponding to the frequency difference in Equation 
(10.10). These spectra are used to study metabolic and 
photochemical generation of lens pigments. From S. Nie 
et al., Applied Spectroscopy 44, 571– 575 (1990). Used by 
permission.
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momentum selection rule becomes '/ " (2 because of the second photon in-
volved.* Consider a transition from a state / to a state / % 2. The rotational part 
of the transition energy is

  ¢Erot "
U2

2I
 3  1/ % 2 2  1/ % 3 2 ! /1/ % 1 2  4

  "
U2

I
 12/ % 3 2  (10.9)

where I is the molecule’s rotational inertia. Suppose an incoming photon with 
energy hf is Raman-scattered and the scattered photon has energy hf ). Then the 
frequency of the scattered photon can be found in terms of the relevant rota-
tional variables:

 hf œ " hf ! ¢E rot " hf !
U2

I
 12/ % 3 2

Thus

 f œ " f !
U

2pI
 12/ % 3 2  (10.10)

Raman spectroscopy can be a useful tool in determining rotational properties 
(specifically / and I ) of molecules. It is also used to study polyatomic systems, in 
which the analysis of molecular properties is not so straightforward.

Raman spectroscopy is also used to study the vibrational properties of liquids 
and solids. In this case, the difference in energy between the incoming and 
Raman-shifted photon corresponds to a vibrational energy in the sample being 
illuminated. For molecules in solution, the set of observed energy differences 
provides a unique “fingerprint,” allowing material identification. Solid samples 
also have characteristic vibrational spectra. Although vibrations in a crystalline 
material correspond to waves extending over many atomic sites, they still exhibit 
evidence of quantization. The quanta of vibration are called phonons, which we 
will discuss in more detail in Section 10.5.

10.2  Stimulated Emission and Lasers
The emission of photons by molecules as described in Section 10.1 is known as 
spontaneous emission. A molecule in an excited state will decay to a lower en-
ergy state and emit a photon spontaneously, without any stimulus from the out-
side (Figure 10.11a). The laws of quantum mechanics do not allow us to say 
when the transition will occur. Because the process is probabilistic, the best we 
can do is calculate the mean lifetime of an excited state or the probability that a 
spontaneous transition will occur within a given amount of time. As a conse-
quence, one can expect the phase of the emitted photon to be random. We note 
that the mean lifetime can often be estimated from the width of the emission 
spectrum line. If a spectral line has a width 'E, then Heisenberg’s uncertainty 

*Of course '/ " 0 is also possible in a two-photon process. The '/ " 0 case is known as Rayleigh 
scattering. Quantum theory predicts that Rayleigh scattering becomes more likely (relative to Raman 
scattering) at shorter wavelengths. Rayleigh scattering of photons by the atmosphere causes the sky 
to be blue for the most part and orange-red near sunrise and sunset, because shorter wavelength 
photons (blue) are Rayleigh-scattered more than longer wavelength photons (red).

Figure 10.11 Schematic of 
(a) spontaneous emission, with 
E2 ! E1 " hf and (b) stimulated 
emission in a two-level system. In 
stimulated emission one photon 
triggers the emission of a second 
photon.

E2

E1

hf

Spontaneous!
emission

(a)

E2

E1

hf hf

hf

Stimulated!
emission

(b)
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principle, Equation (5.45), gives a lower-bound estimate of the lifetime of 
't " U/(2 'E). For example, suppose you observe an atomic state with 
E " 0.24 eV and 'E " 2.1 & 10!6 eV. Then the lower-bound lifetime is 
't " U/(2 'E) " 1.6 & 10!10 s, a rather short lifetime.

Why do we say that 't " U/(2 'E) is a lower-bound estimate 
of the lifetime of an atomic state? Why isn’t that the exact or 
approximate value of the lifetime?

Solution The width of the spectral line 'E presumably 
comes from a series of measurements, each having some 
inherent uncertainty, plus some deviation due to a lack of 

experimental precision. Therefore we can expect that a 
measured 'E will usually be larger than the minimum al-
lowed by the Heisenberg uncertainty principle. A larger 
value of 'E leads to a smaller 't, because of the inverse 
nature of the relationship, and the true value of 't will be 
larger.

 CONCEPTUAL EXAMPLE 10.3

It is possible, however, to make the emission process occur in a more con-
trolled way. Electromagnetic radiation (a photon) incident upon a molecule in 
an excited state can cause the inherently unstable system to decay to a lower 
state. This is called stimulated emission. An important feature of stimulated 
emission is that the emitted photon tends to have the same phase and direction 
as the stimulating radiation. And if the incoming photon has the same energy as 
the emitted photon, the result will be two photons of the same wavelength and 
phase traveling in the same direction, because the incoming photon is not ab-
sorbed but rather triggers emission of the second photon. The two photons (of 
the same wavelength and phase) are then said to be coherent. A schematic dia-
gram of the stimulated emission process is shown in Figure 10.11b.

Stimulated emission is the fundamental physical process in the operation of 
the laser. A simple argument by Einstein from his 1917 paper “On the Quantum 
Theory of Radiation” explains why we can expect stimulated emission to occur. 
It is a testament to Einstein’s genius that he did this work, as he did in many 
other areas of physics, on purely theoretical grounds, long before it was 
confirmed in the laboratory.

Here, in brief, is Einstein’s analysis. We shall consider transitions between 
two molecular states with energies E1 and E2 (where E1 # E2). The photon associ-
ated with either emission or absorption has an energy Eph and frequency f, where 
Eph " hf " E2 ! E1. If stimulated emission (that is, a process in which incoming 
radiation causes a transition from E2 to E1) occurs, the rate of those transitions 
must be proportional to the number of molecules in the higher state (call this 
N2) and the energy density of the incoming radiation [call this u( f )]. Therefore 
let us say that the rate at which stimulated transitions are made from E2 to E1 
is B21N2u( f ), where B21 is a proportionality constant that depends on the 
quantum-mechanical probability of stimulated emission. Similarly, the probabil-
ity that a molecule at E1 will absorb a photon can be expressed as B12N1u( f ). We 
must also take into account the possibility that spontaneous emission will occur. 
The rate of spontaneous emission is independent of u( f ), however, and can be 
expressed simply as AN2, where A is a constant related to the probability of spon-
taneous emission.

Stimulated emission
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Once the system has reached equilibrium with the incoming radiation, the 
number of downward transitions must equal the number of upward transitions. 
Then

 B21N2u 1  f  2 % AN2 " B12N1u 1  f  2
or, rearranging,

 3B21u 1  f  2 % A 4N2 " B12u 1  f  2N1

In thermal equilibrium each of the Ni are proportional to their respective 
Boltzmann factors e!Ei/kT. Therefore

 3B21u 1  f  2 % A 4e !E 2 /kT " B12u 1  f  2e !E1 /kT (10.11)

In the classical limit T S q (see Section 9.5). Then e!E1/kT " e!E2/kT and at high 
temperatures, thermal energy in the system increases. Thus the energy density 
u( f ) becomes very large, so the A term becomes insignificant. Thus we see that 
in the classical limit

 B12 ! B21 " B (10.12)

That is, the probability of stimulated emission is approximately equal to the 
probability of absorption. What this basically means is that if the transition from 
E1 to E2 (absorption) can occur, then we should also expect that stimulated emis-
sion will occur.

We can use Equation (10.11) to obtain another useful relationship. Solving 
Equation (10.11) for u( f ) yields

 u 1  f  2 "
A

B12e 1E 2!E12/kT ! B21
"

A
B12e hf /kT ! B21

or, if we use Equation (10.12),

 u 1  f  2 "
A /B

e hf /kT ! 1
 (10.13)

Equation (10.13) should look familiar because it closely resembles the Planck 
radiation law, Equation (3.23). In fact, when the Planck law is expressed in terms 
of frequency instead of wavelength, it is

 u 1  f, T 2 "
8pf 2

c 3  
hf

e hf /kT ! 1
 (10.14)

Therefore by Equations (10.13) and (10.14) it is required that

 
A
B

"
8phf 3

c 3  (10.15)

In other words, the stimulated emission probability coefficient B is propor-
tional to the spontaneous emission probability coefficient A in equilibrium. We 
may interpret this result to mean that in a process for which the probability of 
spontaneous emission is high, the probability of stimulated emission will also 
be high.

Stimulated emission is the fundamental physical process in a laser. Laser is 
an acronym for “light amplification by the stimulated emission of radiation.” 
One also hears of masers, in which microwaves are used instead of visible light. 
The first working maser was made by Charles H. Townes in 1954, and the first 
laser by a group led by Theodore H. Maiman in 1960. The schematic drawing of 

The laser

Charles Townes (1915– ) was 
born in South Carolina and grad-
uated from Furman University be-
fore earning his Ph.D. at Cal 
Tech. During World War II he 
helped design radar bombing 
systems. After the war he joined 
the faculty of Columbia University 
and pursued research in micro-
wave physics. Townes used his 
knowledge of microwaves to de-
velop the concept of the maser, 
and he dem onstrated the first 
maser in 1954. Along with Arthur 
Schaw low, he showed that ma-
sers could operate in infrared and 
optical wavelengths, leading to 
the de velopment of the laser.
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350 Chapter 10 Molecules, Lasers, and Solids

a helium-neon laser (Figure 10.12), the type commonly found in most university 
physics departments (and on novelty store key chains), will help explain the 
process. The main body of the laser is a closed tube, filled with about a 9/1 ratio 
of helium and neon. Photons bouncing back and forth between the two mirrors 
are used to stimulate the transition in neon, which in turn produces more pho-
tons. Recall that photons produced by stimulated emission are coherent, and 
thus the beam of photons that escapes through the partially silvered mirror is the 
coherent beam we observe.

How are atoms put into the excited state in the first place? We cannot rely 
on the photons in the tube to do so; if we did, then there would be no net output 
of energy from the laser. Any photon produced by stimulated emission would 
have to be “used up” to excite another atom for the process to be continuous. A 
second potential difficulty is that there may be nothing to prevent spontaneous 
emission from atoms in the excited state. In that case the beam would not be 
coherent.

The way around both of those problems is to use a multilevel atomic system. 
(This will also work with molecular systems.) Consider first the three-level system 
shown in Figure 10.13. Atoms in the ground state (E1) are pumped to a higher 
state (E3) by some external source of energy. The atom then decays quickly to 
E2. The key is that the transition from E2 to E1 must be forbidden, for example, 
by a '/ " (1 selection rule. Then the state with energy E2 is said to be metasta-
ble. Now a large number of atoms can exist for a relatively long time at E2, where 
they are just waiting for a photon to come along and stimulate the transition to 
E1. In normal operation many more atoms will be in the excited (metastable) 
state than in the ground state. This situation is known as population inversion. 
Because the gas is governed by Maxwell-Boltzmann statistics, we would normally 
fi nd that the population of states decreases as the energy level increases. As we 
have described here, the population inversion is an essential feature of the op-
eration of lasers.

Metastable state

Population inversion

Fully!
silvered!
mirror

Partially!
silvered!
mirror

Laser!
output

Figure 10.12 A schematic dia-
gram of a He-Ne laser. The co-
herent photon beam escapes 
through the partially silvered 
mirror.

E2

E1

E3 Short-lived state

Lasing transitionOptical pumping

Metastable state

Ground state

Figure 10.13 Transitions in a 
three-level laser. The lasing tran-
sition takes the system from the 
metastable state (E2) to the 
ground state (E1).
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There is a potential difficulty with the three-level system as we have de-
scribed it. What happens to an atom after it has been returned to the ground 
state from E2 by a stimulated emission? We would like the external power supply 
to return it immediately to E3, but in practice it may take some time for this to 
happen, during which it is possible that a photon with energy E2 ! E1 (just the 
energy that a photon created by stimulated emission would have) can be ab-
sorbed. That is undesirable, because the absorbed photon is unavailable for 
stimulating another transition and for passing through the partially silvered mir-
ror, as we expect all of them to do eventually. The result is a weaker beam, or 
perhaps none at all.

We can get over this last hurdle by using a four-level system, as shown in Figure 
10.14. As before, atoms are pumped from the ground state to a higher state (now 
E4), where they decay quickly to the metastable state E3. The stimulated emission 
takes atoms from E3 to E2. The spontaneous transition from E2 to E1 is not forbid-
den, so the state E2 will not exist long enough for a photon to be used up in kicking 
the system from E2 to E3. There is little chance that an atom in the ground state will 
absorb a photon with energy E3 ! E2, so the lasing process can proceed efficiently.

The red helium-neon laser uses transitions between energy levels in both 
helium and neon, as shown in Figure 10.15 (page 352). The applied voltage ex-
cites a helium atom from its ground state to an excited level at approximately 
20.61 eV. An excited helium atom will occasionally collide with a neon atom and 
transfer its excess energy to that atom, because 20.61 eV is very close to the energy 
needed to excite a neon atom from its ground state to the 2p55s1 level (the meta-
stable state). The lasing process then proceeds as shown in Figure 10.15, resulting 
in a coherent beam of red light at l " 632.8 nm. There are other allowed transi-
tions in neon, and some energy is invariably lost through those photons that do 
not participate in the lasing process. Green and orange helium-neon lasers, 
which are now available commercially, employ some of these transitions.

In a tunable laser the wavelength of the emitted radiation can be adjusted over 
a range as wide as 200 nm. In the past, tunable lasers were made by using an organic 
dye as the lasing material. The organic compounds are chosen so that they have a 
great number of closely spaced energy levels. This is what makes stimulated emis-
sion over a range of wavelengths possible. Tuning is accomplished by changing the 
concentration of the dye and/or the length of the dye cell.* Semiconductor lasers 
(see Section 11.3) are now replacing dye lasers for many applications.

Four-level system

Tunable laser

E3

E2

E1

E4 Short-lived state

Lasing transitionOptical pumping

Metastable state

Short-lived state

Ground state

Figure 10.14 Transitions in a 
four-level laser. The lasing transi-
tion takes the system from the 
metastable state (E3) to another 
short-lived state (E2). The system 
then returns quickly to the 
ground state (E1), so that photons 
cannot be reabsorbed in return-
ing the system from E2 to E3.

*For a more complete description see Eugene Hecht, Optics, 4th ed., San Francisco: Addison-Wesley 
(2002), pp. 597– 601.
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352 Chapter 10 Molecules, Lasers, and Solids

Another kind of tunable laser is the free-electron laser, shown schematically 
in Figure 10.16. This laser relies on the fact that charged particles, electrons in this 
case, emit electromagnetic radiation when accelerated. A series of magnets 
called wigglers is used to accelerate a beam of electrons transversely as shown in the 
figure. The electron velocity is matched to the oscillations in the magnetic field in 
such a way that the emitted radiation is as coherent as in a gas-filled laser. Because 
the free electrons are not tied to atoms, they aren’t dependent on atomic energy 
levels and can be tuned to wavelengths well into the ultraviolet part of the spectrum. 
Several free-electron lasers in different countries now produce wavelengths less 
than 10 nm, and in 2009 a device at the Stanford Linear Accelerator (SLAC) reached 
0.15 nm, a true x-ray wavelength. Electron-beam lasers have been made to produce 
outputs in the ultraviolet, visible, and infrared ranges. The exceptional fine-tuning 
that is possible with these devices, along with their relatively high efficiency, make 
electron-beam lasers and masers useful for a number of scientific applications, in-
cluding spectroscopy, accelerator technology, radar, and fusion research.

Scientific Applications of Lasers
Lasers are used in a wide range of scientific applications. One obvious applica-
tion is the use of the extremely coherent and nondivergent beam in making 
precise determinations of distances both large and small. Thanks in part to the 
improved accuracy of laser measurements, the speed of light in a vacuum has 
been defined to be c " 299,792,458 m/s. This definition of the speed of light has 
led to a redefinition of the meter. Formerly, the standard meter was a metal bar. 

Free-electron laser

Figure 10.16 Schematic of the 
operation of a free-electron laser. 
The laser output is in the same 
direction (z in this drawing) as 
the injected electron beam. From 
P. Sprangler and T. Coffey, Physics 
Today, Fig. 3, p. 48. Copyright 1984. 
Reprinted with permission from 
AMERICAN INSTITUTE OF 
PHYSICS.

Figure 10.15 The energy levels 
and transitions in a helium-neon 
laser.
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Now the SI system defines the meter as the length of the path traveled by light 
in a vacuum during a time interval of 1/299,792,458 of a second.

On the longer end of the distance scale, reflecting mirrors placed on the 
moon by Apollo astronauts have enabled scientists to reflect laser light from 
the moon’s surface and thereby determine the Earth-to-moon distance to within 
10 cm. Variations in this distance over the course of a month and a year have led 
to better understanding of the orbital mechanics of the solar system. Lasers have 
been set up to measure land shifts near geologic fault lines in California, with 
the hope of better understanding and perhaps predicting earthquakes.

Pulsed lasers are used in thin-film deposition. A short pulse of laser light inci-
dent upon the source material can create a thermal shock wave, expelling surface 
material from the target and onto a substrate. In this way many complex materials 
can be transferred to the substrate without chemical modification, yet with control 
on a nanometer scale. Such thin-layered materials are used in basic research to study 
the electronic properties of different materials and in the manufacture of integrated 
circuits, where smaller-sized circuit elements are desirable.

A potentially important use of lasers is in fusion research. The greatest prob-
lem in achieving controlled fusion in the laboratory is the difficulty in containing 
enough nuclei within a confined space at high temperature for a sufficient 
length of time in order for nuclei to fuse and thereby produce energy. In one 
scheme, known as inertial confinement, a pellet of deuterium and tritium would be 
induced into fusion by an intense burst of laser light coming simultaneously 
from many directions. Fusion is discussed in Chapter 13.

Holography
Lasers are used in the fi eld of holography. The basic mechanism for constructing 
and viewing a hologram is shown in Figure 10.17. Consider laser light emitted by a 
reference source R. Through a simple combination of mirrors and lenses, this light 
can be made to strike both a piece of photographic plate and an object O. Because 
the laser light is coherent, the image on the film is an interference pattern, with the 
interfering beams coming from the reference source and object. After exposure 
this interference pattern is a hologram, and when the hologram is illuminated from 
the other side (as in Figure 10.17b), a real image of O is formed. The fact that not 
only intensity but also phase information is contained in the hologram means that 
a full three-dimensional image is formed. The other fascinating feature of holo-
grams results from the fact that, if the lenses and mirrors are properly situated, light 
from virtually every part of the object will strike every part of the film, along with 
some of the reference beam. This means that each portion of the film contains 
enough information to reproduce practically the whole object! Thus, it is possible 
to reconstruct a view of an object from a tiny piece of a hologram, although one 
generally loses some of the three-dimensional effect in that case. Figure 10.18 (page 
354) shows a close-up of a holographic plate and an image produced from it.

We have just described a transmission hologram, that is, one in which the 
reference beam is on the same side of the film as the object and the illuminating 
beam is on the opposite side. A reflection hologram is made by reversing the 
positions of the reference and illuminating beams, and if an overlaying series of 
holograms is made using several lasers of different colors, the result is a white 
light hologram, in which the different colors contained in white light provide the 
colors seen in the image. This is what one commonly sees in magazine pictures and 
credit cards, because the casual observer does not have a laser handy for viewing a 
monochromatic hologram. With their complex interference patterns, holograms 

Transmission, reflection, 
and white light holograms

Figure 10.17 How a hologram 
is produced. (a) The production 
of interference fringes on a pho-
tographic plate, using interfer-
ence of reference (R) and object 
(O) beams. (b) Illumination of 
the plate from the opposite side 
produces a real image of O at O).

O R

Photographic!
plate

(a)

O ) R )

Hologram!
grating

Light source

(b)
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354 Chapter 10 Molecules, Lasers, and Solids

are difficult to counterfeit, and are therefore popular security tools on instru-
ments such as credit cards and checks.

An interesting scientific application of holography is interferometry. Two 
holograms of the same object produced at different times can be used to detect 
small motion or growth that could not otherwise be seen. In Figure 10.19 we see 
a holographic image of a mushroom made seconds earlier superimposed on the 
mushroom itself. The interference fringes indicate growth patterns. Holo-
graphic interferometry is now widely used in industry to scan for imperfections, 
for example, in machined parts and computer chips.*

Quantum Entanglement, Teleportation, and Information
Erwin Schrödinger employed the term quantum entanglement in two papers pub-
lished in 1935 and 1936 to describe a strange correlation between two quantum 
systems. He was analyzing the Einstein-Podolsky-Rosen paradox that Einstein and 
others used in an attempt to refute the Copenhagen interpretation of quantum 
theory (see Chapter 5). Schrödinger considered the effects of entanglement for 

Holographic interferometry

*See The Industrial Physicist, September 1997, pp. 37– 39 (http://www.aip.org/tip/INPHFA/vol-3/ 
iss-3/p37.pdf).

Figure 10.18 (a) A close-
up view of a hologram, show-
ing the interference pattern 
in the photographic plate. 
(b) The image produced by 
the hologram in (a).

Figure 10.19 Interferometric 
observation of the growth of a live 
mushroom through a hologram.
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   10.2 Stimulated Emission and Lasers 355

quantum states acting across large distances, which Einstein referred to as “spooky 
action at a distance.” John Bell showed in 1964 that the effects of quantum entan-
glement should be able to be observed experimentally (Bell’s inequality). Subse-
quent experiments* showed that quantum entanglement is a real physical phe-
nomenon, and entangled systems can interact across large distances.

No information can be transmitted through only quantum entanglement, 
but it is possible to transmit information using entangled systems in conjunction 
with classical information. This is known as quantum teleportation. Imagine a 
laser passing through a nonlinear crystal that produces a pair of entangled pho-
tons. Alice and Bob, who are spatially separated, try to transfer information about 
the photons. Alice doesn’t know the properties of the photon entering her sys-
tem, but she wants to send information about it to Bob. Measuring any physical 
property of the photon would disturb the quantum information because of the 
Heisenberg uncertainty principle. There are a number of ways she can transfer 
information. For example, a beam splitter can be used to send photons to Alice 
and Bob, each of whom has a photon detector. Alice can perform a manipulation 
on her quantum system and send that information over a classical information 
channel to Bob. He then arranges his part of the shared quantum system to detect 
information, for example the polarization status, about the unknown quantum 
state at his detector.

Several groups around the world, including those at the University of Inns-
bruck, University of Vienna, Tsinghua University in Beijing, and NIST at Boul-
der, Colorado, have performed quantum teleportation experiments over dis-
tances up to 16 kilometers. Teleportation experiments have now been performed 
with both photons and atoms. Such experiments are needed in order to utilize 
quantum information to eventually construct quantum computers, but telepor-
tation as in Star Trek is not likely to happen in our lifetime—if ever.

Other Laser Applications
Lasers have been important in medicine for years. They are used in surgery to 
make precise incisions in different kinds of body tissue. In addition to providing 
better precision than conventional means they often reduce bleeding, because 
the laser tends to help the blood coagulate while cutting. Lasers are used in a 
number of eye operations, particularly in retinal reattachment and in the treat-
ment of glaucoma (excessive fluid pressure) by burning holes that allow small 
amounts of fluid to leak out and thereby reduce pressure. There have already 
been thousands of cases in which laser surgery has prevented blindness. Medical 
applications were not the goal of laser pioneers, who wanted to better under-
stand atomic and optical physics. Arthur Schawlow, who worked with Townes in 
the 1950s to lay the foundation for masers and laser, wrote: “When we were 
working on the laser concepts, I had no idea there was such a thing as a detached 
retina. If we had been trying to prevent blindness, I do not think we would have 
concerned ourselves with amplification of stimulated emission by atoms. Re-
search cannot always go directly toward the goals; you sometimes have to explore 
and hope something will come of it.”

*For additional information, see “Quantum Teleportation” by Anton Zellinger, Scientific American, 
April 2000 and update in The Edge of Physics; “Rules for a Complex Quantum World” by Michael 
A. Nielsen, Scientific American, November 2002. Students may also use a search engine to find current 
information about quantum entanglement, quantum teleportation, quantum information, and 
quantum computers.
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356 Chapter 10 Molecules, Lasers, and Solids

Lasers are used extensively for elective eye surgery to correct myopia (near-
sightedness), a condition that arises when the eye focuses the image in front of 
the retina. For decades this correction was done using photorefractive keratec-
tomy, in which the front surface of the cornea is flattened to shorten the eyeball 
and lengthen the eye’s focal length. Now a more popular technique is laser-assisted 
in situ keratomileusis (LASIK), in which part of the cornea is cut into a flap and 
lifted, so that a laser can cut and reshape the underlying corneal tissue.

An application we see in everyday life is the scanning devices used by super-
markets and other retailers. An optical scanner can analyze the reflection of a 
laser beam from the bar code of a packaged product. When properly analyzed, 
the bar code is translated by a microprocessor into the appropriate product and 
price information. A substantial amount of engineering has given laser scanners 
a high reliability nearly independent of the angular orientation of the code and 
the speed with which it is swept over the beam.

Another common application of lasers is in compact disk (CD) and digital 
video disk (DVD) players. Although the technology of these two devices is 
slightly different, the basic concept is the same. Laser light is directed toward 
disk tracks that contain encoded information. The reflected light is sampled and 
turned into electronic signals that produce a digital output. Most commonly this 
takes the form of an audio and/or video signal, but a CD or DVD can store virtu-
ally any digitized file. Most CD players use a laser in the infrared part of the 
spectrum with a wavelength of around 800 nm. DVD players use shorter wave-
lengths, and this helps them to store more information on a similar-sized disk. 
“Blu-ray” DVD players use a laser with a 405-nm wavelength. The shorter wave-
length enables information to be stored with a density about fi ve times greater 
than on a standard DVD.

Other applications of the laser are so numerous we cannot discuss them 
here. They include fiber-optic communications and laser printers.

10.3  Structural Properties of Solids
The remainder of this chapter and all of Chapter 11 fall under the general head-
ing of condensed matter physics. Under this broad heading fall many kinds of 
research.* An important subfield of condensed matter physics is the study of the 
electronic properties of solids. The fundamentals of electrical conductivity were 
covered in Chapter 9. In the last parts of this chapter and all of Chapter 11, you 
will learn about the remarkable properties of superconductors and semiconduc-
tors. Other important work is devoted to understanding the fundamental prop-
erties of the structure of solids and their bulk thermal and magnetic properties. 
It is these fundamental properties we shall study now, along with some of the 
many applications in science and engineering.

The structures of different solids are quite varied. Many solids exhibit a crys-
tal structure, in which the atoms are arranged in extremely regular, periodic 
patterns. Max von Laue proved the existence of crystal structures in solids in 
1912, using the still popular method of x-ray diffraction (see Section 5.1). In an 
ideal crystal the same basic structural unit is repeated indefinitely throughout 
space. The set of points in space occupied by atomic centers is called a lattice. 

Condensed matter physics

Crystal structure

*Strictly speaking, condensed matter physics includes studies of solids and liquids. Because much 
more research is done on solids than on liquids, some people still refer to condensed matter physics 
as “solid state physics.” 
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Figure 10.20 shows the principal lattice types in three dimensions. A perfect 
crystal is rare. Most solids are in a polycrystalline form, meaning that they are 
made up of many smaller crystals, whose size may be anything from a few atoms 
on a side to thousands. A solid lacking any significant lattice structure is called 
amorphous (literally “without form”). Common glass is amorphous, and therefore 
amorphous materials are referred to colloquially as “glasses.”

Why do the atoms in a solid arrange themselves in a particular crystal lattice? 
A qualitative answer to this question is that as the material is cooled and allowed 
to change from the liquid to the solid state, the atoms each find a place relative 
to their neighbors that creates the minimum energy confi guration, analogous to 
an electron being captured by an atom “finding” its way to the ground state. This 
is why some solids that normally form pure crystals become polycrystalline or 
amorphous if cooled too quickly from the liquid to the solid state. To give a 
more quantitative answer to the question of why solids form as they do, let us use 
as an example the structure of the sodium chloride crystal. The basic cubic struc-
ture of sodium chloride is shown in Figure 10.21. Sodium and chlorine easily 
ionize to form Na% and Cl!, and we may think of the solid as a collection of 
(spherically symmetric) Na% and Cl! ions alternating indefinitely in each of the 
three orthogonal directions. The spatial symmetry results because there is no 
preferred direction for forming bonds. The fact that different atoms have differ-
ent symmetries (consider the shapes of p and d orbitals illustrated in Section 7.6) 
suggests why crystal lattices take so many forms, as illustrated in Figure 10.20.

In order to have a stable configuration, each ion must experience a net at-
tractive potential energy, which we shall model as

 Vatt " ! 

ae 2

4pP0r
 (10.16)

where r is the nearest-neighbor distance (0.282 nm in NaCl). This looks like a 
normal Coulomb potential energy, except for the introduction of the constant 
a, known as the Madelung constant. Vatt is the net potential energy of an ion in Madelung constant

Simple cubic

Tetragonal

Triclinic Trigonal Trigonal and!
hexagonal

Orthorhombic Monoclinic

Body-centered!
cubic

Face-centered!
cubic

Figure 10.20 Some of the crys-
tal lattices found in solids.

Na

Cl

Figure 10.21 The NaCl crystal 
structure.
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358 Chapter 10 Molecules, Lasers, and Solids

a lattice due to all the other ions in the lattice. The Madelung constant therefore 
de   pends on the type of crystal lattice. In the NaCl crystal, each ion has 6 nearest 
 neighbors of the opposite kind of charge that supply an attractive potential. 
Therefore, the nearest-neighbor contribution to the Madelung constant is ex-
actly 6. The next nearest neighbors are of like charge to the ion we are consider-
ing. There are 12 such like charges, each located a distance 12r away. Those ions 
contribute !12/12 to the Madelung constant. Next there are 8 ions of the op-
posite charge a distance 13r away, which contribute 8/13 to the Madelung 
constant. Continuing this process, one has an infinite series:

 a " 6 ! 12/12 % 8/13 ! p ! 1.7476 (10.17)

In addition to the attractive potential of Equation (10.16) there is a repulsive 
potential due to the Pauli exclusion principle and the overlap of electron shells. 
A good theoretical model of the repulsive potential is

 Vrep " le !r /r (10.18)

where l and r are also constants of the particular lattice and compound. The 
exponential factor in Equation (10.18) is a common feature of “screened” po-
tentials. Because the value of e!r/r diminishes rapidly for r $ r, the parameter r 
is roughly regarded as the range of the repulsive force. We shall see that the nu-
merical value of r can be calculated from experimental data.

The net potential energy is the sum of attractive and repulsive potentials:

 V " Vatt % Vrep " ! 

ae 2

4pP0r
% le !r /r (10.19)

At the equilibrium position (r " r0), F " !dV/dr " 0. Thus

 0 "
ae 2

4pP0r 0
2 ! a l

r
b e !r0 /r (10.20a)

Therefore

 e !r0 /r "
rae 2

4pP0lr 0
2 (10.20b)

and

 V 1r " r0 2 " ! 

ae 2

4pP0r0
 31 ! 1r /r0 2 4  (10.21)

Typically the repulsive potential is very short range, so that the ratio r/r0 is much 
less than 1. For example r/r0 " 0.11 for NaCl, as shown next in Example 10.4. 
This is important, because Equation (10.21) indicates that r/r0 must be less than 
1 in order for the net potential energy at r " r0 to be negative, as is required.

The dissociation energy, that is, the energy needed to break 
a NaCl crystal into individual sodium and chlorine atoms, is 
determined experimentally to be 764.4 kJ/mol at standard 
temperature and pressure (STP) (see Table 10.2). Use this 
value to calculate the range parameter r for NaCl.

Strategy First divide the experimental dissociation energy 
by Avogadro’s number (the number of ion pairs per mole) 
to obtain a value of 1.269 & 10!18 J/ion pair. Then with the 
equilibrium position at r " r0, we have V(r " r0) " !1.269 
& 10!18 J. With this numerical value of V(r " r0), Equation 
(10.21) can be solved for r/r0.

 EXAMPLE 10.4
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10.4  Thermal and Magnetic Properties 
of Solids

Thermal Expansion
One of the more ubiquitous properties of solids is thermal expansion, the ten-
dency of a solid to expand as its temperature increases. A qualitative understand-
ing can be obtained by studying Figure 10.22, the potential energy curve for an 
ion bound in a solid. We saw earlier in this chapter that this potential energy 

Solution We solve Equation (10.21) for r/r0 in terms of 
V(r " r0) and obtain
 
 
r

r0
" 1 %

4pP0r0V 1r " r0 2
ae 2

 " 1 %
10.282 nm 2  1!1.269 & 10!18 J 218.988 & 109 N # m2/C2 2  11.7476 2  11.602 & 10!19 C 22 

 " 0.112

Therefore r " 0.112r0 " 0.0316 nm, which is in agreement 
with the value listed in Table 10.2. Indeed, this shows that 
the repulsive potential is very short range.

Figure 10.22 The asymmetry 
of the potential energy curve 
leads to thermal expansion. At 
T " 0 the mean spacing is r0, but 
as T increases, so does the mean 
spacing.

r0r1 r2

V(r)

r
rT

E
0

En
er

gy

 Nearest-  Repulsive Range  Dissociation 
Salt  Neighbor  Parameter  Energy 
Crystal Separation (nm) R (nm) (kJ/mol)

LiF 0.214 0.029 1014
LiCl 0.257 0.033 832.6
LiBr 0.275 0.034 794.5
LiI 0.300 0.037 743.8
NaF 0.232 0.029 897.5
NaCl 0.282 0.032 764.4
NaBr 0.299 0.033 726.7
NaI 0.324 0.035 683.2
KF 0.267 0.030 794.5
KCl 0.315 0.033 694.0
KBr 0.330 0.034 663.5
KI 0.353 0.035 627.5
RbF 0.282 0.030 759.3
RbCl 0.329 0.032 666.8
RbBr 0.345 0.034 638.8
RbI 0.367 0.035 606.6

From C. Kittel, Introduction to Solid State Physics, 5th ed., New York: 
Wiley (1976), p. 92.

Tab le  10 .2     Properties of Salt Crystals 
with the NaCl Structure
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curve is characteristic of the combined attractive and repulsive forces experi-
enced by this ion (see Figure 10.1).

At T " 0, the ion is nearly “frozen solid” at r " r0 because it has just the mini-
mum energy possible (the zero-point energy, as described in Section 6.6). As the 
temperature of the solid is increased from zero, the average energy of each ion 
increases. The result is an oscillation between points r1 (#r0) and r2 ($r0). To a 
first approximation the motion is simple harmonic, but it is not exactly so. The 
potential energy for a simple harmonic oscillator is of the form V " 1

2 k(r ! r0)2, 
a function that is symmetric about the point r " r0. The potential energy shown 
in Figure 10.22 is not symmetric. The effect is that the mean lattice spacing rT ! 
(r2 % r1)/2 is slightly greater than r0 when T $ 0 and increases gradually with 
increasing temperature. The bulk effect of an increase in the mean lattice spac-
ing is an overall expansion of the solid (Figure 10.23).

Now we shall develop a quantitative model of thermal expansion. Let x " 
r ! r0, so that we will consider small oscillations of an ion about the equilibrium 
position x " 0. A good model of the potential energy close to x " 0 is

 V " ax 2 ! bx 3 (10.22)

where the x3 term is responsible for the anharmonicity (that is, the deviation 
from the standard harmonic oscillator) of the oscillation. The mean displace-
ment 8x 9 is calculated using the Maxwell-Boltzmann distribution function e!bV:

 8x9 " #
q

!q
xe !bV dx

#
q

!q
e !bV dx

 (10.23)

where we have used the usual notation b " (kT )!1. In the numerator we can use 
a Taylor expansion for the x3 term because b is small:

 xe !bV " xe !bax 
2
e %bbx 

3
" xe !bax 

211 % bbx 
3 % p 2 ! e !bax 

21x % bbx 4 2
This allows us to evaluate the integral in the numerator of Equation (10.23), be-
cause only the even (x4) term survives integration from !q to q (see Appendix 6):

 #
q

!q
e !bax 

21x % bbx 4 2  dx " #
q

!q
e !bax 

2
 bbx 4 dx "

31p
4

 ba!5/2b!3/2 (10.24)

Because we are interested only in the first-order dependence on T, it is acceptable 
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Figure 10.23 Thermal expan-
sion of solid argon. The expan-
sion is fairly linear except at very 
low temperatures. Reprinted Fig. 2 
with permission from American Physical 
Society. O. G. Peterson, D. N. 
Batchelder, and R. O. Simmons, Physi-
cal Review 150, 703 (1966). Copyright 
1966 by the American Physical Society.
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to approximate the denominator of Equation (10.23) by

 #
q

!q
e !bV dx ! #

q

!q
e !bax 

2
 dx " a p

a b
b 1/2

 (10.25)

Combining Equations (10.24) and (10.25), we obtain

 8x 9 " 3b
4a2b

"
3bkT
4a2  (10.26)

Therefore thermal expansion is nearly linear with temperature in the classical 
limit. At very low temperatures the expansion is nonlinear, because the term 
calculated in Equation (10.26) vanishes as T S 0. This is in agreement with ex-
periment, as is seen in Figure 10.23.

Thermal Conductivity
Another important property of solids is their thermal conductivity, a measure of 
how well they transmit thermal energy. Materials that are good electrical con-
ductors also tend to be good thermal conductors. This is because the conduction 
electrons, which are relatively free to move, are primarily responsible for the 
conduction of heat. We shall see, in fact, that the quantum theory of electrical 
conductivity developed in Chapter 9 is necessary in order to develop a good 
model for heat conduction.

The standard way to define thermal conductivity is in terms of the flow of 
heat along a solid rod of uniform cross-sectional area A (Figure 10.24). It is 
found experimentally that the flow of heat per unit time along the rod is pro-
portional to A and to the temperature gradient dT/dx. We define the thermal 
conductivity K to be the proportionality constant, so that

 
dQ
dt

" !KA 
dT
dx

  (10.27)

The negative sign in Equation (10.27) is because heat flows in a direction op-
posite to the thermal gradient (that is, from hotter to colder).

In classical theory the thermal conductivity of an ideal free electron gas* is

 K "
n v/c V

3NA
 (10.28)

where n is the volume density of free electrons, v  is the mean (thermal) speed, 
/ is the mean free path (see Chapter 9), and cV is the molar heat capacity. Clas-
sically cV " 3

2 R " 3
2NAk, so

 K " 1
2 n v/k  (10.29)

Because of their close relationship, it is useful to compare the thermal conduc-
tivity K and electrical conductivity s: 

 
K
s

"
1
2 n v/k

n e 2//m v
"

m v 2k
2e 2  (10.30)

From classical thermodynamics the mean speed is (see Equation 9.17)

 v " B8kT
pm

*See, for example, F. Reif, Statistical Physics, New York: McGraw-Hill (1967), pp. 331– 333.

Figure 10.24 A uniform rod of 
cross-sectional area A, used to il-
lustrate thermal conductivity.

x

A
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362 Chapter 10 Molecules, Lasers, and Solids

Therefore

 
K
s

"
4k2T
pe 2   (10.31)

We fi nd that the ratio K/s is proportional to T. It is convenient to calculate 
the constant ratio

 L "
K
sT

"
4k2

pe 2 (10.32)

Equation (10.32) is called the Wiedemann-Franz law, and the constant L is the 
Lorenz number. The numerical value of L is about 1.0 & 10!8 W # #* # K!2. Ex-
periments show that K/sT is indeed constant, but it has a numerical value about 
2.5 times higher than predicted by Equation (10.32). Some experimental values 
are listed in Table 10.3.

What is wrong with our analysis? One problem is that we have used classical 
expressions for v  and cV. We should replace v  with the Fermi speed uF (because 
only electrons near the Fermi energy will be able to contribute to the conductiv-
ity) and replace cV " 3

2 R with the quantum-mechanical result [see Equation 
(9.47)]

 c V "
p2R kT

2EF
  (10.33)

so that Equation (10.28) can be rewritten

 K "
1
3

 
nuF/
NA

 
p2R kT

2EF
  (10.34)

Wiedemann-Franz law

Lorenz number

Metal T " 273 K T " 373 K

Ag 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20
Zn 2.31 2.33

From C. Kittel, Introduction to Solid State Physics, 5th ed., New 
York: Wiley (1976), p. 178.

Tab le  10 .3    Lorenz Number L " K/#T 
in Units of 10!8 W # V # K!2 
at Temperatures 273 K 
and 373 K
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Note that R " NAk and EF " 1
2 muF

2. Thus

 K "
n /p2k2T

3muF
  (10.35)

The proof of the validity of Equation (10.35) will be the correct quantum 
version of the Wiedemann-Franz law, that is, one in agreement with experimen-
tal results. As before, L " K/sT, but now we use s " ne2//muF:

 L "
K
sT

"
n /p2k2

3muF
 
muF

ne 2/

  L "
p2k2

3e 2  (10.36)

The quantum-mechanically correct Lorenz number contains the same physical 
constants, k2 and e2, as the classical one, but strangely it is higher by a factor of 
p3/12. This is just enough to bring the Lorenz number to a numerical value of 
2.45 & 10!8 W # * # K!2, which is in agreement with experiment.

Magnetic Properties
The study of magnetic properties of solids constitutes an important subfield of 
solid state physics. Solids are characterized by their intrinsic magnetic moments 
(or lack thereof) and their responses to applied magnetic fields. Materials with 
a net magnetic moment without an applied magnetic field are called ferromag-
nets. Ferromagnets are sometimes referred to as “permanent magnets,” although 
as we shall see later this is somewhat of a misnomer. In a paramagnet there is a 
net magnetic moment only in the presence of an applied field. The magnetic 
dipoles in a paramagnet align to some extent with the applied field. In a diamag-
net, on the other hand, there is a (usually weak) tendency to have an induced 
magnetic moment opposite to the applied field. We shall consider each of these 
three principal kinds of materials separately.

A useful quantity in studying magnetic materials is the magnetization M, 
which we define as the net magnetic moment per unit volume. Then the mag-
netic susceptibility X is defined by

 x "
m0M

B
 (10.37)

In other words, we may think of magnetic susceptibility as the induced magnetic 
moment per unit of applied magnetic field, with a proportionality constant equal 
to the permeability constant m0. The magnetic susceptibility is positive for para-
magnets and negative for diamagnets. Notice that x (lowercase Greek chi) is a 
dimensionless quantity (see Problem 43).

Today magnetic materials are found in many applications outside the re-
search laboratory. The small size and extreme stability of magnetic domains 
(small regions of magnetization) in many materials makes them ideal for any 
device that requires data storage and retrieval. Computers, electronic instru-
ments, and audio and videotapes all take advantage of magnetic materials in this 
way.

Quantum Lorenz number

Ferromagnets, paramag-
nets, and diamagnets

Magnetization

Magnetic susceptibility
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364 Chapter 10 Molecules, Lasers, and Solids

Diamagnetism
The behavior of a diamagnet may seem contrary to common sense, because in a 
diamagnet the magnetization opposes the applied field. However, one may think 
of the material as a whole responding to the applied field according to Faraday’s 
law. A semiclassical model suggested by Feynman* helps explain the situation.

Consider an electron orbiting counterclockwise in a circular orbit of radius 
r, as shown in Figure 10.25. Now suppose a magnetic field is applied gradually, 
directed out of the page. As the magnetic field increases from zero, there is an 
increasing magnetic flux upward through the atom’s (circular) orbital path. 
Faraday’s law states that the changing magnetic flux results in an induced elec-
tric field that is tangent to the electron’s orbit, directed clockwise. Faraday’s law 
gives the magnitude of the induced electric field:

 E 12pr 2 " ` d£B

dt
` "

d
dt

 1pr 2B 2
Therefore the induced electric field strength is

 E "
r
2

 
dB
dt

This electric field produces a torque t " r  & F " r & (!eE ), which has a mag-
nitude reE (r and E are perpendicular) and a direction out of the page. Setting 
torque equal to the rate of change in angular momentum,

 t "
dL
dt

" r e E "
e r 2

2
 
dB
dt

 

directed out of the page. Therefore, for a magnetic field that increases from 0 to 
B, directed out of the page, the angular momentum changes by an amount

 ¢L "
e r 2B

2
 

with a direction 'L out of the page. This results in a magnetic moment changed 
by 'm " ! 

e
2m

 'L, which has a magnitude

 ¢m "
e 2r 2B

4m
  (10.38)

and a direction 'm into the page. The change in magnetic moment is opposite 
to the applied field, which is characteristic of diamagnetism.

*Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman Lectures on Physics, Vol. 2, 
Reading, MA: Addison-Wesley (1964), pp. 34-5 to 34-6.

Figure 10.25 (a) Electron or-
bit used to illustrate diamagne-
tism. (b) The electron experi-
ences a force in the applied 
magnetic field, resulting in a 
torque and a subsequent change 
in angular momentum.

EF

r

Estimate the size of the induced diamagnetic moment in a 
typical atom, assuming an orbital radius equal to the Bohr 
radius and an applied field of 2.0 T. Compare the result with 
the Bohr magneton mB " e U/2m " 9.27 & 10!24 J/T, a typi-
cal magnetic moment.

Strategy With the numerical values of the orbital radius 
and magnetic field known, the induced magnetic moment 
is given by Equation (10.38). Using SI units throughout, the 
units for change in magnetic moment will be in J/T.

 EXAMPLE 10.5
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Paramagnetism
In a paramagnet there exist unpaired magnetic moments that can be aligned by an 
external field. This is the case for rare earth elements and for many transition met-
als. The paramagnetic susceptibility x is strongly temperature dependent. We can 
determine the temperature dependence by considering a collection of N unpaired 
magnetic moments per unit volume. At a given temperature there will be N % mo-
ments aligned parallel to the applied field and N ! moments aligned antiparallel to 
the applied field. The energy associated with a magnetic moment is V " !m # B, so 
V " !mB for a parallel alignment and V " %mB for an antiparallel alignment. In the 
classical limit (that is, at T W 0, which includes room temperature) the distribution 
of magnetic moments is governed by Maxwell-Boltzmann statistics, so that

 N% " ANe bmB and N! " ANe !bmB (10.39)

where A is a normalization constant, and as usual b " (kT )!1. Then the net 
magnetic moment (per unit volume) mnet is

 mnet " m1N % ! N ! 2
 mnet " mAN 1e  

bmB ! e !bmB 2  (10.40)

Rather than directly calculating x from mnet, it is useful first to eliminate the 
constant A by considering m, the mean magnetic moment per atom:

 m "
mnet

N
"

mnet

N% % N! "
mAN 1e  

bmB ! e !bmB 2
AN 1e  

bmB % e !bmB 2
 m " m

e  
bmB ! e !bmB

e bmB % e !bmB " m tanh1bmB 2  (10.41)

Because we used the Maxwell-Boltzmann distribution, this expression is only 
valid for T W 0. Note that this also means mB V kT, in which case tanh(bmB) " 
tanh(mB/kT ) ! mB/kT and m " m2B/kT. Therefore in the classical limit (note 
M " N m)

 x "
m0M

B
"
m0N  m

B
"
m0 

Nm2

kT
 (10.42)

Equation (10.42) is called the Curie law and is often simply stated as x " C/T, 
where C " m0Nm2/k is a constant (the Curie constant) for a given paramagnetic 
material. Sample magnetization curves are shown in Figure 10.26 (page 366), 
where the utility and the limitations of the Curie law can be seen. In Figure 10.26 
it is clear that the M versus B curve is nearly linear over a wide range of magnetic 
fields. It is apparent that the Curie law breaks down at higher values of B, when 
the magnetization reaches a “saturation point” at which as many magnetic mo-
ments as possible have been aligned.

Curie law

Solution Using the numerical values provided along with 
the electron charge and mass,

  ¢m "
e 2r 2B
4m

"
11.60 & 10!19 C 22 15.29 & 10!11 m 22 12.0 T 2

419.11 & 10!31 kg 2
  " 3.9 & 10!29 J/T

The change in the magnetic moment is only about 4 & 10!6 
as large as the Bohr magneton. This illustrates that diamag-
netism is generally a weak effect.
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366 Chapter 10 Molecules, Lasers, and Solids

Ferromagnetism
Ferromagnetic materials are fairly rare. Of all the elements only five (Fe, Ni, Co, 
Gd, Dy) are ferromagnetic. A number of compounds are ferromagnetic, including 
some that do not contain any of these ferromagnetic elements. In the most pow-
erful magnetic compounds (such as Nd2Fe14B) the magnetic field at the surface 
can exceed 1 T. In order to have a ferromagnet it is necessary to have not only 
unpaired spins but also sufficient interaction between the magnetic moments so 
that, by their mutual interaction, a high degree of magnetic order is maintained. 
Opposing the maintenance of order is the continual randomizing effect of ther-
mal motion, which contributes to the eventual “running down” of the magneti-
zation of a ferromagnet. This phenomenon should not be surprising, in light of 
the second law of thermodynamics, which states that entropy (a statistical mea-
sure of disorder) evolves toward a maximum.
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Figure 10.26 An actual plot of 
magnetization for potassium 
chromate sulfate, a paramagnetic 
salt. Note the agreement with the 
Curie law for low magnetic fields. 
From W. E. Henry, Physical Review 
88, 559 (1952).

Use the Bohr magneton mB " e U/2m " 9.27 & 10!24 J/T as 
a typical magnetic moment and B " 0.50 T to do the 
following:
 (a) Find the temperature T at which mB " 0.1kT.
 (b)  For mB " 0.1kT compare tanh(bmB) with bmB and 

thereby check the suitability of this value of T as a “clas-
sical” temperature.

 (c)  Make the same comparison in the expression 
tanh(bmB) ! bmB at T " 100 K.

Strategy With the numerical values of the magnetic mo-
ment and magnetic field given, the computations are all 
straightforward. For the comparisons called for in parts (b) 
and (c), the given values suggest using two significant figures.

Solution (a) We are given that mB " 0.1kT. We let m " mB 
and solve for T:

 T "
10mB

k
"

1019.27 & 10!24 J/T 2 10.5 T 2
1.38 & 10!23 J/K

" 3.36 K

(b) Now

  bmB "
mB
kT

" 0.10

  tanh1bmB 2 " tanh10.10 2 " 0.10

to two significant digits. Therefore we conclude that the ap-
proximation is a good one for most purposes, even at this 
low temperature.

(c) Now

  bmB "
mB
kT

"
19.27 & 10!24 J/T 2 10.5 T 211.38 & 10!23 J/K 2 1100 K 2

  " 3.36 & 10!3

  tanh1bmB 2 " tanh13.36 & 10!3 2 " 3.36 & 10!3

so that bmB and tanh(bmB) are the same to three significant 
figures. At these relatively high temperatures the approxi-
mation is an excellent one.

 EXAMPLE 10.6
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Sufficient thermal agitation at an elevated temperature disrupts the magnetic 
order, to the extent that above a certain temperature (known as the Curie tem-
perature TC) a ferromagnet changes to a paramagnet. TC for some ferromagnetic 
materials are listed in Table 10.4. At temperatures approaching TC (from below), 
the magnetization of the ferromagnetic material begins to drop significantly as 
the thermal motion destroys the long-range magnetic order.

Ferromagnetic materials are used widely in scientific research and industry. 
Electrical generators use permanent magnets to take advantage of Faraday’s law. 
Electric motors use permanent magnets in the reverse process, to turn electrical 
current into mechanical motion. Scientific uses include the wiggler magnets 
described in Section 10.2, low-field nuclear magnetic resonance, and Stern-
Gerlach experiments (Section 7.4). Another application is in magnetically levi-
tated transport systems (Section 10.6).

Antiferromagnetism and Ferrimagnetism
There are two more exotic kinds of magnetism. In antiferromagnetic materials, 
adjacent magnetic moments have opposing directions, as seen in Figure 10.27. 
The net effect is zero net magnetization below the ordering temperature (simi-
lar to TC in ferromagnetic materials) called the Neel temperature, TN. Above TN, 
antiferromagnetic materials become paramagnetic. Negative ions seem to be 
most effective in providing the mechanism for antiparallel alignment, as in the 
antiferromagnetic materials MnO, FeO, MnS, MnF2, and NiCl2. In a ferrimag-
netic substance a similar antiparallel alignment occurs, except that there are two 
kinds of magnetic moments present. Thus the antiparallel moments do not pre-
cisely cancel, leaving a small net magnetization. A common example of ferrimag-
netic order is in magnetite, FeO # Fe2O3.

10.5  Superconductivity
Superconductivity is perhaps the most remarkable phenomenon ever studied in 
solid state physics. Superconductivity is characterized by the absence of electrical 
resistance and the expulsion of magnetic flux from the superconductor.

For some time after its discovery more than 100 years ago, superconductivity 
was a scientific curiosity with little potential for practical use. In recent years, 
particularly with the advent of high-temperature superconductors (that is, with 
temperatures exceeding 77 K), this has changed. Today superconductors are 
used in a wide variety of applications. Also, the prospect of even higher tempera-
ture superconductors makes it essential that physicists continue to study and 
learn more about their properties. We describe what is known today about su-
perconductors in this section and consider the applications in Section 10.6.

Superconductivity is a special physical state characterized by two distinctive 
macroscopic features. The first of these is zero resistivity, which was first observed 
in solid mercury by the Dutch physicist Heike Kamerlingh Onnes in Leiden in 
1911. He made this discovery shortly after liquefying helium, itself a significant 
accomplishment. (Remember that the boiling point of helium is 4.2 K at a pres-
sure of 1 atm.) Kamerlingh Onnes achieved temperatures approaching 1 K by 
reducing the pressure of the vapor surrounding the liquid helium. Today much 
lower temperatures are achieved by more sophisticated means. (See Special 
Topic, “Low-Temperature Methods.”)

Figure 10.28 (page 368) illustrates how the resistivity of a superconductor 
differs from that of a normal conductor. In a superconductor the resistivity drops 

Material TC (K)

Fe 1043
Co 1388
Ni 627
Gd 293
Dy 85
CrBr3 37
Au2MnAl 200
Cu2MnAl 630
Cu2MnIn 500
EuO 77
EuS 16.5
MnAs 318
MnBi 670
GdCl3 2.2

From F. Keffer, Handbuch 
der Physik 18, pt. 2, New 
York: Springer-Verlag 
(1966), and P. Heller, 
Reports on Progress in Physics 
30, pt. II, 731 (1967).

Tab le  10 .4  
Selected 
Ferromagnets, 
with Curie 
Temperatures TC

Ferromagnetism

(a)

Antiferromagnetism

(b)

Ferrimagnetism

(c)

Figure 10.27 The alignment of 
spins in ferromagnets, antiferro-
magnets, and ferrimagnets.
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368 Chapter 10 Molecules, Lasers, and Solids

abruptly to zero at what is called the critical (or transition) temperature Tc. It is 
important to realize that the resistivity is not merely very low; it really is zero. In 
the years 1956– 1958 a group of British physicists led by S. C. Collins established 
a current in a superconducting ring and allowed it to flow with no external 
power source. It lasted until they were tired of watching it (about 2 

1
2 years) with 

no detectable loss of current. Extrapolating from the uncertainty in their mea-
suring instruments, they calculated that some current would remain after at least 
100 million years (see Problem 64). The name “super” conductor is quite ap-
propriate! By contrast, the current in a similar loop made of copper would be 
virtually gone in seconds, because although copper is considered an excellent 
conductor, it has some resistance even at extremely low temperatures.

Different superconductors have different transition temperatures, as seen in 
Table 10.5. Niobium is the transition-temperature champion of the pure ele-
ments, with Tc " 9.25 K. Notice that copper, silver, and gold, three of the four 
best conductors at room temperature, are not superconductors. This illustrates 
a rule of thumb that holds true with rare exceptions: The best conductors make 
the worst superconductors. Another interesting result is that superconducting 
behavior, like chemical behavior, tends to be similar within a given column of 
the periodic table. This should not be surprising, for it is the outermost electrons 
that are responsible for both chemical reactions and electrical conduction.

The second important macroscopic phenomenon associated with supercon-
ductivity is the Meissner effect, discovered by W. Meissner and R. Ochsenfeld in 
1933. Succinctly stated, the Meissner effect is the complete expulsion of mag-
netic flux from within a superconductor. To do this it is necessary for the super-
conductor to generate currents, called screening currents. Just enough current is 
generated to expel the magnetic flux one tries to impose upon it. One can there-
fore view the superconductor as a perfect diamagnet, with a magnetic suscepti-
bility x " !1. In Figure 10.29 we see a demonstration of the Meissner effect in 
which the induced currents within the superconductor create a magnetic field 
that opposes the field of a cubical magnet, thereby providing sufficient force to 
suspend the magnet against gravity. There is an equilibrium position for the 
magnet, where the gravitational force on it is just balanced by the magnetic force 
at that distance from the superconductor.

The Meissner effect works only to a certain point, however. If a particular 
value of magnetic field (called the critical field Bc) is exceeded, magnetic flux 
does penetrate the material, and the superconductivity is lost until the magnetic 

Meissner effect

Critical field

0!

2!
4!
6!
8!

10!
12!
14!
16!

Sn
Pt

18!
20!
22!

2! 4! 6! 8! 10! 12! 14! 16!

R
es

is
tiv

ity
 (

&
10

!
11

 *
 +

 m
)

Temperature (K)

Figure 10.28 Resistivity of a 
normal conductor (platinum) 
and a superconductor (tin) at low 
temperature. The resistivity of tin 
drops dramatically to zero at its 
Tc, 3.7 K.
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 Li Be           B C N O F Ne

             Al      
 Na Mg           1.18  Si P S Cl Ar

             105

    Ti  V       Zn  Ga      
 K Ca Sc 0.40  5.40 Cr Mn Fe Co Ni Cu 0.85 1.08 Ge As Se Br Kr

    56 1408       54 58
  

              
    Zr  Nb  Mo  Tc  Ru     Cd  In  Sn     
 Rb Sr Y 0.61  9.25 0.92  7.77  0.49 Rh Pd Ag 0.52 3.41  3.72  Sb Te I Xe

    47 2060 96 1410  69     28 282 505 

 

Cs Ba

 La  Hf  Ta  W  Re  Os Ir  
Pt Au

 Hg  Tl  Pb  
Bi Po At Rn   6.00  0.13  4.47  0.02  1.70 0.66  0.11    4.15 2.38  7.20 

   1046 13 829 1.15  200 70 16    411 178 803
  
  

               Lu 
 Fr Ra Ac

 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 0.1 
                 350
    Th  Pa             
    1.38  1.4 U Np Pu Am Cm Bk Cf Es Fm Md No Lr

    160   

From B. W. Roberts, Properties of Selected Superconductive Materials, Supplement, NBS Technical Note 983, Washington, DC: U.S. 
Government Printing Office (1978).

Superconducting transition temperatures and critical fi elds

Upper number: Transition temperature in K
Lower number: Critical magnetic field at absolute zero in 10!4 tesla

Figure 10.29 Levitation of a 
cubical magnet over supercon-
ducting Y Ba2Cu3O7 cooled to 
77 K (well below its Tc of 93 K), 
illustrating the Meissner effect. 
Screening currents are generated 
in the superconductor, which 
provide a magnetic field to op-
pose the field of the magnet and 
thereby suspend it.

Tab le  10 .5     Superconductivity Parameters of the Elements
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370 Chapter 10 Molecules, Lasers, and Solids

field is reduced to below Bc. When the magnetic flux penetrates, the zero resis-
tivity property is also lost, showing that zero resistivity and the Meissner effect  go 
together in a superconductor.

Like the transition temperature, the critical field is also different for differ-
ent superconductors. Superconductors with higher transition temperatures tend 
to have higher critical fields, although there are some exceptions. The critical 
field varies with temperature as shown in Figure 10.30. Just below Tc the criti-
cal field is low; that is, it takes very little magnetic field to eliminate the super-
conductivity. The fact that Bc for pure metals even at absolute zero is only on the 
order of 0.1 tesla is important, because one often encounters higher fields in 
laboratory situations. The critical field places a strict limit on how a particular 
super conductor can be used. Current-carrying wires generate magnetic fields, 
both inside and outside the wire. Therefore, if one wishes to use a superconduct-
ing wire to carry current without resistance, there is a maximum current (known 
as the critical current) that can be used. These effects severely limited the ap-
plications of superconductors for several decades, until superconductors with 
higher critical fields were discovered.

The superconducting state we have just described is that of the pure metals 
Hg, Al, and many others. They are collectively known as type I superconductors. 
In type II superconductors (this category includes most superconducting alloys) 
there are two critical fields, a lower critical field Bc1 and an upper critical field Bc2. 
Below Bc1 and above Bc2, type II superconductors behave in the same manner as 
type I superconductors below and above Bc. Between Bc1 and Bc2, however (known 
as the vortex state), there is a partial penetration of magnetic flux, as is shown in 
Figure 10.31, although the zero resistivity property is generally not lost. The good 
news is that Bc2 can sometimes be very high, hundreds of a tesla or more. The bad 
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Figure 10.30 The temperature 
dependence of the critical fields 
of two superconductors. Note that 
Bc approaches zero as T ap-
proaches Tc (3.4 K for In and 
7.2 K for Pb).

Figure 10.31 A comparison of 
the temperature dependence of 
critical fields for (a) type I and 
(b) type II superconductors. In 
type I superconductors below Bc, 
we have !m0M " B, correspond-
ing to x " !1, or complete expul-
sion of magnetic flux. Up to Bc1, 
the type II material expels all mag-
netic flux, and above Bc2 it allows 
complete penetration. Between 
Bc1 and Bc2 (the vortex state) there 
is partial flux penetration.
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news is that Bc1 is seldom more than a few hundredths of 1 tesla. This must be kept 
in mind when considering applications of superconducting materials that depend 
on either the zero resistivity property or the Meissner effect.

The Meissner effect may remind you of a phenomenon from classical physics 
known as Lenz’s law, which states that a changing magnetic flux generates a cur-
rent in a conductor in such a way that the current produced will oppose the 
change in the original magnetic flux. In classical physics the current lasts only as 
long as the magnetic flux is changing (Faraday’s law). You might expect that in 
a superconductor the current simply persists because of the zero resistivity prop-
erty, but that is not what happens, and a simple experiment serves to demon-
strate. One can impose a constant magnetic field on a material above its Tc, so 
that initially there is no current. If the material is then cooled to below Tc, the 
field is expelled instantly! These experimental results demonstrate that super-
conductors behave in ways that cannot be explained by classical physics.

What makes a superconductor display such unique properties? For years 
there were only vague guesses. In 1950 a phenomenon known as the isotope ef-
fect was discovered, and this eventually helped lead to a successful theory. Many 
superconductors follow the equation

 M0.5Tc " constant (10.43)

where M is the mass of the particular superconducting isotope. This means that 
Tc is just a bit higher for lighter isotopes. For example, a mercury sample with 
an average mass per atom of 199.5 u has Tc " 4.185 K, and a mercury sample 
with an average mass per atom of 203.4 u has Tc " 4.146 K. In other elements 
this general trend is followed, although for some the exponent differs slightly 
from 0.5.

The isotope effect indicates that the lattice ions are important in the super-
conducting state. This is at odds with the classical model of conduction, which 
leads one to believe that zero resistance can result only from zero interaction 
between electrons and lattice ions.

A successful theory* of superconductivity was developed in the mid-1950s by 
John Bardeen, Leon Cooper, and Robert Schrieffer (Nobel Prize in Physics, 1972) 
and is referred to by their initials: BCS. The two principal features of the BCS 
theory of superconductivity are that (1) electrons form pairs (Cooper pairs), 
which propagate throughout the lattice, and (2) such propagation is without re-
sistance because the electrons move in resonance with the lattice vibrations. The 
lattice vibrations are known as phonons, so called because, like photons of electro-
magnetic radiation, they represent quanta of energy. Hence the interaction de-
scribed by the BCS theory is known as the electron-phonon interaction.

How is it possible for two electrons to form a coherent pair? As a first approxi-
mation, consider the crude model shown in Figure 10.32, in which two electrons 

Isotope effect

BCS theory
Cooper pairs

Phonons

Electron-phonon 
interaction

*J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175– 1204 (1957).

#

#
$ $ $ $ $

Electron
Ion row

Electron

Figure 10.32 A schematic of electron motion around a one-dimensional row of ions in a lattice, 
showing how the attraction of the two paired electrons varies as they propagate through the lattice.
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372 Chapter 10 Molecules, Lasers, and Solids

propagate in tandem along a single lattice row. Each of the two electrons experi-
ences a net attraction toward each other because of their interaction with the 
positive ions. The electrons form a correlated pair, with opposite spins as re-
quired by the Pauli principle. With a net spin of zero, the electron pair acts in 
some ways like a bosonic particle. The pair is strongly bound into a condensed 
state, analogous to a Bose-Einstein condensation (Section 9.7).

How can the zero resistivity property of superconductors be explained? Even 
at low temperatures there is some ionic motion. (Remember that a harmonic 
oscillator has a zero-point energy of 1

2 Uv.) That is why one would expect some 
resistance, even at the lowest temperatures. An electron moving through a wire 
should eventually collide with an ion. In this inelastic collision, electrical energy 
is converted to thermal energy and the wire heats up.

But if we neglect for a moment the second electron in the pair, we can un-
derstand how a single electron can travel between adjacent rows of ions without 
transfer of energy (Figure 10.33). The Coulomb attraction between the electron 
and ions causes a deformation of the lattice, which propagates along with the 
electron. This propagating wave is associated with phonon transmission, and the 
electron-phonon resonance allows the electron (along with its pair elsewhere in 
the lattice) to move without resistance. Keep in mind that this model is not as 
precise as the full, mathematically precise BCS theory. However, our model does 
illustrate the importance of long-range order in a superconductor, along with 
the quantum nature of electrons.

The complete BCS theory contains sophisticated mathematics and is based 
solidly on the foundations of the quantum theory. It also successfully predicts 
several other observed phenomena. First, it predicts an isotope effect, with an 
exponent [Equation (10.43)] very close to 0.5. Second, it gives a critical field 
varying with temperature as

 Bc1T 2 " Bc10 2  c1 ! a T
Tc
b 2 d  (10.44)
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Figure 10.33 Propagation of a 
single electron between rows of 
ions in a two-dimensional lattice.

John Bardeen (1908– 1991), pic-
tured left, is the only person to 
receive two Nobel Prizes in Phys-
ics. Bardeen was born and raised 
in Wisconsin and studied electri-
cal engineering. He left a position 
in industry to earn a Ph.D. in 
mathematical physics at Prince-
ton, where under the direction of 
Eugene Wigner he became inter-
ested in solid state physics. 
While working at Bell Labs, 
Bardeen collaborated with Walter 
Brattain and William Shockley to 
develop the transistor, for which 
the three were awarded the 1956 
Nobel Prize in Physics. In 1951 
Bardeen joined the faculty at the 
University of Illinois, where he 
worked for the remainder of his 
career. It was there that he 
worked with Cooper and 
Schrieffer on the theory of 
superconductivity.
    Leon Cooper (1930– ), pic-
tured in center, was a New York 
native who earned his Ph.D. from 
Columbia University. Cooper was 
a research associate at the Uni-
versity of Illinois when he teamed 
with Bardeen and Schrieffer on 
superconductivity. In 1958 Cooper 
began a distinguished career at 
Brown University, where he did 
sig nificant work in cognitive sci-
ences and neural networks.
    J. Robert Schrieffer (1931–), 
pictured right, developed an in-
terest in solid state physics while 
an undergraduate at MIT. He left 
for graduate school at the Univer-
sity of Illinois, where he worked 
under Bardeen. Schrieffer’s Nobel 
Prize work on superconductivity 
was his doctoral research at Illi-
nois. Later Schrieffer held faculty 
 positions at the University of 
 Pennsylvania; the University of 
California, Santa Barbara; and 
Florida State University, where he 
was chief scientist at the National 
High Magnetic Field Laboratory.
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which is in agreement with experiment (see Figure 10.30). It also accounts for 
the fact that the metals with higher resistivity at room temperature tend to be 
better superconductors. The BCS theory can be used to show that the magnetic 
flux through a superconducting ring is quantized in the form

 £ " n£0 "
nh
2e

 (10.45)

where n is an integer and ,0 " h/2e ! 2.068 & 10!15 Wb is known as the quan-
tum fluxoid. (Remember that the weber, abbreviated Wb, is the SI unit for 
magnetic flux.) The quantization of magnetic flux, confirmed experimentally by 
B. S. Deaver, Jr., and W. M. Fairbank in 1961, is the basis for the Josephson junc-
tion, which will be discussed in Section 10.6.

Another correct prediction of the BCS theory concerns the energy gap (Eg) 
between the ground state (the superconducting state) and first excited state for 
conduction electrons. Electrons above the ground state can no longer move with 
zero resistance. Basically this means that Eg is the energy needed to break a Coo-
per pair apart, and the effect is that the larger the energy gap, the more stable 
the superconductor. The BCS theory predicts that

 Eg10 2 ! 3.54kTc (10.46)

at T " 0 (see Table 10.6). This prediction is easily verified by studying the ab-
sorption of electromagnetic radiation by superconductors. Only photons with 
energy greater than or equal to Eg are absorbed, an effect first observed by 
Michael Tinkham in 1960. At higher temperatures (just below Tc) BCS theory 
predicts

 Eg1T 2 ! 1.74Eg10 2 11 ! T /Tc 21/2 (10.47)

Again, the agreement with experiment is striking (Figure 10.34, page 374).

Quantum fluxoid

Tab le  10 .6    Energy Gaps in Superconductors at T " 0

           
Al  

           
3.5  Si

           3.4
 

  V       Zn  Ga 
 Sc Ti 15.8  Cr Mn Fe Co Ni Cu 2.3  3.3  Ge

   3.4       3.2 3.5

   Nb  Mo       Cd  In  Sn 
 Y Zr 30.3  2.7 Tc Ru Rh Pd Ag 1.4 10.6  11.2 
   3.80 3.4      3.2 3.6 3.5

 La  Ta        Hg  Tl  Pb  
 19 Hf 13.9  W Re Os Ir Pt Au 16.5  7.32   26.7  
 2.3  3.6       4.6 3.6  4.3

From N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia: Saunders College 
(1976), p. 745.

Upper number: Eg(0) in 10!4 eV 
Lower number: Eg(0)/kBTc
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374 Chapter 10 Molecules, Lasers, and Solids

The Search for a Higher Tc

From the early days of research in superconductivity, physicists sought to achieve 
higher transition temperatures, because the high cost of cooling materials to 
extremely low temperatures more than offset the benefits of superconducting 
properties, such as zero resistance. The cooling mechanism for superconductors 
has usually been a liquefied gas, such as helium. But liquid helium is very expen-
sive to make,* and to keep anything at that temperature (4.2 K or lower) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

BCS curve
Tin
Tantalum
Niobium

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E
g(

T
)/

E
g(

0)

T/Tc

Figure 10.34 The supercon-
ductive energy gap as a function 
of temperature for various super-
conductors and according to the 
BCS theory. The agreement with 
theory is quite good for these 
pure metals. Reprinted Fig. 6 with 
permission from American Physical 
Society. P. Townsend and J. Sutton, 
Physical Review 128, 591-595 (1962). 
Copyright 1962 by the American 
Physical Society.

Estimate the energy gap Eg for niobium at T " 0, and find 
the minimum photon wavelength needed to break the Coo-
per pair.

Strategy From Table 10.5 we see that Tc " 9.25 K for Nb. 
Therefore Equation (10.46) can be used to compute the 
energy gap. The photon wavelength can then be found us-
ing the usual formula relating energy and wavelength, E " 
hc/l.

Solution From Equation (10.46),

  Eg ! 3.54 11.38 & 10!23 J/K 2  19.25 K 2 " 4.52 & 10!22 J

  " 2.82 meV

This small energy corresponds to a photon wavelength of

 l " hc /Eg " 4.39 & 10!4 m

This is in the far-infrared region of the electromagnetic 
spectrum. Photons with this wavelength or lower have 
sufficient energy to break the Cooper pair in niobium. Note 
that this estimate of Eg is close to the experimental value of 
3.03 meV.

 EXAMPLE 10.7

*A useful observation by B. S. Deaver was that in the 1970s liquid He cost about the same (for a given 
amount) as a fine scotch whiskey, whereas liquid N2 cost about the same as milk. Today liquid He 
and liquid N2 are somewhat cheaper by comparison. However, the Earth’s helium supply is limited, 
and shortages are likely in the coming years.

03721_ch10_339-391.indd   37403721_ch10_339-391.indd   374 9/29/11   2:46 PM9/29/11   2:46 PM



   10.5 Superconductivity 375

requires cumbersome and expensive insulation techniques. Further, helium gas 
itself is rare and expensive. It is found only in trace amounts in the atmosphere. 
(Helium is so light that its mean molecular speed is a significant fraction of es-
cape speed from the Earth’s surface; therefore it tends to leave the atmosphere.) 
Helium is obtained from beneath the Earth’s surface. It is found at the top of 
deposits of natural gas and in geological formations such as dolomite. Hydrogen, 
with a boiling point of 20 K, is a possible substitute, but its high flammability 
makes it undesirable for most uses. Nitrogen, on the other hand, is plentiful, 
safe, and relatively easy to liquefy and store. That is why 77 K, the boiling point 
of nitrogen at 1 atm pressure, was for many years the goal of physicists looking 
for higher temperature superconductors.

To put recent developments into perspective, it is instructive to look at the 
history of transition temperature increases (Table 10.7 and Figure 10.35, page 
376). In 1911 Kamerlingh Onnes measured the transition temperature of mer-
cury to be 4.2 K (it’s just a coincidence that this is approximately the same as the 
boiling point of helium), and in 1930 Meissner found 9.3 K for niobium. The 
next significant increase came in the 1950s with various niobium alloys. NbN, a 
compound used in many applications today for its stability and relatively high 
critical current, was found to have Tc " 15 K. In 1973 Berndt Matthias measured 
Tc " 23.2 K for Nb3Ge, a record that stood until 1986. Nb3Ge belongs to a class 
of compounds called A-15, which includes the relatively high-temperature su-
perconductors Nb3Sn, V3Si, and others. This serves to illustrate that if you find 
one new superconductor, you have probably found several, because it is nor-
mally possible to substitute for one or more constituent atoms with another from 
the same column of the periodic table.

   Year of Tc 
Material Type Tc (K) Measurement

Hg Element 4.2 1911
Pb Element 7.2 1913
Nb Element 9.3 1930
Nb3Sn Alloy 18.1 1954
Nb3(Al0.75Ge0.25) Intermetallic 20– 21 1966
Nb3Ga Intermetallic 20.3 1971
Nb3Ge Intermetallic 23.2 1973
BaxLa5!xCu5O5(3!y) Ceramic 30– 35 1986
(La0.9Ba0.1)2CuO4!d  Ceramic 52.5 1986
(at 1 GPa pressure)
YBa2Cu3O7 Ceramic 93 1987
BiSrCaCuO Ceramic 105– 120 1988
TlBaCaCuO Ceramic 110– 125 1993
HgBa2Ca2Cu4O1%x Ceramic 134 1994
HgBa2Ca2Cu3O8%x  Ceramic 164 1994
(at 30 GPa pressure)

From C. P. Poole, Jr., T. Datta, and H. A. Farach, Copper Oxide Superconductors, New York: 
Wiley Interscience (1988), p. 7.

Tab le  10 .7     Superconductivity Records Through the Years
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In 1986 the excitement began, when huge gains in Tc were suddenly real-
ized. Georg Bednorz and Karl Alex Müller, working at the IBM Zurich research 
laboratory, found that a compound containing lanthanum, barium, copper, and 
oxygen had a transition temperature of at least 30 K. By playing the substitution 
game just described, Bednorz and Müller* were soon able to achieve a Tc of 
40 K in La1!xSrxCuO with x " 0.15. Their discovery was revolutionary, certainly 
because they had nearly doubled the old record for Tc, but also because the es-
sential ingredients in the new superconductors were copper and oxygen, which 
generally work against the formation of superconductors. For this discovery 
Bednorz and Müller were awarded the 1987 Nobel Prize for Physics.†

More significant gains in Tc came quickly. In early 1987 a group at the Uni-
versity of Houston led by Paul Chu more than doubled the record Tc again when 
they substituted yttrium for lanthanum and barium for strontium and changed 
the composition slightly. Chu reported a maximum Tc of about 93 K for 
Y Ba2Cu3O7. The ratio of the three metallic elements has caused this compound 
to be referred to as “1-2-3.” A Tc of 93 K was a fantastic advance because it sur-
passes the 77 K boiling point of nitrogen, achieving the long-sought goal!

Another useful property of the (type II) copper oxide superconductors is 
that they have extremely high upper critical fields. For Y Ba2Cu3O7 the upper 
critical field Bc2 " 100 T at 77 K. The value of Bc2 at 0 K is so high that it cannot 
be measured, but by extrapolation it is taken to be about 300 T. This allows us to 
imagine future applications that use the Meissner effect or high currents. By the 
early twenty-first century, high-Tc yttrium– barium– copper oxide wire could be 
routinely produced with a critical current density of 109 A/m2 in zero applied 
magnetic field at 77 K and a critical current density of 2 & 108 A/m2 in an ap-
plied magnetic field of 8 T at 77 K. For comparison, a normal conductor, #10 
gauge copper wire, has a diameter of 2.59 mm and a recommended maximum 
current of 30 A (if insulated), or a maximum current density of 5.7 & 106 A/m2. 
A critical current density of 109 A/m2 has been reported for newer mercury-
based oxides at T " 110 K. There have been reports‡ of 1010 A/m2 critical cur-
rents at 77 K in specially prepared yttrium– barium– copper oxide tapes.

The copper oxide superconductors fall into a general category of materials 
called ceramics. Unfortunately, like most ceramic materials, they are extremely 

*J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B64, 189 (1986).

†This was the fastest such recognition in the history of the Nobel Prize in Physics.

‡See, for example, R. N. Bhattacharya et. al., Physica C, 333, 59–64 (2000).
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Figure 10.35 The highest 
known superconducting Tc by 
year from 1911 to 1994. Note the 
dramatic increase beginning in 
1986.
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brittle and therefore are not easy to mold into convenient shapes. The copper 
oxide superconductors are relatively easy to make compared with the A-15 com-
pounds or with the semiconductor wafers used in computers, but making them 
into shapes useful for practical applications is a challenge and requires innova-
tive technology. It’s now possible to make long, flexible wires, as illustrated in 
Figure 10.36. The wire shown is flexible enough to be bent into a curve with 
radius 10 cm, and it carries a critical current of 115 A at 77 K.

In early 1988 Chu and his group developed a superconducting oxide com-
pound using bismuth and aluminum, BiAl1!yCaSrCoO7!d, which has Tc " 114 K 
with 0 # y # 0.3 and d # 0.45. By 1992 the Tc record reached 125 K in the 
thallium-based compound Tl2Ba2Can!1CunO2n%4 with n " 3. The interesting 
thing is that there is a regular variation of Tc with n; Tc " 80 K for n " 1, Tc " 110 
K for n " 2, and Tc " 125 K for n " 3. The curve shown in Figure 10.37 suggests 
that if we could make this thallium– copper oxide with n > 3, Tc could be in-
creased further, perhaps indefinitely. In the structure these higher values of n 
correspond to more stacked layers of copper and oxygen. So far it has not been 
possible to stack more than three. 

In 1993 a higher Tc was achieved in mercury-based copper oxides. A Tc of 
133 K was reported in the compound HgBa2Ca2Cu3O1%x with x a small positive 
number. In 1994 the mercury-based compound HgBa2Ca2Cu3O8%x was shown 
to have a superconducting transition temperature of 164 K at extremely high 
pressures—about 300,000 atm.*

The use of high-Tc superconductors is increasing in other applications for 
which long, flexible wires are unnecessary. For example, the wireless communi-
cations industry uses circuits with high-Tc components in electronic filters. 
These new filters are less noisy and consume less power than conventional, 
copper-based filters. Ceramic superconductors are also finding their way into 
nuclear magnetic resonance applications (see Sections 10.6 and 12.2).

There is still much work to be done, both experimentally and theoretically, 
before we can understand the mechanism for superconductivity in the copper 
oxides. Generally they exhibit no isotope effect, which suggests that there may 
be a new, non-BCS mechanism at work. And although the advance in the highest 
Tc from 23 K to 164 K was spectacular, the mechanical properties of copper ox-
ides make them less than desirable. The greatest dream of low-temperature 
physicists has been to achieve a Tc not of 77 K but of 300 K (room temperature), 
thereby eliminating the need for cryogenic fluids. Whether this can be achieved 
in copper oxides or any other materials remains to be seen. If it is, there will 
likely be a Nobel Prize for the achievement, to add to the six Nobel Prizes already 
given in the field of superconductivity.

Figure 10.37 Superconducting 
transition temperatures in the 
thallium-based superconductor 
Tl2Ba2Can!1CunO2n%4. The varia-
tion with n suggests that if n could 
be increased further, even higher 
transition temperatures could be 
achieved.

Figure 10.36 Although almost 
100 times smaller in cross section, 
four strands of American Super-
conductor’s multifilamentary HTS 
wire (foreground) can transmit as 
much electrical current as con-
ventional copper cable.
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*Physics Review B 50(6), 4260– 4263 (1994).
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Special Topic

Low-Temperature Methods

R esearch in superconductivity and other low-
temperature phenomena requires special labo-

ratory equipment and techniques. There are well-
established methods of achieving, maintaining, and 
measuring temperatures close to absolute zero. Here 
we introduce some of the hardware and techniques 
used by physicists who study materials at these very low 
temperatures.

Normally a very cold (cryogenic) liquid is used as 
a low-temperature bath. The sample being studied is 
immersed in the liquid, or else it is placed in good 
thermal contact with a material that does have contact 
with the bath. In designing low-temperature appara-
tus, one wishes to insulate the sample and bath from 
their room-temperature surroundings so that the 
sample does not absorb too much heat and thereby 
suffer an unwanted rise in temperature.

Heat can be transferred in any of three ways: con-
duction, convection, and radiation. The dewar flask, 
developed in 1892 by the low-temperature pioneer 
James Dewar (1842– 1923), limits heat transfer by all 
three modes (see Figure A). The surfaces the liquid 
touches are designed to be poor conductors of heat. 
The cold liquid is insulated from convective transfer 
by surrounding it with a vacuum jacket. If the dewar is 
metallic, the shiny outer surface tends to limit heat 
transfer by radiation. Otherwise the surface is “sil-

vered,” that is, coated with a thin layer of reflective 
material.

Figure B shows a schematic drawing of a double 
dewar apparatus typically used for very low tempera-
ture work. The dewar containing liquid helium, which 
has a temperature of 4.2 K at a pressure of 1 atm, is 
surrounded by a second dewar containing liquid ni-
trogen at 77 K. The logic of this device is that much of 
the heat that enters from the surroundings is ab-
sorbed by the liquid nitrogen. This causes the (rela-
tively inexpensive) liquid nitrogen to boil away, rather 
than the liquid helium.

One may achieve temperatures lower than 4.2 K 
by pumping the vapor above the helium bath. The 
remaining liquid and vapor then cool by adiabatic 
expansion. As the liquid cools and the vapor pressure 
decreases, it becomes increasingly difficult to main-
tain the lower pressure by pumping. Therefore, there 
is a practical temperature limit of about 1 K with this 
method. In fact, at 0.7 K the creeping film (discussed 
in Section 9.7) extracts heat from the container walls, 
vaporizes, and gives up this heat to the bath by con-
densation. This presents a more serious limitation to 
the pumping method.

In 1926 W. F. Giauque and P. Debye (working in-
dependently) developed the idea of adiabatic demag-
netization for achieving lower temperatures. Adiabatic 

To vacuum pump

Liquid nitrogen!
(77 K)

Liquid helium!
(4.2 K at 1 atm pressure)

Sample

Vacuum

Silvered!
inner surfaces

Cryogenic!
liquid

Figure A Schematic drawing of the dewar flask. The silvered in-
ner surfaces reduce radiation, whereas the vacuum jacket reduces 
conduction of heat from the outside.

Figure B Schematic drawing of a double-dewar apparatus. The 
outer dewar is maintained at 77 K with liquid nitrogen, and the in-
ner dewar contains liquid helium. The inner dewar may be con-
nected to a pump if temperatures less than 4.2 K are required.
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demagnetization is the second step in a two-step proce-
dure. First, a paramagnetic salt is put into a vessel con-
taining helium gas, which in turn is connected ther-
mally to the helium bath. This is done with the dewar 
between the poles of an electromagnet. When the elec-
tromagnet is switched on, the magnetic dipoles in the 
salt align with the field. This magnetization takes place 
at a fixed temperature in the helium bath, and there-
fore this first step is referred to as isothermal magnetiza-
tion. The key to understanding what is about to happen 
is to consider the entropy of the salt. Because the align-
ment of dipoles corresponds to a more ordered system 
(at the same temperature), the salt’s entropy decreases. 
This entropy reduction is permitted by the second law 
of thermodynamics, because the gas surrounding the 
salt transfers some heat to the helium bath and thereby 
generates an entropy increase that at least offsets the 
entropy decrease just described.

Now the helium gas in contact with the salt is 
pumped away, so that no further heat transfer takes 
place. The magnet is removed, so that the magnetic 
dipoles resume random orientations. The demagneti-
zation of the salt takes place without heat transfer 
(that is, adiabatically), and therefore it is this step that 
is properly called the adiabatic demagnetization. What 
is the result? The disordering of the magnetic dipoles 
surely corresponds to an entropy increase. But with no 
heat transfer possible, the total entropy of the salt 
should be constant. Therefore there must be a corre-
sponding entropy decrease, and the only way this can 
occur is for the temperature of the salt to decrease. 
Figure C illustrates the entropy-temperature relation-
ship in both steps of the process. This procedure can 
be repeated until (given the insulation constraints of 
the apparatus) no further heat can be removed from 
the salt. Temperatures of less than 1 K are routinely 
achieved by adiabatic demagnetization.

Today the most popular device for maintaining 
temperatures below 1 K is the 3He-4He dilution refrig-
erator, which also uses the principle of entropy ex-
change. Fritz London suggested this process in 1951, 
and the technology was developed in the 1960s and 
1970s. This 3He-4He dilution is an effective method of 
cooling below 1 K, because 4He at 1 K, in the superfluid 
state (see Section 9.7), has extremely little entropy, 
whereas 3He still has a significant amount of entropy. 

The entire process is too detailed to describe here. Let 
it suffice to say that adiabatic dilution serves the same 
purpose as the adiabatic demagnetization described 
earlier. Commercially available dilution refrigerators 
routinely reach temperatures on the order of 10!3 K.

Since the time of Kamerlingh Onnes, physicists 
have strived to cool materials to lower and lower tem-
peratures. Exact temperature records depend on the 
type of material. Temperatures of about 10!6 K have 
been reached for a bulk sample. A research group at 
the Helsinki University of Technology in Finland has 
achieved temperatures of 10!7 K in silver nuclei. Bose-
Einstein condensate gases (see Section 9.7) have the 
lowest temperatures on record, with a temperature of 
500 pK (5 & 10!10 K) reported by a MIT research 
group in 2003.* In the past, lower temperatures have 
led to unexpected discoveries (for example, super-
conductivity and superfluids). Physicists today hope 
that with the achievement of even lower temperatures 
there will be new discoveries, along with new data to 
enhance our understanding of theoretical physics and 
materials science. For more information see F. Pobell, 
Matter and Methods at Low Temperatures, New York: 
Springer-Verlag (1995).

Temperature

2

1
Isothermal
magnetization

3
Adiabatic demagnetization
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Figure C In isothermal magnetization a sample is taken from 1 
to 2 along the vertical line of the entropy-temperature diagram, as 
the magnetic dipoles are aligned at a constant temperature. The 
path from 2 to 3 is adiabatic demagnetization. Because the total 
entropy is constant as the magnetic alignment vanishes, the tem-
perature must drop.

*A. Leanhardt et al., Science 301, 1513– 1515 (2003).
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Other Classes of Superconductors
There are other novel superconductors, which are interesting even if their tran-
sition temperatures are not record-breaking. In 1991 a research group at Bell 
Labs* discovered an exotic class of superconductors that is based on the organic 
molecule C60, which had been discovered just a few years earlier. The basic C60 
molecule is called “buckminsterfullerene” (after the mathematician, architect, 
and general gadfl y Buckminster Fuller) because of the large molecule’s resem-
blance to Fuller’s geodesic dome (Figure 10.38). The 1996 Nobel Prize in Chem-
istry was awarded to Robert F. Curl, Jr., Harold W. Kroto, and Richard E. Smalley 
for their 1985 discovery of fullerenes.

Although pure C60 is not superconducting, the addition of certain other ele-
ments can make it so. For example, when C60 is doped with the right amount of 
potassium, it forms the compound K3C60 with a superconducting transition tem-
perature of 18 K. When C60 is combined with thallium and rubidium, the Tc can 
be as high as 42.5 K.

In 2008 Japanese physicist Hideo Hosono and coworkers discovered a new 
class of superconducting materials that contain iron. Hosono’s group fi rst re-
ported a transition temperature of 26 K for LaO1!xFxFeAs, a layered tetragonal 
compound similar in structure to the copper-based superconductors. By substi-
tuting systematically for each type of atom in the compound, they made a num-
ber of new iron-based superconductors, with the highest Tc  "  56 K in 
Sr0.5Sm0.5O1!xFxFeAs†. Because pure iron is ferromagnetic, the existence of a 
class of iron-based superconductors was surprising. They are second only to the 
copper-based superconductors for achieving the highest Tc.

Although the transition temperatures in fullerenes and iron-based com-
pounds are not as high as those achieved in the copper oxides, it is still encour-
aging whenever a new class of superconductors with a relatively high Tc is found. 
Further, each new discovery of this sort brings with it the potential for deeper 
understanding of the phenomenon of superconductivity, which in turn can lead 
to more experimental discoveries.

10.6  Applications of Superconductivity
The remarkable properties of zero resistivity and the Meissner effect make super-
conductors ideal for many applications. Some of these have been in use for years, 
whereas others may become feasible only if higher temperature superconductors 

Figure 10.38  A schematic 
drawing of the C60 molecule. In 
the structures of the supercon-
ducting compounds based on C60, 
atoms of the dopant are generally 
found on the inside of the “soccer 
ball” structure.

*D. R. Hoffman, Solid C60, Physics Today 44(11) 22– 29 (November 1991).

†See http://nvl.nist.gov/pub/nistpubs/jres/106/4/j64schw.pdf.
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become available. The cost of cryogenic systems and fluids must always be taken 
into account when one considers whether to use a superconductor.

Josephson Junctions
One of the earliest applications of superconductors was in a device known as a 
Josephson junction. In 1962 Brian Josephson predicted that electron pairs can 
tunnel from one superconductor through a thin layer of insulator into another 
superconductor. The superconductor/insulator/superconductor layer consti-
tutes the Josephson junction. In the absence of any applied magnetic or electric 
field, a DC current will flow across the junction (the DC Josephson effect). 
When a DC voltage V is applied across the junction, the electron pair current 
across the junction oscillates with a frequency

 fj "
2eV
h

  (10.48)

This is the AC Josephson effect. Notice that the frequency of oscillation and the 
applied voltage are in the simple ratio 2e/h. Because frequencies can be mea-
sured to extremely high accuracy in these ranges ( fj " 483.6 GHz for V " 1 mV), 
Equation (10.48) provides a convenient way to measure and maintain voltage 
standards. The Josephson junction is used for just this purpose at the National 
Institute for Standards and Technology (NIST, formerly the National Bureau of 
Standards). With this device, the precision of the voltage standard is approxi-
mately 1 part in 1010. A related device called a watt balance is used to make elec-
tronic measurements of Planck’s constant h and the fi ne-structure constant*.

It has been suggested that Josephson junctions could be used in integrated 
circuits, the heart of modern computers. These are superconducting devices, 
and therefore they would not be subject to the power losses that semiconductor-
based circuits suffer. Studies throughout the 1970s showed that, given the costs 
of fabrication and cooling, superconducting computers were simply not a com-
petitive option. Needless to say, this view will have to be reevaluated whenever 
new and higher temperature superconductors become available.

Today Josephson junctions are used routinely in devices known as SQUIDs, 
superconducting quantum interference devices (Figure 10.39). The SQUID uses a 
pair of Josephson junctions in a current loop. The loop’s current is extremely sensi-
tive to the magnetic flux applied to the loop. Therefore, SQUIDs are useful in 
measuring very small amounts of magnetic flux. They can be used to measure the 
quantum fluxoid ,0 " h/2e to within 1 part in 106. As ordinary magnetometers, 
SQUIDs are capable of measuring magnetic fluctuations on the order of 10!13 T.

SQUIDs have been available commercially since the early 1970s. Since then 
many applications for the SQUID have been found. For example, there are a num-
ber of biomedical applications, the most important of which is imaging soft tissues 
such as the brain. SQUIDs have also been used to examine materials for defects, 
search for explosives, detect the presence of bacteria, and search for oil.†

Brian D. Josephson (1940– ) was 
born and raised in Cardiff, Wales. 
He earned his Ph.D. in physics at 
Cambridge in 1964. Josephson 
used the BCS theory to predict 
the superconducting tunneling 
currents that bear his name. In 
recent years Josephson has 
turned his attention to the study 
of cognitive science, in particular 
the interaction of mind and 
matter.
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*See http://nvl.nist.gov/pub/nistpubs/jres/106/4/j64schw.pdf.

†A survey of applications can be found in Jennifer Ouellette, The Industrial Physicist 4(2), 20– 23 
(June 1998).
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382 Chapter 10 Molecules, Lasers, and Solids

Maglev
For many years, scientists and engineers have imagined using strong magnetic 
fields to levitate various transport systems, particularly trains. The idea is to make 
a more comfortable ride at higher speeds while reducing frictional losses. The 
availability of superconducting magnets has made magnetic levitation of trains 
(generically referred to as maglev systems) more feasible.

There are two common approaches to maglev, illustrated in Figure 10.40. In 
each system the car glides above a track “guideway.” In an electrodynamic system 
(EDS; also called repulsive maglev), magnets on the guideway repel the car to lift 
it. In an electromagnetic system (EMS; also called attractive maglev), magnets 
attached to the bottom of the car lie below the guideway and are attracted upward 
toward the guideway to lift the car. The EMS system does not require supercon-
ducting magnets. However, the design is one of unstable equilibrium, so the train’s 
path has to be monitored continually and adjusted so that the train doesn’t scrape 
the guideway. The EDS system is more stable, but lifting the train by repulsion 
requires superconducting magnets, which are presently more expensive.

Superconducting
transformer coil

Josephson
junctions

A uniform magnetic field is perpendicular to a loop of ra-
dius 1 cm. Find the value of the magnetic field such that the 
magnetic flux through the loop is equal to ,0.

Strategy In general, flux of a magnetic field is a scalar 
product of the magnetic field with the area, or ,0 " 
BA cos u, where A is the area of the loop and u is the angle 
between the field vector and a vector normal to the loop. 
Because the magnetic field is perpendicular to the loop, 
cos u " 1, and so ,0 " BA.

Solution Solving for the magnetic field and using the 
given size of the loop,

  B " £0 /A " 12.068 & 10!15 T # m2 2  / 3p110!2 m 22 4
  " 6.58 & 10!12 T

This exceptionally small value is an indication of the small 
size of the quantum fl uxoid.

 EXAMPLE 10.8

Figure 10.39 This is a close-up view of an yttrium– barium– copper oxide SQUID chip, man-
ufactured by Conductus, Inc. This highly sophisticated chip contains 15 layers of material, of which 
three are superconducting.
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Both EMS and EDS systems have been built around the world, and many more 
are proposed. A Japanese EDS system test train (the JR-Maglev MLX01) has run 
for many years and has reached a top speed of 581 km/h. An operational EMS 
system in Shanghai, China, transports passengers from the airport to the city, a 
distance of 30 km, in just over seven minutes, with a top speed of 430 km/h.

Generation and Transmission of Electricity
There exists a potential for significant energy savings if superconductors can be 
used in electrical generators and motors. Part of the savings would obviously 
come from cutting resistive losses, but there would be even more savings if the 
heavy iron cores used today could be replaced by lighter superconducting mag-
nets. The largest generator used now can produce energy at a rate of about 
1 GW, an upper limit due to the size of the iron core. Larger generators would 
make for better economies of scale.

Once electrical power is generated it must be transmitted through power 
lines to industries and homes. Superconducting transmission lines would save 
energy, again because there would be no resistive loss. (Transmission lines nor-
mally lose up to 5% of the energy generated, a substantial amount of energy 
given the quantities involved.) Another advantage of superconducting transmis-
sion is that expensive transformers would no longer have to be used to step up 
voltage for transmission and down again for use. Transformers are used at both 
ends of conventional lines because the energy loss rate is

 Plost " I 2R " P 2
trans R /V 2 (10.49)

It is desirable to make V as large as possible for transmission, but this is not nec-
essary if R " 0. Finally, the larger current densities possible in superconducting 
wire could make it possible to reduce the number and size of transmission lines.

Superconducting rings may be used for energy storage. Today, power plants 
are strained during “peak hours,” when it is necessary to produce electrical energy 
at up to several times the average use rate. Superconducting storage rings would 
allow plants to produce at just the average rate, with extra energy generated during 
low usage hours and stored for use during peak hours. This storage option might 
also allow us to make better use of other forms of energy, especially solar and wind.

Other Scientific and Medical Applications
There are other ways in which superconductors are already used in scientific re-
search. Magnets used to confine plasma in fusion research (see Chapter 13) are 
superconducting. Magnets for large particle accelerators, including existing ones 

EDS

Electromagnets on the
guideway levitate the ca r.

EMS

Electromagnets on
the cars lift the ca rs.

Figure 10.40 The two types of 
magnetic levitation (maglev) sys-
tems. In the EDS system, cars are 
lifted by repulsion from below. In 
the EMS system, magnets below 
the guideway are attracted up-
ward. From http://www.monorails.org/
tMspages/TPMagIntro.html.
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at Fermilab, the Thomas Jefferson National Accelerator Facility (JLAB) in Virginia, 
and the European Organization for Nuclear Research (CERN) and the new Large 
Hadron Collider (LHC) at CERN, must be superconducting to produce the large 
magnetic fields required. This is feasible using existing superconducting technol-
ogy and liquid helium. However, higher-Tc magnets can improve the operation of 
large particle accelerators in two ways. First, the cost of operating is much lower 
with liquid nitrogen than with liquid helium. Second, recent work has shown that 
some ceramic superconductors can produce larger magnetic fields than tradi-
tional superconductors, due to their high critical currents. With higher fields ex-
perimenters can choose between increasing the accelerator’s energy or decreasing 
its size, because the net energy is proportional to both the radius and magnetic 
field strength. The technology for making magnet coils out of brittle ceramic ma-
terials is now available. Scientists at the National High Magnetic Field Laboratory 
in Tallahassee, Florida, have achieved steady magnetic fi elds of 33.8 T using a pure 
superconducting magnet and 45 T using a hybrid magnet that is part supercon-
ducting and part normal conductor. The Pulsed Field Facility at Los Alamos Na-
tional Laboratory has devices that create non-continuous fi elds of up to 90 T.

Incidentally, it is not possible to make a large electromagnet simply by wind-
ing large coils of superconducting wire. Statistically infrequent events known as 
flux jumps occasionally make the wire a normal conductor in small regions. Un-
fortunately this small region grows and propagates rapidly due to resistive heat-
ing. When one part of the wire undergoes resistive heating, the heat flow from 
warmer regions soon drives the cooler regions above Tc. For this reason, long 
superconducting wires must be embedded in a copper matrix. Copper is such a 
good conductor of heat at low temperatures that it shunts away heat much faster 
than the superconductor gone normal. This allows the superconductor to re-
cover from those temporary fluctuations.

The most signifi cant medical application of high-temperature superconduc-
tors is in magnetic resonance imaging (MRI). The physical process used in MRI 
is the well-established quantitative analysis technique called nuclear magnetic 
resonance (NMR).* NMR was demonstrated in 1946 by Felix Bloch and Edward 
Purcell, who were awarded the Nobel Prize in Physics for this achievement in 
1952. See Section 12.2 for a general introduction to NMR.

Beginning in the 1970s, scientists began using NMR techniques in medical 
imaging. Two of the leaders in the field were Paul Lauterbur and Peter 
Mansfield, who received the 2003 Nobel Prize in Medicine for their work. In MRI 
the data are processed by a computer with the goal of making a picture of the 
sample. Medical workers now use MRI routinely to obtain clear pictures of the 
body’s soft tissues, allowing them to detect tumors and other disorders of 
the brain, muscles, organs, and connective tissues. Figure 10.41 illustrates that 
MRI can create a sharp picture of the brain without interference from the skull. 
The MRI image in Figure 10.42 is a cross section of a patient’s abdomen. Mul-
tiple cross sections can be used to scan for tumors and other irregularities.

With high-field (several-tesla) superconducting magnets the MRI diagnosis 
can be made earlier than with other methods and without surgical intrusion, an 
important fact. Many lives have already been saved by MRI, and many others have 
been vastly improved. The major drawback is that the average cost of a set of MRI 
images for diagnosis is about $2000. Higher temperature superconductors may 
eventually reduce the cost and thereby make MRI available to more people.

Magnetic resonance 
 imaging

*It has been suggested that the word nuclear was dropped so that the general public would not have 
an irrational fear of the procedure. Of course MRI has nothing to do with gamma radiation or 
radioactive isotopes!
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Figure 10.41 Two MRI scans of the brain, one showing a normal brain (left) and the other 
showing the effects of a stroke (right), with bleeding on the brain clearly visible.

S u m m a r y

The Coulomb force holds together the atoms of a molecule 
or solid. In a diatomic molecule, quantum theory can be 
used to fi nd the allowed rotational and vibrational energy 
levels:

 E rot "
U 2/ 1/ % 1 2

2I
 (10.2)

and

 E vibr " 1n % 1
2 2  Uv (10.3)

Transitions between these levels are observed in both emis-
sion and absorption spectra. In Raman scattering a photon 
is scattered from a molecule, and the change in frequency 
of the scattered photon is used to deduce rotational proper-
ties of the molecule.

A photon incident upon a molecule in an excited state 
can cause a stimulated emission, the basic mechanism in the 
operation of a laser. Three-level and four-level systems are 
used to control the output and efficiency of the laser. The 
monochromatic, intense beam has a number of applications 
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Figure 10.42 This magnetic 
resonance image is a horizontal 
view of the thoracic region of a 
patient and was used to detect a 
malignant tumor in the liver.
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in research and industry, including holography and bio-
medical uses.

Many solids exhibit regular crystal structures. Solids 
generally expand when heated. The mean separation be-
tween atoms in a solid is very nearly proportional to tem-
perature in the classical limit:

 8x 9 " 3b
4a 

2b
"

3bkT
4a 

2   (10.26)

Good electrical conductors tend to be good thermal con-
ductors too. Using the quantum theory of conduction, we 
find the correct relationship between the electrical and 
thermal conductivity in a solid (the Lorenz number L) to be

 L "
K
sT

"
p2k2

3e 2  (10.36)

A few solids, known as ferromagnets, have permanent 
magnetic moments. In most materials a magnetic moment 
is induced by an applied magnetic field. The magnetic sus-
ceptibility (which is positive for paramagnets and negative 

for diamagnets) relates the induced magnetization to the 
applied magnetic field:

 x "
m0M

B
 (10.37)

Superconductors exhibit the complete loss of electrical 
resistance and expulsion of magnetic fields below their tran-
sition temperature Tc. A successful theory (the BCS theory) 
of superconductivity was found in the 1950s, and the BCS 
theory has been used to explain the behavior of most super-
conductors. Different elements and compounds have differ-
ent values of Tc, and the search for a higher Tc has driven 
a great deal of research. In the late 1980s compounds with 
Tc $ 100 K were discovered.

The search for higher Tc values continues today, with the 
aim of using higher temperature superconductors in a num-
ber of applications. Low-loss energy generation and transmis-
sion, magnetic levitation systems, superconducting electronic 
devices, and high-field magnets are some of the applications 
made possible by the extraordinary properties of supercon-
ductors. Today superconductors are already used in research, 
industry, and medicine, and their extension into other areas 
is an exciting possibility for the future.

Q u e s t i o n s

 1. Explain in your own words why the sky is blue.
 2. Explain why n  $  m is required in Equation (10.1) in 

order to produce the potential energy curve shown in 
Figure 10.1.

 3. Compare the force constants for diatomic molecules 
(Table 10.1) with those of common laboratory springs. 
(Remember your introductory college or high school 
lab experience.)

 4. Explain how to use the rotational spectra to deter-
mine the equilibrium separation between the two 
nuclei in a diatomic molecule.

 5. Why do the gases He, Ne, and Xe tend to be mona-
tomic rather than diatomic?

 6. Explain the low melting points and boiling points 
for inert gases. (For example, Ne has a melting point 
24.5 K and boiling point 27.1 K.

 7. Do you expect the fundamental vibrational frequency 
to be higher for HCl or NaCl? Explain.

 8. Is it necessary that the substance used in a laser have 
at least three energy levels? Why or why not?

 9. Critique the following statement: The Pauli exclusion 
principle is responsible for keeping solids from col-
lapsing to zero volume.

 10. The average nearest-neighbor distance between 
nuclei in solid NaCl is 0.282 nm, but the distance is 
0.236 nm in a free NaCl molecule. How do you ac-
count for the difference?

 11. What patterns do you notice within the groups of salts 
in Table 10.2? (A group is defi ned as having the same 
metal, e.g., sodium.) Explain those patterns.

 12. What makes elements good candidates for paramag-
netism? For diamagnetism?

 13. Explain why the paramagnetic susceptibilities of rare 
earth elements tend to be higher than those of the 
transition elements.

 14. Consider the electronic confi gurations of the fi ve fer-
romagnetic elements and justify why they are ferro-
magnetic. Why are some elements in the same columns 
as these fi ve, with similar electronic confi gurations, not 
ferromagnetic?

 15. Notice that ferromagnetic elements tend to come 
from the middle of the rows of rare earth elements 
and transition elements in the periodic table. 
Explain.

 16. Why should elements and compounds with positive 
paramagnetic susceptibilities not be good candidates 
for superconductivity?

 17. Explain similarities and differences between the 
Meissner effect and Lenz’s law.

 18. Consider the superconducting transition tempera-
tures of the elements as shown in Table 10.5. In cases 
in which there is more than one superconductor in a 
column of the periodic table, are the transition tem-
peratures consistent with the spirit of the isotope 
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effect (that is, does the heavier element have a lower 
Tc)?

 19. A superconducting ring can carry a current for an 
indefi nite length of time. Isn’t this a perpetual motion 
machine, which violates the fi rst or second law of 
thermodynamics? Explain.

 20. Consider a sample at a temperature initially above its 
superconducting Tc and in a magnetic fi eld. When 
the sample is cooled to below Tc, currents are gener-
ated to expel the magnetic fl ux from the interior. 
What is the source of the energy for these currents?

 21. Would you expect that a material with little or no 
crystal structure (a “glass”) could exhibit supercon-
ductivity? Why or why not?

 22. A superconducting wire and a low-resistance copper 
wire are connected together in parallel. When a po-
tential difference is applied, explain why the copper 
wire carries no current.

 23. Explain on physical grounds why the ratio $/r0 in 
Equation (10.21) should be less than 1.

P r o b l e m s

Note: The more challenging problems have their problem 
numbers shaded by a blue box.

10.1 Molecular Bonding and Spectra
 1. Consider again the rotational energy states of the N2 

molecule as described in Example 10.1. Find the en-
ergy involved in a transition (a) from the /  "  2 to /  "  
1 state, and (b) from the /  "  10 to /  "  9 state.

 2. (a) Use the data in Table 10.1 to fi nd the approximate 
spacing between vibrational energy levels in CO. 
(b) What temperature would be needed to excite this 
vibration thermally?

 3. Estimate the amplitude of the smallest vibration of the 
HCl molecule (see Example 10.2).

 4. The distance between the centers of the H and Cl at-
oms in the HCl molecule is approximately 0.128 nm. 
(a) Find the angular velocity of the molecule about its 
center of mass when /  "  1 and /  "  5. (b) What is 
the speed of the H atom in each of the cases in (a)? 
(c) What value of / is required for the H atom to have 
a speed of 0.1c? (d) Estimate the classical temperature 
associated with the / you found in (c).

 5. Derive an expression for the allowed rotational levels 
in a homopolar diatomic molecule using the Bohr 
quantization rule for angular momentum. Discuss 
your result in comparison to the correct quantum-
mechanical result, Equation (10.2).

 6. The wavelength of a microwave absorption line in CO 
corresponding to a transition from /  "  0 to /  "  1 is 
2.60 mm. (a) Calculate the rotational inertia of the 
CO molecule. (b) Show that it is impossible for this 
amount of energy (corresponding to a photon of 
wavelength 2.60 mm) to be absorbed by CO in a vibra-
tional transition.

 7. If the energy of a vibrational transition from the n  "  
0 state to the n  "  1 state in CO could be absorbed in 
a rotational transition that begins in the ground state 
(/  "  0), what would be the value of / for the fi nal 

state? Explain why such a rotational transition is 
impossible.

 8. Show that I  "  %R2 for a diatomic molecule, where R 
is the distance between the two atomic centers and %  
"  m1m2/(m1  %  m2) is the reduced mass. (Note: You 
should assume that the atoms are point particles.)

 9. The energy of a transition from the /  "  2 to the /  "  3 
state in CO is 1.43  &  10!3 eV. (a) Compute the rota-
tional inertia of the CO molecule. (b) What is the 
average separation between the centers of the C and 
O atoms?

 10. Consider the model of the H2O molecule shown in 
the diagram. (a) Find the rotational inertia of H2O 
about the dashed line. (b) Estimate the energies of 
the fi rst two rotational energy levels (/  "  1 and /  "  
2). (c) What is the wavelength of a photon required to 
excite a transition from /  "  0 to /  "  1?

  

0.0958 nm

105°!

H

H

O

 11. Consider the rotational energy of a single helium 
atom. Assume that the electrons are uniformly distrib-
uted throughout a sphere of radius equal to the Bohr 
radius and that the nucleus is a uniform solid sphere 
of radius 1.9  &  10!15 m. (a) Estimate the energy of the 

Problem 10
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388 Chapter 10 Molecules, Lasers, and Solids

fi rst (nonzero) rotational energy level in helium. (b) Is 
this state likely to be observed? Why or why not?

 12. Consider the NaCl molecule, for which the rotational 
inertia is 1.30  &  10!45 kg # m2. If infrared radiation 
with wavelength 30 -m is Raman-scattered from a 
free NaCl molecule, what are the allowed wavelengths 
of the scattered radiation?

 13. This problem deals with the splitting of rotational 
energy levels of diatomic molecules. If one atom of 
the molecule has more than one stable isotope, then 
both isotopes are normally present in a sample. Show 
that the fractional change 'f/f in the observed fre-
quency of a photon emitted in a transition between 
adjacent rotational states is equal to the fractional dif-
ference in the reduced mass '%/% for molecules 
containing the two different isotopes.

 14. (a) At T  "  293 K what are the relative Maxwell-
Boltzmann factors for N2 molecules in the /  "  0, /  "  
1, and /  "  2 states? Use I  "  1.4  &  10!46 kg # m2. (b) Use 
your answer to (a) along with the fact that there is also 
a degeneracy factor of 2/  %  1 on the /th angular 
momentum level to fi nd the relative populations of 
the /  "  0, /  "  1, and /  "  2 states of N2 at room tem-
perature. (c) Explain why the 2/  %  1 degeneracy fac-
tor is more important for lower rotational states, but 
the Maxwell-Boltzmann factor dominates for higher 
states.

 15. Use the HCl absorption spectrum shown in Figure 
10.8 to (a) compute the rotational inertia I of the 
molecule and (b) compute the force constant & and 
compare with the value given in Table 10.1.

 16. The equilibrium separation between the two ions in 
the KCl molecule is 0.267 nm. (a) Assuming that the 
K% and Cl! ions are point particles, compute the elec-
tric dipole moment of the molecule. (b) Compute the 
ratio of your result in (a) to the measured electric 
dipole moment of 5.41  &  10!29 C # m. This ratio is 
known as the fractional ionic character of the molecular 
bond.

 17. Find the energy of the photon required to excite the 
transition from the ground state to the fi rst excited 
vibrational state in HI. In what part of the electromag-
netic spectrum is this?

10.2 Stimulated Emission and Lasers
 18. (a) How many photons are emitted each second from 

a 5.0-mW helium-neon laser ('  "  632.8 nm)? (b) If 
the laser contains 0.02 mole of neon gas, what fraction 
of the neon atoms in the tube participate in the lasing 
process during each second of operation? (c) Com-
ment on the relatively low numerical result in (b).

 19. A laser emits 5.50  &  1018 photons per second, using a 
transition from an excited state with energy 1.15 eV to 
a ground state with energy 0 eV. (a) What is the laser’s 
power output? (b) What is the wavelength?

 20. The NOVA laser at Lawrence Livermore National Lab 
produces a 40-kJ burst of 3.5 ns duration, with a wave-
length of 351 nm. (a) How many atoms made a transi-
tion from the excited state to the ground state in or-
der to create this pulse? (b) What is the laser’s average 
power output during the burst?

 21. (a) For the helium-neon laser, estimate the Doppler 
broadening (see Chapter 9, Problem 3) of the output 
wavelength 632.8 nm at T  "  293 K. (b) Estimate 
the broadening of the same wavelength due to the 
Heisenberg uncertainty principle, assuming that the 
metastable state has a lifetime of about 1 ms.

 22. Consider the problem of using laser light to measure 
the distance from the Earth to the moon. (a) What is 
the maximum uncertainty in timing the round trip for 
a light pulse in order to determine the distance with 
an uncertainty of 1 meter? (b) Estimate the effect of 
the Earth’s atmosphere on this experiment, using the 
fact that the speed of light in air (at sea level) is slower 
than the speed of light in vacuum by a factor of 
1.0003. Assume an 8-km-high atmosphere of uniform 
sea-level density.

 23. What is the minimum fraction of the lasing molecules 
in a three-level laser that must be in the excited state 
in order for the laser to operate? Answer the same 
question for a four-level laser.

 24. The 3s state of neon (see Figure 10.15) is 16.6 eV 
above the ground state. (a) Estimate the relative 
populations of the ground state and the 3s state at 
T  "  293 K. (b) Repeat for T  "  150 K. (c) Repeat for 
T  "  600 K. (d) What implications (if any) do your 
answers for parts (a)–(c) have for the operation of a 
He-Ne laser at various temperatures?

10.3 Structural Properties of Solids
 25. The density of solid KCl is about 1980 kg/m3. Com-

pute the nearest-neighbor distance in KCl, that is, the 
distance between neighboring K% and Cl! ions. Note 
that KCl has the same lattice structure as NaCl.

 26. Show that the Madelung constant for a one-dimen-
sional lattice of alternating positive and negative ions 
is (  "  2 ln 2.

 27. Write the fi rst fi ve terms of the Madelung constant for 
a two-dimensional lattice of alternating positive and 
negative ions.

 28. Use Equation (10.19) to evaluate the net force (F  "  
!dV/dr) on an atom in a sodium chloride lattice. 
Then show that the force can be expressed as

F "
ae2

4pP0r0
2 a!

r0 2

r2 % e!1r!r02/r b
 29. Starting with the result of Problem 28, approximate 

r !  r0  %  )r (where )r V  r0) and show that

F !
ae2

4pP0r0
2 a!

r01r0 % dr 22 % e!dr/r b
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  Perform a Taylor series expansion about r  "  r0, keep-
ing terms up to and including order ()r)2. Show that

F ! K 1dr % K 2 1dr 22
  where

K 1 !
ae 

2

4pP0r0
2

 12/r0 ! 1/r 2
  and

K 2 !
ae 

2

4pP0r0
2 3!3/r0 2 % 1/ 12r2 2 4

 30. If we consider again the linear term ()r) in the result of 
Problem 29, we have a harmonic oscillator. (a) Find an 
expression for the frequency of oscillation and evaluate 
using the correct values of (, r0, and $ for NaCl. (b) Find 
the photon wavelength corresponding to the frequency 
you computed in (a) and compare with the observed 
absorption wavelength for NaCl of about 61 -m.

 31. Refer again to the result of Problem 29. (a) Use the 
fact that the average net force on an ion must be zero 
(if there is no overall translation of the crystal) to 
show that the average values of )r and ()r)2 are related 
by dr " !1K 2/K 1 2 1dr 22. (b) According to the equi-
partition theorem the mean potential energy of an 
oscillator is 1

2K 11dr 22 " 1
2kT . Use this to show that 

dr " 1K 2/K 1
2 2kT , and thereby show that the coeffi -

cient of thermal expansion is approximately 11/r0 2 1kK 2/K1
2 2 . (c) Use the result of (b) to evaluate 

the coeffi cient of thermal expansion for NaCl and 
compare with the experimental value of 4  &  10!6 K!1.

10.4 Thermal and Magnetic Properties of Solids
 32. Silver has an electrical conductivity of 6.30  &  107 

*!1 # m!1 at 293 K. Use the Wiedemann-Franz law with-
out quantum corrections to compute the thermal con-
ductivity of silver at the same temperature and compare 
with the experimental result of 429 W # K!1 # m!1.

 33. Use the data in Figure 10.23 to estimate the numerical 
value of the constant b/a2 in the thermal expansion 
formula, Equation (10.26). Make sure you express the 
correct units.

 34. (a) Derive Equation (10.26). (b) Evaluate the con-
stant 3bk/4a2 in Equation (10.26) for copper, given 
that the coeffi cient of linear expansion [defi ned as 
(  "  'x/(x 'T)] for copper is found experimentally to 
be 1.67  &  10!5 K!1 at T  "  293 K.

 35. (a) Explain why the parameter a in Equation (10.22) 
is essentially half the effective force constant of a 
spring connecting adjacent atoms. (b) Then use this 
result along with the result of Problem 34b to estimate 
a value for the parameter b in Equation (10.22), the 
coeffi cient of the x3 term in the potential energy.

 36. (a) Show that the ideal gas law can be written as

PV "
2NE

3

  where N is the number of particles in the sample 
and E is the mean energy. (b) Use the result of (a) to 
estimate the pressure of the conduction electrons in 
copper, assuming an ideal Fermi electron gas. Com-
ment on the numerical result, noting that 1 atm  "  
1.01  &  105 Pa.

 37. Show that the bulk modulus, defi ned as

B " !V 

0P
0V

  (where P is pressure and V is volume) can be written 
as

B "
5P
3

"  

2NEF

3V
  for a Fermi electron gas with Fermi energy EF. (Hint: 

Use the relationship between P and V given in Prob-
lem 36a.)

 38. (a) From the result of Problem 37, compute the bulk 
modulus of pure silver. (b) Compare your result with 
the experimental value of 1.01  &  1011 N/m2.

 39. Retrace the derivation of the induced diamagnetic 
moment in Equation (10.38), assuming that (a) the 
electron orbits clockwise and the magnetic fi eld 
points out of the page and (b) the electron orbits 
counterclockwise and the magnetic fi eld points into 
the page.

 40. Use the result of the preceding problem to determine 
the induced magnetic moment of a diamagnetic atom 
with an outer shell having three electrons in a p shell 
with m/  "  0, m/  "  1, and m/  "  !1.

 41. Start with Equation (10.41) and derive an expression 
for m valid in the low-temperature limit kT V %B

 42. (a) Plot m versus %B/kT over the range %B/kT  "  0 to 
%B/kT  "  4. (b) Compute m at %B/kT  "  5 and com-
pare your results with the approximation used for m in 
Problem 41. (c) Compute m at %B/kT  "  0.10 and 
compare your results with the approximate value 
given in Section 10.4, tanh(*%B) ! *%B.

 43. Prove that magnetic susceptibility + is a dimensionless 
quantity. Note that the defi nition in Equation (10.37) 
presumes SI units.

 44. (a) Compute the maximum magnetization of a bulk 
sample of iron, assuming perfect alignment of the 
spins and one unpaired spin per atom. (b) Compare 
with the observed maximum magnetization of about 
1.6  &  106 A/m. (c) On the basis of your results in (a) 
and (b), what can you say about the actual number of 
unpaired spins per atom of iron?

10.5 Superconductivity
 45. At what temperature (expressed as a fraction of Tc) is 

Bc  "  0.25Bc(0), according to the BCS theory? [Note: 
Bc(0) is the critical fi eld at temperature T  "  0.] Re-
peat for Bc  "  0.50 Bc(0) and Bc  "  0.75Bc(0).

 46. It is found that for a given pure metal superconduc-
tor, photons of wavelength 0.568 mm are suffi cient to 
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390 Chapter 10 Molecules, Lasers, and Solids

break the Cooper pairs at T  "  2.0 K. Identify the 
superconductor.

 47. Compute Tc for the mercury isotopes 201Hg and 204Hg.
 48. Estimate the BCS prediction for the change in Tc if all 

of the 16O atoms in YBa2Cu3O7 (assume Tc  "  93.0 K) 
could be replaced by 18O. This change is not observed 
experimentally!

 49. From the data given in the text, estimate Tc for 
Tl2Ba2Can!1O2n!4 with n  "  4.

 50. A solenoid made of superconducting wire has exactly 
25 turns/cm of length and a diameter of 3.2 cm. If the 
wire carries a current of 4.5 A, what is the magnetic 
fi eld strength near the center of the solenoid? What is 
the magnetic fl ux through a cross section of the sole-
noid taken near the center? To how many fl ux quanta 
does this correspond? Comment on the number of 
fl ux quanta.

 51. Recall that the magnetic fi eld at the surface of a uni-
form cylindrical wire of radius R carrying a current I 
is

B "
m0I

2pR
  Find the minimum possible diameter for a wire of 

pure niobium so that the T  "  0 critical fi eld would 
not be exceeded if the wire carried a current of 2.5 A.

 52. In a normal conductor heat is generated at a rate I 2R. 
Therefore a current-carrying conductor must dissi-
pate heat effectively or it can melt or overheat the 
device in which it is used. Consider a long cylindrical 
copper wire (resistivity 1.72  &  10!8 * # m) of diameter 
0.75 mm. If the wire can dissipate 80 W/m2 along its 
surface, what is the maximum current this wire can 
carry?

 53. (a) Compute the maximum current that a 16-gauge 
(1.29-mm diameter) niobium wire can carry at T  "  
4.2 K. (b) Compare your result in (a) with the copper 
wire of the same diameter described in Problem 52.

10.6 Applications of Superconductivity
 54. What is the maximum uncertainty in the measure-

ment of the oscillation frequency in a Josephson junc-
tion if the voltage standard of 1 mV is to be main-
tained within 1 part in 1010? Assume a reference 
frequency of 483.6 GHz.

 55. Find the minimum acceleration needed for a maglev 
train to reach a speed of 430 km/h in 3.0 km, one 
tenth of the length of the 30-km track in Shanghai. 
Express your answer as a fraction of g, the free-fall ac-
celeration near Earth. Would this acceleration be 
noticeable?

 56. (a) Compute the escape speed of a particle from the 
Earth’s surface. Earth’s radius is 6378 km, and its mass 
is 5.98  &  1024 kg. (b) Find the mean speed for a he-
lium atom at a temperature of 293 K. (c) Comment 
on the fact that your answer to (b) is less than the 

answer to (a). Why then does helium not remain in 
the atmosphere in signifi cant quantities?

 57. A superconducting Nb3Sn magnet can achieve a peak 
magnetic fi eld of 13.5 T in a magnet designed for use 
in the Large Hadron Collider. Find the maximum 
energy that a singly charged particle (for example, a 
proton or electron) can have if that fi eld is main-
tained around a circular ring of circumference 27 km. 
(Note: In reality, particle energies are about 35% less 
because the peak fi eld is not maintained throughout 
the ring.)

General Problems
 58. Consider a model of a diatomic molecule with point-

mass atoms of mass m1 and m2, separated by a distance 
R. (a) Show that the rotational inertia of the molecule is 
I  "  %R2, where the reduced mass %  "  m1 m2/(m1 % m2). 
(b) Compute the rotational inertia of NaCl, which has a 
bond length of 0.236 nm. Assume the most common 
isotopes of sodium and chlorine.

 59. Rotational spectra are affected slightly by the fact that 
different isotopes have different masses. Suppose a 
sample of the common isotope 1H35Cl is changed to 
1H37Cl. (a) By what fraction is the molecule’s rota-
tional inertia different? (The bond length is 0.127 nm 
in each case.) (b) What is the change in energy of the 
/  "  1 to the /  "  0 transition if the isotope is changed?

 60. The transition from the /  "  2 to the /  "  1 state in CO 
is accompanied by the emission of a 9.55  &  10!4 eV 
photon. (a) Use this information to fi nd the rota-
tional inertia of the CO molecule. (b) What is the 
bond length between the C and O atoms?

 61. The National Ignition Facility (NIF), which became 
operational in 2009, uses 192 laser beams to stimulate 
nuclear fusion in a deuterium-tritium fuel pellet. The 
net output of the lasers is 1.8 MJ of 351-nm light, de-
livered in a brief (4.0-ns) pulse. (a) What is the aver-
age power delivered during the pulse? Compare your 
answer with the average power consumption in the 
United States, about 3  &  1012 W. (b) How many pho-
tons are produced in each pulse?

 62. Estimate the temperature at which the critical mag-
netic fi eld in superconducting mercury is equal to 
Earth’s surface magnetic fi eld, about 5  &  10!5 T. Is 
Earth’s magnetic fi eld likely to be a factor in applica-
tions that use superconducting mercury?

 63. Tin has a number of stable isotopes, ranging in mass 
from 112 u to 124 u. Estimate the difference in the 
transition temperature between those two isotopes.

 64. In the persistent current experiment described in 
Section 10.5, let us assume that the current persisted 
without detectable reduction for exactly 2.5 years. 
Given that the inductance of the ring was approxi-
mately 3.14  &  10!8 H and the sensitivity of the current 
measurement was 1 part in 109, (a) estimate an upper 
bound for the resistance of the ring and (b) estimate 
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how long at least 90% of the current would be certain 
to remain.

 65. From thermodynamics the entropy difference per 
unit volume between the normal and superconduct-
ing states is

¢S
V

" !
0

0T
a B 

2

2m0
b

  where B 2/2%0 is the magnetic energy density needed 
to return a superconductor to the normal state. Use 

this fact to compute the entropy difference between 
the normal and superconducting states in 1 mole of 
niobium at a temperature of 6.0 K.

 66. A 2.0-m length of copper wire with a resistance of 
1.50 * is placed in series with a 2.0-m length of super-
conducting wire. When a 12.0-V battery is placed 
across the series combination, fi nd (a) the current in 
the circuit and (b) the potential difference across the 
two ends of the copper wire.
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In the last half of the twentieth century, a revolution occurred in electronics. 
The resulting development and widespread use of integrated circuits have 
changed the way we live, even more than the lasers and superconductors you 
learned about in Chapter 10. Automobiles, televisions, wireless communication 
devices, and many home appliances now contain microcomputers to enhance 
their efficiency and usefulness to us. The electronics revolution has had an even 
more profound effect on the work of scientists and engineers. In the 1950s, 
when the space program was in its early years, the slide rule, pencil, and paper 
were still the standard tools of the physicist and the aeronautical engineer. Com-
puters were available for the most difficult calculations, but they filled an entire 
room and lacked the speed and computational power of laptop computers avail-
able today—not to mention that their cost was orders of magnitude higher than 
what we now pay for personal computers.

The remarkable properties of semiconductor materials have made possible 
the advances just described. In this chapter we examine those properties and see 
how they are used in various devices. You will see how it is possible to understand 
the behavior of semiconductors by using the quantum theory of solids. We in-
tend to present just enough of the theory in descriptive fashion to allow you to 
appreciate the beauty and utility of semiconductor materials.

11.1  Band Theory of Solids
In Chapter 10 you learned about structural, thermal, and magnetic properties of 
solids. Here we concentrate on electrical conduction. There are three categories 
of solids, based on their conducting properties: conductors, semiconductors, and 
insulators. As seen in Table 11.1, the electrical conductivity at room temperature 

392

C H A P T E R

11 Semiconductor Theory 
and Devices

It is evident that many years of research by a great many people, both 
before and after the discovery of the transistor effect, has been re-
quired to bring our knowledge of semiconductors to its present develop-
ment. We were fortunate to be involved at a particularly opportune time 
and to add another small step in the control of Nature for the benefit of 
mankind.

John Bardeen, 1956 Nobel lecture
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   11.1 Band Theory of Solids 393

is quite different for each of these three kinds of solids. Metals and alloys have the 
highest conductivities, followed by semiconductors, and then insulators. We have 
already modeled the electrical conductivity of ordinary metals in Section 9.6.

The free-electron model used in Chapter 9 does not apply to semiconduc-
tors and insulators. These materials lack enough free electrons to conduct in a 
free-electron mode. If the electrical conductivity of semiconductors is about 10 
orders of magnitude lower, could it be that the charge carrier density is lower by 
that factor? It turns out that carrier density is only part of the story. In fact there 
is a different conduction mechanism for semiconductors than for normal con-
ductors. Striking evidence of this fact is seen in the resistivity-versus-temperature 
graphs presented in Figure 11.1 (page 394). Although the free-electron theory 
correctly predicts a linear increase in resistivity with temperature, semiconduc-
tors generally exhibit decreasing resistivity with increasing temperature.

We need a new theory, known as the band theory, to account for this and 
other properties of semiconductors. The essential feature of the band theory is 
that the allowed energy states for electrons are nearly continuous over certain 
ranges, called energy bands, with forbidden energy gaps between the bands. 
William Shockley, one of the coinventors of the transistor (Section 11.3), sug-
gested a simple and straightforward justification of the existence of electronic 
energy bands in solids. We first consider what happens when two atoms of hy-
drogen are brought together. (The argument is good for any kind of atom; we 
choose hydrogen because it has known wave functions.) When the two atoms are 
far apart, the electronic wave functions can be thought of as noninteracting. As 
the atoms are brought closer together, the wave functions begin to overlap. But 
because any linear combination of wave functions is possible, there can be either 

Band theory

Energy bands
Energy gaps

Tab le  11 .1    Electrical Resistivity and Conductivity of Selected Materials at 293 K

 Resistivity Conductivity  Resistivity Conductivity
Material (! # m) (!"1 # m"1) Material (! # m) (!"1 # m"1)

Metals
Silver 1.59 ! 10"8 6.29 ! 107

Copper 1.72 ! 10"8 5.81 ! 107

Gold 2.44 ! 10"8 4.10 ! 107

Aluminum 2.82 ! 10"8 3.55 ! 107

Tungsten 5.6 ! 10"8 1.8 ! 107

Platinum 1.1 ! 10"7 9.1 ! 106

Lead 2.2 ! 10"7 4.5 ! 106

Alloys
Constantan 4.9 ! 10"7 2.0 ! 106

Nichrome 1.5 ! 10"6 6.7 ! 105

From R. Serway and J. Jewett, Physics for Scientists and Engineers, 8th ed., Belmont, CA, Brooks/Cole Cengage Learning, 2010, p. 
777.

Semiconductors
Carbon 3.5 ! 10"5 2.9 ! 104

Germanium 0.46 2.2
Silicon 640 1.6 ! 10"3

Insulators
Wood 108–1011  10"8–10"11

Rubber 1013 10"13

Amber 5 ! 1014 2 ! 10"15

Glass 1010–1014 10"10–10"14

Quartz (fused) 7.5 ! 1017 1.3 ! 10"18
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394 Chapter 11 Semiconductor Theory and Devices

a symmetric or an antisymmetric overlap (see Figure 11.2). These two situations 
correspond to two slightly different energies. An electron in the symmetric state 
has a nonzero probability of being halfway between the two atoms (Figure 
11.2b), whereas an electron in the antisymmetric state (#A " #B) shown in Fig-
ure 11.2c has a zero probability of being at that location. This causes the binding 
to be slightly stronger in the symmetric case, and hence the energy of that state 
is lower. As a result, there is a splitting of all possible energy levels (1s, 2s, and so 
on), as is seen in Figure 11.3a. In each case the symmetric state (#A $ #B) has 
the lower energy.

When more atoms are added (as in a real solid), there is a further splitting 
of energy levels. With a large number of atoms the levels are split into nearly 
continuous energy bands, with each band consisting of a number of closely 
spaced energy levels, as illustrated in Figure 11.3b. An energy gap may or may not 
exist between bands, depending on a number of factors, including the type of 
atom or atoms in the solid, lattice spacing, lattice structure, and temperature. We 
shall consider the effects of the existence and size of the energy gap later in this 
chapter.
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Figure 11.1 (a) Resistivity versus temperature for a typical conductor. Notice the linear rise in 
resistivity with increasing temperature at all but very low temperatures. (b) Resistivity versus tem-
perature for a typical conductor at very low temperatures. Notice that the curve flattens and ap-
proaches a nonzero resistance as T S 0. (c) Resistivity versus temperature for a typical semicon-
ductor. The resistivity increases dramatically as T S 0.

Figure 11.2 A rough representation of the wave functions of two approaching hydrogen atoms. 
When they are far apart (a) there is negligible overlap of their wave functions. In (b) and (c) the 
atoms are closer, and the wave functions begin to overlap. In (b) they combine with the same sign 
(symmetric state) and in (c) with opposite signs (antisymmetric state).
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Kronig-Penney Model
An effective way to understand the energy gap in semiconductors is to model the 
interaction between the electrons and the lattice of atoms. This interaction is 
more important in semiconductors than in good conductors, because the much 
higher resistivity implies tighter binding and/or more interaction. R. de L. 
Kronig and W. G. Penney developed a useful one-dimensional model of the 
electron-lattice interaction in 1931.* They assumed that an electron experiences 
the potential shown in Figure 11.4, an infinite one-dimensional array of finite 
potential wells. Each potential well represents an atom in the lattice, so the size 
of the wells must correspond roughly to the lattice spacing.

The Kronig-Penney method for finding the allowed energy levels for 
the electron follows the method we developed to study barrier tunneling in 
Chapter 6. The electrons are not free; therefore we assume that the total energy 
E of an electron is less than the height V0 of each barrier/well in the Kronig-
Penney potential shown in Figure 11.4. The electron is essentially free in the gap 
0 % x % a, where it has a wave function of the form

 c & Ae 
i k x $ Be"i k x (11.1)

and where the wave number k is given by the usual relation k 
2 & 2m E / U2. In the 

barrier region a % x % a $ b, however, the electron can tunnel through. As we 

*R. de L. Kronig and W. G. Penney, Proceedings of the Royal Society of London A130, 499 (1931).
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Figure 11.3 The 1s and 2s 
energy-level splittings of 
approaching hydrogen atoms for 
(a) 2 atoms and (b) 11 atoms. 
Notice the splitting of each 
energy level into a nearly continu-
ous band.

Figure 11.4 The Kronig-
Penney square-well potential.
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396 Chapter 11 Semiconductor Theory and Devices

saw in Chapter 6, this means that the wave function loses its sinusoidal character 
and becomes

 c & C e 
kx $ De"kx (11.2)

with k2 & 2m 1V0 " E 2  / U2.
Next, Kronig and Penney used the procedure of matching wave functions and 

their first derivatives at the various boundaries. The fact that these are finite poten-
tial wells makes the solution a lengthy one, and we shall not present it here. Ap-
plication of the appropriate boundary conditions yields the important relation

 
k2b
2k

  sin 1ka 2 $ cos 1ka 2 & cos 1Ka 2  (11.3)

where K is another wave number. When the left side of Equation (11.3) is plot-
ted against the argument ka (Figure 11.5a), the relation in Equation (11.3) can-
not be satisfied for all values of k and k, because the sine and cosine functions 
are restricted to the range "1 to $1. Because the right side of Equation (11.3) 
has a single cosine term, it can only have values within the range "1 to $1. 
Therefore, the left side of the equation is limited to the same range. This leads 
to forbidden zones for the wave numbers, and hence there are gaps in the cor-
responding energies. Figure 11.5b shows the allowed energy bands with gaps 
between them. The gaps occur regularly at ka & np, for integer values of n. With 
k & np/a & 2p/l, we see that l & 2a/n. Thus, twice the lattice spacing (2a) 
corresponds to an integer multiple of the free-particle wavelength (nl), and a 
free particle with this wavelength would be reflected by the lattice.

Before proceeding, we note some important differences between this 
simplified Kronig-Penney model and the single potential well studied in Chapter 
6. First, for an infinite lattice the allowed energies within each band are continu-
ous rather than discrete. In a real crystal the lattice is not infinite, but even if 
chains are only thousands of atoms long, the allowed energies are nearly continu-
ous. Second, note that in a real three-dimensional crystal it is appropriate to speak 
of a wave vector k, which includes a direction as well as magnitude. The allowed 
ranges for k constitute what are referred to in solid state theory as Brillouin zones. 
Finally, in a real crystal the potential function is somewhat more complicated than 
the Kronig-Penney squares. As a result, the energy gaps are by no means uniform 
in size. The gap sizes may be changed by the introduction of impurities or imper-
fections of the lattice. These facts concerning the energy gaps are important in 
understanding the electronic behavior of semiconductors.

Forbidden zones

Wave vector
Brillouin zones

k2b
2k

0

(a) (b)

sin(ka) ! cos(ka)

3pp
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3p 4p 5p2pp
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"4p "2p 2p 4p"1
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Figure 11.5 (a) Plot of the left 
side of Equation (11.3) versus ka 
for k2ba/2 & 3p/2. Allowed en-
ergy values must correspond to 
the values of k & 22mE / U2 for 
which the plotted function lies 
between "1 and $1. Forbidden 
values are shaded in light blue. 
(b) The corresponding plot of 
energy versus Ka for k2ba/2 & 
3p/2, showing the forbidden en-
ergy zones (gaps).
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Band Theory and Conductivity
Band theory can help us understand what makes a conductor, insulator, or semi-
conductor. Good conductors such as copper are understood using the free-
electron model (Figure 11.6a), but it is also possible to make a conductor using 
a material with its highest band filled, in which case no electron in that band can 
be considered free. If this filled band overlaps with the next higher band, how-
ever (so that effectively there is no gap between these two bands, as shown in 
Figure 11.6b), then an applied electric field can make an electron from the filled 
band jump to the higher level. This allows conduction to take place, although 
typically with slightly higher resistance than in normal metals. Such materials are 
known as semimetals. Several widely used semimetals are arsenic, bismuth, and 
antimony.

The band structures of insulators and semiconductors resemble each other 
qualitatively. Normally there exists in both insulators and semiconductors a 
filled energy band (referred to as the valence band) separated from the next 
higher band (referred to as the conduction band) by an energy gap. If this gap 
is at least several electron volts, the material is an insulator, as shown in Figure 
11.6c. It is too difficult for an applied field to overcome that large an energy 
gap, and thermal excitations lack the energy to promote sufficient numbers of 
electrons to the conduction band. But if the energy gap is smaller—typically on 
the order of about 1 electron volt—it is possible for enough electrons to be 
excited thermally into the conduction band, so that an applied electric field 
can produce a modest current. The result is a semiconductor, with the band 
structure illustrated in Figure 11.6d. We shall explain this mechanism more 
fully in the next section.

11.2   Semiconductor Theory
At T  & 0 we expect all of the atoms in a solid to be in the ground state. The 
distribution of electrons (fermions) at the various energy levels is governed by 
the Fermi-Dirac distribution of Equation (9.34):

 FFD &
1

exp 3  b1E " EF 2 4 $ 1
 (9.34)

where b & (kT )"1 and EF is the Fermi energy. As was shown in Figure 9.9, more 
and more atoms are found in excited states when the temperature is increased 
from T & 0.

Semimetals

Valence band
Conduction band

(a)
Conductor!
(unfilled!

valence band)

(c)
Insulator!

(large band!
gap)

Unfilled

Unfilled

Filled!
band

Gap

Unfilled

Filled

Gap

(b)
Semimetal!

(overlapping!
bands)

(d)
Semiconductor!

(small band!
gap)

Unfilled

Overlapping

Filled

Unfilled

Gap

Filled

Figure 11.6 Possible band 
structures: (a) a conductor with 
an unfilled valence band, (b) a 
conductor with overlapping va-
lence and conduction bands (a 
semimetal), (c) an insulator due 
to its large band gap, and (d) a 
semiconductor (due to its small 
band gap).
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398 Chapter 11 Semiconductor Theory and Devices

The increased number of electrons in excited states explains the tempera-
ture dependence of the resistivity of semiconductors. Only those electrons that 
have jumped from the valence band to the conduction band are available to 
participate in the conduction process in a semiconductor. More and more elec-
trons are found in the conduction band as the temperature increases, and the 
resistivity of the semiconductor therefore decreases.

Although it is not possible to use the Fermi-Dirac factor to derive an exact 
expression for the resistivity of a semiconductor as a function of temperature, we 
can make a couple of observations. First, the energy E in the exponential factor 
makes it clear why the band gap is so crucial. An increase in the band gap by a 
factor of 10 (say from 1 eV to 10 eV) will, for a given temperature, increase the 
value of exp(bE ) by a factor of exp(9bE ). This generally makes the factor FFD so 
small that the material has to be an insulator. Our second observation is that, on 
the basis of this analysis, one may expect the resistance of a semiconductor to 
decrease exponentially with increasing temperature. This is approximately 
true—although not exactly, because the function FFD is not a simple exponen-
tial, and because the band gap varies with temperature (Table 11.2).

A useful empirical expression developed by Clement and Quinnell for the 
temperature variation of standard carbon resistors is

 log R $
K

log R
& A $

B
T

 (11.4)Clement-Quinnell equation

 E g (eV) 

Material T # 0 K T # 300 K

Si 1.17 1.11
Ge 0.74 0.66
InSb 0.23 0.17
InAs 0.43 0.36
InP 1.42 1.27
GaP 2.32 2.25
GaAs 1.52 1.43
GaSb 0.81 0.68
CdSe 1.84 1.74
CdTe 1.61 1.44
ZnO 3.44 3.2
ZnS 3.91 3.6

From C. Kittel, Introduction to Solid State Physics, 6th ed., 
New York: Wiley (1986), p. 185.

Tab le  11 .2    Energy Gaps for 
Selected Semiconductor 
Materials at T & 0 K 
and T & 300 K
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   11.2  Semiconductor Theory 399

where A, B, and K are constants. Figure 11.7a shows the data Clement and 
Quinnell obtained, plotted in such a way as to test Equation (11.4). The plot 
of log R $ K/log R versus 1/T is a straight line up to 1/T ! 0.6, so we con -
clude that the Clement-Quinnell equation (Equation 11.4) is good down to 
T ! 1 K/0.6 & 1.7 K. In Figure 11.7b we see a simple plot of resistance versus 
temperature for a number of resistance thermometers. For all semiconductor 
materials shown, the variation of R with T is particularly rapid in the low-temper-
ature range, from T & 0 up to about T & 20 K. For this reason carbon and other 
semiconductors are widely used as resistance thermometers (“thermistors”) in 
low-temperature physics.
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Figure 11.7 (a) An experimental test of the Clement-Quinnell equation, using resistance versus 
temperature data for four standard carbon resistors. The fit is quite good up to 1/T ! 0.6, corre-
sponding to temperatures above 1.6 K. (b) Resistance versus temperature curves for some ther-
mometers used in research. A-B is an Allen-Bradley carbon resistor of the type used to produce the 
curves in (a). Speer is a carbon resistor, and CG is a carbon-glass resistor. Ge 100 and 1000 are ger-
manium resistors. From G. White, Experimental Techniques in Low Temperature Physics, Oxford: 
Oxford University Press (1979).

Find the relative number of electrons with energies 0.10 eV, 
1.0 eV, and 10 eV above the valence band at room tempera-
ture (293 K). 

Strategy Equation (9.34) for the Fermi-Dirac factor may be 
used for this comparison. Note that 1.0 eV & 1.60 ! 10"19 J. 
The Fermi energy is at the top of the valence band, so the 
energy above the valence band is E " EF.

 EXAMPLE 11.1
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400 Chapter 11 Semiconductor Theory and Devices

When electrons move into the conduction band, they leave behind vacancies 
in the valence band. These vacancies are called holes. Because holes represent 
the absence of negative charges, it is useful to think of them as positive charges. 
Electrons move in a direction opposite to the applied electric field, but holes 
move in the direction of the electric field. A semiconductor in which there is a 
balance between the number of electrons in the conduction band and the num-
ber of holes in the valence band is called an intrinsic semiconductor. Examples 
of intrinsic semiconductors include pure carbon and germanium.

It is possible to fine-tune a semiconductor’s properties by adding a small 
amount of another material, called a dopant, to the semiconductor. The resulting 
compound is called an impurity semiconductor. As an example, consider what 
happens when we add a small amount of arsenic to silicon. Each arsenic atom 
replaces a silicon atom in the lattice. What does this do to the conductive proper-
ties of the material? Notice that silicon has four electrons (3s23p2) in its outer-
most shell (this corresponds to the valence band) and arsenic has five (4s24p3). 
Therefore, whereas four of arsenic’s outer-shell electrons participate in covalent 
bonding with its nearest neighbors (just as another silicon atom would), the fifth 
electron is very weakly bound. In f act, it takes only about 0.05 eV to move this 
extra electron into the conduction band. The effect is that adding only a small 
amount of arsenic to silicon greatly increases the electrical conductivity.

The addition of arsenic to silicon creates what is known as an n-type semi-
conductor (n for negative), because the electrons close to the conduction band 
will easily conduct electrical current. The new arsenic energy levels just below 
the conduction band are called donor levels (see Figure 11.8a), because an elec-
tron there is easily donated to the conduction band.

Now consider what happens when indium (5s25p1) is added to silicon. In-
dium has one less electron in its outer shell than silicon. The result is one extra 
hole per indium atom. The existence of these holes creates extra energy levels 
just above the valence band, because it takes relatively little energy to move an-
other electron into a hole. Those new indium levels are called acceptor levels 
(see Figure 11.8b), because they can easily accept an electron from the valence 
band. Again, the result is an increased flow of current (or, equivalently, lower 
electrical resistance) as the electrons move to fill holes under an applied electric 
field. It is always easier to think in terms of the flow of positive charges (holes) 
in the direction of the applied field, so we call this a p-type semiconductor (p 
for positive).

Holes

Intrinsic semiconductor

Impurity semiconductor

n-type semiconductors

Donor levels

Acceptor levels

p-type semiconductors

Solution For E " EF & 1.0 eV, (E " EF)/kT & 
(1.60 ! 10"19 J)/ (1.38 ! 10"23 J/K)(293 K) & 39.61. Then

  F F D10.10 eV 2 &
1

e 3.961 $ 1
& 0.019

  F F D11.0 eV 2 &
1

e 39.61 $ 1
& 6.27 ! 10"18

  F F D110 eV 2 &
1

e 396.1 $ 1
& 1.0 ! 10"172

This example illustrates how strongly the Fermi-Dirac factor 
depends on the size of the band gap. The number of elec-
trons available for conduction drops off sharply as the band 
gap increases.
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Conduction!
band

Valence!
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Figure 11.8 Energy bands of 
impurity semiconductors, showing 
(a) donor levels in an n-type im-
purity semiconductor and (b) ac-
ceptor levels in a p-type impurity 
semiconductor.

What kind (p-type or n-type) of semiconductor is made 
if pure silicon is doped with a small amount of (a) gallium; 
(b) antimony?

Solution (a) Silicon has four electrons in its outer shell 
(3s23p2), but gallium has three (4s24p1). With this electron 
deficiency, silicon doped with gallium should be a p-type 
semiconductor. (b) Now silicon is being doped with anti-
mony, which has an outer shell 5s25p3. There is an extra 
electron, making this an n-type semiconductor.

 CONCEPTUAL EXAMPLE 11.2

In addition to intrinsic and impurity semiconductors, there are many com-
pound semiconductors, which consist of equal numbers of two kinds of atoms. 
Examples of compound semiconductors include GaAs, InP, GaN, SiC, and InSb. 
In a compound semiconductor, a mixed form of covalent and ionic bonding 
serves to create the same type of tetrahedral bonding as in pure Ge and Si. Com-
pound semiconductors have band gaps and can be doped like intrinsic semicon-
ductors to form p-type and n-type semiconductors.

In introductory physics some students find it bothersome at first that the 
particles that actually move in a conductor, the electrons, travel opposite to the 
direction of the applied field and opposite to what we call “positive current.”* 
One may well ask to what extent the holes are real, because in both p-type and 
n-type semiconductors electrons are moving. It can be shown experimentally 
(using the normal Hall effect) that p-type materials really do behave as if the 
charge carriers were positive. The magnitude and sign of the Hall voltage allow 
one to calculate the density and sign of the charge carriers in a conductor or 
semiconductor and verify that charges in carriers in p-type and n-type materials 
have different signs. In fact, hole conduction is not a phenomenon limited to 
semiconductors. Among metallic conductors, zinc is well known to exhibit posi-
tive charge carriers.

Compound 
semiconductors

*This accident of history is usually blamed on Benjamin Franklin, who popularized the “single-fluid” 
model of electricity. Franklin considered electrical forces to be the result of excesses (hence “posi-
tive”) and deficiencies (hence “negative”) of an electrical fluid. Of course his designation is rather 
arbitrary, and if he had chosen the reverse, electrons would be positive.
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Special Topic

The Quantum Hall Effect

T he quantum Hall effect has been the subject of 
intense investigation since its discovery by the 

German physicist Klaus von Klitzing in 1980 (Nobel 
Prize in Physics, 1985). Schematically, the apparatus 
for observing the quantum Hall effect is similar to that 
used for the normal Hall effect. A thin strip of material 
is positioned perpendicular to a uniform magnetic 
field. Current is then made to flow along the length of 
the strip, and voltage leads detect the potential differ-
ence in two directions: along the direction of current 
flow and perpendicular to the current flow (see Figure 
11.9, page 404). Both of these voltages are directly 
proportional to the current flowing through the strip. 
Therefore, in order to characterize the material being 
studied, it is customary to divide both voltages by the 
current to obtain resistance. The sample’s ordinary 
electrical resistance is the voltage drop in the direction 
of current flow divided by the current, and the Hall 
resistance is the voltage in the perpendicular direction 
divided by the current.

In the normal Hall effect, the Hall resistance in-
creases in direct proportion to the strength of the ap-
plied magnetic field. Von Klitzing discovered the quan-
tum Hall effect in semiconductor materials in which the 
current-carrying electrons were confined to an ex-
tremely thin layer (5– 10 nm thick), when the sample 
was placed in a very strong magnetic field (2– 10 T) 

and cooled to about 1 K. Under these conditions von 
Klitzing found that the Hall resistance, when plotted 
against the increasing magnetic field, showed well-
defined steps at levels of h/ne 2, where h is Planck’s 
constant, e is the electron charge, and n is an integer 
(Figure A). Strictly speaking, it is the electrical con-
ductance (reciprocal of the electrical resistance) that 
is quantized in units of e 2/h. However, we shall stick 
to the convention of speaking in terms of the Hall 
resistance. The “base” Hall resistance h/e 2 is 25,812.8 ' 
and has been renamed the von Klitzing constant RK, 
with RK & h/e 2. A second striking feature of the quan-
tum Hall effect is that when the Hall resistance is on a 
plateau, the ordinary electrical resistance is practically 
zero (again refer to Figure A).

In 1982 another curious phenomenon was found 
by Daniel Tsui and Horst Störmer. They discovered 
that some semiconductor materials exhibited a frac-
tional quantum Hall effect. Electrical conductances 
have been found in fractions of 1/2, 1/3, 1/5, 1/7, 
2/3, 4/3, 5/3, 4/5, 6/7, and 5/2 of the base value 
e 2/h. The fractional quantum Hall effect can be ob-
served only in samples made of ultra-pure materials.

The 1998 Nobel Prize for Physics was awarded to 
Tsui and Störmer, along with Robert Laughlin, who 
explained the fractional quantum Hall effect theoreti-
cally using a quantum fluid model.

Semiconductor theorists have developed models 
that explain both the quantum Hall effect and the 
fractional quantum Hall effect. These models are too 

A very thin rectangular strip of zinc has been deposited on 
an insulating substrate. Let the length, width, and thickness 
of the strip be x, y, and z, respectively. The length and width 
are measured to be 10.0 cm and 2.0 cm. When a potential 
difference of 20 mV is applied as shown in Figure 11.9a 
(page 404), the current through the strip is 400 mA.

(a)  Use the fact that the resistivity of zinc is (at room tem-
perature) r & 5.92 ! 10"8 ' # m to find the thickness of 
the strip.

(b)  Now a magnetic field of 0.25 T is applied perpendicular 
to the strip as shown in Figure 11.9b. A Hall voltage VH & 
$0.56 (V appears when the voltmeter leads ($ and ") 

 EXAMPLE 11.3
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elaborate to detail here.* We can say, however, that 
they are based on constructing electron wave func-
tions in two dimensions (remember, the electrons are 
basically confined to a plane). Such a two-dimensional 
structure is possible in field effect transistors (dis-
cussed in Section 11.3) and in devices known as hetero-
junctions, in which electrons are confined to an inter-
face region between two semiconductor materials.

One way that the quantum Hall effect and frac-
tional quantum Hall effect have been applied is in the 
field of metrology, which seeks to develop measurements 
and standards for industrial and research purposes. 
The quantum Hall effects can be used to provide very 
accurate standards for resistance measurements. Be-
cause the base resistance RK & h/e 2 depends only on 
the physical constants h and e, it should be possible to 
fabricate resistance standards that are relatively insensi-
tive to how they were made, as long as they exhibit a 
quantum Hall effect. Also, because of the dependence 
of RK on h and e, the quantum Hall effect is used to 
make precise determinations of the fi ne structure con-
stant a & e 

2/4pP0Uc ! 1/137 (see Section 4.4).

*See D. R. Yennie, Reviews of Modern Physics 59, 781– 824 (1987), for 
many of the details.
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Figure A The quantized steps in the Hall resistance are evident 
in the top graph. In the bottom graph we see the corresponding 
disappearance of electrical resistance. B. I. Halperin, Scientific 
American 254(4), 52– 60 (April 1986).

are connected as shown. Determine the sign of the charge 
carriers and their number density.

Strategy (a) The resistance of a wire with uniform cross-
sectional area is related to the resistivity by R & rx/A, where 
A is the cross-sectional area and x is the length of the wire. 
In this case A & yz. This allows us to find the thickness of a 
wire with known resistivity.

(b) In equilibrium the magnetic force on a charge car-
rier is equal to the electric force due to the Hall voltage. 
Thus eE & evB. From basic electrical conductivity, the elec-
tron drift speed is v & I/neA. These two relations allow us 
to solve for the charge carrier density n.

Solution (a) The resistance of the sample is R & rx/A. 
From Ohm’s law, R & V/I, so R & V/I & rx/yz. Therefore

 z &
rx I
yV

&
15.92 ! 10"8 ' # m 2 10.10 m 2 10.400 A 210.02 m 2 10.02 V 2

 & 5.92 ! 10"6 m (11.5)

(b) Combining the relations eE & evB and v & I/neA,

 
eVH

y
& e B  

I
n e A

 (11.6)
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404 Chapter 11 Semiconductor Theory and Devices

Thermoelectric Effect
The thermoelectric effect is often used to study the properties of semiconductors. 
When there is a temperature gradient in a thermoelectric material, an electric field 
appears. It is easier to understand why this happens in a pure metal, in which case 
we can assume a gas of free electrons. As in an ideal gas, the density of free electrons 
is greater at the colder end of the wire, and therefore the electrical potential is 
higher at the warmer end and lower at the colder end. Of course the free-electron 
model is not valid for semiconductors; nevertheless, the conducting properties of a 
semiconductor are temperature dependent, as we have seen, and therefore it is 
reasonable to believe that semiconductors should exhibit a thermoelectric effect.

In one dimension the induced electric field E in a semiconductor is propor-
tional to the temperature gradient, so that

 E & Q  
dT
dx

 (11.8)

where Q is called the thermoelectric power. The direction of the induced field 
depends on whether the semiconductor is p-type or n-type (see Figure 11.10), so 
the thermoelectric effect can be used to determine the extent to which n- or 
p-type carriers dominate in a complex system. More detailed analysis yields 
information about carrier concentration and band structures.

Thermoelectric power

(a)
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I
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FBFE

vd

(b)

$" VH

Figure 11.9 A thin strip of metal immersed in a magnetic field 
is used to test the Hall effect. (a) Here negative charge carriers are 
forced to the right. (b) In this configuration, the buildup of nega-
tive charge on the right side (with a corresponding positive charge 
on the left) sets up the electric field as shown. This creates an 
electric force on the charge carriers equal and opposite to the 
magnetic force. The voltmeter (reading VH) can detect the magni-
tude and sign of the potential difference across the strip.

where we have used the fact that for this geometry E & VH/y. 
Finally, because A & yz, Equation (11.6) reduces to

  n &
IB

eVHz   
(11.7)

  &
10.400 A 2 10.25 T 211.6 ! 10"19 C 2 15.6 ! 10"7 V 2 15.92 ! 10"6 m 2

  & 1.89 ! 1029 m"3

This is a very high density (slightly higher, in fact, than one 
finds for copper). It turns out that the higher the density of 
conductors (electrons or holes), the thinner the strip needs 
to be to obtain a decent Hall voltage. That is why this experi-
ment would be much easier to do with a semiconductor, 
most of which have a much lower value of n.

Now, to determine the sign, notice that if the charge 
carriers were negative, the voltmeter as connected in Figure 
11.9b would read negative. If instead the majority charge car-
riers are positive, the magnetic field will cause them to drift 
to the right on the strip. This is consistent with a positive 
voltmeter reading, and therefore we conclude that the ma-
jority charge carriers for zinc are positive. This is a somewhat 
unusual fact, though zinc is not unique—the majority carri-
ers in Cd and Be are also positive. For most metals the 
charge carriers are negative.
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The thermoelectric effect we have just described is sometimes called the 
Seebeck effect. It is the most commonly used thermoelectric effect, but there 
are two others. In a normal conductor, heat is generated at the rate of I 2R. But 
a temperature gradient across the conductor causes additional heat to be gener-
ated. This is known as the Thomson effect. Strangely enough, the Thomson ef-
fect is entirely reversible. If the direction of the current is toward the higher 
temperature end of the conductor, heat is generated, but if the current flows 
toward the lower temperature end, heat is absorbed from the surroundings. The 
Peltier effect occurs when heat is generated at a junction between two conduc-
tors as current passes through the junction.

An important application of the Seebeck thermoelectric effect is in ther-
mometry. The thermoelectric power of a given conductor varies as a function of 
temperature, and the variation can be quite different for two different conductors. 
This difference makes possible the operation of a thermocouple (Figure 11.11). 
Two conductors A and B are joined at each end. One end is held at a reference 
temperature T0, and the other is placed at some unknown temperature T. The 
differential thermopowers of A and B cause a voltage VAB to be induced between 
the two ends of the thermocouple. Knowing the temperature variation of each 
thermopower allows one to calculate the temperature difference T " T0 (and 
hence the unknown temperature T ) as a function of VAB. In practice it is not nec-
essary to measure thermopowers to use a thermocouple. Well-established tables 
for voltage versus temperature can be found in many handbooks for different 
conducting pairs over wide ranges of temperature (see Table 11.3).
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Figure 11.10 Variation in ther-
moelectric power ! temperature 
with temperature for p-type and 
n-type silicon. Reprinted with 
permission from American Physical 
Society. T. H. Geballe and G. W. 
Hall, Physical Review 98, 940 
(1955). Copyright 1955 by the 
American Physical Society.

Figure 11.11 Schematic dia-
gram of a thermocouple circuit. 
Two materials A and B (in this 
case, copper and constantan) are 
joined at their ends. One junction 
is held at a reference temperature 
T0, and the other junction is used 
to measure the temperature T.

Constantan!
B

Copper!
A

A!
Copper

T0

T

VAB
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406 Chapter 11 Semiconductor Theory and Devices

11.3   Semiconductor Devices
Their unique electronic properties have made semiconductors useful in a wide 
range of applications. In this section we describe some of the most important 
semiconductor devices and explain how they are used. But we can only scratch the 
surface; the range of applications is wide, and semiconductor technology is still 
evolving at a rapid rate. Many of you who are students today will help shape the 
electronics revolution tomorrow.

Diodes
We begin with a simple device known as a pn-junction diode, in which p-type and 
n-type semiconductors are joined together, as shown in Figure 11.12. The prin-
cipal characteristic of a pn-junction diode is that it allows current to flow easily 
in one direction but hardly at all in the other direction. We call these situations 
forward bias and reverse bias, respectively.

To explain how this happens, we must first consider the situation when no 
external voltage is applied (the “no bias” case—Figure 11.12a). Free electrons 
from the n side drift through random motion to the p side, and their migration 
leaves a small net positive charge on the n side. This flow of electrons is shown 
as the electron recombination current Ir. Equilibrium is achieved very quickly, 
because the potential difference set up by the charge migration (with the n side 
now at a higher potential than the p side) tends to prohibit further migration. 
There is typically a small current of electrons from the p side to the n side, be-
cause at normal temperatures, electrons on the p side can be thermally excited 
from the valence band to an acceptor level. The thermal electron current is 

pn-junction diode

Forward and reverse bias

 0 1 2 3 4 5 6 7 8 9

°C Millivolts

  0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
 10 0.50 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.97
 20 1.02 1.07 1.12 1.17 1.22 1.28 1.33 1.38 1.43 1.48
 30 1.54 1.59 1.64 1.69 1.74 1.80 1.85 1.90 1.95 2.00
 40 2.06 2.11 2.16 2.22 2.27 2.32 2.37 2.42 2.48 2.53
 50 2.58 2.64 2.69 2.74 2.80 2.85 2.90 2.96 3.01 3.06
 60 3.11 3.17 3.22 3.27 3.33 3.38 3.43 3.49 3.54 3.60
 70 3.65 3.70 3.76 3.81 3.86 3.92 3.97 4.02 4.08 4.13
 80 4.19 4.24 4.29 4.35 4.40 4.46 4.51 4.56 4.62 4.67
 90 4.73 4.78 4.83 4.89 4.94 5.00 5.05 5.11 5.16 5.21
100 5.27 5.32 5.38 5.43 5.48 5.54 5.59 5.65 5.70 5.76

From CRC Handbook of Chemistry and Physics, 55th ed., Cleveland: CRC Press (1974), 
p. E-109.

Tab le  11 .3    Thermocouple Voltage (in millivolts) versus 
Temperature (in °C) for an Iron-Constantan 
Thermocouple
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designated It in Figure 11.12a. With no external voltage source, the electron cur-
rents It and Ir exactly cancel each other, thus preserving the equilibrium.

In the reverse bias case, a potential difference is applied across the junction 
as shown in Figure 11.12b. In a normal conductor, electrons would tend to flow 
freely from the negative toward the positive terminal. But in the pn junction, 
there remains the tendency for electrons to drift back from the n side toward the 
p side whenever an imbalance is created. This compensates for most of the elec-
tron flow. The result is only a small net flow of electrons from the p side to the 
n side, or in other words, a small positive current from the high-potential side of 
the battery to the low-potential side of the battery.

In forward bias (Figure 11.12c) a potential difference is applied with the 
positive terminal connected to the p side and the negative terminal to the n side 
of the junction. Now we are pushing the electrons the way they would tend to 
move anyway. The only compensating factor, the thermal flow of electrons from 
p to n just described, is typically too small to retard the flow of electrons. The 
result is a steady flow of positive current from higher to lower potential, inhib-
ited only by the natural resistance of the device. Figure 11.13 shows the behavior 
of the pn-junction diode in both forward and reverse bias.

We can use the tools of statistical physics developed in Chapter 9 to model 
the I-V characteristics of the pn-junction diode and thereby obtain a quantitative 
justification of the empirical curve shown in Figure 11.13. We’ll start by consider-
ing the no-bias case. Although no external voltage is applied, there is still a po-
tential difference V0 present between the two sides, as well as a corresponding 
current I0 due to the presence of holes on one side and electrons on the other. 
Let N be the number of electrons present in the conduction band on the n side. 
At room temperature, Maxwell-Boltzmann statistics are sufficient to describe the 
behavior of the electrons. In the no-bias case the number of electrons able to 
move from the n side to the p side is proportional to Ne"eV0/kT, and therefore I0 is 
proportional to the same factor. Under the influence of a forward bias voltage 
V, however, the number is proportional to Ne"e(V0"V)/kT & Ne"eV0/kTe eV/kT. There-
fore the electron current under forward bias must be I & I0e eV/kT. Because there 
is still an additional current "I0 in forward bias due to the motion of holes from 
the n side to the p side, the total current in forward bias is

 I & I0 1e 
eV /kT " 1 2  (11.9)

Equation (11.9) is a rather good approximation of the I-V curve of Figure 11.13.

Holes Electrons
It

p-type material

(a) (b) (c)

n-type material

Inet & 0
Ir

It

Inet

V

Ir
It

Inet

V

Ir

Recombination of
electrons and!
holes at junction

Figure 11.12  The operation of a pn-junction diode. [Note: In each case, It and Ir are electron 
(negative) currents, but Inet indicates positive current.] (a) This is the no-bias case. The small ther-
mal electron current (It) is offset by the electron recombination current (Ir). The net positive cur-
rent (Inet) is zero. (b) With a DC voltage applied as shown, the diode is in reverse bias. Now Ir is 
slightly less than It. Thus there is a small net flow of electrons from p to n and positive current from 
n to p. (c) Here the diode is in forward bias. Because current can readily flow from p to n, Ir can be 
much greater than It.

Reverse bias!
(small negative!

current)

Forward!
bias

V

I

Figure 11.13 A typical I-V 
curve for a pn-junction diode.
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408 Chapter 11 Semiconductor Theory and Devices

Rectifiers
The diode is an important tool in many kinds of electrical circuits. As an exam-
ple, consider the bridge rectifier circuit shown in Figure 11.14. The bridge 
rectifier is set up so that it allows current to flow in only one direction through 
the resistor R when an alternating current supply is placed across the bridge. 
The current through the resistor is then a rectified sine wave of the form

 I & Imax 0sin(vt)0  (11.10)

This is the first step in changing alternating current to direct current. The design 
of a power supply can be completed by adding capacitors and resistors in ap-
propriate proportions. The rectifi er is an important application, because direct 
current is needed in many devices and the current that we obtain from our wall 
sockets is alternating current. One common application of rectifi ers is in auto-
mobile alternators, where they are used to charge the car’s battery.

Zener Diodes
The Zener diode is made to operate under reverse bias once a sufficiently high 
voltage has been reached. The I-V curve of a Zener diode is shown in Figure 
11.15. Notice that under reverse bias and low voltage the current assumes a low 
negative value, just as in a normal pn-junction diode. But when a sufficiently 
large reverse bias voltage is reached, the current increases at a very high rate.

Depending on which semiconductor materials are used to make the diode, 
the Zener I-V phenomenon may occur in one of two ways. In the process known 
as Zener breakdown, the applied voltage induces electrons from the valence 
band on the p side to move to the conduction band on the n side. Once a high 
reverse bias voltage is reached, large numbers of electrons are pulled immedi-
ately into the conduction band, thus accounting for the sudden breakdown. In 
another process known as avalanche multiplication, the applied voltage is high 
enough to accelerate electrons to energies sufficient to ionize atoms through 
collision. The “avalanche” occurs when electrons released in this process are in 

Consider a simple pn-junction diode. Suppose this diode 
carries a current of 50 mA with a forward bias voltage of 
200 mV at room temperature (293 K). What is the current 
when a reverse bias of 200 mV is applied?

Strategy We could use Equation (11.9) to solve for I0 in 
the forward bias case and then use that I0 to find the current 
in reverse bias. But it is simpler to use the fact that the for-
ward bias current If and the reverse bias current Ir are re-
lated by

 
Ir

If
&

I0 1e eVr /kT " 1 2
I0 1e 

eVf /kT " 1 2

Solution Using the current ratio along with the numerical 
values If & 50 mA, Vf & $200 mV, and Vr & "200 mV, we 
find that

 
eVf

kT
&
11.602 ! 10"19 C 2 10.200 V 211.38 ! 10"23 J/K 2 1293 K 2 & 7.924

Therefore

  Ir & If   
e 

eVr /kT " 1
e 

eVf /kT " 1
& 150 mA 2  e 

"7.924 " 1
e 

7.924 " 1
& "0.018 mA

or Ir & "18 (A

This is an extremely small current, showing clearly the “one-
way” property of the diode.

 EXAMPLE 11.4

Figure 11.14 (a) The circuit 
diagram symbol for a diode, with 
p and n sides indicated. (b) Cir-
cuit diagram for a diode bridge 
rectifier.

p

VAC

I R

(a)

(b)

n

Figure 11.15 A typical I-V 
curve for a Zener diode.

Reverse bias

Forward!
bias

V

I
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   11.3  Semiconductor Devices 409

turn accelerated and ionize other atoms. Again, this happens rather suddenly, 
accounting for a sharp increase in current at a particular voltage. In heavily 
doped material, Zener breakdown is likely to occur first.

A common application of Zener diodes is in regulated voltage sources, 
which are components in many electronic instruments. The idea behind the 
operation of the regulator circuit is that as long as we operate on the steep part 
of the I-V curve, any change (say an increase) in the supply voltage V tends to be 
compensated for by a sharp increase in the current through the Zener diode 
(Figure 11.16). Then the voltage across the resistor increases, which in turn 
tends to keep the output voltage VZ & V " IR fairly constant.

Light-Emitting Diodes
Another important kind of diode is the light-emitting diode (LED). Whenever 
an electron makes a transition from the conduction band to the valence band 
(effectively recombining the electron and hole) there is a release of energy in 
the form of a photon (Figure 11.17). In some materials the energy levels are 
spaced so that the photon is in the visible part of the spectrum. In that case, the 
continuous flow of current through the LED results in a continuous stream of 
nearly monochromatic light.

LEDs are found in many places today. The visible displays of many clocks, 
automobile dashboards, and other instruments consist of combinations of LEDs. 
Automobile manufacturers often use LEDs in taillights, and they are used in 
many traffi c signals. The LED can also be used as a principal component of a 
laser. Photons released from the LED are used to stimulate the emission of other 
photons, as described in Section 10.2.

Photovoltaic Cells
An exciting application closely related to the LED is the solar cell, also known as 
the photovoltaic cell. Simply put, a solar cell takes incoming light energy and 
turns it into electrical energy. A good way to think of the solar cell is to consider 
the LED in reverse (Figure 11.18, page 410). A pn-junction diode absorbs a pho-
ton of solar radiation, with the photon’s energy used to promote an electron 
from the valence band to the conduction band. In doing so, both a conducting 
electron and a hole have been created. If a circuit is connected to the pn junc-
tion, the motion of holes and electrons creates an electric current, with positive 
current flowing from the p side to the n side. Even though the efficiency of most 
solar cells is low, their widespread use generates significant amounts of electric-
ity. Remember that the “solar constant” (the energy per unit area of solar radia-
tion reaching Earth) is more than 1400 W/m2, and more than half of this makes 

Figure 11.17 Schematic of an 
LED. A photon is released as an 
electron falls from the conduc-
tion band to the valence band. 
The band gap may be large 
enough that the photon will be in 
the visible portion of the 
spectrum.

Figure 11.16 A Zener diode 
reference circuit.
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410 Chapter 11 Semiconductor Theory and Devices

it through the atmosphere to Earth’s surface. There has been tremendous prog-
ress in recent years toward making solar cells more efficient.

The photovoltaic effect was first observed in 1839 by Alexandre-Edmond 
Becquerel. For more than 100 years the discovery remained a curiosity for scientists 
with access to materials that naturally exhibit the photovoltaic effect. In the 1950s, 
however, researchers interested in using semiconductors in electronics began to 
develop better ways of manufacturing photovoltaic semiconductor devices. In 1954 
a silicon-based solar cell with an efficiency of 6% was made at Bell Laboratories 
(efficiency is defined as the ratio of electrical power output to the power of incident 
radiation). Since then the advances in design and manufacture of semiconductor 
devices have been applied to solar cells. As a result, both silicon and gallium arse-
nide solar cells can now be made with efficiencies of more than 20%.

The most widely used and studied photovoltaic materials are silicon-based. 
The technology exists for making large single crystals of silicon. In silicon-based 
cells efficiencies of more than 20% are reached. Unfortunately, the cost of mak-
ing good single crystals of silicon is prohibitive. The cost of making cells with 
polycrystalline and amorphous silicon is lower, but so is the efficiency of the solar 
cells made with these materials.

There is now hope that other thin-film materials can approach the efficiency 
of silicon devices. The prime candidate is GaAs and its alloys, including AIGaAs, 
InGaAs, and AIGaP. Recently a device with an efficiency of 32% was made on a 
reusable GaAs substrate. These reusable single crystals of GaAs are now made 
fairly inexpensively by growing them on single crystals of Ge.

Another advantage of GaAs is that it makes more efficient use of the solar 
spectrum than Si. Figure 11.19 shows that the response of GaAs and its alloys is 
almost entirely within the visible portion of the spectrum, where the frequencies 
of solar radiation are highest (recall the Wien law from Chapter 3). The use of 
multiple layers, with each layer sensitive to a different wavelength range, has 
proved successful. Figure 11.20 shows a two-layer device created by Boeing. The 
upper layer semiconductor, GaAs, has a band gap of 1.42 eV. That energy cor-
responds to a photon wavelength of

 l & hc/E & 875 nm

A photon with l & 875 nm is in the near infrared portion of the spectrum. The 
lower layer is made of GaSb, with a band gap of 0.72 eV (corresponding to 

Incoming
photon

(a) (b)

Back contact

Electron!

Hole"

p-type semiconductor
n-type semiconductor

Cover glass Front contact

Sunlight

Current
Transparent adhesive
Antireflection coating

Conduction
band

Valence
band

Figure 11.18 (a) Schematic of a photovoltaic cell. Note the similarity to Figure 11.17. (b) A 
schematic showing more of the working parts of a real photovoltaic cell. From H. M. Hubbard, Sci-
ence 244, 297– 303 (21 April 1989). Used by permission.
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l & 1730 nm). Photons with wavelengths shorter than 875 nm have sufficient 
energy to boost an electron from the valence to the conduction band in GaAs, 
and therefore the top layer is able to use near-IR, visible, and ultraviolet solar 
radiation to produce energy. Less-energetic IR photons make it through to the 
GaSb layer, where they can be absorbed and converted to electrical energy if their 
wavelength is less than 1730 nm. This device has achieved a proven efficiency of 
31%. In recent years there has been continued progress toward higher effi cien-
cies. In 2009, Spectrolab (a Boeing subsidiary) produced a multilayer system with 
a proven effi ciency of 41.6%. Currently more solar cells are manufactured from 
polycrystalline silicon, which is relatively cheaper to produce, although it has 
lower effi ciency.

300!
4.13

400!
3.10
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2.48
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2.06
AlGaAs!
GaInP

AlGaAs!
GaAsP
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Solar spectrum
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Printed circuit board!
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Figure 11.19 The response of 
various solar cells as a function of 
wavelength. Note that aSi (dashed 
line) is amorphous silicon. Be-
cause of the variation in band 
gaps of the different semiconduc-
tors, solar cells are more sensitive 
to some wavelengths than to oth-
ers. From H. M. Hubbard, Science 
244, 297– 303 (21 April 1989). Used 
by permission.

Figure 11.20 An example of a 
multi-layered solar cell is Boeing’s 
31% efficient solar cell, contain-
ing a gallium arsenide upper layer 
and a gallium antimonide lower 
layer used to capture infrared ra-
diation. From B. W. Henderson, Avi-
ation Week & Space Technology 
131, 61 (23 October 1989).
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412 Chapter 11 Semiconductor Theory and Devices

The use of solar radiation as an energy source has some intrinsic advantages 
and disadvantages compared with other sources. Despite advances in technol-
ogy, the net cost of energy from solar cells is generally greater than the cost of 
more common alternatives—coal, oil, natural gas, or hydroelectric. One out-
standing advantage relative to fossil-fuel burning is that solar cells generate no 
environmental waste in their use and relatively little in their manufacture. The 
release of polluting particles, poisonous gases, and greenhouse gases (especially 
CO2) in burning fossil fuels may make it desirable to replace fuel-burning gen-
erators with solar-cell generators even before the absolute cost per kilowatt-hour 
of solar cells becomes much lower. Another advantage of solar cells is that they 
can be made in various sizes. Large arrays (Figure 11.21) can be used to produce 
electricity for cities and factories, and smaller arrays can be put on rooftops in 
some areas to generate power for homes and small businesses. The principal 
disadvantage of even very efficient solar cells is that it is not always sunny. The 
use of solar energy at night or during cloudy periods would require large, gener-
ally inefficient storage systems. Perhaps this is where the superconducting stor-
age rings discussed in Sections 10.5 and 10.6 can best be put to use. (See also 
Problems 14 and 28.)

Other kinds of solar-energy technology do not use semiconductor materials. 
For example, many buildings are designed to use “passive” solar energy, letting 
the sun heat the inside air directly. Other systems use the sun to heat water that 
is then piped through the building for radiant heating. There are now large-
scale power plants with arrays of troughs with parabolic mirrors used to focus the 
sun’s rays onto water-fi lled tubes. The water is boiled, and the steam runs electric 
turbines. Several of these solar thermal facilities have been built, including Nevada 
Solar One, with an output of 53 MW. In the future semiconductor devices will 
be one of many solar-energy options.

Suppose an array of 30% efficient solar cells has an effective 
area of 100 m by 100 m. The cells are tilted so as to receive 
maximum solar flux, an average of 680 W/m2 for a day with 
12 hours of daylight. How much energy does this array pro-
duce each day? Compare that energy with the output of a 
100-MW conventional power plant.

Strategy Energy & power ! time. With 1 W & 1 J/s, it is 
necessary to convert the time to units of s. The solar cell 
runs for 12 hours, but the power plant runs for 24 hours.

 EXAMPLE 11.5

Figure 11.21 A photovoltaic 
center in Carrisa Plains, 
California.
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   11.3  Semiconductor Devices 413

Transistors
Another use of semiconductor technology is in the fabrication of transistors, de-
vices that amplify voltages or currents in many kinds of circuits. The first transistor 
was developed in 1948 by John Bardeen, William Shockley, and Walter Brattain 
(Nobel Prize, 1956).* As an example we consider an npn-junction transistor, which 
consists of a thin layer of p-type semiconductor sandwiched between two n-type 
semiconductors. The three terminals (one on each semiconducting material) are 
known as the collector, emitter, and base. A good way of thinking of the operation 
of the npn-junction transistor is to think of two pn-junction diodes back to back 
(Figure 11.22b, page 414). Then the emitter side consists of a diode in forward 
bias, and the collector side consists of a diode in reverse bias. The base is therefore 
the p side of each diode. Explicitly showing the npn construction of each transistor 
would prove cumbersome in a complicated circuit diagram containing many tran-
sistors. A more compact notation is shown in Figure 11.22c.

Consider now the npn junction in the circuit shown in Figure 11.23a (page 
414). If the emitter is more heavily doped than the base, then there is a heavy 
flow of electrons from left to right into the base. The base is made thin enough 
so that virtually all of those electrons can pass through the collector and into the 
output portion of the circuit. As a result the output current is a very high fraction 
of the input current. The key now is to look at the input and output voltages. 

npn-junction transistor

Collector, emitter, base

*For a history of transistor development, see Physics Today 34– 39 (December 1997).

John Bardeen (1908– 1991), pictured left, received his first No-
bel Prize in 1956 for work on the semiconductor transistor. See 
his biographical profile in Chapter 10.
  William Shockley (1910– 1989), pictured center, earned his 
undergraduate degree at Caltech and his Ph.D. from MIT in 
1936. After obtaining his doctorate, Shockley went to work at 
Bell Labs, joining the research group of C. J. Davisson (see 
Chapter 5). In the late 1940s, he teamed with Bardeen and 
Brattain to develop the semiconductor tran sistor. Shockley left 
Bell Labs in 1954 to start Shockley Semiconductor Laborato-
ries, one of the first semiconductor labs in what is now known 
as Silicon Valley in California.
  Walter Brattain (1902– 1987), pictured right, grew up in the 
state of Washington and earned his undergraduate degree from 
Whitman College. After earning his Ph.D. from the University of 
Minnesota, Brattain spent the bulk of his career at Bell Labs. In 
addition to his transistor work with Bardeen and Shockley, 
Brattain is known for using the photoelectric effect to learn more 
about the surfaces of semiconductors.AI
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Solution The solar cells have an area of 100 m ! 100 m & 
104 m2. The time is

 t & 12 h !
60 min

h
!

60 s
min

& 43,200 s

Therefore the energy produced in one 12-hour day is

 E & 0.30 ! 680 W/m2 ! 104 m2 ! 43,200 s & 8.8 ! 1010 J

The power plant operates for 24 hours (86,400 s) at a rate 
of 100 MW & 108 W, and produces

 E & 108 W ! 86,400 s & 8.6 ! 1012 J

of energy, which is about 100 times more than the solar cell 
array produces. Producing a comparable amount of energy 
requires a larger solar array.
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414 Chapter 11 Semiconductor Theory and Devices

Because the base-collector combination is essentially a diode connected in re-
verse bias, the voltage on the output side can be made higher than the voltage 
on the input side. Recall that the output and input currents are comparable, so 
the resulting output power (current ! voltage) is much higher than the input 
power.

In the circuit we have just described, the transistor is used as a voltage amplifier. 
The circuit in Figure 11.23a can be modified to serve as a current amplifier by mov-
ing the input signal to a position between the base and ground, as shown in Figure 
11.23b. As we have already shown, a very small current flows in that branch of the 
circuit. Therefore, in this configuration the output current will be much higher 
than the input current. It is also possible to make a pnp-junction transistor (Figure 
11.22d), which may be understood using the same model as we used for the npn 
junction, but with hole conduction taking the place of electron conduction.

As an example of an amplifier circuit, consider Figure 11.24. The voltages Vbb 
and Vcc are fixed. The resistances Rc and Re may in part be separate from the 
transistor, but they must include the intrinsic base-collector and base-emitter 
resis tances, respectively. We wish to amplify a signal Vs. Let us assume that there 
is a current gain b, which means that Ic & bIb. To calculate the voltage gain, we 
first apply Kirchhoff’s loop rule to the left-hand loop to obtain

 Ib &
Vs $ Vbb

Rb $ 11 $ b 2Re
 (11.11)

Then

 Ic & bIb & b 
Vs $ Vbb

Rb $ 11 $ b 2Re
 (11.12)

pnp-junction transistor

!
"

p nn

(a) (b)

Base

Output!
load

Input!
signal

Emitter Collector

$"$ "

p n E C

B

n
Base

Output!
loadInput signal

Emitter Collector

$"$

(c)

"

Output!
loadInput signal

$"$

Figure 11.23 (a) The npn transistor in a voltage amplifier circuit. (b) The circuit has been 
modified to place the input between base and ground, thus making a current amplifier. (c) The 
same circuit as in (b) using the transistor circuit symbol.

p nn

(a) (b) (c)

BaseEmitter Collector B
B

npn

C C E

(d)

B

pnp

C EE

Figure 11.22 (a) In the npn transistor, the base is a p-type material, and the emitter and collec-
tor are n-type. (b) The two-diode model of the npn transistor. (c) The npn transistor symbol used 
in circuit diagrams. (d) The pnp transistor symbol used in circuit diagrams.
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The output voltage on the load resistor is

 Vc & Ic Rc & b 
Vs $ Vbb

Rb $ 11 $ b 2Re
 Rc (11.13)

Now we can calculate the voltage gain Av:

 Av &
Vc

Vs
& b 

1 $ Vbb /Vs

Rb $ 11 $ b 2Re
 Rc (11.14)

Because the voltages Vcc and Vbb are present only to establish the proper bias on 
the transistor, it is possible in practice to make Vbb V Vs, so that

 Av ! b 
Rc

Rb $ 11 $ b 2Re
 (11.15)

With the appropriate choice of resistors, one can in theory achieve any de-
sired voltage gain. In real circuits, however, there are severe limitations based on 
the characteristics of the particular transistor and power limitations in various 
parts of the circuit. Often, capacitors are put into the circuit to limit power 
surges. It is also not unusual to amplify a small signal through several (or many) 
stages before reaching the desired output voltage. For example, the initial out-
put from a magnetic or optical reading device is typically on the order of micro-
volts, and it has to be amplified several times before it is strong enough to drive 
the speakers of an audio system.

Solid-state transistors are not made by fastening together pieces of n-type 
and p-type semiconductors. It is possible to make layers of n- and p-type materi-
als by diffusing or implanting acceptor and donor atoms at the appropriate 
thicknesses in a slab of pure germanium or silicon. It is this technology that has 
made possible the exceptional miniaturization of electronic circuits, which we 
discuss in more detail later.

Field Effect Transistors
The npn-junction and pnp-junction devices we have just described are referred to 
as a group by the term bipolar transistors. Another type of transistor is the field 
effect transistor (FET). A schematic diagram of an FET is shown in Figure 11.25 
(page 416). The three terminals of the FET are known as the drain, source, and gate, 
and these correspond to the collector, emitter, and base, respectively, of a bipolar 
transistor. Comparing the circuit of Figure 11.25 with the corresponding circuit 
for the bipolar transistor (see Figure 11.23), we see the principal difference is that 
the p-type gate is connected in reverse bias with both the n-type source and n-type 

Output!
side

Input!
side

Vs

Vc Rc

Re

Vbb Vcc

Rb

Ib

Ic

B C

E

Figure 11.24 A transistor 
amplifier circuit.
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416 Chapter 11 Semiconductor Theory and Devices

drain, while the p-type base is connected in reverse bias with the n-type collector 
but a forward bias with the n-type emitter. The effect is a severe depletion of 
charge carriers, both holes and electrons, at the pn junction of the FET, and there-
fore very little current can flow through that junction. For that reason the FET is 
said to have a high input impedance and is voltage controlled, while the bipolar 
transistor is current controlled. This is an advantage in the design of many kinds 
of circuits, because the FET draws a relatively small amount of current.

In common use today is the metal oxide semiconductor FET, or MOSFET. 
In a MOSFET the gate is some kind of metal, and it is separated from the chan-
nel by a thin layer of oxide (an insulator), usually silicon dioxide. The oxide 
layer makes the input impedance of the MOSFET much higher than that of the 
standard FET. It can be made as high as 1015 ' by making the oxide layer 
thicker. The other principal advantage of MOSFETs is that they can be made 
extremely small using thin-film deposition methods. This aids in the miniatur-
ization process in the design and manufacture of integrated circuits.

Beginning in 2007, there began a shift in the semiconductor industry from 
using SiO2-based gates to hafnium oxide and other materials with dielectric 
constants much larger than silicon dioxide’s dielectric constant of 3.9. As de-
scribed in introductory physics, the amount of charge a capacitor can store de-
pends on its size and the dielectric constant of the material used between the 
capacitor plates. As silicon-based transistors grew smaller, the result was exces-
sive leaking of charge. The use of hafnium-based materials (with higher dielec-
tric constants) has facilitated further miniaturization of transistor circuits.

Schottky Barriers
A closely related device is called the Schottky barrier, in which direct contact is 
made between a metal and a semiconductor. If the semiconductor is n-type, 
electrons from it tend to migrate into the metal, leaving a depleted region within 
the semiconductor. This will happen as long as the work function of the metal is 
higher (or lower, in the case of a p-type semiconductor) than that of the semi-
conductor. The width of the depleted region depends on the properties of the 
particular metal and semiconductor being used, but it is typically on the order 
of microns. The I-V characteristics of the Schottky barrier are similar to those of 
the pn-junction diode, as shown in Equation (11.9) and Figure 11.13. When a 

MOSFET

Output
load

Input!
signal

G

S D

G

S D

Drain!
(D)

Gate!
(G)

Source!
(S)

(b) (c)(a)

Figure 11.25 (a) A schematic of a fi eld effect transistor (FET). The two gate regions are con-
nected internally. (b) The circuit symbol for the FET, assuming the source-to-drain channel is of 
n-type material and the gate is p-type. If the channel is p-type and the gate n-type, then the arrow 
is reversed. (c) An amplifier circuit containing an FET.
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p-type semiconductor is used, the behavior is similar, but the depletion region 
has a deficit of holes.

One variation of the Schottky barrier is known as an ohmic contact. The 
ohmic contact also involves contact between a metal and a semiconductor, but 
now the work function of the semiconductor is higher than that of the metal if 
the semiconductor is n-type and lower than that of the metal for a p-type. In this 
case the interface region will be enriched in majority carriers (whether p or n), 
and current can flow easily across the boundary.

In Figure 11.26a, a typical Schottky-barrier-gate FET (also known as a metal 
semiconductor FET, or MESFET) is shown. In this device the doped n-type GaAs 
serves as the channel. The contacts between the AlGe layers and the doped GaAs 
layer are ohmic, while the Al gate contact forms a Schottky barrier. When the 
gate is connected in reverse bias, a higher input impedance is obtained, just as 
when obtained using the silicon dioxide layer in the MOSFET. The CrPt inter-
face serves only to prevent the Au and Al from forming an alloy.

In Figure 11.26b we see the MESFET amplifier circuit gain plotted as a func-
tion of frequency. The superior characteristics of the MESFET are because no 
diffusion of impurities into any of the layers is needed. The source, gate, and 
drain are simply evaporated or sputtered directly onto the doped GaAs. Another 
benefit of this is that the channel can be made extremely narrow (a fraction of 
a micron), making the device smaller and its operation faster.

Semiconductor Lasers
In recent years semiconductor lasers have been used widely in scientific research 
and industrial applications. Like the gas lasers described in Section 10.2, semi-
conductor lasers operate using population inversion—an artificially high num-
ber of electrons in excited states. In a semiconductor laser, the band gap deter-
mines the energy difference between the excited state and the ground state. 
Rather than the optical pumping and electrical discharge used to operate gas 
lasers, semiconductor lasers use injection pumping, where a large forward cur-
rent is passed through a diode. This creates electron-hole pairs, with electrons 
in the conduction band and holes in the valence band. A photon is emitted 
when an electron falls back to the valence band to recombine with the hole. 
Thus the photon energy is determined by the band gap in the semiconductor.

The first semiconductor laser was made in 1962 and consisted of a GaAs pn 
junction with a band gap of 1.47 eV. It is straightforward to compute the photon 
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Figure 11.26 (a) Schematic 
drawing of a typical Schottky-
barrier FET. (b) Gain versus fre-
quency for two different substrate 
materials, Si and GaAs. From D. A. 
Fraser, Physics of Semiconductor 
Devices, Oxford: Clarendon Press 
(1979), ISBN-10: 0198518609.
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418 Chapter 11 Semiconductor Theory and Devices

wavelength produced in a transition from the conduction band to the valence 
band:

 l &
hc
¢E

&
1240 eV # nm

1.47 eV
& 844 nm

which is in the near infrared region.
Since their development, semiconductor lasers have been used in a number 

of applications, most notably in fiber-optics communication. One advantage of 
using semiconductor lasers in this application is their small size; like other semi-
conductor devices, semiconductor lasers can be made quite small, with dimen-
sions typically on the order of 10"4 m. They are solid-state devices, so semicon-
ductor lasers are more robust than gas-filled tubes.

For many years, the relatively small band gaps (1 to 2 eV) in semiconductors 
limited the operation of semiconductor lasers to longer wavelengths. For example, 
a 2-eV photon has a wavelength of 620 nm, and lower energies correspond to even 
longer wavelengths. Over the years scientists worked to develop semiconductor la-
sers with shorter wavelengths. In 1996 Shuji Nakamura demonstrated a blue-
violet laser based on the semiconductor gallium nitride. By doping the gallium ni-
tride with varying amounts of indium, Nakamura produced laser wavelengths 
ranging from 390 nm to 440 nm. Blu-ray DVD players use a 405-nm GaN laser. 
Because of the shorter wavelength, the track width on a Blu-ray DVD is only 
320 nm. By comparison, the track width is 740 nm on a DVD that is read with a 
640-nm laser, and the width is 1600 nm on a CD that is read with a 780-nm infrared 
laser. The size affects the storage capacity of each medium. Typical storage limits 
are 700 MB (megabytes) on the CD, 5 GB on the DVD, and 25 GB on the Blu-ray.

A CD stores 700 MB of data. The region of the CD that 
stores data has an inner radius of 2.30 cm and outer radius 
of 5.80 cm, and the width of the data track is 1.60 (m. What 
is the surface area allowed for each data bit? What are the 
approximate dimensions of each bit along the track?

Strategy Note that 1 byte (B) & 8 bits. The usable surface 
area is the difference between the area of a disk of radius 
5.80 cm and a disk of radius 2.30 cm—effectively subtracting 
out the “hole” in the middle of the disk. Then the area per 
bit is that surface area divided by the number of bits.

Solution The usable area is

 A & p 3  10.058 m 22 " 10.023 m 22 4 & 8.91 ! 10"3 m2

The number of bits is 700 MB ! 8 bits/B & 5.60 ! 109 bits. 
The area per bit is

 
Area
Bit

&
8.91 ! 10"3 m2

5.60 ! 109 bits
& 1.6 ! 10"12 m2

 /bit

With a track width of 1.6 (m, the length of a bit (area di-
vided by width) is

 Bit length &
1.6 ! 10"12 m2

1.6 ! 10"6 m
& 1.0 ! 10"6 m

The bit length is just 1 micron. Thus the length and width of 
the bit are comparable to the IR laser wavelength (780 nm) 
used to scan it.

 EXAMPLE 11.6

Integrated Circuits
The most important use of all these semiconductor devices today is not in dis-
crete components but rather in integrated circuits. It is possible to fabricate a 
silicon-based substrate (commonly called a chip) containing a hundred million 
or more components, including resistors, capacitors, transistors, and logic 
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switches. This extreme miniaturization has done two things for the electronics 
industry. First, it has made it possible to put sophisticated integrated circuits into 
even the smallest products, such as cell phones and cameras. Second, it has en-
abled those integrated circuits to work much faster. Although there are still 
limits based on the speeds at which switches can operate, the transit time of an 
electronic signal has been reduced by packing the components more closely 
together. Those signals travel at essentially the speed of light—0.3 (m/fs, in 
units relevant to the distance/time scale of integrated circuits.

Integrated circuits have had a tremendous impact on the work of scientists 
and engineers by enhancing the computing power available to them. The 
Manhat tan Project (which produced the atomic bomb in 1945) and other 
scientific work during World War II inspired the development of large mechani-
cal computers that could perform many computations relatively quickly. The 
ENIAC (Electronic Numerical Integrator and Computer), built in 1945, could 
multiply 333 ten-digit numbers per second. Unfortunately it weighed 30 tons 
and contained more than 17,000 vacuum tubes, 70,000 resistors, 10,000 capaci-
tors, and 1500 relay switches. It was 2.5 m high and wide and 25 m long (see 
Figure 11.27), and it used 174 kW of power in normal operation! By 1963 the 
best computers (for example, the Control Data 6600) still filled a normal-sized 
room (6 m ! 6 m) but could perform one million operations per second. In 
1971 the first true commercial integrated circuit was released: the Intel 4004 
(Figure 11.28, page 420), which had 2300 transistors and could perform 60,000 
operations per second. Today, personal desktop or laptop computers can per-
form more than 1012 operations per second, and the largest supercomputers are 
thousands of times faster. By 2011, several supercomputers had surpassed the 
rate of 1 petafl op, or 1015 operations per second.

One indication of the rapid progress in computing is the increase in the 
number of transistors that can fi t on a single microchip. That number was just 
2300 for the Intel 4004 chip in 1971. The number grew to 134,000 with the re-
lease of the 80286 chip in 1982 and to 1.2 million on the 486 chip in 1989. The 
rapid growth in microchip technology continues in the twenty-fi rst century. The 
Intel Pentium 4 chip (2002) contained 55 million transistors on a single chip, by 
2010 the Intel Core i7 930 contained 731 million. To achieve such high densities, 
it is necessary to build extremely small components. In the Core i7 930, for 

Figure 11.27 Working on the 
ENIAC computer (circa 1940s).Co
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420 Chapter 11 Semiconductor Theory and Devices

example, circuit elements are about 45 nm across in each direction. Notice that 
this is less than the wavelength of visible light. Newer circuit elements are as 
small as 32 nm across. For this reason chip manufacturers must now use ultravio-
let lithographic techniques. The rate of progress is summarized in Moore’s law, 
which states that microchip capacity doubles roughly every 18 to 24 months (see 
Figure 11.29). Moore’s law has been accurate for more than forty years!

An important factor in technology besides the computing itself is the storage 
and retrieval of information. By the early twenty-first century there were two 
standard media: magnetic and optical. It is possible to store and reliably retrieve 
more than 1013 bits of information per m2 of magnetic disk or tape. This is ap-
proaching the theoretical limit, because at this density as few as 100 magnetic 
particles are used to store each bit of information. At higher densities one begins 
to have problems with reliability, due to statistical fluctuations in the magnetiza-
tions of the particles and overlap of magnetic fields from one small bit to 

Figure 11.28 The Intel 4004, 
the first commercial microproces-
sor (1971). This integrated circuit 
measured just 3 mm by 4 mm, 
and with 2300 transistors it could 
perform 60,000 operations per 
second.

Figure 11.29 Moore’s law, 
showing the progress in comput-
ing power over a 30-year span, il-
lustrated here with Intel chip 
names. The Pentium 4 contains 
more than 50 million transistors. 
Courtesy of Intel Corporation. Graph 
from http://www.intel.com/research/
silicon/mooreslaw.htm.
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another. You may have both magnetic and optical storage in your computer: the 
hard disk drive in a computer is magnetic, and a DVD drive is an optical reader 
(and writer in many cases). The standard DVD, with a 12-cm diameter, has a 
4.7-GB capacity. Thus, the density of data storage on a DVD is somewhat lower 
than the density on a magnetic device (see Problem 33).

11.4   Nanotechnology
Richard Feynman (1918– 1988; Nobel Prize in Physics, 1965) was widely regarded 
as one of the outstanding theoretical physicists of the twentieth century. He was 
noted not only for his grasp of many subfields of physics, but also for his vision 
of the place of physics in the wider world. Feynman achieved widespread acclaim 
outside the world of physics in 1986 for the role he played as a member of the 
Presidential commission that examined the crash of the space shuttle Challenger. 
His writings and public lectures helped physics come alive for physicists and 
nonphysicists alike. At an American Physical Society meeting in 1959, Feynman 
gave a now-famous address entitled: “There’s Plenty of Room at the Bottom.” 
The gist of his message lies in the following excerpt:

What I want to talk about is the problem of manipulating and control-
ling things on a small scale. . . . What I have demonstrated is that there is 
room—that you can decrease the size of things in a practical way. I now 
want to show that there is plenty of room. I will not now discuss how we 
are going to do it, but only what is possible now in principle. . . . We are 
not doing it simply because we haven’t yet gotten around to it.

In the years following Feynman’s visionary statement, slow but steady prog-
ress was made toward “decreasing the size of things in a practical way.” This in-
cludes some discoveries and devices you’ve already studied in this book, such as 
electronic circuitry (Section 11.3) and the scanning tunneling microscope and 
atomic force microscope (Section 6.7). Since the mid-1990s there has been a 
flurry of activity in this field of nanotechnology, which is generally defined as the 
scientific study and manufacture of materials on a submicron scale. Although 
the prefix nano- implies working on a nanometer scale, nano technology can 
involve working on scales ranging from single atoms, on the order of tenths of 
1 nm, up to about 1 micron, or 1000 nm.

Because it refers to work done on specific distance scales without regard to 
discipline, nanotechnology now includes many fields of research, not only in 
physics but also in engineering, chemistry, and the life sciences. By its nature, 
nanotechnology is interdisciplinary. The excitement generated by this interdisci-
plinary work, along with the emergence of even more exciting applications, has 
led to huge increases in funding of nanotechnology research. In this section we 
only discuss a few of the primary research areas and applications, concentrating 
on those most closely related to the modern physics you’ve already seen.

Carbon Nanotubes
In 1991, following the discovery of C60 buckminsterfullerenes, or “buckyballs” 
(see Section 10.5), Japanese physicist Sumio Iijima discovered another geomet-
ric arrangement of pure carbon into large molecules. In this arrangement, 
known as a carbon nanotube, hexagonal arrays of carbon atoms lie along a cy-
lindrical tube instead of a spherical ball. One way to envision the nanotube is to 
think of a flat sheet of carbon in a hexagonal lattice rolled into a tube form (see 

Nanotechnology defi ned
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Figure 11.30). There’s virtually no limit to the length of such a tube, so there’s 
no standard chemical symbol (such as C60) to describe the nanotube.

The basic structure shown in Figure 11.30 leads to two types of nanotubes. A 
single-walled nanotube has just the single shell of hexagons as shown. In a multi-
walled nanotube, multiple layers are nested like the rings in a tree trunk. Single-
walled nanotubes tend to have fewer defects, and they are therefore stronger struc-
turally. However, single-walled nanotubes are also more expensive and difficult to 
make. The best type of nanotube usually depends on the application.*

For their size, carbon nanotubes are extremely strong. Their measured ten-
sile strength is significantly stronger than that of standard carbon fibers. Also, 
the tubelike structure tends to bend like a drinking straw rather than break when 
under compression. Accordingly, carbon nanotubes are used as structural rein-
forcements in the manufacture of composite materials. For example, the batter-
ies in most cell phones and notebook computers today use nanotubes in this way.

Other nanotube applications depend on their outstanding electronic and 
thermal properties. Nanotubes have very high electrical and thermal conductivi-
ties, along with stability up to very high temperatures. This combination of 
properties—carrying high current while carrying away the resistive heat 
generated—leads to extremely high maximum current densities, which rival or 
even exceed the critical current densities of the high-temperature superconduc-
tors described in Section 10.5. The electronic properties of nanotubes have been 
used to fabricate nanoscale transistors. The first of these was made in 2001 by 
researchers at the Delft University of Technology in Holland.† A schematic for 
the transistor design is shown in Figure 11.31a, and a photograph of the nano-
tube placed over two metal electrodes is shown in Figure 11.31b.

Another exotic application involves a combination of nanotubes and bucky-
balls, known as a “peapod,” because analogous to the organic peapod, a row of 
buckyballs is nested within the nanotube (Figure 11.32). The electronic proper-
ties of the nanotube depend heavily on the placement of the balls within the 
tube. Hence, this arrangement is described as having tunable electronic proper-
ties, which can be adjusted as desired for nano scale applications.

Nanoscale Electronics
Much of the progress in semiconductor electronics (integrated circuits) that we 
discussed in Section 11.3 could be described as nanotechnology, because com-
puter chip components have been micron-sized or smaller for many years. 
You’ve already seen the carbon nanotube as another example of nanoscale elec-
tronics, when the nanotube is being used to carry electricity. Many other ad-
vances also fall under the heading of nanoscale electronics.

One problem in the development of truly small-scale electronic devices is 
that the connecting wires in any circuit need to be as small as possible, so that 
they do not overwhelm the nanoscale components they connect. In addition to 
the nanotubes we’ve already described, semiconductor wires (for example, in-
dium phosphide) have been fabricated with diameters as small as 5 nm. These 
nano wires have been shown useful in connecting nanoscale transistors and 
memory circuits. The transistors themselves, referred to in this context as 

Nanowires

Figure 11.30 Model of a car-
bon nanotube, illustrating the 
hexagonal carbon pattern super-
imposed on a tubelike structure. 
There is virtually no limit to the 
length of the tube.

*For an overview, see M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Carbon Nanotubes: Syn-
thesis, Structure, Properties, and Applications, Berlin: Springer-Verlag (2001).

†Henk W. Ch. Postma et al., Carbon nanotube single-electron transistors at room temperature, Sci-
ence 293, 76– 79 (2001).
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nanotransistors, have now been made several ways, including using the nano-
tubes as mentioned earlier and even small organic molecules.*

In recent years scientists have begun working with a new material called gra-
phene, fi rst isolated in 2004. Graphene is a single layer of hexagonal carbon, es-
sentially the way a single plane of atoms appears in common graphite. A. Geim and 
K. Novoselov, both born in Russia but now at the University of Manchester in the 
United Kingdom, received the 2010 Nobel Prize in Physics for “groundbreaking 

Nanotransistors

Graphene

*Charles M. Lieber, The incredible shrinking circuit, Scientific American 285(3), 58– 64 (September 
2001).
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Figure 11.32 Nanotube “pea-
pod” in which buckyballs lie 
within a nanotube, shown with 
electron waves superimposed. Ad-
justing placement of the balls al-
lows for tuning of the electronic 
properties of the system.

Figure 11.31 Carbon nanotube used to make a nanoscale transistor. (a) A schematic of the 
transistor design. (b) Photograph of the nanotube over metal electrodes.
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experiments regarding the two-dimensional material grapheme.” Pure graphene 
conducts electrons much faster than other materials at room temperature, and by 
2010 prototype FETs made of graphene (Figure 11.33) were shown to switch much 
faster than silicon-based FETs. Although not yet in widespread use, graphene 
transistors may one day result in faster computing.

One goal of nanotechnology researchers is to reproduce common electronic 
devices on a nanoscale. For example, nanoscale field effect transistors have been 
produced that incorporate nanotubes. Nanotubes have also been used as the basis 
for optoelectronic devices that might replace common LEDs. In these devices, 
electrons and holes injected from opposite ends of the nanotube can recombine as 
in a standard LED, with the recombination energy given off as a photon of light.* 
These and other nanoscale electronic devices appear promising but are not yet in 
widespread use, because the standard semiconductor technology is well developed, 
with mass-production techniques in place. Researchers are still searching for the 
best systems for mass-producing and marketing nanoscale electronic devices.

Quantum Dots
Quantum dots are nanostructures made of semiconductor materials, typically 
only a few nm across and containing up to 1000 atoms. They can be made from 
a variety of semiconductor materials, normally chosen for their specifi c band-
gap behavior. Some semiconductors commonly used to make quantum dots are 
CdS, CdSe, and InP.

Many of the properties exhibited by quantum dots result from the fact that 
the band gap varies over a wide range and can be controlled precisely by ma-
nipulating the quantum dot’s size and shape as it is manufactured. A quantum 
dot contains an electron-hole pair that is confi ned within the dot’s boundaries, 
somewhat analogous to a particle confi ned to a potential well (Chapter 6). A 
larger quantum dot has more energy levels, which are more closely spaced. 
Therefore the band gap gets smaller as the quantum dot’s size increases. Quan-
tum dots can be made with band gaps that are nearly continuous throughout the 
visible light range (1.8 to 3.1 eV) and beyond.

Fine-tuning the band gap makes possible a number of interesting applica-
tions. Their ability to fl uoresce brightly throughout the visible spectrum has 

*Phaedon Avouris and Joerg Apenzeller, Electronics and optoelectronics with carbon nanotubes, The 
Industrial Physicist 10(3), 18– 21 (June/July 2004).

Figure 11.33 Schematic dia-
gram of graphene-based transis-
tor developed at the University of 
Manchester. The passage of a sin-
gle electron from source to drain 
registers 1 bit of information—a 0 
or 1 in binary code. By permission 
of Joe Zeff Design.
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enabled them to replace some organic dyes as biological markers. The availabil-
ity of band gaps throughout the visible range makes quantum dots useful in 
light-emitting diodes, which are used to make bright, colorful displays. There is 
the potential that quantum dots, with band gaps that go beyond the visible 
range, will increase the effi ciency of photovoltaic devices.

Nanotechnology and the Life Sciences
As we have seen, scientific research in nanotechnology is a fairly recent develop-
ment. However, nature has been engaged in what might be regarded as na-
noscale engineering in living things for most of Earth’s history. The complex 
molecules needed for the variety of life on Earth are themselves examples of 
nanoscale design. Examples of unusual materials designed for specific purposes 
include the molecules that make up claws, feathers, and even tooth enamel.

Scientists and engineers now seek to understand the structure and function 
of these specially designed molecules, so that they can create similar molecules 
artificially that they hope will duplicate some of the functions. For example, sci-
entists searching for better adhesives have studied the gecko, which has sticky 
feet that allow it to hang on a vertical tree trunk or even upside down on a limb. 
Figure 11.34a shows the 200-nm-wide keratin hairs on the soles of the gecko’s 
feet that allow it to do this. The attractive force between those hairs and another 
surface come from capillary and van der Waals forces. Using those keratin hairs 
as a model, researchers have developed flexible plastic fibers, just 2 (m long and 
500 nm in diameter (Figure 11.34b), that adhere about 30% as well as the 
gecko’s feet.* This is just one example of small-scale engineering that mimics the 
functions found in plants and animals.

The novel properties of genetic material might lead to interesting applications. 
It has been suggested that the DNA molecule could store large amounts of data in 
its sequence of four bases (adenine, guanine, cytosine, and thymine). In 1994, 
Leonard Adleman showed that natural enzymes can process this information in a 
parallel manner, offering an alternative to traditional semiconductor-based com-
puting.† Although technical hurdles exist before a practical DNA computer can be 
realized, it has been suggested that DNA computing could merge with other na-
noscale efforts, such as the nanowires and nanotube transistors already discussed.

*Eric J. Lerner, Biomimetic nanotechnology, The Industrial Physicist 10(4), 16– 19 (August/
September 2004).

†Leonard M. Adleman, Computing with DNA, Scientific American 279(2), 54– 61 (August 1998).

(a) (b)

Figure 11.34 (a) Photo of ker-
atin fibers from a gecko’s foot. 
(b) Plastic fibers fashioned with 
electron-beam lithography, made 
in an attempt to reproduce the 
adhesive powers of the gecko’s 
keratin hairs.
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426 Chapter 11 Semiconductor Theory and Devices

In the life sciences proper, nanoscale research is paramount, especially in the 
field of molecular genetics. In recent years, scientists have succeeded in mapping 
the human genome, which will help us understand many of the body’s functions 
and disorders. Genetic engineers can now make “designer genes” that can replace 
faulty natural genes. Researchers also seek to take advantage of human stem cells’ 
ability to grow into different body cell types, to serve as a repair mechanism.

Information Science
In Section 11.3 we described the progress in over a half-century of computing 
technology. Progress has relied on making components smaller and smaller. How-
ever, now that components have reached the submicron scale, Moore’s law cannot 
continue to hold much longer unless new nanoscale technologies are found.

It’s possible that current photolithographic techniques for making computer 
chips could be extended into the hard-UV or soft x-ray range, with wavelengths on 
the order of 1 nm, to fabricate silicon-based chips on that scale. Some novel 
schemes for storing and retrieving data rely on technology similar to the atomic 
force microscope, where a cantilever is used to create and erase nanometer-scale 
pits (representing bits with value 0 or 1) in a polymer substrate.*

Quantum mechanics becomes increasingly important as computing devices 
reach smaller and smaller dimensions. For example, if you had to rely on the mea-
surement of a single-spin magnetic moment (up/down, corresponding to 1 or 0), 
errors can be introduced as the magnetic moment interacts with its neighbors, or 
suffers from random fluctuations, or is affected by the measurement process as a 
result of the Heisenberg uncertainty principle. However, in the 1990s physicists 
learned that it is possible to take advantage of quantum effects, spe cifically the 
superposition of quantum states, to store and process information more efficiently 
than a traditional computer. To date, such quantum computers have been built in 
prototype but not mass-produced. Although the prospect of quantum computing 
sounds interesting, if not exotic, there are indications that it will be best suited for 
a few specifi c problems, such as factoring large numbers.

A separate physical issue, which we won’t address at length here, is the ther-
modynamics of computing. Rolf Landauer, an IBM physicist, stressed the notion 
that all information is physical and therefore subject to the laws of thermody-
namics.† Landauer showed that erasing a bit of information resulted in the inevi-
table generation of at least k ln 2 of entropy. That small amount of entropy is not 
significant for a traditional computer, but becomes relatively more important as 
computing reaches the nanometer scale. We haven’t reached that scale yet, and 
there’s still room at the bottom!

Quantum computers

S u m m a r y

The properties of semiconductors are responsible for their 
widespread use today in computers, electronic instruments, 
and other applications. In a semiconductor there exists a 
small band gap (about 1 eV ) between the valence band and 
the conduction band. When a modest electric field is ap-

plied, sufficient numbers of electrons can overcome the 
band gap in order to conduct.

Normal conductors have resistivities that increase with 
increasing temperature, but in semiconductors the resistiv-
ity decreases with increasing temperature, due to the 

*Peter Vettiger and Gerd Binnig, The nanodrive project, Scientific American 288(1), 46– 53 (January 
2003).

†See Rolf Landauer, The physical nature of information, Physics Letters A 217, 188– 193 (1996).
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increased statistical probability that the conduction band 
will be occupied. An empirical formula relating the resis-
tance of many semiconductors to temperature is the 
Clement-Quinnell equation

 log R $
K

log R
& A $

B
T

 (11.4)

where A, B, and K are constants.
Some semiconductors are n-type, meaning that the 

majority carriers are negative electrons. Other semiconduc-
tors are p-type, meaning that the majority carriers are posi-
tive holes. The Hall effect is used to determine the sign and 
magnitude of the charge carriers.

Semiconductors exhibit the thermoelectric effect, the 
presence of an electric field when a temperature gradient is 
established. The thermoelectric effect is the basis for the 
design of thermocouples.

Semiconductors are used to make a variety of electronic 
devices. Materials of p-type and n-type can be placed end to 
end to form a pn-junction diode, which permits current to 
flow easily in one direction (forward bias) but hardly at all in 
the opposite direction (reverse bias). A Zener diode will oper-
ate in reverse bias once a sufficiently high voltage is applied.

Other useful semiconductor devices include light-
emitting diodes and photovoltaic (solar) cells. Solar cells are 
currently the focus of an intense research effort. It is hoped 

that more efficient and cheaper solar cells can provide a 
useful source of energy by converting sunlight to electrical 
energy. This will become increasingly important as nonre-
newable sources of energy are depleted.

Semiconducting transistors are important components 
in computers and other electronic instruments. Transistors 
can be used to amplify signals (either voltage or current). 
Related devices, such as field effect transistors, MOSFETs, 
and Schottky barriers are also used extensively. The most 
important use of these electronic devices today is in inte-
grated circuits. Silicon-based chips contain millions of com-
ponents. Miniaturization has led to significant increases in 
the speed and efficiency of electronic circuits as well as to 
greater convenience. Perhaps the most significant applica-
tion has been in the design of modern computers. Thanks to 
improvements in semiconductor technology, the large, 
complex computers of several decades ago have been sup-
planted by much smaller, cheaper, and easier-to-use micro-
processors and personal computers in use today.

The drive for further miniaturization has led to a boom 
in nanotechnology, both in basic science and its applica-
tions. Carbon nanotubes have remarkable structural and 
electronic properties that make them useful in many appli-
cations. Nanotechnology has applications in electronic de-
vices, including information storage and retrieval, as well as 
the life sciences.

Q u e s t i o n s

 1. Why is the free-electron model not applicable to 
semiconductors and insulators?

 2. How does a semimetal differ from a normal 
conductor?

 3. Compare the resistivities of conductors, semiconduc-
tors, and insulators at room temperature.

 4. Why does the addition of impurities to a conductor 
increase its resistivity, whereas the addition of impuri-
ties to a semiconductor generally decreases its 
resistivity?

 5. Would you expect carbon resistors to be useful as 
thermometers at room temperature and above? 
Explain.

 6. Why are semiconductors referred to as non-ohmic?
 7. Use the size of the energy gap to decide whether the 

following should tend to be transparent to visible 
light: conductors, semiconductors, and insulators.

 8. Repeat Question 7 considering near-infrared light 
with !  &  1 (m.

 9. A semiconductor has an energy gap Eg. Explain what 
happens when the semiconductor is bombarded with 
electromagnetic radiation with wavelength l % hc/Eg 

. 
Repeat for l ) hc/Eg 

.
 10. Describe the effect of high temperatures on a semi-

conductor diode.
 11. What role do capacitors play in the conversion of al-

ternating current to direct current?
 12. Why is it appropriate to think of a photovoltaic cell as 

an LED operating in reverse?
 13. What are some possible applications of carbon 

nanotubes?
 14. Why are quantum effects important in electronic cir-

cuits that are nanometers in size but not in those cir-
cuits microns in size?

 15. Explain why the size of the band gap in a quantum dot 
decreases as the size of the dot increases.
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428 Chapter 11 Semiconductor Theory and Devices

P r o b l e m s

  Note: The more challenging problems have their 
problem numbers shaded by a blue box.

11.2 Semiconductor Theory
 1. For a certain resistor with a normal (that is, room-

temperature) resistance of 150 ', the values of the 
constants in Equation (11.4) are found to be A  &  4.05, 
B  &  4.22, and K  &  4.11, in units such that R will be in 
ohms and T in kelvin. What is the resistance of this re-
sistor at (a) T  &  77 K, (b) T  &  20 K, and (c) T  &  1 K?

 2. For a nominal 10-' resistor (as described in Figure 
11.7) the resistance at various temperatures is as fol-
lows: R  &  10 ' at T  &  293 K, R  &  40 ' at T  &  10 K, 
and R  &  5800 ' at T  &  1 K. Determine the constants 
A, B, and K in Equation (11.4) for this resistor.

 3. Consider the experimental arrangement of Figure 
11.9, set up to observe the Hall effect. With the power 
supplies and meters in this confi guration, what will be 
the sign of the voltage on the voltmeter if the sample 
is a semiconductor in which the majority of charge 
carriers are holes? Explain.

 4. Hall effect data in an actual student laboratory was as 
follows: for a doped indium arsenide strip of thickness 
0.15 mm, with a current of 100 mA fl owing through 
the strip and a magnetic fi eld of 50 mT perpendicular 
to the strip, the measured Hall voltage was 11.5 mV. 
(a) Use these data to fi nd the density of charge carri-
ers. (b) Find the density of charge carriers using the 
complete data set shown in the accompanying table.

  I  &  100 mA
  B (mT) VH (mV)
  17.5 4.4
  25 6.1
  27 6.4
  31 7.4
  36 8.4
  47 10.9
  50 11.5
  59.5 13.6
 5. A pure lead bar 10 cm long is maintained with one 

end at T  &  300 K and the other at 310 K. The 
thermoelectric potential difference thus induced 
across the ends is 12.8 (V. Find the thermoelectric 
power for lead in this temperature range. (Note: Q 
varies nonlinearly with temperature, but over this 
narrow temperature range, you may use a linear 
approximation.)

 6. The reference junction of an iron-constantan ther-
mocouple is maintained at 0°C, and the other side is 
at an unknown temperature. Find the unknown tem-
perature if the other side is 3.03 mV higher in poten-
tial than the reference junction (see Table 11.3).

 7. Assuming that the potential corresponding to any tem-
perature T in Table 11.3 could be known (say, through 
a computer model) to at least fi ve signifi cant digits, 
what maximum uncertainty would be allowed in your 
voltmeter if you were to use an iron-constantan ther-
mocouple to measure temperatures to within 0.01°C?

 8. What kind (p-type or n-type) of semiconductor is 
made if pure germanium is doped with a small 
amount of (a) phosphorous? (b) gallium?

11.3 Semiconductor Devices
 9. Assume a temperature of 300 K and fi nd the wave-

length of the photon necessary to cause an electron 
to jump from the valence to the conduction band in 
(a) germanium, (b) silicon, (c) InAs, and (d) ZnS.

 10. When an electron in the compound semiconductor 
AlAs makes a transition from the conduction band to 
the valence band, a 574-nm photon is emitted. What 
is the size of the band gap?

 11. Find the ratio of forward-bias to reverse-bias currents 
when the same voltage 1.5 V is applied in both forward 
and reverse. Assume room temperature 293 K.

 12. Suppose you want the ratio of forward to reverse bias 
current in a diode to be "106 at room temperature 
293 K when the same voltage is applied in both for-
ward and reverse. What voltage is required?

 13. Find the fraction of the standard solar fl ux reaching 
the Earth (about 1000 W/m2) available to a solar col-
lector lying fl at on the Earth’s surface at each of the 
following places at noon on the winter solstice, spring 
equinox, and summer solstice: (a) Miami, latitude 
26° N; (b) Regina, Saskatchewan, latitude 50° N; and 
(c) St. Petersburg, Russia, latitude 60° N.

 14. Assuming that the average daily solar constant at a par-
ticular place is 200 W/m2, how large an array of 30% 
effi cient solar cells is required to equal the power 
output of a typical power plant, about 109 W?

 15. For the diode described in Example 11.4, fi nd the for-
ward bias current with V  &  250 mV at (a) T  &  250 K, 
(b) T  &  300 K, and (c) T  &  500 K.

11.4 Nanotechnology
 16. A single-walled carbon nanotube has 2.3  !  1019 car-

bon atoms per m2 along its surface. The nanotube 
diameter is 1.4 nm. (a) Find the mass density of the 
nanotube in kg/m3. (b) Compare your answer to (a) 
with the density of steel, about 7800 kg/m3.

 17. Using the data in the preceding problem, fi nd the 
density of a nanotube peapod that also contains one 
buckyball (C60) for each nm of its length.
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General Problems
 18. The Fermi-Dirac factor is expressed in Equation 

(9.34) as

  FFD &
1

exp 3b1E " EF 2 4 $ 1

  In a semiconductor or insulator, with an energy gap 
Eg between the valence and conduction bands, we can 
take EF to be halfway between the bands, so that EF  &  
Eg/2. (a) Show that for a typical semiconductor or 
insulator at room temperature the Fermi-Dirac factor 
is approximately equal to exp ("Eg/2kT). (b) Use 
the result in (a) to compute the Fermi-Dirac factor 
for a typical insulator, with Eg  &  8.0 eV at T  &  300 K. 
(c) Repeat for a semiconductor, silicon, with Eg  &  
1.11 eV at T  &  293 K. (d) Your result in (c) is still 
small, but suffi ciently large to explain why there will 
be conduction. Explain.

 19. Consider what happens when silicon is doped with 
arsenic. Suppose that the extra, weakly bound elec-
tron from arsenic moves in the fi rst Bohr orbit in a 
silicon atom. The fi rst Bohr orbit has a radius of

a0 &
4pP0 

U2

me 
2

  Because of the effects of screening, it is necessary to 
replace "0 with the electric permittivity "  &  #"0, where 
# is the dielectric constant (#  &  11.7 for silicon). 
(a) Compute the effective Bohr radius for this elec-
tron. (b) Compare your result with the lattice spacing 
in silicon, about 0.235 nm, and comment on the 
result.

 20. Follow the same procedure as in Problem 19 to fi nd 
the binding energy E0 for the fi rst Bohr orbit of the 
extra electron in silicon. Comment on the result.

 21. (a) Use the thermocouple data in Table 11.3 and a 
computer to perform a linear least-squares fi t of volt-
age versus temperature for the range 0°C to 50°C and 
for the range 50°C to 100°C. Over which range is the 
fi t better? (b) Repeat your analysis of (a), this time 
using a second-order least-squares fi t (voltage will be 
a function of T and T 2). Compare your results with 
those you obtained in (a).

 22. A certain diode has a reverse bias current of 1.05 (A. 
Now this diode is connected in forward bias in the 
circuit shown below, in series with a resistor and with 
a constant voltage source of 6.0 volts. (a) Find the 
value of resistance R such that a current of 140 mA 
will fl ow at room temperature (293 K). (b) Under the 
condition described in (a), fi nd the voltage drop 
across the resistor.

R

6 volts

 23. Assume a temperature of 293 K and fi nd the value V 
of the bias voltage in Equation (11.9) where (a) I  &  
7I0 and (b) I  &  "0.7I0.

 24. A light-emitting diode made of the semiconductor 
GaAsP gives off red light (!  &  650 nm). Determine 
the energy gap for this semiconductor.

 25. How large an energy gap is required for a GaN laser 
used in a Blu-ray DVD player?

 26. (a) Find the length of each side of a square computer 
chip with 580 million transistors, if each transistor oc-
cupies a square of side 45 nm. (b) Find the number of 
transistors on a chip of the same size you found in (a) 
if the transistor size can be reduced to 32 nm on a 
side.

 27. Early research on semiconductor materials focused 
on silicon and germanium, which have band gaps of 
1.11 eV and 0.67 eV, respectively. (a) Use the result of 
Problem 18a to compute the Fermi-Dirac factor for 
silicon and germanium at T  &  0°C and T  &  75°C. 
(This represents a fair temperature range for semi-
conductors in use.) On the basis of your computed 
value for FFD for germanium at the higher tempera-
ture, explain why silicon is preferred in most 
applications.

 28. Suppose the average solar fl ux reaching the United 
States is 200 W/m2. This average is taken over a whole 
year, and takes into account seasonal effects and weather 
(clouds), and assumes fi xed solar cells. (a) Find the to-
tal energy produced in one year by a 1-m2 cell produc-
ing energy with an effi ciency of 15%. (b) How much 
area would have to be covered with these solar cells to 
supply the United States with all its electricity, if the 
yearly electrical energy consumption in the United 
States is about 4.0  !  1012 kW #  h? (c) Real solar arrays 
require about 2.5 times as much area as you found 
in (b) in order to keep one array of cells from shad-
ing another. What fraction of the land area of the 
United States (about 9  !  106 km2) would have to be 
covered with solar cells to meet the nation’s energy 
requirements?

 29. In this problem you will examine the temperature 
dependence of the forward/reverse bias modes of a 
diode. (a) For a pn-junction diode compute the ratio 
of forward bias current to reverse bias current with an 
applied voltage of 1.50 volts at each of the following 
temperatures: 77 K, 273 K, 350 K, 600 K. (b) Com-
ment on the results with respect to possible 
applications.

 30. Pure silicon is used as a photon detector. An incom-
ing photon can strike the surface and excite electrons 
from the valence band to the conduction band, where 
they can be counted. (a) Compute the number of 
electrons you would expect to count if a silicon detec-
tor is struck with a 1.04-MeV gamma ray produced in 
the decay of a 136Cs nucleus. (b) Explain why the 
counting of electrons should be more precise if the 
detector is cooled well below room temperature.
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430 Chapter 11 Semiconductor Theory and Devices

 31. Suppose you apply the same voltage, 250 mV, to a 
pn-junction diode, fi rst in forward bias and then in 
reverse bias, at room temperature (293 K). What is 
the ratio of currents in forward and reverse bias?

 32. A carbon nanotube has a diameter of 1.6 nm. Young’s 
modulus for the nanotube is 1050 GPa. With one end 
of the tube fi xed, how large a force must be applied to 
the other end to increase the tube’s length by 1%?

 33. A DVD has an effective inner radius of 2.3 cm and 
outer radius of 5.8 cm. The disk’s capacity is 4.7 giga-
bytes, where 1 byte  &  8 bits. Find the number of bits 
stored per square meter, and compare with the den-
sity on a magnetic device, 1  !  1013 bits/m2.

 34. A Blu-ray DVD has the same dimensions as the DVD 
described in the preceding problem, but it can store 
25 gigabytes of information. If the width of each track 

of the Blu-ray DVD is 320 nm, what is the average bit 
length?

 35. The Nevada Solar One solar thermal power plant cov-
ers a land area of 140 hectares and has an estimated 
peak output of 64 MW. If the peak solar fl ux reaching 
the surface of that part of Nevada is about 630 W/m2, 
what is the net effi ciency of the power plant? Com-
pare your answer with some of the higher effi ciencies 
of semiconductor solar cells described in the text.

 36. A quantum dot is composed of CdS, with a density of 
4820 kg/m3. (a) Find the number of atoms in a spheri-
cal quantum dot of radius 2.50 nm. (b) Model the en-
ergy levels of a quantum dot as a one-dimensional infi -
nite potential well of 2.0-nm width. What is the lowest 
energy level in this well? (c) What is the “band gap” 
between the n  &   5 and n  &  6 levels?
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   12.1 Discovery of the Neutron 431

Ernest Rutherford can rightly be called the “Father of the Nucleus.” As dis-
cussed in Chapter 4, he proposed a model of atomic structure that placed the 
heavy, positively charged nucleus at the center and the much lighter electrons at 
the periphery.

Around 1900, early investigators (including Becquerel, Rutherford, and 
 Marie and Pierre Curie) found that radioactive emissions from atoms comprise 
three types of radiation, called a (alpha), b (beta), and g (gamma). Alpha 
 radiation is the least penetrating—it can be stopped by a piece of paper. Beta 
rays are more penetrating, and they are also common, appearing in the radioac-
tive emissions of many nuclei. Gamma radiation is the most penetrating—it can 
pass through the human hand, for example. Many early experiments established 
that a rays were doubly charged positive particles, b rays were probably electrons, 
and g rays were electrically neutral. Rutherford proved in a series of experiments 
that alpha particles were the nuclei of helium atoms.

We begin this chapter by discussing the discovery of the constituents of the 
nucleus, one of science’s most interesting series of experiments. We then study 
the properties of the nucleus and its constituents, the neutrons and protons. 
Finally, we discuss nuclear forces and why some nuclei are stable and others are 
unstable, that is, radioactive. The study of nuclear radioactivity has many impor-
tant applications, which we shall discuss in Chapter 13.

12.1  Discovery of the Neutron
Although Rutherford proposed the atomic structure with the massive nucleus 
at the center in 1911, it was not until 1932 that scientists knew which particles 
compose the nucleus. This study is still ongoing (see Chapter 14), because as 

C H A P T E R

12

431

The Atomic Nucleus

It is said that Cockcroft and Walton were interested in raising the volt-
age of their equipment, its reliability, and so on, more and more, as so 
often happens when you are involved with technical problems, and that 
eventually Rutherford lost patience and said, “If you don’t put a scintilla-
tion screen in and look for alpha particles by the end of the week, I’ll 
sack the lot of you.” And they went and found them [the first nuclear 
transmutations].

Sir Rudolf Peierls in Nuclear Physics in Retrospect, ed. Roger Stuewer

03721_ch12_431-474.indd   43103721_ch12_431-474.indd   431 10/3/11   3:49 PM10/3/11   3:49 PM



432 Chapter 12 The Atomic Nucleus

physicists strive to find the essence of the fundamental nuclear particles, they 
continue to find even more particles.

In the early 1900s the nucleus had been erroneously assumed to consist of 
protons and electrons. However, there are several reasons why electrons cannot 
exist within the nucleus.

1.  Nuclear size: We showed previously, in Examples 5.10 and 5.11, that in or-
der to confine an electron in a space as small as a nucleus, the uncertainty 
principle puts a lower limit on its kinetic energy that is much larger than 
any kinetic energy observed for an electron emitted from nuclei.

2.  Nuclear spin: Protons and electrons have spin 1/2. If a deuteron (mass 
number A ! 2 and atomic number Z ! 1) consists of protons and elec-
trons, the deuteron must contain 2 protons and 1 electron in order to 
have A ! 2 and Z ! 1. However, a nucleus composed of 3 fermions must 
result in a half-integral spin, whereas the nuclear spin of the deuteron has 
been measured to be 1.

3.  Nuclear magnetic moment: The magnetic moment of an electron is more 
than 1000 times larger than that of a proton. In a model including the 
electron in the nucleus, we would expect the nuclear magnetic moment 
to be on the same order as that of the electron. However, the measured 
nuclear magnetic moments are on the same order of magnitude as the 
proton’s, so it appears an electron is not a part of the nucleus.

Electrons can’t exist 
within the nucleus

What is the minimum kinetic energy of a proton in a 
medium-sized nucleus having a diameter of 8.0 " 10#15 m?

Strategy We will use the uncertainty principle just as we 
did in Example 5.10, where we found the minimum kinetic 
energy for an electron in a nucleus. We use the uncertainty 
principle to find the uncertainty $p and then use this value 
to determine the minimum kinetic energy.

Solution We start with the uncertainty principle involving 
momentum.

  ¢p ¢x %
U
2

  ¢p %
U

2 ¢x
!

6.58 " 10#16 eV # s
218.0 " 10#15 m 2

  ¢p % 0.041 eV # s/m

The momentum p must be at least as large as $p. Hence 
pmin ! $p, and we have for pminc :

 pminc ! 10.041 eV # s/m 2 13.0 " 108 m/s 2 ! 12 MeV

Because 12 MeV is only about 1% of the proton’s rest energy 
(938 MeV, see inside front cover), we can treat the problem 
nonrelativistically. The kinetic energy of a proton in this 
nucleus must be at least as large as

 K !
1  pmin 22

2m
!
1  pminc 22
2mc 2 !

112 MeV 22
21938 MeV 2 ! 0.08 MeV

which is an entirely reasonable experimental value. The re-
sult for a neutron would be similar.

 EXAMPLE 12.1

We have seen that there is strong experimental and theoretical evidence that 
electrons are not bound within the nucleus. Although all this evidence was not 
available to Rutherford in 1920, he proposed that a neutral particle, called a neu-
tron, might exist. A nucleus composed of protons and neutrons would not be ruled 
out on the basis of the three arguments just presented about the electron.
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The discovery of the neutron is a classic experimental investigation. In 1930 
the German physicists Walther Bothe and Herbert Becker were using a radioac-
tive polonium source that emitted a particles. Bothe and Becker found that 
when these a particles bombarded beryllium, a very penetrating radiation was 
produced. Irène Curie and Frédéric Joliot subsequently showed in 1932 that the 
radiation could even penetrate several centimeters of lead (see Figure 12.1). 
This radiation could not be charged particles, because charged particles of the 
energies available then could not penetrate even a short distance through lead. 
It was naturally assumed that electromagnetic radiation (photons) was produced 
in the a bombardment of beryllium. Photons are called gamma rays when they 
have a nuclear origin. Gamma rays produced in the nucleus have energies on the 
order of MeV (as compared with the order of keV x-ray photons produced by 
transitions in an atom).

Curie and Joliot performed several measurements to study the effects of this 
new penetrating radiation (produced by a & Be) on various materials. When the 
radiation passed through paraffin (which contains hydrogen), they found that 
protons with energies up to 5.7 MeV were ejected. The simplest assumption was 
that the radiation—assumed to be gamma rays—scattered by the Compton pro-
cess from the hydrogen nuclei and knocked the protons out of the paraffin. 
However, the hypothesis of Compton scattering requires gamma-ray energies of 
at least 50 MeV to produce 5.7-MeV protons (see Problem 1). Energies as large 
as 50 MeV were unprecedented at that time. No known reaction could produce 
such high-energy gamma rays.

In 1932 James Chadwick proposed that the new radiation produced by a & 
Be consisted of neutrons, electrically neutral particles with mass about that of a 
proton. A neutron passes through material rather easily because it is charge 
neutral and has only a very small electromagnetic interaction via its magnetic 
moment. The nuclear force is very short range, and a neutron having MeV ener-
gies may have only a 10#6 probability of interacting with a nucleus. Chadwick 
correctly surmised that if neutrons of about 5.7 MeV of kinetic energy were 

Unknown!
radiation

Unknown!
radiation

Beryllium!
foil

Lead!
foil

Unknown radiation!
can penetrate lead

5.7-MeV protons

Paraffin

a

210Po!
a source

Figure 12.1 Schematic diagram of events leading to neutron discovery. A polonium a-particle 
source emits a particles that produce unknown radiation when incident on beryllium. This un-
known radiation is so penetrating that it can pass through a thick sheet of lead, which indicates it 
may be gamma rays. When the unknown radiation is incident on paraffin, however, 5.7-MeV pro-
tons are produced. Only gamma rays with energy above 50 MeV would be able to do this, and they 
are unlikely to be produced by a nucleus. Chadwick suggested the radiation was a neutral particle 
of about the same mass as a proton.

Walther Bothe (1891– 1957) was 
born near Berlin and studied un-
der Max Planck at the University 
of Berlin. He worked in Berlin un-
til 1930 and, after a brief period 
in Giessen, worked at the Max 
Planck Institute in Heidelberg 
from 1932 until his death. Bothe 
pioneered the use of coinci-
dences between multiple particle 
detectors to study the Compton 
effect, cosmic rays, and many 
nuclear reactions.
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434 Chapter 12 The Atomic Nucleus

produced in the a & Be reaction, the neutrons could then collide elastically with 
the protons in paraffin, thereby accounting for the 5.7-MeV protons. In his 
published results* Chadwick used his experimental data to estimate the neu-
tron’s mass as somewhere between 1.005 u and 1.008 u, not far from the modern 
value of 1.0087 u. For this careful experimental work and theoretical analysis, 
Chadwick is recognized for having confirmed the neutron’s existence.

12.2  Nuclear Properties
The primary constituents of nuclei are the proton and neutron, and the nuclear 
mass is roughly the sum of its constituent proton and neutron masses (the slight 
difference being the binding energy of the nucleus). The nuclear charge is &e 
times the number (Z) of protons (e ! 1.6 " 10#19 C). Helium has Z ! 2, oxygen 
has Z ! 8, and uranium has Z ! 92.

The simplest form of hydrogen has a single proton for a nucleus. However, 
we know that several forms of hydrogen exist. Deuterium —sometimes called 
“heavy hydrogen”—has a neutron as well as a proton in its nucleus. Another form 
of hydrogen is called tritium —it has two neutrons and one proton. The nuclei of 
the deuterium and tritium atoms are called deuterons and tritons, respectively.

The atomic (and nuclear) mass number A is the total integral number of pro-
tons and neutrons in a nucleus. Atoms with the same Z, but different A, are called 
isotopes. For example, deuterium (A ! 2) and tritium (A ! 3) are both isotopes 
of regular hydrogen (A ! 1). The atomic mass M is the mass of the entire atom 
including electrons, measured, for example, with a mass spectrograph.

We will designate an atomic nucleus by the symbol

 Z
AXN

where Z ! atomic number (number of protons)
 N ! neutron number (number of neutrons)
 A ! mass number (Z & N )
 X ! chemical element symbol

Each nuclear species with a given Z and A is called a nuclide. As we discussed in 
Chapter 8, each Z characterizes a chemical element, symbol X, for example Al 
for aluminum (Z ! 13) and Ca for calcium (Z ! 20). Although it is superfluous, 
we will sometimes include Z to help us remember the number of protons when 
dealing with elements with which we are not so familiar. When we write the nu-
clidic symbol for the better known elements, Z is often omitted. The nuclidic 
symbol A is always shown, but N is often omitted, because A ! N & Z. Thus, 16 

8 
O8, 

16 
8 
O, and 16O all represent the most abundant isotope of oxygen with Z ! 8, N ! 

8, A ! 16. Other stable isotopes of oxygen are 17O and 18O, which differ from 
16O only in having more neutrons. Nuclides with the same neutron number are 
called isotones (for example, 14

 
 
6 
C, 15 

7 
N, 16 

8 
O, and 17

 
 
9  
F). Nuclides with the same 

value of A are called isobars (for example, 16
 
 
6 
C, 16

 
 
7 
N, 16

 
 
8 
O, and 16 

9  
F).

The chemical properties of an atom are determined by its electron 
configuration. Because the numbers of electrons and protons are equal in a 
neutral atom, the chemical properties are essentially determined by Z. The de-
pendence of the chemical properties on N is negligible.

*J. Chadwick, The existence of a neutron, Proceedings of the Royal Society of London, Series A 136, 692–
 708 (1932).

Irène Curie (1897– 1956) and her 
husband Frédéric Joliot (1900–
 1958) married in 1926 while both 
were working with Irène’s mother 
Marie Curie at the Radium Insti-
tute of Paris. They both took the 
last name Joliot-Curie. They re-
ceived the 1935 Nobel Prize in 
Chemistry “for their synthesis of 
new radioactive elements.” Their 
contributions to nuclear physics 
were highly signifi cant. Frédéric 
worked with the Resistance dur-
ing World War II, and after the 
war they both helped develop 
France’s first atomic pile reaction. 
Frédéric founded the French 
Communist Party, and both were 
relieved of positions in the early 
1950s for political reasons be-
cause of their as sociation with 
communism. Like her mother, 
Irène died of  leukemia, likely due 
to her exposure to radioactive 
material.
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   12.2 Nuclear Properties 435

Atomic masses are measured in atomic mass units, which are denoted by the 
symbol u. Atomic mass units are defined in terms of the mass of the isotope 12C, 
the atomic mass of which is defined to be exactly 12 u. The atomic masses of 
many nuclides are given in Appendix 8. The reason we present atomic masses 
rather than nuclear masses will be explained later. As we have seen in Chapter 
2, the atomic mass unit works out to be

 1 u ! 1.66054 " 10#27 kg ! 931.49 MeV/c 2 (12.1)

The masses of the proton and neutron are given in Table 12.1. The fact that 
neutrons and protons have almost the same mass is no accident. As we shall see 
in Chapter 14, both neutrons and protons, collectively called nucleons, are con-
structed of other particles called quarks. Neutrons are slightly more massive than 
protons.

Sizes and Shapes of Nuclei
The size of the nucleus has been determined in a variety of ways. Rutherford 
concluded from the alpha-particle scattering experiments of his assistants 
Geiger and Marsden that the range of the nuclear force must be less than about 
10#14 m, because deviations from Coulomb’s law at that distance could be in-
ferred from their data (see Section 4.2).

Experiments show that to a good approximation, nuclei are spheres. Particles, 
such as electrons, protons, neutrons, and alphas, scatter when projected close to 
the nucleus. It is not immediately obvious whether the maximum interaction dis-
tance measured in such collisions refers to the nuclear size (matter radius) or 
whether the nuclear force extends beyond the nuclear matter ( force radius). Elec-
trons do not respond to the nuclear force but scatter from the electromagnetic 
field of the nucleus. Thus, electron scattering measures the nuclear charge radius.

The nuclear force between nucleons is the strongest of the three known forces 
(nuclear, gravitational, and electroweak) at short distances. As such, the nuclear 
force is often called the strong force, and physicists use the terms nuclear and strong 
force interchangeably. Because neutrons interact only with the nuclear force, the 
scattering of neutrons determines the nuclear force radius. Through many mea-
surements using beams of different particles, physicists have found that

 Nuclear force radius ! mass radius ! charge radius

The nuclear radius R may be approximated from a spherical charge distri-
bution to be

 R ! r0 
A1 /3  (12.2) Nuclear Radius

James Chadwick (1891– 1974) 
studied with Ernest Rutherford at 
the University of Manchester and 
worked with Hans Geiger in 
 Berlin in 1914 where he was in-
terned as an enemy alien during 
World War I. After discovering 
the neutron in 1932, he received 
the Nobel Prize in Physics in 
1935. Chadwick was a professor 
in Liverpool and Cambridge. He 
was the leading supporter of the 
atomic bomb development in 
Britain during World War II.
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  Rest
  Energy    Magnetic
Particle Symbol (MeV) Charge Mass (u) Spin Moment

Proton p 938.272 &e 1.0072765 1/2 2.79 m'

Neutron n 939.566 0 1.0086649 1/2 #1.91 m'

Electron e  0.51100 #e 5.4858 " 10#4 1/2 #1.00116 m(

Tab le  12 .1    Some Nucleon and Electron Properties
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436 Chapter 12 The Atomic Nucleus

where r0 ! 1.2 " 10#15 m. Various measurements for r0 range between 1.0 and 
1.5 " 10#15 m. Because the nucleus is so small, we use the femtometer, abbrevi-
ated fm, with 1 fm ! 10#15 m. An alternative term for 10#15 m, fermi, refers to 
Enrico Fermi, one of the founders of nuclear physics. The term fermi, which has 
the same abbreviation, fm, is more commonly used than femtometer; so 2.4 fm 
is read as 2.4 fermis or 2.4 femtometers.

Robert Hofstadter (Nobel Prize in Physics, 1961) and his colleagues at Stan-
ford University in the 1950s performed the first precision electron-scattering 
measurements of the nuclear charge distribution using electron energies from 
100 to 500 MeV. In order to probe the actual shape of most nuclei, we need a 
particle having a short wavelength. The de Broglie wavelength of a 500-MeV 
electron is about 2.5 fm, and by now, measurements have been made with much 
shorter wavelengths using higher energy electrons. These measurements are ap-
proximately described for all but the lightest nuclei by the Fermi distribution for 
the nuclear charge density r(r) of the following form (see Figure 12.2):

 r1r 2 !
r0

1 & e 1r#R 2  /a  (12.3)

The shape of this distribution is shown in Figure 12.2 where r0 is the central 
nuclear density, R is the distance at which the nuclear density has dropped to 
50% of its central value, and t ! 4.4a is the surface thickness, measured from 
90% to 10% of the central density.

Robert Hofstadter (1915– 1990) 
was educated at the College of 
the City of New York and 
 Princeton University. Hofstadter 
used high-energy electrons at 
Stanford University to measure 
the charge distribution inside the 
nucleus, thereby determining the 
radius of the nucleus. He also 
studied the structure of the neu-
tron and proton, proving that 
they were similar particles, differ-
ing only in their charge 
properties.
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Figure 12.2 The shape of the 
Fermi distribution for a nucleus 
with A ! 150, with the nuclear 
charge density given by Equation 
(12.3), where r0(r) is the central 
charge density at r ! 0, R is the 
distance at which the nuclear 
density has dropped to 50% of its 
central value, and t ! 4.4a is the 
surface thickness, measured from 
90% to 10% of the central 
density.

What is the nuclear radius of 40Ca? What energy electrons 
and protons are required to probe the size of 40Ca if one 
wants to “see” at least half the radius?

Strategy We use Equation (12.2) to determine the radius 
of 40Ca. From the radius we can determine the size of the 
probe, which subsequently determines the de Broglie wave-
length and the momentum p. The total energy and kinetic 
energy can be found from the momentum.

Solution We determine R from Equation (12.2).

 R ! 1.2 fm 140 21/3 ! 4.1 fm

In order to distinguish a distance at least half the radius, we 
need a de Broglie wavelength of 2.0 fm. If we use the rela-
tion for the de Broglie wavelength (l ! h/p), we have p ! 
h/l. The total energy of the probing particle is

 E  
2 ! 1mc 2 22 & 1   pc 22 ! 1mc 2 22 &

h 
2c 2

l2

 EXAMPLE 12.2
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   12.2 Nuclear Properties 437

Nuclear Density
If we approximate the nuclear shape as a sphere, we have V ! 4pR 3/3, or, by 
using Equation (12.2) for R,

 V ! 4
3 pr0 

3A (12.4)

The nuclear mass density (mass/volume) can be determined from (A u)/V to be 
2.3 " 1017 kg/m3. The nucleus is about 1014 times denser than ordinary matter!

Intrinsic Spin
The neutron and proton are fermions with spin quantum numbers s ! 1/2. The 
spin quantization rules are those we have already learned for the electron (see 
Chapter 7).

Intrinsic Magnetic Moment
The proton’s intrinsic magnetic moment points in the same direction as its in-
trinsic spin angular momentum because the proton’s charge is positive. This is 
contrasted with the negatively charged electron, where the spin and magnetic 
moment point in opposite directions (see Figure 7.4). Nuclear magnetic 

For a wavelength of 2.0 fm, the last term becomes

 
h 

2c 2

l2 ! a 1240 MeV # fm
2.0 fm

b 2

! 3.8 " 105 MeV 
2

Now if we insert the rest energy mc 2 of the appropriate par-
ticle, we can determine the total energy and required ki-
netic energy of either the electron or proton.

Electron energy:

  E  
2 ! 10.511 MeV 22 & 3.8 " 105 MeV 

2

  E ! 620 MeV

  K ! E # mc 
2 ! 620 MeV # 0.5 MeV ! 620 MeV

Proton energy:

  E  
2 ! 1938.3 MeV 22 & 3.8 " 105 MeV 

2

  E ! 1120 MeV

  K ! E # mc 2 ! 1120 MeV # 938 MeV ! 180 MeV

We have quoted the results to two significant figures be-
cause of the uncertainty in the radius R.

Find the radii of the 238U and 4He nuclei and then deter-
mine the ratio of those radii.

Strategy We use Equation (12.2) to determine the radii 
and then the ratio for the two nuclei.

Solution

  R  1238U 2 ! 11.2 fm 2 1238 21/3 ! 7.4 fm

  R  14He 2 ! 11.2 fm 2 14 21/3 ! 1.9 fm

The ratio is

 
R  1238U 2
R  14He 2 !

7.4 fm
1.9 fm

! 3.9

Even though 238U has 60 times the number of nucleons of 
4He, its radius is only four times greater.

 EXAMPLE 12.3
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438 Chapter 12 The Atomic Nucleus

moments are measured in units of the nuclear magneton mN, which is defined, 
by analogy to the Bohr magneton for electrons, by the relation

 mN !
e U
2mp

 (12.5)

Note that the divisor in calculating mN is the proton mass mp (rather than the 
electron mass), which makes the nuclear magneton some 1800 times smaller 
than the Bohr magneton.

The proton magnetic moment is measured to be mp ! 2.79mN. This contrasts 
strongly with the magnetic moment of the electron, me ! #1.00116mB. What is 
even more surprising is that the neutron, which is electrically neutral, also has a 
magnetic moment, mn ! #1.91mN. The negative sign indicates that the magnetic 
moment points opposite to the neutron spin. The large deviation from unity of 
the proton’s magnetic moment and the fact that the neutron even has a mag-
netic moment indicate that nucleons are more complicated structurally than 
electrons. The nonzero neutron magnetic moment implies that the neutron has 
negative and positive internal charge components at different radii, and hence 
a complex internal charge distribution.

Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) is a widely used application that takes ad-
vantage of the nuclear magnetic moment’s response to large applied magnetic 
fi elds. We focus our discussion on proton NMR, also called 1H NMR, which can 
be used on any sample that contains hydrogen. Although NMR can be applied 
to other nuclei that have intrinsic spin, proton NMR is used today more than any 
other kind. It is also the simplest to understand, because the hydrogen nucleus 
is a single proton. I. I. Rabi (1944), Edward Purcell (1952), and Felix Bloch 
(1952) all played major roles in developing NMR, and received Nobel Prizes in 
Physics for their efforts (in the years given).

Recall from Chapter 7 that magnetic fi elds affect atoms be-
cause of the magnetic moments of electrons, resulting in 
the Zeeman effect and the Stern-Gerlach effect. Consider a 
proton with magnetic moment mS  in an applied magnetic 
fi eld B of magnitude 2.0 T. Find (a) the energy difference 
between the two proton magnetic moment orientations and 
(b) the frequency and wavelength of the electromagnetic 
radiation (photons) that “fl ip” the proton spins.

Strategy The proton has nuclear spin 1/2, and there are 
two possible orientations for the magnetic moment, up and 
down. We use Equation (7.35) from Section 7.5 in which we 
discussed this previously for the electron. We have 
mp ! 2.79mN for the proton. We fi nd the frequency of the 
photons from¢E ! hf .

Solution (a) From Equation (7.35) we haveVB ! )mSB, 
and the energy difference ¢E between the up and down 
proton states is

¢VB ! 2mS 
B ! 2mp 

B ! 212.79mN 2B
! 212.79 2 13.15 " 10#8 eV/T 2 12.0 T 2 ! 3.5 " 10#7 eV

(b) The photon frequency associated with this proton spin 
fl ip is

f !
¢E
h

!
3.5 " 10#7 eV

4.14 " 10#15 eV # s ! 85 MHz

This is in the RF (radio frequency) range. The wavelength is

l !
c
f

!
3.00 " 108 m/s

85 " 106 Hz
! 3.5 m

 EXAMPLE 12.4
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In one application of NMR, a sample containing hydrogen atoms is placed 
in a strong magnetic fi eld. With the magnetic fi eld on, the sample is then im-
mersed in radio-frequency radiation, with the frequency steadily varied. When 
this applied radiation’s frequency f reaches the point at which the photon’s en-
ergy hf just matches the energy difference between the split nuclear states, the 
proton “fl ips” from the lower energy state to the higher one, and there is a sharp 
increase (resonance) in photon absorption. The resonance frequency depends 
on the proton’s environment due to the shielding effect of surrounding elec-
trons. As a result, a spectrum of photon absorption as a function of frequency 
provides a reliable signature of the sample’s content, as shown in Figure 12.3.

Physicists have developed several sophisticated techniques to utilize NMR in 
the study of molecules and crystals through spectroscopy. As we discussed in 
Chapter 10, nuclear magnetic resonance is the method used in magnetic reso-
nance imaging (MRI). All tissues contain hydrogen, and the vastly different 
compositions of different cells—bone, muscle, connective tissue, and so on—
provide contrasting NMR responses that are turned into sharp images. This is 
done noninvasively with the application of radiation having small energies 
(~*eV) that does little or no damage to human cells. Contrast this with x-ray 
imaging, with energies of 1 keV or greater (109 times larger than the MRI radia-
tion), which can seriously damage cells.

12.3  The Deuteron
After the proton, the next simplest nucleus is the deuteron, the nucleus of 2H. A 
deuteron consists of one proton and one neutron and allows our first look at the 
nuclear force. First, let us determine how strongly the neutron and proton are 
bound together in a deuteron. The deuteron mass is 2.013553 u, and the mass 
of a deuterium atom is 2.014102 u. The difference in masses is 2.014102 u # 
2.013553 u ! 0.000549 u, which is just the mass of an electron. This shows that 
the electron binding energy (13.6 eV for hydrogen) is so small that it can be 
neglected for our purposes. The deuteron nucleus is bound by an energy Bd, 
which represents mass-energy. The mass of a deuteron is then

 md ! mp & mn # Bd 
/c 

2 (12.6)

Figure 12.3 A proton NMR 
spectrum of a solution containing 
a simple organic compound, ethyl 
benzene. Each group of signals 
corresponds to protons in a dif-
ferent part of the molecule.
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440 Chapter 12 The Atomic Nucleus

The deuteron mass is less than the sum of the masses of a neutron and pro-
ton by just the nuclear binding energy Bd. If we add an electron mass to each side 
of Equation (12.6), we have

 md & me ! mp & mn & me # Bd 
/c 

2 (12.7)

But md & me is the atomic deuterium mass M(2H) and mp & me is the atomic hy-
drogen mass (if we neglect the small amount of electron binding energy). Thus 
Equation (12.7) becomes

 M 12H 2 ! mn & M 11H 2 # Bd 
/c 2 (12.8)

and we can use atomic masses. Because the electron masses cancel in almost all 
nuclear-mass difference calculations like Equation (12.8), we routinely use 
atomic masses (see Appendix 8) rather than nuclear masses.* Note that we use 
uppercase M for atomic masses and lowercase m for nuclear and particle masses. 
The binding energy Bd of the deuteron is now easily determined:

  mn ! 1.008665 u Neutron mass

  M 11H 2 ! 1.007825 u Atomic hydrogen mass

 M 12H 2 ! 2.014102 u Atomic deuterium mass

  Bd 
/c 

2 ! mn & M 11H 2 # M 12H 2 ! 0.002388 u

We convert this mass-difference to energy using u ! 931.5 MeV/c 2.

 Bd ! 0.002388 c 2 # ua 931.5 MeV
c 2 # u b ! 2.224 MeV (12.9)

Our neglect of the atomic electron binding energy of 13.6 eV is justified, because 
the nuclear binding energy of 2.2 MeV is almost one million times greater. Even 
for heavier nuclei we normally neglect the electron binding energies. The elec-
tron binding energies cancel to a great extent in an equation like Equation 
(12.8) for heavy masses anyway.

The binding energy of any nucleus ZAX  is the energy required to separate the 
nucleus into free neutrons and protons. It can be determined using the atomic 
masses M(1H) and M 1ZAX 2 :
 B 1AZX 2 ! 3Nmn & ZM 11H 2 # M 1AZX 2 4c 

2  (12.10)

Experimental Determination of Nuclear Binding Energies We can check our 
result for the 2.22-MeV binding energy of the deuteron by using a nuclear 
reaction. We scatter gamma rays (photons) from deuterium gas and look for the 
breakup of a deuteron into a neutron and a proton:

 g & d S n & p (12.11)

Nuclear binding energies

*What is quoted in many reference tables of atomic masses is the mass excess $, given by M # A. 
This avoids having to quote the masses to so many significant figures, because M and A are almost 
equal. We have listed in Appendix 8 the actual atomic mass M rather than $ to make the calculations 
more transparent to the student.
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This type of nuclear reaction is called photodisintegration or a photonuclear reaction, 
because a photon causes the target nucleus to change form (Figure 12.4). The 
mass-energy relation corresponding to Equation (12.11) is

 hf & M 12H 2c 
2 ! mnc 

2 & M 11H 2c 
2 & Kn & Kp (12.12)

where hf is the incident photon energy and K n and K p are the neutron and pro-
ton kinetic energies, respectively. If we want to find the minimum energy re-
quired for the photodisintegration, we let K n ! K p ! 0. We then find

 hfmin ! mnc 
2 & M 11H 2c 

2 # M 12H 2c 
2 ! Bd (12.13)

Equation (12.13) is not quite correct, because momentum must also be con-
served in the reaction (K n and K p can’t both be zero). The precise relation (see 
Problem 13) is

 hfmin ! Bd c1 &
Bd

2M 12H 2c 
2 d  (12.14)

This value of hfmin is almost exactly Bd, the deuteron binding energy, because the 
second term is so small. Experiment shows that a photon of energy less than 
2.22 MeV cannot dissociate a deuteron.

Deuteron Spin and Magnetic Moment Another striking property of a deuteron is 
its nuclear spin quantum number of 1. This indicates the neutron and proton spins 
are aligned parallel to each other. The nuclear magnetic moment of a deuteron is 
0.86mN, which is close to the sum of the values for the free proton and neutron: 
2.79mN # 1.91mN ! 0.88mN. This supports our hypothesis of parallel spins.

12.4  Nuclear Forces
Many techniques are used to study nuclear forces. The most straightforward are 
based on scattering experiments. We examine the nuclear force by first studying the 
simplest systems. We looked at the deuteron in the previous section. In scattering 
neutrons from protons, a deuteron is sometimes formed in the nuclear reaction:

 n & p S d & g (12.15)

We can also study the angular distribution of neutrons elastically scattered by pro-
tons, as shown in Figure 12.5a (page 442). Neutron & proton and proton & 
proton elastic scattering reveals that the nuclear potential is shaped roughly as 
shown in Figure 12.5b. The internucleon potential has a “hard core” that prevents 
the nucleon centers from approaching each other much closer than about 0.5 fm. 
A proton has a charge radius up to about 1 fm. Physicists believe the neutron is 
roughly the same size. Two nucleons within about 2 fm of each other feel an at-
tractive nuclear force. Outside about 3 fm the nuclear force is essentially zero. We 
call the nuclear force short range because it falls to zero so abruptly with interpar-
ticle separation. Because the nuclear force is short range, nucleons mostly interact 
with their nearest-neighbor nucleons. The nuclear force is said to be saturable, 
because the interior nucleons are completely surrounded by other nucleons with 
which they interact. However, nucleons on the nuclear surface are not so com-
pletely bound, and their nuclear force is not saturated. Of course, we are speaking 
classically about phenomena that must be described quantum mechanically.

The only difference between the np and pp potentials shown in Figure 12.5b 
is the Coulomb potential shown for r % 3 fm for the pp force. Inside 3 fm the 

Nuclear forces 
are short range

Neutron

Proton
Deuteron

Gamma!
ray

Figure 12.4 A gamma ray of 
energy greater than 2.22 MeV is 
able to dissociate a deuteron into 
a neutron and a proton. This 
photo disintegration effect con-
firms that the binding energy of 
the deuteron is 2.22 MeV.
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442 Chapter 12 The Atomic Nucleus

nuclear force clearly dominates, but outside 3 fm only the Coulomb force is ef-
fective. The depth of the nucleon-nucleon potential is about 40 MeV; the np 
potential is slightly greater because of the absence of the Coulomb force.

The nuclear force is known to be spin dependent because the bound state 
of the deuteron has the neutron and proton spins aligned, but there is no bound 
state with the spins antialigned (that is, coupled to total spin 0).

The neutron-neutron system is more difficult to study because free neutrons 
(not bound in a nucleus) are not stable, and we cannot construct a target of free 
neutrons. However, indirect evidence, together with analyses of experiments 
where moving neutrons scatter from each other (as in simultaneous nuclear 
bomb explosions), indicates the nn potential is similar to the np potential. The 
nuclear potential between two nucleons seems independent of their charges. We 
call this charge independence of nuclear forces. For many purposes, the neutron and 
proton can be considered different charge states of the same particle. This is why 
we use the term nucleon to refer to either neutrons or protons.

12.5  Nuclear Stability
In Equation (12.10) we presented a method to determine the binding energies 
of nuclides in terms of atomic masses. If B is positive, then the nuclide is said to 
be stable against dissociating into free neutrons and protons. We need to gener-
alize Equation (12.10), however, because a nucleus containing A nucleons is said 
to be stable if its mass is smaller than that of any other possible combination of A 
nucleons. The binding energy of a nucleus ZAX  against dissociation into any other 
possible combination of nucleons, for example nuclei R and S, is

 B ! 3M 1R 2 & M 1S 2 # M 1AZX 2 4c 2 (12.16)

In particular, the energy required to remove one proton (or neutron) from a 
nuclide is called the proton (or neutron) separation energy, and Equation (12.16) 
is useful for finding this energy. Even if B is negative for a particular dissociation, 
there may be other reasons why the nucleus is stable.

Nuclear forces are charge 
independent

Neutron-proton

Proton-proton

(b)(a)

n

n

p
p

p

p

r

r
p

p

V(r)

V(r)

Figure 12.5 (a) A detailed 
study of neutron & proton and 
proton & proton scattering re-
veals (b) the shape of the poten-
tial describing each interaction. 
The proton-proton interaction 
includes the Coulomb potential 
(not to scale).
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In Figure 12.6 (page 444) we exhibit all known stable nuclei as well as many 
known unstable nuclei that are long-lived enough to be observed. Because ex-
perimentalists are able to measure the half-lives of small quantities of material, 
Figure 12.6 includes nuclides that decay in a millisecond or less. The line repre-
senting the stable nuclides is called the line of stability (see Figure 12.6). There 
are several important facts we can extract from Figure 12.6. First, it appears that 
for A + 40, nature prefers the number of protons and neutrons in the nucleus 
to be about the same, Z ! N. However, for A % 40, there is a decided preference 
for N , Z. We can understand this difference in the following way. As we noted 
earlier, the strength of the nuclear force is independent of whether the particles 
are nn, np, or pp. Equal numbers of neutrons and protons may give the most at-
tractive average internucleon nuclear force, but the Coulomb force must be 
considered as well. As the number of protons increases, the Coulomb force be-
tween all the protons becomes stronger and stronger until it eventually affects 
the binding.

The electrostatic energy required to contain a charge Ze evenly spread 
throughout a sphere of radius R can be calculated by determining the work re-
quired to bring the charge inside the sphere from infinity (see Problem 61) and 
is determined to be

 ¢  ECoul !
3
5

 
1Z e 22

4pP0R
 (12.17)

For a single proton, Equation (12.17) gives for the self-energy

 ¢  ECoul !
3
5

 
e 

2

4pP0R

Line of stability

Show that the nuclide 8Be has a positive binding energy but 
is unstable with respect to decay into two alpha particles.

Strategy We use Equation (12.10) to find the binding 
energy of 8Be and Equation (12.16) to find the binding en-
ergy of 8Be with respect to decay to two alpha particles. The 
nuclide will be unstable if the binding energy B is negative.

Solution The binding energy of 8Be is

 B 18Be 2 ! 34mn & 4M 11H 2 # M 18Be 2 4c 2

We look up the atomic masses of 1H and 8Be in Appendix 8 
and calculate the binding energy to be

  B 18Be 2 ! 34 11.008665 u 2 & 4 11.007825 u 2 # 8.005305 u 4
  " c 2a 931.5 MeV

c 2 # u b ! 56.5 MeV

So 8Be has a positive binding energy. Now we calculate the 
binding energy of the decay of 8Be into two a particles, 

8Be S 2a, by using Equation (12.16):

  B 18Be S 2a 2 ! 32M 14He 2 # M 18Be 2 4c 2

  ! 3214.002603 u 2 # 8.005305 u 4
  " c 2a 931.5 MeV

c 2 # u b ! #0.093 MeV

Because the latter B is negative, 8Be is unstable against decay 
to two alpha particles. From the standpoint of energy, there 
is no reason why a 8Be nucleus will not decay into two alpha 
particles. Sometimes a nuclide may be stable even if another 
combination of A nucleons has a lower mass, because some 
conservation law, such as spin angular momentum, prevents 
the radioactive decay. But in this case we find experimen-
tally that 8Be does spontaneously decay into two alpha par-
ticles. The instability of 8Be is responsible for the fact that 
stars consist mostly of hydrogen and helium. Because of the 
instability of 8Be, it is difficult for helium nuclei to join to-
gether to make heavier nuclei.

 EXAMPLE 12.5
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444 Chapter 12 The Atomic Nucleus

This term represents the work done to assemble the proton itself, and we do not 
want to include it in the electrostatic self-energy of a nucleus composed of Z 
protons. Therefore we must subtract Z such terms from the total given in Equa-
tion (12.17) to give us the total Coulomb repulsion energy in a nucleus:

 ¢  ECoul !
3
5

 
Z 1Z # 1 2e 

2

4pP0R
 (12.18)

Figure 12.6 A plot of the 
known nuclides with neutron 
number N versus proton number 
Z. The solid points represent sta-
ble nuclides, and the shaded area 
represents unstable nuclei. A 
smooth line through the solid 
points would represent the line of 
stability.
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Show that Equation (12.18) can be written as

 ¢  ECoul ! 0.72 3Z 1Z # 1 2 4A#1 /3 MeV (12.19)

and use this equation to calculate the total Coulomb energy 
of 238

92 
U.

Strategy We use Equation (12.2) for R (with r0 ! 1.2 fm) 
and insert it into Equation (12.18) to find the energy first in 
joules and then in MeV.

Solution

 ¢  ECoul !
3
5

 3Z 1Z # 1 2 4  11.6 " 10#19 C 22
  " 19 " 109 N # m2

 /C2 2  1
1.2 " 10#15 m # A1 /3

  ! 1.15 " 10#13 3Z 1Z # 1 2 4A#1 /3 J 
1 MeV

1.6 " 10#13 J

  ! 0.72 3Z 1Z # 1 2 4A#1 /3 MeV

 EXAMPLE 12.6
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   12.5 Nuclear Stability 445

We conclude that for heavy nuclei, the nucleus will have a preference for 
fewer protons than neutrons because of the large Coulomb repulsion energy. In 
fact, Figure 12.6 reveals there are no stable nuclei with Z , 83 because of the 
increasingly larger Coulomb force. The heaviest known stable nucleus is 209

83 
Bi. All 

nuclei with Z , 83 and A , 209 will eventually decay spontaneously into some 
combination of smaller masses. Adding one proton to a heavy nucleus adds a 
constant amount of nuclear binding energy, but the energy due to the repulsive 
Coulomb force increases as $ECoul " (Z & 1)2 # Z 2 ! 2Z. Because the Coulomb 
force is long range, the proton interacts electromagnetically with all the protons 
already in the nucleus. And because this energy increases with Z, nuclei with 
higher Z eventually become unstable. The neutrons dilute the Coulomb repul-
sion slightly because they intersperse among the protons, causing the protons to 
be slightly farther apart.

Another interesting fact discernible from Figure 12.6 is that most stable nu-
clides have both even Z and even N (called “even-even” nuclides). Only four sta-
ble nuclides, all light nuclei, have odd Z and odd N (called “odd-odd” nuclides). 
These nuclides are 2

1 
H, 6

3 
Li, 10

 5 
B, and 14

7 
N. All the other stable nuclides are odd-

even or even-odd, that is, with either an odd number of Z or N. Nature appar-
ently prefers nuclei with even numbers of protons and neutrons.

We can understand this empirical observation in terms of the Pauli exclusion 
principle. Neutrons and protons are distinguishable fermions; hence they sepa-
rately obey the exclusion principle. Only two neutrons (or protons) may coexist 
in each spatial orbital (quantum state), one with spin “up” and the other with 
spin “down.” Each nuclear energy level is thus able to hold two particles, the 
spins of which are paired to 0. This configuration of opposite spins is particularly 
stable because placing the same number of particles in any other arrangement 
will produce a (less stable) state of higher energy. Therein lies the preference for 
even N and Z.

Now we insert Z ! 92 and A ! 238 into Equation (12.19) to 
find

 ECoul ! 0.72192 2 191 2 1238 2#1/3 ! 970 MeV

Is this large or small? If we look up the masses in Appen-
dix 8, we calculate that the total binding energy of 238 

92 
U with 

respect to dissociation into its component nucleons is

 Btot ! 314611.008665 u 2 & 9211.007825 u 2
  #  238.050783 u 4  c 2a 931.5 MeV

c 2 # u b ! 1802 MeV

The total Coulomb energy is a significant fraction of the 
binding energy of a large nucleus.

Only four stable nuclides have odd numbers for both N and 
Z. Predict whether adding both a proton and a neutron to 
each of these nuclides, 2

1H, 6
3Li, 10

5 B, and 14
7 N, will produce a 

stable nucleus. Look up in Appendix 8 whether they are 
stable or not.

Solution Adding a proton and a neutron to each nuclide 
will make them each even-even. There is a good likelihood 

that each new nuclide is stable, because nucleons prefer to 
have even numbers.

When we look up the nuclides in Appendix 8, we find 
that only 8

4Be is unstable, which is a special case because it 
decays to two alpha particles. Alpha particles are particularly 
stable because both Z and N are equal to 2, which is a “magic 
number” (see Problem 68).

 CONCEPTUAL EXAMPLE 12.7
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446 Chapter 12 The Atomic Nucleus

Niels Bohr, Carl F. von Weizsäcker, and others were able in the 1930s to 
explain many nuclear phenomena using the liquid drop model—that is, treating 
the nucleus as a collection of interacting particles in a liquid drop. In the pre-
ceding discussion we understood qualitatively the line of stability curve displayed 
in Figure 12.6. In much the same way von Weizsäcker proposed in 1935 his semi-
empirical mass formula based on the liquid drop model.

Written in terms of the total binding energy, the semi-empirical mass for-
mula is

i B 1AZX 2 ! aV A # aAA2 /3 # 0.72Z1Z # 1 2A#1/3 # aS  
1N # Z 22

A
& d (12.20)

This is actually the binding energy. The mass is found by using Equation (12.10). 
The volume term (aV) indicates that the binding energy is approximately the 
sum of all the interactions between the nucleons. Because the nuclear force is 
short range and each nucleon interacts only with its nearest neighbors, this in-
teraction is proportional to A, the total number of nucleons.

The second term, called the surface effect, is simply a correction to the first 
term (similar to surface tension), because the nucleons on the nuclear surface 
are not completely surrounded by other nucleons. The surface nucleons do not 
have saturated interactions, and a correction should be made proportional to the 
liquid drop surface area, 4pR2. Because R " A1/3, the correction is proportional 
to A2/3.

The third term is the Coulomb energy discussed and presented in Equations 
(12.17) and (12.18). A simple result is Equation (12.19).

The fourth term is due to the symmetry energy, also previously discussed. In 
the absence of Coulomb forces, the nucleus prefers to have N ! Z. This term has 
a quantum-mechanical origin, depending on the exclusion principle. Notice 
that the sign of the fourth term is independent of the sign of N # Z.

The last term is due to the pairing energy and reflects the fact that the nucleus 
is more stable for even-even nuclides. We can determine this term empirically. 
There have been many sets of parameters presented over the years. One set, 
gleaned from several researchers, for the parameters of Equation (12.20) is

  aV ! 15.8 MeV    Volume

 aA ! 18.3 MeV    Surface

  aS ! 23.2 MeV    Symmetry

 Pairing d ! •&¢ for even-even nuclei
0 for odd-A 1even-odd, odd-even 2  nuclei
#¢ for odd-odd nuclei

where $ ! 33 MeV # A#3/4.
The entire table of stable isotopes can be understood by applying the ideas 

in the von Weizsäcker semi-empirical mass formula. No nuclide heavier than 
238
92 U has been found in nature. Such nuclides, if they ever existed, must have 
decayed so quickly that quantities sufficient to measure no longer exist. Many of 
the nuclides between 209

 83 
Bi and 238

 92 
U are still found in nature, either because their 

decay rates are slow enough that they have not sufficiently decayed since their 
formation in the interior of stars or because they are produced continuously by 
the radioactive decay of another nuclide.

To compare the relative stability of different nuclides, it’s important to know 
the binding energy per nucleon. By calculating the binding energy of each known 

Liquid drop model

The von Weizsäcker 
semi-empirical mass 

formula

Binding energy 
per nucleon
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   12.5 Nuclear Stability 447

nucleus, and dividing by its mass number, we obtain the plot shown in Figure 
12.7. We see that the average binding energy per nucleon peaks near A ! 56 and 
slowly decreases for heavier nuclei. For the lighter nuclei the curve increases 
rapidly from hydrogen until all the nucleons are surrounded by other nucleons. 
This curve demonstrates the saturation effect of nuclear forces. After the very 
light nuclei (A - 20), the curve is reasonably flat at about 8 MeV/nucleon. There 
are sharp peaks for the even-even nuclides 4He, 12C, and 16O, which are particu-
larly tightly bound.
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Figure 12.7 The binding en-
ergy per nucleon versus the mass 
number A. Notice the subpeaks at 
4He, 12C, and 16O.

Calculate the binding energy per nucleon for 20
10 Ne, 56

26 Fe, 
and 238

92 U.

Strategy We first find the binding energy of each of these 
nuclides using Equation (12.10) and then divide by the mass 
number to obtain the binding energy per nucleon.

Solution

  B 120
10 Ne 2 ! 310mn & 10M 11H 2 # M 120

10 Ne 2 4c 2

  ! 31011.008665 u 2 & 1011.007825 u 2
  # 19.992440 u 4c 2a 931.5 MeV

c 2 # u b
  ! 161 MeV

  
B 120

10 Ne 2
20 nucleons

! 8.03 MeV/nucleon

  B 156
26 Fe 2 ! 330mn & 26M 11H 2 # M 1  56

26  
Fe 2 4c 2

  B 156
26 Fe 2 ! 33011.008665 u 2 & 2611.007825 u 2

  # 55.934942 u 4c 2a 931.5 MeV
c 2 # u b

  ! 492 MeV

  
B 1  56

26  Fe 2
56 nucleons

! 8.79 MeV/nucleon

  B 1238
 92 U 2 ! 3146mn & 92M 11H 2 # M 1238

 92 
U 2 4c 2

  ! 314611.008665 u 2 & 9211.007825 u 2
 # 238.050783 u 4c 2a 931.5 MeV

c 2 # u b
  ! 1800 MeV

  
B 1238

 92 
U 2

238 nucleons
! 7.57 MeV/nucleon

All three nuclides have a binding energy per nucleon near 
8 MeV, with 56Fe having the largest binding energy per nu-
cleon, as shown in Figure 12.7.

 EXAMPLE 12.8
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448 Chapter 12 The Atomic Nucleus

Nuclear Models
Physicists do not fully understand the nuclear force or how nucleons interact inside 
the nucleus. Current research focuses on the constituent quarks (see Chapter 14) 
that make up the nucleons. Because the nuclear force is not precisely known, physi-
cists have relied on a multitude of models to explain nuclear behavior. These models 
have been more or less successful in explaining various nuclear properties.

The models generally fall into two categories:

1.  Independent-particle models, in which the nucleons move nearly indepen-
dently in a common nuclear potential. The shell model has been the most 
successful of these.

2.  Strong-interaction models, in which the nucleons are strongly coupled to-
gether. The liquid drop model already discussed is characteristic of these 
models and has been quite successful in explaining nuclear masses as well 
as nuclear fission (see Chapter 13).

Space does not permit us a full discussion of each of the many models. We have 
already discussed the liquid drop model in this section, so we now present the sim-
plest of the independent-particle models. We show in Figure 12.8 a representation 
of the nuclear potential felt by the neutron and the proton. Because of the Cou-
lomb interaction, the shape and depth of the proton potential is somewhat dif-
ferent than that of the neutron. For example, typical depths are about 43 MeV 
for neutrons but only 37 MeV for protons. Energy levels, which represent states 
that can be filled by the nucleons, are shown inside the potential. Note that nu-
clei have a Fermi energy level, just as do atoms, which is the highest energy level 
filled in the nucleus. A typical Fermi energy level has a depth of about 8 MeV. In 
the ground state of a nucleus, all the energy levels below the Fermi level are 
filled, but when a nucleus becomes excited, one or more of the nucleons is raised 
to one of the previously unoccupied levels above the Fermi level.

Nuclei are formed by a collection of nucleons, which sort themselves into 
the lowest possible energy levels. In Figure 12.9 we exhibit energy-level diagrams 

Figure 12.8 Diagram of nu-
clear potential wells as felt by 
neutrons and protons. Neutrons 
are more strongly bound than 
protons because of the Coulomb 
potential. All levels below the 
Fermi energy EF are filled.

Figure 12.9 Schematic diagram 
of proton and neutron energy 
levels for several nuclei between 
12C and 16O. The nuclei 12C and 
16O are particularly stable, but the 
effects of N ! Z and the spin-
pairing effects are important in 
this region.
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   12.6 Radioactive Decay 449

for several possible nuclides between 12C and 16O. These energy-level  diagrams 
assume the zero of the energy scale to be the bottom of the nuclear potential, so 
we can deal with positive energy values. Both 12C and 16O are particularly stable 
because they are even-even. Note that we show the neutron energy levels slightly 
lower than the proton levels because of the additional Coulomb repulsion of the 
protons. If we add one proton to 12C to make 13

7 
N, we find it is unstable (see 

Problem 60); whereas if we add a neutron to make 13C, we find it to be stable. 
Even when we add another neutron to produce 14C, we find it is barely unstable. 
In this mass region, nature prefers the number of neutrons and protons to be 
about equal (N ! Z), but it doesn’t want Z , N. This helps explain why 13C is 
stable, but not 13N; 14C has too many more neutrons (8) than protons (6) in this 
mass region to be stable. When we add a proton to 13C we make 14N, one of the 
few stable odd-odd nuclides. If we next add a proton to 14N we obtain the un-
stable 15O. However, if we add a neutron to 14N we find stable 15N, again indicat-
ing neutron energy levels to be lower in energy than the corresponding proton 
ones. Finally, if we add one more proton to 15N, we pair the extra proton and 
make the extra-stable 16O. However, if we add a neutron to 15N, we have the very 
unstable nuclide 16N. 14N and 15N are the only stable isotopes of nitrogen.

The shell model of nuclei (see Problems 68 and 69) takes advantage of the 
pairing effect and places only two neutrons or two protons in each shell (or en-
ergy level). The ordering of the energy levels is established by angular momen-
tum rules, which couple the nucleon spins in a prescribed manner similar to that 
already discussed for jj coupling in Chapter 8.

12.6  Radioactive Decay
The discoverers of radioactivity were Wilhelm Röntgen, Henri Becquerel, and 
Marie Curie in the late 1890s. Marie Curie and her husband Pierre discovered 
polonium and radium in 1898. We saw in the previous section that many nuclei 
are unstable and can decay spontaneously to some other combination of A nu-
cleons that has a lower mass. These decays take different forms. The simplest is 
that of a gamma ray, which represents the nucleus changing from an excited 
state to a lower energy state (no change in N or Z). Other modes of decay in-
clude emission of a particles, b particles, protons, neutrons, and fission. We will 
discuss a, b, and g decay in the next section and defer the discussion of fission 
to the next chapter. In this section we consider the nature of the radioactive 
decay law.

The general form of the law of radioactivity is the same for all decays, be-
cause it is a statistical process. Given a sample of radioactive material we measure 
the disintegrations or decays per unit time, which we define as activity. If we have 
N unstable atoms of a material, the activity R is given by

 Activity ! # 

dN
dt

! R  (12.21)

where we insert the minus sign to make R positive (dN/dt is negative because the 
total number N is decreasing with time). The SI unit of activity is the becquerel 
(1 Bq ! 1 decay/s). More commonly used in the past was the curie (Ci) which 
is 3.7 " 1010 decays/s. In keeping with the worldwide trend to use SI units, here 
we will use primarily the becquerel for activity. A typical radioactive source used 
in a student laboratory experiment (for example, 226Ra or 210Po a emitters), the 

Marie Curie (1867– 1934) (on the 
right) and Irène Joliot-Curie 
(1897– 1956) are the most fa-
mous mother-daughter pair in 
science. Marie won two Nobel 
Prizes, one in physics with her 
husband Pierre in 1903 and an-
other in chemistry in 1911, for 
her work in radiation phenomena 
and the discovery of the elements 
radium and polonium. Irène, who 
began working in her mother’s 
lab as a teenager, won a Nobel 
Prize in Chemistry in 1935 with 
her husband Frédéric Joliot-Curie 
for their production of new radio-
active elements.
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450 Chapter 12 The Atomic Nucleus

241Am a emitter used in a smoke alarm, or the radium used in a luminous watch 
may contain material having an activity of only about 104 Bq (a few *Ci), and 
these are exempt from U.S. federal licensing requirements.

We observe experimentally that the activity of a given sample falls off exponen-
tially with time. We’ll now explain theoretically why this occurs. If N(t) is the num-
ber of radioactive nuclei in a sample at time t, and l (called the decay constant) is 
the probability per unit time that any given nucleus will decay, then the activity R is

 R ! lN 1t 2  (12.22)

The number dN of nuclei decaying during the time interval dt is

 dN 1t 2 ! #R dt ! #lN 1t 2  dt (12.23)

where we have used Equations (12.21) and (12.22). If we rearrange and inte-
grate this equation, we have

  # dN
N

! ##l dt

  ln N ! #lt & constant

  N 1t 2 ! e #lt&constant

If we let N(t ! 0) $ N0, the previous equation becomes

 N 1t 2 ! N0e#lt  (12.24)

This is the radioactive decay law, and it applies to all decays. The exponential 
decay rate is consistent with experimental observation. The activity R is

 R ! lN 1t 2 ! lN0e #lt ! R0e #lt (12.25)

where R0 is the initial activity at t ! 0. The activity of a radioactive sample also 
falls off exponentially.

It is more common to refer to the half-life t1/2 or the mean lifetime t rather 
than its decay constant. The half-life is the time it takes one half of the radioac-
tive nuclei to decay.

  N 1t1 /2 2 !
N0

2
! N0e #lt 1 /2  (12.26)

  ln a 1
2
b ! ln1e #lt 1 /2 2 ! #lt1 /2

The half-life is determined to be

 t1 /2 !
#ln11 /2 2
l

!
ln2
l

!
0.693
l

 (12.27)

The mean (or average) lifetime t is calculated to be (see Problem 29)

 t !
1
l

!
t1 /2

ln2
 (12.28)

The number of radioactive nuclei as a function of time is displayed in 
 Figure 12.10. Because the decay of a radioactive nucleus is a statistical process, it will 
take a very large sample to give a curve as smooth as that shown in Figure 12.10.

Decay constant

Radioactive decay law

Half-life

Mean lifetime
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   12.6 Radioactive Decay 451

Figure 12.10 The number of 
remaining nuclei N(t) as a func-
tion of time t for a sample of 
radio active nuclides. The half-life 
t1/2 and mean lifetime t are indi-
cated for the exponential radioac-
tive decay law.Time

N0e#lt

t
t1/2 2t1/2 3t1/2t

N0

0

N(t)

N0!
2

N0!
4

N0!
8

N0!
e

A radioactive sample of mass 1.0 mg has a half-life of 1.0 h, 
which means that about 50% of the 1-mg sample will decay 
in 1.0 h. What fraction decays in 2.0 h?

Solution At first thought, we might think that another 
0.5-mg sample might decay in the next hour, leaving none 
of the original sample, but that is incorrect. During the 

second-hour period the probability is still 50% for each re-
maining nucleus to decay. Therefore during the second 
hour, the amount that decays is 50% of 0.5 mg, or 0.25 mg. 
The total amount decayed in the first two hours is then 
0.50 mg & 0.25 mg ! 0.75 mg, or 75% of the original sam-
ple. This result is consistent with the data point shown at 
time 2t1/2 in Figure 12.10.

 CONCEPTUAL EXAMPLE 12.9

A sample of 210Po which a decays with t1/2 ! 138 days is 
observed by a student to have 2000 disintegrations/s 
(2000 Bq).
(a)  What is the activity in *Ci for this source?
(b)  What is the mass of the 210Po sample?

Strategy (a) We already know the activity in 
disintegrations/s or Bq. We simply use the conversion to 
*Ci. (b) Because we know the activity (2000 decays/s), we 
can use Equations (12.22) and (12.28) to find the number 
of radioactive nuclei. From this we can determine the mass 
of the 210Po sample.

Solution (a) We multiply the activity of 2000 decays/s by 
the factor that converts decays/s to Ci.

  2000 decays/s a 1 Ci
3.7 " 1010 decays/s

b ! 0.054 " 10#6 Ci

  ! 0.054

(b) Equations (12.22) and (12.28) give the number of 
radioactive nuclei.

  N !
R
l

!
1R 2 1t1 /2 2

ln 12 2 !
2000 decays/s

ln 12 2  1138 days 2  24 h
1 day

 
3600 s

1 h

 ! 3.44 " 1010 nuclei

We use Avogadro’s number to determine the mass from the 
number of atoms (nuclei).

  Mass ! 3.44 " 1010 atoms 
1 mol

6.02 " 1023 atoms
 
0.210 kg

1 mol

  ! 1.2 " 10#14 kg

This is an extremely small mass!

 EXAMPLE 12.10

*Ci
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452 Chapter 12 The Atomic Nucleus

12.7  Alpha, Beta, and Gamma Decay
The three common decay modes of nuclei (a, b, and g) were all observed by the 
early twentieth century. When a nucleus decays, all the conservation laws must 
be observed: mass-energy, linear momentum, angular momentum, and electric 
charge. To these laws we add another one for radioactive decay, called the con-
servation of nucleons. It states that the total number of nucleons (A, the mass number) 
must be conserved in a low-energy nuclear reaction (say, less than 938 MeV) or decay. 
Neutrons may be converted into protons, and vice versa, but the total number of 
nucleons must remain constant. At higher energies enough rest energy may be 
available to create nucleons, but other conservation laws to be discussed in 
Chapter 14 still apply.

Radioactive decay may occur for a nucleus when some other combination of 
the A nucleons has a lower mass. Let the radioactive nucleus AZX  be called the parent 

Conservation of nucleons

A sample of 18F is used internally as a medical diagnostic tool 
by observing this isotope’s positron decay (t1/2 ! 110 min). 
How much time does it take for 99% of the 18F to decay?

Strategy We use the radioactive decay law, Equation 
(12.24), to determine the time needed.

 N ! N0e #lt ! N0e #ln 122t /t 1 /2

Solution If we want 99% of the initial sample to decay, 
then only 1% will be left, and N/N0 ! 0.01. We then have

 
N
N0

! 0.01 ! e #ln 122t/t1/2

If we take the natural logarithm, we have

  ln 10.01 2 ! #ln 12 2 a t
t1 /2
b

  t ! # c ln 10.01 2
ln 12 2 d t1 /2 ! # a#4.61

0.693
b 1110 min 2

  ! 731 min ! 12.2 h

 EXAMPLE 12.11

What is the alpha activity of a 10-kg sample of 235U that is 
used in a nuclear reactor?

Strategy We find the number of radioactive atoms by us-
ing Avogadro’s number and the gram-molecular weight. We 
find in Appendix 8 that 235U has a half-life for emitting a 
particles of t1/2 ! 7.04 " 108 y. Then we use Equation 
(12.22) to find the activity.

Solution The number of 235U atoms in a 10-kg sample is

  N ! M  
NA

M 1235U 2

 N ! 110 kg 2 a 103 g
1 kg

b a 6.02 " 1023 atoms/mol
235 g/mol

b
  ! 2.56 " 1025 atoms ! 2.56 " 1025 nuclei

The activity is

  R ! lN !
ln12 2 # N

t1 /2

  !
ln12 2 # 12.56 " 1025 nuclei 2

7.04 " 108 y

  ! 2.52 " 1016 decays/y ! 8.0 " 108 Bq

 EXAMPLE 12.12
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   12.7 Alpha, Beta, and Gamma Decay 453

and have the mass M 1AZX 2 . Two or more products can be produced in the decay. In 
the case of two products let the mass of the lighter one be My and the mass of the 
heavier one (normally called the daughter) be MD. The conservation of energy is

 M 1AZX 2 ! MD & My & Q  /c 2 (12.29a)

where Q is the energy released and is equal to the total kinetic energy of the 
reaction products. It is given in terms of the masses by

 Q ! 3M 1AZX 2 # MD # My 4c 2 (12.29b)

Note that the disintegration energy Q is the negative of the binding energy B [see 
Equation (12.16)]. The binding energy normally refers to stable nuclei, whereas 
Q is normally used with unstable nuclei. If B , 0, a nuclide is bound and stable; 
if Q , 0, a nuclide is unbound, unstable, and may decay. Looking at the naturally 
abundant radioactive nuclei, we find that decays emitting nucleons do not occur, 
because the masses are such that Q - 0. If nucleon decay were possible for these 
radioactive nuclei, it would have taken place too quickly for the nuclei to be 
naturally abundant.

Disintegration energy

Show that 230
92 

U does not decay by emitting a neutron or 
proton.

Strategy The decays in question are (a) 230
92 

U S n & 229
 92 

U 
and (b) 230

92 
U S p &  

229
 91 

Pa. We determine whether the decays 
occur by looking up the atomic masses in Appendix 8 and use 
Equation (12.29b) to see if Q is positive or negative.

Solution
(a)  M 1230

 92 
U 2 ! 230.033927 u; mn ! 1.008665 u; M 1229

 92 
U 2 !

229.033496 u.

 Q ! 3230.033927 u # 229.033496 u # 1.008665 u 4c 2

  " a 931.5 MeV
c 2 # u b ! #7.7 MeV

Because Q - 0, neutron decay is not allowed.

(b)  m 11H 2 ! 1.007825 u; M 1229
 91 

Pa 2 ! 229.032089 u.

  Q ! 3230.033927 u # 229.032089 u # 1.007825 u 4c 2

  " a 931.5 MeV
c 2 # u b ! #5.6 MeV

Because Q - 0, proton decay is not allowed.
In both cases the decay is not allowed, because the mass 

of the products is greater than that of the parent. The nu-
cleus 230U is stable against nucleon emission.

 EXAMPLE 12.13

Alpha Decay
Is it possible for a collection of nucleons inside the nucleus to decay? The nucleus 
4He is particularly stable. Its binding energy is 28.3 MeV. The combination of two 
neutrons and two protons is particularly strong because of the pairing effects dis-
cussed previously. If the last two protons and two neutrons in a nucleus are bound 
by less than 28.3 MeV, then the emission of an alpha particle, called alpha decay, is 
energetically possible. For alpha decay, Equation (12.29) becomes

  AZX S A#4
Z#2D & a  (12.30)

  Q ! 3M 1AZX 2 # M 1A#4
Z#2D 2 # M 14He 2 4c 2 (12.31)

If Q , 0, then alpha decay (4He) is possible.

Alpha decay
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454 Chapter 12 The Atomic Nucleus

Consider the nucleus 230
92 U that we studied in Example 12.13. The alpha-

decay reaction is given by

 230
 92  

U S  
226
 90  

Th & a

We look up the appropriate masses to find

 M 1230
 92 

U 2 ! 230.033927 u; M 14He 2 ! 4.002603 u; M 1226
 90 

Th 2 ! 226.024891 u

If we insert the masses into Equation (12.31), we find

  Q ! 3M 1230 U 2 # M 1226  Th 2 # M 14 He 2 4c 2

  ! 3230.033927 u # 226.024891 u # 4.002603 u 4c 2 a 931.5 MeV
c 2 # u b

  ! 6.0 MeV

Alpha decay is allowed, because Q , 0. The mass of the products is less than the 
mass of the decaying nuclide. Many of the nuclei above A ! 150 in fact are sus-
ceptible to alpha decay. These heavy nuclei have increasingly stronger  Coulomb 
repulsion as protons are added. The expulsion of two protons (along with two 
neutrons) in the form of an alpha particle may decrease this Coulomb energy 
and make the resulting nucleus more stable.

We might wonder why any nuclei exist with A , 150. First, nuclei are not 
necessarily made up of a collection of alpha particles. In order for alpha decay 
to occur, two neutrons and two protons group together within the nucleus prior 
to decay. Second, the alpha particle, even when formed, has great difficulty over-
coming the nuclear attraction from the remaining nucleons to escape. Consider 
the potential energy diagram shown in Figure 12.11. The barrier height VB for 
 alpha particles is normally greater than 20 MeV. The kinetic energies of alpha 
particles emitted from nuclei range from 4 to 10 MeV. It is classically impossible 
for the alpha particles to escape, because the potential energy barrier is greater 
than the kinetic energy. If we project 5-MeV a particles onto a heavy nucleus we 
find that the alpha particle is repelled by the Coulomb force (see Figure 12.11) 
and doesn’t get close enough to feel the attraction of the short-range nuclear 
force. It is virtually impossible classically for the alpha particle to reach the nu-
cleus. How, then, can the alpha particle ever surmount the barrier if it is trapped 
inside the potential barrier? As we discussed in Chapter 6, the alpha particles are 
able to tunnel through the barrier. This is a pure quantum-mechanical effect, 
and there is a small, but finite, chance for the alpha particle to appear on the 
other side of the barrier. The probability depends critically on the barrier height 
and width. A higher energy alpha particle, E2 in Figure 12.12, has a much higher 
probability than does a lower energy alpha particle, E1, of tunneling through the 
barrier. The higher tunneling probability corresponds to a shorter lifetime for 
the radioactive nuclide. In Figure 12.13 we compare the lifetimes of various al-
pha emitters with the kinetic energies of the alpha particles. We see that there is 
a strong correlation between lower energies and greater difficulty of escaping 
(longer lifetimes).

In Example 6.17 we discussed the a decay of 238U. It might be worthwhile to 
look at that example again. Because of the low probability of tunneling, we 
showed that the a particle must make about 1041 traverses back and forth across 
the nucleus before it can escape. Because only two products occur in alpha de-
cay, we can calculate the kinetic energy of the a particle from the disintegration 
energy Q. Assume the parent nucleus is initially at rest so that the total momen-
tum is zero. As shown in Figure 12.14, the final momenta of the daughter pD and 

V(r)
VB

5 MeV

5-MeV!
a particle

r

Figure 12.11 The potential 
energy barrier for an alpha parti-
cle is shown. The Coulomb bar-
rier VB is much greater than the 
typical alpha-particle energies 
produced by radioactive sources. 
Classically a 5-MeV particle inside 
the nucleus or scattered from 
outside cannot penetrate the 
barrier.
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   12.7 Alpha, Beta, and Gamma Decay 455

alpha particle pa have the same magnitude and opposite directions. By using the 
conservation of energy and conservation of linear momentum, we can deter-
mine a unique energy for the alpha particle.

  Q ! Ka & KD

  pa ! pD

  K a ! Q # KD ! Q #
pD 2

2MD
! Q #

pa 2

2MD

  Ka ! Q #
2Ma 

K a
2MD

! Q #
Ma

MD
K a

 K a a1 &
Ma
MD
b ! Q

  K a !
MD

MD & Ma
Q ! a A # 4

A
bQ  (12.32)

Because the parent mass A is normally over 150, the alpha particle takes 
most of the kinetic energy.

V(r)

E2

E1

r
Figure 12.12 Quantum theory 
allows an alpha particle to tunnel 
through the barrier. A higher en-
ergy alpha particle E2 has a much 
higher probability (shorter life-
time) than a lower energy alpha 
particle E1. The waves shown are 
schematics only.

pa pD

Parent

Daughtera

Figure 12.14 When a radioac-
tive parent at rest alpha decays to 
an alpha particle and a heavy 
daughter, conservation of mass-
energy and momentum still must 
occur. The momentum of the al-
pha particle and daughter are 
equal and opposite.
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103 year!
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212
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210
222

232
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Figure 12.13 The half-lives for several radioactive alpha emitters of radium and plutonium iso-
topes are plotted versus their alpha energy. The two curves show that the higher energy alpha par-
ticles result from nuclei having a much shorter lifetime; these alpha particles have a higher proba-
bility of tunneling through the Coulomb barrier.
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456 Chapter 12 The Atomic Nucleus

Beta Decay
Radioactive decay occurs because some nuclides are not stable. In Figure 12.6 we 
showed a plot of stable nuclei. Note that in alpha decay the parent nucleus re-
verts to a daughter nucleus that is down 2 units in neutron number N (Figure 
12.6) and to the left 2 units in atomic number Z. In many cases alpha decay 
leaves the daughter nucleus farther from the line of stability than the parent. 
Unstable nuclei may move closer to the line of stability by undergoing beta de-
cay. The simplest example of beta decay is the decay of a free neutron.

 n S p & b# (12.33)

As we discussed in Section 12.1, electrons cannot exist within the nucleus, so 
when beta decay occurs for a nuclide, the beta particle, denoted by b# (we now 
know it is an electron), is created at the time of the decay. We showed in Figure 
12.9 that 14C is unstable—it has an excess of neutrons. We expect the beta decay 
of 14C to form 14N, a stable nucleus, which might be written as

 14
6 C S 14

 7 
N &  b# (proposed) (12.34)

This decay produces two products, like a decay, and we expect to measure a 
monoenergetic electron spectrum (see Problem 40). However, the electron en-
ergy spectrum from the beta decay of 14C (see Figure 12.15) shows a continuous 
energy spectrum up to a maximum energy. This experimental result was a major 
puzzle for many years. In addition to the strange energy spectrum, there was a 
problem with spin conservation. In neutron decay, the spin 1/2 neutron cannot 
decay to two spin 1/2 particles, a proton and an electron. Also 14C has spin 0, 14N 
has spin 1, and the electron has spin 1/2. We cannot combine spin 1/2 and 1 to 
obtain a spin of 0. Both the electron energy spectrum and the spin angular momen-
tum conservation posed major difficulties with our understanding of beta decay.

The correct explanation was proposed in 1930 by Wolfgang Pauli, who sug-
gested that a third particle—later called a neutrino—must also be produced in 
beta decay. The neutrino, with the symbol n, has spin quantum number 1/2, 
charge 0, and carries away the additional energy missing in Figure 12.15. In Fig-
ure 12.15 an occasional electron is detected with the kinetic energy Kmax re-
quired to conserve energy, but in the great majority of cases the electron’s kinetic 
energy is less than Kmax. We have only learned in the previous decade that the 
neutrino has mass, although it is extremely small. Its energy is almost all kinetic. 
The photon cannot be the missing particle because it has spin 1. Pauli’s sugges-
tion seemed to explain the difficulties, and all circumstantial evidence supported 
the neutrino hypothesis. However, the detection of the elusive neutrino was 
difficult, and its existence was not proven experimentally until 1956 by C. Cowan 

Neutrino
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0
Electron energy

R
el

at
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Kmax

Figure 12.15 The relative in-
tensity of electrons as a function 
of kinetic energy is shown for the 
beta decay of 14C. If there were 
only two products in beta decay, 
the electron energy would be 
mono energetic and the energy 
equal to Kmax.

Frederick Reines (1918– 1998, 
left) and Clyde Cowan (1919–
 1974), while staff members at 
Los Alamos National Laboratory, 
discovered the neutrino in 1956, 
almost three decades after it had 
been postulated by Pauli. Reines 
received the Nobel Prize in Phys-
ics for this discovery in 1995 in 
his and Cowan’s name. The No-
bel Prize is not awarded posthu-
mously. Reines became the 
founding dean of the School of 
Physical Sciences of the new 
University of California, Irvine, in 
1966. See the Special Topic box 
on Neutrino Detection.
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   12.7 Alpha, Beta, and Gamma Decay 457

and F. Reines (see Special Topic,  “Neutrino Detection”). Reines received the 
Nobel Prize in 1995 for this discovery.

Neutrinos interact so weakly with matter that they pass right through the 
Earth with little chance of being absorbed. They have no charge and do not in-
teract electromagnetically. They are not affected by the strong force of the nucleus. 
We now believe that beta decay is the reflection of a special kind of force, called 
simply the weak interaction. Neutrinos are created (or absorbed) in weak pro-
cesses, including b decay. The electromagnetic and weak forces are two manifes-
tations of the electroweak force and will be discussed in Chapter 14.

B! Decay We now know there are antineutrinos (symbol n) as well as neutrinos. The 
beta decay of a free neutron and of 14C is now correctly written as

 n S p & b# & n b# decay (12.35)

  14C S 14N & b# & n    b#decay (12.36)

where it is the antineutrino n that is actually produced in b# decay.
In the general beta decay of the parent nuclide AZX  to the daughter  A

Z&1D, the 
reaction is

 A
ZX S  A

Z&1D & b# & n      b# decay   (12.37)

The disintegration energy Q is given by

 Q ! 3M 1AZX 2 # M 1     AZ&1D 2 4c 
2    b# decay (12.38)

In order for b# decay to occur, we must have Q , 0. When using Equation 
(12.38) we must be careful to use atomic masses because the Z of the decaying 
nuclide changes and the number of electron masses has been accounted for 
in Equation (12.38). In b# decay, the nucleus A is constant, but Z changes to 
Z & 1, so that in Figure 12.6, it is the unstable nuclei to the left of the line of 
stability that are moving closer (one number down and one number right) to the 
line of stability.

B" Decay One might ask what happens for unstable nuclides with too many 
protons, that is, for nuclei to the right of the line of stability in Figure 12.6. Nature 
does allow such a transition, and in such cases a positive electron, called a positron 
(e&), is produced. The positron is the antiparticle of the electron. In beta decay 
the electron and positron are normally referred to as b# and b&, respectively. 
Using b# and b& helps remind us that the electron and positron are created in 
the nucleus during beta decay. Current experimental evidence indicates that a 
free proton does not decay (t1/2 , 1034 y), but a proton bound within the nucleus 
may transmutate if energy is taken from the nucleus, and the result is a more 
stable nucleus. Because 14O is a nucleus with an excess of protons, it is a good 
candidate for b& decay. The nucleus 14O is unstable and decays by emitting a 
positron to become the stable 14N. The reaction is

 14O S 14N & b& & n    b& decay (12.39)

Nuclei near 14N with an excess neutron (14C) or proton (14O) will decay to 14N 
by the appropriate beta decay.

The general b& decay is written as

 A
ZX S  A

Z#1D & b& & n      b& decay  (12.40)

B! decay

B" decay
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Special Topic

Neutrino Detection

Imagine particles that have little probability of being 
stopped while passing completely through Earth. 

They have no charge and very little mass—yet they are 
everywhere throughout the universe, perhaps as many 
as 109 in every m3 of “empty” space. A million of them 
pass through your eyeballs every second, but you have 
no chance of seeing them. Such is the neutrino, and no 
wonder it took over a quarter of a century to experi-
mentally prove its existence. Pauli first proposed some-
thing like the neutrino in 1930 to solve the problem of 
nonconservation of energy in beta decay.

Frederick Reines and Clyde Cowan decided in 1951, 
while working at Los Alamos, to detect the existence of 
the neutrino by observing the inverse beta process

 n & p S n & b& (B12.1)

where n denotes an antineutrino. They took their ini-
tial apparatus to a Hanford, Washington, nuclear re-
actor in 1953 but were not convinced they had de-
tected neutrinos. In 1956 they took a larger detector 
to the Savannah River Plant nuclear reactor in South 

Carolina where they placed their detector in a well-
shielded area 12 m below ground to help reduce cos-
mic ray background. A schematic of their detector is 
shown in Figure A. It consists of three liquid scintilla-
tor detectors (S1, S2, and S3), each viewed by 110 
photomultiplier tubes. Between each scintillator was 
placed a target (T1 and T2) containing CdCl2 dis-
solved in water.

The detection scheme is shown in Figure B. An 
anti neutrino interacts with a proton in target T2, for 
example, producing a neutron and a positron. The 
positron quickly slows down, annihilates with an elec-
tron, and produces two 0.5-MeV gamma rays, e& & e# 
S 2g. The g rays pass through the water target and are 
detected in coincidence in the scintillators S2 and S3. 
The neutron undergoes several collisions, slows down, 
and is eventually captured by 114Cd, which has a very 
large neutron capture cross section. Several gamma 
rays may be produced by the neutron capture, and 
they are detected in one or both of the scintillators. 
The signature of the antineutrino detection is a de-
layed coincidence between the two gamma rays result-
ing from b& and another gamma ray resulting from 
the neutron capture. The 1956 ex periment at the 
Savannah River reactor detected 3 neutrinos/hr and 
proved the neutrino had been found.

In the 1950s Raymond Davis, Jr. of Brookhaven 
National Laboratory designed an experiment using 
CCl4 to detect solar neutrinos (neutrinos coming 
from the sun). The reaction in this case is

 n & 37Cl S b# & 37Ar (B12.2)

Liquid!scintillator

Liquid!scintillator

Liquid!scintillator

Water & CdCl2

Water & CdCl2

S1

S2

S3

T2

T1

Figure A Schematic diagram of Cowan and Reines’s neutrino de-
tector used at the Savannah River reactor. Neutrinos scatter from 
protons in the water. The height of the detector is 2 m.

Antineutrino!
from reactor

S2

T2

S3

n

gg

g g

g

b"

Figure B An antineutrino 
from the reactor scatters 
from a proton to create a 
neutron and a b& that soon 
decays into two gamma rays 
that are detected in coinci-
dence in the two scintillators 
S2 and S3.
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The neutrino signature is the readily detected radio-
active decay of 37Ar. No neutrinos were detected when 
the detector was placed near nuclear reactors, be-
cause reactors produce antineutrinos, not neutrinos. 
In the 1960s Davis led an experiment to place a much 
larger detector, a 100,000-gallon (380 m3) tank of 
perchloroethylene (C2Cl4, a cleaning fl uid), 1500 m 
below ground in the Homestake Gold Mine in South 
Dakota. This detector was well shielded from most of 
the cosmic ray background and detected 2000 solar 
neutrinos over a period of 30 years, proving that nu-
cleon fusion took place in the sun. However, the rate 
of neutrinos was only a third to a half the rate pre-
dicted by James Bahcall, a theorist associated with 
Davis in the experiment. Davis shared the 2002 Nobel 
Prize in Physics for his pioneering contributions in 
the detection of solar neutrinos.

The concern over the lack of solar neutrinos 
lasted three decades and led to the construction of 
several more neutrino detectors around the world 
(see Chapters 14 and 16). At least fi ve neutrino ex-
periments found the solar neutrino fl ux to be signifi -
cantly lower than expected, and this became known as 
the “solar neutrino problem.” These experiments in-
clude those under the Caucasus Mountains near Bak-
san in Russia, in the Gran Sasso tunnel in Italy, in the 
Soudan mine in Minnesota, and in mines in Kamioka, 
Japan, and near Sudbury, Ontario (see Figure C). De-
tectors have included both expensive gallium and ul-
trapure water with photomultiplier tubes. When ab-
sorbed by gallium, neutrinos induce a reaction that 
produces radioactive germanium. The water-detector 
operation involves an antineutrino being absorbed by 
a proton, producing a neutron and b&; the fast-mov-
ing positron produces light, which is detected by pho-
tomultiplier tubes.

In the mid-1990s an international team installed a 
detector in a mine near Sudbury, Ontario, Canada. 
The detector, composed of a million kilograms of 
deuterated, “heavy” water (D2O), placed deep in the 
mine for shielding, operated from 1996 to 2006, and 
it proved conclusively in 2001 that neutrinos oscil-
late—that is, they transmute into different kinds of 

neutrinos as they travel in the sun. As well as solving 
the solar neutrino problem (early experiments only 
measured electron neutrinos), the experiment also 
proved that neutrinos have mass. We will learn more 
about the different forms of neutrinos and about neu-
trino oscillations in Chapter 14. A Japanese mine ex-
periment called Super-K had earlier published evi-
dence for neutrino oscillations, but its results were not 
conclusive.

A unique experiment in the Soudan mine in 
Minnesota studies neutrinos that have traveled 
735 km through Earth from the Fermilab accelerator 
near Chicago. Today the fi eld of neutrino physics is 
fl ourishing because of the importance of neutrinos in 
neutrino oscillations, proton decay, symmetry viola-
tions, and missing mass and energy of the universe. 
Older detector systems are being upgraded, and many 
new detectors are being developed and placed into 
operation.

Figure C The Sudbury Neutrino Observatory (SNO) detector is 18 
m in diameter and has 10,000 photomultiplier tubes around it. Note 
the size with respect to the two men at the bottom. The photomulti-
plier tubes look at heavy water (with deuterium replacing the hydro-
gen atoms in water). This detector operated two km underground 
from 1996 to 2006 and showed that the solar neutrino problem was 
due to neutrino oscillations. The site is now a permanent under-
ground laboratory, and the original SNO detector is being upgraded.
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460 Chapter 12 The Atomic Nucleus

A careful analysis of the atomic masses shows that the disintegration energy Q for 
positron decay is

 Q ! 3M 1AZX 2 # M 1     AZ#1D 2 # 2me 4c 
2    b& decay (12.41)

In this case the electron masses do not cancel when atomic masses are used. The 
mass of the positron is equal to that of an electron.

Note that in Figure 12.6 the unstable nuclei to the right of the line of stabil-
ity move one number up and one number to the left when they b& decay, again 
moving closer to the line of stability.

Electron Capture There is one other form of beta decay. Because inner K-shell 
and L-shell electrons are tightly bound and their (classical) orbits are highly 
elliptical, these electrons spend a reasonable amount of time passing through 
the nucleus, thereby increasing the possibility of atomic electron capture (EC). 
A proton in the nucleus absorbs the e#, producing a neutron and a neutrino. 
The reaction for a proton is

 p & e # S n & n (12.42)

The general reaction is written as

 A
ZX & e# S    A

Z#1D & n      Electron capture  (12.43)

When one of the inner atomic electrons is captured, another electron will take 
its place, producing a series of characteristic atomic x-ray spectra. This is a sig-
nature of electron capture, because these x rays are produced in the absence of 
any other kind of radiation. X rays can also be produced in other kinds of nu-
clear decay, because the decay products (for example, an a particle) may knock 
out electrons.

Electron capture has the same effect as positron decay; a proton is converted 
to a neutron. Electron capture occurs more frequently for higher-Z nuclides 
because the inner atomic electron shells are more tightly bound and there is a 
greater probability of an electron being absorbed. The disintegration energy Q 
for electron capture is

 Q ! 3M 1AZX 2 # M 1     AZ#1D 2 4c 
2    Electron capture (12.44)

Because Q , 0 for b& or EC to occur, there will be some cases where EC is pos-
sible, but not b& decay, because of the difference between Equations (12.41) and 
(12.44).

Electron capture

Show that the relations expressed for the disintegration en-
ergy Q in Equations (12.38), (12.41), and (12.44) are 
correct.

Strategy We begin with the reaction for each of the beta 
decays (b#, b&, and EC) and change it to an energy equa-
tion. We neglect any neutrino mass and atomic binding 
energies and eventually use atomic masses.

Solution B! decay: We begin with b# decay and write the 
mass-energy equation for the reaction in Equation (12.37).

 Mnucl1AZX 2 ! Mnucl 
1     AZ&1D 2 & me & Q  /c 2

where we use Mnucl to indicate the nuclear mass. In order to 
change to atomic masses we add Zme to each side above.

 Mnucl1AZX 2 & Zme ! Mnucl1     AZ&1D 2 & 1Z & 1 2me & Q  /c 2

 EXAMPLE 12.14
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   12.7 Alpha, Beta, and Gamma Decay 461

Because we are neglecting the difference in atomic binding 
energies on the two sides of the equation, we now write this 
equation in terms of atomic masses.

 M 1AZX 2 ! M 1    A
Z&1D 2 & Q  /c 2

We solve this equation for Q to determine Equation (12.38).

 Q ! 3M 1AZX 2 # M 1     AZ&1D 2 4c 2    b# decay (12.38)

B" decay: We write the mass-energy equation for the 
reaction in Equation (12.40) and follow a procedure similar 
to that above.

 Mnucl1AZX 2 ! Mnucl1     AZ#1D 2 & me & Q  /c 2

We again add Zme to each side and have

 Mnucl1AZX 2 & Zme ! Mnucl1    A
Z#1D 2 & 1Z & 1 2me & Q  /c 2

In this case we only need (Z # 1)me for the daughter atomic 
mass, which gives us a remaining mass of 2me.

 M 1AZX 2 ! Mnucl1    A
Z#1D 2 & 2me & Q  /c 2

We solve this equation for Q to determine Equation (12.41).

 Q ! 3M 1AZX 2 # M 1    A
Z#1D 2 # 2me 4c 2    b& decay (12.41)

Electron capture: The mass-energy equation for the 
electron capture reaction of Equation (12.43) is

 Mnucl1AZX 2 & me ! Mnucl1    A
Z#1D 2 & Q  /c 2

We add (Z # 1)me to each side above and obtain

 Mnucl1AZX 2 & Zme ! Mnucl1    A
Z#1D 2 & 1Z # 1 2me & Q  /c 2

In this case we have just the right number of electron masses 
to change to atomic masses.

 M 1AZX 2 ! M 1    A
Z#1D 2 & Q  /c 2

We solve this equation for Q to find Equation (12.44).

 Q ! 3M 1AZX 2 # M 1     AZ#1D 2 4c 2    Electron capture (12.44)

Show that 55Fe may undergo electron capture, but not b& 
decay.

Strategy The two possible reactions are

  55
26 

Fe S 55
25 

Mn & b& & n    b& decay

  55
26 

Fe & e # S 55
25 

Mn & n    Electron capture

We determine the disintegration energies Q for each reac-
tion, Equations (12.41) and (12.44). The reactions are pos-
sible if Q is positive.

Solution We first find the masses from Appendix 8 needed 
to determine the disintegration energy Q of Equations 
(12.41) and (12.44):

  M 155
26 

Fe 2 ! 54.938298 u, M 155
25 

Mn 2 ! 54.938050 u, and

  me ! 0.000549 u.

B" decay:

  Q ! 354.938298 u # 54.938050 u # 210.000549 u 2 4c 2

  " a 931.5 MeV
c 2 # u b

  ! #0.79 MeV    b& decay not allowed

Electron capture:

  Q ! 354.938298 u # 54.938050 u 4c 2a 931.5 MeV
c 2 # u b

  ! 0.23 MeV    Electron capture is allowed

Our determination agrees with the experiment result that 
only electron capture is allowed, with t1/2 ! 2.7 years.

 EXAMPLE 12.15

Find whether alpha decay or any of the beta decays are al-
lowed for 226

89 Ac.

Strategy For each of the possible four reactions, we first 
write the reaction, list the disintegration energy Q equation, 

look up the appropriate masses, and calculate the disinte-
gration energy Q. If Q , 0, the decay is allowed.

Solution We outline the solution, but leave looking up the 
masses and doing the math to the student.

 EXAMPLE 12.16
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462 Chapter 12 The Atomic Nucleus

Gamma Decay
The nuclide 230U can alpha decay to the ground state or any of the low-lying 
excited states of 226Th (see Figure 12.16). Similarly, experimental evidence indi-
cates that 226Ac beta decays primarily to the ground and two excited states of 
226Th. The energies calculated for the disintegration energy Q for alpha and beta 
decay give the appropriate transitions to the ground state. If the decay proceeds 
to an excited state of energy Ex (for example, from the ground state of 230U to the 
Ex ! 0.072 MeV excited state of 226Th), rather than to the ground state, then the 
disintegration energy Q for the transition to the excited state can be determined 
with respect to the transition to the ground state. If we label the disintegration 
energy Q to the ground state as Q0, the Q for a transition to the excited state Ex is 
given by

 Q ! Q 0 # Ex (12.45)

For example, the disintegration value Q for the a decay transition from 230U to 
the excited state at Ex ! 0.072 MeV of 226Th (see Figure 12.16) is given in terms 
of Q0 ! 5.992 MeV and Ex ! 0.072 MeV by Q ! Q0 # Ex ! 5.992 MeV # 0.072 
MeV ! 5.920 MeV.

A nucleus has excited states in much the same way atoms do. The excitation 
energies, however, tend to be much larger, many keV or even MeV, as a result of 
the stronger nuclear interaction. One of the possibilities for the nucleus to rid 
itself of this extra energy is to emit a photon (gamma ray) and undergo a transi-
tion to some lower energy state. The gamma-ray energy hf is given by the differ-
ence of the higher energy state E, and the lower one E-.

 hf ! E, # E- (12.46)

In order to conserve momentum, the nucleus normally must absorb some of this 
energy difference. However, for a nucleus initially at rest, Equation (12.46) is a 
very good approximation.

Alpha decay: 226
89  

Ac S 222
 87  

Fr & a

  Q ! 3M 1226
 89  

Ac 2 # M 1222
 87  

Fr 2 # M 14 He 2 4c 2

  ! 5.54 MeV    Alpha decay is allowed

B! decay: 226
 89  

Ac S 226
 90  

Th & b# & n

  Q ! 3M 1226
 89  

Ac 2 # M 1226
 90   

Th 2 4c 2

  ! 1.12 MeV    b# decay is allowed

B" decay: 226
 89  

Ac S 226
 88  

Ra & b& & n

  Q ! 3M 1226
 89   

Ac 2 # M 1226
 88  

Ra 2 # 2me 4c 2

  ! #0.38 MeV    b& decay is not allowed

Electron capture: 226
89  

Ac & e # S 226
 88  

Ra & n

  Q ! 3M 1226
 89   

Ac 2 # M 1226
 88  

Ra 2 4c 2

 ! 0.64 MeV    Electron capture is allowed

We find that a decay, b# decay, and electron capture are 
all possible from the same nucleus. Experiment shows that 
alpha decay occurs only 0.006% of the time for 226Ac, b# 
decay 83%, and electron capture 17%.

Figure 12.16 The relevant en-
ergy levels for the alpha decay of 
230
 92 

U. The alpha-particle energies 
and their percentage of occur-
rence are shown for several de-
cays for 230

92 
U S 226

 90 
Th. The decay 

percentages may not add up to 
100% because less likely decays to 
higher-lying excited states are not 
shown. From R. B. Firestone and V. 
S. Shirley, eds., Table of Isotopes, 
8th ed., New York: Wiley (1996).

226 Th (t1/2 ! 30.9 m)

5.888 MeV!
67.4%

a

g

5.818 MeV!
32.0%

5.667, 5.662 MeV!
0.38%, 0.26%

0.072!
0

Ex (MeV)!
0.226, 0.230

90

230 U (a, t1/2 ! 20.8 d)92
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   12.7 Alpha, Beta, and Gamma Decay 463

The decay of an excited state of AX * (where * indicates an excited state) to 
its ground state is denoted by

 AX* S AX & g  (12.48)

A transition between two nuclear excited states E, and E- is denoted by

 AX*1E, 2 S AX*1E- 2 & g (12.49)

The excited state energies or levels are characteristic of each nuclide, and a care-
ful study of the gamma energies is usually sufficient to identify a particular nu-
clide. The gamma rays are normally emitted soon after the nucleus is created in 
an excited state. Coincidence measurements between the b- and/or a-decay 
products and the subsequent g rays are a powerful technique in experimental 
nuclear physics to study properties of nuclear excited states.

We can contrast nuclear spectroscopy with that of the optical spectra of 
atoms. The solution of the Schrödinger equation for the Coulomb force of the 
atom is possible, but no such success has yet been obtained for the nuclear force. 
Although nuclear models are used to predict certain characteristics of excited 
nuclear levels, no encompassing theory exists.

Gamma decay

Consider the g decay from the 0.072-MeV excited state to 
the ground state of 226Th at rest shown in Figure 12.16. Find 
an exact expression for the gamma-ray energy by including 
both the conservation of momentum and energy. Deter-
mine the error obtained by using the approximate value in 
Equation (12.46).

Strategy We need to account for the conservation of mo-
mentum as well as that of energy to find the exact gamma-ray 
energy. We denote the final momentum of 226Th by p. Be-
cause the decaying nucleus is initially at rest, the total linear 
momentum is zero, and the linear momentum p of the 
daughter nucleus must have the same magnitude but oppo-
site direction to the momentum of the gamma ray, h/l.

 p !
h
l

!
hf
c

The conservation of energy gives

 hf &
p 

2

2M
! E, # E-

where M is the mass of 226Th. We solve these two equations 
to find the gamma-ray energy hf.

Solution We substitute the relation for the momentum p 
into the energy equation and find

 hf &
1hf 22
2Mc 2 ! E, # E- (12.47)

We could solve Equation (12.47) for hf by using the qua-
dratic equation, but that would be tedious. Let us determine 
whether we can use an approximation. Rewrite Equation 
(12.47) as

  hf  a1 &
hf

2Mc 2 b ! E, # E-

  hf !
E, # E-

1 &
hf

2Mc 2

If the value hf/2Mc 2 ! x is very small, then we can use the 
binomial expansion (1 & x)#1 ! 1 # x & x2 # p . We deter-
mine x to be

 x !
hf

2Mc 2 !
0.072 MeV

21226 u # c 2 2 a 931.5 MeV
c 2 # u b ! 1.7 " 10#7

So the error in using the approximate Equation (12.46), 
which amounts to letting (1 & x)#1 ! 1, amounts to an error 
of only about 10#7. We can safely use Equation (12.46) 
where hf ! E, # E- ! 0.072 MeV.

 EXAMPLE 12.17
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464 Chapter 12 The Atomic Nucleus

There are sophisticated, quantum-mechanical selection rules that deter-
mine the details of gamma-ray transitions between nuclear states. Sometimes 
these selection rules prohibit a certain transition, and the excited state may live 
for a long time—even years! These states are called isomers or isomeric states 
and are denoted by a small m for metastable next to the mass number A. An 
example is the spin 9 state of 210m

    83 
Bi at 0.271 MeV excitation energy, which has 

t1/2 ! 3 " 106 y (alpha decay) and apparently does not gamma decay. The lower 
energy states have spins 0 and 1, and such a large spin difference transition is 
prohibitive for gamma decay. The ground state of 210

 83 
Bi has a half-life t1/2 ! 5 

days (99&% b# decay, 10#4% a decay). Another isomer is 93m
  41 

Nb (Ex ! 0.03 MeV, 
t1/2 ! 13.6 y), which eventually does gamma decay to the ground state. In this 
case we say the decay is prohibited, but that just means the probability of its oc-
curring is very small. Most isomeric states, of course, have much shorter life-
times. An extremely useful isomer for clinical work in medicine is 99mTc (gamma 
emitter, t1/2 ! 6 h), which will be discussed in Chapter 13.

12.8  Radioactive Nuclides
Most scientists now believe that the universe was created in a tremendous explo-
sion (the Big Bang) 13.7 billion years ago (13.7 " 109 y). Neutrons and protons 
fused together to form deuterons and light nuclei within the first few minutes. 
The heavy elements were formed much later by nuclear reactions within stars. 
We will discuss these processes in Chapters 13 and 16.

We say that the unstable nuclei found in nature exhibit natural radioactivity. 
Those radioactive nuclides made in the laboratory (for example, with accelera-
tors or reactors) exhibit artificial radioactivity and include all known nuclides 
heavier than 238U. There are many natural radioactive nuclides left on Earth with 
lifetimes long enough to be observed. Only those with half-lives longer than a 
few tenths of a billion years could have existed since primordial times; most of 
them are heavy elements, but several with A - 150 are listed in Table 12.2. Some 

Isomers

  Natural 
Nuclide t1/2 (y) Abundance

 40
19K 1.28 " 109  0.01%

 87
37Rb 4.8 " 1010 27.8%

113
48 Cd 9 " 1015 12.2%

115
49 In 4.4 " 1014 95.7%

128
52 

Te 7.7 " 1024 31.7%
130
52 

Te 2.7 " 1021 33.8%
138
57 La 1.1 " 1011 0.09%

144
60 Nd 2.3 " 1015 23.8%

147
62 

Sm 1.1 " 1011 15.0%
148
62 

Sm 7 " 1015 11.3%

Tab le  12 .2    Some Naturally 
Occurring Radio-
active Nuclides
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   12.8 Radioactive Nuclides 465

nuclides with a long half-life have been produced as a result of the decay of an-
other radioactive nucleus.

In addition to nuclear fission, heavy radioactive nuclides can change their 
mass number only by alpha decay (AX S A#4D) but can change their charge 
number Z by either alpha or beta decay. As a result, there are only four paths 
that the heavy naturally occurring radioactive nuclides may take as they decay to 
stable end products. The four paths have mass numbers expressed by either 4n, 
4n & 1, 4n & 2, or 4n & 3 (n ! integer), because only alpha decay can change 
the mass number. These four series are listed in Table 12.3. All of these radioac-
tive series occur in nature except that of neptunium. The member of the neptu-
nium series with the longest half-life, 237Np (t1/2 ! 2.14 " 106 y), has a lifetime 
so much less than the age of our solar system that virtually all the members have 
already decayed.

The sequence of one of the radioactive series, 232Th, is shown in Figure 
12.17. Note that 212Bi can decay by either alpha or beta decay; this is called 
branching. The subsequent decay is usually a beta or alpha decay, respectively, to 
eventually reach the same end product. Normally one path of the branch is heav-
ily favored, but both paths are shown for 212

83 
Bi in Figure 12.17 because it has a 

36% probability of alpha decay and a 64% probability of beta decay. As shown in 
Figure 12.17 the effect of the successive alpha and beta decays is to bring the 
nuclide closer to the line of stability until a stable nuclide is finally reached.

Mass     End 
Numbers Series Name Parent t1/2 (y) Product

4n Thorium 232
90 Th 1.40 " 1010 208

82 
Pb

4n & 1 Neptunium 237
93 

Np 2.14 " 106 209
83 Bi

4n & 2 Uranium 238
92 

U 4.47 " 109 206
82 

Pb

4n & 3 Actinium 235
92 

U 7.04 " 108 207
82 

Pb

Tab le  12 .3    The Four Radioactive Series

80 84 88 92

a decay

b# decay

122

130

140

144

Proton number (Z )

N
eu

tr
on

 n
um

be
r 

(N
)

208Pb

208Tl

212Pb

228Ra

212Po

216Po

220Rn

224Ra

228Th

232Th

228Ac

212Bi
Figure 12.17 The predomi-
nant path for the decay chain of 
232
90 Th. The mass number can only 
change by alpha decay, but both 
alpha and beta decay can change 
the atomic number Z. A branch is 
shown for 212Bi. Not all branching 
is shown.
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466 Chapter 12 The Atomic Nucleus

Time Dating Using Lead Isotopes
Because the isotope 204Pb is not radioactive and no other nuclide decays to it, its 
abundance is presumably constant. The stable isotopes 206Pb and 207Pb, on the 
other hand, are at the end of the radioactive chains of 238U and 235U, respectively. 
However, because 235U has a relatively short half-life (0.70 " 109 y) compared to 
the age of the Earth, most of the 235U has already decayed to 207Pb, and the ratio 
of 207Pb/204Pb has been relatively constant over the past 2 billion years. Because 
the half-life of 238U is so long, the ratio of 206Pb/204Pb is still increasing. A plot of 
the abundance ratio of 206Pb/204Pb versus 207Pb/204Pb can be a sensitive indicator 
of the age of lead ores, as shown in Figure 12.18. Such techniques have been 
used to show that meteorites (Meteor Crater in Arizona and elsewhere), believed 
to be left over from the formation of the solar system, are 4.6 billion years old. 
This is in agreement with dating measurements made on moon rocks returned 
to Earth. Although no 4.6-billion-year-old terrestrial rocks have yet been found 
on Earth, indirect evidence based on radioactive dating techniques leads us to 
believe Earth was formed about 4.6 billion years ago. The oldest terrestrial rocks, 
dated 4.28 billion years old, were reported in 2008 and found near Hudson Bay 
in Canada. The oldest terrestrial material, found in western Australia, is a zircon 
material (mineral grains) enclosed in sandstone that is believed to be 4.40 bil-
lion years old. See the Special Topic box on “The Formation and Age of the 
Earth”.

10 11

Meteor Crater meteorite (Arizona)

Daylight (South Africa)

Geneva Lake (Ontario)

Cobalt (Ontario)

Southwestern Finland
Mount Isa (Queensland)

Balmat (New York)
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Figure 12.18 The growth 
curve for lead ores from various 
deposits is shown. The age of the 
specimens can be obtained from 
the abundance ratio of 
206Pb/204Pb versus 207Pb/204Pb. 
When extrapolated backward in 
time, the growth curve gives an 
age of 4.6 billion years for the 
specimens from the Meteor Cra-
ter in Arizona. From S. Moorbath, 
Scientific American 236, 92 
(1977).
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Radioactive Carbon Dating
Radioactive 14C is produced in our atmosphere by the bombardment of 14N by 
neutrons produced by cosmic rays.

 n & 14N S 14C & p (12.51)

A natural equilibrium of 14C to 12C exists for molecules of CO2 in the atmosphere. 
All living organisms use or breathe CO2 from the atmosphere (see Figure 12.19). 
However, when the living organisms die, their intake of 14C ceases, and the ratio 
of 14C/12C (!R) decreases as 14C decays. In order to use 14C for dating, corrections 
must be made for the changes in composition of the Earth’s atmosphere and for 
variations in the flux of cosmic rays due to changes in the Earth’s magnetic field. 
At the time of death, the initial decay rate is 14 decays/min per gram of carbon 
(R ! 1.2 " 10#12). This method has been calibrated with tree-ring counting to ages 
of about 10,000 years. Because the half-life of 14C is 5730 years, it is convenient to 
use the 14C/12C ratio to determine the age of objects (see Figure 12.20, page 468) 
over a wide range up to perhaps 60,000 years ago, but the uncertainty increases 
dramatically for times greater than about 10,000 years ago. Indeed, quite sophisti-
cated mass spectrometry techniques using accelerators to accelerate carbon ions 
have enabled scientists to test samples as small as 105 atoms (about 10#20 kg). Much 
older dates can now be obtained than by using the previous techniques of actually 
measuring the 14C decay rate, which required samples of up to 0.01 kg. Willard 
Libby received the 1960 Nobel Prize in Chemistry for this ingenious technique.

Other particularly useful radioisotopes for dating purposes include 10Be, 26Al, 
36Cl, and 129I. The half-life of 10Be is 1.5 million years and may be useful in studying 
the evolution both of humans and of the ice ages. The isotope 36Cl is particularly 
well suited for dating and tracing groundwater movement and for determining the 
suitability of radioactive waste depositories. The dating of 10Be and 26Al in marine 
sediments has confirmed their extraterrestrial origin, possibly from comets.

Assume that all the 206Pb found in a given sample of ura-
nium ore resulted from decay of 238U and that the ratio of 
206Pb/238U is 0.60. How old is the ore?

Strategy Let N0 be the original number of 238U nuclei that 
existed. The 238U nuclei eventually decay to 206Pb, and the 
longest time in the radioactive decay chain 238U S 206Pb is 
the half-life of 238U, t1/2 ! 4.47 " 109 y. The numbers of 
nuclei for 238U and 206Pb are then

  N 1238 U 2 ! N0e #lt

 N 1206 Pb 2 ! N0 # N 1238U 2 ! N011 # e #lt 2

The abundance ratio is

 R œ !
N 1206Pb 2
N 1238U 2 !

1 # e #lt

e #lt ! e lt # 1 (12.50)

We can solve Equation (12.50) for t, because we know ex-
perimentally the ratio R œ and the decay constant l for 238U.

Solution The result for t from Equation (12.50) is

  t !
1
l

 ln1R œ & 1 2 !
t1 /2

ln12 2  ln1R œ & 1 2
  !

4.47 " 109 y
ln12 2  ln11.60 2 ! 3.0 " 109 y

The sample of uranium ore is about 3 billion years old.

 EXAMPLE 12.18

Cosmic rays!
produce!
neutrons

Neutrons!
interact with 14N
to produce 14C

n
n

14N!
!

14CO2!
!

14C!
!

16O!
!

16O!
!

14C makes CO2 with!
two 16O atoms

Plants and animals!
use or breathe CO2!
!

When an organism dies, the ratio of!
14C/12C decreases.

Figure 12.19 Cosmic rays produce neutrons, which react with 14N in the atmosphere to produce 
14C. The 14C nuclei enter into living organisms in the form of CO2. After the living organism dies, 
the ratio of 14C/12C in its remains decreases according to the decay rate of 14C.
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Special Topic

The Formation and Age 
of the Earth

I t is believed that the Earth and the solar system 
were formed 4.6 billion years ago when gravita-

tional forces caused dust and gases to accrete (glob 
together). This process continues today, albeit at a 
slower rate, due to meteorites and other particles 
striking Earth. For the first half billion years, the Earth 
was relatively cool ("1000°C) and probably solid. The 
main constituents were most likely nickel, iron, and 

silicates. As millions of years passed, heat energy was 
added from collisions and radioactive decay of ura-
nium, thorium, and potassium, among other radio-
active elements. As Earth’s temperature gradually in-
creased, heavy elements such as iron and nickel 
melted before the silicates, and because the metals are 
heavier, they sank toward Earth’s center. The lighter 
material floated to the top, and material of intermedi-
ate density formed the mantle (see Figure A). The 
Earth was a turbulent place with gigantic heaving and 

Mantle

Crust

Liquid
iron core

Solid
iron
core

Figure A Schematic diagram of the Earth’s composition. The 
crust is only about 30 km thick and is rich in oxygen, silicon, and 
aluminum. The mantle extends to a depth of perhaps 2900 km 
and consists of dense rock and metal oxides. It contains more 
than 80% of the Earth’s volume. The core is composed primarily 
of iron and nickel and has a temperature estimated to be about 
6000°C, about the same as the Sun’s surface temperature. Radio-
activity continues to add most of the heat inside the Earth.

Figure 12.20 Although most radiocarbon dating is performed on bone or charcoal, many other 
organic materials such as those shown here from the British  Museum (mummy wrapping, tree 
rings, ancient Egyptian rope, and reeds) can be dated.
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bubbling on the surface. Volcanoes exploded and 
flowing lava was commonplace.

Eventually the Earth’s surface cooled, and its crust 
formed. Earth slowly took on its present appearance, 
but radioactivity continued to raise the temperature 
inside the Earth. It is the thermal energy generated by 
radioactivity that turns iron in the outer core into a 
convecting dynamo that produces the Earth’s mag-
netic field. This heat also leaks out into the mantle 
and eventually moves the tectonic plates and pro-
duces volcanoes. Temperatures increase toward the 
center of the Earth to about 6000°C. Despite such 
high temperatures, the inner core is solid because of 
the great pressure.

How old is Earth? According to ancient Hindu 
philosophy, it is about 2 billion years old. Archbishop 
James Ussher (1581– 1656) of Ireland, who was also 
vice chancellor of Dublin’s Trinity College, wrote a 
treatise in which he determined that Earth was created 
on Saturday evening, October 22, 4004 BC. Dr. John 
Lightfoot, a distinguished Greek and biblical scholar 
and vice chancellor of Cambridge University, deter-
mined in 1642 that Earth was created on September 17, 
3928 BC. Charles Darwin, the great evolutionist, made 

an estimate that Earth is several hundred million years 
old based on geology. Serious efforts to determine 
Earth’s age began in the mid-eighteenth century. 
William Thomson (Lord Kelvin), an expert on ther-
modynamics, calculated that Earth would have been 
created 20– 40 million years ago based on his determi-
nation of the sun’s age and how long Earth took to 
cool from its molten state. Thomson’s estimate was low 
because he was unaware of the highly efficient fusion 
reaction that powers the sun.

The field changed with the discovery of radioac-
tivity by Henri Becquerel in 1896. As early as 1907 the 
Yale University radiochemist B. B. Boltwood proposed 
that the lead/uranium ratio in uranium materials 
might be useful as a geological dating tool. As stated 
in Section 12.8 no Earth rocks have been found as old 
as 4.6 billion years, but radiometric tests of moon 
rocks and some 70 meteorites have shown that the age 
of Earth is 4.55 billion years with an uncertainty of 
1%. This number assumes that the Earth, moon, and 
meteorites are part of the same evolving solar system. 
Clair Patterson (1922– 1995), professor of geochemis-
try at Caltech, obtained the number of 4.55 billion 
years for the age of the Earth in 1953.

A bone suspected to have originated during the period of 
the Roman emperors was found in Great Britain. Accelera-
tor techniques gave its 14C/12C ratio as 1.10 " 10#12. Is the 
bone old enough to have Roman origins?

Strategy Remember that the initial ratio of 14C/12C at the 
time of death was R 0 ! 1.2 " 10#12. We use the radioactive 
decay law to determine the time t that it will take for the 
ratio to decrease to 1.10 " 10#12.

Solution The number of 14C atoms decays as e#lt.

 N 114C 2 ! N0e #lt

The ratio of ions is given by

 R !
N 114C 2
N 112C 2 !

N0114C 2e#lt

N 112C 2 ! R0e#lt

where R 0 is the original ratio. We can solve this equation for t.

 e #lt !
R
R0

  t !
#ln1R /R0 2

l
! #t1 /2 

ln1R /R0 2
ln12 2

  ! #15730 y 2 a#0.087
0.693

b ! 720 y

where we have inserted the known values of t1/2, R 0, and R 
to find the age of the bone. The bone does not date from 
the Roman Empire, but from the medieval period.

 EXAMPLE 12.19
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470 Chapter 12 The Atomic Nucleus

The discovery of the neutron in 1932 solved several outstand-
ing problems, including the understanding of the nuclear 
constituents and the origin of very penetrating radiation.

A nuclide AZX  has mass M and is composed of Z protons 
and N neutrons. Its mass number is A ! Z & N. Masses are 
measured in terms of atomic mass units u. The radius of a 
nucleus is R ! r0A1/3, where r0 ! 1.2 " 10#15 m ! 1.2 fm. 
Electron scattering is useful to measure the size and shapes 
of nuclei. The properties of the nucleons are as follows:

 Property Neutron Proton

 Mass (u) 1.008665 1.007276
 Charge (e) 0 &1
 Spin (U) 1/2 1/2
 Magnetic moment  #1.91 &2.79
 (e U/2mp)

The study of the deuteron and nucleon-nucleon scat-
tering indicates that the nuclear force is attractive and much 
stronger than the Coulomb force. However, it is effective 
only over a short range (up to about 3 fm). The nuclear 
force is charge independent and has a hard core.

A nuclide is stable if its mass is smaller than any other 
possible combination of the A nucleons. Stable nuclides 
tend to have N ! Z for small A and N , Z for medium and 
large A. The total binding energy for a nuclide is

 B 1AZX 2 ! 3Nmn & ZM 11H 2 # M 1AZX 2 4c 2 (12.10)

The von Weizsäcker semi-empirical mass formula is useful 
in predicting the nuclear binding energy. There are no 
stable nuclei with Z , 83 or A , 209. Nuclei tend to be more 
stable with an even number of protons and/or neutrons. 
Nuclei near 56Fe have the highest binding energies per nu-
cleon, and the average binding energy per nucleon for most 
nuclei is about 8 MeV.

The radioactive decay law is N ! N0e#lt, where l is the 
decay constant and the half-life t1/2 ! 0.693/l. The activity 
R ! lN. A becquerel (Bq) is 1 decay/s. Radioactive decay 
occurs when the disintegration energy Q , 0. The four 
kinds of alpha and beta decay are

Alpha A
ZX S A#4

Z#2D & a  (12.30)
decay Q ! 3M 1AZX 2 # M 1A#4

Z#2D 2 # M 14He 2 4c 2 (12.31)

b# decay A
ZX S      A

Z&1D & b# & n (12.37)
 Q ! 3M 1AZX 2 # M 1 A

Z#1D 2 4c 2 (12.38)

b& decay A
ZX S      A

Z#1D & b& & n (12.40)
 Q ! 3M 1AZX 2 # M 1 A

Z#1D 2 # 2me 4c 2 (12.41)

Electron A
ZX & e# S      A

Z#1D & n (12.43)
capture Q ! 3M 1AZX 2 # M 1     AZ#1D 2 4c 2 (12.44)

There are only four radioactive series. For example, two 
of them begin with uranium isotopes, 235U and 238U. Radio-
isotopes are useful to date objects like the age of Earth and 
ancient objects. Radiocarbon 14C is one of the most useful.

S u m m a r y

Q u e s t i o n s

 1. Explain why neutrons are not prohibited from being 
in the nucleus for the same three reasons, discussed in 
the text, that electrons are excluded.

 2. Why does the atomic number Z determine the chemi-
cal properties of a nuclide? What differences in chem-
ical properties would you expect for 16O, 17O, and 18O, 
which are all stable? What about 15O, which is 
unstable?

 3. Explain how the nuclear charge radius could be dif-
ferent from the nuclear mass or nuclear force radius.

 4. Do you believe it is easier to measure atomic masses or 
nuclear masses? Explain how you could experimen-
tally measure both for 2H. What about for 40Ca?

 5. Do you think it is signifi cant that the nucleus has a 
hard core? What would happen if it did not?

 6. Is the nuclear potential shown in Figure 12.5 consis-
tent with a short-range nuclear force? Explain.

 7. How likely is it that there are additional, as-yet-
undetected, stable nuclides that are not shown in 
Figure 12.6? Explain.

 8. Why does the binding energy curve of Figure 12.7 rise 
so fast for the light nuclei but fall off so slowly for the 
heavy nuclei?

 9. Hundreds of nuclides are known to decay by alpha 
emission. Why is decay by 3He emission never (or 
rarely) observed?

 10. For several decades it was believed that the neutrino 
was massless. If that were so, explain why it must still 
be distinct from a photon, despite the fact that both 
travel at the speed of light.

 11. Why is electron capture more probable than !& decay 
for the very heavy radioactive elements?
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   Problems 471

 12. Why do unstable nuclei below the line of stability in 
Figure 12.6 undergo !& decay, whereas unstable nu-
clei above the line of stability undergo !# decay?

 13. Why are radioactive nuclei still producing heat inside 
Earth?

 14. Not everyone agrees about the age of the oldest mate-
rial and rocks found on Earth. Research the evidence 
and summarize the arguments. Make sure you explain 
why some scientists believe the reported ages may be 
in error.

P r o b l e m s

  Note: The more challenging problems have their 
problem numbers shaded by a blue box.

12.1 Discovery of the Neutron
 1. Assume that gamma rays are Compton scattered by 

hydrogen. What energy gamma rays are necessary to 
produce 5.7-MeV protons?

 2. Are the nuclear spins of the following nuclei integral 
or half-integral: 3He, 6Li, 7Li, 18F, 19F?

12.2 Nuclear Properties
 3. What are the number of protons, number of neu-

trons, mass number, atomic number, charge, and 
atomic mass for the following nuclei: 3

2He, 4
2He, 18

8 O, 
44
20Ca, 209

83Bi, and 235
92U?

 4. What are the number of neutrons and protons for the 
following nuclides: 6Li, 13C, 40K, and 102Pd?

 5. List all the isotopes of calcium, and all the isobars and 
isotones of 40Ca.

 6. Write down the nuclidic symbol and percentage 
abundances of all the nuclides having atomic number 
7, 23, and 38. Use Appendix 8.

 7. Write down the nuclidic symbol and half-lives for the 
unstable nuclei having Z  !  18 that undergo beta de-
cay and for Z  !  102 that undergo spontaneous fi ssion. 
Use Appendix 8.

 8. What is the ratio of density of the nucleus to that of 
water?

 9. What is the ratio of the magnetic moment of the pro-
ton to that of the electron?

 10. Calculate the density and mass of the nuclide 56Fe in 
SI units.

12.3 The Deuteron
 11. What is the ratio of the electron binding energy in 

deuterium to the rest energy of the deuteron? Is it 
reasonable to ignore electronic binding energies 
when doing nuclear calculations?

 12. Consider the photodisintegration of a deuteron at 
rest. Use both the conservation of energy and mo-
mentum to determine the minimum photon energy 
required. What percentage error does neglecting the 
conservation of momentum make?

 13. Use the rules for conserving relativistic momentum 
and energy to derive Equation (12.14).

 14. (a) Find the binding energy of a triton (3H nucleus), 
assuming it is composed of a deuteron and a neutron. 
(b) Find the triton’s binding energy if it is split into 
three particles (two neutrons and a proton). (c) Ac-
count for the difference between the answers in (a) 
and (b).

12.4 Nuclear Forces
 15. Compute the gravitational and Coulomb force between 

two protons in 3He. Assume the distance between the 
protons is equal to the nuclear radius. The average nu-
clear potential energy is an attractive 40 MeV effective 
over a distance of 3.0 fm. Compare that energy with the 
potential energies associated with the gravitational and 
Coulomb forces at the same distance.

 16. Consider two protons in the 27Al nucleus with their 
centers located 2.4 fm apart. How strong must the 
nuclear force be to overcome the Coulomb force?

12.5  Nuclear Stability
 17. (a) Show that the equation giving the binding energy 

of the last neutron in a nucleus A
ZX  is

B ! 3M1A#1
ZX 2 & mn # M1AZX 2 4c 

2

  (b) Calculate the binding energy of the most loosely 
bound neutron of 6Li, 16O, and 207Pb.

 18. (a) Show that the equation giving the binding energy 
of the last proton in a nucleus A

ZX  is

B ! 3M1A#1
Z#1Y 2 & M11H 2 # M1AZX 2 4c 

2

  (b) Calculate the binding energy of the most loosely 
bound proton of 8Be, 15O, and 32S.

 19. What is the energy released when three alpha parti-
cles combine to form 12C?

 20. Estimate the nuclear spins of the 3He and 4He nuclei. 
Explain your reasoning.

 21. The energy required to remove an inner K-shell elec-
tron from a silver atom is 25.6 keV. Compare this 
electron binding energy (the most tightly bound elec-
tron) with the binding energy of the most loosely 
bound proton of 107

47Ag.
 22. Compare the total Coulomb repulsion energy be-

tween protons for 4He, 40Ca, and 208Pb. Assume the 
protons in 4He are, on the average, a distance equal to 
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472 Chapter 12 The Atomic Nucleus

the nuclear radius apart and use Equation (12.18) for 
the Coulomb repulsion of the larger nuclei.

 23. Continue adding neutrons into 16O as in Figure 12.9. 
We fi nd that 17O and 18O are stable, but 19O is not. 
Explain.

 24. Explain why 42
20Ca is stable, but 41

20Ca is not. If 42
20Ca is 

stable, why is 42
22Ti unstable?

 25. Use the von Weizsäcker semi-empirical mass formula 
to determine the mass (in both atomic mass units u 
and MeV/c2) of 48Ca. Compare this with the mass 
given in Appendix 8.

 26. (a) Use the von Weizsäcker semi-empirical mass for-
mula to determine the binding energy per nucleon 
for 18C, 18N, 18O, and 18Ne. (b) Which of these nu-
clides is the most stable? Is that consistent with what 
you expect? Explain. (c) Compare the von Weizsäcker 
B/A for 18O with the same value determined from the 
atomic masses in Appendix 8.

12.6 Radioactive Decay
 27. A radioactive sample of 60Co (t1/2  !  5.271 y) has a !# 

activity of 4.4  "  107 Bq. How many grams of 60Co are 
present?

 28. An unknown radioactive sample is observed to de-
crease in activity by a factor of fi ve in a one-hour pe-
riod. What is its half-life?

 29. Show that the mean (or average) lifetime of a radioac-
tive sample is "  !  1/#  !  t1/2/ln(2).

 30. For the reactor described in Example 12.12, compute 
the alpha activity of the 238U present in the fuel rod. 
Assume that the uranium has been enriched to 4% 
235U, which is typical for a commercial power reactor 
fuel rod.

 31. Potassium is a useful element in the human body and 
is present at a level of about 0.3% of body weight. 
Calculate the 40

19K activity in a 60-kg person. (40K has 
0.012% natural abundance.)

 32. The nuclide 18
9F (!& emitter, t1/2  !  109.8 min) is a 

useful radioactive tracer for human consumption. An 
amount of 18F having an activity of 1.2  "  107 Bq is 
administered to a patient. What is the activity 48 hours 
later?

 33. Tritium (t1/2  !  12.33 y) is mostly produced for mili-
tary purposes. The United States stopped producing 
tritium in 1988 but resumed in 2003. In 1996 it was 
reported that the United States had only 75 kg of tri-
tium stockpiled. If none of it was used by 2003, how 
much tritium remained?

 34. If we have the same mass quantities of the following 
nuclides, rank the activities of the following material: 
3H (tritium), 222Rn (radon gas), and 239Pu (alpha 
source for power generation).

12.7 Alpha, Beta, and Gamma Decay
 35. Use atomic masses to show that nucleon decay does 

not occur for 52
26Fe, although this nuclide is highly 

unstable. If one could produce 40
26Fe, do you believe it 

might nucleon decay? Explain.
 36. In Example 12.13 we showed that 230

92U does not decay 
by nucleon emission. What are the neutron and pro-
ton separation energies?

 37. Show directly using masses that protons do not un-
dergo any of the beta decays.

 38. Calculate whether 144
62Sm and 147

62Sm may alpha decay. 
The natural abundance of 144Sm is 3.1% and that of 
147Sm is 15.0%. How can this be explained?

 39. How much kinetic energy does the daughter have 
when 241

95Am undergoes $ decay from rest?
 40. Show from the conservation of energy and momen-

tum that if Equation (12.34) correctly describes the 
!# decay of 14C initially at rest, the electron energy 
spectrum must be monoenergetic and not like that 
shown in Figure 12.15.

 41. Find which of the $ and ! decays are allowed for 80
35Br.

 42. Find which of the $ and ! decays are allowed for 
227
89Ac.

 43. Show that $, !#, !&, and EC decay are possible for the 
nucleus 230

91Pa.
 44. List all the possible energies of % decay for 230U based 

on Figure 12.16.
 45. Calculate the partial pressure of helium gas for a vol-

ume of 1.0  "  10#6 m3 of 222
86Rn gas after 6 days. The 

radon gas was originally placed in an evacuated con-
tainer at 1.0 atm, and the temperature remains con-
stant at 0°C. What is the partial pressure of the radon 
gas after 6 days? (t1/2  !  3.82 d for 222Rn)

 46. The nuclide 60Co decays by !#. Yet 60Co is often used, 
especially in medical applications, as a source of % 
rays. Explain how this is possible.

 47. Explain why !# predominates over !& decay in the 
natural radioactive decay chains of the heavy 
elements.

 48. Give reasons why 14O can !& decay, but the proton 
cannot. (Hint: Use masses to prove this.)

12.8 Radioactive Nuclides
 49. Two rocks are found that have different ratios R . of 

238U to 206Pb: R .  !  0.76 and 3.1. What are the ages of 
the two rocks? Did they likely have the same origin?

 50. Use Table 12.2 to list some radioactive nuclides that 
may be useful for dating the age of Earth.

 51. If scientists are only able to determine the ratio of R . 
in Equation (12.50) to )0.01, what is the minimum 
time possible for dating?

 52. If the age of Earth is 4.6 billion years, what should be 
the ratio of 206Pb/238U in a uranium-bearing rock as 
old as the Earth?

 53. Use only Z and A values to calculate the number of $ 
and ! particles produced from the decay of 235

92U to its 
stable end product 207

82Pb.
 54. Earth is about 4.6 billion years old. If 235U is 0.72% 

abundant today, what was the ratio of 235/238 
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isotopes when Earth formed? (Hint: Look in Appen-
dix 8 for useful information.)

 55. Consider 100 g of 252Fm, which decays in a sequence 
of fi ve $ decays to eventually reach 232Th. (a) How 
much of the original sample is 252Fm, and how much 
is 248Cf after one day? (b) After one month? (c) Ex-
plain why it is mostly curium after 5 years. (d) What 
isotope is it mostly after 100 years? (e) Approximate 
how much time it will take for the sample to be mostly 
thorium.

 56. Note in Table 12.2 that the half-lives of two abundant 
isotopes of tellurium are more than 1021 years. 
(a) What is the decay rate per unit mass of 128Te, 
which decays by emitting two !#, in units of s#1 # kg#1? 
(b) How much mass of a natural sample of tellurium 
would it take to measure a decay rate of 10 !#/s for 
128Te?

 General Problems
 57. Two isobars that have their Z and N values inter-

changed are called mirror isobars. (a) Which of the mir-
ror isobars 23Na and 23Mg do you expect to be more 
stable? Explain. (b) Predict how the less stable of the 
two isotopes in part (a) will decay. Verify your predic-
tion by fi nding Q for the decay(s) you predicted.

 58. The stable nuclei 36Ar and 76Se both differ by 20 in 
atomic number from 56Fe, which lies at the peak of 
the binding energy per nucleon curve (Figure 12.7). 
Find B/A for both 36Ar and 76Se. Which one has the 
larger B/A? Why is this to be expected?

 59. In Conceptual Example 12.7, we suggested that add-
ing both a proton and a neutron to 14N would result 
in a stable nucleus. Verify this conjecture by using 
atomic masses to check the resulting nuclei for all 
forms of alpha and beta decay.

 60. In Section 12.5 we noted that adding a proton to 12C 
results in an unstable nucleus. Check the resulting 
nucleus for all forms of alpha and beta decay.

 61. Show that the total Coulomb self-energy of a sphere 
of radius R containing a charge Ze evenly spread 
throughout the sphere is given by

 ¢ECoul !
3
5

 
1Ze 22

4pP0R
 (12.17)

  Hint: Calculate the work done to bring a charge from 
infi nity into a spherical shell of radius r and then in-
tegrate the spherical shell from 0 to R.

 62. Use the uncertainty principle $p $x  ,  U/2 to calcu-
late the minimum kinetic energy of a nucleon known 
to be confi ned in 2H. What is the de Broglie wave-
length of this nucleon? Is this reasonable?

 63. The nucleus 180
73Ta is unusual because it has both odd 

Z and odd N, yet it is barely unstable with a half-life of 
8 hours. It has an isomeric state at excitation energy 
0.075 MeV that experimental measurements indicate 

has a half-life greater than 1015 y. For many years it 
was believed that this long-lived excited state was the 
ground state and might be stable. All the stable odd Z 
and N nuclei are smaller than 16O. Why are all heavy 
elements with both odd Z and N unstable? The spins 
of the 180Ta ground state and isomeric states are be-
lieved to be 1& and 9#, respectively. Explain why sci-
entists may have believed for so long that 180Ta was 
stable.

 64. The only stable isotope of holmium is 165
67Ho. Explain 

this. Can 165Ho $ decay? Is it likely to $ decay?
 65. The nuclide 226

88Ra decays to gaseous 222
86Rn with a t1/2  !  

1600 y. The nuclide 222
86Rn in turn a decays with a 

shorter lifetime, t1/2  !  3.82 days. If radium is origi-
nally placed in an evacuated closed container, the 
amount of radon gas builds up and can be measured. 
It is found that radon gas builds up to a constant value 
and that as much 222Rn is being produced as decays. 
This process is called secular equilibrium, and the activi-
ties are equal. (a) Show that radon builds up at the 
rate dN2/dt  !  #1N1  #  #2N2 where #1, N1 and #2, N2 are 
the decay constants and number of nuclei present for 
radium and radon, respectively. (b) Because the de-
cay of 226Ra is so slow, assume that N1 is constant and 
show that

N2 !
l1

l2
N111 # e#l2t 2

  (c) Show that after a long time, secular equilibrium is 
reached.

 66. Rudolf Mössbauer discovered in 1957 that transitions 
from an excited nuclear state occur with negligible 
nuclear recoil when the nucleus is embedded in a 
large crystal lattice because the entire lattice absorbs 
the recoil. A transition like that in 191Ir from the 129-
keV excited state to the ground state has a lifetime of 
1.9  "  10#10 s. (a) Determine the energy width of the 
decay. (b) Similarly, if the photon is absorbed by 191Ir 
embedded in a crystal, the recoil is negligible. How-
ever, even a slight motion of the absorber will lead to 
a Doppler shift suffi cient to destroy the resonance 
absorption. Calculate the speed necessary to shift the 
energy absorption by 5/, where / is the nuclear decay 
width. This effect is called the Mössbauer effect.

 67. Radon gas in the form of 222Rn is a health hazard be-
cause it is a gas that occurs as a result of one of the 
naturally occurring radioactive decay chains. It tends to 
collect in basements and can be inhaled by humans. 
(a) Which decay chain produces this isotope of radon? 
(b) Show that 222Rn produces fi ve more disintegrations 
before a stable isotope is reached. (c) Choose one of 
the paths of the decay chain from 222Rn to the stable 
isotope and sum the half-lives. Approximate the num-
ber of days it would take for more than half these de-
cays to occur for a given amount of radon.

 68. Just as there are atomic shell features, there are also 
nuclear shell structures. Certain values of the number 
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474 Chapter 12 The Atomic Nucleus

of protons Z and neutrons N are called “magic,” be-
cause certain nuclides with these magic numbers are 
more tightly bound and have enhanced abundances. 
These numbers are 2, 8, 20, 28, 50, 82, and 126. (a) Use 
this fact to explain why 4He and 16O have peaks in the 
binding energy curve of Figure 12.7. (b) Explain why 
208Pb is one of the heaviest stable nuclides. (c) Discuss 
the abundances of the calcium isotopes with respect to 
their value of N. The German physicists Maria Goep-
pert-Mayer and J. Hans D. Jensen won the Nobel Prize 
in Physics in 1963 for their discoveries concerning the 
nuclear shell model.

 69. Use the nuclear shell model of the previous problem 
to list fi ve stable nuclides that have magic numbers for 
both Z and N.

 70. (a) Compute the alpha decay energy K$ for the ra-
dium isotopes 218, 220, and 222. (b) The curves in 
Figure 12.13 can be approximated by straight lines. 
Use the results of part (a) for 222Ra and 218Ra along 
with the half-lives given in Appendix 8 to write an 
equation that gives t1/2 as a function of K$. (c) Check 
the function you found in part (b) by seeing how well 
it predicts the half-life of 220Ra.
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We studied the basics of nuclear physics in Chapter 12. In the first decades of 
the twentieth century, investigators studied the atomic nucleus by using naturally 
radioactive emitters as sources of high-speed particles to probe the nucleus. The 
invention of particle accelerators in the 1930s enabled physicists to control the 
intensity and energy of these high-speed particles. These particle accelerators 
initiated a new era in nuclear and particle physics that continues today. In this 
chapter we begin by studying nuclear reactions and mechanisms. Then we dis-
cuss nuclear power generation by fission and fusion reactors. Applications of 
nuclear particle techniques include such varied phenomena as medicine, agri-
culture, archaeology, art, homeland security, and crime detection. The search 
for the discovery of new elements is an exciting and ongoing pursuit of physi-
cists. In Chapter 14 we will discuss particle physics and the development of par-
ticle accelerators.

13.1  Nuclear Reactions
Rutherford produced the first man-made nuclear reaction in a laboratory experi-
ment in 1919. He used 7.7-MeV alpha particles from the decay of 214

 84 
Po to bom-

bard a nitrogen target, and he observed protons being emitted. Although he was 
not certain of the exact nuclear reaction taking place, he convinced himself that a 
nuclear transformation had taken place. We now know that the reaction was

 a ! 14
 7 

N S p ! 17
 8 O (13.1)

The first nucleus written is the projectile (a or 4He nucleus), and the second is 
the target (14N), normally at rest. These two nuclei interact and undergo a trans-
mutation to one or more final particles. The detected particle is normally listed 

C H A P T E R

13

475

Nuclear Interactions 
and Applications

Ernest Lawrence, upon hearing the first self-sustaining chain reaction 
would be developed at the University of Chicago in 1942 rather than at 
his University of California, Berkeley lab said, “You’ll never get the chain 
reaction going here. The whole tempo of the University of Chicago is too 
slow.”

Quoted by Arthur Compton in Atomic Quest
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476 Chapter 13 Nuclear Interactions and Applications

first after the arrow (p or 1H), and the residual nucleus listed last (17O). A short-
hand way of writing this reaction is

 14 N1a, p 217O (13.2)

The general reaction x ! X S y ! Y is written in shorthand as

 X 1x, y 2Y  (13.3)

Normally p, d, t, a are used as symbols for the nuclei 1H, 2H, 3H, and 4He when 
they are the projectile or detected particle.

The study of nuclear reactions was helped considerably by three important 
technological advances in accelerator development:

1.  The high-voltage multiplier circuit, developed in 1932 by the British phys-
icists J. D. Cockcroft and E. T. S. Walton (both received the Nobel Prize 
in Physics, 1951)

2.  The first electrostatic generator (Van de Graaff accelerator), developed in 
1931 by R. Van de Graaff in the United States (see Figure 13.1)

3.  The first cyclotron, built in 1932 at the University of California in Berkeley 
by E. O. Lawrence (Nobel Prize in Physics, 1939) and M. S. Livingston (see 
Figure 13.2)

These three accelerators and the ones that followed them allowed nuclear reac-
tions to be studied in the laboratory using accelerated particles of controlled 
energy and intensity. This allowed detailed study of specific characteristics of the 
nucleus. Accelerator technology development continues today to allow physicists 
to delve even deeper into the understanding of nature’s forces (see Chapter 14).
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Charge-remover!
points
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!
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!

!
!
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Charged belt

Pulley

Power!
supply

Spray points Particle beam

Ground plane

Acceleration!
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Pressure tank

Figure 13.1 Schematic diagram 
of a Van de Graaff electrostatic 
accelerator. Charge is transferred 
to an insulated moving belt by 
spray points and moved to a high-
voltage terminal, where the 
charge is removed. The charge 
builds up on the terminal, creat-
ing a large electrostatic potential. 
Ionized particles are accelerated 
to ground potential in an acceler-
ation tube, where they become a 
particle beam that can be steered 
to a target.
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We already mentioned several nuclear reactions in Chapter 12. Among 
them is the production of neutrons in the 9Be(a, n)12C reaction. Nuclear photo-
disintegration is the initiation of a nuclear reaction by a photon, as in the 
2H(g, n)1H reaction to measure the binding energy of the deuteron. Neutron or 
proton radiative capture occurs when the nucleon is absorbed by the target nu-
cleus, with energy and momentum conserved by g-ray emission. Examples are 
9Be(p, g)10B and 16O(n, g)17O.

If we want to draw attention to the fact that one of the residual particles is left 
in an excited state, we put a superscript asterisk on the nucleus’s symbol: 
12C ! 12C S a ! 20Ne* or 12C(12C, a)20Ne*. To indicate the explicit excited state 
that a nucleus is in, we write the energy in parentheses after the nucleus: 
12C ! 12C S a ! 20Ne(4.247 MeV). The asterisk would be redundant in this case.

The projectile and target are said to be in the entrance channel of a nuclear 
reaction; for example, 12C and 12C represent a beam of carbon ions incident on a 
carbon target. The reaction products are in the exit channel, for example, a and 
20Ne. If the conservation laws allow, there may be many exit channels for a given 
en trance channel. For example, 12C(12C, n)23Mg, 12C(12C, p)23Na, 12C(12C, 3He)21Ne, 
and 12C(12C, 6Li)18F show different exit channels for the same entrance channel.

In elastic scattering the entrance and exit channels are identical, and the par-
ticles in the exit channels are not in excited states. In inelastic scattering the en-
trance and exit channels are also identical, but one or more of the reaction prod-
ucts in the exit channel are left in an excited state as in the a ! 20Ne S a ! 20Ne* 

Entrance and exit channels

Elastic and inelastic 
scattering

Figure 13.2 (a) The components of a simple cyclotron. Particles are injected into the middle 
between the dees and move in circular paths perpendicular to the magnetic field. Each time they 
pass between the two dees they are accelerated by a radio-frequency (RF) voltage. Eventually the 
radius of the particle’s path becomes large, and the particles are extracted as a particle beam. 
(b) E. O. Lawrence (1901– 1958), on the right, working on the 60-inch-diameter cyclotron at the 
University of California at Berkeley in the 1930s. Lawrence was born in South Dakota and received 
his college degrees from the University of South Dakota (B.A. in chemistry, 1922), University of 
Minnesota (M.A. in physics, 1923), and Yale University (Ph.D. in physics, 1925). He went to the 
University of California, Berkeley, in 1928 at age 27, and within three years he had invented the 
cyclotron and was made the youngest full professor at Berkeley. He remained there until his death.
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478 Chapter 13 Nuclear Interactions and Applications

reaction. We have listed the preceding reactions as if two particles are always in the 
exit channel. That is certainly not the case. Reactions such as

 a ! 20
10 

Ne S n ! p ! 22
11 

Na (13.4)

can also occur.

Cross Sections
The properties of the nucleus have mostly been studied by detecting one or more 
particles in the exit channel in a nuclear reaction. The probability of a particular 
nuclear reaction occurring is determined by measuring the cross section s. The cross 
section is determined by measuring the number of particles produced in a given 
nuclear reaction, which in turn allows physicists to learn about the nuclear force 
that caused the nuclear reaction. We introduced the concept of the cross section in 
Section 4.2, when we discussed how Rutherford and his colleagues “discovered” the 
nucleus in their early experiments. We follow the same procedure as in Section 4.2 
and define n " number of target atoms/volume, t " target thickness, A " area 
of the target, r " density, NA " Avogadro’s number, NM " atoms/molecule, and 
Mg " gram-molecular weight. The number of target nuclei Ns is

 Ns " n t A "
rNANM 

tA
Mg

 (4.10)

where the parameters are as defined in Section 4.2. The probability of the par-
ticle being scattered is proportional to the product of the cross section times the 
total number of target nuclei Ns. We normalize this product to obtain the prob-
ability of scattering by dividing by the total target area A.

 Probability of scattering " 
Ns s

A
"

nt As
A

" nts (13.5)

The product nt is the number of target nuclei exposed per unit area, and it is 
related to the probability of scattering by multiplying by the cross section.

We measure the cross section by counting the number of detected particles as 
a function of the number of incoming particles. If the cross sections are measured 
as a function of the scattering angle u (angle between the incoming beam of par-
ticles and the detected particle), we call them differential cross sections s(u). The 
geometry is shown in Figure 13.3. Differential cross sections are determined by the 
number of particles scattered into a small solid angle d#, measured in units of 
steradian (abbreviated sr), surrounding the scattering angle u. In spherical coor-
dinates, with u being the angle measured from the incident beam direction, the 
solid angle d# " sin u du df. The differential cross section can also be written as 

Probability of scattering

Differential cross section

Particle!
beam

Target

d#

df
du

r du

r sin udf

r sin u
u

r

r 2

z

d# " " sin ududf
(r sin u)(r du)(df)

Figure 13.3 A particle from a 
beam interacts with a target, 
sending a reaction particle into a 
differential solid angle d #. The 
solid angle is defined by the an-
gles u and f in spherical coordi-
nates: d # " sin u du df.
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   13.1 Nuclear Reactions 479

ds/d#, which expresses more clearly the number of particles scattered into the 
differential solid angle d#: s(u) " ds/d#. Integrating the differential cross sec-
tion over the entire range of scattering angles yields the total cross section sT.

 sT " !s1u 2  d# " !
2p

0

df!
p

0

d s

d #
 sin u du

In general, the cross sections depend on the incident kinetic energy and other 
properties including the spins of the particles. Total cross sections are tradition-
ally measured in units of barns (b) with 1 barn " 10$28 m2 " 100 fm2, so that a 
barn is about the cross-sectional area of an A " 100 nucleus. The units of dif-
ferential cross section are barns/steradian, or b/sr.

Total cross section

J. L. Black and colleagues* measured the total cross section 
for the 12C(a, n)15O reaction at an incident energy of Ea " 
14.6 MeV to be sT " 25 mb. If a 1.0-%A a-particle beam 
(4He!!) is incident on a 4.0-mm2 carbon target of thickness 
1.0 %m (density " 1.9 g/cm3) for one hour, how many neu-
trons are produced?

Strategy In order to find the number Nn of neutrons pro-
duced, we find the probability of scattering and multiply it 
by the number NI of incident a particles: Nn " NI P. To find 
the probability of scattering, we first need to determine n, 
the number of nuclei/volume, which we established in 
Equation (4.8):

 n "
rNANM

Mg
 
atoms
cm3  (4.8)

We can calculate the probability of scattering P " nts 
[Equation (13.5)], because we can determine n and thick-
ness t, and we are given the cross section s. Lastly, we deter-
mine the number NI of incident a particles from the beam 
current and time the beam is on the target.

Solution Some of the values needed are

 r " 1.9 g/cm3  NA " 6.02 & 1023 molecules/mol

 NM " 1 atom/molecule  Mg " 12 g/mol

If we substitute these values in the equation for n, we have

  n " a 1.9 g
cm3 b a 6.02 & 1023 molecules

mol
b

  & a 1 atom
molecule

b a mol
12 g

b
  " 9.53 & 1022  

atoms
cm3

The probability of scattering can now be determined from 
Equation (13.5).

  P " nts " 19.53 & 1022 nuclei/cm3 2 11.0 & 10$6 m 2
  & 125 & 10$31 m2 2 1106 cm3

 /m3 2
  " 2.4 & 10$7

The number of incident a particles NI on the target can 
be determined by the beam current and length of time the 
beam is on the target.

 NI " 11.0 %A 2 a 10$6 C/s
%A

b 11.0 h 2 a3600 
s
h
b

  & c 1 alpha

211.6 & 10$19 C 2 d
  " 1.1 & 1016 alphas

Note that we have taken the charge of the incident a parti-
cles to be !2e.

The ratio of detected neutrons to incident alpha parti-
cles (Nn/NI) is the probability P of scattering. We therefore 
have

  Nn " NI P " NI nts

  " 11.1 & 1016 alphas 2 12.4 & 10$7 neutrons/alpha 2
  " 2.6 & 109 neutrons

 EXAMPLE 13.1

*J. L. Black et al., Nuclear Physics 115, 683 (1968).
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480 Chapter 13 Nuclear Interactions and Applications

13.2   Reaction Kinematics
In this chapter we are discussing low-energy nuclear reactions, in which the ki-
netic energies are typically much lower than the rest energies. Therefore we can 
use nonrelativistic kinematics in most cases. Consider the reaction x ! X S y ! Y 
depicted in Figure 13.4a, where the momentum and kinetic energy of the pro-
jectile x are px and Kx, respectively. The target X is assumed to be at rest, so pX  " 
0 and KX " 0.

The conservation of energy for the reaction is

 Mxc 
2 ! Kx ! MX 

c 
2 " Myc 

2 ! Ky ! MYc 
2 ! KY  (13.6)

If we rearrange this equation and put all the masses on one side and all the ki-
netic energies on the other side, we find a quantity similar to the disintegration 
energy of Chapter 12:

 Q " Mxc 
2 ! MX c 

2 $ 1Myc 
2 ! MY  c 

2 2 " Ky ! KY $ Kx  (13.7)Q value

E. M. Bernstein and colleagues* measured the differential 
cross section s(u) at the same energy Ea " 14.6 MeV and at 
the same scattering angle for the a ! 12C S n ! 15O and 
a ! 12C S p ! 15N reactions. They found differential cross 
sections of 3 mb/sr and 0.2 mb/sr, respectively, for the neu-
tron and proton production at the same scattering angle u. 
How much more likely is it that a neutron is produced than 
a proton?

Solution The probability of scattering is simply nts, so let 
Pn and Pp be the neutron and the proton probability, 
 respectively. We also denote the neutron and proton dif-

ferential cross section at scattering angle u by sn(u) and 
sp(u), respectively.

 
Pn

Pp
"

ntsn 1u 2
ntsp 1u 2 "

sn 1u 2
sp 1u 2 "

3 mb/sr
0.2 mb/sr

" 15

For the particular scattering angle u, this ratio is larger than 
might be expected from the fact that neutrons and protons 
have similar nuclear interactions. Other factors, such as 
overcoming the Coulomb barrier and the existence of reso-
nances, are important and will be discussed in Section 13.3.

 EXAMPLE 13.2

*E. M. Bernstein et al., Physical Review C 3, 427 (1971).
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y

Y

y'y

y'Y

fY

fy

cm

cm

y'  x " yx $ ycm y'X " ycm 

(b)

Figure 13.4 (a) Two-body nu-
clear reaction, X(x, y)Y, as ob-
served in the laboratory system 
showing the bodies before and af-
ter. (b) The same two-body nu-
clear reaction, now observed in 
the center-of-mass system in 
which the center of mass (cm) is 
at rest.
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   13.2  Reaction Kinematics 481

The difference between the final and initial kinetic energies is precisely the dif-
ference between the initial and final mass energies. We call this difference the Q 
value or energy release. Nuclear masses are required in Equation (13.7), but as 
we learned in Chapter 12, we may use atomic masses. The electron masses cancel, 
and the electron binding energies are so small that we neglect their differences. 
When using the tabulated atomic masses from Appendix 8 in Equation (13.7), we 
determine the ground state Q value, that is, all the nuclei are in their lowest en-
ergy state. If one or more of the nuclei are left in an excited state E *, that amount 
of energy must be added to the mass energy listed in Equation (13.7) in order to 
calculate the reaction Q value. We don’t need to worry about this particular point 
if we use the kinetic energies in Equation (13.7) to determine the Q value.

Energy is released in a nuclear reaction when Q ( 0, and we call this an 
exoergic (or exothermic) reaction. When Q ) 0, kinetic energy is converted to 
mass energy and we call the reaction endoergic (or endothermic). In an elastic 
collision, x ! X S x ! X, we must have Q " 0. In an inelastic collision, x ! X S 
x ! X *, we must have Q ) 0.

Endoergic and exoergic 
reactions

Calculate the ground state Q value for the reaction 
14N(a, p)17O in which Rutherford first observed a nuclear 
reaction. The kinetic energy of the a particles was 7.7 MeV. 
What was the sum of the kinetic energies of the exit 
channel?

Strategy We can determine the Q value with Equation 
(13.7) by using the atomic masses listed in Appendix 8. They 
are

  M 14 He 2 " 4.002603 u   M 11 H 2 " 1.007825 u

  M 114 N 2 " 14.003074 u   M 117O 2 " 16.999132 u

Notice that we must use the atomic masses for 1H and 4He 
in order to have the complete cancellation of the electron 
masses. We can also determine the kinetic energies of the 
exit channel from Equation (13.7).

Solution The ground state Q value is calculated from 
Equation (13.7).

  
Q

c 
2 " M 14 He 2 ! M 114 N 2 $ 3M 11H 2 ! M 117O 2 4

  " 4.002603 u ! 14.003074 u

  $ 11.007825 u ! 16.999132 u 2
  " $0.001280 u

  Q " 1$0.001280 c 
2 # u 2 a 931.5 MeV

c 
2 # u b " $1.192 MeV

The reaction is endoergic. Equation (13.7) gives the sum of 
the kinetic energies of the products.

  Q " K 1p 2 ! K 117O 2 $ K 1a 2
 K 1p 2 ! K 117O 2 " Q ! K 1a 2
  " $1.192 MeV ! 7.7 MeV " 6.5 MeV

The final reaction products share 6.5 MeV of energy.

 EXAMPLE 13.3

An endoergic (Q ) 0) reaction will not occur unless there is enough kinetic 
energy Kx to supply the needed nuclear rearrangement energy. Because linear 
momentum must also be conserved, the energy must be available in the center-
of-mass (cm) system where vcm is zero. The total momentum is zero in the cm 
system (see Figure 13.4b). The minimum kinetic energy needed to initiate a 
nuclear reaction is called the threshold energy K th, and for this energy the par-
ticles y and Y will be at rest in the cm system. Of course, particle y will still be 
moving in the laboratory system.
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482 Chapter 13 Nuclear Interactions and Applications

Let us examine conservation of energy in the center-of-mass system. The 
speed of the center of mass is given by

 vcm " vx a Mx

Mx ! MX
b  (13.8)

As shown in Figure 13.4b, the speeds of x and X in the center-of-mass system are 
v 

œ
x " vx $ vcm (to the right) and v 

œ
X " vcm (to the left), respectively, where the 

primes indicate the quantities in the cm system. At threshold we must have 
v 

œ
y " v 

œ
Y " 0 in the center-of-mass system. The conservation of energy in the 

center-of-mass system is

1
2

 Mx 1vx $ vcm 22 !
1
2

 MX  
vcm
   2 ! Mxc2 ! MX 

c2

 " Myc2 ! MY 
c2 !

1
2

Myv 
œ
y
2 !

1
2

MY 
v 

œ
Y

2 (13.9)

However, because v 
œ
y " v 

œ
Y " 0 at threshold, we have, upon rearranging terms,

 
1
2

 Mx a vx $
Mxvx

Mx ! MX
b 2

!
1
2

 MX 
Mx

2vx
21Mx ! MX 22 " $Q

This equation reduces to

 
1
2

 vx
2 a Mx MX

Mx ! MX
b " $Q

But the threshold energy is defined by K th " 1
2 Mxvx

2, so we have

 Kth " $Q aMx ! MX

MX
b  (13.10)

Equation (13.10) is the threshold energy calculated nonrelativistically for an 
endo ergic reaction. The Q value determined in Example 13.3 for the 
14N(a, p)17O reaction was $1.192 MeV. The threshold kinetic energy is 
1.192 MeV & (4 ! 14)/14, which gives 1.533 MeV. The reaction discussed 
in Example 13.3 will not take place if the incident a particle has less than 
1.533 MeV kinetic energy.

13.3  Reaction Mechanisms
As we discussed in Chapter 12, physicists use models to describe the nucleus 
because they have been unable to completely understand the nuclear force. The 
primary technique for studying nuclei and nuclear forces has been to perform 
scattering reactions. Physicists measure cross sections, which are proportional to 
the reaction probabilities, which in turn depend on details of nuclear structure 
and the strengths and ranges of the interaction.

There are different types of nuclear reactions—each occurring over varying 
bombarding energies. For example, reaction mechanisms initiated by electrons 
are much different from those initiated by alpha particles. For heavy charged 
particles (protons and alpha particles) at low energies, E ) 10 MeV, the scatter-
ing is dominated by the Coulomb force, and the compound nucleus reaction 
mechanism (discussed in the next section) is appropriate. Direct reactions domi-
nate for bombarding energies in the range 10– 100 MeV. At  energies above about 
140 MeV, a new particle called a pion emerges (see Chapter 14); the pion inter-

Threshold energy
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   13.3 Reaction Mechanisms 483

acts strongly through the nuclear force. The energy region above 200 MeV to a 
few GeV is the realm of medium-energy physics. Experiments with protons, pions, 
and electrons dominate this region, which has some overlap with high-energy or 
elementary particle physics (covered in Chapter 14).

The Compound Nucleus
Niels Bohr proposed in 1936 that nuclear reactions take place through forma-
tion and decay of a compound nucleus. The compound nucleus is a composite 
of the projectile and target nuclei, usually in a high state of excitation. For the 
entrance channel nuclei x and X forming the compound nucleus CN, the excita-
tion energy of the compound nucleus is

 E 1CN* 2 " Mxc 
2 ! MX  c 

2 $ MC N c 
2 (13.11)

In the 12C(a, n)15O reaction discussed in Examples 13.1 and 13.2, enough en-
ergy is available from just the masses to leave 16O* in an excited state of 7.2 MeV 
when an a particle and 12C join to produce 16O*. The kinetic energy available in 
the center of mass K œ

cm (see Problem 18)

 K  
œ
cm "

MX

Mx ! MX
 K lab (13.12)

is available to excite the compound nucleus to even higher excitation energies 
than that from just the masses.

Once formed, the compound nucleus may exist for a relatively long time 
compared with the time taken by the bombarding particle to cross the nucleus. 
This latter time is sometimes referred to as the nuclear time scale tN. For a 5-MeV 
proton (v # 0.1c) crossing a typical nuclear diameter of about 9 fm, tN # 
3 & 10$22 s. Compound nuclei may live as long as 10$15 s, or 106tN. Bohr’s hy-
pothesis was that this is such a long time that the nucleus “forgets” how it was 
formed, and the excitation energy is shared by all the nucleons in the nucleus. 
When the compound nucleus finally does decay from its highly excited state, it 
decays into all the possible exit channels according to statistical rules consistent 
with the conservation laws. Examples of the formation and decay of 16O are 
shown in Figure 13.5. In Figure 13.6 (page 484) we show the excitation energy 
in 16O* equivalent to the various entrance channel rest energies.

We mentioned earlier that nuclei have discrete energy levels, much as atoms 
do, and in Figure 13.6 we exhibit the low-lying states of 16O. The lowest state, 
called the ground state, is the reference; its energy is 0.0 MeV. The first excited 
state is 6.05 MeV, with the next state close by at 6.13 MeV. The 16O ground state 
is a particularly strongly bound nuclear state. To excite 16O takes an anomalously 
large amount of energy (6.05 MeV).

16O

n ! 15O

p ! 15N
d ! 14N
3He ! 13C
4He ! 12C
6Li ! 10B

g ! 16O

p ! 15N
d ! 14N
t ! 13N
3He ! 13C
4He ! 12C
6Li ! 10B

Entrance channels

(stable, naturally!
occurring nuclides)

Exit channels

Figure 13.5 Several different 
entrance-channel two-body reac-
tions may form the nucleus 16O. 
Similarly, the excited 16O nucleus 
may decay to one of many exit 
channels that the conservation 
laws allow.
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6Li !10B
30.9

3He !13C
22.8

t !13N
25.0

d !14N
20.7

n !15O
15.7

p !15N

0.0 MeV

10.35
9.85
9.63
8.87
7.12
6.92
6.13
6.05

12.1 MeV

7.2 MeVa !12C

16N

16O

b$  decay

g(45°) a(171°)

12C(a, a)12C
12C(a, g)16O

Many!
levels

Figure 13.6 Energy-level dia-
gram of the nucleus 16O. The first 
excited state is at 6.05 MeV. If 
d ! 14N could join together at 
rest to form 16O, the excitation 
energy of 16O would be 20.7 MeV. 
The nucleus 16O is much more 
tightly bound than any of the two-
body systems shown, with a ! 12C 
being the lowest at 7.2 MeV in 
16O. On the left are shown excita-
tion functions for a ! 12C for the 
outgoing channels of g at 45° and 
a at 171°. Note that resonances 
are observed in some reactions at 
bombarding energies appropriate 
for a particular resonance in 16O; 
see, for example, 10.35 MeV. 
Note that 16N can beta decay to 
levels in 16O with excitation ener-
gies below about 10 MeV. The 
crosshatched level at 9.63 MeV is 
quite broad.

In Example 13.2 we noted that the 12C(a, n)15O reaction 
cross section was much larger than that of the 12C(a, p)15N 
reaction at Ea " 14.6 MeV. To what final excitation energy 
is 16O* excited in this reaction?

Strategy We need to find the sum of two energies. The 
first is the kinetic energy available in the center of mass 
[Equation (13.12)]. The second is the excitation energy 
E(16O*) due to just the masses when an a particle and 12C 
form to make 16O [Equation (13.11)].

Solution The available kinetic energy in the center of mass 
is, from Equation (13.12),

 K  
œ
cm "

12
4 ! 12

 114.6 MeV 2 " 11.0 MeV

The excitation energy E(16O*) due to just the masses when 
an a particle and 12C form to make 16O is determined from 
Equation (13.11) to be

 E 116O* 2 " M 14 He 2c 
2 ! M 112C 2c 

2 $ M 116O 2c 
2

 EXAMPLE 13.4
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Nuclear physicists study nuclear excited states by varying the projectile bom-
barding energy Kx and measuring the cross section at each energy, generally at 
fixed angles for the outgoing particles. This is called an excitation function. Excitation 
functions for reactions proceeding to the final ground states of 12C(a, a)12C and 
12C(a, g)16O are shown on the left in Figure 13.6. Notice that there are peaks and 
sudden changes in the smooth curves. Such sharp peaks in the excitation function 
of the reacting particles are called resonances, and they represent a quantum state 
of the compound nucleus being formed; in this case an excited state of 16O is 
formed when a and 12C interact. This is confirmed in the excitation functions of 
Figure 13.6 where the bumps coincide with particular energy levels in 16O*.

Now we can understand why 12C(a, n)15O had such a large cross section in 
Example 13.2. The reaction populated a resonance near E(16O*) " 18.2 MeV as 
determined in Example 13.4. The quantum numbers of the 12C(a, n)15O exit 
channel select this energy level in 16O* to be populated, whereas the quantum 
numbers for the 12C(a, p)15N exit channel apparently do not.

The uncertainty principle may be used to relate the energy width of a par-
ticular nuclear state (called *) to its lifetime (called t). The relationship is

 *t (
U
2

 (13.13)

If the width of a certain nuclear state is measured to be * by an excitation func-
tion, Equation (13.13) can be used to determine its lifetime. Ground states for 
stable nuclei, for example 16O, have an infinite lifetime and therefore have zero 
energy width.

Neutron Activation Because neutrons have zero net charge, they interact more 
easily with nuclei at low energies than do charged particles, because of the 
Coulomb barrier. If the nuclide 113

 48 Cd interacts with a neutron, the compound 
nucleus 114

 48 Cd* may be formed. We call this process neutron activation. One 
common mode for decay of this compound nucleus is the emission of a g ray. The 
reaction 113Cd(n, g)114Cd, an example of neutron radioactive capture, produces g-ray 
energies that depend on the energy-level structure of 114Cd. The g-ray energies 
and intensities are characteristic of the 114Cd nucleus and no other. They are like 
a unique fingerprint that lets us determine the compound nucleus to be 114Cd and 
thus indicate the original presence of 113Cd. The general technique, called neutron 
activation analysis, is a powerful practical method for identifying elements without 
damaging the sample. We will discuss it further in Section 13.7.

The neutron capture reaction (n, g) often has a large cross section, which can 
be as large as thousands of barns at a resonance. As neutrons pass through matter, 
they lose energy by having many elastic and inelastic collisions. They eventually 
reach a (thermal) kinetic energy 3kT/2 when they attain thermal equilibrium with 

Resonances

The appropriate masses are M(4He) " 4.002603 u, M(12C) " 
12.0 u, and M(16O) " 15.994915 u. The ground state excita-
tion energy of 16O* becomes

  E 116O* 2 " 14.002603 u ! 12.0 u $ 15.994915 u 2c 
2

  " 0.007688 c 
2 # u

  " 10.007688 c 
2 # u 2 a 931.5 MeV

c 
2 # u b " 7.16 MeV

This energy, 7.2 MeV, is indicated for a ! 12C in Figure 13.6. 
The final excitation energy in 16O* is the sum of the avail-
able K 

œ
cm and 7.2 MeV.

 Efinal116O* 2 " 11.0 MeV ! 7.2 MeV " 18.2 MeV
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486 Chapter 13 Nuclear Interactions and Applications

their surroundings. The average neutron capture cross section (at energies up to 
about 100 keV) varies empirically as 1/v, where v is the neutron’s velocity (see the 
cross section for Ag in Figure 13.7). The 1/v dependence can be explained in 
terms of the time the neutron spends near the nucleus. This time is 2r/v (2r " 
nuclear diameter). The longer the neutron is within the range of the nuclear 
force, the higher the probability it will be captured, because the average capture 
probability per unit time is nearly independent of incident energy.

Direct Reactions
As the energy of the bombarding particle rises, the excitation energy of the com-
pound nucleus becomes high. The compound nuclear excited states become 
broad (large *), and the number of nuclear states becomes very large. As the 
lifetimes of the states decrease, they approach that of the nuclear time scale. In 
addition, the compound nuclear states overlap, and the idea of a compound 
nucleus loses its utility for analyzing reactions. If a compound nucleus state is 
formed, it is very likely to emit one or more nucleons (particularly neutrons) to 
rid itself of the extra excitation energy. The nuclear force is much stronger than 
the Coulomb force, so nucleon decay will almost always occur before g decay 
when the conservation laws allow it.

For higher bombarding energies, the bombarding particle spends much less 
time within the range of the nuclear force. Simply stripping one or more nucle-
ons off the projectile or picking up one or more nucleons from the target be-
comes more probable. It is also possible for the projectile to knock out energetic 
nucleons from the target nucleus. These are called direct reactions.

The chief advantage of direct reactions is that the final residual nucleus 
may be left in any one of many low-lying excited states. By using different direct 
reactions, the nuclear excited states can be studied in a variety of ways to learn 
more about nuclear structure. Many different reactions may be used, for exam-
ple, to study 16O energy levels; 15N(3He, d)16O, 13C(a, n)16O, 12C(6Li, d)16O, 
18O(p, t)16O, and 17O(d, t)16O are just a few of many. All the states shown for 16O 
in Figure 13.6 are populated in the 14N(3He, p)16O reaction.

13.4  Fission
We saw in Chapter 12 that nuclei near A " 56 have the highest average binding 
energy per nucleon. Some nuclei with A ( 100 are able to alpha decay, and 
many nuclei with A ( 220 are unstable with respect to fission. In fission a nucleus 
separates into two fission fragments. As we will show, one fragment is typically 
somewhat larger than the other. We can determine which nuclei are able to 
fission by using Equation (12.20) for the binding energy.

Fission occurs for heavy nuclei because of the increased Coulomb forces 
between the protons. We can understand fission by using the semi-empirical 
mass formula based on the liquid drop model (Chapter 12). For a spherical 
nucleus with mass number A $ 240, the attractive short-range nuclear forces 
(volume term) more than offset the Coulomb repulsive term. However, as a 
nucleus becomes deformed (nonspherical), the surface energy is increased, and 
the effect of the short-range nuclear interactions is reduced. Nucleons on the 
surface are not surrounded by other nucleons, and the unsaturated nuclear 
force reduces the overall nuclear attraction. For a certain deformation, a critical 
energy is reached, and the fission barrier is overcome. This is understood in terms 
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s
T
 (
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Figure 13.7 Total neutron cap-
ture cross section at low energies 
for silver and cadmium. The 
peaks indicate the presence of 
resonances in the compound nu-
cleus. Note the 1/v dependence 
for the cross section of Ag at low 
energies. Cadmium’s high cross 
section makes it an excellent ma-
terial to control neutron flux in 
nuclear reactors (see Section 
13.5).
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   13.4 Fission 487

of the liquid drop model where the Coulomb force pushes a deformed drop 
further apart. A careful examination of the semi-empirical mass formula reveals 
that spontaneous fission occurs for nuclei with Z 2/A + 49 (Z # 115, A # 270). The 
term Z 2/A comes from the surface energy term (A2/3) and the Coulomb energy 
term ($Z 2/A1/3). Spontaneous fission can also occur for Z 2/A ) 49 by the pro-
cess of tunneling through the Coulomb barrier, but the half-lives are much in-
creased. The naturally occurring nuclide with the highest spontaneous fission 
rate is 238U, which has a half-life for fission of 8.2 & 1015 y. This is to be compared 
with its alpha decay half-life of 4.5 & 109 y. Thus 238U is more than a million 
times more likely to alpha decay than to fission.

Induced Fission
The previous discussion has concerned nuclei in their naturally occurring 
ground states. Fission may also be induced by a nuclear reaction. A neutron ab-
sorbed by a heavy nucleus forms a highly excited compound nucleus that may 
quickly fission. An example of induced fission is

 n ! 235
 92 

U S 236
 92 

U* S 99
40 

Zr ! 134
 52 

Te ! 3n (13.14)

The fission products have a ratio of N/Z much too high to be stable for their A 
value. Normally two or three neutrons are emitted during fission. There are 
many possibilities for the Z and A of the fission products, as shown in Figure 13.8. 
Symmetric fission (products with equal Z) is possible, but the most probable 
fission is asymmetric (one mass larger than the other), as shown by the two peaks 
in Figure 13.8.

Spontaneous fission

Induced fission
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Figure 13.8 The percentage 
distribution of fission fragments 
yielded by the thermal neutron 
induced fission of 235U. Notice 
that asymmetric fission is much 
more probable than symmetric 
fission (equal masses). From R. D. 
Evans, The Atomic Nucleus, New York: 
McGraw-Hill (1955).

Calculate the ground state Q value of the induced fission 
reaction in Equation (13.14) if the neutron is thermal. A 
neutron is said to be thermal when it is in thermal equilib-
rium with its environment; it then has an average kinetic 
energy given by 32 kT.

Strategy Because the kinetic energy of a thermal neutron 
is so small, its kinetic energy can be neglected; even for a 

temperature of 106 K, the thermal energy is only 130 eV. 
The Q value is given by Equation (13.7).

Solution We look up the atomic masses in Appendix 8 and 
determine the Q value to be

  Q " 5M 1235 U 2 ! m 1n 2 $ 3M 1  99Zr 2
  ! M 1134 Te 2 ! 3m 1n 2 4 6c 

2

 EXAMPLE 13.5
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488 Chapter 13 Nuclear Interactions and Applications

Thermal Neutron Fission
The result of Example 13.5 can be understood by examining the binding- energy 
curve of Figure 12.6. The binding energy per nucleon of 236U is about 7.6 MeV. 
The binding energy per nucleon of the fission fragments, however, is about 8.4 
MeV. Because of this difference in binding energies, the energy released per 
nucleon is 0.8 MeV. The total energy released is 236 nucleons times 0.8 MeV/
nucleon or 190 MeV. This rough calculation of the binding-energy difference 
agrees with the Q value determined in Example 13.5.

We can use the liquid drop model to understand how fission can be induced 
so easily in heavy nuclei. When 235U absorbs a thermal neutron to form 236U*, the 
excitation energy of 236U* is 6.5 MeV. This nucleus, in a highly excited and unsta-
ble state, is agitated and becomes deformed as shown in Figure 13.9. Finally, it 
becomes so deformed that the Coulomb force overcomes the nuclear force (which 
acts only over very short distances), and the nucleus separates—much like a liquid 
drop.

Experiment shows that 235U and 239Pu fission easily after absorbing thermal 
neutrons (very low energy neutrons). The nuclide 238U needs a neutron of at 
least 1 MeV kinetic energy to easily fission. If lower energy neutrons are absorbed 
by 238U, the resulting 239U* is more likely to decay by emitting a g ray. As we 
discussed previously, the cross section for heavy nuclei to absorb a low-energy 
neutron varies as 1/v, so the cross section is larger for lower energy neutrons.

 Q " 3235.0439 u $ 98.9165 u $ 133.9115 u

  $ 211.0087 u 2 4c 
2

 " 0.1985c 2 # u
  " 10.1985 c 2 # u 2 a 931.5 MeV

c 2 # u b " 185 MeV

Even if the fission is induced by a thermal neutron of negli-
gible kinetic energy on the nuclear scale, a tremendous 
amount of energy is released.

n

n
n

n

Figure 13.9 After absorbing a 
neutron, a large nucleus becomes 
excited and unstable. It becomes 
deformed, and eventually the Cou-
lomb force may cause it to fission 
and produce two smaller nuclei of 
unequal mass and, in addition, two 
or more free neutrons.

Calculate the excitation energy of the compound nuclei 
produced when 235U and 238U absorb thermal neutrons.

Strategy The two reactions are

  n ! 235U S 236U*

  n ! 238U S 239U*

As we did in Example 13.4, we find the excitation energy 
from the atomic masses using Equation (13.11). A thermal 
neutron has a negligible kinetic energy (about 0.03 eV).

Solution We have from Equation (13.11)

  E 1236 U* 2 " 3m 1n 2 ! M 1235 U 2 $ M 1236 U 2 4c 
2

  " 31.0087 u ! 235.0439 u $ 236.0456 u 4c 
2

  " 10.0070 c 
2 # u 2 a 931.5 MeV

c 
2 # u b " 6.5 MeV

 EXAMPLE 13.6
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   13.4 Fission 489

Fission fragments are highly unstable because they are so neutron rich. This 
occurs because heavy nuclei deviate further and further away from the N " Z 
line of Figure 13.10. After the fission, the resulting fission fragments are rela-
tively further away from the line of stability, also seen in Figure 13.10. Prompt 
neutrons are emitted simultaneously with the fissioning process. Even after 
prompt neutrons are released, the fission fragments undergo beta decay, releas-
ing more energy. Most of the #200 MeV released in fission goes to the kinetic 
energy of the fis sion products, but the neutrons, beta particles, neutrinos, and 
gamma rays typically carry away 30– 40 MeV of the kinetic energy.

Chain Reactions
Because several neutrons are produced in fission, these neutrons may subse-
quently produce other fissions. This is the basis of the self-sustaining chain reac-
tion. If at least one neutron, on average, results in another fission, the chain reac-
tion becomes critical. Because a sufficient amount of mass is required to increase 
the chances of a neutron being absorbed, a critical mass of fissionable material 
must be present. If less than one neutron, on average, produces another fission, 
the reaction is said to be subcritical. If more than one neutron, on average, pro-
duces another fission, the reaction is said to be supercritical. An atomic bomb is 
an extreme example of a supercritical fission chain reaction.

Prompt neutrons

Critical chain reaction

  E 1239 U* 2 " 3m 1n 2 ! M 1238 U 2 $ M 1239 U 2 4c 
2

  " 31.0087 u ! 238.0508 u $ 239.0543 u 4c 
2

  " 10.0056 c 
2 # u 2 a 931.5 MeV

c 
2 # u b " 4.8 MeV

Thus 236U* has almost 2 MeV more excitation energy than 
239U* when both are produced by thermal neutron absorp-
tion. This helps explain why 235U more easily undergoes 
thermal neutron fission.
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Figure 13.10 Although free 
neutrons are released when 236U 
fissions, the resulting nuclides are 
still neutron-rich and therefore 
are far from the line of stability. 
The fission fragments beta decay 
to move toward the line of 
stability.
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490 Chapter 13 Nuclear Interactions and Applications

As the previous example shows, we must have some way to control a runaway 
fission reaction. A critical-mass fission reaction can be controlled by absorbing 
neutrons. A self-sustaining controlled fission process depends on the fact that 
not all the neutrons are prompt. Some of the neutrons are delayed by several sec-
onds and are emitted by daughter nuclides resulting from the (slow) beta decay 
of the fission fragments. These delayed neutrons allow the control of a nuclear 
reactor. The application of control rods regulates the absorption of neutrons to 
sustain a controlled reaction.

13.5  Fission Reactors
Because so much energy is released in nuclear fission, it is a useful energy source 
for commercial power production. The energy content of several fuels is shown 
in Table 13.1, and the fuel requirements for a 1000-megawatt (MWe, the e indi-
cating electrical power) power plant are shown in Table 13.2. We begin by dis-
cussing the most popular type of power reactors. We will later discuss some varia-
tions of nuclear reactors.

Several components are important for a controlled nuclear reactor:

1.  Fissionable fuel
2.  Moderator to slow down neutrons
3.  Control rods for safety and to control criticality of reactor
4.  Reflector to surround moderator and fuel in order to contain neutrons 

and thereby improve efficiency
5.  Reactor vessel and radiation shield
6.  Energy transfer systems if commercial power is desired

We have already learned that 235U fissions with thermal neutrons. Because only 
21

2 neutrons, on the average, result from each fission, it is important not to lose 
neutrons. Two main effects can “poison” reactors: (1) neutrons may be absorbed 
without producing fission [for example, by neutron radiative capture 
235U(n, g) 236U], and (2) neutrons may escape from the fuel zone.

In order to produce a critical mass of 235U, it is necessary to process natural 
uranium ore to enrich the 235U content (0.7%) from the more abundant 238U 
(99%). Current power reactors require 235U enrichment of 4–5%. Such enrich-
ment is difficult because chemical techniques cannot be used. A giant uranium 

Delayed neutrons

Reactor components

It only takes a few microseconds for a neutron to be ab-
sorbed and cause another fission. Assume that 1.01 neu-
trons are captured on the average within 5 %s of each 
fission. Determine how many fissions will occur within 30 ms 
and the total energy produced.

Strategy Every time a fission occurs, 1.01 neutrons will be 
produced. We determine how many cycles N occur within 
30 ms and then determine the total number (1.01)N of 
fissions. If 185 MeV is produced for each fission, we can 
determine the amount of energy produced.

Solution Within 30 ms the number of cycles of fission is 
30 ms/5 %s " 6,000. The number of fissions is (1.01)6,000 " 
8 & 1025. The total amount of energy produced is

  Energy " 18 & 1025 fissions 2 a 185 MeV
fission

b
  " 1028 MeV

This is 1015 J, but the total world energy use in one year is 
about 1021 J. Fortunately, the process does not occur so 
quickly due to delayed neutrons, as we discuss next.

 EXAMPLE 13.7
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   13.5 Fission Reactors 491

processing plant in Paducah, Kentucky, as well as one in France, enriches ura-
nium (in the form of UF6) by a gaseous diffusion process. The molecules of 235U 
diffuse slightly more easily than 238U. The favored enrichment process in the rest 
of the world is the gas ultracentrifuge process, which is more compact and 
efficient. Several countries, including Russia, Germany, the Netherlands, and 
the United Kingdom, currently operate centrifuge plants, and such plants are 
under construction in the United States to replace the gaseous diffusion plants 
because centrifuge plants use so much less electricity.

Fission neutrons typically have 1– 2 MeV of kinetic energy, and because the 
fission cross section increases as 1/v at low energies, slowing down the neutrons 
helps to increase the chance of producing another fission. A moderator is used to 
elastically scatter the high-energy neutrons and thus reduce their energies. Hy-
drogen (in water), carbon (graphite), and beryllium are all good moderators.

The simplest method to reduce the loss of neutrons escaping from the 
fissionable fuel is to make the fuel zone larger. The fuel elements are normally 
placed in regular arrays within the moderator as shown in Figure 13.11. Fission 
neutrons from one fuel cell will be moderated (that is, slowed down) before 

Material Amount Energy ( J)

Coal 1 kg 3 & 107

Oil 1 barrel (0.16 m3) 6 & 109

Natural gas 1 ft3 (0.028 m3) 106

Wood 1 kg 107

Gasoline 1 gallon (0.0038 m3) 108

Uranium (fission) 1 kg 1014

Tab le  13 .1   Energy Content of Fuels

Material Amount

Coal 8 & 106 kg (1 trainload/day)
Oil 40,000 barrels (6400 m3) (1 tanker/week)
Natural gas 2.5 & 108 ft3 (7 & 106 m3)
Uranium 3 kg

Tab le  13 .2    Daily Fuel Requirements for
1000-MWe Power Plant

Moderator Control rods

Fuel cells

Shield Shield

Figure 13.11 Cross-section 
schematic of an idealized nuclear 
reactor.
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492 Chapter 13 Nuclear Interactions and Applications

entering an adjacent fuel cell to produce another fission. The fuel must be 
clumped in cells because of large 238U(n, g) cross sections at 7 and 21 eV, which 
would cause the neutrons to be absorbed as they slow down. The neutrons should 
be moderated outside the fuel cells.

Control rods control the reaction rates of nuclear reactors. Cadmium is an 
excellent control material to absorb neutrons because of its extremely large 
(n, g) cross section (see Figure 13.7). The delayed neutrons produced in fission 
allow the mechanical movement of the rods to control the fission reaction. A 
“fail-safe” system automatically drops the control rods into the reactor in an 
emergency shutdown. If the fuel and moderator are surrounded by a material 
with a very low neutron capture cross section, there is a reasonable chance 
that after one or even many scatterings, the neutron will be backscattered or 
“reflected” back into the fuel area. Water is often used both as moderator and 
reflector. Some of the earliest nuclear reactors used graphite as a moderator 
(Figure 13.12). Finally, the reactor must be contained within a secure vessel with 
adequate radiation shielding to protect personnel.

The world’s first controlled nuclear chain reaction was constructed at the 
University of Chicago by Enrico Fermi. It first operated on December 2, 1942, 
and ran for 4 1

2 minutes under the stands of the university’s football stadium, 
although there was concern that the city of Chicago would be blown up. 
Graphite blocks were used as the moderator, and cadmium sheets wrapped 
around wooden rods stuck inside holes served to control the chain reaction. 
Fermi called it an “atomic pile.” (See photo and biography of Enrico Fermi in 
Chapter 9.)

If commercial power is desired, reactor designers must add a method to trans-
fer energy. The most common method is to pass hot water heated by the reactor 
through some form of heat exchanger. In boiling water reactors (BWRs) the moderat-
ing water turns into steam, which drives a turbine producing electricity as shown in 
Figure 13.13. In pressurized water reactors (PWRs) the moderating water is under 
high pressure and circulates from the reactor to an external heat exchanger where 
it produces steam, which drives a turbine. This two-step process is shown in Figure 
13.14. Boiling water reactors are inherently simpler than pressurized water reac-
tors. However, the possibility that the steam driving the turbine may become ra-
dioactive is greater with the BWR. The two-step process of the PWR helps to isolate 
the power generation system from possible radioactive contamination.

Containment!
vessel

Steam

Water

Core

Reactor!
pressure!
vessel

Condenser

Electric!
generator

Electricity

Turbine

Cooling!
water

Figure 13.12 The graphite re-
actor, built in only 11 months in 
1943 at Oak Ridge National Labo-
ratory, operated until 1963, pro-
ducing for many years most of the 
world’s supply of radioisotopes 
for medicine, agriculture, and in-
dustry. The facility is now a Na-
tional Historic Landmark, and 
the control room and reactor face 
are accessible to the public. Note 
that the uranium elements were 
loaded inside the reactor through 
the horizontal holes in the reac-
tor side.

Figure 13.13 Schematic dia-
gram of a boiling water nuclear 
reactor. Note that steam directly 
heated by the reactor core drives 
the turbine.
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   13.5 Fission Reactors 493

Reactors are designed and operated for different purposes. We have been 
describing primarily power reactors used for commercial electricity production. 
More than 440 power reactors were in operation in 2011 and produced 15% of 
the world’s electricity. The United States has more than 100 of these reactors, 
and over 50 are in France, where power reactors produce 76% of the electric-
ity. Among many countries heavily dependent on nuclear power for electricity 
are Lithuania (72%), Slovakia (56%), and Belgium (54%), whereas in the 
United States about 20% of electricity comes from reactors. Although the 
percentage of the world’s electricity from power reactors has been slowly de-
creasing since 1998, the amount of electricity from power reactors has been 
increasing for several years and is expected to continue. The construction of 
all 104 nuclear power reactors operating in the United States in 2011 began in 
1974 or earlier. There are currently 65 power reactors under construction in 
16 countries. Thirteen new power reactors began construction in 2010. No 
power reactors were shut down. In 2009 eleven new ones began construction 
and in 2008 and 2007, there were 10. The last time 10 or more reactors began 
construction in a single year was 1990.

Research reactors are operated to produce high neutron fluxes for research 
such as neutron-scattering experiments. Smaller reactors, on the order of 
100 MW, are operating in some colder countries such as Russia for heat production 
to warm both homes and businesses. Other reactors are designed to produce 
radioisotopes for industrial and medical purposes. Several training reactors are 
located on college campuses.

Nuclear Reactor Problems
Problems certainly exist with nuclear power plants. The danger of a serious acci-
dent in which radioactive elements are released into the atmosphere or ground-
water is of great concern to the general public. Another drawback is that thermal 
pollution both in the atmosphere and in lakes and rivers used for cooling may be 
a significant ecological problem; this is currently under close scrutiny.

Figure 13.14 Schematic dia-
gram of a pressurized water nu-
clear reactor. Note that the steam 
driving the turbine is one step re-
moved from the water in the re-
actor core.
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A more serious problem is the safe disposal of the radioactive wastes pro-
duced in the fissioning process, because some fission fragments have a half-life 
of thousands of years. The safe storage of nuclear wastes in proposed locations 
such as Yucca Mountain in Nevada has been under debate for 50 years, and the 
problem is still unresolved. The proliferation of fissionable fuel, even from used 
fuel elements, to countries capable of atomic weapon production is of great con-
cern. At the current time nuclear waste, mostly fuel rods, is fi rst cooled in pools 
for at least six months, but often much longer, before being moved to large, 
hardened casks under guard while a permanent disposal plan is developed. A 
radiological weapon or “dirty bomb” could be made with a conventional explo-
sive (TNT or a fertilizer– fuel oil mixture) mixed together with radioactive mate-
rials. The explosion would vaporize the radioactive material and spread it over a 
wide area. The economic chaos and widespread fear generated by a dirty bomb 
would perhaps be more devastating than the death and radiation illness it would 
cause.

Three widely publicized accidents at nuclear reactor facilities—Three Mile 
Island in Pennsylvania in 1979, Chernobyl, Ukraine in 1986, and Fukushima 
Daiichi in Japan in 2011—have signifi cantly dampened the general public’s sup-
port for nuclear reactors. Compared to the Chernobyl and Japanese accidents, 
the one at Three Mile Island was relatively minor. The number of deaths as a 
result of the Chernobyl accident has been estimated to be as few as sixty and as 
many as a half million from cancer and other radiation-related diseases over a 
widely affected land area. The Japanese accident resulted from an earthquake 
that caused a tsunami, which overran the oceanside reactor area. This knocked 
out both electrical power and generator backup systems, allowing the fuel rods 
in three reactors to melt down. The amount of radiation that was emitted into 
the air, sea, and onto land may not be known for some time.

Though it is important to consider problems with nuclear power, these 
problems must be evaluated in comparison with problems posed by other meth-
ods of signifi cant power generation. Power generation by natural gas and hydro-
electric is certainly safer than nuclear. However, burning fossil fuels causes air 
pollution and greenhouse-effect gases. More than one hundred thousand lives 
have been lost in the United States due to coal mining accidents. A million Chi-
nese are believed to suffer currently from black lung disease, which is caused by 
prolonged inhaling of coal dust.

A faculty group at the Massachusetts Institute of Technology released an 
interdisciplinary study in 2003 and updated in 2009 (see http://web.mit.edu/
nuclearpower/) called “The Future of Nuclear Power” in which it analyzed “what 
would be required to retain nuclear power as a significant option for reducing 
greenhouse gas emissions and meeting growing needs for electricity supply.” 
They concluded that a large expansion of nuclear power can succeed only if four 
critical problems are overcome: lower costs, improved safety, better nuclear 
waste management, and lower proliferation risk. They suggest how these might 
be accomplished.

Breeder Reactors
A promising choice for a more advanced kind of reactor is the breeder reactor, 
which produces more fissionable fuel than it consumes. When 238U undergoes 

Serious reactor accidents
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the (n, g) reaction, the resulting 239U beta decays to 239Np and subsequently to 
239Pu in the chain

 n ! 238
 92 

U S 239
 92 

U* S g ! 239
 92 

U

 S b$ ! 239
 93 

Np ! n

S b$ ! 239
 94 

Pu ! n  (13.15)

The resulting 239Pu nucleus has a half-life of 24,100 years and is an a emitter. 
The intermediate beta decays take place in a matter of days. The plutonium is 
easily separated from uranium by chemical means, and 239Pu fissions easily with 
both thermal and fast neutrons. Thermal neutrons are those in equilibrium with 
their environment and have generally much less than 1 keV of energy. Fast neu-
trons have energies of up to a few MeV. Because 239Pu fission produces an aver-
age of 2.7 neutrons (compared with 2.3 for 235U), it is a highly desirable fuel for 
both reactors and bombs. The critical mass can be made smaller for 239Pu be-
cause more neutrons can escape the smaller volume and still keep the mass 
critical.

Fast breeder reactors have been built that convert 238U to 239Pu. The reactors 
are designed to use fast neutrons and are also called fast neutron reactors. If the 
loss of neutrons is kept small, we occasionally have a fission event that not only 
produces another fission event to keep the reaction sustained but also converts 
238U to 239Pu. The amount of 239Pu will then slowly build up (referred to as 
“breeding” 239Pu). This 239Pu can eventually be used as fuel for another power 
reactor. There is 99.3% natural 238U and only 0.7% natural 235U, so breeder reac-
tors hold the promise of providing an almost unlimited supply of fissionable 
material. One of the downsides of such reactors is that plutonium is highly toxic, 
and there is concern about its use in unauthorized weapons production.

The United States had experimental breeder reactors operational as early as 
1951, but in 1984 the government decided to postpone indefinitely the construc-
tion of a prototype power plant because of safety concerns and new projections 
of electricity usage. France has moved much more quickly in fast breeder tech-
nology, but its two breeder reactors, Phenix and Superphenix, are no longer in 
operation. Russia, India and Japan currently operate breeder reactors for dem-
onstration and testing purposes. Several countries abandoned their programs, 
but Japan, France, and the United States signed an agreement in 2010 to work 
towards a joint design and development of a fast neutron breeder reactor. Both 
India and Russia are building new demonstration breeder reactors for commer-
cial use.

Future Nuclear Power Systems
Alvin Weinberg, a pioneer in the design and development of nuclear reactors, 
reported (see R. Hargraves and R. Moir, American Scientist, 98, pp. 304–313 
[2010]) that there were an enormous range of possibilities for power reactors by 
varying the fuel, coolant, and moderator. The fi ssile fuel may be 233U, 235U, or 
239Pu. The coolant can be light or heavy water, gas, or liquid metal. The modera-
tor may be none, light or heavy water, beryllium, or graphite. The future of nu-
clear power was determined in many ways by the choice of Admiral Hyman 
Rickover in the 1950s that the U.S. Navy would use solid uranium oxide enriched 
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in 235U as fuel and water as both coolant and moderator for its reactors. Cur-
rently 85% of the world’s reactors are powered the same way. These systems are 
well understood and currently well constructed, but they are not ideal in terms 
of available sources of fuel, nuclear proliferation, and safety issues.

Some 13 countries (including the United States, Canada, China, France, 
Japan, Russia, members of the European Union, among others) formed an 
international collective in 2001 called the Generation IV International Forum 

Special Topic

Early Fission Reactors

In the late 1930s European scientists were busy study-
ing the properties of the heaviest nuclei. Several 

groups, including Enrico Fermi and his collaborators 
in Italy, the Curies and Savitch in France, and O. Hahn 
and F. Strassman in Germany, were bombarding ura-
nium with neutrons. In 1938 Hahn and Strassman ob-
served that barium (Z " 56) had been formed from 
their neutron bombardment of uranium (Z " 92). The 
Austrian-born Lise Meitner was a well-known physicist 
who had spent almost her entire career in Germany 
before fleeing to the Nobel Institute in Stockholm in 
1938 where she joined her nephew O. R. Frisch. Meitner 
received word from Hahn of his experimental results 
during the turmoil leading up to World War II. Meitner 
and Frisch were the first to report in 1939 the correct 
analysis of the Hahn and Strassman experiment as be-
ing due to the fission of uranium (see Figure A).

By 1939 Fermi had fled Italy, again due to the per-
secution of some scientists, and was at Columbia Uni-
versity in New York. Bohr brought word of the Hahn 
and Strassman experiment, and the resulting excite-
ment caused a flurry of experiments in the United 
States as well as at nuclear laboratories throughout the 
world. Fermi was one of the best nuclear experimental 
physicists of the period, and he also had a strong grasp 
of theoretical physics. The Hungarian-born Leo Szilard, 
working with Fermi, encouraged Einstein to write Pres-
ident Franklin Roosevelt and encourage the effort that 
was to lead to the Manhattan Project of World War II to 
build the atomic bomb.

Bohr and John Wheeler showed theoretically that 
the nuclide 235U undergoes fission more readily than 
the more abundant 238U. The fission of 235U was known 

to occur with slow (low energy) neutrons, so a process 
to slow down the neutrons produced in nuclear fission 
was needed in order to produce the chain reaction.

The effort toward producing the first controlled 
chain reaction moved to the University of Chicago, 

Figure A The German Otto Hahn (1879– 1968) and Austrian 
Lise Meitner (1878– 1968) worked together in Berlin beginning in 
1907 for almost 30 years doing research on radioactive substances. 
He was a chemist, and she was a physicist. In the 1930s they did 
important work identifying the products of neutron bombardment 
of uranium. Meitner was forced to leave Berlin in 1938 because of 
her Jewish ancestry, and she settled in the Nobel Institute in 
 Stockholm. At Meitner’s suggestion at a secret meeting with Hahn 
in Copenhagen in November 1938, Hahn and Fritz Strassman 
quickly found that a product of the neutron bombardment of ura-
nium was barium. During the Christmas season 1938, Meitner and 
her nephew Otto Frisch, who was working at the Bohr Institute in 
Copenhagen, figured out that nuclear fission was taking place. 
Hahn received the Nobel Prize in Chemistry in 1944, but the No-
bel Prize committee overlooked Meitner’s contributions. Both 
Hahn and Meitner received many awards in their long lives. The 
element 109 was named meitnerium after Meitner.

AI
P 

Em
ili

o 
Se

gr
è 

Vi
su

al
 A

rc
hi

ve
s, 

Br
itt

le
 B

oo
ks

 C
ol

le
ct

io
n.

03721_ch13_475-518.indd   49603721_ch13_475-518.indd   496 9/29/11   10:20 AM9/29/11   10:20 AM



(GIF) to work toward nuclear energy. Generation I reactors refer to those built 
in the 1950s and 1960s; very few are still operating. Generation II reactors refer 
to those built through the 1990s and are expected to have a lifetime of 50 to 
60 years. They include most of those in operation today. Generation III reactors 
use a standardized design and are simpler, more rugged, and much safer. They 
are already in operation in Japan, and many are under construction throughout 
the world. An example of a Generation III! (! indicates more advanced) 

where in a former squash court under the stands of 
the football stadium (Stagg Field), the team led by 
Fermi succeeded on December 2, 1942. The race to-
ward producing the atomic bomb developed quickly, 
with the first atomic bombs detonated in 1945. Even-
tually, in 1955, the first electricity for public use was 
generated by a nuclear reactor in Idaho. The Nautilus, 
the world’s first nuclear submarine, was launched in 
1954, and the world’s first large-scale nuclear reactor 
began producing electricity in England in 1956. The 
nuclear age was under way.

There is some evidence that a natural fission re-
actor occurred in the Republic of Gabon on the west 
coast of Africa almost 2 billion years ago. The present 
natural abundance of 235U is 0.7% and of 238U 99.3%. 
It is believed that the relative abundances were about 
equal when Earth was formed, but more of the 235U 
has decayed because of its shorter half-life. However, 
2 billion years ago the natural abundance of 235U was 

3.7%, and calculations indicate a critical mass of 235U 
could have been present in natural uranium ore.

The groundwater or possibly water flooding 
served as a moderator to slow down the fission neu-
trons. When the natural reactor became too hot, the 
water probably boiled and the neutrons were not 
slowed, thus reducing the probability of causing an-
other fission. This served as an automatic control 
much as the water moderator might do in a reactor 
today. The isotopic abundances of the fission products 
found in the uranium ore in  Gabon (see Figure B) 
lead to the conclusion that for several hundred thou-
sand years a natural fission reactor may have existed.

Scientists believe that at least six reactor zones ex-
ist in the Oklo mine of Gabon and that conditions 
probably existed elsewhere for similar natural fission 
reactors. Such an event is not possible today because 
of the low percentage of 235U in natural uranium ores.
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Figure B The isotopic analysis of neodymium from various sources. The composition of (a) natural neodymium is characteristically dif-
ferent from that of (b) neodymium produced from n ! 235U fission. (c) The composition of neodymium from the Oklo mines, which 
requires corrections due to the combination of natural neodymium and changes due to neutron absorption. (d) The resulting analysis is 
very similar to (b); this shows a fission reaction may have taken place in the ore. From George A. Cowan, A natural fi ssion reactor, Scientific Ameri-
can 235, 36 (July 1976).
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reactor is Westinghouse’s AP1000, a 1100 MWe reactor that has modular con-
struction and is one quarter the size of previous Generation II reactors. Four 
AP1000 reactors are currently under construction in China.

Generation IV reactors are currently under development for deployment 
after 2030. GIF announced in 2002 that they had selected six reactor technolo-
gies that represent the future of nuclear power on the basis of being clean, safe, 
cost-effective, resistant to weapons proliferation, and secure from terrorist at-
tacks. Three of the six designs are fast neutron reactors, although they are not 
conventional fast breeder reactors, because they do not have a blanket assembly 
where 239Pu is produced. We briefl y mention three possible reactors of the fu-
ture, two of which are part of GIF.

The High-Temperature Gas-Cooled Reactor (HTGCR) uses helium as its 
coolant with temperatures up to 850°C. The hot helium can either produce 
steam using a heat exchanger or drive a gas turbine directly to make electricity. 
The fuel is a kernel or pebble of uranium oxycarbide with enrichment to 17% 
235U.

There is considerable interest in using thorium as a reactor fuel for several 
reasons. Thorium is plentiful, especially in India where considerable work is 
underway. India plans to use solid thorium, but more interest has centered on 
molten salt reactors. Oak Ridge National Laboratory built a proof-of-principle 
molten salt reactor in the 1960s that operated for four years. The Liquid Fluo-
ride Thorium Reactor (LFTR) shows considerable promise. Fissile material is 
contained in the core area. Fission neutrons pass into a surrounding blanket 
where 232Th (the most abundant isotope of thorium) absorbs a neutron to 
become 233Th, which then beta decays to 233Pa and then to 233U, which is a fi s-
sionable fuel. The blanket contains a mixture of thorium tetrafl uoride. The 
liquid blanket passes through a heat exchanger, which heats another salt that 
produces electricity in a turbine and generator. The liquid blanket is also 
passed through a reprocessing system, where the 233U is easily chemically sepa-
rated. The 233U is sent back to the core, where it fi ssions. The LFTR is believed 
to have advantages in cost, safety, waste removal, and proliferation resistance. 
For example, the few transuranic fi ssion products produced can remain in the 
liquid fuel until they eventually fi ssion. Reaction products can easily be sepa-
rated in the reprocessing process. Just enough 233U is produced to keep the 
reactor going, and if just a little is removed, the fi ssion ceases. The nuclear 
wastes that are produced decay in just 300 years compared with thousands of 
years for current 235U reactors.

The Traveling Wave Reactor (TWR) is not one of the Generation IV chosen 
reactors, but it has received considerable interest recently. This reactor uses 
natural or depleted uranium packed together as in the fuel rods of current reac-
tors. A small amount of 235U starts the fi ssion process at one end of the rod, say, 
at the bottom. The 238U above the fi ssion region is bred into 239Pu, which is the 
next region to fi ssion. The process moves up the rod at a slow rate as a “wave” 
and might burn for more than a hundred years before the entire reactor is dis-
posed of safely. Liquid sodium is used as a coolant, and core temperatures are 
about 550°C, resulting in a high thermal effi ciency for eventual power produc-
tion. Such reactors might range from 100 MWe to 1000 MWe. It requires about 
170 MWe of power to supply a population of 100,000 in the United States. 
Smaller TWRs could be placed nearby population centers, thereby saving on 
transmission costs.
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13.6  Fusion
Except for nuclear fission and geothermal power, all known terrestrial sources of 
energy are derived from sunlight. This includes combustion of wood, coal, gas, 
oil, and both water and wind power. The only primary source in widespread use 
that is not derived from the sun is nuclear power (which incidentally is also the 
sun’s energy source). Energy emitted by stars arises from nuclear fusion reactions, 
in which the enormous heat and pressure of the star’s core cause light nuclei to 
fuse together. This process contrasts with nuclear fission, in which large nuclei 
divide. The origin of fusion can be understood by referring back to Figure 12.6. 
Nuclei near A " 56 have the highest binding energy per nucleon. When 236U* 
fissions, it divides into nuclei having a larger binding energy per nucleon, thereby 
releasing energy. Similarly, if two light nuclei fuse together, they also form a nu-
cleus with a larger binding energy per nucleon and energy is released. The most 
energy is released if two isotopes of hydrogen, 2H and 3H, fuse together in the 
reaction

 2 H ! 3 H S n ! 4 He    Q " 17.6 MeV (13.16)

About 3.5 MeV per nucleon is released because of the strong binding of 4He. 
Less than 1 MeV per nucleon is released in fission (200 MeV/236 nucleons " 
0.85 MeV/nucleon). The lower-mass side of Figure 12.6 is much steeper than 
the higher-mass side, explaining why the nuclear fusion process, smaller masses 
fusing to form larger masses, is a more prolific source of energy.

Formation of Elements
When the primordial Big Bang occurred 13.7 billion years ago, the light ele-
ments of hydrogen and helium were formed in the first few minutes. It was 
millions of years later before the heavier elements were formed in stars 
through nuclear fusion. We examine these fascinating phenomena further in 
Chapter 16, but now we want to study two of the main cycles for producing 
energy in stars.

The first is the proton-proton chain, which includes a series of reactions that 
eventually converts four protons into an alpha particle. As stars form due to 
gravitational attraction of interstellar matter, the heat produced by the attraction 
is enough to cause protons to overcome their Coulomb repulsion and fuse by the 
following reaction:

 1H ! 1H S 2 H ! b! ! n    Q " 0.42 MeV (13.17)

This reaction produces 2H and is a special kind of weak-interaction beta decay 
process. It is extremely slow, because only 1 collision in about 1026 produces a 
reaction. This is good, because otherwise the sun would explode! The deuterons 
are then able to combine with 1H to produce 3He:

 2 H ! 1H S 3 He ! g    Q " 5.49 MeV (13.18)

The 3He atoms can then combine to produce 4He:

 3 He ! 3 He S 4 He ! 1H ! 1H    Q " 12.86 MeV (13.19)
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Note that two each of reactions (13.17) and (13.18) must occur to produce 
(13.19). A total of six 1H are required to produce 4He and two 1H. This process 
consumes four protons. The total Q value, or kinetic energy produced, when six 
1H produce 4He is 24.7 MeV. An additional 2 MeV is derived from the annihila-
tion of two electron-positron pairs for a total of 26.7 MeV.

The proton-proton chain is particularly slow because reaction (13.17) limits 
the entire process. As the reaction proceeds, however, the star’s temperature 
increases, and eventually 12C nuclei are formed by a process that converts three 
4He into 12C.

Another cycle due to carbon is also able to produce 4He. The series of reac-
tions responsible for the carbon or CNO cycle are

  1H ! 12C S  13 N ! g

 S 13C ! b! ! n     t1/2 " 9.96 min

  1H ! 13C S 14N ! g

  1H ! 14 N S 15O ! g

 S 15N ! b! ! n     t1/2 " 2.04 min

  1H ! 15 N S 12C ! 4 He (13.20)

Note that four 1H and one 12C nuclei are required to produce 4He and 12C; the 12C 
nucleus merely serves as a catalyst. We believe the proton-proton chain is probably 
responsible for most of our sun’s energy, but the carbon cycle is a much more 
rapid fusion reaction. It requires higher temperatures (perhaps 20 & 106 K) than 
are present in the sun, because of the higher Coulomb barrier of 12C relative to 1H 
for the protons. Hans Bethe (Nobel Prize in Physics, 1967) was instrumental in 
showing that the proton-proton and CNO cycles are the only nuclear reactions 
that can supply the energy in stars.

A hydrostatic equilibrium exists in the sun between the gravitational attraction 
tending to contract a star and a gas pressure pushing out due to all the particles. 
As the lighter nuclides are “burned up” to produce the heavier nuclides, the gravi-
tational attraction succeeds in contracting the star’s mass into a smaller volume 
and the temperature increases. A higher temperature allows the nuclides with 
higher Z to fuse. This process continues in a star until a large part of the star’s mass 
is converted to iron. The star then collapses under its own gravitational attraction 
to become, depending on its mass, a white dwarf star, neutron star, or black hole. 
It may even undergo a supernova explosion (see Chapter 16).

Hans Bethe (1906–2005) was 
born in Strasbourg, Germany 
(now France), and was educated 
in Frankfurt and Munich, where 
he received his Ph.D. in 1928. Af-
ter serving at several institutions 
in Germany, he emigrated in 
1933 first to England and then in 
1935 to Cornell University where 
he spent the remainder of his ca-
reer, except for several leaves of 
absence. For example, during 
World War II he worked first at 
MIT on developing microwave ra-
dar, and in 1943– 1946 he served 
as director of the theoretical 
physics division at Los Alamos 
National Laboratory. Bethe’s illus-
trious career was mostly in nu-
clear physics but also included 
astrophysics, atomic and molecu-
lar phys ics, and solid state 
physics.
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One of the processes by which supergiant stars produce 
heavier masses is the reaction 4He ! 12C S 16O ! g. (a) How 
much energy is expended in this reaction? (b) Explain why 
such a fusion reaction cannot occur in low-mass stars.

Strategy (a) To find the energy expended we find the Q 
value from Equation (13.7). (b) We consider the progres-
sion of a star’s life to determine what fusion reactions can 
occur.

Solution (a) We look up the masses in Appendix 8 to find 
the Q value:

 Q " 3M 14 He 2 ! M 112C 2 $ M 116O 2 4c 2

  Q " 14.002603 u ! 12.0 u $ 15.994915 u 2c 2

 " 0.007688 u # c 2

  Q " 0.007688 u # c 2a931.5 
 MeV
u # c 2 b " 7.2 MeV

 EXAMPLE 13.8
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Nuclear Fusion on Earth
Some scientists believe that controlled nuclear fusion ultimately represents our 
best source of terrestrial energy. Among the several possible fusion reactions, 
three of the simplest involve the three isotopes of hydrogen.

  2 H ! 2 H S n ! 3 He     Q " 3.3 MeV  (13.21)

  2 H ! 2 H S p ! 3 H     Q " 4.0 MeV  (13.22)

   2 H ! 3 H S n ! 4 He     Q " 17.6 MeV (13.23)

Deuterium exists in vast quantities in seawater. If we estimate there are 1021  liters 
of water on Earth, the natural abundance of deuterium (0.015%) gives 1043 
 deuterons. These deuterons, when fused together in reaction (13.21), would 
produce over 1030 J of energy, enough to support present world energy con-
sumption for a few billion years.

Three main conditions are necessary for controlled nuclear fusion:

1.  The temperature must be hot enough to allow the ions, for example, deu-
terium and tritium, to overcome the Coulomb barrier and fuse their nu-
clei together. This requires a temperature of 100– 200 million K.

2.  The ions have to be confined together in close proximity to allow the ions 
to fuse. A suitable ion density is 2– 3 & 1020 ions/m3.

3.  The ions must be held together in close proximity at high temperature 
long enough to avoid plasma cooling. A suitable time is 1– 2 s.

The suitable values given above assume magnetic confinement, which we 
will discuss soon. The product of the plasma density n and the containment time 
t must have a minimum value at a sufficiently high temperature in order to initi-
ate fusion and produce as much energy as it consumes. The minimum value is

 n t + 3 & 10 
20 s/m3  (13.24)

This relation is called the Lawson criterion after the British physicist J. D. Lawson 
who first derived it in 1957. A triple product of ntT called the fusion product is 
sometimes used (where T is the ion temperature).

 n tT + 6 & 1028 s # K/m3 or 5 & 1021 s # keV/m3  (13.25)

The factor Q is used to represent the ratio of the power produced in the fusion 
reaction to the power required to produce the fusion (heat). This Q factor is not 
to be confused with the Q value. The breakeven point is Q " 1, and ignition oc-
curs for Q W 1. For controlled fusion produced in the laboratory, temperatures 
equivalent to kT " 20 keV are satisfactory. For uncontrolled fusion (Q " q), as 
in the hydrogen bomb or “H-bomb,” high temperatures and densities are 

Lawson criterion

Fusion product

(b) Stars begin by burning hydrogen to form helium. 
As the helium is exhausted, the stars contract to higher den-
sities and temperatures, which then allows helium to burn. 
Because there are no mass-5 and mass-8 stable nuclides, 
there is a hurdle to get beyond mass-4 nuclides. The hurdle 
is cleared only if the star is large enough so that as it con-

tracts, helium can burn to create heavier masses. Our sun 
can produce carbon, but the burning of alpha particles and 
carbon requires temperatures as high as 300 million K in 
order to overcome the Coulomb barrier and undergo nu-
clear fusion. Our sun does not reach this temperature.
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achieved over a very brief time by using an atomic bomb (that is, a fi ssion bomb) 
as a trigger. Fusion bombs do not produce radiation effects nearly as severe as 
those of fission bombs, because the primary products (n, p, and 4He) are not 
dangerously radioactive.

Unfortunately, there are enough thermonuclear warheads (H-bombs) to de-
stroy most of life on Earth. Some scientists have predicted that even a limited nu-
clear war could produce so much dust in Earth’s atmosphere that sunlight would 
be partially blocked. This might lead to a “nuclear autumn” (or even “winter”), 
with a drop in temperature of up to 30°C that could last for several months.

Calculate the ignition temperature needed for the reaction 
(13.23).

Strategy We need to calculate how much thermal energy 
(3

2 kT ) is needed to overcome the Coulomb barrier. We will 
use 3 fm as the distance where the nuclear force first becomes 
effective. The particles must approach each other to at least 
this distance. We will assume that the minimum kinetic energy 
we need is the Coulomb potential energy at 3 fm.

Solution The charges of the participants in reaction 
(13.23) are both !e. The Coulomb potential energy that 
must be overcome is

  V "
q1q2

4pP0r

  "
19 & 109 N # m2

 /C2 2 11.6 & 10$19 C 22
3 & 10$15 m

" 7.7 & 10$14 J

The thermal energy required is equal to 32 kT, so we have for 
the ignition temperature

 T "
2V
3k

"
217.7 & 10$14 J 2

311.38 & 10$23 J/K 2 " 3.7 & 109 K

We have calculated that a temperature of almost 4 billion K 
(or °C) is needed to ignite the deuteron-triton (D ! T) reac-
tion. This is an overestimate for several reasons. First, a deu-
teron and a triton are extended objects, and their nucleons 
will probably feel an attraction before the centers of the nu-
clei are 3 fm apart. Second, the protons in D ! T will tend to 
repel each other as the two nuclides approach, compared 
with the behavior of the neutrons. A more appropriate dis-
tance to use in the Coulomb potential energy could be a 
distance as great as 5 fm, which would result in a lower tem-
perature. Third (and most important), the distribution of 
energies for plasma (ionized particles) in thermal equilib-
rium at temperature T follows a statistical process. We have 
used the mean energy, 32 kT. However, far out on the tail of the 
distribution (see Figure 9.7), there are many particles with 
energies several times greater than 3

2 kT. It only takes a few 
particles out of the total of 1020– 1022 particles/m3 to initiate 
the reaction. Fourth, we have assumed that each particle 
needs 32 kT energy. If the collision were head-on, then each of 
the D and T ions would need only half this energy. More ac-
curate ignition temperature estimates for the D ! T fusion 
reaction are in the range of 100– 200 million K, which seems 
a reasonable correction to our original estimate.

 EXAMPLE 13.9

Controlled Thermonuclear Reactions
A controlled thermonuclear reaction of nuclear fusion in the laboratory is one 
of the primary goals of science and engineering, because of the large potential 
of energy production. Scientists do not expect to reach this goal for several more 
decades. Because of the large amount of energy produced and the relatively 
small Coulomb barrier, the first fusion reaction will most likely be the D ! T 
reaction, Equation (13.23). The tritium will be derived from two possible 
reactions:

  n ! 6 Li S 3 H ! 4 He  (13.26)

  n ! 7 Li S 3 H ! 4 He ! n (13.27)
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The lithium is required to generate the tritium and is also used as the heat trans-
fer medium and a neutron radiation shield.

For Q " 1 (breakeven), a product of ntT of a few times 1021 keV # s # m$3 will be 
required for a commercial reactor using D ! T. The problem of controlled fusion 
involves significant scientific and engineering difficulties. The two major schemes 
to control thermonuclear reactions are magnetic confinement fusion (MCF) and 
inertial confinement fusion (ICF). We will describe the main ideas of each.

Magnetic Confinement of Plasma The primary effort of research laboratories 
around the world for several years has been a device called the tokamak, first 
developed in the former USSR in the 1960s. Several other MCF schemes have 
been tried. A schematic diagram of a tokamak is shown in Figure 13.15. As many 
as six separate magnetic fields may be used to contain and heat the plasma.

A schematic cross section of a typical magnetic containment vessel for a to-
kamak that might eventually be used as a commercial device is shown in Figure 
13.16. The center is the location of the hot plasma where the D ! T reaction 
takes place. The plasma is surrounded by vacuum to keep out impurities that 
would poison the reaction. A wall, which is subjected to intense radiation, sur-
rounds the plasma and vacuum region. The plasma must be kept from touching 
the enclosure that contains the plasma, which is possibly the most hostile environ-
ment of any device yet designed. The next layer is a lithium blanket, which ab   -
sorbs neutrons to breed more tritium. Next comes the radiation shield to prevent 
radiation from reaching the magnets, which may be superconducting in a com-
mercial reactor. The lithium blanket and radiation shield are not present in 
existing test machines.

The heating of the plasma to sufficiently high temperatures begins with the 
resistive heating from the electric current flowing in the plasma. Because this is 
insufficient to attain the high ignition temperature, there are two other schemes 
to add additional heat: (1) injection of high-energy (40– 120 keV) neutral (so 
they pass through the magnetic field) fuel atoms that interact with the plasma, 
and (2) radio-frequency (RF) induction heating of the plasma (similar to a mi-
crowave oven).

Good results were obtained at the Princeton University Tokamak Fusion 
Test Reactor (TFTR) in the United States (shut down in 1997) and the Joint Eu-
ropean Torus (JET) in England. Both fusion reactors have used tritium as fuel. 
In 1997 JET reached a power output of 16 MW for 1 s and had a Q value of 0.65. 

Tokamak

Figure 13.15 Diagram of a to-
roidal fusion device, the tokamak. 
The toroidal and poloidal fields 
are the most important magnetic 
fields used to contain the plasma 
inside the vacuum vessel.

Figure 13.16 Schematic cross 
section of a typical magnetic 
confinement vessel (a tokamak) 
that might be used for commer-
cial power production. Heat ab-
sorbed in the blanket is used to 
produce electricity.
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We show in Figure 13.17 a plot of plasma ion temperature versus the confinement 
parameter nt. During the past few decades significant progress has been made 
in reaching the elusive values Q " 1 and higher needed for power production.

The most significant fusion project under consideration now is a large toka-
mak fusion reactor called the ITER, which was formerly an acronym for Interna-
tional Thermonuclear Experimental Reactor. The name was dropped because of 
the unpopular connotation of the word “thermonuclear.” It is a partnership of 
the European Union, Japan, Russia, India, South Korea, China, and the United 
States. It is currently under construction in Cadarache, France, and is expected 
to generate self-sustained fusion power of 500 megawatts for as long as 1000 s. A 
commercial power station is not envisioned until the middle of this century; it 
might have the form shown in Figure 13.18.

ITER

Figure 13.17 Plot of plasma 
ion temperature versus the Law-
son confinement parameter nt. 
Numbers inside the plot indicate 
years during the twentieth cen-
tury when the achievements oc-
curred; note the gradual progress 
made since the 1950s.
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Figure 13.18 Diagram of a possible fusion reactor configuration using magnetic confinement. 
The tritium is obtained from neutron reactions with lithium, and the tritium must be separated be-
fore going back to the fusion reactor as fuel. As in fission reactors, the heat produced by fusion is 
used to run a turbine, which in turn generates electrical power.
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Inertial Confinement The concept of inertial confinement fusion is to use an 
intense high-powered beam of heavy ions or light (laser) called a driver to implode 
a pea-sized target (a few mm in diameter) composed of D ! T to a density and 
temperature high enough to cause fusion ignition. Some inertial confinement 
results are included in Figure 13.17. Several institutions in the United States are 
doing research and development in laser fusion including Lawrence Livermore 
National Laboratory (LLNL), Sandia National Laboratories, and the University of 
Rochester. The National Ignition Facility (NIF) at LLNL fi res 192 lasers into a 
high-Z cylinder, which produces x rays, which in turn heat the small fuel pellet 
containing deuterium and tritium. It produced 1.3 million joules of ultraviolet 
laser energy in 2010, just short of the 1.5 MJ needed for ignition, and it continues 
to improve its performance. Sandia National Laboratories has used a device called 
a Z-pinch that uses a huge jolt of current to create a powerful magnetic field that 
squeezes ions into implosion and heats the plasma. France is building a device 
named Laser Megajoule with similar objectives as the NIF. The front cover of this 
book has a photo of the University of Rochester’s Laboratory for Laser Energetics 
experiment where 18 laser beams deliver 5 kJ to a target in 1-ns pulses.

13.7  Special Applications
In this chapter and the previous one we have mentioned several applications of 
nuclear science. Particle beams, radioactive nuclides, and nuclear effects have 
many applications. Most depend on some specific isotope of a radioactive ele-
ment, called a radioisotope. The usefulness of a given radioisotope may depend 
on the specific decay particle it produces, for example, an a particle, b ray, g ray, 
or fission fragment, and even on the half-life of the radioisotope. Radioisotopes 
are produced for useful purposes by different methods:

1.  By particle accelerators as reaction products
2.  In nuclear reactors as fission fragments or decay products
3.  In nuclear reactors using neutron activation

An important accelerator-produced radioisotope is 68Ga, which is useful in 
diagnostic medicine. Another important fission fragment is 99Mo, which beta 
decays to 99mTc, probably the most useful radioisotope in medicine. Neutron 
activation is used in a whole host of applications from crime detection to the 
production of nuclides heavier than 238U.

One other important area of applications is the search for a very small con-
centration of a particular element, called a trace element. Irradiating an object 
suspected of containing a trace element may produce a radioactive nucleus that 
can be inspected for its particular decay, and even for the g rays produced by 
excited states of the trace element. Such techniques have been invaluable in 
detecting minute quantities of trace elements for forensic science and environ-
mental purposes.

Medicine
Radioisotopes are useful in medical research, diagnostics, and treatment. They 
have been used to study virtually every organ and tissue in the body. The b$ 
emitters 3H, 14C, and 32P are all widely used in medical research. Over 1100 
 radioisotopes are available for clinical use. By far the most widely used is 99mTc, 
mentioned at the end of Section 12.7. It is used in about 80% of all nuclear 
medicine procedures, more than 15 million each year in the United States. An 

Z-pinch

Radioisotopes
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isomer of technetium with a half-life of 6 h, it produces a 140-keV gamma ray 
when it decays to the ground state of 99Tc. A patient is given an intravenous in-
jection of 99mTc, for example, TcO4. The 99mTc is trapped by cancerous cells, for 
example, in the thyroid or salivary glands, the choroid plexus of the brain, or the 
gastric mucosa. A few minutes after the injection, the patient is scanned by an 
array of NaI g-ray detectors that are able to pinpoint the 99mTc activity. This is 
only one of several applications for 99mTc.

The nuclide 99Mo is produced as a fission product in a nuclear reactor or as a 
by-product material in a nuclear reactor, formed by neutron activation of the stable 
isotope 98Mo in the reaction 98Mo(n, g)99Mo. It is mostly produced by neutron 
bombardment of highly enriched 235U, which subsequently fi ssions. There is cur-
rently no domestic production of 99mTc in the United States. After the radioisotope 
99Mo is separated out, it is shipped typically once a week by commercial companies 
producing radioisotopes to hospitals all over the world as a “99mTc generator” of 
about 1011 Bq. The 99Mo beta decays to form the useful 99mTc.

 99
42 

Mo S b$ ! 99m
  43  

Tc t1/2 " 66 h (13.28)

 S g ! 99
43  

Tc    t1/2 " 6 h, Eg " 140 keV

The radionuclide 123I (t1/2 " 13 h) is useful for a thyroid function test. 123I 
is produced by an accelerator in a reaction such as

 a ! 121
 51Sb S 2n ! 123

 53  
I (13.29)

After being administered to the patient, 123I decays by electron capture to ex-
cited states of 123

 52 
Te.

 123
53  

I ! e$ S 123
 52  

Te* (13.30)

 S g ! 123
 52  

Te

About 98% of the time a 159-keV g ray is produced, which is detected by an array 
of NaI detectors.

Other useful radioisotopes are 153Gd for detection of bone mineral loss or 
osteoporosis in elderly people; 192Ir for a large number of cancer treatments and 
also for industrial radiography of welds in steel, oil well rigs, and pipelines; 241Am 
for oil exploration and smoke alarms; and 85Kr for leak testing of sealed electrical 
components such as transistors. More than 10,000 men in the United States are 
treated each year with 125I seeds implanted into the prostate to inhibit cancer. In 
addition to 125I, which has a half-life of 60 days, 103Pd (17-day half-life) is also used. 
Both nuclides emit useful low-energy gamma rays.

Radioisotopes are also used in tomography, a technique for displaying im-
ages of practically any part of the body to look for abnormal physical shapes or 
for testing functional characteristics of organs. By using detectors (either sur-
rounding the body or rotating around the body) together with computers, 
three-dimensional images of the body can be obtained. Tomography now in-
cludes various techniques—for example, single-photon emission computed to-
mography (SPECT), positron emission tomography (PET, see Section 3.9), and 
magnetic resonance imaging (MRI, see Sections 10.6 and 12.2), among others. 
In the first two techniques the radiation (normally g rays) is detected externally 
to determine the location of the radionuclide inside the body. The use of very 
short-lived  radiopharmaceuticals, compounds produced with the radioisotopes, 
has resulted in numerous accelerators placed in medical centers around the 
country to produce the necessary radioisotopes. A PET scan used in conjunction 
with a noninvasive MRI of the brain is shown in Figure 13.19.

Figure 13.19 Photo of brain 
scan using PET and MRI 
combined.
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Archaeology
The use of 14C in radioactive dating has already been discussed in Chapter 12. In-
vestigators can now measure a large number of trace elements in many ancient 
specimens and then compare the results with the concentrations of components 
having the same origin. Materials may include glass, metal, pottery, stone, minerals, 
paper, and fabric. For example, this technique has been used to examine pottery 
fragments excavated from the ancient Agora in Athens and from pyramids in Egypt.

An important topic in New World archaeology is the question of who the 
first settlers were and when they came to the Americas. Many experts believe they 
crossed a land bridge over the Bering Strait from Siberia to Alaska. Archaeolo-
gists found distinctive fluted spear points at a site near Clovis, New Mexico, in 
1932. Subsequent 14C radioactive dating indicates that humans had a settlement 
there 12,000 years ago. Several claims have surfaced in the past few years, espe-
cially from South America, that dispute this earliest finding, but no conclusive 
proof has been confirmed. The controversy rages on.

The Chauvet Cave, discovered in France in 1995, is one of the most impor-
tant archaeological finds in decades. More than 300 paintings and engravings 
and many traces of human activity, including hearths, flintstones, and footprints, 
were found. These works are believed, from 14C radioactive dating, to be from 
the Paleolithic era, some 32,000 years ago.

Art
Neutron activation is a nondestructive technique that is becoming more widely 
used to examine oil paintings. A thermal neutron beam from a nuclear reactor 
is spread broadly and evenly over the painting. Several elements within the 
painting become radioactive. X-ray films sensitive to beta emissions from the 
radioactive nuclei are subsequently placed next to the painting for varying 
lengths of time. This method, called an autoradiograph, has been used by art 
historians to identify modern repairs of the painting as well as to see the under-
drawings of the original figures in the painting. For example, it was used to ex-
amine Van Dyck’s Saint Rosalie Interceding for the Plague-Stricken of Palermo, from 
the New York Metropolitan Museum of Art collection and revealed an over-
painted self-portrait of Van Dyck himself.

Crime Detection
Neutron activation analysis is also useful to search for particular elements indica-
tive of crime. Because this sophisticated technique requires access to a nuclear 
reactor, few police departments other than national agencies have this capability 
on a day-to-day basis.

The examination of gunshots by measuring trace amounts of barium and 
antimony from the gunpowder has proven to be 100 to 1000 times more sensitive 
than looking for the residue itself. Amounts as small as 0.005 %g of barium and 
0.001 %g of antimony may be detected by (n, g) techniques. Specialists are able to 
ascertain firing distances up to 2 m and whether a hole or slit in some material, 
such as cloth, flesh, wood, leather, and so on, was caused by a bullet. Sensitive trace 
elements include barium, antimony, lead (from the primer and the bullet), and 
copper (from jacketed bullets, the cartridge case, and the primer case).

Scientists are also able to detect toxic elements in hair by neutron activation 
analysis. Human head hair grows about 10 cm/y. Small amounts of arsenic and 

Neutron activation
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mercury may be detected, and the time of poisoning may even be determined. 
A famous study by several Scottish scientists examined samples of Napoleon’s 
hair, taken during the last five years of his life and just after his death, for arsenic 
content. The beta emitter 76As (t1/2 " 26.4 h) was studied after being activated 
in a nuclear reactor. Analysis of strands of hair as short as 1 mm (about 3 days’ 
growth) showed that Napoleon had arsenic concentrations as high as 40 times 
normal. Some speculate that Napoleon was poisoned, but a more reasonable 
explanation is that his physicians were using arsenic to treat his many illnesses.

Mining and Oil
Radioactive sources have long been useful in the petroleum industry. For exam-
ple, when inserted in the oil in pipelines, they can signal a change in the product 
being shipped, or simply log the arrival time. Geologists and petroleum engineers 
use radioactive sources routinely to search for oil and gas. A source and detector 
are inserted down an exploratory drill hole to examine the material at different 
depths. Neutron sources PuBe (plutonium and beryllium) or AmBe (americium 
and beryllium) are particularly useful, as shown in Figure 13.20. Small Van de 
Graaff accelerators producing 14-MeV neutrons have been inserted into a casing 
that has already been placed inside the borehole. Casing diameters are typically 
between 14 and 25 cm, leaving enough room for the spectroscopic tool. The 
neutrons activate nuclei in the material surrounding the borehole, and these 
nuclei produce gamma decays characteristic of the particular element. NaI and, 
more recently, cooled germanium detectors pick up characteristic elemental de-
cays when they pass through different geological formations. Especially of interest 
are the oil- and gas-bearing regions (see Figure 13.21).

Materials
The problem of radiation damage of an electronic device on a large single chip 
of silicon has long been recognized. For example, alpha-particle decay from a 
contaminant uranium or thorium nucleus could cause “soft” computer errors as 
it ionizes the silicon. Cosmic ray particles can create similar problems, especially 
in satellites and space probes. Scientists have discovered, however, that fast-
neutron irradiation of bulk computer memory components can decrease the 
soft-error rate by a factor of 10. Apparently the neutrons reduce the intrinsic 
resistivity in the silicon substrate so that the extraneous ionization caused later is 
much less likely to reset a bit.

Figure 13.20 A plutonium-
beryllium (PuBe) source consists 
of a can of beryllium powder 
mixed with 239Pu, which a decays. 
The alpha interacts with the 9Be 
and produces a neutron. Copious 
numbers of gamma rays also re-
sult, mostly from the decay of 
235U*.
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Phosphorus-doped silicon may also be produced with fast-neutron irradiation. 
Natural silicon consists of 3.1% of the isotope 30Si, which undergoes the reaction

 n ! 30
14Si S 31

14Si (13.31)

 S b$ ! 31
15P    t1/2 " 2.62 h

Because the 31Si will be evenly distributed throughout the silicon, the phospho-
rus doping will also be much more uniformly distributed than could have been 
achieved by diffusive doping techniques. Silicon treated in this manner (called 
neutron-transmutation-doped silicon) is better able to handle high power levels in 
rectifiers, among several other uses.

Neutrons have long been used to study properties of materials, primarily 
because the neutron’s small wavelength and zero charge allow it to easily probe 
atomic dimensions. Such effects include crystal structures, magnetic properties, 
interatomic and lattice forces, alloys, structures and dynamics of liquids, super-
conductors, phase transitions, and voids in materials and oil shale. Neutrons are 
particularly useful because they have no charge and do not ionize the material, as 
do charged particles and photons. They penetrate matter easily and introduce 
uniform lattice distortions or impurities. Because they have a magnetic dipole 
moment, neutrons can probe bulk magnetization and spin phenomena. Thermal 
neutrons have just the right momenta and energies to probe vibrational states, 
their acoustic modes, and the underlying interatomic forces in solid lattices.

Figure 13.21 Example of a sys-
tem used to search for oil and gas 
in a well boring. The (n, g) reac-
tion is used to examine for partic-
ular elements indicative of oil and 
gas.
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Neutrons are used to study structures of solids and their 
properties. What energy (and temperature) neutrons are 
needed if the atomic structures are of the size 0.060 nm?

Strategy We use the de Broglie wavelength relation to 
match the wavelength needed with an appropriate momen-

tum. From the momentum we determine the kinetic energy 
and temperature from K " 3

2kT.

Solution We determine the neutron momentum from the 
de Broglie wavelength relation with l " 0.060 nm.

 p "
h
l

"
6.63 & 10$34 J # s
0.060 & 10$9 m

" 1.1 & 10$23 kg # m/s

 EXAMPLE 13.10
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Small Power Systems
Alpha-emitting radioactive sources such as 241Am or 238Pu have been used as 
power sources in heart pacemakers. Smoke detectors use 241Am sources of alpha 
particles as current generators. The scattering of the alpha particles by the 
smoke particles reduces the current flowing to a sensitive solid-state device, 
which results in an alarm.

Spacecraft have been powered by radioisotope generators (RTGs) since the 
early 1960s. These devices use the heat produced by the a decay of 238Pu to pro-
duce electricity in a thermocouple circuit. About two dozen U.S. spacecraft have 
used RTGs including Apollo, Pioneer 10 and 11, Viking 1 and 2, Voyager 1 and 2, 
Galileo, Ulysses, and more recently Cassini, which was launched in 1997, arrived 
at Saturn in 2004, and produced some fantastic photos. Current RTGs supply al-
most 300 watts each, and usually more than one unit is placed on a spacecraft 
(Cassini has three). All past and present operational RTGs have exceeded their 
original design requirements both in power output and longevity. Voyagers 1 and 
2 were both launched in 1977, and their RTGs are expected to be operational 
through at least 2020, a period of more than 40 years! Voyager 1 is the most re-
mote human emissary in space; at the beginning of 2012 it was 1.8 & 1010 km from 
Earth (or about 120 times the Earth-Sun distance) and its signals took 16 hours 
to travel to Earth. The United States currently has a severe shortage of 238Pu to 
be used in RTGs for future spacecraft missions.

Considerable research and development have been done in the United 
States on a small nuclear reactor to be used in space. The latest program was 
terminated in 1994 because there was no clear mission that would justify con-
struction. Possible uses of a space reactor include outer planetary exploration, 
manned science outposts on the moon, and astronaut visits to Mars. Space nu-
clear power has always been highly controversial. The United States has put only 
one reactor in space (1965), but the former Soviet Union is reported to have 
placed almost three dozen, with some spectacular mishaps. The most famous 
one spread its radioactive debris across northwestern Canada in 1978.

New Elements
No transuranic elements—those with atomic number greater than Z " 92 
 (uranium)—are found in nature because of their short half-lives. However, with 
the use of reactors and especially accelerators, scientists have been able to 
 produce 24 of these new elements up to Z " 118 (depending on whether several 
of the discoveries past Z " 112 are confirmed). More than 150 new isotopes 

Because we expect the kinetic energy to be low, we use a 
nonrelativistic relation to determine the kinetic energy.

  K "
p 

2

2m
"
11.1 & 10$23 kg # m/s 22

211.67 & 10$27 kg 2 " 3.6 & 10$20 J

  " 0.23 eV

Thus we see that the nonrelativistic relation is certainly ad-
equate here. In thermal equilibrium, the temperature is 
found from K " 3

2 kT.

 T "
2K
3k

"
213.6 & 10$20 J 2

311.38 & 10$23 J/K 2 " 1740 K

Such energy is easily obtained by thermalizing neutrons 
from a nuclear reactor.
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heavier than uranium have been discovered. Neptunium (Z " 93) and plutonium 
(Z " 94) were discovered in Berkeley in 1940. Glenn Seaborg (Nobel Prize in 
Chemistry, 1951) was able to reclassify the periodic table and place the actinide 
series under the lanthanide series. Seaborg, a nuclear chemist, used his knowledge 
of chemistry and physics to predict the chemical properties of all the elements 
with Z " 97 to 103.

Physicists have reasons from shell model calculations to suspect that super-
heavy elements with atomic numbers of 110– 120 and 184 neutrons may be par-
ticularly long-lived. In particular, the element with Z " 114 and N " 184 might 
be “doubly magic.” Figure 13.22 shows a plot of the known nuclei in the region 
of lead and heavier. Physicists are slowly approaching the predicted “island of 
stability” where it is hoped that superheavy elements can be produced with life-
times suitable for extended study. These elements should have particularly inter-
esting chemical and physical properties. Several scientific laboratories around 
the world, especially in the United States, Germany, and Russia, are involved in 
the search. See Special Topic, “The Search for New Elements,” in this chapter 
for more information on these interesting but difficult experiments.

Certain isotopes including 252
98Cf (californium) have been produced in 

sufficient quantities in high-flux reactors to be generally available for special ap-
plications. Discovered in 1953, 252Cf has t1/2 " 2.6 y with both alpha emission 
(97%) and spontaneous fission (3%). Its high spontaneous fission rate makes it 
particularly useful as a source of fission fragments as well as neutrons. It is ex-
tremely useful in treating malignant tumors. A tiny amount of 252Cf may be 
placed adjacent to the tumor, so that the body tissues surrounding the malignant 
tumor are not nearly as damaged as they can be in normal g-ray radiotherapy 
projected from outside the body. The potential use of 252Cf as a neutron source 
includes inspection of welds in aluminum aircraft, detection of corrosion effects 
in operating aircraft, oil-well logging of rock formation characteristics (see Fig-
ure 13.21), fuel-rod scans, fission waste monitors, copper and nickel ore analyz-
ers, determination of sulfur content in coal or oil, moisture monitors, and ce-
ment analyzers.
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Glenn T. Seaborg (1912– 1999) is 
shown here in 1951 at the Univer-
sity of California at Berkeley with 
the apparatus that he used to 
chemically separate out the newly 
created transuranic elements. 
Seaborg, a nuclear chemist, had a 
distinguished career in both re-
search and public service, having 
served as chairman of the U.S. 
Atomic  Energy Commission.
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Special Topic

The Search for New Elements

F rancium (Z " 87) was the last naturally occurring 
element to be discovered (1939). It was found in 

the  decay products of uranium by Marguerite Perey 
working at the Curie Laboratory in 1939. Even before 
this, the first synthesized element, technetium (Z " 43), 
was created arti ficially in a nuclear reaction in 1937 at 
the University of California, Berkeley, by Carlo Perrier 
and Emilio Segrè. After bombarding molybdenum with 
deuterons, the discoverers took the products back to 
Italy where technetium was identified. This discovery 
was made possible by the invention of the cyclotron at 
Berkeley by E. O. Lawrence, for whom the Lawrence 
Berkeley National Laboratory (LBNL) is named.

During the next three decades the discovery of 
new elements was dominated by researchers in 
 Berkeley.  Astatine (Z " 85) was discovered by Dale 
Corson and colleagues in 1940 at  Berkeley by bom-
barding bismuth with a particles. Also in 1940 at 
Berkeley, Edwin McMillan and Philip  Abelson 
 discovered the first transuranium element, which is an 
element with more protons than uranium (Z ( 92). 
They found neptunium (Z " 93) by bombarding 
uranium with neutrons. Similarly, in 1940 Glenn 
Seaborg, Arthur Wahl, and Joseph Kennedy discov-
ered plutonium (Z " 94) by bombarding uranium with 
deuterons, which produced a heavy isotope of neptu-
nium that beta decayed to plutonium. McMillan and 
Seaborg received the 1951 Nobel Prize in Chemistry. 
Plutonium was discovered in secret in 1940, and it was 
not announced publicly until 1946 because of its use in 
atomic bomb production in World War II. Plutonium 
has often been used as an energy source for deep 
space probes to produce electricity.

Americium (Z " 95) was discovered at Berkeley in 
1944 by Seaborg and others by successive neutron 

capture reactions by plutonium in a nuclear reactor. 
Americium is used in smoke detectors. Using a dif-
ferent reaction, the next element, curium (Z " 96), 
was discovered by Seaborg, Ralph James, and Albert 
Ghiorso at Berkeley in 1944 by bombarding a tiny 
amount of plutonium with a particles.

Three elements (promethium, einsteinium, and 
fermium) were discovered during the development of 
nuclear weapons. Promethium (Z " 61) was the last of 
the “lighter elements” to be discovered. It was found 
at Oak Ridge, Tennessee, in 1947 by J. A. Marinsky, 
Lawrence Glendenin, and Charles Coryell by chemical 
identification of residues from a nuclear reactor. Ear-
lier claims of the discovery of promethium in 1924 and 
1941 were not substantiated. Both einsteinium and fer-
mium (elements 99 and 100, respectively) were discov-
ered in 1952 by a group of scientists led by Ghiorso 
from Argonne National Lab, Los Alamos National Lab, 
and Berkeley. They isolated the new elements from the 
radioactive debris from the first large hydrogen bomb 
test in the Pacific Ocean. The fermium isotope pro-
duced in the blast had been produced by 17 successive 
neutron captures in uranium, followed by beta decay.

After World War II several more new elements 
were discovered at Berkeley by various groups of sci-
entists led by Seaborg and Ghiorso. These include 
berkelium (97) in 1949, californium (98) in 1950, 
mendelevium (101) in 1955, lawrencium (103) in 
1961, rutherfordium (104) in 1969, dubnium (105) in 
1967, and seaborgium (106) in 1974. All these new 
elements were synthesized by bombardment of trans-
uranic ele ments by particles from cyclotrons. In the 
1960s a new group of scientists doing particle accel-
erator  experiments at the Joint Institute for Nuclear 
Research in Dubna, Russia, came on the scene. They 
also claimed the discovery of elements 103, 104, 105, 
and 106. Some controversy about the discovery prece-
dence led to a long delay in naming the new ele ments. 
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The International Union of Pure and Applied Chem-
istry (IUPAC), together with the International Union 
of Pure and Applied Physics (IUPAP), is the interna-
tional body generally recognized with the responsibil-
ity and authority to decide on the priority of element 
discovery and the naming of new elements. The dis-
covery team (or teams) is normally requested by 
IUPAC to suggest a name for the element that IUPAC 
ultimately approves. The naming of elements 101 to 
106 was not settled until 1997 by acknowledging the 
efforts of both labs.

An international team working at the Nobel Insti-
tute for Physics in Stockholm claimed the discovery of 
nobelium (102) in 1957 by bombarding curium with 
carbon ions. The Berkeley group announced in 1958 
that they could not reproduce the results, and the 
Dubna group soon agreed with the Berkeley findings. 
Both Berkeley and Dubna were later able to make 
authenticated discoveries of element 102.

Beginning in 1980 a team led by Peter Armbruster 
working at the Institute for Heavy Ion Research at 
Darmstadt, Germany, dominated the search for dis-
covery of new elements. This group bombarded tar-
gets with accelerated heavy ions, and in fairly quick 
succession discovered bohrium (107) in 1981, has-
sium (108) in 1984, and meitnerium (109) in 1982. 
This last element resulted from the bombardment of 
an iron target by high-energy bismuth ions. There was 
no controversy over which team first discovered ele-
ments 107, 108, and 109.

It was a decade later when the next element was 
discovered in 1994, and all three labs (Berkeley, 
Dubna, and Darmstadt) claimed the discovery of ele-
ment 110 in accelerator experiments. Eventually a 
Joint Working Party (JWP) of IUPAC-IUPAP con-
firmed the  German discovery of element 110 in 2001 
and approved its name, darmstadtium.

The German group at Darmstadt discovered ele-
ment 111 in 1994 and element 112 in 1996. Element 

111 was named roentgenium in 2004, and element 
112 was named Copernicium in 2010. Scientists are 
now moving into the region where physicists predict 
the island of “magic numbers” of the shell model may 
result in some particularly stable nuclides around Z " 
114, 120, or 126 and N " 184. A joint group between 
Lawrence Livermore National Lab and the Joint Insti-
tute for Nuclear Research in Dubna, Russia, an-
nounced in 2004 that they had discovered elements 
113 and 115. A team from the same two laboratories 
claimed discovery of element 114 in 1999, and it has 
been confi rmed by separate Berkeley and Darmstadt 
experiments in 2009. In 1999 researchers at Berkeley 
reported the discovery of elements 116 and 118, but 
in 2002 the discovery was retracted as “a result of fab-
ricated research data and scientific misconduct by one 
individual,” according to the Berkeley lab director.

A collaboration of several international research-
ers working at Dubna in 2000 reported the discovery 
of element 116. Researchers from Dubna, Vanderbilt 
University, and Oak Ridge National Laboratory an-
nounced the discovery of element 117 in 2010. Scien-
tists from Dubna and Lawrence Livermore National 
Laboratory announced in 2006 that they had created 
element 118. The Dubna-Livermore team has an-
nounced the discoveries of elements 113, 114, 115, 
116, and 118, but not all have been confi rmed by 
other laboratories. Finally, IUPAC announced in 2011 
that the discovery of elements 114 and 116 by the 
Dubna-Livermore collaboration had been confi rmed, 
and IUPAC awaits suggestions from the researchers as 
to the names of the new elements. Experimenters 
have not yet been able to reach the magic number for 
neutrons, N " 184, and the next few years will be ex-
citing as they strive to discover the hoped-for island of 
stability. See Figure 13.22 for the current status of su-
perheavy nuclei as the high Z and N island of stability 
is approached. The future is bright for superheavy 
element experimenters.
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514 Chapter 13 Nuclear Interactions and Applications

The construction of accelerators in the 1930s heralded a 
new era for physicists, allowing them to more easily study 
the nuclear force by inducing nuclear reactions. The energy 
released in a nuclear reaction x ! X S y ! Y is called the Q 
value and can be determined from the atomic masses.

 Q " 1Mx ! MX $ My $ MY 2c 2 (13.7)

Different nuclear reaction mechanisms include compound 
nucleus, Coulomb excitation, and direct reactions, among 
others. Nuclei have excited states, which may appear as reso-
nances in a compound nucleus reaction. The lifetimes t of 
nuclear states are related to their widths * by the uncer-
tainty principle, *t # U/2.

Heavy nuclei may fission into two fission fragments be-
cause of the increasingly large Coulomb force. Spontaneous 
fission occurs for nuclei with Z 2/A + 49, and fission can be 

induced with a nuclear reaction. The nuclide 235U fissions 
with the absorption of a slow neutron. A self-sustaining 
chain reaction is possible, because fission produces neutrons 
that can cause another fission.

Nuclear reactors may be built in different ways for spe-
cial purposes. A breeder reactor produces more fissionable 
fuel than it consumes. Nuclear fusion is an efficient energy 
source, and isotopes of hydrogen, 2H and 3H, appear to be 
the most useful. Although fusion is the source of our sun’s 
energy, it has not yet been controlled on Earth.

Applications of nuclear science are plentiful and in-
clude medicine, archaeology, art, crime detection, mining, 
oil, material studies and production, and small power sys-
tems. The search for new elements continues to discover 
new elements in the quest for the island of stability for su-
perheavy elements.

S u m m a r y

Q u e s t i o n s

 1. Rutherford was able to initiate nuclear reactions with 
! particles before 1920. Why wasn’t he able to initiate 
nuclear reactions with protons?

 2. In Example 13.2 we learned that the 12C(!, n)15O 
cross section is much larger than the 12C(!, p)15N re-
action for E! " 14.6 MeV. We believe this is evidence 
of a resonance in 16O. If it is a resonance, why aren’t 
both neutron and proton exit channels strongly pop-
ulated? Why do we conclude the difference must be 
due to quantum numbers in the exit channel? Can 
the Coulomb barrier in the exit channels make a 
difference?

 3. Why do the lifetimes of nuclear excited states de-
crease for higher excitation energies?

 4. Why is the density of nuclear excited states larger for 
higher excitation energies?

 5. Both deuterons and alpha particles can cause direct 
reactions by stripping. Which are more effective? 
Explain.

 6. Discuss the changes in the cross section for neutron-
induced and proton-induced reactions as the initial 
kinetic energy is decreased from 50 MeV. Ignore 
resonances.

 7. Think about how a chain reaction could be controlled 
without delayed neutrons. Is it possible? What would 
be the diffi culties?

 8. Think carefully about the fi ssion process. Does it seem 
peculiar that symmetric fi ssion is not the most prob-
able? Does the distribution shown in Figure 13.8 seem 
reasonable? Explain.

 9. Why is it useful to slow down neutrons produced by 
fi ssion in a nuclear reactor?

 10. All the moderators mentioned in this chapter to slow 
down neutrons are light nuclei. Why are light nuclei 
used for moderators instead of heavy nuclei?

 11. Why is fi ssion fuel placed in 4-m-long rods placed 
parallel but separated, rather than in one lump of 
mass?

 12. Discuss how each of the following sources of energy is 
ultimately derived from the sun: wood, coal, gas, oil, 
water, and wind.

 13. Why does a star’s temperature increase as fusion pro-
ceeds? Why are higher temperatures required for the 
carbon cycle than for the proton-proton chain?

 14. The fusion process continues in a very massive star 
until its core consists of nuclei near 56Fe. Explain why 
this occurs.

 15. The fi rst wall of a magnetic fusion containment vessel 
has been said to contain the most hostile environment 
yet designed by man. Justify this statement.

 16. Neutron-activation analysis is much more widely used 
than charged-particle activation. Why do you suppose 
that is true?

 17. Explain in your own words the origin of the names of 
elements 97 through 102; that is, who or what the ele-
ments were named after and the reasons for doing so.

 18. Explain in your own words the origin of the names of 
elements 103 through 108—that is, who or what the 
elements were named after and the reasons for doing 
so.

 19. Explain in your own words the origin of the names 
of elements 109 through 114—that is, who or what 
the elements were named after and the reasons 
for doing so. You can skip those elements for which 
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   Problems 515

International Union of Pure and Applied Chemistry 
has not yet offi cially assigned a name.

 20. How many new elements have been discovered that 
are not mentioned in this textbook? Discuss them.

 21. Small research nuclear reactors, like those mostly 
used in universities, are often submerged in concrete 
structures that look like swimming pools. The water 

serves as a moderator of the neutrons. They often 
have a blue glow in the swimming pool around the 
reactor. What is the origin of the blue color? Hint: 
Look up Cerenkov radiation.

 22. A common fi ssion fragment is 90Sr. Why is this isotope 
considered particularly dangerous to human health?

  Note: The more challenging problems have their 
problem numbers shaded by a blue box.

13.1 Nuclear Reactions
 1. Write the precise nuclide identifi cation for the miss-

ing element x for the following reactions.
  (a) 16O(d, x)14N, (b) 7Li(x, n)7Be, (c) 15N(!, n)x,
  (d) x(d, p)77Se (e) 107Ag(3He, d)x, and
  (f) 162Dy(x, d)163Ho.
 2. For each of the reactions listed in Problem 1, write 

one other possible exit channel.
 3. The cross section for a 2.0-MeV neutron (a typical 

energy for a neutron released in fi ssion) being 
absorbed by a 238U nucleus and producing fi ssion is 
0.68 barn. For a pure 238U sample of thickness 3.2 cm, 
what is the probability of a 2.0-MeV neutron produc-
ing fi ssion? (" " 19 g/cm3 for uranium)

 4. List at least three entrance channels using stable nu-
clei that can produce the exit channel d ! 20Ne.

 5. The cross section for neutrons of energy 10 eV being 
captured by silver (" " 10.5 g/cm3) is 17 barns. What 
is the probability of a neutron being captured as it 
passes through a layer of silver 2 mm thick?

 6. To measure the cross section of the 12C(!, p) 15N reac-
tion of Example 13.2, a detector subtending a solid 
angle of 3 & 10$3 sr is used at the scattering angle #. 
A 0.20-%A beam of 14.6-MeV , particles is incident on 
a 12C target of thickness 100 %g/cm2 for one hour. If 
the differential cross section is 0.25 mb/sr, how many 
protons are detected at the angle #?

 7. Write the complete reaction for an 16O target for the 
following reactions. List which products are stable. 
(a) (n, !), (b) (d, n), (c) ($, p), (d) (,, p), 
(e) (d, 3He), and (f) (7Li, p).

13.2 Reaction Kinematics
 8. Calculate the ground state Q values for the following 

reactions. Are the reactions endothermic or exo-
thermic? (a) 16O(d, !)14N, (b) 12C(12C, d)22Na, and 
(c) 23Na(p, 12C)12C.

 9. For the endothermic reactions of Problem 8, calculate 
the threshold kinetic energy.

 10. A state in 16O* at an excitation energy of 9.63 MeV has 
a broad width * " 510 keV. It is indicated in Figure 
13.6 by hatch marks. In the excitation functions for 
12C(!, !)12C and 12C(!, $)16O shown in Figure 13.6, 
broad peaks refl ect this state. (a) At what laboratory 
bombarding energy K! will the resonance be ob-
served? (The actual peak may be shifted slightly be-
cause of interference effects.) (b) What is the ap-
proximate lifetime of this excited state?

 11. In a certain nuclear reaction initiated by 5.5-MeV ! 
particles, the outgoing particles are measured to have 
kinetic energies of 1.1 MeV and 8.4 MeV. (a) What is 
the Q value of the reaction? (b) If exactly the same 
reaction were initiated by 10-MeV ! particles, what is 
the Q value? (The outgoing energies will change.)

 12. Calculate the Q value and threshold energy for the 
20Ne(!, 12C)12C reaction. What will be the sum of the 
kinetic energies of the 12C nuclei if the alpha particle 
initially has 45 MeV of kinetic energy in the lab?

 13. The threshold kinetic energy is calculated nonrelativis-
tically in Equation (13.10). For the reaction A (a, b) B 
show that the threshold kinetic energy calculated rela-
tivistically is

K th " $ 
Q 1ma ! mA ! mb ! mB 2

2mA
 14. A slow neutron is absorbed by 10B in the reaction 

10B(n, $)11B. What is the energy of the $ ray?
 15. In a PuBe source, plutonium produces ! particles of 

average energy 4.61 MeV. These ! particles interact 
with beryllium by the 9Be (!, n)12C reaction. How 
much kinetic energy do the reaction products have?

 16. Calculate the ground state Q value and the threshold 
kinetic energy for the reactions (a) 16O(!, p)19F and 
(b) 12C(d, 3He)11B.

 17. 60Co is produced by neutron activation of 59Co placed 
in a nuclear reactor where the neutron fl ux is 1.0 & 
1018 neutrons/m2 # s. The cross section is 20 b, and the 
sample of 59Co has mass 40 mg. (a) If the 59Co is left 
in the reactor for one week, how many 60Co nuclei 
are produced? (b) What would be the activity of the 
60Co? (density of cobalt " 8.9 g/cm3) (c) Describe a 

P r o b l e m s
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516 Chapter 13 Nuclear Interactions and Applications

ber of fi ssions. The spontaneous fi ssion activity rate of 
238U is 6.7 fi ssions/kg # s.

 28. Calculate the percentage abundance of 235U and 238U 
2.0 billion years ago if the abundance today is 0.72% 
and 99.3%, respectively. The higher percentage of 
235U probably allowed natural nuclear reactors to oc-
cur. Explain why such a reaction could not occur 
today.

 29. Use the information in Figure 13.8 to write at least 
three common sets of fi ssion fragments for the fi ssion 
products of 236U (that is, the unstable nuclide present 
after 235U has absorbed a neutron and has undergone 
fi ssion).

13.5 Fission Reactors
 30. A fi ssion reactor operates at the 1250-MWe level. As-

sume all this energy comes from the (average) 200 MeV 
released by fi ssion caused by thermal neutron absorp-
tion by 235U. At what daily rate is the mass of 235U used? 
(In practice, the energy conversion is not 100% effi -
cient, nor is all the 235U in a fuel cell used.)

 31. Calculate the energy released in kilowatt hours from 
the fi ssion of 1.0 kg of 235U. Compare this with the 
energy released from the combustion of 1.0 kg of 
coal. The heat of combustion of coal is given in Table 
13.1.

 32. In his book Great Ideas in Physics, Alan Lightman esti-
mated that the energy (all forms, not just electrical) 
needed for a large American city for one day is 
roughly the same as could be provided by converting 
100% of the mass of a golf ball into energy. Check to 
see whether this estimate is valid within an order of 
magnitude.

 33. In 2011 one estimate of worldwide proven oil reserves 
was 2.0 & 1011 m3. Using the data in Table 13.1, an-
swer the following questions. (a) How much energy 
would that amount of oil produce? (b) If oil were the 
sole source of energy for the world, how long would it 
last, assuming a steady yearly energy consumption of 
500 EJ (5.0 & 1020 J)? (c) How much uranium used to 
fuel nuclear reactors would be required to supply the 
amount of energy you found in (a)?

13.6 Fusion
 34. Neutrons in equilibrium with their surroundings at 

temperature T are called thermal neutrons and have 
an average kinetic energy 3

2kT. Calculate the thermal 
neutron energy for (a) room temperature (300 K) 
and (b) the sun (15 & 106 K).

 35. Determine the ground-state Q values for each of the 
reactions in the carbon cycle and show that the overall 
energy released is the same as for the proton-proton 
chain (26.7 MeV).

 36. There is a bottleneck in producing masses higher 
than 4He, because there are no mass-5 or mass-8 sta-
ble nuclides. For older stars with high densities and 

procedure for producing 1.0 & 1014 Bq of 60Co for 
medical use.

13.3 Reaction Mechanisms
 18. Consider the reaction X(x,y)Y depicted in Figure 13.4, 

where the target X is at rest. The energy of the center 
of mass is given by

K cm "
1
2

 1Mx ! MX 2vcm
2

  where vcm is the speed of the center of mass given by 
Equation (13.8). Show that the energy available in 
the center-of-mass system K 'cm is given by Equation 
(13.12):

K'cm " K lab $ K cm "
MX

Mx ! MX
 K lab

  where K lab " Mxvx
2/2.

 19. A 6.7-MeV alpha particle initiates the 14N(!, p)17O 
reaction in air. What is the excitation energy of the 
compound nucleus 18F?

 20. A 14-MeV neutron is captured by a 208Pb nucleus. (a) At 
what excitation energy is the resulting 209Pb? (b) What 
decay mechanism would you expect for this highly ex-
cited 209Pb nucleus?

 21. (a) Make an estimate for the Coulomb barrier that 
the alpha particle must overcome for the reaction 
14N(!, p)17O in Example 13.3. (b) Also make an esti-
mate for the proton kinetic energy at a forward scat-
tering angle. (c) Will the proton have enough energy 
to tunnel out of the nucleus?

 22. The ground state of 17Ne is unstable. Its half-life has 
been measured to be 109 ms. (a) What is the energy 
width of the state? (b) List two possible decay 
mechanisms.

 23. The fi rst excited state of 17F is at 0.495 MeV. Can the 
p ! 16O reaction populate this state? Give your 
reasons.

 24. 239Pu absorbs a thermal neutron, and the resulting 
nucleus gamma decays to the ground state. (a) What 
is the energy of the gamma ray? (b) What would be 
the energy of the gamma ray if a 1.0-MeV neutron is 
absorbed by 239Pu at rest?

 25. List as many nuclear reactions as you can that use 
deuterons and alpha particles for projectiles with sta-
ble targets that will populate 22Ne as the fi nal state in 
direct reactions.

 13.4 Fission
 26. Calculate how much energy is released when 239Pu ab-

sorbs a thermal neutron and fi ssions in the reaction

n ! 239
94Pu S 240

94Pu* S 95
40Zr ! 142

54Xe ! 3n

 27. A sample of shale contains 0.055% 238U by weight. 
Calculate the number of spontaneous fi ssions in one 
day in a 106-kg pile of the shale by determining 
(a) the mass of 238U present, (b) the number of 238U 
atoms, (c) the fi ssion activity, and fi nally (d) the num-
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high temperatures (T ( 100 million K), three alpha 
particles can form 12C. This occurs by two alpha par-
ticles fi rst forming 8Be, and 8Be reacting with another 
alpha particle to form 12C before 8Be can decay back 
to two alpha particles. (a) Explain why this has to hap-
pen for very hot stars and high density. (b) Calculate 
how much energy is given up when three alpha par-
ticles form 12C.

 37. Following the triple-alpha process to form 12C (see 
the previous problem), a variety of nuclear reactions 
can form heavier nuclide masses. In one of them, 
16O ! 16O S 32S ! -, the temperature must be greater 
than about 3 billion K. (a) Why does the temperature 
have to be so high? (b) Calculate how much energy is 
released in the reaction. It is reactions like this that 
allow nuclei in the iron region to be formed.

 38. One of the fusion reactions that goes on in massive 
stars is silicon burning, 28Si ! 28Si S 56Ni ! -. This 
reaction is how fusion reactions eventually reach the 
most stable iron/nickel region. It is also a precursor 
to the end of a star’s life and may lead to a supernova, 
if the star’s mass is suffi cient. (a) Calculate the igni-
tion temperature required for this reaction. (b) How 
much energy is expended in this reaction?

 39. One of the fusion reactions that goes on in massive stars 
is carbon burning, 12C ! 12C S 24Mg ! -. (a) Calculate 
the ignition temperature required for this reaction. 
(b) How much energy is expended in this reaction?

 40. Assume that two thirds of Earth’s surface is covered 
with water to an average depth of 3 km. Calculate how 
many nuclei of deuterium exist (2H is 0.015% abun-
dant). Estimate using reaction (13.22) how much en-
ergy is available through fusion.

 41. The ignition temperature of fusion reactions is referred 
to in both temperature and kinetic energy. (a) Explain 
why this is done. (b) What is the relation between the 
two? (c) At what temperature is the energy 6.0 keV?

 42. The following reactions may be useful in producing 
energy for fusion reactions. Find their Q values. 
4He(3He, $)7Be, 2H(d, p)3H, 2H(p, $)3He, 12C(p, $) 13N, 
3He(3He, pp)4He, 7Li(p, !)4He, 3H(d, n)4He, 
3He(d, p)4He.

 43. Determine how hot the environment must be for the 
fi rst reaction of the CNO cycle to occur. (Hint: First 
fi nd the threshold kinetic energy for the proton and 
the Coulomb barrier. After determining the kinetic 
energy, determine the temperature.)

 44. One of the possibilities for producing energy in a star 
after the hydrogen has burned to helium is 3, S 12C 
(that is, three alpha particles react to form 12C). How 
much energy is released in this process?

 45. For a thermal neutron (300 K), fi nd its (a) energy, 
(b) speed, and (c) de Broglie wavelength.

13.7 Special Applications
 46. To determine the wear of an automobile engine, a 

steel compression ring is placed in a nuclear reactor, 
where it becomes neutron activated because of the 
formation of 59Fe(t1/2 " 44.5 days, %$). The activity of 
the ring when placed in the engine is 4.0 & 105 Bq. 
Over the next 60 days, the car is driven 100,000 km on 
a test track. The engine oil is extracted, and the activ-
ity rate of the oil is measured to be 512 %$/min. What 
fraction of the ring was worn off during the test?

 47. (a) Why does a 99mTc generator need to be shipped 
once a week to hospitals? (b) What is the activity of a 
1011-Bq 99mTc generator source 9 days after it was pro-
duced? (c) If the activity is 0.9 & 1011 Bq on Monday 
morning when it arrives, what will be the activity at the 
same time on Friday morning, the last day of the 
working week?

 48. The Los Angeles County Police want to use neutron 
activation analysis to look for a tiny residue of barium 
in gunpowder. The suspected residue is placed in a 
nuclear reactor, where it is activated by the neutron 
fl ux. Natural barium contains 71.7% 138Ba. The %$ 
emitter 139Ba is produced in the 138Ba(n, $)139Ba reac-
tion. The half-life of 139Ba is 83.1 min. 139Ba beta de-
cays to 139La, 72% going to the ground state and 27% 
going to the fi rst excited state at 0.166 MeV. Scientists 
think they need a count rate for the 166-keV $ ray 
(decay to the ground state) of at least 1000 Bq 30 min 
after the residue is removed from the reactor in order 
to make a positive identifi cation of barium. (a) How 
many 139Ba nuclei must be present at the end of the 
activation? (Remember the decay and fraction going 
to the fi rst excited state.) (b) How many grams of 
139Ba must be produced? If the original amount of 
barium was 0.01 &g, what fraction of the 138Ba was 
activated?

 49. A 5.0 & 105 Bq 241Am alpha source is used in a smoke 
alarm. The device is arranged so that 15% of the de-
cay alphas are detected. (a) What current is detected? 
(b) If the introduction of smoke causes a 10% change 
in the intensity of the alpha particles, what sensitivity 
must the electronic circuit have to cause an alarm?

 50. Consider a spacecraft’s power source consisting of 
210Po, which emits a 5.3-MeV alpha particle, t1/2 " 138 
days. (a) How many kg of 210Po are needed to initially 
produce a power source of 5.0 kW? (b) If the power 
source must produce 7.0 kW after 2.0 years in space, 
how much 210Po is needed?

 51. A hospital has a 3.0 & 1014 Bq 60Co source for cancer 
therapy. What is the rate of $ rays incident on a pa-
tient of area 0.30 m2 located 4.0 m from the source? 
60Co emits a 1.1- and a 1.3-MeV $ ray for each 
disintegration.

 52. Rework Example 13.10 if the neutron is to probe the 
diameter of a 238U nucleus. Could neutrons from a 
nuclear reactor be used? Explain.
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tion of momentum and energy. (a) What is the Q 
value of the reaction? (b) What is the mass of 34Si as-
suming the other three masses involved are known 
(see Appendix 8)?

 60. 90Sr is one of the most deadly products of nuclear fi s-
sion. Assume that 4% of the fi ssion fragment yield 
from a 235U atomic bomb is 90Sr. In a nuclear inter-
change on the planet Inhospitable, 1000 atomic 
bombs, each corresponding to the fi ssion of 100 kg of 
235U, are detonated. (a) How many atoms of 90Sr are 
released? (b) Assuming the 90Sr is spread evenly over 
the planet of diameter 12,000 km, what is the result-
ing activity for each m2? The half-life of 90Sr is 28.8 y.

 61. Assume a temperature of 2.0 & 108 K in a controlled 
thermonuclear reactor. (a) Calculate the most prob-
able energy of deuterons at this temperature. (b) Use 
the Maxwell-Boltzmann distribution from Chapter 9 
to determine the fraction of deuterons having an en-
ergy that is 2, 5, and 10 times the most probable 
energy.

 62. A PuBe source has a neutron activity of 1.6 & 105 Bq. 
The neutrons are produced by the 9Be(!, n)12C reac-
tion with an effective cross section of 90 mb and thick-
ness of 3.2 cm. (a) What is the probability of an 
incident alpha particle interacting with a 9Be nucleus? 
(b) What must be the rate of alpha particles incident 
on 9Be? (c) What must be the amount of mass of the 
239Pu producing the alpha particles?

 63. A typical person of mass 65 kg contains 0.35% potas-
sium, by weight. Of the potassium, 0.012% is 40K, an 
unstable nucleus that decays through %$ (89.3%) and 
electron capture (10.7%) with a t1/2 " 1.28 & 109y. 
What is the 40K activity due to %$ decay in a typical 
person’s body?

 64. The yields of nuclear fi ssion bomb weapons are mea-
sured in terms of the equivalent amount of energy 
produced by 1 kiloton of TNT (1 kiloton TNT " 4.2 
& 1012J). The bomb dropped on Hiroshima, Japan, 
on August 6, 1945, was believed to yield 15–20 kilo-
tons. Assume that the bomb yield was 15 kilotons of 
TNT and that each fi ssion reaction yields 200 MeV. 
What is the minimum mass of 235U that this bomb 
(called “Little Boy”) could have contained?

 65. The rate of spontaneous fi ssion in 238U is 6.7 decays 
per second for each kg of uranium present. The re-
maining decays of the 238U nuclide are alpha decays. 
What is the probability that decay will occur by spon-
taneous fi ssion?

 53. Assume that a 10.0-kg sample of 239Pu is used to pro-
duce electrical power from its ! decay. If your device 
is 60% effi cient in producing electrical power, how 
much power can be produced?

 54. We mentioned several superheavy elements that had 
been observed but not yet confi rmed or offi cially 
approved by the International Union of Pure and 
Applied Chemistry (IUPAC). (a) List those elements. 
(b) Research and discuss their status: Have they been 
confi rmed? Has IUPAC approved them?

 55. An infl ated catheter is used in balloon angioplasty to 
open up arteries that are occluded with plaque forma-
tion. Stents are placed in the arteries to support the 
arterial wall. Radioisotopes have been incorporated 
into the stents to inhibit the reclosing of the artery 
(called restenosis). Almost a half million patients in the 
United States receive intravascular therapy each year. 
(a) Research the current status of using radioisotopes 
in this process. How many patients are treated in the 
United States each year using it? (b) Which radioiso-
topes are primarily used? Are they beta or gamma 
emitters? Why would one be favored over the other?

General Problems
 56. In a nuclear reactor, the effective cross section for ther-

mal neutrons in uranium is the weighted average of the 
cross sections for the 235 and 238 isotopes present. The 
thermal neutron cross section is zero for 238U and 
580 barns for 235U. Find the effective cross section for 
thermal neutrons in a reactor that contains (a) natural 
uranium and (b) uranium enriched to 2.0% 235U.

 57. A thermal neutron induces fi ssion in a 235U nucleus. 
One of the fi ssion products is 132Sn, and three free 
neutrons are released. (a) Write the entire fi ssion re-
action. (b) How much energy is released?

 58. Compare the following: (a) total atomic binding en-
ergy of 1.0 kg of hydrogen atoms, (b) nuclear binding 
energy of 1.0 kg of deuterons, and (c) annihilation 
energy of 0.50 kg of protons with 0.50 kg of antipro-
tons. (d) Comment on the relative orders of magni-
tudes of the energies you computed in (a), (b), and 
(c).

 59. One method used to determine unknown atomic 
masses consists of precisely measuring the kinetic en-
ergies of the particles involved in a nuclear reaction 
and using known atomic masses. The mass of 34Si is 
determined by the 30Si(18O, 14O)34Si reaction initiated 
by 100-MeV 18O particles. The outgoing particles have 
86.63 MeV of energy, which can be determined only 
by measuring the 14O energy and using the conserva-
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We began our study of subatomic physics in Chapter 12. We investigated the 
nucleus in Chapters 12 and 13. Now we want to delve deeper, because finding 
answers to some of the basic questions about nature is a foremost goal of science: 
What are the basic building blocks of matter? What is inside the nucleus? What 
are the forces that hold matter together? How did the universe begin? Will the 
universe end, and if so, how and when?

We try to use the ideas, concepts, and laws of physics to answer these ques-
tions. The ancient Greek philosophers, among them Aristotle, supposed things 
were made of earth, fire, wind, and water. Democritus derived the word atom from 
the Greek word atomos, which refers to an object that cannot be further cut into 
pieces. So the atom was meant to be the smallest indivisible unit of matter. In this 
book we have shown that matter is made of molecules and atoms, and electro-
magnetic forces are responsible for holding atoms together. At a smaller level, an 
atom is made of electrons and a nucleus. The electromagnetic force is responsible 
for attracting the electrons to the nucleus, and the strong (nuclear) force is re-
sponsible for keeping neutrons and protons together in the nucleus. The defi ni-
tion of elementary particle has changed over the years. In particle physics, we 
refer to an elementary particle as having no known substructure. That is, it is not 
made of smaller particles. Particles such as neutrons and protons that were be-
lieved in the 1930s and 1940s to be “elementary particles” become just “parti-
cles.” Some of these particles are indeed crucial to our understanding of matter 
and of the forces that hold matter together. We see in this chapter that neutrons 
and protons are made up of even more fundamental particles called quarks. Al-
though quarks cannot be observed outside the nucleus, we believe they must exist 
in order to explain experimental data. How far can this division into smaller and 
smaller units of matter continue (see Figure 14.1)?

C H A P T E R
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If I could remember the names of all these particles, I’d be a botanist.

Enrico Fermi

I have done a terrible thing: I have postulated a particle that cannot be 
detected.

Wolfgang Pauli (after postulating the existence of the neutrino)

Figure 14.1 Starting from a vi-
rus, the structure of matter can 
be divided into smaller and 
smaller entities down to the quark 
and to whatever lies beyond. Cour-
tesy of Universities Research Association.
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520 Chapter 14 Particle Physics

We will find in this chapter, and especially in Chapter 16 on cosmology, that 
there is a close connection between the oldest science, astronomy with its grand 
dimensions, and particle physics, in which matter is studied in the tiniest dimen-
sions. The question of how the universe started and how it may end is in fact 
buried in the mysteries of elementary particle physics. For this reason many 
physicists believe that particle physics is at the forefront of physics, and indeed 
of all science. The mysteries are deep and profound, but finding the answers 
gives us great satisfaction. Although the subject is complex and requires the 
meshing of relativity, quantum mechanics, electrodynamics, and gravitation, we 
hope to convey some of the excitement and flavor of particle physics. In the last 
section of this chapter we discuss some of the accelerators used by physicists, 
especially by nuclear and particle physicists.

14.1  Early Discoveries
In 1930 the known elementary particles were the proton, electron, and photon. 
Thomson had identified the electron in 1897, and Einstein’s work on the pho-
toelectric effect can be said to have defined the photon (originally called a quan-
tum) in 1905. The proton is the nucleus of the hydrogen atom. Despite the rapid 
progress of physics in the first couple of decades of the twentieth century, no 
more elementary particles were discovered until 1932, when Chadwick proved 
the existence of the neutron, and Carl Anderson identified the positron in cos-
mic rays.

The Positron
Paul A. M. Dirac (1902– 1984), a British theoretical physicist, received his bach-
elor’s degree in electrical engineering and doctoral degree in mathematics (see 
Dirac’s photo and biography in Chapter 9). His training and brilliant insight 
into nature allowed him to make many contributions to physics, including his 
own general form of quantum mechanics, as well as showing that Heisenberg’s 
matrix mechanics and Schrödinger’s wave mechanics were special cases of his 
own general theory. Dirac also generalized the concept of “action-at-a-distance.” 
When discussing gravitation and electromagnetism, the concept of fields is use-
ful to understand the forces on objects placed in the external fields. Dirac devel-
oped the early form of quantum electrodynamics in which the absorption and 
emission of photons is a quantum process of the radiation field itself. His quan-
tum electrodynamics (QED) theory was later generalized by Richard Feynman, 
Julian Schwinger, and Sin-itiro Tomonaga to produce the most accurately tested 
theory of physics today. For their work Feynman, Schwinger, and Tomonaga were 
awarded the 1965 Nobel Prize for Physics.

Perhaps Dirac’s greatest success was his 1928 relativistic theory of the elec-
tron, for which he received the Nobel Prize for Physics in 1933. When Dirac used 
his considerable mathematical skills to combine quantum mechanics with rela-
tivity, he found that his wave equation had negative, as well as positive, energy 
solutions. His theory can be interpreted as a vacuum being filled with an infinite 
sea of electrons with negative energies. If enough energy is transferred to the 
sea, an electron can be ejected with positive energy. This leaves behind a hole 
that is the positron, denoted by e!. Notice the analogy with semiconductors where 
holes appear instead of positrons. Dirac’s theory, along with refinements made 
by other scientists, opened the possibility of antiparticles, which have the same 

Quantum 
electrodynamics

Carl D. Anderson (1905– 1991) 
was born in New York City and 
educated at the California Insti-
tute of Technology (B.S., 1927; 
Ph.D., 1930). He began cosmic 
ray studies in 1930 with his grad-
uate advisor Professor Robert 
Millikan, which led to the discov-
ery of the positron in 1932 for 
which he received the Nobel Prize 
for Physics in 1936. He also dis-
covered the muon in 1936. He 
spent his entire career at Caltech.
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mass and lifetime as their associated particles and the same magnitude, but the 
opposite sign for such physical quantities as electric charge and various quantum 
numbers. All particles, even neutral ones, have antiparticles (as discussed further 
in Section 14.3).

Cosmic rays are highly energetic particles, mostly protons, that cross interstel-
lar space and enter Earth’s atmosphere, where their interaction with particles 
creates cosmic “showers” of many distinct particles. Cosmic rays contain the 
highest particle energies ever observed (up to 1021 eV), although they normally 
are in the GeV (109 eV) range. The Austrian physicist V. F. Hess (1883– 1964; 
Nobel Prize for Physics, 1936) discovered cosmic rays in 1912 by detecting them 
at high altitudes during balloon flights. In 1932 the American physicist Carl D. 
Anderson discovered positrons by observing the paths of cosmic ray showers 
passing through a cloud chamber placed in a magnetic field.

The ultimate fate of positrons (antielectrons) is annihilation with electrons. 
After a positron slows down by passing through matter, it is attracted by the Cou-
lomb force to an electron, where it annihilates through the reaction

 e! ! e" S 2g (14.1)

We have already discussed this reaction in Chapter 3. The characteristic of posi-
tron annihilation is the emission of two oppositely directed 0.511-MeV gamma 
rays with the kinetic energy coming from the rest energies of the electron and 
positron. The kinetic energies of the charged particles are usually very small 
when they meet and are neglected.

Feynman presented a particularly simple graphical technique to describe 
interactions. For example, when two electrons approach each other, according 
to the quantum theory of fields, they exchange a series of photons. These pho-
tons are called virtual, because they cannot be directly observed. The action of 
the electromagnetic field (for example, the Coulomb force) can be interpreted 
as the exchange of photons. In this case we say that the photons are the carriers 
or mediators of the electromagnetic force. The procedure is represented sche-
matically in a spacetime diagram like those shown in Figure 14.2, called Feynman 
diagrams, in which an electron can emit a photon, and a positron and electron 
annihilate into a photon, which in turn pair produces an electron and positron. 
Feynman diagrams have been generalized to represent quite complicated inter-
actions. The rules are quite simple. Time goes from left to right; space is along 
the vertical axis. Quantum electrodynamics (QED) was the fi rst theory to use 
Feynman diagrams. Straight lines represent trajectories of particles with mass, 
and wavy lines represent the force carriers or “virtual particles.” A straight line 
with an arrow on it to the right ( ) represents an electron. A straight line with 
an arrow to the left ( ) indicates a positron (the arrow in the opposite direc-
tion occurs for all antiparticles). A wavy line ( ) represents the force carri-
ers such as the photon. A vertex is a point where three lines meet and represents 
an electromagnetic interaction for QED. There is no attempt made to indicate 
actual direction and speed in the diagram. The initial and fi nal particles in a dia-
gram (see Figure 14.2) are observable, whereas the intermediate objects are 
unobservable and represent virtual particles.

Yukawa’s Meson
The idea of the photon being the mediator of the electromagnetic force had 
been discussed by several physicists besides Dirac, including H. Bethe, E. Fermi, 
C. Møller, and G. Breit. The Japanese physicist Hideki Yukawa had the idea of 
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e!e!

Time
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(a)

e"

g
e!
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e!

(b)

Figure 14.2 Example of Feyn-
man diagrams. Time is moving 
from left to right. The axes are 
normally omitted, but we show 
them in (a). (a) An electron 
emits a photon and keeps mov-
ing. The incoming particle is an 
electron; the outgoing particles 
are the electron and a photon 
(!). (b) An electron and a posi-
tron interact and annihilate into a 
photon, which then pair produces 
into another electron and posi-
tron. The two electrons and two 
positrons are different in the en-
trance and exit channels. Notice 
the positron arrow does not point 
toward the vertex (where the 
three lines intersect indicating a 
reaction), because it is an 
antiparticle.
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522 Chapter 14 Particle Physics

developing a quantum field theory that would describe the force between nucle-
ons analogous to the electromagnetic force. In order to do this, he had to deter-
mine the carrier or mediator of the nuclear strong force analogous to the pho-
ton in the electromagnetic force. What particle is exchanged between nucleons 
to keep the nucleons strongly attracted?

In this case the mediating particle is called a meson, derived from the Greek 
word meso, which means “middle.” The attraction of nucleons depends on the 
exchange of a virtual meson, much like the exchange of a virtual photon in the 
Coulomb attraction of an electron and proton. The energy #E required to create the 
meson is #E $ mpc2 where mp is the meson mass. The Feynman diagram indicating 
the meson exchange between a neutron and a proton is displayed in Figure 14.3. 
Quantum theory shows that if the range of the force is small (10"15 m), the mass of 
the mediating particle must be large.

In 1935 Yukawa predicted a particle mass of about 200 electron masses for 
the virtual meson, making its rest energy about 100 MeV. No accelerators at the 
time could create such a high-energy particle, but some physicists believed that 
mesons could be observed in cosmic rays.

In 1938 Carl Anderson and his collaborators observed a particle in cosmic 
radiation that at first was believed to be Yukawa’s particle. Initially called a mu-
meson, it proved not to be a member of the meson family at all and is now called 
a muon. It has a mass of 106 MeV/c 2, but subsequent experiments showed that 
it did not interact strongly with the nucleus. This new particle could not be the 
propagator of the strong force; it interacts only through the weak and electro-
magnetic interactions.

Hideki Yukawa (1907– 1981) was 
born in Tokyo and raised in 
Kyoto. His early career was spent 
at Kyoto University and Osaka 
University. In 1935 he published 
his famous paper that proposed a 
new field theory of nuclear forces 
and predicted the existence of the 
meson, for which he received the 
Nobel Prize for Physics in 1949. 
He spent time in the United 
States in the 1940s and 1950s at 
Princeton and Columbia 
Universities.
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Use the Heisenberg uncertainty principle to estimate the 
mass of the meson if the range of the nuclear force RN is 
about 1 fm.

Strategy The uncertainty principle allows energy conser-
vation to be violated during a short time #t. We will let en-
ergy conservation be violated to the extent of the excess 
energy #E required to create the meson. The fastest speed 
possible for the meson is c, so the distance the meson travels 
in time #t is c #t. This distance c #t must be about the range 
of the nuclear force RN.

Solution The energy #E and the time #t are related by the 
uncertainty principle, #E #t ! U/2, so #t is given by #t ! U/
(2 #E ). The value of #E must be at least as large as is 
needed to create the mass particle, the meson in this case, 
so #E $ mpc2. We combine these results to give

 ¢t !
U

2 ¢  E
$

U
2mpc 2 (14.2)

We solve Equation (14.2) for the meson mass and use RN $ 
c #t:

 mpc2 $
U

2 ¢t
$

Uc
2RN

 (14.3)

If the mean range of the nuclear force is about 1 fm, we have

 mpc2 $
1.973 % 102 eV # nm

2 % 10"15 m
! 100 MeV

Equation (14.3) is useful to relate the effective length 
of any force R and the mass m that mediates the force. We 
write R as

 R $
U

2mc
$

Uc
2mc2 (14.4)

 EXAMPLE 14.1
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Yukawa’s meson, called a pion (or pi-meson or p-meson), was finally 
identified in 1947 by C. F. Powell (1903– 1969) and G. P. Occhialini (1907– 1993). 
Charged pions p& have masses of 140 MeV/c2, and a neutral pion p0 was later 
discovered that has a mass of 135 MeV/c2. Yukawa said the spin of the meson 
must be zero (or integral), which the pion has, but the muon has spin 1/2. We 
will see later that neutrons, protons, and pions are made of quarks, and that the 
nuclear interaction actually takes place between the quarks. It is preferable to 
speak of the “strong” force rather than the “nuclear” force, because the interac-
tion is at a level more basic than the nucleus.

14.2  The Fundamental Interactions
In Chapter 1 we discussed the fundamental forces in nature responsible for all 
interactions. Those forces include the gravitational, electroweak, and strong 
forces. For all practical purposes, there are really four fundamental forces, be-
cause we often treat the electromagnetic and weak interactions as separate de-
spite the fact that the electroweak interaction is a unification of the electromag-
netic and weak interactions, just as the electromagnetic interaction is a unification 
of electric and magnetic interactions. The electromagnetic and weak forces act 
independently except at particle energies available only in cosmic rays, pro-
duced by accelerators, or in the early stages of the creation of the universe. We 
will discuss this further in Chapter 16.

We have learned that the fundamental forces act through the exchange or 
mediation of particles according to the quantum theory of fields. The exchanged 
particle in the electromagnetic interaction is the photon. All particles having either 
electric charge or a magnetic moment (and also the photon) interact with the elec-
tromagnetic interaction. The electromagnetic interaction has very long range.

In the 1960s Sheldon Glashow, Steven Weinberg, and Abdus Salam (Nobel 
Prize for Physics, 1979) predicted that particles, which they called W (for weak) 
and Z, should exist that are responsible for the weak interaction. This theory, 
called the electroweak theory, unified the electromagnetic and weak interactions 
much as Maxwell had unified electricity and magnetism into the electromag-
netic theory a hundred years earlier. The details of the electroweak theory are 
too complex to be discussed here, but we know the W particle must be massive, 
because the weak interaction is very short range (remember the uncertainty 
principle argument in Example 14.1, R $ U/2mc). The W is a boson (integral 
spin). There are three versions of it: W& (mass 80.4 GeV/c2) and Z0 (mass 
91.2 GeV/c 2), all with spin 1. In 1983 these massive bosons were first observed at 
CERN (the European Organization for Nuclear Research) by a group led by 
C. Rubbia (Nobel Prize for Physics, 1984; see Special Topic, “Experimental 
Ingenuity,” in this chapter), confirming the theoretical predictions and the 
unification of the interactions. A Feynman diagram of the neutron beta decay is 
displayed in Figure 14.4, showing the W" as the carrier of the interaction.

We previously mentioned (Section 14.1) that Yukawa’s pion is responsible 
for the nuclear force. Now we know there are other mesons that interact with the 
strong force. Later, in Section 14.5, we will see that the nucleons and mesons are 
part of a general group of particles formed from even more fundamental parti-
cles called quarks. The particle that mediates the strong interaction between 
quarks is called a gluon (for the “glue” that holds the quarks together); it is mass-
less and has spin 1, just like the photon. Thus, we believe that at a more funda-
mental level it is the gluons that are responsible for the strong force. No one has 

Gluons

p0

n

p
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Figure 14.3 A Feynman dia-
gram indicating the exchange of 
a pion (Yukawa’s meson) between 
a neutron and a proton.

Figure 14.4 A Feynman dia-
gram indicating the beta decay of 
a neutron. Note that the W" me-
diates this beta decay. A proton, 
electron, and an antineutrino are 
emitted.
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524 Chapter 14 Particle Physics

observed an isolated quark or a gluon, because they stay hidden within particles, 
confined by the strong force. Experimental evidence (to be presented in Sec-
tion 14.5) convinces us that quarks and gluons exist. Particles that interact by the 
strong interaction are called hadrons; examples include the neutron, proton, 
and mesons.

It has been suggested that the particle responsible for the gravitational in-
teraction be called a graviton. The graviton is the mediator of gravity in quantum 
field theory and has been postulated because of the success of the photon in 
quantum electrodynamics theory. It must be massless, travel at the speed of light, 
have spin 2, and interact with all particles that have mass-energy. The graviton 
has never been observed because of its extremely weak interaction with objects.

The four interactions are shown schematically in Figure 14.5, and the me-
diators are listed in Table 14.1. Note that all the mediating particles are bosons 
with integral spin.

The quest to unify all the fundamental forces of nature into one theory has 
been an ultimate goal of some physicists for over a century. Maxwell unified the 
electric and magnetic forces into the electromagnetic theory in the 1860s. 
Glashow, Weinberg, and Salam unified the electromagnetic and weak interac-
tions into the electroweak interaction in the 1960s. But the unsuccessful at-
tempts are legend. Dirac badly wanted the proton to be the particle in the nega-
tive energy states of the electron in his relativistic electrodynamics theory of 
1928. His theory would then encompass all the particles then known (proton, 
electron, and photon). Heisenberg was purported to have discovered a unified 
theory in the 1950s, but the details were never forthcoming. This rumor 
prompted Pauli’s famous work of art shown in Figure 14.6 and his quote that 
“the details remain to be sketched in.”

The Standard Model The most widely accepted theory of elementary particle 
physics at present is the Standard Model. It is a simple, comprehensive theory 
that explains hundreds of particles and complex interactions with six quarks, six 
leptons, and three force-mediating particles. (Leptons are discussed in Section 
14.3 and quarks in Section 14.5.) It is a combination of the electro weak theory 
and quantum chromodynamics (QCD), but does not include gravity. The 
Standard Model was developed in the 1960s and 1970s and verified by 
experimental studies in the 1980s. It predicted the existence of the W and Z 
bosons, the gluon, charmed quark, and top quark, all of which were subsequently 
found with their expected properties.

Hadrons

Gravitons

From left to right, Abdus 
Salam (1926– 1996), Sheldon 
Glashow (1932– ), and Steven 
Weinberg (1933– ) received the 
Nobel Prize for Physics in 1979 
for formulating the electroweak 
theory, which unifies the electro-
magnetic and weak interactions. 
Salam was born and educated in 
Pakistan before going to Cam-
bridge University, where he re-
ceived his Ph.D. in 1952. After re-
turning to Pakistan for a few 
years, he worked at Cambridge 
and then the Imperial College, 
London, in 1957. In 1964 he 
helped found and became the di-
rector for the International Center 
for Theoretical Physics in Trieste, 
Italy. Glashow and Weinberg were 
both born in New York City, at-
tended the Bronx High School of 
Science, and graduated from Cor-
nell University in 1954. After 
Glashow received his Ph.D. from 
Harvard in 1959, he served on the 
faculties of the University of Cali-
fornia at Berkeley and Harvard. Af-
ter graduating from Cornell, 
Weinberg spent a year at the Niels 
Bohr Institute in Copenhagen. He 
then received his Ph.D. from 
Princeton in 1957 and spent time 
on the faculties of Columbia, UC-
Berkeley, MIT, and Harvard before 
moving to the University of Texas, 
Austin, in 1982. ©
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   14.2 The Fundamental Interactions 525

The details of the Standard Model are too complicated to present here, but 
much of the next few sections is based on it. The only missing parameter of the 
Standard Model is the mass of the Higgs boson (see next section), which is un-
der extensive investigation. The model has been so successful in particle physics 
that disagreements with its predictions now make news, not its successes. There 
are now enough disagreements with the Standard Model to indicate that it is an 
approximation of a yet more fundamental theory (see Section 14.7). The parti-
cle classifications of Section 14.3, the conservation laws and symmetries de-
scribed in Section 14.4, the discussion of quarks in Section 14.5, and the families 
of matter in Section 14.6 are all based on and consistent with the Standard 
Model unless otherwise stated.

Gluons

Atomic nuclei!
Fission and fusion!
Quark structure of!

proton and neutron 

Strong force

Photon

Electroweak force

Atoms and molecules!
Chemical reactions!

Light waves!
Electronics

Electromagnetic force

W and Z bosons

Neutron decay!
Beta radioactivity!

Muon and tau decay!
Neutrino interactions

Weak force

Graviton?

Solar system!
Galaxies!

Curved spacetime!
Black holes

Gravitation

e!

p

n

n

Figure 14.5 Some manifestations of the fundamental forces of nature. The mediating particles 
are shown, as well as the areas in which the forces are effective. Courtesy Universities Research 
Association.

Interaction Relative Strength Range Mediating Particle

Strong  1 10"15 m Gluons
Electroweak:
  Electromagnetic 10"2 q Photons
  Weak 10"6 10"18 m W&, Z bosons
Gravitation 10"43 q Graviton

Tab le  14 .1   The Fundamental Interactions

Figure 14.6 Wolfgang Pauli was 
a skeptic of elementary particle 
theories that purported to explain 
everything. Once, in the 1950s 
when a rumor of such a theory by 
Werner Heisenberg was circulat-
ing, Pauli noted that the details of 
Heisenberg’s theory remained to 
be sketched in. He drew the 
figure shown and announced, 
“Below is the proof that I am as 
great an artist as Rembrandt; the 
details remain to be sketched in.” 
From O. W. Greenberg, American Scien-
tist 76, 361 (1988).

Use the mass of the W" particle to estimate the range of the 
weak interaction responsible for the neutron beta decay.

Strategy This calculation is much like the one we did in 
Example 14.1, when we discussed Yukawa’s meson. In that 
case we knew the nuclear force range, but in this case, the 
force range is unknown. We use Equation (14.4) to find the 
force range RW.

 EXAMPLE 14.2
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526 Chapter 14 Particle Physics

14.3  Classification of Particles
As the number of known particles continued to increase in the 1950s and 1960s, 
physicists proposed various schemes to make sense of what some referred to as the 
particle “zoo.” Since the 1960s experimentalists have needed accelerators with 
ever-increasing energies in order to test elementary particle theories. Eventually, 
an understanding of the zoo developed due to many contributions. In this section 
we present a compact picture of the organization of particles that represents some 
of the most important advances in particle physics during the past 50 years.

We discussed in Chapter 9 that particles with half-integral spin are called 
fermions and those with integral spin are called bosons. This is a particularly useful 
way to classify elementary particles because all stable matter in the universe appears 
to be composed, at some level, of constituent fermions. We have already discussed some 
bosons in the previous section. Photons, gluons, W&, and the Z are called gauge 
bosons and are responsible for the strong and electroweak interactions. Gravi-
tons are also bosons, having spin 2. Fermions exert attractive or repulsive forces 
on each other by exchanging gauge bosons, which are the force carriers.

One other boson that has been predicted, but not yet detected, is necessary 
in quantum field theory to explain why the W& and Z have such large masses, yet 
the photon has no mass. This missing boson is called the Higgs particle (or Higgs 
boson) after Peter Higgs, who first proposed it. We don’t know whether the 
Higgs particle is an elementary boson or a composite particle. The Higgs boson 
may also give information on the masses of quarks and leptons. The Standard 
Model proposes that there is a field called the Higgs field that permeates space. 
By interacting with this field, particles acquire mass. Particles that interact 
strongly with the Higgs field have heavy mass; particles that interact weakly have 
small mass. The Higgs field has at least one particle associated with it, and that 
is the Higgs particle (or Higgs boson). The properties of the gauge and Higgs 
bosons, as well as the graviton, are given in Table 14.2.

The search for the Higgs boson is of the highest priority for experimental 
particle physics. The LEP collider at CERN was used before 2000 to set a lower 
limit of 114 GeV/c2 for the mass of the Higgs boson. Other experiments indi-
cated its mass is below 200 GeV/c2 and perhaps even below 185 GeV/c2 under 
certain conditions. A prodigious effort to discover the Higgs particle at the Fer-
milab Tevatron before the LHC became operational in 2010 was able to exclude 
the limit between 158 and 175 GeV/c2, and by 2011 physicists at both Fermilab 
and at the CERN Large Hadron Collider (LHC) were working feverishly to dis-
cover the Higgs boson. These experiments require huge detector systems (see 
Figure 14.7) and teams with more than a thousand scientists and engineers.

Fermions and bosons

Gauge bosons

Higgs boson

Solution The range RW becomes

 RW $
Uc

2mWc2

  $
1.973 % 102 eV # nm
2180.4 GeV/c2 2 1c2 2 $ 1.2 % 10"18 m

In this case, it may not be true that the W" travels near the 
speed of light, because it is such a massive particle. The cal-
culation here is therefore an upper limit. Note that in this 
case the violation of the conservation of energy is extreme, 

so the violation must occur over a very short period of time. 
We calculate #t from Equation (14.2) to be

 ¢t $
U

2mWc2

  ¢t $
1.055 % 10"34 J # s

2180.4 GeV 2  a 1 GeV
1.6 % 10"10 J

b ! 4 % 10"27 s

The lifetime of the neutron is much longer than the time it 
takes for the decay process itself.
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   14.3 Classification of Particles 527

We shall spend the remainder of this section discussing fermions, which 
come in two varieties (leptons and quarks), and the mesons, which are bosons 
also made from quarks. Leptons include charged particles (electrons and mu-
ons) as well as uncharged particles (neutrinos). Quarks make up hadrons. We 
discuss leptons and hadrons in turn.

Leptons
Leptons appear to be pointlike, that is, with no apparent internal structure, and 
seem to be truly ele mentary. Thus far there has been no plausible suggestion they 
are formed from some more fundamental particles. There are only six leptons 

   Electric
Boson Mass Spin Charge Comments

Gauge:
  Photon 0 1 0 Stable, carrier of electromagnetism
  W!, W" 80.40 GeV/c 2 1 1, "1 ' $ 2.08 GeV, decays observed, mediators of some weak interactions
  Z 91.19 GeV/c 2 1 0 ' $ 2.50 GeV, decays observed, mediator of some weak interactions
  Gluon 0 1 0 Bound in hadrons, not free, responsible for strong interaction
Higgs H0 (114 GeV/c 2 0 0  Not yet observed, may endow W and Z bosons, quarks, and leptons 

with mass
Graviton 0 2 0 Stable, not observed, mediator of gravitational force

K. Nakamura et al. (Particle Data Group), Review of Particle Physics, Journal of Physics G37, 075021 (2010).

Tab le  14 .2   Boson Properties: Gauge, Higgs, and Graviton

Figure 14.7 The CMS detector 
at the LHC accelerator at CERN 
is shown open for testing with the 
magnets, calorimeters, trackers 
and muon chambers visible. The 
detector was tested using muon 
cosmic rays produced from high 
energy particles passing through 
Earth’s atmosphere. Notice the 
man standing in the lower right 
for scale purposes. ©
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528 Chapter 14 Particle Physics

(listed in Table 14.3), plus their six antiparticles. We have already discussed the 
electron and muon. Each of the charged particles has an associated neutrino, 
named after its charged partner (for example, muon neutrino nm). The muon 
decays into an electron, and the tau can decay into an electron, a muon, or even 
hadrons (which is most probable). The muon decay (by the weak interaction) is

 mS e ! nm ! ne (14.5)

We are already familiar with the electron antineutrino that occurs in the 
beta decay of the neutron (Chapter 12). Neutrinos have zero charge. Their 
masses are known to be very small. The precise mass of neutrinos may have a 
bearing on current cosmological theories of the universe because of the gravita-
tional attraction of mass. All leptons have spin 1/2, and all three neutrinos have 
been identified experimentally. Neutrinos are particularly difficult to detect be-
cause they have no charge and little mass, and they interact so weakly with matter 
that their probability of being stopped while going through our planet Earth is 
exceedingly small. Leptons do not experience the strong force.

Hadrons
As mentioned previously, hadrons are particles that interact through the strong 
force. There are two classes of hadrons: mesons and baryons. Mesons are particles 
with integral spin having masses greater than that of the muon (106 MeV/c 2; note 
that the muon is a lepton and not a meson). All baryons have masses at least as 
large as the proton and have half-integral spins.

Mesons We have already discussed the pion in Section 14.1; the pion is a meson 
that can either have charge or be neutral. Mesons are also bosons because of 
their integral spin. The meson family is rather large and consists of many 
variations, distinguished according to their composition of quarks. We list in 
Table 14.4 only some of the mesons. In addition to the pion there is also a K 
meson, which exists in both charged (K&) and neutral forms (K0). The K" 
meson is the antiparticle of the K!, and their common decay mode is into muons 
or pions. The K0 meson is particularly interesting because it has two decay 
lifetimes: K 

0
S has a shorter mean lifetime of 9 % 10"11 s and decays to p!p" or 

2p0, whereas K 
0
L has a longer mean lifetime of 5 % 10"8 s and has many decay 

Mesons and baryons

Particle  Anti- Mass Mean Main Decay
Name Symbol particle (MeV/c2) Lifetime (s) Modes

Electron e" e! 0.511 Stable
e-Neutrino ne ne  ) 2.2 % 10"6

Muon m" m! 105.7 2.2 % 10"6 e"ne nm
m-Neutrino nm nm  ) 0.17
Tau t" t! 1776.8 2.9 % 10"13 e"ne  

nt, *"n*nt

t-Neutrino nt nt ) 15.5

Review of Particle Physics, K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 
075021 (2010)

Tab le  14 .3   The Leptons
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   14.3 Classification of Particles 529

modes, including the two-pion mode (only 0.3% of all K 
0
L decays), which violates 

the combined conservation laws of charge and parity (see Section 14.4). All 
mesons are unstable and not abundant in nature. They are routinely produced 
in cosmic radiation and in nuclear and particle physics experiments. The p0 is 
its own antiparticle.

Baryons The neutron and proton are the best-known baryons, and the baryons 
are a prolific group. Baryons having nonzero strangeness numbers (a new 
quantum number to be discussed in the next section) are called hyperons. The 

       Baryon Strangeness Charm
Particle  Anti- Mass Mean Main Decay  Number Number Number
Name Symbol particle (MeV/c2) Lifetime (s) Modes Spin B S C

Mesons
  Pion p" p! 140 2.6 % 10"8 m!nm 0 0 0 0

 p0 Self 135 8.4 % 10"17 2g 0 0 0 0

  Kaon K! K" 494 1.2 % 10"8 m!nm, p!p0 0 0 1 0

 K0
S K0

S 498 8.9 % 10"11 p!p", 2p0 0 0 1 0

 K0
L K0

L 498 5.1 % 10"8 p&e+ne, 3p0,  0 0 1 0
     p&m+nm, 
     p!p"p0

  Eta h0 Self 548 5 % 10"19 2g, 3p0,  0 0 0 0
     p!p"p0

  Charmed  D! D" 1870 1.0 % 10"12 e!, K &, K 0,  0 0 0 1
    D’s     K 0  ! anything

 D0 D0 1865 4.1 % 10"13 Same as D! 0 0 0 1

 D!
S  D"

S  1968 5.0 % 10"13 Various 0 0 1 1

  Bottom B’s B! B" 5279 1.6 % 10"12 Various 0 0 0 0

 B0 B0 5279 1.5 % 10"12 Various 0 0 0 0

  J/Psi J/c Self 3097 7.1 % 10"21 Various 0 0 0 0

  Upsilon ,(1S) Self 9460 1.2 % 10"20 Various 0 0 0 0

Baryons

  Proton p p 938.3 Stable (?)  1
2 1 0 0

  Neutron n n 939.6 886 pe"ne 
1
2 1 0 0

  Lambda - ¶ 1116 2.6 % 10"10 pp", np0 1
2 1 "1 0

  Sigmas .! ." 1189 8.0 % 10"11 pp0, np! 1
2 1 "1 0

 .0 . 
0 1193 7.4 % 10"20 -g 1

2 1 "1 0

 ." . 
! 1197 1.5 % 10"10 np" 1

2 1 "1 0

  Xi /0 /0 1315 2.9 % 10"10 -p0 1
2 1 "2 0

 /" /! 1322 1.6 % 10"10 -p" 1
2 1 "2 0

  Omega 0" 0! 1672 0.82 % 10"10 -K", /0p" 1
2 1 "3 0

  Charmed  ¶!
C  ¶"

C  2286 2.0 % 10"13 Various 1
2 1 0 1

    lambda

Review of Particle Physics, K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 075021 (2010)

Tab le  14 .4   The Hadrons
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530 Chapter 14 Particle Physics

proton is the only stable baryon, but some theories predict that it is also unstable 
with a lifetime of about 1030 years. Ongoing experiments have set a lower limit 
for the proton lifetime of about 1033 years (see Section 14.4). The longest-lived 
baryons are listed in Table 14.4 along with the mesons. They include the lambda 
(-), sigma (.&, .0), xi (/0, /"), and omega (0"). All baryons, except the 
proton, eventually decay into protons.

Particles and Lifetimes
The lifetimes of particles are also indications of their force interactions. Particles 
that decay through the strong interaction are usually the shortest-lived, normally 
decaying in less than 10"20 s. The decays caused by the electromagnetic interaction 
generally have lifetimes on the order of 10"16 s, and the weak interaction decays 
are even slower, longer than 10"10 s. There are several important exceptions to 
these general statements; for example, some nuclear beta decays take a long time, 
including the beta decay of the free neutron, which has a lifetime of about 15 min.

The length of a particle’s lifetime has sometimes been used to define what 
we mean by a particle. The argument is that an object cannot rightfully be called 
a particle if its short lifetime prevents a direct observation. There is no single 
definition of a particle. An experimental physicist might say that a particle is an 
object having a well-defined charge and mass that behaves like a point (particle) 
while being accelerated or being detected.

A theoretical physicist might define a particle as an object having a complete 
set of numbers for charge, spin, mass, lifetime, and various other quantum num-
bers like charm, strangeness, and isospin (some of which we have not yet discussed). 
Some particles are observed only as a resonance, and although there is a precise 
definition for a resonance, its complexity prevents us from pursuing it here. We 
previously discussed compound nucleus resonances in Chapter 13; the resonances 
we are discussing here are wavelike phenomena and occur in particle scattering. 
The first excited state of the nucleon at 1232 MeV is a good example of a resonance 
called the delta [#(1232)]; its lifetime is about 10"23 s and is too short for the delta 
to be directly observed. It decays to a nucleon and a pion and is easily observed in 
pion and electron scattering from a proton (see Figure 14.8). Objects having life-
times as long as 10"10 to 10"14 s are normally regarded as particles because these 
times are long enough for the particles to be detected and induce other reactions. 
The lambda, sigma, xi, and omega baryons are examples of particles.

We call certain particles fundamental; this means that they are not composed of 
other, smaller particles. We believe leptons, quarks, and gauge bosons are funda-
mental particles. Although the Z and W bosons have very short lifetimes, they are 
regarded as particles, so a definition of particles dependent only on lifetimes is too 
restrictive. Other particles are composites, made from the fundamental particles.

We previously related the mean lifetime of a particle t to an uncertainty #t 
of the system. In discussing Yukawa’s estimation of the meson mass, we used the 
uncertainty principle #E #t 1 U/2 to estimate the time #t:

 ¢t !
U

2 ¢E
 (14.2)

The full width at half maximum (FWHM) is used to describe the characteristic 
of a resonance like that in the #(1232). The FWHM is 2 #E and is called the 
width '. So we have

 ¢t $ t !
U

2 ¢E
$

U
'

  or  t !
U
'

 (14.6)
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Figure 14.8 The spectrum of scattered electrons from 4.879-GeV electrons scattered inelastically 
from protons taken at DESY (Hamburg) showing the presence of the first excited state of the pro-
ton, called the #(1232), at an invariant mass energy of 1.23 GeV (the ground state has 0.938 GeV ). 
The particle is short-lived and quickly decays. Peaks due to other higher-lying resonances are also 
seen at 1.52 GeV and multiple resonances near 1.68 GeV. After W. Bartel et al., Physics Letters B 28, 
148 (1968).

The J/c particle was discovered at both the Stanford Linear 
Accelerator Center (SLAC) and Brookhaven National Labo-
ratory in 1974. The SLAC data from the head-on collision of 
e! and e" are shown in Figure 14.9. The width of the state 
was later determined to be ' $ 0.093 MeV. Discuss the evi-
dence that this resonance represents an elementary particle 
and determine the particle’s lifetime.

Solution The data shown in Figure 14.9 represent a clear 
experimental example of a resonance. The peak near 3.1 GeV 
was also observed in other outgoing reaction channels, indi-

 CONCEPTUAL EXAMPLE 14.3

10

100

s
 (

nb
)

1000

Energy ECMS (GeV)
3.050 3.090 3.100 3.110 3.120 3.130

e!e" hadrons

Figure 14.9 The experimental results of Burton Richter and his 
group at SLAC showing the observation of the J/c resonance near 
a mass 3.1 GeV/c 2. The Nobel Prize– winning experiment was 
done with e! and e" colliding head-on in the SPEAR storage ring 
at SLAC. The energies are in the center-of-mass system (CMS). 
Data from Augustin et al., Physical Review Letters 33, 1406 (1974). Figure 
after D. H. Perkins, Introduction to High Energy Physics, Reading, MA: 
Addison Wesley (1982), p. 205.

cating that the resonant peak occurs in the “compound” sys-
tem and not in the outgoing reaction channel.

The width of the resonance observed in Figure 14.9 
is on the order of 5 MeV and is limited by experimental 
resolution, namely, the beam momentum. With better 
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532 Chapter 14 Particle Physics

14.4  Conservation Laws and Symmetries
As the number of known particles continued to increase, physicists were per-
plexed by the occurrence of some reactions and decays. Physicists like to have 
clear rules or laws that determine whether a certain process can occur. It seems 
that everything occurs in nature that is not forbidden. Certain conservation laws 
are already familiar from our study of classical physics. These include charge, 
linear momentum, and angular momentum. These are absolute conservation 
laws: they are always obeyed. In this section we introduce additional conservation 
laws that are helpful in understanding the many possibilities of particle interac-
tions. As we shall see, some of these laws are absolute, but others may be valid for 
only one or two of the fundamental interactions.

Baryon Conservation
In low-energy nuclear reactions, the number of nucleons is always conserved. We 
now know empirically that this is part of a more general conservation law for 
baryon number. We assign a new quantum number called baryon number that has 
the value B $ !1 for baryons, "1 for antibaryons, and 0 for all other particles. 
The conservation of baryon number requires the same total baryon number before and after 
the reaction. Although there are no known violations of baryon conservation, 
there are theoretical indications that it was violated sometime in the beginning 
of the universe when temperatures were quite high. This is thought to account 
for the preponderance of matter over antimatter in the universe today.

experimental energy resolution, the resonance would be-
come much sharper. As stated, the actual energy width of 
the resonant state has been established to be 0.093 MeV and 
was determined by other means. We use Equation (14.6) to 
determine the lifetime of the J/c particle.

 
t $

U
'

$
1.055 % 10"34 J # s

0.093 MeV
 a 1 MeV

1.6 % 10"13 J
b $ 7.1 % 10"21 s

The lifetime of 10"20 s is very long compared to the charac-
teristic time taken by the e! and e", traveling practically at 
the speed of light, to interact over the distance of a few 
fermi.

Would the discovery of proton decay be a violation of 
baryon conservation?

Solution There are no known baryons with lighter mass 
than the proton. Therefore, if proton decay occurred, it 
would be a violation of baryon conservation unless a new, 

 CONCEPTUAL EXAMPLE 14.4

lighter baryon was also discovered. The lifetime of the pro-
ton is believed to be greater than 1033 years, but searches for 
its decay continue.

Let us examine the baryon conservation law in a few examples. In the neutron 
decay, n S p ! e ! ne, the baryon number is !1 on the left and the right sides, so 
baryon number is conserved. The antiproton was discovered in the reaction p ! p 
S p ! p ! p ! p. Note that at least four particles must be produced in the reaction 
to create one antiproton; the conservation of baryons requires it: B $ 1 ! 1 $ 2 on 
the left and B $ 1 ! 1 ! 1 " 1 $ 2 on the right. No fewer than three protons must 
be on the right side of the reaction in order to create the one antiproton.
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   14.4 Conservation Laws and Symmetries 533

Lepton Conservation
The leptons are all fundamental particles, and there is a conservation of leptons for 
each of the three kinds (families) of leptons; the net lepton number from each family is the 
same both before and after a reaction. We let Le $ !1 for the electron and the elec-
tron neutrino, Le $ "1 for their antiparticles, and Le $ 0 for all other particles. 
We assign similar quantum numbers Lm for the muon and its neutrino and L t for 
the tau and its neutrino. We now have three additional conservation laws, one 

Examine the conservation of baryon number in the reaction 
producing the 0" particle shown in the bubble chamber 
photograph of Figure 14.10.

Solution This is a straightforward application of the baryon 
conservation law. The reaction is

 K" ! p S K0 ! K! ! 0" (14.7)

 CONCEPTUAL EXAMPLE 14.5

The kaons all have B $ 0, so on the left side we have B $ 
0 ! 1 $ 1. The 0" has B $ !1, so on the right side we have 
B $ 0 ! 0 ! 1 $ 1. This was the experiment that first 
identified the 0" particle, some three years after Gell-Mann 
predicted its existence.

(a)

p!

g1

g2

p!

0!

-

K#

K!

K0

/0

p

(b)

Figure 14.10 A photograph and the schematic diagram of a reaction from a liquid hydrogen 
bubble chamber at Brookhaven National Lab showing the production of 0" by the interaction of a 
K" meson with a proton (a hydrogen nucleus in the bubble chamber). The neutral particles 
(dashed lines) leave no tracks in the bubble chamber. The 0" decays, producing the /0 and a p". 
Notice the variety of particles produced in the reaction and the eventual decays of short-lived 
particles.
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534 Chapter 14 Particle Physics

each for Le, Lm, and L t, that are obeyed in most reactions and decays. We say most 
reactions and decays because the neutrino oscillations (see Section 14.7), which 
occur for neutrinos in flight, violate the conservation of leptons within individ-
ual families. The total lepton number L $ Le ! Lm ! Lt is still conserved, except 
again at very high temperatures at the beginning of the universe, just as for 
baryon conservation.

Let us examine a few reactions to study the effects of these conservation laws. 
First, we look again at the neutron beta decay, n S p ! e ! ne. The values of Lm 
and L t are zero on both sides. On the left side we have Le $ 0, and on the right 
side we have Le $ 0 ! 1 " 1 $ 0, so Le is also conserved. It now becomes clear 
why the antineutrino, rather than the neutrino, is produced in beta decay; the 
anti particles play an important role in the weak interactions.

Examine the lepton conservation laws in the decay of the p" 
and m".

Solution The decays are

  p" S m" ! nm

  m" S e" ! ne ! nm

 CONCEPTUAL EXAMPLE 14.6

The p" first decays to m", which in turn decays into e". How-
ever, we must also have neutrinos in order to conserve 
lepton number. The first reaction has Lm $ 0 on the left 
and Lm $ !1 " 1 $ 0 on the right. For the second reaction, 
we must conserve both Le and Lm. On the left side we have 
Le $ 0 and Lm $ 1, and on the right side we have Le $ 1 " 
1 ! 0 $ 0 and Lm $ 0 ! 0 ! 1 $ 1, so both Le and Lm are 
conserved.

Strangeness
In the early 1950s physicists had considerable difficulty understanding the myr-
iad of observed reactions and decays. For example, the behavior of the K mesons 
seemed very odd. There is no conservation law for the production of mesons, but 
it appeared that K mesons, as well as the - and . baryons, were always produced 
in pairs in the proton reaction studied most often, namely the p ! p reaction. In 
addition, the very fast decay of the p0 meson into two photons (10"16 s) is the 
preferred mode of decay. One would expect the K0 meson to also decay into two 
photons very quickly, but it does not. The long and short decay lifetimes of the 
K0 are 10"8 and 10"10 s, respectively.

This strange behavior was understood by assigning a new quantum number 
called strangeness to certain particles. Strangeness is conserved in the strong and 
electromagnetic interactions, but not in the weak interaction. The values of the 
strangeness quantum number S are listed in Table 14.4. The kaons have S $ !1, 
lambda and sigmas have S $ "1, the xi has S $ "2, and the omega has S $ "3. 
Their antiparticles all have the opposite sign for the S quantum number. When 
the strange particles are produced by the p ! p strong interaction, they must be 
produced in pairs to conserve strangeness. The K0 is the lightest S $ 1 particle, 
and there is no other strange particle to which it can decay. It can decay only by 
the weak interaction, which violates strangeness conservation. Because the typi-
cal decay times of the weak interaction are on the order of 10"10 s, this explains 
the longer decay time for K0. Only #S $ &1 violations are allowed by the weak 
interaction.
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One more quantity, called hypercharge, has also become widely used as a 
quantum number. The hypercharge quantum number Y is defined by Y $ S ! B. 
Hypercharge is the sum of the strangeness and baryon quantum numbers and is 
conserved in strong interactions. Because hypercharge is not independent of 
strangeness, the conservation laws of hypercharge and strangeness are also re-
lated. The hypercharge and strangeness conservation laws hold for the strong 
and electromagnetic interactions, but are violated for the weak interaction.

Symmetries
Symmetry of equations describing a system under some operation is a useful aid 
to physicists in understanding particle reactions. Familiar symmetry operations, 
for example, are translation or rotation of a system in space. Because symmetries 
lead directly to conservation laws, it is important that we discuss three symmetry 
operators called parity, charge conjugation, and time reversal.

The conservation of parity P describes the inversion symmetry of space, that 
is, x S "x, y S "y, and z S "z. Inversion, if valid, does not change the laws of 
physics. The conservation of parity is valid for the strong and electromagnetic in-
teractions, but T. D. Lee and C. N. Yang (Nobel Prize for Physics, 1957) pointed 
out in 1956 that there was no experimental evidence for parity conservation in the 
weak interaction. They suggested, as a test, an experiment involving nuclear beta 
decay, and in May 1956 Lee talked to C. S. Wu, who was a well-known beta-decay 
physicist. She and her colleagues found evidence late in 1956 for the nonconserva-
tion of parity in the beta decay of 60Co, which verified the suspicions of Lee and 
Yang.

Charge conjugation C reverses the sign of the particle’s charge and magnetic 
moment. It has the effect of interchanging every particle with its antiparticle. 
Charge conjugation is also not conserved in the weak interactions, but it is valid 
for the strong and electromagnetic interactions. Even though both C and P are 
violated for the weak interaction, for several years after Lee and Yang’s work, it 
was believed that when both charge conjugation and parity operations are per-
formed (called CP), conservation was still valid. We can also understand this from 

Explain the unusually short lifetime of the .0 relative to the 
other hyperons (baryons with nonzero strangeness num-
bers) shown in Table 14.4.

Strategy We should be able to explain the lifetimes by 
examining the conservation laws. All the lifetimes for the 
hy perons are on the order of 10"10 s except for the .0, which 
has a lifetime of 7 % 10"20 s. We suspect that something is 
different about the .0 because of its short lifetime.

Solution Note that the decay is .0 S - ! g, which has S $ 
"1 on the left side and S $ "1 ! 0 $ "1 on the right side. 
It is an allowed transition. The .0 is able to decay by the 
strong interaction to another strange particle with the same 
value of strangeness.

 EXAMPLE 14.7

All the other hyperons in Table 14.4, however, have a 
decay that violates strangeness. Both .! and ." decay to 
nucleons, which violates strangeness ( 0¢S 0 $ 1 2 . The /0 and 
/" both decay to -, which violates strangeness because the 
left side has S $ "2 whereas the right side has S $ "1. Simi-
larly, the 0" decays to either /0 or -; both violate strange-
ness because S $ "3 for 0". These decay times are all on 
the order of 10"10 s, which is characteristic of the weak 
interaction.

The decay of the 0" into the - is particularly inter-
esting. At first glance it appears to violate strangeness by 0¢S 0 $ 2, but note that the reaction is actually 0" S - ! K", 
so S $ "3 on the left side, and S $ "1 " 1 $ "2 on the right 
side; thus, #S $ 1, because both - and K" have S $ "1.

Tsung-Dao Lee (1926– ) and 
Chen Ning Yang (1922– ) were 
born in China where they were 
educated before coming to the 
United States to earn doctorates 
at the University of Chicago (Lee 
in 1950 and Yang in 1948). Lee 
worked at the University of Cali-
fornia, Berkeley, and the Institute 
of Advanced Study at Princeton 
before becoming a professor at 
Columbia in 1953. Yang was at 
the Institute of Advanced Study 
from 1949 to 1966 and at the 
State University of New York at 
Stony Brook from 1966 to 1999. 
He returned to China in the 1990s 
and worked at Tsinhua University 
in Beijing. They received the No-
bel Prize for Physics in 1957 for 
their investigation of parity.
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536 Chapter 14 Particle Physics

the general theoretical result that when all three operations are performed 
(CPT ), where T is the time reversal symmetry, conservation holds. We believe 
that nature will proceed in the same manner both forward and backward in time 
for microscopic systems. We speak of the invariance of the symmetry operators, 
such as T, CP, and CPT.

This was the situation in 1964 when V. Fitch and J. Cronin (Nobel Prize in 
Physics, 1980) with their colleagues found that the K 

0
L meson decayed 0.3% of 

the time into two pions, rather than into three pions. Even though the decay 
into two pions is rare, it violates CP conservation and has tremendous 
ramifications for time reversal symmetry because of the strong belief in CPT 
invariance. The complete understanding and consequences of this result are still 
in some doubt.

The symmetries discussed here are just a small part of those used in particle 
physics, which relies heavily on group theory, the branch of mathematics that 
utilizes symmetry. We will return to symmetry in Section 14.7.

14.5  Quarks
We are now prepared to discuss quarks and how they form the many baryons and 
mesons that have been discovered experimentally. In 1961 Murray Gell-Mann and 
Yuval Ne’eman independently proposed a classification system called the eightfold 
way that separated the known particles into multiplets based on charge, hyper-
charge, and another quantum number called isospin, which we have not previously 
discussed. Isospin is a characteristic that can be used to classify different charged 
particles that have similar mass and interaction properties. The neutron and pro-
ton are members of an isospin multiplet we call the nucleon. In this case the isospin 
quantum number (I ) has the value 1/2, with the proton having the substate value 
!1/2 (“spin up”) and the neutron having "1/2 (“spin down”). Isospin is con-
served in strong interactions but not in electromagnetic interactions.

After the eightfold way was developed, it was noticed that some members of 
the multiplets were missing. Because of physicists’ strong belief in symmetry, 
experimentalists set to work to find them, a task made easier because many of 
the particles’ properties were predicted by the theoretical model. The 0" was 
detected in 1964 at Brookhaven National Laboratory (see Figure 14.10 and Ex-
ample 14.5) in this manner, a discovery that confirmed the usefulness of the 
eightfold way.

However, as other particles were discovered, it soon became clear that the 
eightfold way was not the final answer. In 1963 Gell-Mann and, independently, 
George Zweig proposed that hadrons were formed from fractionally charged 
particles called quarks.* The quark theory was unusually successful in describing 
properties of the particles and in understanding particle reactions and decay. 
Three quarks were proposed, named the up (u), down (d), and strange (s), with 
the charges !2e/3, "e/3, and "e/3, respectively. The strange quark has the 
strangeness value of "1, whereas the other two quarks have S $ 0. Quarks are 
believed to be essentially pointlike, just like leptons.

With these three quarks, all the known hadrons could be specified by 
some combination of quarks and antiquarks. But there was still a problem. We 

*The term was coined by Gell-Mann from a line in James Joyce’s book Finnegans Wake that says “three 
quarks for Muster Mark”; Gell-Mann is well known for his many other interests besides producing 
innovative theories.

Val Fitch (1923– ), together with 
James Cronin, discovered a de-
cay of the K meson that violated 
a widely held belief in the sym-
metry of charge conjugation and 
parity. Fitch and Cronin, both 
born in the United States, were 
professors at Princeton Univer-
sity at the time of their surprising 
experimental discovery, for which 
they won the 1980 Nobel Prize 
for Physics.
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discussed in the last section how the strangeness quantum number was able to 
explain the lifetimes of some of the known particles. For example, the differ-
ences in lifetimes of the hyperons were discussed in Example 14.7 and were 
explained in terms of the violation of strangeness conservation. Similarly, it was 
thought that another new quantum number might be able to explain some 
additional discrepancies in the lifetimes of some of the known particles, and a 
fourth quark called the charmed quark (c) was proposed in 1970. A new quan-
tum number called charm C was introduced so that the new quark would have 
C $ !1 while its antiquark would have "1. Particles without the charmed 
quark have C $ 0. Charm is similar to strangeness in that it is conserved in the 
strong and electromagnetic interactions, but not in the weak interactions. This 
behavior was sufficient to explain the particle lifetime difficulties.

Experimentalists continued in their never-ending search for new particles. 
In 1974 two groups working independently, one led by Burton Richter at SLAC 
and another by Samuel Ting from MIT at Brookhaven National Laboratory, 
found evidence in particle-scattering experiments for a heavy meson that re-
quired the existence of the charmed quark and its antiquark (see Exam ple 
14.3). Both Richter and Ting received the Nobel Prize in Physics in 1976 for the 
discovery of this new particle, named the J/c particle (the teams assigned differ-
ent names). Other particles soon followed that had even higher masses and also 
needed the properties of charm.

In 1977 physicists led by Leon Lederman at Fermi National Laboratory dis-
covered the massive , (upsilon) meson, which contains the bottom quark (b). It 
was also soon verified by scanning resonances from e!e" scattering, where three 
narrow resonances near 10 GeV of the upsilon meson require the existence of 
the b quark. The Standard Model then predicted another quark called the top 
quark (t), and after a long search the top quark was discovered at the Fermi 
National Laboratory in 1995. These last two quarks are sometimes called truth 
and beauty. Quantum numbers called bottomness B and topness T are assigned 
to these quarks.

Quark Description of Particles
We can now present the given quark properties and see how they are used to 
make up the hadrons. In Table 14.5 (page 538) we give the name, symbol, mass, 
charge, and the quantum numbers for strangeness, charm, bottomness, and top-
ness. The spin of all quarks (and antiquarks) is 1/2.

A meson consists of a quark-antiquark pair, which gives the required baryon 
number of 0. Baryons normally consist of three quarks. We present the quark 
content of several mesons and baryons in Table 14.6. The structure is quite 
simple. For example, a p" consists of ud, which gives a charge of ("2e/3) ! 
("e/3) $ "e, and the two spins couple to give 0 (" 

1
2 ! 1

2 $ 0). A proton is uud, 
which gives a charge of (2e/3) ! (2e/3) ! ("e/3) $ !e ; its baryon number is 
1
3 ! 1

3 ! 1
3 $ 1; and two of the quarks’ spins couple to zero, leaving a spin 1

2 for 
the proton (1

2 ! 1
2 " 1

2 $ 1
2).

What about the quark composition of the 0", which has a strangeness of 
S $ "3? We look in Table 14.6 (page 539) and find that its quark composition is 
sss. According to the properties in Table 14.5 its charge must be 3("e/3) $ "e, 
and its spin is due to three quark spins aligned, 3(1/2) $ 3/2. Both of these 
values are correct. There is no other possibility for a stable omega (lifetime 
"10"10 s) in agreement with Table 14.4.

Murray Gell-Mann (1929– ) was 
born in New York City and en-
tered Yale University at age 15, 
where he received his B.S. in 
physics. He obtained his Ph.D. 
from the Massachusetts Institute 
of Technology in 1951 and 
worked at the Institute for Ad-
vanced Study in Princeton and 
the University of Illinois before 
going to Caltech in 1955, where 
he remained until 1993. While 
still in his 20s he proposed the 
new quantum number strange-
ness, which explained some ex-
isting results and led to others. In 
1962 he proposed the eightfold 
way, which organized particles 
into families and led to the dis-
covery of the 0" particle. He 
later proposed the idea of quarks, 
and still later, he contributed to 
the idea of the color force. He re-
ceived the Nobel Prize for Phys-
ics in 1969 for his work on the 
theory of elementary particles. He 
has many other interests includ-
ing natural history, archaeology, 
depth psychology, biological evo-
lution, and cultural evolution.
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538 Chapter 14 Particle Physics

Quark   Mass*  Baryon Strangeness Charm Bottomness Topness
Name Symbol (GeV/c2) Charge Number S C B T

Up u 0.0017 to 0.0033 2e/3 1
3 0 0 0 0

Down d 0.0041 to 0.0058 "e/3 1
3 0 0 0 0

Strange s 0.080 to 0.130 "e/3 1
3 "1 0 0 0

Charmed c 1.18 to 1.34 2e/3 1
3 0 1 0 0

Bottom b ~4.4 "e/3 1
3 0 0 "1 0

Top t 172 2e/3 1
3 0 0 0 1

Antiquarks, u, d , s, c, b, and t , have opposite signs for charge, baryon number, S, C, B, and T.

*The u, d, and s quark masses are estimates of so-called current-quark masses.

K. Nakamura et al. (Particle Data Group), Review of Particle Physics, Journal of Physics G37, 075021 (2010).

Tab le  14 .5   Quark Properties

Check the neutron beta decay reaction for the quark com-
position of each particle and check that the charge and 
baryon numbers are correct.

Solution The neutron beta decay is given by

 n S p ! e ! ne

The corresponding quark composition for each of the par-
ticles is given by

 Neutron beta decay:  udd S uud

 CONCEPTUAL EXAMPLE 14.8

where we don’t have to worry about the quark composition 
of the electron and its antineutrino because they are lep-
tons, not hadrons. We have already checked that the quark 
composition of the proton gives a charge !e, so let us check 
that udd gives a zero charge for the neutron: (2e/3) ! 
("e/3) ! ("e/3) $ 0. The baryon number on both sides is 
1, because there are three quarks. In neutron beta decay a 
down quark becomes an up quark.

The Feynman diagram for neutron beta decay is shown in 
Figure 14.11.

The primary decay of the /" is /" S -0 ! p". The two 
decay products in turn decay. Find the first decay listed in 
Table 14.4 for both the -0 and p" and write the original 
decay and two subsequent decays in terms of their quark 
composition.

Strategy We look up the two subsequent decays and find 
-0 S p ! p" and p" S m! ! nm. We use Table 14.6 to find 
the quark composition. The quark structures of the antipar-
ticles are just the corresponding antiquarks of the 
particles.

Solution We list first the reaction and then the quark com-
position. Keep in mind that these decays all occur by the 
weak interaction in which quark transformations can occur. 

 EXAMPLE 14.9

We have not discussed this, but it is because these decays 
occur by exchange of the W& gauge bosons.

 /" S ¶0 ! p"  dss S uds ! ud

A s quark is changed to a d quark, and an uu pair is 
created.

 ¶0 S p ! p"  uds S uud ! ud

Again a s quark is changed to a d quark, and an uu pair is 
created.

 p" S m! ! nm  ud S  no quarks

The d quark can change to an u quark and annihilate the 
existing u quark.

03721_ch14_519-554.indd   53803721_ch14_519-554.indd   538 9/29/11   10:22 AM9/29/11   10:22 AM



   14.5 Quarks 539

Color
There is one difficulty that perhaps you have noticed. Because the quarks have 
spin 1/2, they are all fermions. According to the Pauli exclusion principle, no 
two fermions can exist in the same state. Yet we have three strange quarks in the 
0". This is not possible unless some other quantum number distinguishes each 
of these quarks in one particle. Establishing a new quantum number called color 
circumvents this problem. A theory named quantum chromodynamics (QCD) is 
based on this concept. There are three colors for quarks, which for simplicity we 
shall call red (R), green (G), and blue (B). This color designation has absolutely 
nothing to do with the visual colors that we see. It is merely an attempt to distin-
guish this new property, which in some ways is analogous to the behavior of 
colored light. We can then call the corresponding colors for antiquarks antired 
(R), antigreen (G), and antiblue (B). Color is the “charge” of the strong nuclear 
force, analogous to electric charge for electromagnetism.

The two theories, quantum electrodynamics and quantum chromodynamics, 
are similar in structure; color is often called color charge and the force between 
quarks is sometimes referred to as color force. In Section 14.2 we mentioned that 
gluons are the particles that hold the quarks together. We show a Feynman diagram 
of two quarks interacting in Figure 14.12 (p. 540). A red quark comes in from the 
left and interacts with a blue quark coming in from the right. They exchange a 
gluon, changing the blue quark into a red one and the red quark into a blue one.

A color and its anticolor cancel out. We call this colorless (or white). All hadrons 
are colorless. In Figure 14.12 the gluon itself must have the color BR  for the dia-
gram to work. Quarks change color when they emit or absorb a gluon, and quarks 
of the same color repel, whereas quarks of different color attract.

To finish the story we should mention that the six different kinds of quarks 
are referred to as flavors. There are six flavors of quarks (u, d, s, c, b, t). Each flavor 
has three colors. Finally, how many different gluons are possible? Using the three 
colors red, blue, and green, there are nine possible combinations for a gluon. 
They are BB, BR, BG, RB, RR, RG, GB, GR, and GG. Note in Figure 14.12 (page 
540) that the gluon is BR and not BR. The combination BB ! RR ! GG does not 
have any net color change and cannot be independent. Therefore, there are only 
eight independent gluons, and that is what quantum chromodynamics predicts. 
Gluons can interact with each other, because each gluon carries a color charge. 
Note that in this case gluons, as the mediator of the strong force, are much dif-
ferent from photons, the mediator of the electromagnetic force.

To date no one has ever clearly observed a free quark. However, in 1967 Jerome 
Friedman, Henry Kendall, and Richard Taylor (Nobel Prize, 1990) performed 
experiments at the Stanford Linear Accelerator (SLAC) by scattering 20-GeV elec-
trons deep into protons. They found a larger number of scattered electrons at 
backward angles than would be expected if protons were uniform spheres of mat-
ter. Their experiment was interpreted as evidence for pointlike quarks inside the 
proton. Notice the similarity between this experiment and that of Rutherford al-
most 60 years earlier. Both concluded there was something hard inside the object 
(proton in the former and atom in the latter). Yet it was several years after 1967 
before the idea of quarks was widely accepted by the general physics community.

Confinement
Physicists now believe that free quarks cannot be observed; they can only exist 
within hadrons. This is called confinement. David Gross, H. David Politzer, and 
Frank Wilczek received the 2004 Nobel Prize in Physics for their explanation of 

W!

e!

pn
d u
d d
u u

ne

Figure 14.11 An update of 
the Feynman diagram for the 
neutron beta decay (see Figure 
14.4). Here we show the quark 
identities of the incoming neu-
tron and outgoing proton. 
Note that a down quark is 
turned into an up quark with 
the eventual emission of an 
electron and an electron anti-
neutrino, with the W" boson as 
the mediator in the weak in-
teraction. We can also think of 
the down quark turning into 
an up quark and a W" boson, 
with the W" boson decaying 
into an electron and electron 
antineutrino.

 Quark
Particle Composition

Mesons
  p! ud
  p" ud
  K! us
  K0 ds
  D! c d
  D0 c u
Baryons
  p uud
  n udd
  - uds
  .! uus
  .0 uds
  /0 uss
  /" dss
  0" sss
  ¶!

C  udc

Tab le  14 .6  
Quark Composi-
tion of Selected 
Hadrons
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540 Chapter 14 Particle Physics

Figure 14.12 A Feynman dia-
gram showing the exchange of a 
gluon (BR) between a quark hav-
ing color R and a quark having 
color B. The colors of the quarks 
are changed in the interaction.

asymptotic freedom that explains quark behavior in the strong interaction. We can 
see what happens with a simple diagram such as that in Figure 14.13, which shows 
three quarks confined within a neutron. At low energies the three quarks are easily 
contained and are free to move around. If an incident photon scatters from the 
neutron, one of the quarks may become so energetic that it tries to escape. Quarks 
have the property, however, that the color force transmitted by the exchanged 
gluons increases as the quarks get further apart. As one of the quarks moves away, 
the restoring force increases. If there is  so much energy that the color force can’t 
confine the quarks within the neutron, then this extra energy will be able to create 
a quark-antiquark pair, and a meson is created. In the case shown in Figure 14.13, 
a proton and p" are the final result. Apparently a single quark will not escape when 
a photon or electron interacts at high energy with a baryon like a neutron or pro-
ton. With enough energy several mesons may be produced, as long as all the con-
servation laws and quark rules are observed. The production of the delta resonance 
in Section 14.3 is an example of this. High-energy electrons inelastically scattered 
from the proton produce the delta resonance at 1232 MeV, which subsequently 
decays to p ! p0 or n ! p!. In both cases a quark-antiquark pair is produced.

Consider a hadron in which one of the quarks is being pulled away. The color-
force field “stretches” between the quarks as shown in Figure 14.14. As the quark 
is pulled away, more and more energy is added to the field to keep it from stretch-
ing, much like the force on a spring that is stretched. In the quark case, however, 
the color-force field eventually “snaps” (like a spring breaking) into two new 
quarks, rather than pulling the quark out of the hadron. The energy is converted 
into the mass of new quarks, and the system relaxes back to the unstretched state 
(see Figure 14.14). Quark masses cannot be measured directly, because they are 
confined within hadrons and are not observed as physical particles.

q(R) q(B)

g(BR)

q(R) q(B)

p ! p"

Neutron

Neutron

Proton

udd

Excited!
neutron

ud
d

ud

ud

p"

uud

uu uu createdd

g ! n

g

c c

c d d c

c d

Snap!

c

c d d c

c c

d

Figure 14.13 When a high-
energy g ray is scattered from a 
neutron (top), a free quark 
cannot escape because of 
confinement. For high enough 
energies, an antiquark-quark 
pair is created (for example, 
uu), and a pion and proton 
are the final particles.

Figure 14.14 Quarks cannot be pulled away from a hadron. As the color-force field increases to 
pull out the quark, the increasing energy eventually goes into creating a quark pair. An analogy might 
be a spring that is pulled apart. More and more energy goes into the potential energy of the spring 
that eventually snaps. The energy in this case creates the new quark pair, and the system relaxes.
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14.6  The Families of Matter
Now that we have had a brief review of the particle classifications and have 
learned how the hadrons are made from the quarks, we should summarize. We 
currently believe that the two varieties of fermions, called leptons and quarks, are 
elementary particles. These fundamental particles can be divided into three 
simple families or generations as shown in Figure 14.15. Each generation con-
sists of two leptons and two quarks. The two leptons are a charged lepton and its 
associated neutrino. The quarks are combined by twos or threes to make up the 
hadrons.

Most of the known mass in the universe is made from the components in 
the first generation (electrons and u and d quarks). It is currently not known 
how much mass the neutrinos have. The second generation consists of the 
muon, its neutrino, and the charmed and strange quarks. The members of this 
generation are found in certain astrophysical objects of high energy and in 
cosmic rays, and are produced in high-energy accelerators. The third genera-
tion consists of the tau and its neutrino and two more quarks, the bottom (or 
beauty) and top (or truth). The members of this third generation existed in 
the early moments of the creation of the universe and can be created with very 
high energy accelerators. Note that in each group, known mass increases with 
the generation number, with the individual particles in the third generation 
having the greatest mass.

Leptons are essentially pointlike, because they have no internal structure. 
There are three leptons with mass and three others with little mass (the neutri-
nos). Quarks and antiquarks make up the hadrons (mesons and baryons). Quarks 
may also be pointlike ()10"18 m) and are confined together, never being in a 
free state. There are six flavors of quarks (up, down, strange, charmed, bottom, 
and top) and there are three colors (green, red, and blue) for each flavor. Rules 
for combining the colored quarks allow us to represent all known hadrons.

Bosons mediate the four fundamental forces of nature: gluons are respon-
sible for the strong interaction, photons for the electromagnetic interaction, W& 
and Z for the weak interaction, and the as yet unobserved graviton for the gravi-
tational interaction. In our study of nuclear physics we discussed the pion as the 
mediator of the strong force. At a more fundamental level, we can now say that 
the gluon is responsible. The gluon is responsible for the attraction between the 
antiquark and quark that make up the pion, and the gluon is responsible for the 
attraction between the quarks that make up the nucleons.

14.7  Beyond the Standard Model
Although the Standard Model has been successful in particle physics, it doesn’t 
answer all the questions. For example, it is not by itself able to predict the par-
ticle masses. It is believed that the Higgs boson may be the key to unlocking this 
“black box” mystery of particle masses. Why are there only three generations or 
families of fundamental particles? Do quarks and/or leptons actually consist of 
more fundamental particles? All of our past experience would lead us to suspect 
this to be true. The understanding of the nuclear components was completed in 
1932 with Chadwick’s discovery of the neutron. The next level of understanding, 
using the quark model, did not come for another 35 years. If there is another 
level, we may take even longer to reach it, because experiments at such a level 
become more difficult and expensive to perform.

Figure 14.15 The three gener-
ations (or families) of matter. 
Note that both quarks and lep-
tons exist in three distinct sets. 
One of each charge type of quark 
and lepton make up a generation. 
All visible matter in the universe 
is made from the first generation; 
second- and third-generation par-
ticles are unstable and decay into 
first-generation particles.
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542 Chapter 14 Particle Physics

Neutrino Oscillations
Neutrinos are one of the most intriguing particles yet observed in physics. They 
are often called “ghost” particles because of their ability to pass through matter, 
including Earth, with just a tiny probability of interacting. We discussed neutri-
nos previously in Section 12.7 and in the Chapter 12 Special Topic on “Neutrino 
Detection.” The problem of the dearth of solar electron neutrinos detected on 
Earth was solved by the discovery that neutrinos change or “oscillate” from one 
kind to another; that is, neutrinos can change form between electron neutrinos, 
muon neutrinos, and tau neutrinos. This can only happen if neutrinos have 
mass. This surprising discovery created tremendous excitement because of the 
possible effect that neutrino mass might have in understanding the preponder-
ance of matter over antimatter in the universe and over the missing dark matter 
in the universe (see Chapter 16). Questions abound. Are neutrinos their own 
antineutrinos? Is there a CP violation associated with neutrinos? Which neutrino 
is the lightest and which is the heaviest? Can neutrino mass account for some of 
the missing mass in the universe? Experiments underway or planned at several 
facilities are attempting to answer some of these questions, especially to measure 
the neutrino mass. These include experiments at Fermilab: 1) MINOS, which 
sends neutrinos 700 km underground to the Soudan mine in northern Minne-
sota and 2) NOvA. The ICECUBE experiment is in place at Antarctica, where 
thousands of detectors are placed underground in the ice. The KATRIN experi-
ment in Germany will attempt to measure the electron neutrino mass.

Matter-Antimatter
Physicists believe that after the Big Bang almost 14 billion years ago (see Chap-
ter 16), matter and antimatter should have been created in equal quantities. 
Within seconds matter and antimatter annihilated each other and produced 
radiation energy. Now, however, our universe consists of mostly matter, not 
antimatter. So a broken symmetry occurred, and a tiny bit more matter than 
antimatter was produced in the Big Bang. It seems that one more matter par-
ticle was left over for each billion matter-antimatter particle pairs annihilated. 
The reason for this confounded physicists and cosmologists for many years. In 
1972 two young Japanese physicists, Makoto Kobayashi and Toshihide Maskawa, 
of the University of Kyoto reported a possible explanation of this broken sym-
metry, which required an entire new quark family consisting of charm, bottom, 
and top quarks, discovered respectively in 1974, 1977, and 1994. Broken sym-
metries are not new to physics. Parity (P symmetry) is broken in the weak inter-
action with the beta decay of 60Co (see Section 14.4). In 1964 another broken 
symmetry was observed in the kaon decay (see Section 14.4) that occasionally 
violates CP symmetry.

Kobayashi and Maskawa said that yet another broken symmetry of CP viola-
tion should occur extremely rarely in the decay of the B meson, which is com-
posed of a bottom antiquark and either an up, down, strange, or charm quark. 
Remarkable experiments done in the United States (at SLAC) and Japan (at 
KEK) detected subtle asymmetries between the decays of the B mesons and of 
their antiparticles that helped explain why there is so little antimatter in the 
universe. Further research was done at Fermilab and is being done at the LHC 
in CERN that continues to unravel the matter-antimatter asymmetry with B me-
sons. Kobayashi and Maskawa received the Nobel Prize in Physics in 2008.

Neutrino mass
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Grand Unifying Theories
Einstein is known to have worked during the last 30 years of his life on a unified 
field theory that would encompass gravitation and electromagnetism. Neither he 
nor anyone else has completely succeeded. There have been several attempts 
toward a grand unified theory (GUT) to combine the weak, electromagnetic, 
and strong interactions. The theory of Howard Georgi and Sheldon Glashow of 
the 1970s has been one of the most successful, but the simplest version of their 
model predicted a proton lifetime too short by orders of magnitude. The various 
GUT theories make several predictions, including the following:

1.  The proton is unstable with a lifetime of 1029 to 1031 years. Current 
experimental measurements have shown the lifetime to be greater than 
1033 years.

2.  Neutrinos may have nonzero mass. This has been confirmed.
3.  Massive magnetic monopoles may exist. There is currently no confirmed 

experimental evidence for magnetic monopoles.
4.  The proton and electron electric charges should have the same magnitude.

The unification of the strong and electroweak interactions is an important 
part of cosmological attempts to understand the origin of the universe. This will 
be examined more thoroughly in Chapter 16.

String Theory A new model of theoretical physics emerged in the mid-1980s 
called string theory. In string theory all particle types are constructed by small, 
hypothetical one-dimensional strings, which can be closed, as in loops, or open, 
like a curled hair. The strings vibrate in multiple dimensions, and the various 
vibrational modes of the string can manifest themselves as matter or energy, 
representing the various kinds of particles with masses and spins. One mode of 
vibration represents an electron, another as a photon, and yet another as a 
graviton, the mediator of the gravitational force. Thus quantum gravity is a 
fundamental part of string theory.

String theory supports 10 dimensions, and this later increased to 11 dimen-
sions as the number of eventual string theories grew to 5, all seemingly correct 
but without predictive power of measurable experimental quantities. The origi-
nal string theory included only bosons, but we know that bosons represent par-
ticles that transmit a force, and fermions are particles that make up matter. In 
order to include fermions there has to be a special kind of symmetry called 
supersymmetry (or SUSY). Most of these fi ve string theories are called superstring 
theory, because they include supersymmetry. This symmetry relates fermions and 
bosons. All fermions will have a superpartner that is a boson and vice versa that 
is a heavy replica. The superpartners have fanciful names: the superpartner of 
an electron (a fermion) is called a selectron (a boson); the superpartner of the Z 
boson is the zino; the superpartner of the photon is the photino. These superpart-
ners have not yet been observed experimentally, and there is some hope that 
they may explain “dark matter,” which is most of the missing mass of the universe 
(see Chapter 16). The superpartners are likely to be too massive to be observed 
with accelerators before the LHC became operational, but physicists may be on 
the verge of fi nding evidence for supersymmetry when the LHC reaches its full 
energy. If superpartners exist, the extrapolation in Figure 14.16 for the strong, 
weak, and electromagnetic forces all coincide at higher energies. The details of 
supersymmetry are beyond the level of this book.

Supersymmetry
Superstring theory
Superpartners

Figure 14.16 The coupling 
strength of the four fundamental 
interactions is plotted versus en-
ergy. Both are log scales. 
Unification may occur at some 
very high energy, but at lower en-
ergies symmetry breaking sepa-
rates the four interactions.
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Special Topic

Experimental Ingenuity

S ome people think of physicists as long-haired old 
men holed up in offices with indecipherable 

scribbling on a blackboard. Other people think of 
laboratories crammed with wires, pipes, and weird-
looking apparatus on which people are crawling, 
peering, adjusting, and taking measurements. Al-
though these stereotypes may be exaggerated, physi-
cists do tend to be either theorists or experimentalists. 
The best-known scientists are perhaps the ones who 
propose radical breakthroughs in thought that propel 
us forward in great jumps in our understanding of 
nature. Certainly Newton, Maxwell, and Einstein are 
in this group. But these great leaps in intellect gener-
ally require extensive experimental measurement to 
understand nature and to test the theories that have 
been proposed.

The field of experimental particle physics began 
around 1950, but we might argue that it started with 
the advent of particle accelerators around 1930. Ex-
periments did not actually begin until many years 
later when energies reached about 1 GeV. Since 1955, 
seven Nobel Prizes have been awarded for theoretical 
work in elementary particle physics (1957, 1965, 1969, 
1979, 1999, 2004, and 2008, see Appendix 9), but 
eleven have been awarded for experimental work 
(1959, 1960, 1961, 1968, 1976, 1980, 1984, 1988, 1990, 
1992, and 1995). Several of these experiments re-
sulted in an increased understanding of physics, but 
some of them were for pure experimental develop-
ment, which eventually led to experiments performed 
by others. It is this latter category that we want to high-
light here because of the experimenters’ special 
ingenuity.

We begin with the invention of the bubble cham-
ber by physicist Donald Glaser (Figure A) at the Uni-
versity of California at Berkeley in the early 1950s. 
Bubble chambers, having much greater densities than 
cloud chambers, allowed much higher energy parti-
cles to be detected. Glaser tried several liquids that 
could be superheated, just short of boiling, and even-
tually settled on liquid hydrogen and xenon. He de-
veloped an ingenious method of photographing the 

tracks of the particles passing through the liquid. His 
efforts revolutionized experimental particle physics, 
and bubble chambers were the mainstay of high-
energy particle detectors for many years.

Although Glaser was the inventor of the bubble 
chamber, his colleague at Berkeley, Luis Alvarez (Fig-
ure B), was its developer, and although nominated to 
receive the Nobel Prize with Glaser, Alvarez did not 
receive the prize until 1968, eight years after Glaser. 
Alvarez and his colleagues used a large bubble cham-
ber to discover the first of the new “resonance” parti-
cles. Although his Nobel Prize citation mentioned his 
development of the bubble chamber and measure-
ments with it, Alvarez undoubtedly was rewarded for 
his many contributions to science, which include 40 

Figure A Donald Glaser (1926– ) is shown examining a detector 
at Lawrence Berkeley Laboratory around 1960. The bubble cham-
ber was mostly developed while Glaser was a professor at the Uni-
versity of Michigan during the period 1950– 1959.

Co
ur

te
sy

 o
f t

he
 L

aw
re

nc
e 

Ra
di

at
io

n 
La

bo
ra

to
ry,

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, B

er
ke

le
y

03721_ch14_519-554.indd   54403721_ch14_519-554.indd   544 9/29/11   10:22 AM9/29/11   10:22 AM



patents comprising a wide range of projects including 
radar, color television, and a golf-training device. He 
was particularly well known for his efforts in looking 
for unknown tombs beneath the Egyptian pyramids.

Carlo Rubbia (Figure C) and Simon van der Meer 
represent an unusual pair of Nobel Prize winners 
whose success depended on each other. Rubbia was an 
aggressive leader who made convincing arguments in 
the late 1970s to reconfigure an existing CERN accel-
erator to scatter protons and antiprotons head-on. He 
conducted the successful experiment to discover the W 
and Z particles in the early 1980s. Rubbia managed a 
huge team of hundreds of technicians, engineers, and 
scientists who built and operated the detector.

In contrast to the flamboyant Rubbia, the shy and 
unassuming van der Meer was responsible for invent-
ing the stochastic cooling of the beam particles that 
allowed the accumulation of sufficient numbers of 
antiprotons to make Rubbia’s experiment feasible. 
Although a surprise, the selection of the Dutch engi-
neer van der Meer turned physicist to share the Nobel 
Prize in Physics in 1984 with Rubbia was highly ap-
plauded by the physics community because of his tre-
mendous ingenuity in the complex method of sto-
chastic cooling.

Similarly, Georges Charpak of CERN received the 
Nobel Prize for Physics in 1992 for his invention of the 
multiwire proportional counter, which is still today a 
mainstay in several areas of physics, particularly in 
nuclear and particle physics.

The research labs of the world are full of scientists 
and engineers developing clever new ways of building 
and operating equipment that will lead to important 
advances in the future.

Figure B Luis Alvarez (1911– 1988), shown here with his bubble 
chamber, was born in California and spent almost his entire ca-
reer at the University of California, Berkeley. Alvarez was also well 
known for his work on analyzing the film tape of John Kennedy’s 
assassination, his searches for burial chambers in pyramids, and 
research with his son Walter on the demise of dinosaurs due to 
the debris caused by an asteroid colliding with Earth.

Figure C Carlo Rubbia (wearing the tie) and his colleagues await 
the start-up of the LEP accelerator at CERN in 1989.
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546 Chapter 14 Particle Physics

At some fundamental level, matter is believed to be composed of spin 1/2 
particles (quarks and leptons). The gauge bosons mediate the color and electro-
weak interactions. At some very high energy, supersymmetry is expected to be 
valid. However, if supersymmetry is relevant at all to nature, it must be broken 
spontaneously, and we refer to spontaneous symmetry breaking. An example was 
shown in Figure 14.16, where we displayed the coupling strengths of the four 
interactions on a logarithmic scale as a function of energy (or mass). At some 
high energy there is unification that is spontaneously broken at lower energies. 
As the universe evolves, there is a richness of physics as various symmetries are 
broken. The violation of CP in kaon decay and in B meson decay are good ex-
amples in which symmetry breaking led to new physics results.

M-Theory Edward Whitten and others determined in the mid-1990s that the 
fi ve string theories were perhaps different aspects of the same underlying theory, 
called M-theory. Originally, the “M” stood for “membrane,” a generalization of 
the strings (11 dimensions) in string theory. The M in M-theory is now variously 
cited to stand for “the Mother of all theories” or mother of all strings, magic, 
matrix, or mystery. Whitten says it is a matter of choice! One can imagine that the 
vibrating strings are 1-dimensional slices of a 2-dimensional membrane in 
11-dimensional space. M-theory is mathematically pleasing and has passed many 
theoretical tests as a “Theory of Everything” that combines quantum mechanics 
and gravity. However, until M-theory makes a prediction that can be tested, it 
will be diffi cult for physicists and cosmologists to accept it as an ultimate answer. 
Many physicists believe it will never be possible to produce a Theory of Everything 
that is both theoretically and experimentally testable.

14.8   Accelerators
Although cosmic rays contain high-energy particles, the small intensity of those 
particles only allows physicists to perform limited experiments. Particle physics 
was not able to develop fully until particle accelerators were constructed with 
high enough energies to create particles with a mass of about 1 GeV/c 2 or 
greater. Some early accelerators were described in Chapter 13.

The precursor of most modern accelerators is the cyclotron shown in Fig-
ure 13.2. Cyclotrons rely on charged particles moving in a circular orbit perpen-
dicular to a magnetic field. The radius of curvature is given by R $ p/(qB) where 
p is the particle’s momentum and q is its charge. The orbital frequency (cyclo-
tron frequency) is given by

 f $
v

2p
$

v
2pR

$
m v

2pm R
$

p
R

 
1

2pm
$

qB
2pm

 (14.8)

where m is the mass of the particle. In a cyclotron, the gap between the two 
“dees” (in the shape of semicircles) contains a radio-frequency (RF) voltage 
that accelerates the particle every time it passes through the gap. The charged 
particle travels thousands of orbits, gaining two bursts of energy during each 
orbit.

There are three main types of accelerators currently used in particle physics 
experiments: synchrotrons, linear accelerators, and colliders. We discuss each of 
these in turn.

Theory of Everything

Cyclotron frequency
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Synchrotrons
Eventually at higher energies relativistic effects limit the cyclotron technique. 
The equation for the radius of curvature doesn’t change as long as the relativistic 
momentum is used, but the orbital frequency becomes

 f $
qB

2pm
 B1 "

v2

c2  (14.9)

In synchrocyclotrons the frequency of the RF voltage between the dees is adjusted 
to match this changing frequency. In synchrotrons the magnetic field is changed 
to keep the radius (R $ p/qB) constant and match the frequency. In both cases 
the particles are accelerated in pulses or bunches, because the variation of 
RF voltage or magnetic field can only match one particular particle momen-
tum. The Bevatron at Berkeley was an early (1954) high-energy proton syn-
chrotron. Its energy was 6.4 GeV, just enough for E. G. Segrè (1905– 1989) and 
O. Chamberlain (1920– 2006) to produce antiprotons in 1955, for which they 
received the Nobel Prize in Physics in 1959.

Most modern proton accelerators are synchrotrons. The magnetic fields do 
not span the entire circle but rather encircle a closed pipe at a fixed radius. The 
proton synchrotron at the Fermi National Laboratory, called the Tevatron, ac-
celerated protons to 1000 GeV (1 TeV), and the Large Hadron Collider at the 
European Center for Nuclear Research (CERN) is the world’s largest, accelerat-
ing protons to 7 TeV.

Synchrotron Radiation One difficulty with cyclic accelerators is that when 
charged particles are accelerated, they radiate electromagnetic energy called 
synchrotron radiation. This problem is particularly severe when electrons, moving 
close to the speed of light, move in curved paths. If the radius of curvature is 
small, electrons can radiate as much energy as they gain. The Large Hadron 
Collider at CERN has a radius of 4.3 km in order to limit synchrotron radiation 
losses.

Physicists have learned to take advantage of these synchrotron radiation 
losses and now build special electron accelerators (called light sources) that 
produce copious amounts of photon radiation used for both basic and applied 
research in physics, chemistry, materials science, metallurgy, biology, and medi-
cine. For example, the radiation is used in x-ray lithography to produce minia-
turized computer chips with higher speed and greater capacity. Synchrotron 
radiation accelerators are being constructed at an increasing rate, even by indus-
try for applied purposes. There are dozens of accelerators throughout the world 
used by thousands of physicists, representing universities, government laborato-
ries, and industries.

Linear Accelerators
Linear accelerators or linacs typically have straight electric-field-free regions be-
tween gaps of RF voltage boosts (Figure 14.17, page 548). Because the particles 
gain speed with each boost, and the voltage boost is on for a fixed period of time, 
the distance between gaps becomes increasingly larger as the particles acceler-
ate. Linacs are sometimes used as preacceleration devices for large circular ac-
celerators. The longest linear accelerator is the 3-km-long Stanford Linear Ac-
celerator at SLAC, which accelerated electrons up to 50 GeV, but is only used 

Light sources

Linacs
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548 Chapter 14 Particle Physics

now as an injector for light sources. The SLAC linear accelerator gains its energy 
from a more complicated traveling wave, which accelerates the electron continu-
ously along its 3-km path. It operated originally at 20 GeV, but a very successful 
upgrade allowed it to operate at 50 GeV.

Fixed-Target Accelerators
Most of the accelerators discussed so far have fixed targets. The accelerated par-
ticles are directed at a fixed target, where the reaction takes place. Because of 
conservation of momentum, the energy of the beam’s particle is not fully avail-
able to create reactions and produce new particles. If we consider the reaction 
m1 ! m2 S anything, with the bombarding particle of mass m1 having kinetic en-
ergy K on the fixed target of mass m2, the amount of energy available in the 
center-of-mass system is

 Ecm $ 21m1c2 ! m2c2 22 ! 2m2c2K  (14.10)

In Chapter 13 we found the threshold kinetic energy required to initiate a nu-
clear reaction with a fixed target. If we use relativistic relations, the threshold 
kinetic energy is

 K  th $ 1"Q 2  total masses involved in reaction
2m2

 (14.11)

See the following example for an indication of how little energy is available for 
reaction studies with fixed-target accelerators.

Figure 14.17 A schematic dia-
gram of one type of linear accel-
erator. Each succeeding drift tube 
has to be longer because of the 
increasing speed of the particle. 
An RF voltage accelerates the 
charged particle in the region be-
tween the drift tubes. Adapted from 
A. Arya, Elementary Modern Physics, 
Reading, MA: Addison-Wesley, 1974.

Ion source

Drift tubes

Vacuum chamber

RF!
oscillator1

2
3

4
5

(a) How much energy was available in the center of mass for 
the experiment of Segrè and Chamberlain, who used 6.4-
GeV protons on a fixed proton target to produce antipro-
tons in the reaction given here?

 p ! p S p ! p ! p ! p

(b) How much beam energy was necessary to produce the 
antiprotons? (c) How much energy is available for a similar 
reaction with 1-TeV protons from the Tevatron on a fixed 
proton target?

 EXAMPLE 14.10

Strategy (a) We can use Equation (14.10) to calculate the 
energy available in the center of mass. (b) The threshold 
kinetic energy can be found by using Equation (14.11). We 
use the Q value defined in Equation (13.7). (c) We use 
Equation (14.10) to determine the center-of-mass energy 
available for the reaction for the Tevatron.

Solution (a) If we use Equation (14.10) and the rest en-
ergy of the proton (938 MeV), we have

  Ecm $ 2 3210.938 GeV 2 42 ! 210.938 GeV 2 16.4 GeV 2
  $ 3.94 GeV
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Colliders
Because of the limited energy available for reactions such as that found for the 
Tevatron in Example 14.10c, physicists decided they had to resort to colliding 
beam experiments, in which the particles meet head-on. If the colliding particles 
have equal masses and kinetic energies, the total momentum is zero and all the 
energy is available for the reaction and the creation of new particles. By the 
1960s physicists had gained enough experience in accelerator technology to 
build colliders, a new concept for accelerators. Colliding-beam accelerators usu-
ally have to use storage rings in order to collect enough particles to ensure 
sufficient intensity for the expected reaction. Two accelerators that have had 
electrons and positrons colliding are the CERN Large Electron-Positron (LEP) 
storage ring and the SLAC Stanford Linear Collider (SLC). The CERN Super 
Proton Synchrotron (SPS) used an ingenious technique shown in Figure 14.18 
to cause 270-GeV protons and antiprotons to collide head-on. The Tevatron had 
1-TeV protons and antiprotons colliding. These machines require fantastic pre-
cision in order to steer particles moving at nearly the speed of light to interact 
head-on.

The LEP collider at CERN ceased operation in 2000, but its tunnel is 27 km 
in circumference located 100 m beneath ground straddling the border of France 

The total mass of the reaction products is 4(0.938 GeV/c2) $ 
3.75 GeV/c2, so the Bevatron was constructed with just 
enough energy to create the four particles in the final state.

(b) Equation (13.7) gives the Q value:

  Q $ 1Initial mass energies 2 " 1final mass energies 2
  $ 2mpc 2 " 4mpc 2 $ "2mpc 2

  $ "210.938 GeV 2 $ "1.88 GeV

If we insert this value into Equation (14.11), we obtain

 Kth $ 1"Q 2  6mp

2mp
$ 11.88 GeV 2 13 2 $ 5.6 GeV

The kinetic energy of 6.4 GeV was clearly enough to initiate 
the reaction, which is consistent with our result in (a).

(c) Now we insert the kinetic energy of 1 TeV into 
Equation (14.10) to determine

  Ecm $ 2 3210.938 GeV 2 42 ! 210.938 GeV 2 11000 GeV 2
  $ 43 GeV
Because of the conservation of momentum requirement, 
there was a tremendous reduction in the available energy 
for reactions for the 1000-GeV proton beam from the 
Tevatron.
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Figure 14.18 A schematic dia-
gram of the Super Proton Syn-
chrotron at CERN, which strad-
dles France and Switzerland, 
indicating how the protons and 
antiprotons are created, are accel-
erated, and finally interact in two 
detector regions at UA1 and UA2. 
The protons originate from the 
synchrotron accelerator system 
and produce antiprotons in the 
target in front of the antiproton 
accumulator. After A. Kernan, 
American Scientist 74, 21 (1986).
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550 Chapter 14 Particle Physics

and Switzerland. The LEP tunnel at CERN is the site of the world’s highest energy 
accelerator, the Large Hadron Collider (LHC), in which 7-TeV protons collide 
head-on with 7-TeV protons for a total energy of 14 TeV (see Figure 14.19). The 
SPS accelerator described earlier is a preaccelerator for the LHC. In addition, 
beams of lead particles collide at the LHC with a collision energy of 1150 TeV. 
Many countries, including the United States, are partners in this project. The LHC 
will be the premier elementary particle physics accelerator facility for at least the 
next decade. The next proposed accelerator, which may be decades away, is a large 
linear collider that will smash electrons and positrons together head-on.
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Figure 14.19 The LHC (Large 
Hadron Collider) accelerator fa-
cility at CERN straddles the bor-
der of France and Switzerland. It 
is 8.6 km in diameter and lies 
100 m underground. Notice that 
the accelerator is located under 
communities and the countryside. 
The locations of the four detec-
tors (the large CMS and ALICE 
and the smaller ATLAS and 
LHCb detectors) are noted. The 
detectors are placed at several of 
the eight labeled access points. 
The main site of CERN is at Mey-
rin (see shaded blue area). Al-
though most of CERN is in 
France, the main entrance gate is 
in Switzerland. Adapted from CERN.

How much energy would a fixed-target proton accelerator 
require to match the energy available in the LHC for a p ! 
p reaction?

 EXAMPLE 14.11

Strategy The energy available in the LHC is the sum of 
the colliding beams, or 14 TeV. We use Equation (14.10) to 
determine the kinetic energy K needed for a fixed-target 
experiment.
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The highest energies currently available for particle physics research are in 
cosmic rays, which have up to 1021 GeV energy. We discussed cosmic rays in Sec-
tion 14.1 because of their importance in the early discoveries of elementary 
particles. Although the intensity of these high-energy cosmic rays is exceedingly 
small, the field of cosmic ray physics continues to flourish because of the unique-
ness of such high energies, with ongoing experiments on mountains, in bal-
loons, and in space vehicles.

Solution If we insert 14 TeV (14000 GeV ) into Equation 
(14.10), we can solve for K, the kinetic energy.

 14000 GeV $ 2 3210.938 GeV 2 42 ! 210.938 GeV 2K
The second term on the right-hand side will have to be 
much larger than the first term, so we can neglect the first 
term. We then solve for K.

 K $
114000 GeV 22
210.938 GeV 2 $ 1.0 % 108 GeV $ 1.0 % 1017 eV

Such a fixed-target accelerator cannot currently be 
constructed.

Particle physics grew signifi cantly in the 1930s with the dis-
coveries of the positron, the neutron, and the muon. The 
development of accelerators and particle detectors during 
the 1930s and the following decades has given physicists the 
tools needed to delve deeper into the structure of the nu-
cleus and finally the elementary particles. Accelerators have 
included cyclotrons, synchrotrons, linear accelerators, and 
variations including storage rings and colliders.

The fundamental interactions are the gravitational, 
electroweak, and strong. For all practical purposes, except 
at very high energies, the electroweak is two interactions: 
electromagnetic and weak. Gluons are the mediators of the 
strong force, photons mediate the electromagnetic interac-
tion, the W& and Z bosons mediate the weak interaction, 
and an as yet unobserved particle, the graviton, mediates the 
gravitational interaction.

Particles are classified in various ways. For example, 
fermions and bosons have half-integral and integral spins, 
respectively. Stable particles appear to be composed, at 
some level, of constituent fermions. We believe leptons are 
truly elementary, pointlike particles: electrons, muons, taus, 
and their respective neutrinos. Hadrons are particles that 
interact through the strong force and consist of two classes: 
mesons (integral spin) and baryons (half-integral spin). 
Mesons are unstable. The only stable free baryon is the pro-
ton, but some theories predict it is also unstable. Neutrons 
and protons are stable when bound in nuclei. Baryons 
heavier than the nucleons are called hyperons.

The building blocks of matter can be described by three 
simple families shown in Figure 14.15. Each family consists of 

two leptons and two quarks. The two leptons are a charged 
lepton and its associated neutrino. Quarks are combined by 
twos (mesons) and threes (baryons) to make the hadrons.

The conservation of baryon number and three separate 
laws for the conservation of leptons appear to be universally 
valid. Symmetry breaking seems to be spontaneous and 
widespread. For example, some other conservation laws ap-
pear to be valid for one or more of the interactions, but not 
for all of them. These include strangeness, charge conjuga-
tion, and parity.

A breakthrough in the understanding of particle struc-
ture began in the 1960s with the introduction of quarks. 
Quarks have fractional electric charges and only exist as 
constituents of hadrons. There are six quarks: up, down, 
strange, charmed, bottom, and top. Quantum chromody-
namics (QCD) theory establishes how quarks are combined 
to form particles. A property called color is required to un-
derstand how quarks and antiquarks combine.

The Standard Model combines the electroweak and 
QCD theories and has been quite successful in explaining 
elementary particle physics. For example, another particle 
(or group of particles) called the Higgs boson is expected, 
but has not yet been identified. The neutrino oscillations 
have solved a problem with the solar neutrino rate. A whole 
new field of neutrino physics is flourishing. The preponder-
ance of matter over antimatter is under active research, as is 
the search for the Higgs boson. Research on new theories 
called superstrings and M-theory continues.

The LHC accelerator facility at CERN is currently the 
center of experimental particle physics.

S u m m a r y
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Q u e s t i o n s

P r o b l e m s

 1. What are the characteristics of the following conserva-
tion laws: mass-energy, electric charge, linear mo-
mentum, angular momentum, baryon number, lep-
ton number? Explain how they are related to 
fundamental laws of nature.

 2. Why are storage rings useful for high-energy 
accelerators?

 3. Why are colliding beams useful for particle physics 
experiments?

 4. Can a baryon be produced when an antibaryon inter-
acts with a meson? Explain.

 5. What kinds of neutrinos are produced in the reaction 
"!  !  e" S 23? Explain.

 6. What mediating particles are exchanged between two 
positrons? Between two quarks?

 7. Which families of particles seem to be truly 
elementary?

  Note: The more challenging problems have their 
problem numbers shaded by a blue box.

14.1 Early Discoveries
 1. What are the frequencies of two photons produced 

when a proton and antiproton annihilate each other 
at rest?

 2. The mass of the charged pion is 140 MeV/c 2. Deter-
mine the range of the nuclear force if the pion is the 
mediator.

14.2 The Fundamental Interactions
 3. The strong interaction must interact within the time 

it takes a high-energy nucleon to cross the nucleus. 
Use an appropriate speed and distance to estimate the 
time for the strong interaction to occur.

 4. To probe another particle with linear dimensions D, 
the wavelength of the probing particle must be # $ D. 
To learn details, the wavelength should be substan-
tially less, perhaps as small as 0.10D. Calculate the ki-
netic energies of an electron and a proton needed to 
probe the details of a neutron. Assume the diameter 
of the neutron is 1.5 fm.

 5. Some details of elementary particles may need to be 
probed on distance scales as small as 10"18 m. Calcu-
late the kinetic energies of an electron and a proton 
necessary to probe details this small. (Hint: See Prob-
lem 4, but we don’t need to divide by the factor of 10 
to determine the wavelength.)

 8. How can you determine whether particles are mesons 
or baryons by looking at their quark structure?

 9. Does it appear that the total baryon number of the 
universe is zero? What would that mean?

 10. Explain how a magnet may be used to distinguish a 
range of energies for protons. How can a monoener-
getic beam of protons be obtained?

 11. Why is it a problem when a particle gets out of phase 
with the frequency of a pulsed accelerator?

 12. Explain why electron accelerators that are not linear 
must have large radii. The largest such accelerator is 
the LHC at CERN, which has a radius of 4.3 km.

 13. The next proposed accelerator is an electron-positron 
collider that may be many kilometers long. Why must 
it be so long? Why can’t it be circular to save space?

 6. The omega meson % (mass  $  782 MeV/c 2) is believed 
to be the mediator for a short-range repulsive force. 
Estimate the range of this force.

 7. Suppose that the Higgs boson is discovered and that 
it has a mass of 150 GeV/c 2. Physicists believe it may 
be the mediator of a new force. Use its mass to deter-
mine the range of the force.

14.3 Classifi cation of Particles
 8. Supply the missing neutrinos in the following reac-

tions or decays.
  (a) "! S e!  !  ? (d) K" S ""  !  ?
  (b) ?  !  p S n  !  e! (e) ?  !  n S p  !  ""

  (c) p" S ""  !  ?
 9. Estimate the approximate number of baryons in 

planet Earth.
 10. The mass of the 0" baryon is 1672.45 & 0.29 MeV/c 2, 

where the latter number represents the experimental 
uncertainty. The lifetime is quoted as 8.21  %  10"11 s. 
(a) What is the intrinsic value of its resonance width ' 
based on its lifetime? (b) How does this compare with 
the experimental uncertainty in the mass-energy?

 11. Use the values in Table 14.4 of the mean lifetime for 
the J/4 and upsilon [,(1S)] mesons to determine 
their full-width ' values. Compare your results with ' 
for the charged pion, which has the longest lifetime of 
any meson.
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14.4 Conservation Laws and Symmetries
 12. Consider the two following reactions:

K0
 !  p S  ©!

 !  p0

K0
 !  p S  ©!

 !  p0

  Do both of these reactions obey the conservation rules? 
Does this explain why K0 is not its own antiparticle?

 13. Explain why each of the following reactions is 
forbidden.

  (a) p  !  p S p  !  p  !  n
  (b) p  !  p S p  !  &!  !  !
 14. Explain why each of the following reactions is 

forbidden.
  (a) p  !  p S "!  !  e"

  (b) !  !  p S n  !  &0

  (c) ! S &!  !   &"

 15. Determine the energy of a ! ray produced in the de-
cay of .0 at rest into -  !  !.

 16. A &0 of kinetic energy 720 MeV decays in fl ight into 
two ! rays of equal energies. Determine the angles of 
the ! rays from the incident &0 direction.

 17. Complete the following reactions.
  (a) ""  !  p S n  !  ?
  (b) n  !  p S .0  !  n  !  ?

14.5 Quarks
 18. Show that electric charge, baryon number, and 

strangeness for the neutron, .!, and for -!
C  are all 

equal to the sum of their quark confi gurations.
 19. Show that electric charge, baryon number, and 

strangeness for the &!, K!, and D0 are all equal to the 
sum of their quark confi gurations.

 20. Determine the quark composition of the D0, D", and 
D! charmed mesons.

 21. Determine the quark composition of the B!, B", and 
B0 mesons.

 22. What kind of particle would you expect to be made of 
the cu confi guration?

 23. The 0" baryon decays primarily through the follow-
ing reaction: 0" S -0  !  K". Subsequently the -0 and 
K" also decay by the fi rst reaction listed for each in 
the Table 14.4 column Main Decay Modes. (a) Are 
these strong or weak decay interactions? (b) Write out 
each reaction using its particle symbols and its quark 
composition.

 24. Consider particles with the following quark composi-
tion. Determine their quantum numbers and the 
particle names. (a) cd (b) uds (c) sss (d) cd.

14.7 Beyond the Standard Model
 25. Assume the half-life of the proton is 1033 y. How many 

decays per year would you expect in a tank of water 
containing 350,000 liters of water? Assume the bound 
protons can decay.

 26. Some GUT theories allow the proton to be unstable. 
What conservation laws are broken in the following 
proton decays?

  (a) p S &!  !  ne

  (b) p S "! !&0

  (c) p S e!  !  K0  !  'e

 27. Assume that half of the mass of a 62-kg person 
consists of protons. If the half-life of the proton is 
1033 years, calculate the number of proton decays per 
day from the body.

 28. A .! particle of kinetic energy 3.6 GeV is produced 
inside a bubble chamber. Ignoring energy losses, what 
is the mean distance the .! travels in the detector?

14.8 Accelerators
 29. In modern collider experiments the beam energy K 

has much greater energy than its rest energy 1K W mc 
2 2 . If two particles each of mass m collide 

head-on with each having beam energy K, the energy 
in the center of mass Ecm  $  2K. Show that two parti-
cles of the same mass m colliding head-on with each 
having kinetic energy K 1K W mc 

2 2  have the same 
center-of-mass energy as the same particle of energy 
Klab in a fi xed-target accelerator colliding with the 
same target particle, where

Klab !  
2K 

2

mc 2

 30. CERN constructed the fi rst proton-proton collider, 
called the Intersecting Storage Rings (ISR), in 1971. 
Each proton beam had a kinetic energy of 31 GeV. 
Calculate how much energy a fi xed-target accelerator 
would need to have the same energy available in the 
center-of-mass energy.

 31. Calculate the speed of the 7.0-TeV protons that are 
produced in the LHC at CERN.

 32. A cyclotron is used to accelerate protons to 70 MeV. If 
these protons are elastically scattered from deuterons 
(2H) and tritons (3H), what are the maximum ener-
gies of the 2H and 3H?

 33. Calculate the minimum kinetic energy of a proton to 
be scattered from a fi xed proton target to produce an 
antiproton.

 34. A magnetic fi eld of 1.4 T is used to accelerate 10.0-
MeV protons in a cyclotron. (a) What is the radius of 
the magnet? (b) What is the cyclotron frequency?

 35. Show that for higher particle energies, the simple cy-
clotron frequency in Equation (14.8) becomes limited 
by relativistic effects. Show that Equation (14.9) is the 
correct orbital frequency:

f $  
qB

2pm
 B1 "  

v 
2

c 
2
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 36. Show that Equation (14.10) is the correct relativistic 
result for the amount of energy available in the 
center-of-mass system when the reaction m1  !  m2 S
anything occurs with a bombarding particle of mass m1 
and kinetic energy K on a fi xed target of mass m2. 
Show that it reduces in the nonrelativistic limit to 
Equation (13.12).

 37. In a fi xed-target experiment with m1  $  m2  $  m, derive 
approximate expressions for Ecm in the following lim-
iting cases: (a) K V mc 2 and (b) K W mc 2. Discuss 
your results in both cases.

 38. Calculate the electron velocity in the 50-GeV beam at 
SLAC.

 39. What is the ratio of cyclotron frequencies calculated 
relativistically and nonrelativistically for (a) a 12-MeV 
proton, (b) a 120-MeV proton, and (c) a 1.2-GeV 
proton?

 40. A 33-GeV proton is said to take about half a second to 
make some 160,000 revolutions around the 0.80-km 
circumference of the Alternating Gradient Synchro-
tron at Brookhaven. Check this statement.

General Problems
 41. Science fi ction stories have included spaceships that 

use the annihilation of matter and antimatter to pro-
duce energy. How much matter and antimatter would 
be required to launch a 15,000-kg spaceship from 
Earth’s orbit out of the solar system? Ignore the en-
ergy necessary to escape Earth’s gravity, and assume 
equal amounts of matter and antimatter.

 42. The Tevatron accelerator at Fermilab was able to ac-
celerate protons or antiprotons to a maximum en-
ergy of 1.0 TeV as they traveled around a 6.3-km-
circumference ring. (a) How much time did it take 
a 1.0-TeV proton to make one revolution around 
the ring? (b) What was the maximum energy avail-
able in a colliding-beam experiment with protons 
and antiprotons? (c) How much energy would pro-
tons need to have the same energy as you found in 
part (b) available in a fi xed-target experiment?

 43. Draw Feynman diagrams for the following processes: 
(a) an electron emits a photon and (b) an electron 
absorbs a photon.

 44. Draw a Feynman diagram for the decay of the &! into 
a positive muon and a neutrino. What kind of neu-
trino must be in the decay? Draw a second Feynman 
diagram using quarks for the &!.

 45. The Relativistic Heavy Ion Collider (RHIC) at the 
Brookhaven National Laboratory collides gold ions 

onto other gold ions head on. The energy of the gold 
ions is 100 GeV per nucleon. (a) What is the 
center-of-mass energy of the collision? (b) What is the 
speed of the gold ions as a fraction of the speed of light?

 46. Describe each of the following decays in terms of 
quark transformations.

  (a) n S p  !  e"; (b) -0 S p  !  &"; (c) K0 S &!  !  &"

 47. Consider the reaction e"  !  e! S ne! ?. (a) Determine 
the quantum numbers for the missing particle or 
particles (baryon, lepton, charge, spin, and so on). 
(b) Consider whether one or two particles is needed to 
complete the reaction. What are possible particles?

 48. Determine which of the following decays is not al-
lowed and explain why.

  (a) /0 S &"  !  ©!

  (b) /0 S &"  !  p
  (c) /0 S K"  !  p
 49. Consider the following reaction: p  !  p S p  !  -  !  K!. 

How much bombarding energy is required for this 
reaction (a) if the second proton is a stationary target 
and (b) if the protons collide head-on?

 50. Determine which of the following decays is not al-
lowed and explain why.

  (a) &! S "!  !  n (c) - S p  !  &"

  (b) "" S e"  !  ! (d) p S &!  !  &0

 51. Determine which of the following decays or reactions 
is not allowed and explain why.

  (a) p  !  p S ¶  !  - (d) &"  !  p S   !  &"  !  .!

  (b) n S p  !  e"  !  'e (e) &! S "!  !  '"

  (c) /0 S n  !  &0

 52. Determine which of the following decays or reactions 
is not allowed and explain why.

  (a) p S e!  !  &0 (c) p  !  p S p  !  p  !  &0

  (b) &!  !  p S -  !  K0 (d) n S p  !  e"  !  ne

 53. Determine which of the following decays or reactions 
is not allowed and explain why.

  (a) /" S -  !  &" (c) p  !  p S p  !  &!  !  ¶  !  K 0

  (b) - S p  !  &0 (d) 0! S /!  !   &0

 54. What is the relation between the de Broglie wave-
length #, mass m, and kinetic energy K for (a) a low-
energy proton, and (b) a very high energy proton?

 55. Consider the 7.0-TeV protons that are produced in 
the LHC collider at CERN. (a) Find the available 
center-of-mass energy if these protons collide with 
other protons in a fi xed-target experiment. (b) Com-
pare your results in (a) with the center-of-mass energy 
available in a colliding-beam experiment.
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Although Albert Einstein’s special theory of relativity was tremendously useful 
in the field of physics, it was not until the introduction of his general theory of 
relativity in 1916 that Einstein became a celebrity. Einstein proposed several ex-
periments to test his general theory. A solar eclipse in 1919 afforded scientists an 
opportunity to test Einstein’s theory by measuring the gravitational bending of 
light. When their results confirmed the predictions of the general theory of rela-
tivity, Einstein’s fame was sealed. In this chapter we discuss this and other remark-
able experiments that support Einstein’s general theory. We also mention some 
other general relativistic effects that are the subject of present-day research.

General relativity is really the story of gravity. Gravity is the governing force 
of the universe because it holds the planets in our solar system to the sun, binds 
the stars into galaxies, and determines the fate of our universe. Many of the sub-
jects discussed in this chapter on the general theory of relativity will appear again 
in the next chapter on cosmology, a fi eld that depends on a clear understanding 
of the large-scale effects of gravity.

15.1  Tenets of General Relativity
In the first few decades after Einstein presented his general theory of relativity 
in 1916, it was sometimes said that only a few scientists truly understood it. That 
probably was because the mathematics is so complex. We will not delve into the 
mathematics of metrics, matrices, and tensors, but rather approach general rela-
tivity from two concepts: (1) the principle of equivalence, which is an extension 
of Einstein’s first postulate of special relativity (see Section 2.3), and (2) the 
curvature of spacetime due to gravity. We discuss these tenets in this section.

C H A P T E R

15

555

General Relativity

Time and space and gravitation have no separate existence from 
matter.

Albert Einstein
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Principle of Equivalence
The special theory of relativity encompasses inertial frames of reference moving 
at uniform relative velocities. The special theory can be used to explain the phys-
ics in any of the relative inertial systems. But what about systems moving in non-
uniform motion with respect to one another? Linearly accelerating and rotating 
systems are examples of such motion. Is this kind of nonuniform motion also 
relative? Einstein believed so, and after several years of thinking about the prob-
lem, he presented his general theory of relativity.

We imagine another gedanken experiment to help us understand nonuni-
form motion. Consider an astronaut sitting in a confined space on a rocket 
placed on Earth ready to blast off for a mission to Mars (see Figure 15.1a). The 
astronaut is strapped into a chair that is mounted on a weighing scale that indi-
cates a mass M. The astronaut drops a safety manual that falls to the floor. Con-
trast this situation with the one shown in Figure 15.1b. The rocket is now on its 
way to Mars and is far enough away from Earth that the gravitational attraction 
is negligible. However, the rocket is still accelerating in order to gain speed for 
the trip to Mars. If the acceleration at this point has exactly the same magnitude 
as g on Earth, then the weighing scale indicates precisely the same mass M that 
it did on Earth, and the safety manual, when dropped, still falls with the same 
acceleration as measured by the astronaut. The question is: how can the astro-
naut tell whether the rocket is sitting on Earth or accelerating in space? Einstein 
provided the answer in the principle of equivalence:

(a) (b)

Scale

Manual

Rocket sitting!
on Earth

Rocket accelerating!
in space

g

a (! "g )

Earth

Figure 15.1 An astronaut sits in a confined space inside a rocket with no windows. The astro-
naut sits on a chair mounted on an ordinary weighing scale and drops a safety manual to the floor. 
In (a) the rocket is sitting at rest on Earth, and in (b) the rocket is accelerating upward with accel-
eration equal to "g. The astronaut can do no experiment to distinguish between gravity and accel-
eration (forget the noise!).
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There is no experiment that can be done in a small confined space that can detect 
the difference between a uniform gravitational field and an equivalent uniform 
acceleration.

Astronauts experience this equivalence to a certain degree when they are in 
near free fall in orbit around Earth. Does the fact they feel weightless mean they are 
not attracted to Earth by gravity? No. In fact, they are “falling around the Earth.” 
The inside of the orbiter is almost an inertial reference system, and the astronauts 
can do experiments inside the orbiter on a small particle that obeys Newton’s laws. 
However, according to an inertial reference system fixed in the distant stars, the 
shuttle is in an accelerated reference system. If the astronauts cannot see outside 
their capsule, can they tell whether they are somewhere in outer space or “falling 
around the Earth”? Can they understand precisely why they are weightless?

With considerable experimentation, the astronauts can figure out they are in a 
gravitational field because weightlessness actually occurs only at the center of mass 
of the orbiter. If they put a drop of water in a corner of the orbiter, it does not have 
a precisely spherical shape because the gravitational field of Earth is not uniform. 
The drop becomes very slightly bulged on both sides closest and farthest from Earth 
because of the change in Earth’s gravitational field with distance. In this manner 
the astronauts can tell they are in a gravitational field. The forces are called tidal, 
because a similar distance-dependent force is responsible for the ocean tides.

Let us look briefly at gravitational and inertial forces. According to Newton’s 
second law, a body accelerates in reaction to a force according to its inertial 
mass mI :

 F ! mIa

Inertial mass mI measures how strongly an object resists a change in its motion.
According to the law of gravitation, a gravitational mass mG reacts to a field g 

like that due to Earth. The field g depends on the location of all the masses other 
than mG. Gravitational force measures how strongly an object mG is attracted to 
other masses.

 F ! mG g

For the same force we set the two preceding equations equal and find

 a ! amG

mI
b g  (15.1)

According to the principle of equivalence, the inertial and gravitational masses 
are equal.

The principle of equivalence has been proposed in various forms for hun-
dreds of years—including versions by Galileo, Newton, and Einstein. You en-
countered it in introductory physics when the equivalence of inertial and gravi-
tational masses was discussed. Galileo and Newton both performed tests of 
inertial and gravitational mass equivalence using a pendulum and found them 
equivalent to 1 part in 103. Pendulums of equal lengths would have periods pro-
portional to the ratio 1mI /mG (see Problem 1). During a couple of decades 
around 1900, Lorand Eötvös performed a remarkable series of experiments 
showing the two masses are equivalent to 1 part in 108. More recent experiments 
show they are equivalent to 1 part in 1012. The equivalence of inertial and gravi-
tational masses supports Einstein’s assertion that inertial and gravitational forces 
are equivalent. Einstein believed that if no experiment can distinguish inertial 
and gravitational forces, then they must be the same thing.

Principle of equivalence

03721_ch15_555-576.indd   55703721_ch15_555-576.indd   557 9/29/11   10:24 AM9/29/11   10:24 AM



558 Chapter 15 General Relativity

The principle of equivalence is the key to Einstein’s general theory of relativ-
ity. The advanced mathematics needed prevents us from delving too far into the 
theory. We will only present some results and several predictions of the theory. 
For a few years after Einstein presented his general theory, there was a flurry 
of activity to test several predictions that Einstein had made. Although none of 
these early experiments seemed to contradict Einstein’s general theory, none of 
them were able to prove the theory conclusively. And there have been alternate 
theories to Einstein’s that also explained the data available. It was not until the 
1960s, aided by advances in technology such as space probes, that experiments 
were finally conducted that confirmed Einstein’s general theory. Few scientists 
now doubt it, and the general theory has opened new fields of study in astrophys-
ics and cosmology that include research in mathematics, particle physics, nuclear 
physics, and astronomy. We will return to these matters again in the next chapter 
when we discuss cosmology and the origin of the universe.

There is one simple, but perhaps surprising, prediction of the equivalence 
principle. Consider a rocket accelerating through a region of space where the 
gravitational force is negligible. A small hole allows a burst of light from a distant 
star to enter the spacecraft. Consider in Figure 15.2 what the astronaut inside 
sees. By the time the horizontally moving light pulse hits the opposite wall, the 
rocket has moved up considerably (Figure 15.2a). In Figure 15.2b we show what 
happens to the light pulse according to the astronaut inside : the light pulse curves 
downward as it travels through the spacecraft. This effect occurs because the 
rocket is accelerating vertically while the light pulse traverses the spacecraft. Now 
consider the same thing happening on the rocket placed on Earth in a gravita-
tional field. According to the equivalence principle, exactly the same thing hap-
pens: the light pulse is attracted by the gravitational field and curves downward as shown 
in Figure 15.2c. We have greatly exaggerated the effect in Figure 15.2.

If we think about it a little, this result should not really come as a great sur-
prise. We showed in Section 2.12 that energy and mass are equivalent. A light 
pulse has energy, and it therefore can act as if it had mass. We can think of the 
bending of the light pulse as simply the gravitational attraction of light. The 
bending of light on Earth due to gravitational attraction is tiny. A beam of light 
sent across a distance as wide as the continental United States and under a gravi-
tational attraction of g would be deflected about a millimeter. However, gravita-
tional effects on light have been observed experimentally, even on Earth, as 
discussed in the next section.

Spacetime Curvature
We already learned in our discussion of the special theory of relativity in Chapter 2 
that space and time are interrelated. Einstein thought of gravity not as a force but 
as a curvature of spacetime. Spacetime would be fl at in empty space, where there 
is no mass whatsoever, but spacetime becomes highly changeable near matter. It 
is like a flexible material that accommodates matter by curving in the vicinity of 
the object. We can visualize this in two dimensions by imagining what a rubber 
sheet would do if a bowling ball is placed on it. The rubber sheet would stretch 
to accommodate the bowling ball, as shown in Figure 15.3. Spacetime is curved 
by massive bodies, and we can imagine a small mass moving toward the massive 
body not because of the gravitational force, but because it rolls in on the space-
time curvature toward the massive body.

The flow of time is determined by the magnitude of the gravitational field 
nearby. For example, light travels a longer path in strong gravitational fields, 
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Earth

Starlight
pulse

Starlight
pulse

Starlight
pulse

Starlight
pulse

Starlight path
according to
accelerating
astronaut

Starlight path
according to
astronaut at rest
with gravity

System at rest
with respect
to fixed star

a

a

g

Free space

(a)

(b)

(c)

Figure 15.2 Starlight enters a 
small hole in a spacecraft while 
the rocket is accelerating. (a) The 
burst of starlight will hit a spot on 
the opposite wall at a point lower 
than where the light came in 
(greatly exaggerated here). 
(b) According to the astronaut 
inside, the light pulse curved 
downward and must have been af-
fected by the acceleration. (c) Ac-
cording to the equivalence princi-
ple, the same thing must happen 
on the Earth because of gravity.

Figure 15.3 It is diffi cult to 
show the four dimensions of 
spacetime in only two dimensions, 
and this is a highly schematic sug-
gestion in which one dimension 
of space is perpendicular to the 
time dimension. With no mass 
nearby this is fl at like a ruber 
sheet, but when a heavy mass such 
as a star is placed nearby, space-
time is warped.
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560 Chapter 15 General Relativity

because the spacetime geometry has changed and expanded. Simply put, mass-
energy curves space and time. We can summarize as follows:

Mass-energy tells spacetime how to curve.

Spacetime curvature tells matter how to move.

15.2  Tests of General Relativity
We review several of the many tests of general relativity in this section. Because of 
extreme experimental difficulties, only a few experimental tests were done before 
the 1960s. A constant stream of experiments has been done in recent years.

Bending of Light
According to Einstein’s predictions, light should be bent while passing through a 
strong gravitational field. During a solar eclipse of the sun by the moon, most of 
the sun’s light is blocked on Earth, which affords the opportunity to view starlight 
passing close to the sun. Light from a distant star passing close to the sun will be 
bent away from its normal direction while passing close to the sun, as shown in 
Figure 15.4. A total eclipse of the sun was to occur in May 1919, and following the 
end of World War I preparations were quickly made by Arthur Eddington and 
colleagues to mount observations in South America and Africa, both good places 
to observe that particular eclipse. Einstein’s general theory predicted a deflection 
of 1.75 seconds of arc, and the two measurements found 1.98 # 0.16 and 1.61 # 
0.40 seconds. Einstein became an international celebrity because of the experi-
ment and the publicity surrounding it. Since the eclipse of 1919, many experi-
ments, using both starlight and radio waves from quasars, have confirmed 
Einstein’s predictions about the bending of light with increasingly good accuracy.

Spectacular evidence has now been found for the gravitational bending of 
light. The effect is called gravitational lensing. If light from a distant object such 
as a quasar (see Chapter 16) passes by a nearby galaxy on its way to Earth, the 
light can be bent multiple times as it passes in different directions around the 
galaxy. The result can be like that shown in Figure 15.5.

Earth

Moon blocks!
direct sunlight!
during eclipse

Sun

Star

True!
position

Apparent!
position

u

Figure 15.4 Starlight passing 
close to the sun is bent due to 
gravitational attraction. The effect 
is that the apparent position of a 
star is not always its true position.

Figure 15.5 A Hubble Space 
Telescope image of a gravitational 
lens effect. This image is called 
the “Einstein Cross.” The light of 
a distant quasar has been bent 
around a nearby galaxy on its way 
to Earth, forming the four outside 
images. NA

SA
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Gravitational Redshift
The second test of general relativity also relies on the gravitational attraction on 
light. Imagine a light pulse being emitted from the surface of Earth to travel verti-
cally upward. The gravitational attraction of Earth cannot slow down light, but it 
can do work on the light pulse to lower its energy. This is similar to a rock being 
thrown straight up. As it goes up, its gravitational potential energy increases while 
its kinetic energy decreases. A similar thing happens to a light pulse. A light pulse’s 
energy depends on its frequency f through Planck’s constant, E ! hf. As the light 
pulse travels up vertically, it loses kinetic energy and its frequency decreases. Its 
wavelength increases, so the wavelengths of visible light are shifted toward the red 
end of the visible spectrum. We say that the light is redshifted, and the general phe-
nomenon is referred to as the gravitational redshift.

Let’s assume we do the experiment close to the surface of Earth where to a 
good approximation g is constant. The energy lost when traveling upward a dis-
tance H is mgH. If f is the frequency of the light at the bottom, and f œ the fre-
quency at the top, energy conservation gives

 h f ! h f œ $ m g H  (15.2)

We can substitute an effective mass of light by letting m ! E/c 2 ! h f/c 2 to obtain

 h f ! h f œ $ h f   
g H
c2

If we cancel Planck’s constant h and let % f ! f " f œ, we have

 
¢  f
f

!
g H
c2  (15.3)

Measurements comparing frequency differences are very sensitive, and such an 
experiment was performed by Pound and Rebka in 1960 in a tower at Harvard 
University using gamma rays from radioactive 57Co (57Co $ e" S 57Fe* S 57Fe $ 
g ray). They sent g rays down the tower, so the g rays gained energy, increasing 
their frequency. In this case, a blueshift occurs. Pound and Rebka used the 
Mössbauer effect* to obtain the needed sensitivity of % f/f ! 10"15.

If the distance of travel is so large that g cannot be assumed constant, then 
the frequency shift depends on the universal gravitational constant G and Earth’s 
(or other body’s) mass M. In this case the frequency shift is 

 
¢  f
f

! " 

GM
c 2 a 1

r1
"

1
r2
b  (15.4)

where clocks measuring the frequency are placed at distances r1 and r2 from 
the center of the gravitational field. When r1 & r2, % f is negative. A signal leaving 
r1 has a lower frequency when arriving at r2. This means that an atom emitting light 
signals in a strong gravitational field (r1 is small near the mass center) has its wave-
length redshifted when the light arrives at r2 far away from the mass center.

*The energy of photons emitted or absorbed by nuclei is shifted due to the recoil of the nucleus. The 
Doppler effect can offset somewhat the change in frequency of the photon. In 1958 R. L. Mössbauer 
(Nobel Prize in Physics, 1961) performed experiments in which the nucleus was embedded in a solid 
crystal, thereby producing essentially a recoil-free emission or absorption of photons. This causes a tre-
mendous increase in sensitivity in the resonance emission or absorption of photons, a situation that 
allows the measurement of extremely small differences in energies (or photon frequencies).
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562 Chapter 15 General Relativity

Gravitational redshifts from stars are difficult to measure, and an accurate 
measurement of the gravitational redshift from the star Sirius B in 2004 using the 
Hubble Space Telescope confi rmed earlier results. Several experiments using light 
from the sun and from white dwarfs have also confirmed the existence of the 
gravitational redshift. A very accurate experiment called Gravity Probe A was done 
in 1976 by comparing the frequency of an atomic clock flown on a Scout D rocket 
to an altitude of 10,000 km with the frequency of a similar clock on the ground. 
The measurement agreed with  Einstein’s general relativity theory to within 0.02%.

Perihelion Shift of Mercury
The orbits of the planets are ellipses, and the point closest to the sun in a plan-
etary orbit is called the perihelion. It has been known for hundreds of years that 
Mercury’s orbit precesses about the sun as shown in Figure 15.6. The point of peri-
helion precesses very slowly, but the rate of precession has been accurately mea-
sured. Most of the effect we observe is due to Earth’s rotation, but after that is 
subtracted there is still a perihelion shift of 575 seconds of arc per century. Most 
of this shift is due to the gravitational perturbation caused by the other planets, 
but in 1859 Urbain Jean Joseph Le Verrier (who had earlier discovered the 
planet Neptune) announced that after even these corrections were accounted 
for, there was still a remaining perihelion shift amounting to 43 seconds of arc 
per century. This was a great mystery to scientists at the time, and the answer had 
to wait some 60 years, until Einstein worked out his general theory of relativity. 
Einstein showed that general relativity also predicted a perihelion shift, and 
his calculation showed that the shift was just the missing 43 seconds needed! 
Einstein was overjoyed by this calculation; together with the observed deflection 
of starlight by the sun in 1919, it gave great credence to his theory.

Precession!
of perihelion

P2

P1

1

2

Mercury Sun
Figure 15.6 The orbit of Mer-
cury slowly precesses about the 
sun. Points P1 and P2 are the peri-
helion for orbits 1 and 2. The ef-
fects are exaggerated here.

In the test of Hafele and Keating of flying atomic clocks 
around Earth (see Chapter 2), the gravitational redshift had 
to be considered. Calculate the effect and compare it with 
the special relativity time dilation effect. Assume the jet air-
plane travels 300 m/s and the circumference of Earth is 
about 4 ' 107 m.

Strategy The ratio % f/f will be equal to the time differ-
ence ratio %T/T measured by the clocks on Earth and on 
the jet airplanes. Because the airplane’s altitude is negligible 

in comparison to Earth’s radius, we use the simpler of the 
two equations for the gravitational redshift, Equation (15.3). 
We use the time dilation Equation (2.19) from Chapter 2 to 
determine the special relativity effect.

Solution Equation (15.3) gives us

 
¢T
T

!
g H

c2

 EXAMPLE 15.1
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Light Retardation
Light retardation is similar to the deflection of light (or any electromagnetic radia-
tion) by gravitational fields. As light passes by a massive object, the path taken by 
the light is longer because of the spacetime curvature, as we show in Figure 15.7 
with a radio wave. The longer path causes a time delay for a light pulse traveling 
close to the sun. The time difference between similar paths, with one being close 
to the sun, can be compared with the general relativity prediction.

Irwin Shapiro showed that such an effect could be measured by sending a 
radar wave to Venus, where it was reflected back to Earth. The position of Venus 
has to be in the “superior conjunction” position on the other side of the sun 
from the Earth as shown in Figure 15.8 (page 564). In this path, the light signal 
passed close to the sun and experienced a time delay. Shapiro’s measurement 
on January 25, 1970, of a time delay of about 200 (s was in excellent agreement 
with the general theory (Figure 15.9, page 564).

Several experiments have since been done with spacecraft to measure this 
effect. The experiment to land part of the Viking spacecraft on Mars in 1976 
produced agreement with the general theory to within an experimental uncer-
tainty of about 0.1%. Physicists reported in 2003 on a measurement done with 
the NASA Cassini spacecraft. The spacecraft, on its way to its highly successful 
rendezvous with Saturn in 2004, passed on the opposite side of the sun from 
Earth in 2002. Researchers measured the frequency change of radio waves that 
passed close to the sun while they were traveling to and from the spacecraft from 

The value of H for the clock on the Earth’s surface is re, and 
the value for the flying airplane is re $ A, where A is the al-
titude of the airplane, about 33,000 feet (10,000 m). The 
value of H is the difference in the height of the two clocks 
in Earth’s gravitational field g, and H ! A. We neglect the 
change of g over this altitude, and %T/T becomes

 
¢T
T

!
19.8 m/s2 2 110,000 m 213 ' 108 m/s 22 ! 1.09 ' 10"12

The eastward and westward airplane trips took about T ! 45 
hours flying time. The difference in the two clocks due to 
the gravitational redshift is

  ¢T ! 11.09 ' 10"12 2 145 h 2 a 3600 s
1 h

b
 ! 177 ' 10"9 s ! 177 ns

A clock fixed on Earth will measure a flight time T0 of

 T0 !
4 ' 107 m
300 m/s

! 1.33 ' 105 s

Because a clock in the airplane will run slowly, an observer 
on Earth will say the time measured on the airplane is 
T ! T021 " b2 where b ! v/c ! (300 m/s)/(3 ' 108 m/s) 
! 10"6. The time difference is

 ¢T ! T0 " T ! T0 
11 " 21 " b2 2

Because b is so small, we can use a power series expansion 
of the square root and ignore all terms smaller than b2. The 
special relativity effect is

  ¢T ! T0 31 " 11 " b2
 /2 $ p 2 4 !

b2T0

2

  !
1
2

 110"6 2211.33 ' 105 s 2 ! 6.65 ' 10"8 s ! 66.5 ns

The gravitational time dilation effect of 177 ns is larger than 
the approximate 66.5-ns special relativity time dilation effect. 
There is also a third correction due to the rotation of Earth.

Satellite

Earth

Radio signal

Figure 15.7 Light or radio 
waves from a satellite on the op-
posite side of the sun from Earth 
pass close to the sun. As the light 
passes close to the sun, the light is 
gravitationally attracted by the 
sun and encounters a longer path 
due to spacetime curvature on its 
way to Earth. The effect, called 
light retardation, is that the light 
takes longer to reach Earth.
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564 Chapter 15 General Relativity

Earth. The radio waves passing close to the sun traveled an extra distance due to 
the spacetime curvature. The results were the best to date for this kind of mea-
surement and agreed with the general theory to 2 parts in 105.

15.3  Gravitational Waves
The four types of experiments discussed in the previous section represent tests 
that have confirmed the validity of general relativity. Other phenomena pre-
dicted by general relativity are currently under extensive investigation. One of 
these is gravitational waves, which is the subject of this section. Gravitational 
waves are not too hard to imagine. We know that electromagnetic waves are 
produced by oscillating charges. When a charge accelerates, the electric field 
surrounding the charge redistributes itself. This change in the electric field pro-
duces an electromagnetic wave, which is easily detected. In much the same way, 
an accelerated mass should also produce gravitational waves. It is a classical ef-
fect, not a quantum one, but the effect is very small. Gravitational waves carry 
energy and momentum, travel at the speed of light, and are characterized by 
frequency and wavelength. As gravitational waves pass through spacetime, they 
cause small ripples. 

Einstein’s general theory of relativity is also a modern theory of gravitation but 
does not include quantum theory. Einstein showed that his general theory had wave 

Venus

Radar

Sun

Earth

Figure 15.8 The superior con-
junction position of Venus when 
it is on the other side of the sun 
from the Earth. Radar waves sent 
between the two planets will be 
delayed slightly because of the 
gravitational attraction of the sun.
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Figure 15.9 Shapiro’s 1970 
data of the time-delay measure-
ments of the radar waves between 
Earth and Venus. The solid line is 
the general relativity prediction. 
Reprinted with permission from Ameri-
can Physical Society, Irwin I. Shapiro, 
Michael E. Ash, Richard P. Ingalls, 
William B. Smith, Donald B. Campbell, 
Rolf B. Dyce, Raymond F. Jurgens, and 
Gordon H. Pettengill. Phys. Rev. Lett. 
26, 1132-1135 (1971). Copyright 1971 
by the American Physical Society.
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solutions, but because the expected wave amplitudes are so small, they were not 
taken seriously until 1968 when Joseph Weber announced that he had detected 
gravitational radiation (waves) from space. Weber’s announcement spurred a new 
field of gravitational astronomy, even though subsequent investigations by other 
experimenters have not confirmed his results. It seems unlikely that gravitational 
waves produced in the laboratory could ever be detected, but possibly waves from 
an astronomical phenomenon such as the collapse of two neutron stars rotating 
around each other, a neutron star falling into a black hole, or the gravitational col-
lapse of a star to form a black hole (see Chapter 16) may have enough accelerating 
mass to produce detectable radiation. Neutron stars are collapsed stars of extremely 
high density and will be discussed in Section 15.4. It might even be possible to de-
tect gravitational radiation coming from the first fraction of a second after the ori-
gin of the universe (the Big Bang). Physicists conjecture that gravitational waves 
cause the space between objects to expand and contract. The difficulty of ever prov-
ing this theory is that the predicted effects of gravitational waves would alter dis-
tances by less than 1 part in 1021 by the time the waves reach Earth. This stretching 
and shrinking estimate is due to a faraway binary system of neutron stars emitting 
gravitational waves of about frequency 300 Hz. This effect has been likened to no-
ticing a single grain of sand added to all the beaches of Long Island, New York.

Astronomers and physicists believe with some conviction that they have 
identified a system exhibiting gravitational radiation, although no direct detection 
of gravitational waves has occurred. Russell Hulse and Joseph Taylor (Nobel Prize 
in Physics, 1993) discovered in 1974 a binary system consisting of a pulsar (a rapidly 
spinning neutron star) and another star rotating around each other with a period 
of about 8 h. The unidentified second star is also believed to be a neutron star. If the 
system (called PSR 1913 $ 16) is radiating gravitational waves, it loses energy, and 
the two stars come closer together, spiraling faster and faster around each other. As 
the gravitational radiation increases, the stars will finally lose enough energy to 
crash into one another. The predicted and observed decrease in the orbital period 
is in good agreement with the production of gravitational waves.

15.4   Black Holes
While a star is burning, the heat and radiation pressure produced by the ther-
monuclear reactions push out the star’s matter and balance the force of gravity. 
When the star’s fuel is used up, no heat or radiation pressure is left to counteract 
the tremendous force of gravity, which becomes dominant. The star’s remaining 
mass collapses into an incredibly dense ball, much smaller than the burning star. 
The amount of mass left in the star determines what it becomes. A star the size 
of our sun will become a white dwarf. Stars somewhat larger than the sun, but 
having a mass less than about 3 solar masses, will become neutron stars. We will 
discuss white dwarfs and neutron stars further in Section 16.3. When stars having 
greater masses collapse, an astounding phenomenon occurs. The local gravita-
tional force is so strong that nothing can ever leave the collapsed star, not even 
light! Robert Oppenheimer and Hartland Snyder predicted in 1939 that the 
gravitational collapse of a star could produce such a body, now called a black 
hole. Because nothing can escape a black hole, it is very hard to detect.

Let’s discuss the case of a spherical star as its fuel is used up, and the gravi-
tational attraction starts to contract the mass. The star becomes smaller and 
smaller until the point is reached when the gravitational force is so strong that 
nothing inside the star can escape. Karl Schwarzschild used Einstein’s general 

Joseph Taylor (1941– ) was born 
in Philadelphia and educated at 
Haverford College and Harvard 
(Ph.D., 1968). He has been on 
the faculties of the University of 
Massachusetts and Princeton 
Uni versity. 

Russell Hulse (1950– ) was born 
in New York City where he at-
tended the Bronx High School of 
Science before attending Cooper 
Union College. While Hulse was a 
graduate student at the University 
of Massachusetts (Ph.D., 1975) 
working with Joseph Taylor, they 
discovered the first binary pulsar 
in 1974 using the Arecibo Obser-
vatory in Puerto Rico. They re-
ceived the Nobel Prize for Phys-
ics in 1993, which was the first 
prize given for work in general 
relativity
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Special Topic

Gravitational Wave Detection

G ravitational waves distort spacetime. One possible 
method of detecting gravitational waves (shown 

in Figure A) takes advantage of optical interference. 
Four test masses, two on each arm of the apparatus, 
react to a gravitational wave passing through, slightly 
changing the path lengths L1 and L2. This basic Mi-
chelson interferometer device takes advantage of the 
Fabry-Perot method by placing mirrors on the masses, 
so that the light bounces back and forth between 
masses (separated by 2 or 4 km) many times before 
interfering. This greatly increases the sensitivity of the 
device.

Detectors in the United States and in three foreign 
countries aid in looking for correlations in the gravita-
tional waves. In the United States this ambitious project, 
called LIGO for Laser Interferometer Gravitational-
Wave Observatory, is led by groups from Caltech and 
MIT; it has detectors placed in the states of Washington 
and Louisiana (more than 3000 km apart). Other de-
tectors are located in Germany, Japan, and Italy. Al-
though the detectors vary somewhat in size, sensitivity, 
and operation, they all work in approximately the same 
manner. As a gravitational wave passes through Earth, it 

arrives at each detector at a slightly different time. This 
allows the researchers to determine the source of the 
gravitational wave and to eliminate noise sources. The 
LIGO detectors were designed to have a peak sensitivity 
of 3 parts in 1023 at 180 Hz.

As of 2011 no gravitational waves had been de-
tected by LIGO. Big events such as a supernova explo-
sion or the collision of two black holes should pro-
duce the largest and most detectable waves, but they 
are rare. Such signals should produce a spike, easily 
seen by LIGO. The stochastic gravitational wave back-
ground (SGWB) was mostly created in moments after 
the Big Bang and has moved throughout the universe 
ever since. The SGWB detection would be a murmur 
and is more diffi cult to detect; apparently it is below 
the detection capabilities of the current detectors. 
This result itself is important, however, and rules out 
some theoretical models of the early universe. An up-
grade of LIGO should result in an increased sensitivity 
of the instruments by a factor of 10 and an increase by 
a factor of a thousand the number of astrophysical 
candidates producing gravitational waves. It is ex-
pected to be operational in 2014.

NASA and the European Space Agency (ESA) 
were jointly developing a space-based gravitational 
wave observatory called the Laser Interferometer 
Space Antenna (LISA) that will use laser interferom-
etry between three spacecraft located 5 million km 
apart in space in orbit around the sun.  However, 
NASA pulled out of the project in 2011 for fi nancial 
reasons.  The future of the experiment is not clear, 
but the ESA hopes to continue,  possibly with a scaled-
back operation.  The plan was for each spacecraft to 
carry two telescopes with associated lasers and optical 
systems. The spacecraft would approximate a triangle 
in the plane of Earth’s orbit around the sun. This ar-
ray is being designed to be sensitive to gravitational 
waves with frequencies in the range 0.03 mHz to 0.1 
Hz, signifi cantly lower than the higher frequencies 
(above 10 Hz) sought by LIGO. Even though the 
spacecraft will not be susceptible to the same kind of 
noise as the ground-based observatories, they will still 
have diffi culties accounting for the solar wind and 
solar radiation pressure to obtain the necessary sensi-
tivities. A single satellite, LISA Pathfi nder, was sched-
uled (before NASA’s withdrawal) for launch for test-
ing purposes in 2013 with full launch in 2016.

Mirrors

Mirrors

Laser

Beam splitter

Mass

Photodiode

L2

L1

Figure A A schematic diagram of the LIGO device. A gravita-
tional wave passing through large masses suspended on thin wires 
causes the distance L1 " L 2 to change. The shift in the observed 
interference pattern would be suffi cient to indicate the presence 
of the gravitational wave.
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theory of relativity in 1916 to show that a radius exists for a collapsing celestial 
object, such that for a smaller radius, the force of gravity is strong enough to 
prevent matter and energy from escaping within that radius. He showed that this 
radius, r ! rS, now called the Schwarzschild radius, is given by

 rS !
2GM

c 
2     Schwarzschild radius (15.5)

This expression is for a nonrotating spherical mass. The body continues con-
tracting past the Schwarzschild radius, but nothing happening inside the col-
lapsing body can affect the spacetime region outside rS. Any light ray or particle 
emitted inside the black hole is kept from going outside by the gravitational 
force.

An observer outside the Schwarzschild radius cannot even tell when the ra-
dius passes through rS. The light leaving the body right before the body crossed 
over to r & rS is so strongly attracted to the body that it takes progressively longer 
and longer to reach the observer. This is merely an optical effect, because physi-
cally the apparent luminosity of the body decreases rapidly with time, and the 
light is strongly redshifted.

The boundary region or surface of a black hole is called the event horizon 
(see Figure 15.10); no information from inside the event horizon can escape to 
the outside, not even light. The point at the center of a black hole is called the 
singularity. For a spherical black hole, the event horizon is located at rS. When 
people talk about the size of a black hole, they are referring to the size of the 
event horizon. If we insert the gravitational constant and the speed of light into 
Equation (15.5), we obtain the Schwarzschild radius for a given mass M,

 rS !
2GM

c 
2 ! 11.5 ' 10"27

 m/kg 2M  (15.6)

This allows us to calculate the radius of a black hole for a given mass, as seen in 
the following example.

Schwarzschild radius

Calculate the Schwarzschild radius for the sun and Earth.

Strategy We use the masses of the sun and Earth in Equa-
tion (15.6) to find the Schwarzschild radius for each.

Solution If we substitute the mass of the sun and Earth 
into Equation (15.6), we obtain

  rS 1sun 2 ! 11.5 ' 10"27 m/kg 2  12.0 ' 1030 kg 2 ! 3.0 km

  rS 1Earth 2 ! 11.5 ' 10"27 m/kg 2  16.0 ' 1024 kg 2 ! 9.0 mm

If the Earth were a black hole, the dark spot would be very 
tiny indeed! Our current understanding is that neither the 
Earth nor the sun will ever become a black hole.

 EXAMPLE 15.2

The problem of detecting a black hole is particularly difficult. If light cannot 
leave a black hole, how can it be detected? There are several indirect means. As 
the star collapses during the formation of a black hole, the gravitational redshifts 
should be large. The signals abruptly cease when the black hole is formed. Obser-
vation of such signals would be pure luck. Stephen Hawking has applied quantum 
theory to the problem of a black hole and has outlined a method through which 
energy, called Hawking radiation, evaporates from the black hole much like a 

Singularity

Event!
horizon

Figure 15.10 At the center of 
a black hole is a singularity. Within 
a certain distance of the singular-
ity, called the event horizon, the 
gravitational pull is so strong that 
nothing, including light, can es-
cape. The event horizon is not a 
physical boundary but rather a 
limit beyond which nothing can 
leave. The event horizon de-
scribes the size of the black hole.
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568 Chapter 15 General Relativity

thermal energy spectrum (see Problem 14). The energy is very difficult to detect, 
and the process is so slow that it would take many ages of the universe for the black 
hole to dissipate its energy. We can understand this process by imagining a particle 
being attracted from outside the black hole to the event horizon. The particle 
gains energy from the gravitational field of the black hole. As it approaches the 
event horizon, a virtual particle-antiparticle pair is created by utilizing the large 
energy gain. One member of the newly created pair occasionally goes into the 
black hole, while the other one escapes. In essence the gravitational energy of the 
black hole has been used to create the particle-antiparticle pair.

Hawking calculated that the temperature of the blackbody radiating the 
energy is

 T !
Uc 

3

8pkGM
 (15.7)

In Equation (3.16) we found that the power radiated per unit area at tempera-
ture T is given by the Stefan-Boltzmann law, R(T ) ! PsT 4, where we let the 
emissivity P ! 1 for a blackbody and s is the Stefan-Boltzmann constant. The 
power P(T ) radiated by a blackbody at temperature T becomes

 P  1T 2 ! 14prS
2 2sT 

4 (15.8)

where rS is the blackbody’s Schwarzschild radius. If we insert the blackbody tem-
perature from Equation (15.7) into Equation (15.8), we have

 P  1T 2 ! 4psrS 

2 a Uc 
3

8pkGM
b 4

 (15.9)

This result can be used to determine the rate of Hawking radiation emanating 
from a black hole.

Determine how much time a black hole having 3 solar 
masses will take to radiate its energy.

Strategy We use Equation (15.9) to determine how long it 
takes a blackbody of mass-energy Mc 2 to radiate all its 
energy.

Solution We use the mass-energy Mc 2 to find that it loses 
its energy at the rate P(T) ! "d(Mc2)/dt ! "c2(dM/dt), 
where we have taken the time derivative. We set this result 
equal to Equation (15.9) and find

 "c 
2

  
dM
dt

! 4psrS
2a Uc 

3

8pkGM
b 4

  ! 4ps a 2GM
c 

2 b 2a Uc 
3

8pkGM
b 4

!
2sU 4c818p 23k4G 

2 
1

M 
2

and the rate of mass loss becomes

 
dM
dt

! " 

2sU 4c 
618p 23k4G 

2 
1

M 
2 ! "a  

1
M 

2 (15.10)

where we have collected the constants into a. Evaluation of 
the constant a ! 3.96 ' 1015 kg3/s is left to Problem 18.

We rewrite Equation (15.10) and integrate to find

  M 
2 dM ! "a dt

  "M 
2 dM ! "a"dt

  
M 

3

3
! "at $ C 

œ

  M 
3 ! "3at $ C ! "3at $ M0

3

where the new constant C ! 3C 
œ ! M 0

3 is related to the 
mass M0 at t ! 0. The time for all the mass to radiate can be 
found by letting M ! 0, and we find

 EXAMPLE 15.3

Karl Schwarzschild (1873– 1916) 
was born in Germany and studied 
at Strasbourg and Munich (Ph.D., 
1896). He was a professor at 
Göttingen and Potsdam before vol-
unteering for the German army in 
World War I. While serving in Rus-
sia in 1915 he did important work 
on both relativity and quantum the-
ory, which resulted in his pioneer-
ing work on black holes. He was 
the most celebrated astronomer of 
his day in Germany. He contracted 
a disease while serving in Russia 
and died at the young age of 42.

AI
P 

Em
ili

o 
Se

gr
è 

Vi
su

al
 A

rc
hi

ve
s.

03721_ch15_555-576.indd   56803721_ch15_555-576.indd   568 9/29/11   10:24 AM9/29/11   10:24 AM



   15.4  Black Holes 569

Black holes may be detected indirectly by their gravitational influence on 
their surroundings. Consider a binary system of a black hole and a companion 
star. The strong gravitational force of the black hole pulls gaseous matter off the 
star, but the gas does not go directly into the black hole. Because the companion 
star has some rotational motion, the gas moves into an orbit around the black 
hole (see Figure 15.11). This rotating mass collects into an accretion disk sur-
rounding the black hole. As the gas moves toward the inside of the disk, it revolves 
at speeds approaching the speed of light, and the internal friction between layers 
of gas heats up the gas to high temperatures. This superheated gas emits x rays 
that can be observed, because the accretion disk is not inside the black hole’s 
event horizon. The strongest galactic x-ray sources are binary systems, and only 
black holes and neutron stars are believed capable of producing the immense 
x-ray emissions observed. Experiments indicate that many of the x-ray sources are 
due to neutron stars, but remember that neutron stars with masses greater than 
a few solar masses will collapse into a black hole. A typical neutron star has a mass 
of about 1.5 solar masses.

A good candidate for a black hole would be an unseen mass in a binary sys-
tem producing copious amounts of x rays. For larger black holes much of the 
accretion disk’s energy is emitted as electromagnetic radiation before the matter 
is absorbed by the black hole. Another process called advection is also possible. If 
the black hole accumulates mass at a slower rate, there is not as much friction in 

  M0
3 ! 3at

  t !
M0

3

3a

Now we find the time for the 3-solar-mass black hole to 
evaporate.

 t !
3311.99 ' 1030kg 2 43
313.96 ' 1015 kg 

3/s 2  ! 1.8 ' 1076 s ! 5.7 ' 1068 y

This is obviously many times the lifetime of our universe, 
which is 13.7 billion years.

X ray

Companion
star

Companion
star

Black
hole

Accretion disk

Neutron
star

Material from
companion star

X ray

(a)

(b)

Figure 15.11 Matter from a 
companion star is attracted by the 
strong gravitational pull of (a) a 
black hole or (b) a neutron star. 
The matter spirals inward, forming 
a disk before being pulled into the 
black hole or neutron star. Fric-
tion within the disk creates tre-
mendous temperatures and copi-
ous numbers of x rays. Adapted 
from drawing by Ramesh Narayan and 
Michael Garcia, Harvard-Smithsonian 
Center for Astrophysics.
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570 Chapter 15 General Relativity

the accretion disk, and the energy is absorbed by the black hole. Thus it is pos-
sible for black holes, even in a binary system, to emit radiation only dimly.

It is likely that astronomers and astrophysicists have discovered a number of 
black holes. The earliest and best-known candidate is Cygnus X-1, which was 
found in 1965 to be an x-ray source. The X-1 designation indicates it was the first 
x-ray emitter found in the constellation Cygnus. In the 1970s it became known 
that Cygnus X-1 and an observable star were a binary system. Many observations 
and analyses have been made on this system in the intervening decades. It ap-
pears to be a classic system having an accretion disk whose gaseous molecules get 
hot and emit x rays. Data indicate that the mass of the unobserved object is about 
9 solar masses, which is convincing evidence to most scientists that Cygnus X-1 
is indeed a black hole.

Black holes come in at least two sizes, perhaps more. Black holes including 
Cygnus X-1 that have between 5 and 20 masses of the sun (solar masses M!) are 
called stellar black holes. The other known variety is supermassive black holes, 
which are thought to have masses of millions or billions of times that of our sun. 
Many galaxies are now believed to have a supermassive black hole near their 
center, and our own Milky Way galaxy is believed to have a supermassive black 
hole of about 4 million M!. The origin of the supermassive black holes is not 
completely clear. They might have grown by absorbing stars and merging with 
other black holes in their own galaxy, but some astrophysicists believe there 
could not have been enough nearby mass. Others believe that they could have 
formed early in the universe by the merging of protogalaxies (that is, “forming” 
galaxies). They have been attracting other mass ever since. Other complex theo-
ries exist.

There are at least two other types of black holes that have been proposed. 
One is called intermediate mass black hole, which might have a typical mass of a 
thousand M! compared with the known stellar black holes of mass ~10M!. In-
termediate-size black holes have not been confi rmed experimentally. The other 
type is micro or mini black holes, which would have somewhat smaller mass, even 
close to that of our moon or smaller. One proposal is for primordial black holes 
that could have been formed early in the history of the universe when, after the 
Big Bang (see Chapter 16), mass densities were very large. Perturbations in the 
mass density could have led to the formation of black holes. Various models 
predict masses that range from tiny to hundreds of thousands M!, thus account-
ing for any of the proposed black hole sizes. These tiny black holes, the sizes of 
which might be only 0.1 mm or smaller, have not been observed, but we would 
know it if one collided with Earth! 

We believe that most primordial black holes have likely evaporated and no 
longer exist. Note from Example 15.3 that the rate of mass loss due to Hawking 
radiation is inversely proportional to the black hole mass. As the primordial 
black hole gets smaller and smaller, its mass loss rate increases dramatically. Its 
eventual demise would be runaway evaporation and a massive burst of radiation 
at the end comparable to numerous hydrogen bomb explosions. A black hole of 
mass much less than a billion kilograms has likely evaporated, although string 
theory with its multiple dimensions might change this scenario.

A convincing case can be made that the unusual giant galaxy M87 (also 
known as Messier 87, after the French astronomer who discovered it in 1781) has 
a black hole near its center. This black hole is of the supermassive variety and is 
thought to have a mass of at least 3 billion solar masses. A disk of hot gas can be 
seen in the lower left of Figure 15.12, taken with the Hubble Space Telescope. 
The observations of the rotating gas indicate the mass of the object, and the size 

Stellar black holes

Supermassive black holes

Primordial black holes
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Radio
lobes

Jet

Disk

of the disk indicates the approximate volume of the central object. These results 
yield an object with a central density so high that only a black hole is possible. 
The photo also dramatically indicates a plasma jet shooting mass up and away 
from the central object.

Figure 15.13 shows a composite photo of ground-based optical and radio 
tele scope images of the NGC 4261 galaxy beside a high-resolution Hubble Space 

Figure 15.13 The core of the 
elliptical galaxy NGC 4261 is 
shown with a Hubble Space Tele-
scope image on the right and a 
composite photo of an expanded 
region on the left. A black hole is 
believed to be inside the bright 
white spot at the center of the 
disk on the right side. Hot gas is 
escaping in jets from the vicinity 
of the black hole on the left.

Figure 15.12 There is convinc-
ing evidence of a black hole in 
the center of the giant galaxy 
M87 seen in the lower left of this 
Hubble Space Telescope photo-
graph. The highly energetic jet 
emanating upward and to the 
right is composed of fast-moving 
charged particles and has broken 
into knots as small as 10 lightyears 
across. H.
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572 Chapter 15 General Relativity

Telescope image of the galaxy core. The radius, speed, and mass of the object 
can be determined from its rotation. The ring is believed to be the accretion disk 
feeding the black hole and is thought to have a mass of a billion suns. The black 
hole, thought to be inside the bright white spot at the center, is too small to be 
observed in this image. The disk is believed to be cold gas and dust. The gas and 
dust are compressed and heated as they rush toward the black hole. The jets are 
due to hot gas escaping from the vicinity of the black hole. The images provide 
a classic case of the phenomena expected near a black hole and provide strong 
circumstantial evidence of a black hole.

15.5  Frame Dragging
Soon after Einstein presented his general theory of relativity in 1915, the Austrian 
physicists Josef Lense and Hans Thirring used it to propose in 1918 that a rotating 
body’s gravitational force can literally drag space and time around with it as the 
body rotates. This effect, sometimes called the Lense-Thirring effect, is normally 
referred to as frame dragging. All celestial bodies that rotate can modify the space-
time curvature, and the larger the gravitational force, the greater the effect. It was 
one of the last of the general theory’s predictions to be confirmed.

Because of the strong gravitational force near black holes, researchers were 
first able to confirm frame dragging in 1997 by noticing that x-ray emissions 
from several black holes varied in intensity. This variation was repetitious and 
could be explained if the object’s orbit were precessing. As the matter orbits the 
black hole, the spacetime that is being dragged around the black hole drags the 
matter around with it as shown in Figure 15.14. If we could observe the black 
hole binary system, we might see the accretion disk wobble like a top out of bal-
ance. Astrophysicists were first able to observe the spacetime distortion of black 
holes by observing x rays with NASA’s Rossi X-ray Timing Explorer spacecraft.

In 1998 Italian and American researchers were able to use two Earth-orbit-
ing Laser Geodynamics Satellites, LAGEOS I and LAGEOS II, to detect the ef-
fects of frame dragging near Earth. The LAGEOS satellites are passive and dedi-
cated to laser ranging, in which Earth-based lasers are reflected off the satellites. 
The researchers were able to detect that the plane of the satellites shifted about 

Figure 15.14 An artist’s con-
ception of a spinning black hole 
(invisible at the center) twisting 
spacetime as it turns. The lines 
curving to the outside represent 
spacetime. Excess energy shoots 
off in jets of hot gas along the di-
rections of the rotation axes. The 
white ball in the center represents 
the event horizon. Note the simi-
larities to Figure 15.13. Ar
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2 meters per year in the direction of the Earth’s rotation, in agreement with the 
prediction of general relativity. This relativistic effect is about 10 million times 
smaller than classical Newtonian disturbances and required painstaking analysis 
of data that required four years to acquire.

The Gravity Probe B (GP-B) satellite was launched in 2004 to prove two 
predictions of the general theory: frame dragging and the geodetic effect. It had 
four gyroscopes bathed in liquid helium that measured Earth’s spin with great 
accuracy. Because Earth rotates around its own axis, Earth drags space time with 
it; this causes the gyroscope  to tilt slightly away from the plane of its orbit be-
cause Earth is dragging it.

The geodetic effect is due to spacetime curvature. This distortion of space-
time has the effect of tilting the gyroscope’s spin axis in the orbit plane. General 
relativity predicts an effect 150 times larger than frame dragging, which requires 
measuring the effect to 1 part in 104. The Gravity Probe B’s telescope locked 
onto the guide star IM Pegasi, about 300 light years away, for stability. Although 
the mission was burdened by unexpected sources of error, both the geodetic ef-
fect and frame dragging were confi rmed in 2011. Gravity Probe A was the experi-
mental verifi cation of the gravitational redshift performed in 1976 by the Scout 
D rocket (see Section 15.3).

It may seem that the theory of general relativity has no applications in our 
modern life, but the use of Global Positioning System (GPS) receivers to know 
where we are at work and play must utilize general relativity corrections. The 
receivers operate by passively receiving signals from multiple satellites and then 
determining parameters including position, altitude, and velocity. The determi-
nation of these parameters depends on very accurate atomic clocks in the satel-
lites. Special relativity corrections are applied because the satellites are moving 
with respect to Earth. General relativity corrections are also made because the 
satellites are in orbit more than 20,000 km above the Earth. When the GPS sys-
tem was implemented, it was found that general relativistic corrections needed 
to be made routinely.

What is so remarkable about the general theory of relativity is that Einstein 
did not develop it as a way to explain existing experimental data. Einstein’s 
imagination was perhaps the greatest of any scientist’s. By imagining gravity as 
warping spacetime, and not as a force at a distance, Einstein made an intellectual 
leap that is still astounding. The theory ranks as one of the greatest achievements 
of the twentieth century, along with quantum theory. It has been said that if 
Einstein had not developed his general theory, it might have been decades be-
fore another physicist had the creative genius to produce it.

Geodetic effect

Einstein’s general theory of relativity is a theory of gravity 
that replaces Newton’s force laws by a system based on cur-
vature of spacetime. Einstein’s principle of equivalence 
states that there is no experiment that can be done in a 
small confined space that can detect the difference between 
a uniform gravitational field and an equivalent uniform ac-
celeration. The principle of equivalence leads to the bend-
ing of light in a gravitational field. Spacetime curvature oc-
curs near masses.

There are several tests of general relativity. The bend-
ing of light was first measured in 1919 and has been ob-
served in several experiments since. Light can gain and lose 
energy when passing through gravitational fields. When 
light loses energy, the frequency of visible light is decreased, 
and we say it is redshifted. To first order, in small regions 
where g is approximately constant, the gravitational redshift 
is given by

S u m m a r y
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574 Chapter 15 General Relativity

Q u e s t i o n s

 1. Laser light from Earth is received for an experiment 
by an Earth satellite. Is the light redshifted or blue-
shifted? What happens to the light if it is refl ected 
back to Earth?

 2. Explain why true weightlessness occurs only at the 
center of mass of the space station as it rotates around 
Earth.

 3. Why does a drop of water become bulged in the space 
station due to Earth’s gravitational fi eld? Draw the 
water drop showing the direction to Earth’s center.

 4. Devise a way for the occupants of a spaceship to know 
whether they are being pulled into a black hole. What 
can they do if they determine they are within the 
Schwarzschild radius?

 5. Astronauts riding in the space station are said to be in 
“zero-free” or “micro” gravity. Explain why this is not 
really so. Is the net force on them zero?

 6. In the experiment discussed in Chapter 2 of the 
atomic clocks fl own around Earth, what was the effect 
regarding general relativity?

 7. In 1919 when the gravitational defl ection of light was 
measured, why did the scientists travel to Africa and 
South America?

 8. How likely is it for a black hole to collide with Earth? 
Would we have much warning?

 9. Why is it diffi cult to test models of general relativity 
experimentally?

 10. We mention in the text that gravitational redshifts can 
be observed and measured during the collapse of a 
star into a black hole. When might the redshifts cease?

 11. We mentioned that astronauts can tell whether they 
are in outer space or “falling around Earth” by observ-
ing a drop of water in the corner of their spacecraft. 
What are the tidal forces that were mentioned, and 
where do they come from? Why are they called “tidal” 
on Earth?

 12. Why can we conclude from Equation (15.1) that the 
inertial and gravitational masses are equal?

 13. Explain why it’s expected that primordial black holes 
should not last for a long time before evaporating 
completely. Why is the last part of such a black hole’s 
lifetime described in the text as comparable to nu-
merous hydrogen bomb explosions?

 14. Some concern was expressed that the high-energy 
particles produced by the Large Hadron Collider 
might generate small black holes that could grow out 
of control and eventually consume all of Earth’s mass. 
Why is this not a likely scenario?

 
¢  f
f

!
g H

c 
2  (15.3)

Many experiments confirm the existence of gravitational 
redshifts. The general theory also predicts a noticeable ef-
fect on the perihelion of Mercury’s orbit. Such a calculation 
accounted for an anomaly in astronomical measurements 
known since 1859. The deflection of light by gravitational 
fields has been detected by light passing close to the sun 
between Venus and Earth. 

One prediction made by general relativity that has not 
yet been directly confirmed is the existence of gravitational 
waves, which is currently of great interest. Black holes are 

objects that have collapsed under their own gravitational 
attraction. Nothing can escape a black hole, not even light. 
The size of a nonrotating spherical black hole is given by the 
Schwarzschild radius.

 rS !
2GM

c 2  (15.5)

Scientists believe that the existence of black holes has been 
confirmed, despite the difficulty of their detection.

Frame dragging has been seen for both black holes and 
for Earth. The geodetic effect has been observed for Earth.

P r o b l e m s

  Note: The more challenging problems have their 
problem numbers shaded by a blue box.

15.1 Tenets of General Relativity
 1. Devise an experiment like the one Newton performed 

to test the equivalence of inertial and gravitational 
masses. Use different masses on pendula of equal 

length to show that the period depends on the ratio 
of 2mI /mG .

15.2 Tests of General Relativity
 2. Controllers want to communicate with a satellite in 

orbit 480 km above Earth. If they use a signal of fre-
quency 100 MHz, what is the gravitational redshift? 
Assume g is constant.
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 3. For clocks near the surface of Earth, show that Equa-
tion (15.4) reduces to Equation (15.3) for %f /f .

 4. Repeat Example 15.1 using the more accurate Equa-
tion (15.4) for the gravitational redshift. Compare 
with the result of Example 15.1.

 5. In Shapiro’s experiment on the time delay during the 
superior conjunction of Venus and Earth, how much 
time did it take for the radar signals to travel the 
round trip to Venus? What percentage change was he 
looking for?

 6. Calculate the gravitational redshift of radiation of 
wavelength 550 nm (the middle of the visible range) 
that is emitted from a neutron star having a mass of 
5.8  '  1030 kg and a radius of 10 km. Assume that the 
radiation is being detected far from the neutron star.

 7. Radiation is emitted from the sun over a wide range 
of wavelengths. Calculate the gravitational redshift of 
light of wavelength 400 nm and 700 nm (the two ends 
of the visible range) that is emitted from the sun and 
received a great distance away.

 8. Assume the experiment of Pound and Rebka is per-
formed on the top of the Empire State Building 
(height  !  381 m). What are the change in frequency 
and the percentage change in frequency due to the 
gravitational redshift?

 9. In the experiment of Pound and Rebka, a 14.4-keV 
gamma ray fell through a distance of 22.5 m near 
Earth’s surface. What are the change in frequency 
and the percentage change in frequency due to the 
gravitational redshift?

 10. Find the relative frequency shift %f/f for light emitted 
at the surface of the sun (radius 6.96  '  105 km, mass 
1.99  '  1030 kg) if the light is received at (a) the planet 
Mercury and (b) Earth.

 11. A He-Ne laser with wavelength 632.8 nm is fi red from 
a great distance toward a neutron star with mass 4.5  '  
1030 kg and radius 12 km. What is the wavelength of 
light received at the neutron star’s surface?

15.4 Black Holes
 12. What is the value of the Schwarzschild radius for the 

moon? (mmoon  !  7.35  '  1022 kg)
 13. Calculate the Schwarzschild radius for Jupiter. (m Jupiter  

!  1.90  '  1027 kg)
 14. Stephen Hawking has predicted the temperature of a 

black hole of mass M to be T  !  Uc 
3/8pkGM, where k 

is Boltzmann’s constant. (a) Calculate the tempera-
ture of a black hole with the mass of the sun. Discuss 
the implications of the temperature you calculate. 
(b) Find the temperature of a supermassive black 
hole, which may exist at the center of some galaxies, 
with a mass 6.0  '  109 times the sun’s mass.

 15. Calculate the mass and Schwarzschild radius of a 
black hole at room temperature (see Problem 14). 
How many solar masses is this?

 16. The supermassive black hole at the center of the NGC 
4261 galaxy is thought to have a mass of 1 billion suns. 

(a) Calculate its Schwarzschild radius and compare it 
with the size of our solar system. (b) How much time 
would this black hole take to evaporate by Hawking 
radiation?

 17. (a) Use the known lifetime of the universe to deter-
mine the mass of a black hole that would evaporate all 
its mass during that time. (b) How likely is it that a 
black hole of this mass could exist?

 18. Determine the constant ! in Equation (15.10).
 19. Because the evaporation rate of a black hole increases 

as the black hole’s size decreases, a small primordial 
black hole releases energy at a fantastic rate. Find the 
mass of a black hole that would release energy equiva-
lent to a one-megaton (4.2  '  1015 J) hydrogen bomb 
every second.

 20. For a black hole with the mass of our moon (7.3  '  
1022 kg) fi nd (a) its Schwarzschild radius; (b) its effec-
tive temperature; and (c) the potential energy associ-
ated with this black hole being just above Earth’s 
surface.

General Problems
 21. The Global Positioning System satellites operate at an 

altitude of 20,200 km and use communication fre-
quencies of 1575.42 MHz. Find the gravitational fre-
quency change with respect to Earth.

 22. Derive Equation (15.4).
 23. One of the communication frequencies that the In-

ternational Space Station uses is 259.7 MHz. (a) Find 
the gravitational frequency change with respect to 
Earth when the station is at its mean altitude of 
352 km. Assume g is constant and equal to 9.80 m/s2. 
(b) Now do a more precise calculation of the fre-
quency shift, without assuming that g is constant.

 24. Weightlessness occurs only at the center of mass of 
the International Space Station as it rotates 350 km 
above Earth. Calculate the effective g that an astro-
naut in the station who is 3 m closer to Earth than the 
center of mass would feel. You may choose to ignore 
relativistic effects.

 25. Find the mass of a particle with a Compton wave-
length of "rS where rS is the Schwarzschild radius. This 
mass is called the Planck mass mP, and the energy re-
quired to create the mass is called the Planck energy 
EP  !  mPc2. Determine the values of both the Planck 
mass and energy.

 26. The length scale on which the quantized nature of 
gravity should fi rst become evident is called the Planck 
length. (a) Determine it using dimensional analysis us-
ing the fundamental constants G, h, and c. (b) Deter-
mine it by fi nding the de Broglie wavelength of the 
Planck mass of Problem 25. Are the values close to the 
value of 10"35 m?

 27. Use the fundamental constants G, h, and c and dimen-
sional analysis to determine a time constant called the 
Planck time. How much time would it take light to 
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576 Chapter 15 General Relativity

  Complete the derivation using the thermodynamic 
defi nition of temperature 1/T ! 0S/0U . Assume that 
the black hole’s energy is entirely mass-energy, that is, 
U  !  Mc2.

 30. It is written in the text that light traveling horizontally 
across the continental United States should fall about 
1 mm due to gravity. Determine the approximate ver-
tical fall for light traveling from Los Angeles to New 
York City.

travel the Planck length discovered in the previous 
problem? Are these two times consistent?

 28. A communications satellite is at a geosynchronous 
orbit position (35,870 km above Earth’s surface) and 
communicates with Earth at a frequency of 2.0  '  109 
Hz. What is the frequency change due to gravity?

 29. Stephen Hawking’s derivation of the black hole tem-
perature used the fact that the black hole’s entropy is 
given by

S !
8p2GM 

2k
hc
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Most physicists and astronomers believe our universe evolved from a primor-
dial event called the Big Bang. In this chapter we present some of the experimen-
tal evidence supporting this belief. The modern science of cosmology is based 
on the general theory of relativity and has strong ties to elementary particle phys-
ics; that is why we have waited until now to present cosmology. Our knowledge 
of cosmology is increasing, and especially so in the past two decades. The field is 
rapidly changing, but the foundation is growing brick by brick. We consider in 
this chapter some of the unexplained evidence and conflicting theories. Cos-
mology is intertwined with modern astrophysics, and much of what we present 
in this chapter involves both.

What students perhaps find most surprising during their first exposure to 
cosmology and astrophysics is how much these disciplines depend on other 
fields of physics. The formation of stars depends on quantum physics and gravi-
tation. The understanding of nucleosynthesis of elements depends on exact 
measurements of nuclear cross sections to determine how certain elements were 
formed in the early stages of the universe. As we will see in Section 16.2 on the 
Big Bang, elementary particle physics and cosmology have continued to merge 
so much that the fields now overlap considerably. The fundamental forces are 
subjects of extreme interest to both cosmologists and elementary particle physi-
cists. Strongly held theories of today can be disproved by the experimental ob-
servations of tomorrow. Earth- and space-based telescopes are providing answers 
to our most perplexing questions, and new accelerator experiments may help 
increase our knowledge about the origin of the universe.

Not only do we attempt in this chapter to understand the origins of our 
universe, we examine what the demise of life on Earth will be like. Our sun will 
undoubtedly burn out eventually, but current evidence seems to indicate that 
our universe will expand forever.

C H A P T E R

16

577

Cosmology and Modern 
Astrophysics—The 
Beginning and the End

I too can see the stars on a desert night, and feel them. But do I see 
less or more? The vastness of the heavens stretched my imagination—
stuck on this carousel my little eye can catch one-million-year-old light. 
A vast pattern—of which I am a part—perhaps my stuff was belched 
from some forgotten star, as one is belching there.

Richard Feynman
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578 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

16.1  Evidence of the Big Bang
Over the past half century or so, scientists have proposed various theories about 
the origin of the universe. In the 1950s and early 1960s there were two rival theo-
ries of cosmology, but data were insufficient to prove either of them. Both theo-
ries accounted for the known expansion of the universe, which was demon-
strated conclusively by the redshift data of Edwin Hubble in 1929. One theory, 
known as the steady-state theory, held that matter is being continuously created; 
as the universe expands, the density of the universe remains constant. The other 
theory, the Big Bang model, proposes that the universe was created in a primeval 
fireball of incredible density and high temperature. Accumulating evidence in 
favor of the Big Bang models will be presented in Section 16.2.

Before presenting the Big Bang model, we present three important pieces of 
evidence that have led most scientists to accept it as the most likely model for the 
origin of the universe. The pieces of evidence include the following:

1.  The observations between 1929 and 1952 by Edwin Hubble, using the 
giant telescopes of Mount Wilson and Mount Palomar, that the galax-
ies of the universe are moving away from each other at high speeds. The 
 universe is apparently expanding outward from some primordial event.

2.  The observation in 1964 by Arno Penzias and Robert Wilson, two Bell 
Laboratory scientists, that a cosmic microwave background radiation per-
meates the universe. This background radiation has been attributed to 
the Big Bang.

3.  There is good agreement between predictions of the primordial nucleo-
synthesis of the elements and the known abundance of elements in the 
universe. This applies to the light elements that were produced in the 
early stages of the Big Bang.

Although there are still controversies concerning some of the predictions 
and results of the Big Bang model, its main ideas are widely accepted. It has been 
modified somewhat since it was first proposed, as we shall see in Section 16.5, 
where we discuss some of the difficulties. We examine here the three pieces of 
evidence in some detail: the expansion of the universe as determined by Hubble, 
the cosmic microwave background radiation, and the relative abundance of the 
light elements.

Hubble’s Measurements
Edwin Hubble’s career spanned four decades of brilliant observation and under-
standing of our universe. He began by showing in the mid-1920s that there were 
indeed galaxies other than our own. Even though this pioneering work conflicted 
with other published data of the time, Hubble was able to win support for his 
ideas by carefully and painstakingly presenting a persuasive case.

The recessional velocity of astronomical objects is inferred from the shift to-
ward lower frequencies (redshift) of certain spectral lines emitted by very distant 
objects. We derived the redshift relation in Chapter 2 [Equation (2.33)]. Using 
data like those shown in Figure 16.1, Hubble was able to determine the recessional 
velocities of many objects. Other astronomers, particularly V. M. Slipher of Lowell 
Observatory in 1912, had reported that certain nebulae appeared to be receding 
at high radial velocities from us, but it was Hubble who put this experimental fact 
on firm footing. Galaxies receding from us with speed v are related to the dis-
tance R from Earth by the relation known as Hubble’s law:

Edwin Hubble (1889– 1953) was 
born in Missouri and was better 
known in his youth for athletics 
than for academics. He graduated 
from the University of Chicago 
and won a Rhodes scholarship to 
Oxford University, where he stud-
ied law. He decided to pursue as-
tronomy, however, and was ap-
pointed to the staff of Mount 
Wilson Observatory in 1919, 
which had the two largest tele-
scopes in the world. Hubble’s ca-
reer in astronomy is exceptional, 
and between 1922 and 1936 he 
solved four of the central prob-
lems in astronomy. These include 
a classification system for nebu-
lae, the Cepheids, distribution of 
galaxies, and the linear velocity-
distance relation, which led to the 
theory of the expanding universe.
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   16.1 Evidence of the Big Bang 579

 v ! HR (16.1)

The parameter H is called the Hubble parameter, and it is related to a scale factor 
a that is proportional to the distance between galaxies by

 H !
1
a 

da
dt  (16.2)

Because the universe has been expanding, Hubble’s parameter is not constant, 
but decreases slowly over long periods of time. Its value today is sometimes 
denoted by H 0 and called the Hubble constant. George Lemaître fi rst derived 
Hubble’s law in 1927 using general relativity, but his result was not well known 
because it was published in a Belgian journal.

In order to determine whether Hubble’s law is valid, it is necessary to know 
the distance R to objects for which the redshift has been measured. Hubble de-
veloped sophisticated techniques that used the brightness of stars and galaxies 
to determine the distances R. Hubble was able to do this with some certainty for 
stars out to distances of 10 million lightyears and, with some additional assump-
tions, for galaxies out to distances of 500 million lightyears.

Together with his gifted colleague Milton Humason, Hubble examined, over 
a period of many years, hundreds of stellar objects to determine their redshifts. By 

Hubble’s law

Hubble parameter

Cluster!
nebula in

Distance in!
lightyears

Redshift

Virgo

7.8 " 107

1,200 km/s

Ursa Major

1.0 " 109

15,000 km/s

Corona Borealis

1.4  " 109

22,000 km/s

Boötes

2.5  " 109

39,000 km/s

Hydra

4  " 109

61,000 km/s

H # K

Figure 16.1 Redshift data for 
various galaxies are shown with 
their distance from Earth in light-
years. The spectrum of each gal-
axy is the wide, hazy band placed 
in the middle between the labora-
tory comparison spectra. The K 
(393 nm) and H (397 nm) ab-
sorption lines of calcium are 
shown redshifted by the arrow 
and move to the right for higher 
velocities. These early data con-
vincingly showed that the universe 
was expanding.
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580 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

1929 he was able to show that 49 galaxies (which he called extragalactic nebulae) fit 
the velocity-distance relationship. Hubble’s results required painstaking measure-
ments of brightness and redshifts. By 1935 Hubble and Humason had catalogued 
the redshifts of 100 additional galaxies; these data unequivocally showed that the 
galaxies farthest away from us were moving at the highest speeds.

Hubble showed that Equation (16.1) is valid. The linearity between v and R 
remains valid today (Figure 16.2), although the distance measurements have 
been corrected over the intervening years as more observational data were col-
lected. Today we believe that Hubble’s constant H 0 is about 22 km/s per million 
lightyears.

It is not necessary for Earth to be at the center of the universe in order to 
observe the expansion. We show in Figure 16.3 a balloon with dots. Notice that 
as the balloon is inflated, all the dots move further apart from each other. The 
surface of the balloon is two-dimensional; a three-dimensional example often 
quoted is raisins in bread dough. As the bread bakes, it rises and expands in 
three dimensions, and the raisins separate. The raisins all move further apart, 
with the ones on the outside moving faster. Something similar happens as the 
universe expands and the galaxies separate. We will discuss in Section 16.6 the 
possibility of using Hubble’s constant to determine the age of the universe.
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Pisces
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Figure 16.2 An analysis of 15 
clusters of galaxies for the reces-
sion velocity as a function of dis-
tance. The solid line rep resents a 
Hubble constant of 15 km/s per 
million lightyears (or 49 km ! s$1 
! Mpc$1). Various analyses of the 
distances give different values of 
H. From G. Siegfried Kutter, The Uni-
verse and Life, Copyright 1987 by 
Jones and Bartlett Learning, Sudbury, 
MA. Used with permission.

Figure 16.3 A representation 
of how galaxies are receding with 
respect to each other. As the bal-
loon is inflated, each dot is fur-
ther away from the other dots. As 
the universe expands it seems to 
remain homogeneous.

03721_ch16_577-615.indd   58003721_ch16_577-615.indd   580 9/29/11   10:24 AM9/29/11   10:24 AM



   16.1 Evidence of the Big Bang 581

Cosmic Microwave Background Radiation
In 1964 Arno Penzias and Robert Wilson were studying radio emissions in 
the microwave wavelength region. They kept picking up an annoying constant 
signal in their specially designed low-noise antenna. When repeated attempts 
to eliminate the source of the noise were not successful, Penzias and Wilson 
were at a loss to understand their result. In a conversation with another 
colleague they learned of calculations by P. James E. Peebles and his group at Princ-
eton that predicted a remnant background of radiation from the Big Bang. An-
other Princeton physicist, Robert Dicke, was mounting an experiment to measure 
it. It was this remnant background radiation that Penzias and Wilson observed.

Because of the rapid expansion and cooling of the universe, there came a 
point when protons and electrons could form atoms that the photon radiation 
could no longer ionize. Matter had decoupled from radiation, and this happened 
at a temperature of 3000 K. That blackbody radiation characteristic of 3000 K 
several billion years ago has Doppler-shifted to a peak near 3 K today. The calcu-
lated redshift based on the extremely high velocity of that part of the universe with 
respect to Earth today is about a factor of 1000. The blackbody radiation spectrum 
is shown in Figure 16.4 (page 582). Subsequent satellite measurements have 
mapped out the complete blackbody spectrum to amazing accuracies and shown 
it to be nearly, but not completely, isotropic. We will return to this subject later. 
The observation of the cosmic microwave background radiation by Penzias and 
Wilson (Nobel Prize in Physics, 1978) was a triumph of the Big Bang model, and 
the result was very difficult to explain with the steady-state model. After the initial 
observation it became widely known that George Gamow, Ralph Alpher, and 
Robert Herman had performed calculations in the late 1940s and early 1950s that 
had predicted the Big Bang remnant radiation would appear in the range of 5– 7 K.

Nucleosynthesis
A few minutes after the Big Bang, the universe had cooled enough so that 
neutrons and protons could undergo thermonuclear fusion and form light 
elements. The cosmic microwave background radiation provides a view back 
to about 400,000 years after the creation of the universe, but the formation of 
elements began after only a few minutes. Therefore, the nucleosynthesis of 
elements provides a stringent test of the Big Bang model. By measuring the 

Arno Penzias (1933– , on right) 
and Robert Wilson (1936– ) were 
radio astronomers working at Bell 
Labs in 1965 when they discov-
ered the cosmic microwave back-
ground radiation, for which they 
received the 1978 Nobel Prize in 
Physics. Bell Labs had a giant an-
tenna that was no longer used 
when Penzias and Wilson began 
using it for a telescope. However, 
they first had to solve an annoying 
background noise problem. De-
spite all their efforts, even shovel-
ing out the pigeon droppings from 
inside the antenna, they could not 
get rid of the noise, which of 
course turned out to be the cos-
mic microwave radiation.
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Astronomers use a measure of distance called the parsec, ab-
breviated pc, more often than the lightyear, another mea-
sure of distance. A star that is one parsec away has a parallax 
of one second of arc relative to the Earth’s orbit about the 
sun. (Parallax is the apparent displacement of a body due to 
its observation from two different positions.) One parsec is 
about 3.26 lightyears. Determine Hubble’s constant in km/s 
per Mpc.

Strategy We need to use conversions and the value of the 
Hubble constant. One Mpc is a megaparsec or 106 pc.

 EXAMPLE 16.1

Solution We use the value just given for Hubble’s constant, 
22 km/s per million lightyears, and make the conversion to 
Mpc.

 
22 km/s
million ly

 
3.26 ly

pc
! 72 

km/s
Mpc

Hubble’s constant is quoted using either unit. Different mea-
surements yield values between 68 and 75 km # s$1 # Mpc$1. 
The best current estimate using all measurements is 
71 km # s$1 # Mpc$1, a value that we will use from now on in 
this text.
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582 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

present relative abundances of the elements, physicists are able to work back-
ward and test the conditions of the universe that may have existed as early as a 
fraction of a second after the Big Bang.

We examined the proton-proton nucleosynthesis cycle in Chapter 13. In 
reactions like the proton-proton cycle, the light elements 2H, 3He, 4He, and 7Li 
are formed, and predictions of the Big Bang model can be compared with cur-
rent observations. Heavier elements are formed in stars, but the vast majority of 
the presently known mass in the universe is composed of hydrogen and helium. 
The other elements exist in only minute quantities. Calculations using our 
knowledge of nuclear and particle physics were performed in the 1960s and 
1970s to compare with experimental observations of the elemental abundances. 
The observations and Big Bang predictions were in remarkable agreement, as 
shown in Figure 16.5, for a density of about 3 " 10$31 g/cm3. We call this the 
ordinary matter density of the universe, which is due primarily to baryons. We will 
see in Section 16.5 that present evidence indicates that much of the matter in 
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Figure 16.4 Calculated black-
body radiation distribution is 
shown as a function of frequency; 
the datum point that Penzias and 
Wilson measured is noted. The 
fi rst measurement of the cosmic 
microwave background was prob-
ably made by Andrew McKellar in 
1940 who used the excitation of 
CN doublet lines from interstellar 
space to determine that the effec-
tive temperature of space was 
about 2.3 K. It was incorrectly 
thought at the time that the radi-
ation was due to collisions of elec-
trons with CN.

Figure 16.5 The fractional mass 
abundances of several light elements are 
displayed against possible current baryon 
mass densities. The boxes represent 
experimental observations, and the solid 
curves are calculations of the standard 
model of the Big Bang. The best 
agreement between observation and 
calculation occurs for a density of 3 " 
10$31 g/cm3 (the thin solid vertical line). 
These data strongly supported the standard 
Big Bang model, but did not agree with the 
critical density, !9 " 10$30 g/cm3 (see 
Example 16.8). From R. A. Malaney and 
W. A. Fowler, American Scientist 76, 472 (1988) 
and D. N. Schramm and M.S. Turner, Reviews of 
Modern Physics 70, 303 (1998).
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   16.2 The Big Bang 583

the universe has not been observed. One variation of the Big Bang model that 
we will discuss in Section 16.5 proposes an inflationary universe, and that model 
suggests a critical density of about 9 " 10$30 g/cm3.

Approximately 25% of the known (or ordinary) mass of the universe is com-
posed of 4He, the remainder being almost all free protons. The synthesis of 4He 
depended critically on the ratio of neutrons to protons and the density of matter 
during early stages of the universe.

If the current mass of the universe consists of 75% protons 
and 25% 4He, what is the current ratio of protons to 
neutrons?

Strategy We count the number of protons and neutrons 
in 4He and add those protons to those of single protons, 
from which we can find the ratio.

Solution The mass of a proton is about 1 u, and the mass of 
4He is about 4 u. If the ratio of mass of free protons to 4He is 
3:1 (75% protons, 25% 4He), there must be 12 free protons 

 EXAMPLE 16.2

for every 4He. Therefore out of a total of 16 nucleons (12 free 
protons and 4 nucleons in 4He), only 2 are neutrons, and the 
remaining 14 are protons (two are in 4He). The ratio of pro-
tons to neutrons is about 7. This is in reasonable agreement 
with the fraction calculated from temperature considerations 
made for the time when protons and neutrons formed deu-
terons. When the temperature dropped below 109 K, photons 
no longer had enough energy to dissociate the deuteron (2.2-
MeV binding energy). After that time, free neutrons decayed 
(they are unstable with a half-life of 10.4 minutes), and deu-
terons combined to form helium.

Olbers’ Paradox
Olbers’ paradox is hundreds of years old. The paradox is that if the universe is 
infi nitely old with an infi nite number of stars, then the night sky should be bright. 
Because the night sky is dark, the universe must be fi nite. Kepler discussed the 
problem as early as 1610, but the paradox is named after the German astronomer 
Heinrich Olbers, who discussed it in 1823. The suggestion is that we live inside a 
spherical shell of the observable universe that has a radius equal to the lifetime of 
the universe, currently believed to be 13.7 billion (light)years. Olbers’ paradox 
does not prove the Big Bang, but it is consistent with it. We cannot see objects 
further than 14 billion light years away from us because there is not time for the 
light to reach us. Further, light from large distances away is redshifted well out of 
the visible part of the spectrum, which is also consistent with the Big Bang model.

16.2  The Big Bang
The Big Bang model rests on two theoretical foundations:

1.  The general theory of relativity, which we discussed in Chapter 15.
2.  The cosmological principle, which assumes the universe looks roughly the 

same everywhere and in every direction. The universe is both isotropic 
and homogeneous.

The Russian mathematician Alexander Friedmann used these two foundations 
in 1922 to determine the evolution of the universe represented by his Friedmann 
equations. The solutions to his equations suggest that the universe originated in 
a “Big Bang” explosion of a very hot, dense state and has been expanding in size 
ever since.

Cosmological principle
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584 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

Georges Lemaître independently arrived at results similar to Friedmann’s in 
1927. Then in 1935, A. G. Walker and H. P. Robertson independently proved 
that the Robertson-Walker metric* is the simplest spacetime geometry consis-
tent with an isotropic, homogeneous universe. A single parameter a that changes 
with time according to the Friedmann equation [see Equation (16.3) below] 
describes the time evolution of spacetime. These universes go by various names 
including Friedmann, Lemaître, Robertson, and Walker (for example, FRW or 
FLRW universes). The idea is consistent with the model shown in Figure 16.3 of 
the expanding balloon dotted with galaxies.

One of the Friedmann cosmological equations can be written

 a 1
a

 
da
dt
b 2

!
8pGrm

3
$

kc 
2

a 
2 #

¶c 
2

3
 (16.3)

where G is the universal gravitational constant, a is the scale parameter intro-
duced in Equation (16.2), rm is the average mass density of the universe, k is the 
curvature parameter of the universe, and % is the cosmological constant, which 
has been added to the original Friedmann equation. The constant % (lambda) 
was introduced by Einstein to form a static universe and a homogeneous and 
isotropic universe, because astronomers assured him that the universe was not in 
motion. The cosmological constant term accounts for the energy of perfect 
vacuum in order to have the homogeneous and isotropic universe. After Hubble 
presented his evidence for the universe’s expansion, Einstein referred to the 
cosmological constant as his biggest blunder. Until a few years ago, cos mol ogists 
normally set % ! 0, but now the cosmological constant is believed to have a posi-
tive value and is associated with the energy density of the universe.

We rewrite Equation (16.3) using the Hubble parameter H of Equation 
(16.2).

 H  
2 !

8pGrm

3
$

kc 
2

a 
2 #

¶c 
2

3
 (16.4)

This is sometimes called the Friedmann equation and is extremely important in 
cosmology. It may allow us to determine both the age and size of the universe if 
we can ascertain the unknown parameters in the equation. We divide both sides 
of the equation by H 2 to have

 1 !
8pGrm

3H  
2 $

kc 
2

a 
2H  

2 #
¶c 

2

3H  
2 (16.5)

The critical density of the universe is that which does not allow the universe 
to expand or contract. That is, it produces a fl at universe, which now seems to 
be the case. We can fi nd the critical density by setting the radius of curvature 
parameter k ! 0 and by assuming % ! 0 in Equation (16.5). We then have

 rc !
3H 

2

8pG
 (16.6)

The density parameter & is defi ned as the ratio of the actual density of the uni-
verse to the critical density.

 & !
r

rc
!

8pGr
3H 

2  (16.7)

Alexander Friedmann (1888–
 1925) was born in St. Peters-
burg, Russia, where he spent 
most of his life. A gifted mathe-
matician, Friedmann was edu-
cated at the University of St. Pe-
tersburg. He spent time doing 
meteorology, and during World 
War I he flew airplanes on bomb-
ing raids. He became an expert 
on aeronautics before returning 
to St. Petersburg in 1920, where 
he became a professor of physics 
and mathematics at the Polytech-
nic Institute. He became inter-
ested in general relativity and 
corresponded with  Einstein. In 
1925 he made a record-breaking 
balloon flight in which he per-
formed meteorological and medi-
cal observations. The world lost a 
great intellect when he died of ty-
phoid at age 37.

*A metric is a mathematical structure that provides information in spacetime about lengths and 
times. It is formally a symmetric nondegenerate tensor.
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The value of the density parameter today is indicated by &0. The observable 
density of the universe today is considerably less than the critical density. Besides 
the baryons, there must be unobserved contributions to the density due to dark 
matter and dark energy, which have not yet been observed. The density param-
eter is believed to be close to 1 to account for observed data as discussed later in 
Section 16.6. All three terms in Equation (16.5) are dimensionless as is the den-
sity parameter &. We will see that it is convenient to rewrite the Friedmann 
Equation (16.5) as 1 ! & ! &m # &k # &%. The fi rst term is the mass density &m 
and includes baryons and dark matter. The second term is due to curvature &k, 
and the third term represents the vacuum energy density &%.

  &m !
8pGrm

3H  
2  Mass density (16.8a)

 &k ! $ 

kc 
2

a 
2H  

2    Curvature (16.8b)

  &¶ !
¶c 

2

3H  
2 Vacuum energy density (16.8c)

We will return to these three terms in Sections 16.6 and 16.7 after we present evi-
dence that indicates the curvature term is zero. The evolution of the universe is 
then determined by &m and &%, a remarkable situation.

Since the 1960s the Big Bang has generally been accepted as the event that 
began our universe. We can use our knowledge of nuclear and elementary 
particle physics (Chapters 12– 14) and general relativity (Chapter 15) to under-
stand the formation of our universe since the Big Bang. In this section we define 
the time t ! 0 as the beginning of the universe, or the Big Bang, and describe 
the major steps in the intervening 13.7 billion years until today. The temperature 
of the universe is shown as a function of time in Figure 16.6 (page 586).

t # 0 S 10"43 s We have no theories that can tell us what happened in this era, 
known as the Planck epoch, because the known laws of physics do not apply. In the 
beginning, the universe most likely had infinite mass density and zero spacetime 
curvature. This condition is known as a cosmological singularity. The size of the 
visible universe by the time 10$43 s was probably less than 10$52 m. The temperature 
of matter was probably greater than 1030 K. The four forces of strong, 
electromagnetic, weak, and gravity were probably all unified into one force, and 
our present theories of gravity and quantum physics would not apply. Only a 
theory of gravita tion including quantum physics, or quantum gravity, has any hope 
of explaining what happened. There are no viable candidates for this theory at the 
present time, but the applicable theory has been dubbed the Theory of Everything.

t # 10"43 s S 10"35 s As strange as it seems, we believe that we have some 
understanding of what happened in this era. By 10$35 s the universe had expanded 
to a size of something like 10$30 m, and the temperature was reduced, maybe to 
1028 K. Gravity was established as the first separate force. This is known as the Grand 
unifi cation epoch, and the grand unifi cation theories (GUTs, which include electroweak 
and strong forces) try to explain this era, but no successful theory yet exists.

t # 10"35 s S 10"13 s The strong force has broken off and become a separate 
force before this Electroweak era takes place. The fundamental particles (quarks 
and leptons) had formed as well as their antiparticles. The small universe can be 
described as a hot, quark-electron soup. The universe continued to cool, 
perhaps to 1016 K by 10$13 s. No accelerator today has enough particle energy to 

The unknown

Gravity separates

Quark-electron soup
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586 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

explore what happened at these high temperatures. At present only some cosmic 
rays have comparable energies. The size of the universe varied over several 
orders of magnitude during this period and passed through a size of 10 cm.

t # 10"13 s S 10"3 s During this Quark era the quarks bound together to form 
neutrons and protons. Only the two lightest quarks, the up and down, were very 
effective in the thermodynamics of the universe, because the more massive 
quarks had such low velocities at this time that they could not transport much 
energy. There were more protons than neutrons, because protons are slightly 
less massive. At energies above 100 GeV (corresponding to temperatures of 
about 1015 K) the electromagnetic and weak interactions were unified into the 
electroweak inter action. However, below 100 GeV, the W' and Z bosons behave 
like massive particles and the photon is massless, so the electromagnetic and 
weak inter actions had broken their symmetry and acted separately. We say that 
“symmetry is broken” below 100 GeV. At the end of this period the temperature 
had dropped to about 1011 K. The four forces of today had become distinct. By 
the end of this period the universe mostly consisted of a soup of photons, 
electrons, neutrinos, protons, and neutrons as well as various antiparticles (for 
example, positrons and antiprotons). The size of the universe was about 1000 m.

t # 10"3 s S 3 min By the end of this period the universe had cooled enough 
(to 109 K) that deuterons did not quickly fly apart when formed, because the 
cooler photons did not have enough energy to dissociate the deuterons. This was 
the beginning of nucleosynthesis—the formation of nuclei. The universe had 
expanded to about 1010 m.

Neutrons and 
protons form

Electromagnetic and 
weak forces separate

Nucleosynthesis begins
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Figure 16.6 The temperature 
of the universe is displayed as a 
function of time since the Big 
Bang. Note that both scales are 
logarithmic. The comments are 
placed vertically near the times at 
which the phenomena occurred, 
except for the Theory of Every-
thing, which might be applicable 
for the time (10$43 s.
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t # 3 min S 300,000 y Helium and other light atomic nuclei formed by nucleo-
synthesis (for example, the proton-proton cycle). Neutron decay occurred, so there 
were many more protons than neutrons. The universe continued to cool, and the 
temperature was as low as 104 K at the end of this era. The universe consisted 
primarily of photons, protons, helium nuclei, and electrons. Atoms were not able 
to form because the intense electromagnetic radiation ionized them almost as soon 
as they were formed. Photons interacted freely with charged particles through the 
electromagnetic interaction and were absorbed, emitted, and scattered by matter. 
The size of the universe was about 1021 m, and it continued to expand.

t # 300,000 y S Present During this period the universe had finally cooled 
enough that electromagnetic radiation (photons) decoupled from matter. Until 
about 300,000– 700,000 years, the universe was “radiation dominated,” meaning 
that most of the energy was in the form of photons, which were continually being 
absorbed and emitted by ions. At about 3000 K the temperature was low enough 
that protons could combine with electrons to form neutral hydrogen atoms. At 
this point the scattering of photons from neutral hydrogen (as opposed to free 
protons and electrons) dropped dramatically, and electromagnetic radiation was 
free to pass throughout the universe. Because photons are now free to pass 
throughout the universe, a blackbody radiation of temperature 3000 K should 
persist forever. Remember from Section 16.1 that this radiation characteristic of 
3000 K is redshifted with respect to us, and we consider the vast majority of 
photons in the universe today are due to the 3 K background. This is the cosmic 
microwave background radiation discussed in the previous section, and it can be 
detected on our television sets. It is part of the snowy picture we obtain with an 
antenna when no strong channel is received. Atoms were able to form, and 
matter began to clump together to form molecules, gas clouds, stars, and 
eventually galaxies. The rest is history! From this time on, the universe evolved 
into the form we recognize today. The universe is now matter dominated with 
more energy in the form of matter than radiation.

Light nuclei form

Matter-dominated 
universe

Nucleosynthesis began around the time 10$3 s, when pro-
tons and neutrons could finally remain together in the 
deuteron without flying apart due to the interaction of ra-
diation. Calculate the ratio of protons to neutrons when the 
temperature of the universe was about 1010 K.

Strategy The ratio of protons to neutrons is purely a sta-
tistical distribution based on the available energy and the 
masses of the proton and neutron. The ratio is determined 
by the Maxwell-Boltzmann distribution from thermodynam-
ics and the difference in masses. Because the proton has 
lower mass, we expect more protons to exist.

Solution Let )m ! mn $ mp ! 939.566 MeV/c 2 $ 
938.272 MeV/c 2 ! 1.294 MeV/c 2. The ratio of protons to 
neutrons is calculated to be

 EXAMPLE 16.3

 
Number of protons

Number of neutrons
!

e$m pc 
2

 /kT

e$m nc 
2

 /kT

  ! e 
¢m c 

2/kT ! exp a ¢m c2

kT
b

  ! exp° 1.294 " 106 eV18.6 " 10$5 eV/K 2 11010 K 2 ¢
 ! 4.5

As the temperature continued to decrease, the ratio of 
protons to neutrons continued to increase mostly due to 
neutron decay and somewhat to the temperature factor T in 
the exponential. However, the ratio of protons to neutrons 
bound in nuclei eventually stabilized due to the nucleosyn-
thesis of helium.

(16.9)
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16.3  Stellar Evolution
Some 400,000 years after the Big Bang, matter in the form of electrons, protons, 
and 4He drifted throughout the universe much like gas particles in a large room. 
Eventually, as the temperature continued to decrease, gravitational forces man-
aged to bring some of the matter together into massive gaseous clouds, which 
formed the basis for stars. As the protons were attracted together by their gravi-
tational interaction, their kinetic energy rose. This process continued as the in-
terior temperature of these infant stars kept increasing. The interior of a gaseous 
cloud had a higher density and temperature than the outside. The cloud contin-
ued to contract until finally the temperature reached about 107 K, and the nu-
clear fusion process began. Nuclear fusion is a characteristic of a star. It may have 
taken a million or more years for the contraction of the cloud to be able to pro-
duce fusion for the star to be born, although some recent results indicate it 
could happen in as little as 200,000 years (see Section 16.6). The schematic for-
mation of a star is shown in Figure 16.7.

We previously discussed (Section 13.6) the nuclear fusion process as the 
energy source of stars. The proton-proton chain releases energy, which is ob-
served as radiation. The eventual result of this fusion process is 4He, which col-
lects at the center of the star. Other processes form 12C and heavier masses if the 
temperature in the star is high enough; this occurs later in a star’s life.

Of course, we know most about our own star, the sun. We can measure 
the surface temperature of stars by measuring the color of the radiated light, but 
it is difficult to know the interior temperature. We believe the surface tempera-
ture of the sun to be about 5800 K and the core temperature to be as high as 
14 " 106 K. A star the size of our sun may burn for 1010 y, but a larger star will 
use up its fusion fuel much faster. The light presently received by Earth was most 
likely produced in the interior of the sun more than 105 years ago and under-
went many scatterings until it was emitted from the surface of the sun.

Figure 16.7 (a) Stars form when interstellar gas and clouds condense by gravitational attraction. 
(b) As the matter contracts, a core forms that heats up and radiates energy. (c) Eventually the 
outer region becomes so dense that the radiation from the hot inner core can no longer escape. 
The collapse slows, but the matter continues to heat, and eventually a protostar of high density and 
temperature forms. (d) For a star of about 1 solar mass (the mass of our sun), the contraction 
eventually heats up enough to sustain nuclear fusion. The radiation pressure produced by nuclear 
fusion balances the gravitational contraction, and the star stabilizes into a main sequence star. The 
star will burn for 10 billion years, converting its hydrogen into helium.

(a) (b) (c) (d)
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The Ultimate Fate of Stars
The final stages of stellar evolution begin when the hydrogen fuel in the core is 
exhausted. At this point the gravitational attraction continues; the density and 
temperature increase. The temperature becomes hot enough that the helium 
nuclei begin to fuse. Heavier elements are subsequently created in nuclear fu-
sion processes that are well understood. For more massive stars, the fusion pro-
cess continues until nuclei near the iron region are produced, where elements 
have the highest binding energy per nucleon (see Chapter 12). The nuclear fu-
sion process can no longer continue, and the reactions stop.

The star’s ultimate fate depends on its mass. For stars somewhat more mas-
sive than the sun, the gravitational attraction of the mass continues until the 
density of the star is incredibly high. Let us look at this process in some detail. 
Let there be N nucleons, each of mass m, in the star. The gravitational self-
potential energy of a uniform sphere of mass Nm and radius R is (see Problem 28)

 P.E. ! Ugrav ! $ 

3
5

 
G 1Nm 2 2

R
 (16.10)

Estimate the mean temperature of the sun by assuming its 
protons behave as a gas.

Strategy As gas clouds collected together through the 
gravitational interaction, the decrease in the gravitational 
potential energy was accompanied by an increase in the ki-
netic energy of the particles. We can estimate the mean 
temperature of the sun by setting the change in the kinetic 
energy equal to the negative of the change in potential en-
ergy, )(K.E.) ! $)(P.E.). In other words, the total energy, 
K.E. # P.E., is constant. We use the kinetic theory of gases 
to relate the mean velocity to temperature.

Solution We assume the sun is a uniform sphere of mass M 
and radius R. Its self-potential energy can be calculated as 
(see Problem 28)

 P.E. ! $ 

3
5

 
GM  

2

R

  ! $ 

3
5

 
16.67 " 10$11 N # m2

 /kg 
2 2 11.99 " 1030 kg 22

6.96 " 108 m

   ! $2.28 " 1041 J

The kinetic energy of the particles within the sun is then 
2.28 " 1041 J. If we assume the sun is made entirely of pro-
tons, the number of protons in the sun is N ! M/m p, where 
M is the mass of the sun. We write the kinetic energy of the 
sun as N protons each having speed v.

 EXAMPLE 16.4

 
1
2

 Nmpv2 !
1
2

 
M
mp

 mpv2 ! 2.28 " 1041 J

From this relation we can determine the proton velocity.

 v2 !
212.28 " 1041 J 2

M
!

212.28 " 1041 J 2
1.99 " 1030 kg

  ! 2.3 " 1011 m2
 /s2

  v ! 4.8 " 105 m/s

Using the kinetic theory of gases relation for the rms speed 
of a gas particle at temperature T, we can determine the 
sun’s mean temperature from Equation (9.20).

 v ! B3kT
m

 (9.20)

We determine T to be

 T !
m v 

2

3k

For a proton, we determine the temperature to be

 T !
11.67 " 10$27 kg 2 12.3 " 1011 m2

 /s2 2
3 11.38 " 10$23 J/K 2 ! 9 " 106 K

This is likely to be lower than the actual mean temperature 
of the sun due to the energy input from nuclear fusion.
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590 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

where we have used U for potential energy rather than V to avoid confusion with 
the volume V. We determine the gravitational pressure by determining the force 
per unit area.

 Pgrav !
F
A

! $ 

1
4pR 

2 
d Ugrav

d R
!

3G
5

 
1Nm 2 2
4pR  

4  (16.11)

We write the gravitational pressure in terms of the volume by using V ! 43 pR 3 
and obtain

 Pgrav ! 0.32G  
1Nm 2 2
V  

4 /3  (16.12)

Matter is kept from total collapse by the outward electron pressure. This oc-
curs because the Pauli exclusion principle effectively keeps two electrons from 
occupying the same state. However, for a sufficiently massive star, gravity will 
eventually force the electrons to interact with the protons through the reaction

 e$ # p S n # ne (16.13)

The result, called a neutron star, is composed mostly of neutrons.
However, because neutrons also obey the exclusion principle, an outward 

pressure similar to that of the electrons will also result from neutrons. Using the 
techniques developed in Chapter 9, the pressure of an electron gas is shown to be

 Pe !
2 f p2

3
 

U2

2me
 aNe

V
b 5 /3

where f is the fraction of E F that corresponds to average energy. For a Fermi gas, 
the average energy is about 35 E F (see Chapter 9), so we can take f  " 3/5. We can 
use the same relation for neutrons by replacing Ne by N and me by m. The neutron 
pressure becomes

 Pn !
3.9U21N /V 25/3

2m
 (16.14)

In equilibrium, the outward pressure of the neutrons due to the exclusion 
principle will balance the gravitational pressure. We set Equations (16.12) and 
(16.14) equal.

 0.3G  
1Nm 2 2
V  

4 /3 !
3.9U21N /V 25/3

2m
 (16.15)

We solve this equation for the cube root of the volume (see Problem 10).

 V  
1/3 !

6.5U2

N1/3m3G
 (16.16)

Note that the more massive the neutron star, the smaller its size. We use this result 
in the following example to fi nd the size of neutron stars.

Neutron star

Determine the radius of a neutron star with a mass of 2 solar 
masses.

 EXAMPLE 16.5

Strategy We use Equation (16.16) to determine the vol-
ume, and from that we can determine the radius. One solar 
mass ! 1.99 " 1030 kg.
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Special Topic

Planck’s Time, Length, 
and Mass

W e have recognized several fundamental con-
stants in our study of physics. They include the 

gravitational constant G, Planck’s constant h, and the 
speed of light c. The gravitational force depends on 
G, and several properties of a particle depend on h 
and c. These include the energy, E ! mc2, the wave-
length as a function of a particle’s momentum, l ! 
h/p, the Compton wavelength of a particle, lC ! 
h/mc, and the energy of a photon, E ! hf.

It is interesting to use dimensional analysis to deter-
mine some characteristic values of time, length, and 
mass using the fundamental constants G, c, and h. 
Of course, the numerical values depend on the system 
of units used, in our case SI, but what physical sig nifi-
cance might these characteristic values have? The values 
of the fundamental constants and their dimensions in 
terms of length (L), time (T ), and mass (M ) are

Gravitational constant G ! 6.6726 " 10$11N # m2/kg2

Dimensions M $1L3T $2

Speed of light c ! 2.9979 " 108 m/s
Dimensions LT $1

Planck’s constant h ! 6.6261 " 10$34 J # s
Dimensions ML2T $1

If we use dimensional analysis, we find that we ob-
tain mass by using the combination of 1hc /G . We call 
this Planck’s mass mP and determine its value to be

 mP ! Bhc
G

! 5.46 " 10$8 kg

The physical significance of Planck’s mass is that gen-
eral relativity does not allow a black hole to be created 
from a mass smaller than Planck’s mass.

We determine a characteristic length, called 
Planck’s length lP, similarly by using dimensional 
analy sis to determine

 lP ! BGh
c 

3 ! 4.05 " 10$35 m

The time that it takes for light to travel across Planck’s 
length is called Planck’s time, tP, but it could also be 
determined from dimensional analysis. Its value is 
given by

 tP !
lP

c ! BGh
c5 ! 1.35 " 10$43 s

In particular, physicists do not understand what hap-
pened before Planck’s time in the creation of the 
universe. The laws of physics as we know them now are 
not valid before Planck’s time of 10$43 s.

Neutron stars have densities as high as nuclear densities. They were first pre-
dicted in the 1930s but were not clearly observed until 1967, when a pulsar, a 
rapidly rotating neutron star (see Figure 16.8, page 592), was discovered. If the 

Solution First, we find the number of neutrons N.

 N !
2M sun

mneutron
!

211.99 " 1030 kg 2
1.675 " 10$27 kg

! 2.4 " 1057 neutrons

We now determine the cube root of the volume to be

V 1/3

! 
6.511.06 " 10$34 J # s 2212.4 " 1057 21/311.675 " 10$27 kg 2316.67 " 10$11 J # m/kg 

2 2
! 1.7 " 104 m

The radius R is calculated to be, from V ! 4
3 pR3,

 R ! a 3
4p
b 1/3

V 
1/3 ! a 3

4p
b 1/311.7 " 104 m 2 ! 11 km

The radius of a neutron star twice as massive as our sun is 
only 11 km! It is interesting to compare the density of a 
neutron star with that of a typical nucleus and with a nu-
cleon (see Problem 11).
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592 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

collapsing star has a mass greater than 3 solar masses, it can collapse through the 
neutron star stage and form a black hole. These fascinating objects were discussed 
in Chapter 15.

If the mass of the star is less than about 1.4 solar masses (the Chandrasekhar 
limit), the star can support itself against gravitational collapse, because the free 
electrons exert a considerable outward pressure. Such stars are called white dwarfs, 
and their typical size, after they completely run out of fuel, is about the size of Earth. 
This is the future of our sun.

In some ways, it is quite amazing that quantum physics, through the Pauli 
exclusion principle, plays such a major role in stellar evolution. Until now, we 
have tended to think of quantum physics as playing a role only inside the tiny 
confines of the atom, yet now we are talking about objects as massive as our sun!

16.4  Astronomical Objects
Collections of stars are called galaxies; the gravitational attraction between stars 
keeps a galaxy together. Our own galaxy is the Milky Way, and it is believed to 
be composed of 200 billion stars. The number of galaxies is extremely large, at 

Our sun will become 
a white dwarf

Galaxies

Figure 16.8 (a) A pulsar is a rapidly rotating neutron star. Large magnetic fields most likely ac-
celerate charged particles near the pole regions, producing copious amounts of electromagnetic 
radiation along the magnetic polar regions as shown in the figure. As the star rotates in space, this 
highly directional radiation appears as a pulsed radiation source to an observer located along one 
of the polar directions. Pulsars have periods ranging mostly from 1/30 second to 3 minutes. 
(b) Photo of the Crab Nebula, which contains a pulsar whose supernova explosion in 1054 could 
be observed in daylight for three weeks.
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   16.4 Astronomical Objects 593

least 100 billion (1011). In the early part of the twentieth century there was con-
siderable controversy about whether the Milky Way constituted the entire uni-
verse. Nebula is the name astronomers gave to objects that had a cloudy unre-
solved appearance. In 1924 Hubble showed that the Andromeda Nebula is quite 
far away from us (!106 lightyears) and is in fact a separate galaxy. It is rightfully 
called the Andromeda Galaxy. Although other, smaller galaxies are closer to our 
Milky Way, the Andromeda Galaxy is the largest nearby one, and on a clear night 
it can be observed with the naked eye.

Astronomers are finding galaxies farther and farther away. Several galaxies 
with redshifts as large as 10 or more have been observed. We are seeing light 
from these galaxies that was produced when the galaxies were only 500 million 
years old, practically primeval galaxies in their infancy. Such galaxies are moving 
away from us at great speed, and their light has traveled more than 13 billion 
years to reach us. The formation of galaxies in the early universe is of intense 
interest today to astrophysicists and cosmologists.

Active Galactic Nuclei and Quasars
In the early 1960s astronomers discovered objects with tremendously strong radio 
signals that had optical spectra that could not be understood. In 1963 Maarten 
Schmidt showed that these objects had to be at least 3 billion lightyears away from 
Earth because of their large redshifts. He was able to decipher the shifted spectral 
lines of hydrogen. These objects were dubbed quasars, short for quasi-stars or quasi-
stellar objects, and can outshine galaxies having hundreds of billions of stars.

Thousands of quasars have now been discovered, and today we know that 
they emit light over the observable electromagnetic spectrum, from gamma rays 
to radio waves, but with considerable optical and ultraviolet components. Only 
about 10% or fewer of the quasars emit powerful radio signals. Scientists sur-
mised that only a supermassive black hole residing in the center of a host galaxy 
could produce such an intense energy. Quasars are among the most distant ob-
jects in the universe and therefore are among the earliest objects formed in the 
universe, some more than 12 billion years ago. Part of the observational difficulty 
is that the enormous distance of the galaxy means that the host galaxy is faint 
against the much brighter light of the quasar. The fact that quasars can vary in 
brightness in just a few hours or days suggests their size is only a few light hours 
or light days across, not much larger than our solar system.

Long ago when young galaxies were forming, the stars in their cores were 
closely packed. Collisions and mergers of these stars gave rise to supermassive black 
holes. These black holes required huge amounts of mass fuel, which was provided 
by gas from the galaxy’s interstellar medium, from a companion galaxy, or from a 
star that came too close. Because quasars are observed at great distances, they were 
formed long ago. We do not observe quasars close to our galaxy, so the conditions 
for the formation of quasars are not favorable today. Therefore, quasars must evolve 
into objects that are common today, most likely normal, quiescent galaxies. If this 
is the case, then some normal galaxies should have massive black holes in their 
centers that are no longer quasars, because they are starved for fuel. Of course we 
don’t know what fraction of normal galaxies passed through the quasar phase.

Unraveling the mystery of quasars was considered so important in the 1970s 
that it was a major justification for the Hubble Space Telescope (HST). Spec-
tacular images from the HST have indeed shown that quasars reside in galaxies. 
However, the images have revealed other surprising results. The variety of these 
galaxies is extensive; some are normal, while others are merging and colliding 
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594 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

with surrounding galaxies, sucking their mass from them. We now believe that 
the supermassive black holes at the center of quasars turn themselves on and off 
as they consume mass distributions from their galaxies or when galaxies collide. 
Although quasars remain mysterious, they provide us with a window to study the 
conditions that prevailed early in the history of the universe.

An amazing array of exotic extragalactic objects is lumped into the category 
called active galactic nuclei (AGN). These include the extraordinarily luminous 
quasars, Seyfert galaxies, and blazars. We believe their core contains a supermas-
sive black hole surrounded by an accretion disk providing the mass. As matter 
spirals into contact with the black hole, huge amounts of electromagnetic radia-
tion and jets of plasma are spewed out into space, often in directions perpen-
dicular to the accretion disk. We show an artist’s conception of this in Figure 
16.9. When we look directly along the spewing jets, we see remarkable intensi-
ties. Blazars are active galactic nuclei of high energy with a relativistic jet spewing 
energy directly toward Earth. They are associated with strong radio emissions 
and were discovered in 1991 using the Compton Gamma Ray Observatory.

Gamma Ray Astrophysics
Gamma-ray bursts (GRBs) are short flashes of electromagnetic radiation that are 
observed about once a day at unpredictable times from random directions. In the 
late 1960s the United States launched the Vela satellites to detect gamma-ray 
flashes from nuclear detonations for monitoring the Soviet Union’s compliance 
with the Nuclear Test Ban Treaty. In a surprising discovery, Vela did detect gamma 
flashes, but they were from outer space, not from Earth. After declassification of 
these data in 1973, the scientific community set out to discover the source of these 
gamma-ray bursts, which last from a few milliseconds to several minutes. Gamma 
rays are mostly absorbed in Earth’s atmosphere, so most of what has been learned 
has been from space-based observatories. As recently as the early 1990s, astrono-
mers were unsure as to where GRBs originated. Did they come from our solar 
system, our Milky Way Galaxy, or from far away in the cosmos? We learned from a 
combination of satellite and ground-based observations, together with theoretical 
calculations, that GRBs come from supernovae in distant galaxies.

Gamma-ray bursts

Figure 16.9 An artist’s render-
ing of an active galactic nuclei. 
The core is particularly bright 
and is believed to have a super-
massive black hole in its center. 
Gas from the galaxy’s interstellar 
medium, from a star that strays 
too close, or from another galaxy 
falls into the massive black hole. 
An accretion disk forms and just 
before the rotating mass falls into 
the black hole, huge amounts of 
energy are spewed out in jets 
along the rotation axis. The en-
ergy contains radiation across the 
electromagnetic spectrum includ-
ing the infrared, radio, ultraviolet, 
and x-ray wavelengths.
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One interesting feature of GRBs is the “afterglow” of lower energy photons, 
including x rays, light and radio waves, that last for days or even weeks. The radia-
tion from a GRB lies along the blast direction, which can only be detected if the 
blast direction is pointing at Earth. The observation of the afterglow was an impor-
tant part of understanding the GRB phenomena. Although the Compton Gamma 
Ray Observatory was not equipped to detect the afterglow, the Italian-Dutch Bep-
poSAT spacecraft had both x-ray and gamma-ray detection capability and was able 
to discover and observe the afterglows during its 1996– 2002 research period.

Astronomers used information from the BeppoSAT to alert other as tron o mers 
where to direct their optical telescopes in hopes of finding spectral data. Using the 
powerful Keck and Hubble telescopes, astronomers were able in 1997 to measure 
redshifts of the optical spectra to prove the bursts came from far away. The direc-
tional measurements also proved the GRBs came from random directions.

Powerful gamma-ray bursts (GRB) have been observed with luminosity be-
lieved to be a factor 1017 brighter than our sun. Most bursts are now believed to 
be radiation emanating from a narrow beam (or jet) of radiation emitted from 
a supernova. The supernova explosion occurs at the center of a massive star. A 
blast wave or fi reball moving close to the speed of light collides with stellar mate-
rial still inside the star and produces the gamma rays, which burst out of the star 
just ahead of the blast wave. The afterglow is due to the collision of the blast wave 
with gas and dust around the star.

Questions remain about GRBs. There are actually long- and short-duration 
GRBs. We have described the long-lived ones lasting up to several minutes. Short-
duration GRBS last no longer than 2 s and are probably created by a different pro-
cess, perhaps due to merging neutron stars. Recent space-based telescopes include 
the High Energy Transient Explorer 2 (HETE-2), INTEGRAL, the Swift Gamma-
Ray Burst Mission, and, more recently, the Fermi Gamma-ray Space Telescope. One 
of the missions of these telescopes was to locate gamma-ray bursts more precisely in 
real time and detect higher energy gammas. There are also ground-based telescopes 
detecting gamma rays; these include the High Energy Stereoscopic System H.E.S.S. 
telescopes in Namibia, the Very Energetic Radiation Imaging Telescope Array Sys-
tem VERITAS in Arizona, and the MAGIC telescopes on the Canary Islands.

Novae and Supernovae
Other interesting astronomical objects are novae and supernovae. Novae are 
simply stars that suddenly brighten, become visible (thus the word nova for 
“new”), and then fade over some period. There are believed to be two types of 
supernovae, Type I showing no hydrogen spectral lines and Type II that do. This 
is no longer a convenient classification scheme, and Type I has been further 
divided into Ia, Ib, and Ic, according to other criteria. Types Ib, Ic, and II have 
more in common with each other than they do with Type Ia. Type Ia supernovae 
are the brightest and are thought to occur in binary systems where a white dwarf 
acquires material from its companion until the white dwarf can no longer sup-
port itself and collapses. Supernovae are crucial, because they are the primary 
source of heavy elements. Lighter elements such as carbon and oxygen are pro-
duced by nucleosynthesis within stars and are thrown out in the explosion, 
where they can be assimilated by other stellar formations. But elements heavier 
than iron cannot be produced by nuclear fusion inside stars. Cataclysmic explo-
sions in supernovae provide the temperature and pressure to fuse together 
medium-mass elements to produce heavy elements, including uranium. Super-
novae are also crucial as light sources to determine distances in the universe.
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The Chinese may have spotted several supernovae during the past few thou-
sand years. Good evidence exists that the explosion of the Crab supernova (Type 
I) occurred in the year 1054. The Crab exploded only 6000 lightyears from 
Earth, and it must have been an awesome sight. It was as bright as the planet 
Venus and could even be seen in the daytime! Both the Chinese and Japanese, 
and possibly American Indians, observed and noted the occurrence. The Crab 
Nebula, shown in Figure 16.8 (page 592), is now a beautiful cloud of glowing gas 
easily seen with a telescope. Other supernovae were observed by the Danish as-
tronomer Tycho Brahe in 1572 and by Kepler in 1604. Curiously enough, there 
doesn’t seem to have been a supernova visible to the naked eye after 1604 until 
1987. The interest in supernovae increased dramatically with the unexpected 
observance of a supernova in 1987 (called SN 1987A; see Figure 16.10).

Supernova Explosion Astrophysicists now believe they have a good understanding 
of how SN 1987A could have radiated more energy in 10 seconds than 100 of our 
suns could radiate in 10 billion years! We can describe a Type II supernova in 
very broad terms. The details are interesting, and since SN 1987A, much has 
been learned because of the availability of a closely observed and measured 
occurrence. As hydrogen became exhausted by thermonuclear fusion and the 
helium content increased, gravity contracted the star to another phase. The 
helium nuclei began to fuse, and the central core of the star became denser and 
hotter. Eventually the helium, which had produced carbon and oxygen, was 
exhausted. Carbon began to fuse when the core temperature reached 8 " 108 K 
and the nuclei of neon, magnesium, and silicon were produced. Eventually most 
of the nuclei fused to form nuclei near iron.

Before the explosion, the SN 1987A star had a mass of about 18 solar masses. 
At the center was a core of about 1.5 solar masses. The iron nuclei became so hot 
that they ejected helium nuclei. The temperature and density skyrocketed, and 
neutrinos were radiated at an incredible rate. The gravitational force became so 
strong that a neutron star was formed. As the neutrons came closer together, the 
nuclear strong force eventually became effective and caused the neutrons to at-
tract even more closely together. This attraction stopped only when the neutrons 
came so close together that the nuclear force became repulsive to keep the nu-
cleons from overlapping. The strongly repulsive nuclear force caused the mate-

Supernova 1987A

Figure 16.10 Photos after (on 
left) and before (on right) the su-
pernova 1987A explosion taken 
by the Anglo-Australian Tele-
scope in Australia. This was the 
first time that a progenitor star 
was identified before the star ac-
tually exploded. ©
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rial falling inward in the gravitational collapse to come to a screeching halt and 
to rebound. The reaction of the inner core stopping and the outside layers still 
collapsing under gravitation resulted in a shock wave moving outward. However, 
the shock wave was not quite able to blast its way back out through the mass of 
approximately 18 solar masses. The large flux of neutrinos, which normally just 
pass right through matter, was slowed down by the dense shock wave. The energy 
absorbed from the neutrinos was sufficient to give the shock wave the boost it 
needed to continue blasting its way through the outer layers of the star.

Because the explosion requires a high neutrino rate, neutrino production is a 
key indicator of a supernova explosion. These neutrinos were detected in Japan 
and the United States three hours before the first visible light reached Earth. The 
neutrinos are able to pass more quickly through the star than visible light, which 
has a more circuitous path. The weak interaction is weak enough to allow neutri-
nos to escape from the core. The travel time to Earth* and the energy spectrum 
of the neutrinos were consistent with predictions made from gravitational collapse 
and neutron-star formation. Our understanding of stellar evolution took a giant 
step forward, and the field of neutrino astronomy became well established with the 
singular event of supernova 1987A. Important information, including an upper 
mass limit of 16 eV/c 2 for the electron neutrino, was gleaned from the observation 
and associated calculations of SN 1987A. Computer simulations have been quite 
successful in understanding the ultraviolet burst some two hours after the explo-
sion, the increase in luminosity for a week, and then the gradual decrease in 
brightness. The study of SN 1987A gave us con fidence that observations of super-
novae can be used as an indicator of cosmological distances. SN 1987A occurred 
in the Large Magellanic Cloud, one of our closest galaxies, and estimates of the 
distance from this galaxy to Earth based solely on SN 1987A agreed with our best 
previous estimates (160,000 ly) to within 10%. Supernova 1987A has been a veri-
table testing ground for theories and models on supernovae. The ionizing radia-
tion has lit up a complex system of surrounding rings (see Figure 16.11). Astro-
physicists are reconstructing how these rings were formed.

*Note that SN 1987A occurred 160,000 years ago, and the light and neutrinos took this long to reach 
Earth.

Figure 16.11 Supernova 1987A 
is the closest supernova since the 
telescope was invented. Its explo-
sion sent a tremendous amount 
of gas, light, and neutrinos into 
interstellar space. In this Hubble 
Space Telescope image taken in 
1994, large strange rings were dis-
covered whose origins are still 
mysterious. It is thought that the 
rings may have been expelled be-
fore the main explosion.Co

ur
te

sy
 o

f D
r. 

Ch
ris

to
ph

er
 B

ur
ro

w
s, 

ES
A/

ST
Sc

i a
nd

 N
AS

A.

03721_ch16_577-615.indd   59703721_ch16_577-615.indd   597 9/29/11   10:24 AM9/29/11   10:24 AM



598 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

Astrophysicists were able to deduce a limit on the mass of 
electron neutrinos in the 1990s based on the spread of ar-
rival times of neutrinos from supernova 1987A using detec-
tors in both Japan and the United States. Find the differ-
ence in travel times between a neutrino with very low mass 
and a neutrino having a mass of 16 eV/c 2. Assume the en-
ergy of the neutrino is 20 MeV.

Strategy Let t be the travel time for the low-mass neutrino, 
t* be the travel time for the neutrino having mass, and )t be 
the time difference. We use relativistic relations and relate 
the mass-energy E with the speed v, which allows us to cal-
culate )t. The distance of SN 1987A from Earth is d ! 
160,000 ly.

Solution We assume the speed of the neutrino with small 
mass is c. If b is the value of v/c for the neutrino having 
greater mass, the time relations are

 t !
d
c

    t* !
d
bc

 ¢t ! t* $ t !
d
c

 a 1
b

$ 1 b !
d
c

 a 1 $ b

b
b

 EXAMPLE 16.7

From our earlier study of relativity, we have the total energy 
E ! gmc 2, g2 ! 1/(1 $ b 2), and 1 $ b 2 ! 1/g2. The last 
equation can be written

 11 $ b 2 11 # b 2 !
1
g2

or

 11 $ b 2 !
1

1 # b
 

1
g 

2 "
1

2g 
2

because b " 1. The equation for )t becomes, with b " 1,

 ¢t !
d
c
 

1
2g 

2 !
d
2c

 amc 
2

E
b 2

We put in the appropriate numbers to obtain

 ¢t !
1.6 " 105 ly

2c
 a 16 eV

20 MeV
b 2

! 5.1 " 10$8 y ! 1.6 s

This result is consistent with the actual spread in arrival 
times of a few seconds. Some assumptions had to be made 
in the actual calculation. For example, what if the slower 
neutrinos were emitted first and the faster neutrinos 

Figure 16.12 The relationship between redshift ()l/l0) and 
recession velocity (b ! v/c) according to Equation (16.18).

Because galaxies have been observed with redshifts as great 
as 10 and quasars with redshifts more than 6, it is useful to 
have a plot of redshift versus recession velocity. Use Equa-
tion (2.33) for the relativistic Doppler shift to calculate such 
a plot.

Strategy The term redshift used by astronomers and physi-
cists refers to )l/l. We can use Equation (2.33) to find a 
relationship between )l/l and b, where b ! v/c.

Solution Equation (2.33) allows us to write

 
l

l0
!

f0

f
! B1 # b

1 $ b
 (16.17)

We determine )l/l0 from this equation.

 
¢l
l0

!
l $ l0

l0
! B1 # b

1 $ b
$ 1 (16.18)

We show the relationship between the redshift and reces-
sion velocity (b) in Figure 16.12. Note that as the redshift 
increases toward 4, the velocity increases dramatically and 
approaches the speed of light.

 EXAMPLE 16.6
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16.5  Problems with the Big Bang
By the early 1980s the Big Bang model was the preferred theory for the origin of 
the universe. Nevertheless, there were at least three unexplained difficulties that 
the simple Big Bang model was not adequate to explain. They were

1.  Why is the universe flat? Einstein’s theory of relativity states that space 
must bend due to the gravitational attraction. Depending on the amount 
of matter per unit volume in the universe (its mass density), space curves 
in on itself such that parallel lines converge above a certain density called 
the critical density. For a mass density less than the critical density, paral-
lel lines diverge, and the universe expands forever. This is called an open 
universe. For a mass density greater than the critical density, the expansion 
of the universe will eventually be halted and then collapse. This is called 
a closed universe. In the 1980s it appeared that the universe may be just at 
that critical density where we have a flat universe, or very nearly so. Such an 
occurrence would be quite an extraordinary circumstance.

2.  Why does the universe appear to be so homogeneous no matter in what 
direction we look? This is called the horizon problem. If the universe is 
13.7 billion years old, then opposite sides of the universe are 27 billion 
lightyears apart. How can these regions have microwave radiation that is 
so similar? The temperature of the universe reflects the 3 K microwave 
background no matter in what direction we look. How can two regions 
of the universe have temperatures so similar and be 1019 m apart and not 
able to communicate?

3.  Why have we not yet detected magnetic monopoles? The occurrence of 
magnetic monopoles brings symmetry to Maxwell’s equations of electro-
magnetism and also satisfies other physics theories.

The Inflationary Universe
These difficulties with the Big Bang model were relieved considerably in 1981 by 
a suggestion of Alan Guth, who proposed a variation of the standard Big Bang 
model. Guth proposed that at some time between roughly 10$35 s and 10$31 s after 
the Big Bang, the size of the universe suddenly expanded by a factor of 1050. This 
period is called the inflationary epoch and is due to the separation of the nuclear 
and electroweak forces. We have to remember that the size of the universe was 
incredibly small at the time, so the magnitude of such an expansion is remarkable. 
It is as if the electron of a hydrogen atom, which is normally only 10$10 m from a 
proton, suddenly found itself 1024 lightyears away! After the inflationary period, 
the universe resumed its evolution according to the standard Big Bang model.

No matter how hard this may be to believe, inflation does mostly solve the 
three problems just listed. The inflationary theory requires the mass density to be 
very close to the critical density. This solves the flatness problem. Guth argued that 
the universe was so tiny that it had already reached equilibrium before inflation 

Flat universe

Horizon problem

emitted last due to some effect within the supernova? Then 
the neutrinos might tend to arrive bunched together. A 
Monte Carlo simulation considering a wide class of possible 

neutrino emission models was used to assign an upper mass 
limit of 16 eV/c 2 for the electron neutrinos. The electron 
neutrino mass is now believed to be less than 2.2 eV/c2.
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occurred; this explains the homogeneous universe. Subsequent to Guth’s work, 
cosmologists have contributed many suggestions to his inflationary idea. Mag-
netic monopoles would have to occur along the boundaries or walls of different 
domains. These domains might be likened to different universes. We cannot ob-
serve the magnetic monopoles if they exist and if they are at the edge of the uni-
verse. It is a neat, tidy package and much more complicated than we have de-
scribed here. Inflationary theory is crucially connected to elementary particle 
theories. Nevertheless, there are problems with infl ationary theory, and there 
are other alternatives. We briefl y mention them later in Section 16.7.

The Lingering Problems
Despite the significant progress that has been made, there are lingering prob-
lems with our understanding of the universe. One of them, the age of the uni-
verse, is discussed in the next section. We discuss some others here.

Formation of Stars and Galaxies Cosmologists had difficulty explaining how the 
clumping of matter into galaxies, clusters of galaxies, and other strange objects 
such as quasars and emitters of gamma-ray bursts has occurred. This is difficult to 
do in light of the homogeneous universe as expressed by the cosmological 
principle. The primary purpose of the Cosmic Background Explorer satellite 
(COBE) launched in 1989 and the Wilkinson Microwave Anisotropy Probe 
(WMAP) launched in 2001 by NASA was to investigate the cosmic microwave 
background radiation (CMB) believed to exist from the remnants of the Big Bang. 
Today the CMB has cooled to near 3 K, and it permeates the universe. We 
discussed this CMB earlier in Section 16.1, and its existence is strong evidence for 
the Big Bang model.

By studying the minute details of the CMB, physicists learned about the uni-
verse on very large scales, because the radiation has traveled for eons over large 
distances. First, COBE showed that the homogeneity occurs over a much wider 
frequency range (see Figure 16.13) than could have been detected by ground-
based observers. Both spacecraft probes searched for small fluctuations in the 
CMB temperature that would be indicative of the tiny seeds of inhomogeneity 
around which the first stars could have formed. COBE (in 1992) and WMAP 
(2001–2010 with 15 times better sensitivity) observed very tiny differences in the 
temperature of radiation coming from matter after the Big Bang (see Fig ure 
16.14). These tiny ripples in the temperature represent the universe’s condition at 
only 400,000 years after the Big Bang and are believed to account for the forma-
tion of stars and galaxies. Inflationary theory allows small density fluctuations that 

COBE, WMAP

Alan Guth (1947– ) was born in 
New Jersey and educated at the 
Massachusetts Institute of Tech-
nology (Ph.D., 1971). He held 
postdoctoral positions at Prince-
ton, Columbia, and Cornell Uni-
versities in addition to the Stan-
ford Linear Accelerator Center. 
During this period he created in 
1979 the theory of cosmic 
inflation as a modification of the 
Big Bang theory. He returned to 
MIT in 1980 where he is now a 
professor of physics. He au-
thored the popular book The 
Inflationary Universe: The Quest 
for a New Theory of Cosmic Ori-
gins in 1998. 
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Figure 16.13 The spectrum of 
the intensity of the cosmic micro-
wave background as measured 
with the COBE satellite. The er-
ror bars are smaller than the size 
of the points shown, and the solid 
line is the blackbody radiation 
calculation for 2.73 K. The agree-
ment is spectacular. The data are 
plotted as a function of wavenum-
ber (inversely proportional to 
wavelength). Courtesy of Nancy 
Burgess, NASA COBE Science Team.
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can later serve as the seeds for gravity to cause matter to clump together to form 
stars, galaxies, and other structures. WMAP showed that the CMB temperature is 
precisely 2.725 K and is consistent with the inflationary model of the Big Bang.

Dark Matter Another problem concerns the discrepancy between the mass of 
the universe required for the critical density (9 " 10$30 g/cm3) and the apparent 
mass density (3 " 10$31 g/cm3). This is known as the missing mass problem. The 
ratio of the actual mass density of the universe to the critical density is called 
omega (&). Much of the mass of the universe may be in some form, called dark 
matter, which we have not yet observed. We know little about dark matter, but it 
is called “dark” because it does not emit radiation.

Astronomers and astrophysicists have inferred from the motion of stars, gal-
axies, and other astronomical objects that there doesn’t seem to be enough mass 
in the universe for gravity to keep the objects from flying apart. The amount of 
matter in the universe is determined from the radiation that we detect. There-
fore, it seems that much of the universe consists of this dark matter that does not 
emit, scatter, or absorb light. The dark matter is also required to enable gravity 
to amplify the fluctuations of the CMB discussed previously. Scientists thought 
that dark matter might be due to neutrinos, WIMPs (weakly interacting massive 
particles), or primordial black holes. One other possibility for dark matter is 
MACHOS (MAssive Compact Halo Objects), composed of ordinary baryonic 
matter in objects from small stars to super massive black holes. Astronomers and 
physicists have mounted many unsuccessful searches for the missing matter. The 
searches for dark matter continue.

The Accelerating Universe In 1998 two independent teams of astronomers using 
supernovae data were investigating the rate at which the expansion of the 
universe was slowing down when they found a surprising result. Both teams 
decided their data could only be understood if the expansion was speeding up. 
The results imply that some mysterious repulsive force is acting against gravity, 
causing galaxies to move apart at increased speeds. With more data and careful 
checking, the results still stand. The source of this mysterious force has been called 

Missing mass problem

Dark matter

Figure 16.14 In 1995 NASA’s 
COBE satellite detected tempera-
ture fluctuations in the cosmos, 
which was a landmark discovery. 
Based on the success of the COBE 
mission, the Wilkinson Microwave 
Anisotropy Probe (WMAP) was 
proposed in 1995 and launched 
in 2001. This WMAP satellite im-
age was released in 2003 and 
showed a much more detailed im-
age of the tiny fluctuations that 
became the seeds of galaxy 
formation.Ad
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602 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

dark energy, and represents 72% of the mass-energy of the universe according to 
WMAP results. Other results now confirm the cosmic acceleration concept.

This is not the first time dark energy has been proposed. It has the same ef-
fect on the universe as Einstein’s cosmological constant. It is a vacuum energy 
density that produces a negative pressure that drives the expansion of the uni-
verse. It was suggested in the 1960s by particle physicists to understand certain 
phenomena and has occasionally been used by astronomers to explain astro-
nomical phenomena. The accelerating universe is certainly a part of the 
inflationary period, but that was right after the Big Bang.

Theorists have suggested several explanations, and the cosmological con-
stant is at the top of the list. Theorists have also suggested quintessence, a new 
form of energy with negative pressure. The term “quintessence” is derived from 
the Greeks’ mysterious fifth element (after earth, air, fire, and water) that sup-
posedly held the moon, planets, and stars in position. Although the cosmological 
constant is indeed constant, observational evidence doesn’t indicate that dark 
energy has always been constant. Dark energy seems to have become effective 
5– 10 billion years ago, but it had to be created no later than 10$35 s after the Big 
Bang. Quintessence, on the other hand, is a dynamic, time-evolving, spatially 
changing form of energy with negative pressure, its supporters argue. A third 
possibility to explain dark energy is a cosmic field associated with inflation. A 
fourth possibility could be a problem with general relativity itself. At the present 
time, no one knows what dark energy actually is or how it originated.

The Cosmological Constant The cosmological constant can be represented by

 ¶ !
8pG

c4  rV  (16.19)

where rV is the vacuum energy density. A positive or negative cosmological con-
stant has dramatic results for the future of the universe: if it is negative, the ex-
pansion of the universe will slow down, and if positive, the expansion of the 
universe will continue forever.

Dark energy

Quintessence

Determine the critical density of the universe.

Strategy One way to calculate the critical density rc is by 
assuming the mass and radius of the universe are M and R, 
respectively. A galaxy of mass m and velocity v will be able to 
escape the universe with zero velocity if its total energy is 
precisely zero. We therefore determine the critical density 
by finding the condition for zero total energy.

Solution The sum of the kinetic and potential energy of 
the galaxy with respect to the universe is

 K.E. # P.E. !
1
2

 mv2 $ G 
m M

R
! 0 (16.20)

where we consider only non-relativistic speeds for simplicity.

 EXAMPLE 16.8

The mass M of the universe is related to the density rc by 
M ! 4

3 pR 3rc. Equation (16.20) becomes

 
1
2

 mv2 ! G  
m
R

 
4
3

 pR  
3rc

If we use v ! HR for the galaxy velocity, we rearrange the 
previous equation to give

 rc !
3

8p
 
H  

2

G
 (16.21)

This is also the equation obtained from the general relativ-
istic cosmological model of Einstein-de Sitter. If we insert 
the value of G and a value of H ! 22 km/s per million light-
years, then we find rc ! 9 " 10$30 g/cm3. This is the value 
reported in Section 16.1.
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16.6  The Age of the Universe
The age of the universe has been perhaps the most sought after and most con-
troversial value in science for the past few decades. Until the mid-1990s, theory 
was well ahead of experiment, but with the breakthrough results of the Hubble 
Space Telescope, other productive satellite telescopes, and the advances in 
ground-based telescopes together with adaptive optics systems, we have been 
rich with new data. Results since the turn of the twenty-first century have nar-
rowed on a value near 13.7 ' 0.2 billion years for the age of the universe.

This age can be determined by several methods. In the past, cosmological 
models have been preferred, but more recently traditional methods have given 
more precise values that give good agreement. We discuss those results here.

Age of Chemical Elements
We have already discussed in Chapter 12 how radioactive decay can be used to 
determine the age of material. If we assume that the elements were made not 
long after the Big Bang, then we can use the ratio of certain elements like 
87Sr/86Sr, because 87Sr is produced by radioactive decay (from 87Rb), whereas 
86Sr is stable and its amount should remain constant over time. By comparing the 
ratios of 87Sr/86Sr and 87Rb/86Sr, the age of a sample can be determined. Such 
measurements have shown that meteorites hitting Earth are 4.5 billion years old. 
It is not easy to extrapolate these measurements to determine the age of our 
galaxy and the universe, but various techniques result in an age of the universe 
between 10 and 17.5 billion years.

Radioactive Dating of Stars WMAP showed, much to the surprise of cosmol-
ogists, that stars were formed as soon as 200,000 years after the Big Bang. 
Although we don’t have samples of stellar material, we can examine the 
relative intensities of elemental spectral lines from old stars. Several 
measurements have been made since the 1990s. The average of at least four of 
these measurements is near 14 billion years for the age of the universe.

Age of Astronomical Objects
The techniques used by astrophysicists to determine the ages of various stars and 
clusters are remarkable.

Old Stars in Globular Clusters Globular clusters are aggregations containing up 
to millions of stars that are gravitationally bound; however, they are much 
smaller than galaxies. Thousands of stars in each globular cluster are about the 
same age. The H-R diagram, named after Ejnar Hertzsprung and Henry Russell 
who invented it in 1910, compares the temperature and luminosity of stars. 
When stars are burning hydrogen to form helium in their cores, their temperature 
and luminosity fall on a single curve in the H-R diagram. The age of the star is 
inversely proportional to the luminosity, so an upper limit for the age of the 
cluster can be determined from the most luminous star. It is the age of these 
globular clusters that seemed in the mid-1990s to be older than the universe 
itself, according to other determinations. More precise measurements have since 
shown that globular clusters were further away than originally believed. Once 
this correction was made, their ages of 11 to 13 billion years were within other 
estimates of the age of the universe.
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Age of White Dwarf Stars Stars the size of our sun become white dwarfs after 
burning all their fuel. Their mass is about that of our sun, but their size is only 
about that of Earth. Their densities are a million times that of water, but they lack 
enough mass to become a neutron star or black hole. White dwarf stars produce 
residual heat radiation. The oldest ones will be the faintest, because they have 
been cooling the longest. Because they are so faint, they are difficult to see. It is 
easiest to see them in a binary system, and the Hubble Space Telescope observed 
in 1995 more than 75 white dwarfs in the globular cluster M4. Conceptually, the 
determination of the age of a white dwarf is similar to determining how long ago 
a campfire was burning by measuring the temperature of the remaining coals. 
Ancient white dwarf stars were found in 2004 to be 12 to 13 billion years old. 
Other observations indicate these stars were created less than one billion years 
after the Big Bang. These age determinations are consistent with other values for 
the age of the universe.

Cosmological Determinations
The question of the age of the universe is intertwined with its ultimate fate. Cos-
mologists cannot determine the age of the universe without being able to under-
stand how it was formed, especially in the early stages. This is because we must in-
terpret the observed electromagnetic radiation (light, ultraviolet, infrared, radio, 
x ray, and gamma) that comes from billions of years ago. As new data appear that 
are not consistent with current theories, new theories are required. These theories 
also predict the fate of the universe. The cosmic microwave background radiation 
is strong proof of the Big Bang, and inflation theory seems somewhat secure. How-
ever, the simple inflation theory does not explain all the data.

The present value of the Hubble parameter H is called the Hubble constant 
and is denoted by H 0. The Hubble constant H 0 determines an upper limit for 
the age of the universe given by t ! 1/H 0 if the Hubble parameter has always 
been constant at H 0.

Hubble constant

The inverse of the Hubble parameter has the units of time. 
Use the value of the Hubble constant 71 (km/s)/Mpc to 
find the upper limit t for the age of the universe.

Strategy We will need to understand the relationship 
between the various astronomical parameters to do this. We 
begin with the units given by H0

$1 and convert the result to 
years.

 EXAMPLE 16.9

Solution We begin with

    t !
1

H0
!

1

71 
km

s # Mpc

  !
1 s # Mpc

71 km
 

1 y

3.16 " 107 s
 
106 pc
Mpc

 
3.26 ly
1 pc

 
9.46 " 1012 km

ly

    ! 13.7 " 109 y

The upper limit of the age of the universe is 13.7 Gly.

In order to use cosmology to determine the age of the universe we return to 
Equation (16.5).

 1 !
8pGrm

3H 2 $
kc 

2

a 2H 2 #
¶c 

2

3H 2 (16.5)
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The density parameter & can be written in terms of the various density terms 
of Equation (16.8):

 & ! &m # &k # &¶ (16.22)

The &k term depends on the curvature of the universe, which depends on 
the geometry of spacetime. We are familiar with curvature, because we live on 
the surface of a sphere (Earth) and cannot see over the horizon. There are three 
qualitatively different classes of curvature (see Figure 16.15), each dependent on 
the value of the radius of curvature k. The values of &, k, and the state of the 
universe (closed, open, fl at) are given in Figure 16.15. Infl ationary theory indi-
cates the universe should have fl at geometry or zero curvature (k ! 0, Figure 
16.15c).

The geometry of the universe is also dependent on mass density, in particu-
lar, the critical density. For a mass density greater than the critical density, the 
geometry of space is closed. If it is less than the critical density, the geometry is 
open. If the density is close to the critical density, then the flat geometry should 
prevail. The WMAP (Wilkinson Microwave Anisotropy Probe) science team was 
able to determine various cosmological parameters by analyzing the detailed 
structure of the background fluctuations in the cosmic microwave background 
radiation. The WMAP results indicate the universe is flat to within a 1% margin 
of error. Therefore the term & k is 0 in Equation (16.22). Astrophysicists also 
found that the Hubble constant is H 0 ! 71 ' 4 (km/s)/Mpc, and found the age 
of the universe to be 13.7 billion years (Figure 16.16, page 606).

Sloan Digital Sky Survey The Sloan Digital Sky Survey (SDSS) is an ambitious 
project to map in detail one third of the entire sky and to determine the 
positions and brightness of more than 100 million astronomical objects. The 
SDSS is also measuring distances to more than a million galaxies and quasars. 
Scientists have used observations of 3000 known quasars to date the cosmic 
clustering of diffuse hydrogen gas. Combining these data with the WMAP 
measurements, they conclude the universe is 13.6 billion years old.

Universe Scale Determination Another method of determining the age of the 
universe uses the scale factor a (the approximate separation distance between 

(a) Closed Geometry
 Ω > 1, k = +1

(b) Open Geometry
 Ω < 1, k = −1

(c) Flat Geometry
 Ω = 1, k = 0

Figure 16.15 The three possible shapes of the universe are shown. (a) The spherical or closed 
geometry has a positive curvature (large mass). (b) The hyperbolic or open universe has a negative 
curvature (low mass). We saw this before in Chapter 15 in the spacetime geometry near large 
masses. (c) The Euclidean or flat geometry has no curvature. The shape of the triangle is shown in 
each geometry.
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galaxies) in Equation (16.2). In Equation (16.2) we defined the Hubble 
parameter to be H ! (1/a)(da/dt). We find the Hubble time t to be

 t !
1
H

!
a

 
da
dt

 
 (16.23)

If we draw a tangent in Figure 16.17 (Problem 29) to the a curve at the present 
time t0, the intercept of this tangent with a ! 0 determines the Hubble time t. 
Figure 16.17 gives a value of about t ! 15 Gyr, but these graphs are a little 
arbitrary.

Consider the case of the fl at universe and mass density equal to the critical 
density, &m ! 1, even though we believe this value of &m not to be true. In this 
case the relationship between a and t is a3 ! Ct 

2, where C is a constant. If we take 
the derivative of this expression, we have

  3a2 da ! 2Ct dt

  
da
dt

!
2C
3a 

2 t

Equation (16.23) then gives

 t ! a  
3a 

2

2C
 
1
t

!
3a 

3

2C
 
1
t

!
3
2

 t (16.24)

In the case of the flat universe the age of the universe is 2t/3 (2/3H ), and 
if we use a value of 71 km/s per Mpc, we determine t ! (H0)$1 ! 13.7 billion 
years, and the age of the universe would be only 9 billion years. Because there is 
not so much mass in the universe, a more refined calculation with &m ! 0.3 shows 
t ! t ! (H0)$1 ! 13.7 Gyr.

Tiny fraction
of a second

380,000
years

13.7
billion
years

Inflation

Dawn
of

time

Figure 16.16 Inflation occurs a 
tiny fraction of a second after the 
Big Bang. After another 380,000 
years, the universe cooled enough 
(3000 K) that the radiation no 
longer interacted with matter. It 
is that radiation, which has cooled 
to 3 K today, that is the cosmic 
microwave background radiation. 
By observing the minute 
fluctuations throughout the uni-
verse, scientists are able to deter-
mine what happened after the 
inflationary period. Ad
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Universe Age Conclusion
In this section we have discussed several determinations of the age of the uni-
verse. There is little question that the results are coalescing around a value near 
13.7 billion years.

16.7  The Standard Model of Cosmology
Before discussing the future of the universe, let’s summarize what we believe 
our current view of the universe to be, namely the standard model of cosmology. 
We return fi rst to our earlier result, Equation (16.22), determined from the 
Friedmann equations. The WMAP science team showed from its analysis of the 
CMB that the curvature term &k is zero, because the universe is fl at. This agrees 
with infl ationary theory. This leaves two terms in Equation (16.22); &m is the 
mass density, and &¶ is the dark energy or cosmological constant term. Remem-
ber from Equation (16.7) that the term & is the ratio of the actual density of the 
universe to the critical density, and the data indicate that it should be 1. How-
ever, there is not enough ordinary mass in the universe to make &m ! 1. Even if 
we include dark matter, the term &m seems to be only about 0.3. WMAP shows 
that the baryonic matter and atoms represent only 4.6% of the universe. Dark 
matter accounts for 23%, and the remainder, 72%, is dark energy. We show in 
Figure 16.18 (page 608) what happens to the size of the universe for the various 
mass values. What we now believe to be the correct values (&m ! 0.3 and &¶! 
0.7) are indicated by the solid blue curve. The size of the universe is expanding 
and even accelerating its expansion.

The Supernova Cosmology Project, based at Lawrence Berkeley National 
Laboratory, has produced an analysis of supernova distance-redshift data, CMB, 
and baryon acoustic oscillation (BAO) data from galaxy clusters that strongly 
constrains the data and produces results consistent with WMAP. Figure 16.19 
(page 608) assumes a fl at universe with &k ! 0 and plots &¶ versus &m. The re-
sult is a remarkable convergence of the data near the accepted parameters of 
ordinary matter, dark matter, and dark energy that we have presented.

The Standard Model of Cosmology is sometimes called the Concordance Model 
or the LambdaCDM Model (or ¶CDM). CDM stands for cold dark matter. The dark 

Expansion of the Universe
(no dark energy)

Sc
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Time (billion years)

!m " 0.3

!m " 1.0

!m " 5.0

20 3010t0 (now)#100

Figure 16.17 The scale dis-
tance a is plotted versus time for 
the past, present, and future of 
the universe. This is for the case 
in which there is no dark energy. 
Three different values for the 
mass of the universe are shown. 
The universe is closed for the 
high mass value of &m ! 5. We 
can only account for a value of 
&m ! 0.3, and most of that is dark 
matter. We present a graph in 
Figure 16.18 for the expansion of 
the universe that includes dark 
energy.
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matter is cold, because it presents no known radiation, but it is postulated to con-
sist of elementary particles with large masses and small velocities that possibly 
clump together in galaxy halos or clumps. The universe is homogeneous and iso-
tropic. Spatially it is fl at. The universe began some 13.7 billion years ago from a 
tremendously hot, dense state. It has been expanding and cooling ever since. Dark 
energy is represented in the ¶CDM model as the cosmological constant. The Big 
Bang is consistent with both the nucleosynthesis that explains the formation of 
light nuclei and the cosmic microwave background (CMB) radiation.

Expansion of the Universe
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Figure 16.18 Four possible 
scenarios for the expansion of the 
universe are shown for various 
values of &m and &%. The black 
dashed curve represents a high-
mass-density universe that eventu-
ally contracts and collapses under 
its own gravitational attraction. 
The blue dashed curve shows a 
flat, critical-density universe that 
continues to expand, but more 
slowly. The black solid curve rep-
resents an open, low-density uni-
verse. The solid blue curve repre-
sents scientists’ best idea of the 
true universe. The dark energy 
makes up the missing matter, and 
its negative attraction causes the 
universe to expand at an acceler-
ating rate.

Figure 16.19 The dark energy 
term &¶ is plotted versus the mass 
density term &m for the best fi t 
cosmological parameters for the 
SNe (high-redshift supernova 
data) from the Supernova Cos-
mology Project. Data from CMB 
(cosmic background radiation 
data from WMAP) and BAO 
(baryon acoustic oscillations or 
clustering of baryonic matter) to-
gether with the thin black line in-
dicative of a fl at universe all con-
strain the values of &¶ and &m to 
be consistent with the concor-
dance¶CDM model. The SNe, 
CMB, and BAO data are shown 
for a 68% confi dence limit. 
Adapted from R. Amanullah et al. (Su-
pernova Cosmology Project), Astrophys-
ical Journal, 716, 712-738 (2010).
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However, there are still fundamental problems. It certainly is not clear that 
the ¶CDM model is the fi nal word; it is, however, the current favorite. There are 
still questions about infl ation, and dark matter and dark energy have not been 
found. It is astounding that 95% of the matter-energy of the universe consists of some-
thing we know absolutely nothing about in 2011!

Although the case for infl ationary theory has become stronger over the 
30 years since its introduction, the case against it has also become stronger.* 
Perhaps infl ation’s strangest property is that it requires gravity to repel rather 
than to attract. Infl ation theory has had incredible success in its predictions. 
Other cosmological confi gurations, however, also lead to a homogenous, isotro-
pic, fl at universe. One problem with infl ation is that it goes on forever. It leads 
to fl uctuations that cause islands of hot matter and radiation. The randomness 
of these fl uctuations leads to an infi nite number of islands, and these is diffi cult 
to understand. Is infl ation good or bad? We look forward to a continuing discus-
sion about infl ation.

16.8 The Future
Long before we have to worry about what will happen to the universe, the sun 
will be a cold dark mass. In this section we first discuss the demise of the sun, of 
which we are fairly certain. We then summarize what we know about the future 
of the universe and the possibility of other Earth-like planets.

The Demise of the Sun
The sun is about halfway through its life as a productive star. It became a star 
about 4.5 billion years ago, and it will be about another 5 billion years before it 
runs out of its thermonuclear fuel. As the hydrogen fuel is exhausted, the sun 
will contract under its own gravitational attraction. The sun will heat up even 
more, with helium at its core and a layer of hydrogen gas outside. The heat will 
cause the outside layers of the sun to expand. The sun’s surface will expand to 
such a size that it will engulf the planet Mercury, perhaps reaching as far as 
Earth. We call such a star a red giant. The sun’s surface temperature will cool 
from the present 5500 K to maybe 4000 K. However, the temperature of Earth 
will dramatically increase because of the proximity to the extended sun’s surface, 
and no life will be able to exist on Earth.

Eventually, the hot core of a star uses up its thermonuclear fuel, producing 
heavier and heavier nuclear masses so that mostly iron remains for massive stars. 
The mass of the sun is not large enough for the gravitational attraction to form 
a neutron star or supernova. The lighter elements in the outer layers of the sun 
will boil off due to the reduced gravitational attraction at the surface, and the 
final mass will be about 0.5 to 0.6 times the mass of today’s sun. The remaining 
sun will contract to about the size of Earth. Slowly the sun will cool down, becom-
ing a white dwarf, and then finally a cold black dwarf. The sun and its planets will 
be doomed to an eternally frozen death.

*See two articles about infl ation: Alan Guth and Paul Steinhardt, The Infl ationary Universe, Scientifi c 
American, May 1984, and Paul Steinhardt, The Infl ation Debate, Scientifi c American, April 2011.
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Special Topic

Future of Space Telescopes

A fter decades of astrophysics and cosmology being 
dominated by theoretical models with little data to 

differentiate between sometimes wildly different pro-
jections, observational astronomy finally caught up in 
the 1990s. Many new space telescopes and ground-
based telescopes fitted with adaptive optics systems have 
all helped bring myriad new experimental results. 

With a dozen additional 8-m-diameter ground-
based telescopes coming into operation, why do we 
need telescopes in space? The answer is that Earth’s 
atmosphere absorbs the majority of the electromag-
netic radiation coming from space (see Figure A). 
Only visible light, some radio waves, and a limited 
amount of infrared and ultraviolet light can pass 
through the atmosphere without being absorbed or 
distorted by the atmosphere. In order to see x rays, 
gammas, and most of the ultraviolet and infrared 
spectrum, we need to have telescopes above Earth’s 
atmosphere. The first observation of an x-ray source 
from space was made in 1962 on a rocket that stayed 
above the atmosphere for 6 minutes. Both the U.S. 
National Aeronautics and Space Administration 
(NASA) and the European Space Agency (ESA) have 
been active in deploying telescopes in space.

In the 1970s NASA scientists conceived of the 
Great Observatories program for space to cover most of 
the electromagnetic spectrum. The launch of the 
Hubble Space Telescope in 1990 (and its subsequent 
repairs and improvements in 1993, 1997, 1999, 2002, 
and 2009), the Compton Gamma Ray Observatory in 
1991, the Chandra X-ray Observatory in 1999, and the 
Spitzer Space Telescope launched in 2003 have pro-
duced spectacular results. The Hubble Space Tele-
scope has been one of the greatest scientific instru-
ments produced, and we read about its discoveries in 
the daily newspapers. The Compton Gamma Ray Ob-
servatory focused on the huge energy coming from 
gamma-ray bursts. Chandra is examining x rays from 
throughout the universe, such as colliding galaxies, 
supernovae, and black holes. Even though Chandra’s 
planned lifetime was only fi ve years, it is still returning 
data twelve years later! Its discoveries are numerous 
and even include a neutron star discovered by high 
school students.

Spitzer, which detected infrared radiation such as 
heat, ran out of liquid helium in 2009 to cool its tele-
scopes, and most of its instruments are no longer in 
operation. It detected x rays from throughout the uni-
verse and was able to capture light from extrasolar 
planets. It also found in 2004 perhaps the youngest star 
ever seen and in contrast may also have captured the 

The Future of the Universe
There no longer seems to be much doubt that the universe is spatially fl at and 
expanding, and that the expansion is even accelerating. If this scenario contin-
ues, after a period on the order of 1014 years all the stars in our Milky Way Galaxy, 
as well in all other galaxies, will run out of fuel, no more stars will be created, 
and black holes will not be able to fi nd any more mass to consume. This result is 
the so-called Big Freeze, and the laws of thermodynamics indicate the universe 
will be a cold and dark place.

Another scenario is the Big Crunch. This would occur if the dark energy 
density were negative or the universe were closed. Then the expansion of the 
universe would ultimately reverse itself and contract to a hot, dense state. Our 
current observations indicate this will not happen. If instead, dark energy density 
actually increases over time, the universe will expand without limit. Gravitation-
ally bound units such as galaxies will be torn apart. In this Big Rip, even nuclei, 
atoms, and molecules will be ripped apart into elementary particles and 
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Figure A Earth’s atmosphere is not transparent to much of the electromagnetic spectrum, as 
shown by the transmission probabilities of the upper line. It is mostly optical and radio fre-
quencies that are able to permeate the atmosphere.

light of the fi rst stars in the universe in 2005. Astrono-
mers using Spitzer in 2009 found evidence of a high-
speed collision between two planets orbiting a star.

The number of space-based telescopes continues 
to increase. They include AGILE (Italy, gamma- and 
x-ray detection), Fermi Gamma-Ray (NASA), HETE 2 
(NASA, gamma), INTEGRAL (ESA, gamma and x ray), 
Swift Gamma Ray Burst Explorer (NASA, gamma and 
x ray), Astrosat (India, x ray and ultraviolet), Herschel 
(ESA and NASA, far infrared), and Planck (ESA, mi-

crowave) in addition to several others currently in 
orbit and being constructed and readied for launch.

The James Webb Space Telescope is pres ently un-
der development by NASA for possible launch in 2015 
or later, but its future is in peril because of cost over-
runs. It is intended to be the replacement for the Hub-
ble Space Telescope. Its main feature will be a large 
6.5-m-diameter mirror. It will primarily observe infrared 
light to study high-redshift galaxies and protogalaxies. It 
will be placed in an L2 orbit 1.5 million km from Earth.

radiation. The fi nal state of the universe would be a gravitational singularity. The 
Big Bounce is a theoretical model in which the universe oscillates between cycles 
of the Big Bang.

Are Other Earths Out There?
We are now in a position to question seriously whether there are other Earth-
like planets in the universe. In the past decade, astronomers have identified 
many candidates for extrasolar planets (or exoplanets), that is, planets revolving 
around stars other than our own sun. Initially, these candidates were identified 
through a wobble of the star that was induced by an orbiting planet. The 
wobble’s period and magnitude is used to deduce the planet’s orbit and mini-
mum mass. Such observations use the Doppler effect and require extensive 
measurements.
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One difficulty is distinguishing between planets and brown dwarfs, which 
are starlike objects with too little mass ((80 Jupiter masses) to create nuclear 
fusion. A brown dwarf forms the same way a star does, by a gas cloud collapsing 
in on itself by gravitational attraction. Planets grow from dust and gas accreting 
in a circumstellar disk. Several observations of swirling dust around a star indi-
cate a planet is forming. The first such observation of a dust disk was found in 
1994 around Beta Pictoris, a young star only 59 lightyears away.

The first observation of an extrasolar planet transiting its star was made in 
1999. By observing a transiting planet (Figure 16.20) astronomers are able to 
measure its diameter and even perform measurements to determine the chemi-
cal makeup of its atmosphere. A transit has to occur every time the planet orbits 
the star. The repeated occurrence of the transit is evidence that the observed 
transit is really due to a planet.

The Kepler spacecraft was launched by NASA in 2009 with its primary objec-
tive to discover and explore Earth-like planets orbiting stars. In its fi rst year of 
operation it discovered more than 1000 possible extrasolar planets. The Kepler 
mission is different, because it allows ordinary people to examine data to deter-
mine whether the Kepler software analysis missed any possible planets. A small 
army of amateur astronomers have found more than 50 extrasolar planet candi-
dates using both their own telescope data as well as that of Kepler.

Figure 16.20 An artist’s con-
ception of an extrasolar planet 
transiting a star other than our 
sun. Astronomers cannot yet ob-
serve these planets directly. They 
infer their existence from the 
changing level of light coming 
from the star. Spectroscopic anal-
ysis has been made of a planet’s 
atmosphere by the changing spec-
tral line intensities of radiation 
from the star passing through the 
atmosphere.

Ly
ne

tte
 C

oo
k.

Scientists believe the universe started with a primordial 
event called the Big Bang. The universe started as an ex-
tremely dense, hot fireball. Our current theories have been 
fairly successful in understanding the events after the initial 
10$43 s. For example, by the time 10$13 s, quarks and leptons 
were formed, and by 10$3 s, neutrons and protons were also 
formed. Nuclei formed by 3 min, but atoms couldn’t form 
for 400,000 years.

The three pieces of evidence that confirm the Big Bang 
include the redshift measurements of Edwin Hubble that 
indicate the universe is expanding, the observation of the 
cosmic microwave background radiation by Penzias and 
Wilson, and the agreement between the predictions of the 
primordial nucleosynthesis of the elements and known 
abundances. Hubble’s law relates the recessional velocity 
and the distance from Earth R :

 v ! HR (16.1)

where H, Hubble’s parameter, is related to a scale factor a 
that is the approximate separation distance between galaxies.

 H !
1
a

 
da
dt

 (16.2)

The Big Bang model depends on two major theoreti-
cal foundations: the general theory of relativity and the 
cosmological principle, which states the universe is isotro-
pic and homogeneous. The basic equation is attributable to 
Alexander Friedmann and can be written

 H  
2 !

8pGrm

3
$

kc 
2

a 2 #
¶c 

2

3
 (16.4)

Stars were formed when matter collected together due 
to the gravitational force. Eventually nuclear fusion provides 
the energy radiated from stars. After the thermonuclear 
processes are exhausted, massive stars undergo a gravita-
tional contraction so strong that eventually the star consists 
mostly of neutrons. These neutron stars are incredibly 
dense. Stars of mass less than about 1.4 solar masses are able 
to exert enough pressure due to electrons to prevent a 
gravitational collapse. They eventually become white dwarfs.

S u m m a r y
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There are many astronomical objects in the universe. 
Several kinds of galaxies, which are collections of many stars, 
have been observed. Quasars are tremendous sources of en-
ergy, and several have been found quite far away that must 
have been formed early in the evolution of the universe.

Increased interest in supernovae occurred because of 
the SN 1987A event, which could be seen with the naked 
eye. This supernova occurred when a massive star under-
went gravitational collapse after its thermonuclear fuel was 
exhausted. A tremendous explosion resulted that sent radia-
tion streaming outward. On Earth we were able to see visible 
light and detect neutrinos, among other types of radiation.

There has been increased interest in gamma-ray bursts, 
which originate from throughout the universe. Researchers 
believe they come from supernovae, and additional facilities 
are being planned to investigate them.

Some problems with the Big Bang model were mostly 
solved in the early 1980s by the idea of an inflationary uni-
verse. Inflation solved the flatness and homogeneity prob-

lems, but other problems remained. There is a discrepancy 
between the critical density and observed mass density of 
the universe. It appears that there is not enough mass in the 
universe to have a flat universe. The Wilkinson Microwave 
Anisotropy Probe (WMAP) has had spectacular results. Cos-
mologists now conclude, by putting together considerable 
data, that the universe is 13.7 billion years old and that the 
Hubble constant has the value 71 km ! s$1 ! Mpc$1. The 
universe is flat and will expand forever. The mass density 
consists of 4.6% ordinary baryonic matter, 23% dark matter, 
and 72% dark energy according to WMAP. Dark energy is 
due to a mysterious repulsive force that is causing the uni-
verse expansion to accelerate. We do not know what the 
dark matter and dark energy actually is.

Many new ground-based and space telescopes are now 
available, under construction, or being planned that will 
give new data and results that undoubtedly will be in conflict 
with present beliefs. This is the golden age of astrophysics 
and cosmology.

Q u e s t i o n s

 1. Explain why Hubble’s parameter, with its value today 
called Hubble’s constant, is not actually a constant.

 2. According to thermodynamic equilibrium, which 
should be the most abundant and least abundant 
quarks during the period from 10$13 s to 10$3 s?

 3. If the gravitational attraction is important in a neu-
tron star where the neutrons are close together, then 
why isn’t the gravitational interaction important in a 
nucleus with many neutrons?

 4. If all the distant galaxies are moving away from us, 
explain why we are not at the center of the universe.

 5. How can you explain the fact that the Andromeda 
Galaxy appears to be approaching us rather than 
receding?

 6. Explain why the universe cannot be older than the 
Hubble time.

 7. Explain why elements heavier than iron are not found 
in stars.

 8. Why isn’t it possible to know what is happening to our 
nearest neighbor stars today (in the next 24 hours)?

 9. During which stage of the beginning of the universe 
would you expect deuterons to be formed? Explain.

 10. What happened to the neutrons produced in the early 
stages of the universe that were not synthesized to 
deuterons or 4He nuclei?

 11. During what time period do free neutrons disappear? 
Explain.

 12. Explain how it might be possible to confuse the red-
shifts from recession velocities with the gravitational 
redshifts. How can we distinguish the two?

 13. Quasars are known to vary in brightness by just a few 
hours or days. What can we say about the size of these 
quasars?

 14. Observations from the Compton Gamma Ray Obser-
vatory indicate that the gamma-ray bursts have an 
even distribution throughout the sky. How can we be 
sure that these bright phenomena are not coming 
from our own galaxy, the Milky Way?

 15. Sometimes dark matter is called “cold dark matter.” 
Why do you think this is done?

 16. As mentioned in Section 16.4, the fact that quasars 
can vary in brightness in just a few hours or days sug-
gests that their size is only a few light hours or light 
days across. Explain how we can make this statement.

 17. Sometimes astrophysicists refer to “hot dark matter.” 
What do you suppose that is? Research the topic on 
the web and discuss.
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614 Chapter 16 Cosmology and Modern Astrophysics—The Beginning and the End

P r o b l e m s

  Note: The more challenging problems have their 
problem numbers shaded by a blue box.

16.1 Evidence of the Big Bang
 1. Derive the conversion from parsecs to lightyears given 

the information in Example 16.1.

16.2 The Big Bang
 2. Calculate the temperature for which the ratio of free 

protons to free neutrons in the early stages of the 
universe would have been 7.0, assuming their distri-
butions are fully thermalized (governed by Boltzmann 
statistics).

 3. What was the lowest temperature for photons to be 
able to produce !0 particles in the early universe? Ap-
proximately what time was this? Let kT  !  mc2 and use 
Figure 16.6. Use the mean value of the distribution.

 4. Use the thermodynamic equilibrium factor 
exp()mc2/kT) to determine the relative abundances 
of the quarks during the time period from 10$13 s to 
10$3 s. Assume the temperature is 1014 K and use mid-
range quark masses from Table 14.5.

 5. What are the lowest temperatures at which electrons 
or muons can be created from thermal interactions? 
These are the approximate lowest temperatures at 
which these particles would have “frozen” out of ther-
mal equilibrium proportions.

 6. If the mass of the electron neutrino is 2.2 eV/c 2, what 
is the lowest temperature at which it could be formed 
from thermal interactions? What if its mass is 10$4 eV?

 7. Would the formation of !# or !0 have occurred for a 
longer time from creation by thermal interactions in 
the early universe? What is the difference in mean 
temperatures for their thresholds of formation?

 8. Calculate the temperature of the universe when pho-
tons can no longer disassociate deuterons. Use the 
mean value of the distribution.

 9. Determine the temperature of the universe when it 
had cooled enough that photons no longer disassoci-
ate the hydrogen atom. Use the mean value of the 
distribution.

16.3 Stellar Evolution
 10. Show that the result given in Equation (16.16) for the 

volume of a neutron star follows from the equation 
preceding it.

 11. Calculate the density of a neutron star from the re-
sults given in Example 16.5 and compare that with the 
density of a nucleon and a nucleus.

 12. Show that the radius of a neutron star decreases as the 
number of neutrons increases. Does this make sense? 
Shouldn’t the radius increase with more neutrons?

 13. Calculate the gravitational pressure for (a) the sun 
and (b) the neutron star of Example 16.5.

16.4 Astronomical Objects
  Note: Use the value H  !  71 km # s$1 # Mpc$1 for prob-

lems in this section.
 14. An object in Hydra is 4.0 Gly from us. What would we 

expect its recessional velocity to be?
 15. An object in Ursa Major is determined to be receding 

from us with a velocity of 15,000 km/s. How far from 
us is it?

 16. Use the redshift of 3.8 for 4C41.17, a powerful radio 
galaxy, to determine the distance of the galaxy from 
us in (a) Mpc and (b) lightyears.

 17. Determine the wavelength of the standard 21-cm hy-
drogen spectral line that we receive from the galaxy 
described in the preceding problem. Could such a 
large redshift lead astronomers to mistake this spec-
tral line for another one that has an intrinsically lon-
ger wavelength?

 18. The largest known redshift attributed to a specifi c 
molecule is z  !  6.42 from the CO molecule in the 
quasar SDSS J1148#5251. Find the quasar’s distance 
from us and recession speed relative to us.

 19. One of the largest observed redshifts for a galaxy is 8.6 
from the galaxy UDFy-38135539. How fast is the gal-
axy moving with respect to us? How far away is it?

 20. (a) Research the different types of supernova and 
explain why Types Ia, Ib, and Ic are labeled differ-
ently. (b) Why do Types Ib, Ic, and II have more in 
common with each other than with Type Ia?

16.5 Problems with the Big Bang
 21. (a) Use the observed ordinary mass density of 

the universe to determine the average number of 
nucleons per cubic meter throughout the universe. 
(b) There are 60 stars within 16.6 ly of the sun. If each 
star averages 1 solar mass, what is the mass density of 
nucleons in the neighborhood of the sun?

16.8 The Future
 22. Examine carefully the size of the universe shown in 

Figure 16.18. (a) Explain what is happening for each 
of the four curves. (b) Do any of the curves represent 
a closed universe? If so, explain.

 23. In Example 16.8 show that the critical density "c is 
about 9  "  10$30 g/cm3.

General Problems
 24. Use the blackbody spectrum to determine the 

peak wavelength for a distribution with temperature 
2.725 K, the observed temperature of the background 
blackbody radiation.
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 25. Calculate the critical density necessary for a closed 
universe for two extremes of the Hubble constant: 
64 km # s$1 # Mpc$1 and 78 km # s$1 # Mpc$1.

 26. The time before which we don’t know what happened 
in the universe (10$43 s) is called the Planck time. The 
theory needed is a quantum theory of gravity and con-
cerns the three fundamental constants h, G, and c. 
(a) Use dimensional analysis to determine the expo-
nents m, n, l if the Planck time tP  !  hmGnc l. (b) Calcu-
late the Planck time using the expression you found in 
(a).

 27. Let the wavelength of a photon produced during the 
early stages of the universe be #, and #D the Doppler-
shifted wavelength we measure today. Show that

lD !
21 # b21 $ b

 l

  where $  !  v/c.
 28. On two occasions we have used the gravitational self-

energy of a uniform sphere of mass M and radius R. 
Use integral calculus and start with a mass dm in the 
sphere. Calculate the work done to bring the remain-
der of the mass in from infi nity. By this technique 
show that the self-potential energy of the mass is

P.E. ! $
3
5

 
GM 

2

R
 29. Draw tangents on all the curves in Figure 16.17 and 

determine the relationship between the Hubble time 
% and the age of the universe.

 30. Show that the extra time )t that a neutrino with fi nite 
mass takes to reach Earth from a supernova explosion 
compared to that taken for a zero mass particle is

¢t ! 12.57 s 2 a distance
50 kpc

b a mnc 
2

10 eV
b 2a 10 MeV

E
b 2

  where m+c2 is the rest energy in eV and E is the energy 
in MeV of the neutrino.

 31. Show that the mass density of radiation "rad is given by

rrad !
4sT  

4

c 3

  where & is the Stefan-Boltzmann constant and T is the 
temperature. You might fi nd the Stefan-Boltzmann 
law and E  !  mc2 to be useful.

 32. Use the mass density of radiation in the preceding 
problem to determine the mass density of radiation 
when T  !  2.725 K. How does this compare with the 
average density of matter in the universe? Does this 
mean we are in a radiation-dominated or matter-
dominated universe?

 33. Use the mass density of radiation from Problem 31 to 
calculate the density for several temperatures between 
10$2 K and 1030 K, and use the results to make a graph 
of "rad versus time using Figure 16.6. If the universe 
changed from being radiation dominated to matter 
dominated at 380,000 years, at what density for "rad 
and "matter did this occur?

 34. The exponential drop in the brightness of supernova 
1987A was due to the decay of 56Ni (t1/2  !  6.1 days)
S 56Co (t1/2  !  77.1 days) S 56Fe. If the energy were 
primarily due to the decay of 56Ni, what falloff in 
brightness by the end of 300 days would we expect? 
What if it were due to the energy in the decay of 56Co? 
The actual data showed a decrease in brightness by a 
factor of about 100 after 300 days.

 35. The Lyman alpha line (K') of hydrogen is measured 
in the laboratory to have a wavelength of 121.6 nm. In 
the quasar PKS 2000-330 the same line is determined 
to have a wavelength of 580.0 nm. What is its redshift 
and recession velocity?

 36. The redshift parameter z is defi ned by )#/#. Show 
that the Doppler redshift parameter is related to rela-
tive speed $ by

1 # z ! B1 # b

1 $ b
 37. In cases in which the speed is small (b V 1), show 

that the Doppler redshift parameter is related to $ by 
z " $.

 38. In 1998 a galaxy named RD1 was discovered with a 
redshift of 5.34. (a) What is the speed of this galaxy 
with respect to us? (b) Use Hubble’s law to determine 
how far away the galaxy is.

 39. The fi rst reaction in the proton-proton chain is p  #  p
S d  #  $#  #  (. Calculate the Q value of the reaction 
and determine the maximum neutrino energy.

 40. Infl ationary theory indicates the density of the uni-
verse should be equal to the critical density. Show that 
the critical density can be written in the form

rc ! a H0

100
b 2

 11.9 " 10$29 g/cm3 2
  where H0 is entered in units of km # s$1 # Mpc$1.
 41. Assume a power law for the scale factor a  !  Ctn, where 

C is a constant. (a) For what values of n are the uni-
verse accelerating and decelerating? (b) For decelera-
tion, what is the dependence of H on time?

 42. Let the total number of neutrons be Nn, the number 
of protons be Np, and N  !  Nn  #  Np. Let the fractions 
be Xi  !  Ni/N. (a) If the probability of a particle hav-
ing energy E is proportional to the Boltzmann factor, 
exp($E/kT), show that Xn/Xp  !  exp($1.3 MeV/kT). 
(b) For what temperature was the ratio of protons to 
neutrons in the universe 6.7? (c) What is the kinetic 
energy associated with this temperature? Is there any-
thing noteworthy about this temperature?

 43. If the universe had a density equal to its estimated 
critical density of 9  !  10$30 g/cm3, and if it were com-
posed entirely of one-solar-mass stars (mass  !  2.0  "  
1030 kg) distributed uniformly across the universe, 
what would be the distance between stars? Compare 
your result with the density of stars in the neighbor-
hood of the sun and comment on the result.
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A P P E N D I X

1

A-1

Fundamental Constants

Quantity Symbol Value

Speed of light in vacuum c 299 792 458 m/s (exact)
Permeability of vacuum (magnetic constant) m0 4p ! 10"7 N/A2 (exact)
Permittivity of vacuum (electric constant) P0 8.854 187 817 . . . ! 10"12 F/m (exact)
Newtonian gravitational constant G 6.674 28(67) ! 10"11 m3 # kg"1 # s"2

Fine structure constant a #
e 

2

4pP0Uc
 0.007 297 352 5376150 2 !

1
137

Planck constant h 6.626 068 96(33) ! 10"34 J # s
Planck constant h/2p U  1.054 571 628(53) ! 10"34 J # s
Elementary charge e 1.602 176 487(40) ! 10"19 C

Magnetic flux quantum £0 #
h
2e

 2.067 833 667(52) ! 10"15 T # m2

Josephson constant K J # 2e/h 4.835 978 91(12) ! 1014 Hz/V
Von Klitzing constant R K # h/e2 25 812.807 557(18) $

Rydberg constant Rq #
a2me c

2h
 1.097 373 156 8(73) ! 107 m"1

Bohr radius a0 #
4pP0U 2

me e 
2  0.529 177 208 59(36) ! 10"10 m

Compton wavelength lc #
h

me c
 2.426 310 2175(33) ! 10"12 m

Classical electron radius re # a2a0 2.817 940 2894(58) ! 10"15 m

Bohr magneton mB #
e U
2me

 9.274 009 15(23) ! 10"24 J/T

Nuclear magneton mN #
e U
2mp

 5.050 783 24(13) ! 10"27 J/T

Avogadro constant NA 6.022 141 79(30) ! 1023 mol"1

Molar gas constant R 8.314 472(15) J # mol"1 # K"1

Boltzmann constant k 1.380 6504(24) ! 10"23 J/K
Stefan-Boltzmann constant s 5.670 400(40) ! 10"8 W # m"2 # K"4

Wien wavelength displacement law constant lmaxT 2.897 7685(51) ! 10"3 m # K
Atomic mass unit u 1.660 538 782(83) ! 10"27 kg
Electron mass me 9.109 382 15(45) ! 10"31 kg
Muon mass mm 1.883 531 30(11) ! 10"28 kg
Proton mass mp 1.672 621 637(83) ! 10"27 kg
Neutron mass mn 1.674 927 211(84) ! 10"27 kg
Deuteron mass md 3.343 583 20(17) ! 10"27 kg

Note: Digits in parentheses represent one standard deviation uncertainty in the final digits of the given value.
“CODATA recommended values of the fundamental physical constants: 2006,” P. J. Mohr, B. N. Taylor, and D. B. Newell, 
Reviews of Modern Physics, 80, 633–730(2008). Available from the National Institute of Standards and Technology, Gaithersburg, 
MD 20899. URL: http://physics.nist.gov/cuu/Constants/index.html.
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A P P E N D I X

2 Conversion Factors

 m cm km ft ly pc

1 meter 1 102 10!3 3.281 1.057 " 10!16 3.241 " 10!17

1 centimeter 10!2 1 10!5 3.281 " 10!2 1.057 " 10!18 3.241 " 10!19

1 kilometer 103 105 1 3.281 " 103 1.057 " 10!13 3.241 " 10!14

1 foot 0.3048 30.48 3.048 " 10!4 1 3.222 " 10!17 9.878 " 10!18

1 lightyear 9.461 " 1015 9.461 " 1017 9.461 " 1012 3.104 " 1016 1 0.3066
1 parsec 3.086 " 1016 3.086 " 1018 3.086 " 1013 1.012 " 1017 3.262 1

Length

 kg g slug u

1 kilogram 1 103 6.852 " 10!2 6.022 " 1026

1 gram 10!3 1 6.852 " 10!5 6.022 " 1023

1 slug 14.59 1.459 " 104 1 8.789 " 1027

1 atomic mass unit 1.661 " 10!27 1.661 " 10!24 1.138 " 10!28 1

Mass

 s min h d y

1 second 1 1.667 " 10!2 2.778 " 10!4 1.157 " 10!5 3.169 " 10!8

1 minute 60 1 1.667 " 10!2 6.944 " 10!4 1.901 " 10!6

1 hour 3600 60 1 4.167 " 10!2 1.141 " 10!4

1 day 8.640 " 104 1440 24 1 2.738 " 10!3

1 year 3.156 " 107 5.259 " 105 8.766 " 103 365.24 1

Time

A-2
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   Appendix 2 Conversion Factors A-3

 m/s cm/s ft/s mi/h km/h

1 meter/second 1 102 3.281 2.237 3.600
1 centimeter/second 10!2 1 3.281 " 10!2 2.237 " 10!2 0.036
1 foot/second 0.3048 30.48 1 0.6818 1.097
1 mile/hour 0.4470 44.70 1.467 1 1.609
1 kilometer/hour 0.2778 27.78 0.9113 0.6214 1

Note: 1 mi/min # 60 mi/h # 88 ft/s

Speed

 N dyn lb

1 newton 1 105 0.2248
1 dyne 10!5 1 2.248 " 10!6

1 pound 4.448 4.448 " 105 1

Force

 J erg ft # lb
1 joule 1 107 0.7376
1 erg 10!7 1 7.376 " 10!8

1 ft # lb 1.356 1.356 " 107 1
1 eV 1.602 " 10!19 1.602 " 10!12 1.182 " 10!19

1 cal 4.186 4.186 " 107 3.087
1 Btu 1.055 " 103 1.055 " 1010 7.782 " 102

1 kWh 3.600 " 106 3.600 " 1013 2.655 " 106

 eV cal Btu kWh

1 joule 6.242 " 1018 0.2388 9.478 " 10!4 2.778 " 10!7

1 erg 6.242 " 1011 2.388 " 10!8 9.478 " 10!11 2.778 " 10!14

1 ft # lb 8.464 " 1018 0.3239 1.285 " 10!3 3.766 " 10!7

1 eV 1 3.827 " 10!20 1.519 " 10!22 4.450 " 10!26

1 cal 2.613 " 1019 1 3.968 " 10!3 1.163 " 10!6

1 Btu 6.585 " 1021 2.521 " 102 1 2.931 " 10!4

1 kWh 2.247 " 1025 8.601 " 105 3.412 " 103 1

Work, Energy, Heat
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3 Mathematical Relations

Expansions

  11 ! x 2n " 1 ! nx #
n 1n $ 1 2

2!
 x 

2

 ! 
n 1n $ 1 2 1n $ 2 2

3!
 x 

3 # p 0x 0 % 1

 11 ! x 2 1/2 " 1 ! 1
2 x $ 1

8 x 
2 ! 1

16 x 
3 $ p  0x 0 % 1

 11 ! x 2$1/2 " 1 & 1
2 x # 3

8 x 
2 & 5

16 x 
3 # p  0x 0 % 1

 11 ! x 2$1 " 1 & x # x 
2 & x 

3 # p  0x 0 % 1

 sin x " x $
x 

3

3!
#

x 
5

5!
$

x 
7

7!
 # p

 cos x " 1 $
x 

2

2!
#

x 
4

4!
$

x 
6

6!
 # p

 tan x " x #
x 

3

3!
#

2
15

x 
5 # p  0x 0 % p/2

 e 
x " 1 # x #

x 
2

2!
#

x 
3

3!
 # p

Functions and Relations
 sin1A ! B 2 " sin A cos B ! cos A sin B

 cos 1A ! B 2 " cos A cos B & sin A sin B

 sinh x "
e 

x $ e$x

2

 cosh x "
ex # e$x

2

Cartesian form:  z " x # i y

Complex conjugate:  z* " x $ i y, i " 1$1

Polar form:   z " 0z 0 e 
i u

  z* " 0z 0 e$i u

  zz* " 0z 0 2 " x 
2 # y 

2

Real part of z:   Re z " 1
2 1z # z* 2 " x

Imaginary part of z:   Im z " $1
2 1z $ z* 2 " y

  sin x "
e 

i x $ e$i x

2i

  cos x "
e 

i x # e$i x

2
  e 

i x " cos x # i sin x

Integrals
 !sin2 x dx " $

1
2

  cos x sin x #
1
2

 x "
1
2

 x $
1
4

  sin 2x

 !sin3 x dx " $
1
3

 cos x 1sin2 x # 2 2 .
 !x sin2 x dx "

x 
2

4
$

x sin 2x
4

$
cos 2x

8

A-4

03721_em-app03_A-04-A-05.indd   A-403721_em-app03_A-04-A-05.indd   A-4 10/3/11   4:18 PM10/3/11   4:18 PM



   Appendix 3 Mathematical Relations A-5

 !x 2 sin2 x dx !
x 3

6
" a x 2

4
"

1
8
b  sin 2x "

x cos 2x
4

In ! !xn e"x/a dx

I0 ! "ae"x/a

I1 ! "1a2 # ax 2e"x/a

I2 ! "12a3 # 2a2x # ax2 2e"x/a

In#1 ! a2 0In

0a

!xmebxdx ! ebxa
m

k!0
1"1 2 k m!xm"k1m " k 2 !b 

k#1

 !
q

0

e"x/a dx ! a

 !
q

0

x e"x/a dx ! a2

 !
q

0

x2e"x/a dx ! 2a3

 !
q

0

xne"x/a dx ! n!an#1

See Wolframalpha.com for a useful Internet site for complex math calculations including integrals.
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Average values are encountered in several forms. A simple example is an arith-
metic mean. If N students take an exam and receive scores S1, S2, S3, and so on, 
the class average is

 
Average score !

S1 " S 2 " S 3 " p " SN

N

This calculation is more compact if we group the students receiving a given score 
Si. If Ni students receive the score Si, then the class average becomes

 
Average score !

N1S1 " N2S 2 " N3S 3 " p
N

An example from physics of a weighted average brings us closer to the idea of 
mean value. In mechanics the center of mass of N particles of different mass (mi) 
placed at various locations (xi) along the x axis is

 

xcm !
m1x1 " m 2x 2 " p

m1 " m 2 " p !
a

i
mi xi

a
i

mi

We define the mean value just like the weighted average, with the probabilities of 
the various possible events serving as the weights. Suppose some physical quantity 
x can have N possible values, which we shall call xi, with i ! 1, 2, 3, . . . , N. Let 
Pi be the probability that x has the value xi. Then the mean value of x is

 x !
P1x1 " P2x 2 " p

P1 " P2 " p !
a

i
Pi xi

a
i

Pi

As usual, it is required that g i Pi ! 1 (the sum of all probabilities is one), so

 x ! a Pi xi (A5.1)

The same definition of mean value holds if we are considering a function f(x):

 f 1x 2 ! a Pi  f 1xi 2  (A5.2)

Mean value

Mean value of a function

A P P E N D I X

5Mean Values 
and Distributions

A-7
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A-8 Appendix 5 Mean Values and Distributions

For any two functions f(x) and g(x) we have

 f 1x 2 " g 1x 2 ! f 1x 2 " g 1x 2
and

 c 3  f 1x 2 " g 1x 2 4 ! c 3  f 1x 2 " g 1x 2 4 ! c f 1x 2 " c  g 1x 2
where c is a constant.

In physics we are often interested in how much a particular value differs 
from the mean value. The difference between a particular value and the mean 
value is known as the deviation (#xi):

 ¢xi ! xi $ x

The mean value of all deviations is easily computed:

 ¢xi ! xi $ x ! xi $ x ! 0

This is just as one should expect because the positive and negative deviations will 
exactly cancel each other. However, we would like to get some idea of how large 
a typical deviation will be. To this end we define the standard deviation:

 sx ! c 1¢xi 22 d 1/2

! c a
i

Pi 1xi $ x 22 d 1/2

 (A5.3)

Notice that in Equation (A5.3) the negative deviations have been eliminated by 
squaring. The standard deviation is an indication of the sharpness of the peak of 
the probability distribution curve. For a purely random (Gaussian) distribution 
it can be shown that the width of the probability curve at half of the peak value 
is slightly more than two standard deviations.

Equation (A5.3) can be rewritten

  sx ! c a
i

Pi 1xi
2 $ 2xi x " x  

2 2 d 1/2

  ! c a
i

Pi 
xi

2 $ 2xa
i
1Pi 

xi " x 
2 2 d 1/2

The first sum is simply x2, and the second is x. Thus

 sx ! [x2 $ x  
2]1/2 (A5.4)

An important feature of many systems is that as N increases, the probabil-
ity distribution begins to approach a smooth curve. Indeed, it will be to our 
 advantage to think of such a curve as a function, which we shall call a distribution 
function. This will enable us to replace the sums used in this section by inte-
grals, which is clearly a wise thing to do if we want to consider problems in which 
N ! 1023. The distribution function is not a probability per se, but rather a prob-
ability density. For example, if f(x) is the distribution function describing the 
positions of a large number of particles lying along the x axis, then

 f 1x 2  dx ! the probability of finding a particle between x and x " dx

It is necessary to define the distribution function in this way so that we can say 
[by analogy with Equation (A5.1)]

 x ! "x f 1x 2  dx

  x 
2 ! "x 

2 f 1x 2  dx

and so on.

Deviation

Standard deviation
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   Appendix 6 Probability Integrals A-9

Before proceeding to the calculation of these integrals, we introduce the con-
cept of even and odd functions. An even function is one for which f(x) ! f("x); 
similarly, for an odd function f(x) ! "f("x). An example of an even function is 
the integrand of Equation (9.4):

 !
q

"q
g 1vx 2  dvx ! !

q

"q
 Cœ expa"

1
2

 bmvx
2 b  dvx

This even integrand makes it possible to replace !
q

"q
 with 2!

q

0

 because the curve 

is perfectly symmetric about x ! 0 (see Figure 9.2).
On the other hand, consider the odd integrand of Equation (9.6):

 
vx ! C œ !

q

"q
vx expa"

1
2

 bmvx
2 b  dvx

The odd function is antisymmetric with respect to x ! 0, and if we divide the 
integral into two parts ("q to 0 and 0 to q), those two parts just cancel. The 
integral of an odd function from "q to q (or indeed over any symmetric limits) 
is therefore zero.

Based on these properties of even and odd functions, it makes sense to 
define

  In ! !
q

0

x 
n exp1"ax 

2 2  dx (A6.1)

and say that

 !
q

"q
x 

n exp1"ax 
2 2  dx ! b2In    for even n

 0      for odd n
 (A6.2)

Let us proceed to calculate the In, beginning with n ! 0 [as in Equa-
tion (9.4)]. Now

 I0 ! !
q

0

 exp1"ax 
2 2  dx (A6.3)

Even and odd functions

A P P E N D I X

6

A-9

Probability Integrals 

In ! !
q

0
 x 

n exp1"ax 
2 2  dx
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A-10 Appendix 6 Probability Integrals

It is not possible to do this integral by straightforward substitution. Because this 
is a definite integral, x is a dummy variable. We would obtain the same result with 
any other variable, say y:

 I0 ! !
q

0

 exp1"a y 
2 2  d y (A6.4)

Multiplying Equations (A6.3) and (A6.4) yields

 I0
 
 
2 ! !

q

0
!

q

0

exp 3"a1x 
2 # y 

2 2 4  dx dy (A6.5)

We now switch to polar coordinates, with r 2 ! x2 # y2 and dx dy ! r dr du. The 
limits of integration are 0 to q for r but only 0 to p/2 for u, because the limits 
on x and y restrict us to the first quadrant. Thus

 I0
2 ! !

q

0

exp1"ar2 2  r d r !
p/2

0

 d u (A6.6)

The u integral yields p/2, and the r integral is easily performed using a standard 
substitution (say u ! ar 2):

  I0
2 ! ap

2
b  a 1

2
 a b !

p

4a

  I0 ! B p4a
!
1p
2

 a"1/2 

(A6.7)

Notice that Equation (A6.6) actually contains I1, so we see that

 I1 ! !
q

0

r exp1"ar2 2  dr !
1

2a
 (A6.8)

To calculate I2 we return for a moment to I0. We differentiate Equation 
(A6.3) with respect to a and fi nd

 
d I0

d a
! "!

q

0

x2 exp1"ax2 2  dx ! "I2 (A6.9)

However, by Equation (A6.7)

 
d I0

d a
! "

1p
4

 a"3/2

and so

 I2 !
1p
4

a"3/2 (A6.10)

In a similar way one may use 
d I1

d a
 to calculate I3, 

d I2

d a
 to calculate I4, and so on, 

indefinitely. Some useful results are

  I3 !
1
2

 a"2

  I4 !
31p

8
 a"5/2

  I5 ! a"3
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   Appendix 6 Probability Integrals A-11

It can be shown that in general

  In !
3 1n " 1 2/2 4 !

2a 
1n#12/2     for odd n

  In !
1 # 3 # 5 p 1n " 1 2

2 
1n/22#1a 

1n/22  Bpa    for even n
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Evaluation of these integrals introduces us to two special mathematical func-
tions: the gamma function and the Riemann zeta function. A good handbook of 
integrals (see, for example, Table of Integrals, Series, and Products by Gradshteyn 
and Ryzhik) will give the result

 
!

q

0

x 
n!1 dx

e 
x ! 1

" #1n 2  z1n 2  (A7.1)

The gamma function is in turn defined by the integral

 #1n 2 " !
q

0

e!xxn!1 dx (A7.2)

In many cases the gamma functions we encounter in physics have integer argu-
ments. Then they are easily evaluated using the identity

 #1n 2 " 1n ! 1 2 ! (A7.3)

When n is not an integer one may use the recursion formula

 #1n $ 1 2 " n #1n 2  (A7.4)

with tabulated values of the gamma function [those tables generally range from 
#(1) to #(2)] to find the desired value. Further, the fact that #1 32 2 " 1p/2 is 
useful, because half-integer powers occur in a number of applications. For other 
values one may resort to tables or computer packages such as Mathematica, 
Maple, or Wolfram Alpha.

One may also use the appropriate tables or computer packages to obtain 
values for the Riemann zeta function. It is helpful to know that the zeta function 
can sometimes be expressed in closed form. For example,

 z12 2 "
p2

6
       and       z14 2 "

p4

90
 (A7.5)

One integral of this form is

 !
q

0

x3

ex ! 1
 dx

The gamma function

The Riemann 
zeta function

A P P E N D I X

7 Integrals of the Type !
q

0

 
xn!1 dx
ex ! 1

A-12
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   Appendix 7 Integrals of the Type A-13

which is found in Example 3.7. According to Equation (A7.1) the result is

 !
q

0

x 
3

e 
x ! 1

 dx " #14 2  z14 2 " 3! ap4

90
b "

p4

15

This allows us to complete Example 3.7 and obtain the closed form expression 
for the total radiation emitted by a blackbody at a temperature T :

 R 1T 2 "
2p5k4

15h 
3c2 T  

4

In Section 9.7 we encounter an integral with a fractional value of n (n " 3
2), 

with the result #1  32 2  z1  32 2 . As noted previously, #1  32 2 " 1p/2. A numerical evalu-
ation yields z1  32 2  " 2.61238, so that #1  32 2  z1  32 2  " 2.315, as used in Equation (9.64).

The common thread running through these applications is that they con-
cern collections of bosons. The Bose-Einstein distribution [Equation (9.32)] 
contains the factor [BBE exp(bE ) ! 1]!1, which can often be put into the form 
e x ! 1 for the purpose of doing this integral.
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A P P E N D I X

8 Atomic Mass Table

Atomic masses are used in both atomic and nuclear physics calculations. Because 
of space limitations, we have not included all the known isotopes in this compila-
tion, but we have listed the atomic masses of all known stable isotopes and all 
those with half-lives greater than 10 s. In addition, for the light and heavy ele-
ments, we have included some additional isotopes.

We have listed the chemical symbol, atomic number Z, mass number A, 
atomic masses in atomic mass units (u), either the half-life t1/2 or natural abun-
dance on Earth, and the decay modes. A few nuclides, for example, 40K and 238U, 
are unstable but have such a long half-life that they are still found naturally on 
Earth. In these few cases, we list both the half-life and natural abundance. The 
most important decay modes are listed with the most likely ones given first. We 
present below the legend for the various decay modes.

The m listed after a few of the mass numbers means the data are for a meta-
stable state of the particular nuclide, but we have omitted most metastable nu-
clides for brevity. An s listed at the end of the atomic mass value means that the 
mass is obtained from systematics, not measured. The time units for the half-life 
are s (seconds), m (minutes), h (hours), d (days), and y (years). In some cases, 
for very short-lived isotopes of light masses, we have listed the width of the state 
! instead of the half-life. The half-life can be determined from the time t by 
using the Heisenberg uncertainty principle.

The data for this appendix were obtained from the website (www.nndc.bnl.gov) 
of the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. 
Look at the website for the latest values. The abundances, half-lives, and decay 
modes are from J. K. Tuli, Nuclear Wallet Cards, 5th ed. (1995). The atomic mass 
values are from G. Audi and A. H. Wapstra, “The 1995 Update to the Atomic Mass 
Evaluations,” Nuclear Physics A595, pp. 409–480 (1995). We have rounded off the 
mass values to the nearest 0.000001 u. Some updates from NNDC have been used.

The legend for the decay modes is clear except for a few cases. We list them 
all here.

 Listed Decay

 b" b"

 2b" Double b"

 P Electron capture and/or b#

 IT Isomeric transition
 a, 2a a or 2a
 SF Spontaneous fission
 b"n, b"p, b"a, b"2a,  b" decay followed by subsequent  
   b"na, b"3a particles decaying
 Pn, Pp, Pa, P2a, P3a, PSF  Electron capture and/or b# fol-

lowed by other decays
 n, p, p2a Neutron, proton, etc.
 12C, 14C 12C, 14C

A-14
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   Appendix 8 Atomic Mass Table A-15

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Neutron (n)

  0   1   1.008665 10.4 m b!

Hydrogen (H)

  1   1   1.007825 99.985%
  1   2   2.014102 0.015%
  1   3   3.016049 12.33 y b!

Helium (He)

  2   3   3.016029 0.000137%
  2   4   4.002603 99.999863%
  2   5   5.012220 0.60 MeV a, n
  2   6   6.018888 806.7 ms b!

  2   7   7.028030 160 keV n
  2   8   8.033922 119.0 ms b!, b!n

Lithium (Li)

  3   5   5.012540 1.5 MeV a, p
  3   6   6.015122 7.5%
  3   7   7.016004 92.5%
  3   8   8.022487 838 ms b!, b!2a
  3   9   9.026789 178.3 ms b!, b!n
  3  10  10.035481 1.2 MeV n
  3  11  11.043796 8.5 ms b!, b!na

Beryllium (Be)

  4   6   6.019726 92 keV 2p
  4   7   7.016929 53.29 d P
  4   8   8.005305 6.8 eV 2a
  4   9   9.012182 100%
  4  10  10.013534 1.51 " 106 y b!

  4  11  11.021658 13.81 s b!, b!a
  4  12  12.026921 23.6 ms b!, b!n

Boron (B)

  5   8   8.024607 770 ms Pa, P, P2a
  5   9   9.013329 0.54 keV 2a, p
  5  10  10.012937 19.9%
  5  11  11.009305 80.1%
  5  12  12.014352 20.20 ms b!, b!3a
  5  13  13.017780 17.36 ms b!

  5  14  14.025404 13.8 ms b!

  5  15  15.031097 10.5 ms b!

Carbon (C)

  6   9   9.031040 126.5 ms P, Pp, P2a
  6  10  10.016853 19.255 s P
  6  11  11.011434 20.39 m P
  6  12  12.000000 98.89%
  6  13  13.003355 1.11%
  6  14  14.003242 5730 y b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Carbon (C)

  6  15  15.010599 2.449 s b!

  6  16  16.014701 0.747 s b!

  6  17  17.022584 193 ms b!, b!n
  6  18  18.026760 88 ms b!

Nitrogen (N)

  7  12  12.018613 11.000 ms P, P3a
  7  13  13.005739 9.965 m P
  7  14  14.003074 99.63%
  7  15  15.000109 0.37%
  7  16  16.006101 7.13 s b!

  7  17  17.008450 4.173 s b!, b!n
  7  18  18.014082 624 ms  b!, b!a,  b!n
  7  19  19.017027 304 ms b!, b!n
  7  20  20.023370 100 ms b!, b!n
  7  21  21.027090 95 ms b!n, b!

  7  22  22.034440 24 ms b!n, b!

Oxygen (O)

  8  13  13.024810 8.58 ms P
  8  14  14.008595 70.606 s P
  8  15  15.003065 122.24 s P
  8  16  15.994915 99.76%
  8  17  16.999132 0.038%
  8  18  17.999160 0.20%
  8  19  19.003579 26.91 s b!

  8  20  20.004076 13.51 s b!

  8  21  21.008655 3.42 s b!

  8  22  22.009970 2.25 s b!

Fluorine (F)

  9  16  16.011466 40 keV p
  9  17  17.002095 64.49 s P
  9  18  18.000938 109.77 m P
  9  19  18.998403 100%
  9  20  19.999981 11.00 s b!

  9  21  20.999949 4.158 s b!

  9  22  22.002999 4.23 s b!

  9  23  23.003570 2.23 s b!

  9  24  24.008100 340 ms b!

Neon (Ne)

 10  17  17.017700 109.2 ms P, Pp
 10  18  18.005697 1.672 s P
 10  19  19.001880 17.22 s P
 10  20  19.992440 90.48%
 10  21  20.993847 0.27%
 10  22  21.991386 9.25%
 10  23  22.994467 37.24 s b!

 10  24  23.993615 3.38 m b!

 10  25  24.997790 602 ms b!

 10  26  26.000460 230 ms b!
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A-16 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Sodium (Na)

 11  20  20.007348 447.9 ms P
 11  21  20.997655 22.49 s P
 11  22  21.994437 2.6019 y P
 11  23  22.989770 100%
 11  24  23.990963 14.9590 h b!

 11  25  24.989954 59.1 s b!

 11  26  25.992590 1.072 s b!

 11  27  26.994010 301 ms b!, b!n

Magnesium (Mg)

 12  20  20.018863 95 ms P, Pp
 12  21  21.011714 122 ms P, Pp
 12  22  21.999574 3.857 s P
 12  23  22.994125 11.317 s P
 12  24  23.985042 78.99%
 12  25  24.985837 10.00%
 12  26  25.982593 11.01%
 12  27  26.984341 9.458 m b!

 12  28  27.983877 20.91 h b!

 12  29  28.988550 1.30 s b!

 12  30  29.990460 335 ms b!

 12  31  30.996550 230 ms b!, b!n
 12  32  31.999150 120 ms b!, b!n

Aluminum (Al)

 13  23  23.007265 0.47 s P, Pp
 13  24  23.999941 2.053 s P, Pa
 13  25  24.990429 7.183 s P
 13  26  25.986892 7.4 " 105 y P
 13  27  26.981538 100%
 13  28  27.981910 2.2414 m b!

 13  29  28.980445 6.56 m b!

 13  30  29.982960 3.60 s b!

 13  31  30.983946 644 ms b!

Silicon (Si)

 14  24  24.011546 102 ms P, Pp
 14  25  25.004107 220 ms P, Pp
 14  26  25.992330 2.234 s P
 14  27  26.986705 4.16 s P
 14  28  27.976927 92.23%
 14  29  28.976495 4.67%
 14  30  29.973770 3.10%
 14  31  30.975363 157.3 m b!

 14  32  31.974148 172 y b!

 14  33  32.978001 6.18 s b!

 14  34  33.978576 2.77 s b!

 14  35  34.984580 0.78 s b!

 14  36  35.986690 0.45 s b!, b!n

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Phosphorus (P)

 15  27  26.999190 260 ms P, Pp
 15  28  27.992312 270.3 ms P
 15  29  28.981801 4.140 s P
 15  30  29.978314 2.498 m P
 15  31  30.973762 100%
 15  32  31.973907 14.262 d b!

 15  33  32.971725 25.34 d b!

 15  34  33.973636 12.43 s b!

 15  35  34.973314 47.3 s b!

 15  36  35.978260 5.6 s b!

 15  37  36.979610 2.31 s b!

 15  38  37.984470 0.64 s b!, b!n

Sulfur (S)

 16  30  29.984903 1.178 s P
 16  31  30.979554 2.572 s P
 16  32  31.972071 95.02%
 16  33  32.971459 0.75%
 16  34  33.967867 4.21%
 16  35  34.969032 87.51 d b!

 16  36  35.967081 0.02%
 16  37  36.971126 5.05 m b!

 16  38  37.971163 170.3 m b!

 16  39  38.975140 11.5 s b!

 16  40  39.975470 8.8 s b!

Chlorine (Cl)

 17  33  32.977452 2.511 s P
 17  34  33.973762 1.5264 s P
 17  35  34.968853 75.77%
 17  36  35.968307 3.01 " 105 y b!, P
 17  37  36.965903 24.23%
 17  38  37.968011 37.24 m b!

 17  39  38.968008 55.6 m b!

 17  40  39.970420 1.35 m b!

 17  41  40.970650 38.4 s b!

 17  42  41.973170 6.8 s b!

 17  43  42.974200 3.3 s b!

Argon (Ar)

 18  35  34.975257 1.775 s P
 18  36  35.967546 0.337%
 18  37  36.966776 35.04 d P
 18  38  37.962732 0.063%
 18  39  38.964313 269 y b!

 18  40  39.962383 99.600%
 18  41  40.964501 1.822 h b!

 18  42  41.963050 32.9 y b!

 18  43  42.965670 5.37 m b!

 18  44  43.965365 11.87 m b!

 18  45  44.968090 21.48 s b!

 18  46  45.968090 8.4 s b!
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   Appendix 8 Atomic Mass Table A-17

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Potassium (K)

 19  37  36.973377 1.226 s P
 19  38  37.969080 7.636 m P
 19  39  38.963707 93.2581%
 19  40  39.963999  1.277 " 109 y b!, P

0.0117%
 19  41  40.961826 6.7302%
 19  42  41.962403 12.360 h b!

 19  43  42.960716 22.3 h b!

 19  44  43.961560 22.13 m b!

 19  45  44.960700 17.3 m b!

 19  46  45.961976 105 s b!

 19  47  46.961678 17.5 s b!

 19  48  47.965513 6.8 s b!

 19  49  48.967450 1.26 s b!, b!n

Calcium (Ca)

 20  38  37.976319 440 ms P
 20  39  38.970718 859.6 ms P
 20  40  39.962591 96.941%
 20  41  40.962278 1.03 " 105 y P
 20  42  41.958618 0.647%
 20  43  42.958767 0.135%
 20  44  43.955481 2.086%
 20  45  44.956186 162.6 d b!

 20  46  45.953693 0.004%
 20  47  46.954546 4.536 d b!

 20  48  47.952534 0.187%
 20  49  48.955673 8.718 m b!

 20  50  49.957518 13.9 s b!

 20  51  50.961470 10.0 s b!, b!n
 20  52  51.965100 4.6 s b!

Scandium (Sc)

 21  43  42.961151 3.891 h P
 21  44  43.959403 3.927 h P
 21  45  44.955910 100%
 21  46  45.955170 83.79 d b!

 21  47  46.952408 3.349 d b!

 21  48  47.952235 43.7 h b!

 21  49  48.950024 57.2 m b!

 21  50  49.952187 102.5 s b!

 21  51  50.953603 12.4 s b!

Titanium (Ti)

 22  44  43.959690 49 y P
 22  45  44.958124 184.8 m P
 22  46  45.952630 8.25%
 22  47  46.951764 7.44%
 22  48  47.947947 73.72%
 22  49  48.947871 5.41%
 22  50  49.944792 5.18%

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Titanium (Ti)

 22  51  50.946616 5.76 m b!

 22  52  51.946898 1.7 m b!

 22  53  52.949730 32.7 s b!

Vanadium (V)

 23  47  46.954907 32.6 m P
 23  48  47.952255 15.974 d P
 23  49  48.948517 330 d P
 23  50  49.947163  1.4 " 1017 y P, b!

0.250%
 23  51  50.943964 99.750%
 23  52  51.944780 3.74 m b!

 23  53  52.944343 1.61 m b!

 23  54  53.946444 49.8 s b!

Chromium (Cr)

 24  48  47.954036 21.56 h P
 24  49  48.951341 42.3 m P
 24  50  49.946050 4.345%
 24  51  50.944772 27.702 d P
 24  52  51.940512 83.79%
 24  53  52.940654 9.50%
 24  54  53.938885 2.365%
 24  55  54.940844 3.497 m b!

 24  56  55.940645 5.94 m b!

 24  57  56.943750 21.1 s b!

Manganese (Mn)

 25  51  50.948216 46.2 m P
 25  52  51.945570 5.591 d P
 25  53  52.941295 3.74 " 106 y P
 25  54  53.940363 312.12 d P, b!

 25  55  54.938050 100%
 25  56  55.938909 2.5785 h b!

 25  57  56.938287 85.4 s b!

 25  58  57.939990 65.3 s b!

 25  59  58.940450 4.6 s b!

 25  60  59.943190 51 s b!

Iron (Fe)

 26  51  50.956825 305 ms P
 26  52  51.948117 8.275 h P
 26  53  52.945312 8.51 m P
 26  54  53.939615 5.845%
 26  55  54.938298 2.73 y P
 26  56  55.934942 91.754%
 26  57  56.935399 2.119%
 26  58  57.933280 0.282%
 26  59  58.934880 44.503 d b!

 26  60  59.934077 1.5 " 106 y b!

 26  61  60.936749 5.98 m b!

 26  62  61.936770 68 s b!
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A-18 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Cobalt (Co)

 27  55  54.942003 17.53 h P
 27  56  55.939844 77.27 d P
 27  57  56.936296 271.79 d P
 27  58  57.935758 70.82 d P
 27  59  58.933200 100%
 27  60  59.933822 5.2714 y b!

 27  61  60.932479 1.650 h b!

 27  62  61.934054 1.50 m b!

 27  63  62.933615 27.4 s b!

Nickel (Ni)

 28  56  55.942136 6.08 d P
 28  57  56.939800 35.60 h P
 28  58  57.935348 68.077%
 28  59  58.934352 7.6 " 104 y P
 28  60  59.930791 26.223%
 28  61  60.931060 1.140%
 28  62  61.928349 3.634%
 28  63  62.929673 100.1 y b!

 28  64  63.927970 0.926%
 28  65  64.930088 2.517 h b!

 28  66  65.929115 54.6 h b!

 28  67  66.931570 21 s b!

 28  68  67.931845 19 s b!

 28  69  68.935180 11.4 s b!

Copper (Cu)

 29  59  58.939504 81.5 s P
 29  60  59.937368 23.7 s P
 29  61  60.933462 3.333 h P
 29  62  61.932587 9.74 m P
 29  63  62.929601 69.17%
 29  64  63.929768 12.700 h P, b!

 29  65  64.927794 30.83%
 29  66  65.928873 5.088 m b!

 29  67  66.927750 61.83 h b!

 29  68  67.929640 31.1 s b!

 29  69  68.929425 2.85 m b!

 29  70  69.932409 4.5 s b!

 29  71  70.932620 19.5 s b!

Zinc (Zn)

 30  60  59.941832 2.38 m P
 30  61  60.939514 89.1 s P
 30  62  61.934334 9.186 h P
 30  63  62.933216 38.47 m P
 30  64  63.929147 48.6%
 30  65  64.929245 244.26 d P
 30  66  65.926037 27.9%
 30  67  66.927131 4.1%

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Zinc (Zn)

 30  68  67.924848 18.8%
 30  69  68.926554 56.4 m b!

 30  70  69.925325  5 " 1014 y 2b!

0.6%
 30  71  70.927727 2.45 m b!

 30  72  71.926861 46.5 h b!

 30  73  72.929780 23.5 s b!

 30  74  73.929460 95.6 s b!

 30  75  74.932940 10.2 s b!

Gallium (Ga)

 31  63  62.939140 32.4 s P
 31  64  63.936838 2.630 m P
 31  65  64.932739 15.2 m P
 31  66  65.931592 9.49 h P
 31  67  66.928205 3.2612 d P
 31  68  67.927984 67.629 m P
 31  69  68.925581 60.108%
 31  70  69.926028 21.14 m b!, P
 31  71  70.924705 39.892%
 31  72  71.926369 14.10 h b!

 31  73  72.925170 4.86 h b!

 31  74  73.926940 8.12 m b!

 31  75  74.926501 126 s b!

 31  76  75.928930 32.6 s b!

 31  77  76.929280 13.2 s b!

Germanium (Ge)

 32  64  63.941570 63.7 s P
 32  65  64.939440 30.9 s P
 32  66  65.933850 2.26 h P
 32  67  66.932738 18.9 m P
 32  68  67.928097 270.82 d P
 32  69  68.927972 39.05 h P
 32  70  69.924250 21.23%
 32  71  70.924954 11.43 d P
 32  72  71.922076 27.66%
 32  73  72.923459 7.73%
 32  74  73.921178 35.94%
 32  75  74.922859 82.78 m b!

 32  76  75.921403 7.44%
 32  77  76.923548 11.30 h b!

 32  78  77.922853 88.0 m b!

 32  79  78.925400 18.98 s b!

 32  80  79.925445 29.5 s b!

Arsenic (As)

 33  67  66.939190 42.5 s P
 33  68  67.936790 151.6 s P
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   Appendix 8 Atomic Mass Table A-19

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Arsenic (As)

 33  69  68.932280 15.2 m P
 33  70  69.930930 52.6 m P
 33  71  70.927115 65.28 h P
 33  72  71.926753 26.0 h P
 33  73  72.923825 80.30 d P
 33  74  73.923929 17.77 d P, b!

 33  75  74.921596 100%
 33  76  75.922394 26.32 h b!

 33  77  76.920648 38.83 h b!

 33  78  77.921829 90.7 m b!

 33  79  78.920948 9.01 m b!

 33  80  79.922578 15.2 s b!

 33  81  80.922133 33.3 s b!

 33  82  81.924500 19.1 s b!

 33  83  82.924980 13.4 s b!

Selenium (Se)

 34  68  67.941870s 35.5 s P
 34  69  68.939560 27.4 s P, Pp
 34  70  69.933500s 41.1 m P
 34  71  70.932270s 4.74 m P
 34  72  71.927112 8.40 d P
 34  73  72.926767 7.15 h P
 34  74  73.922477 0.89%
 34  75  74.922524 119.779 d P
 34  76  75.919214 9.36%
 34  77  76.919915 7.63%
 34  78  77.917310 23.78%
 34  79  78.918500 6.5 " 105 y b!

 34  80  79.916522 49.61%
 34  81  80.917993 18.45 m b!

 34  82  81.916700  1.1 " 1020 y 2b!

8.73%
 34  83  82.919119 22.3 m b!

 34  84  83.918465 3.1 m b!

 34  85  84.922240 31.7 s b!

 34  86  85.924271 15.3 s b!

Bromine (Br)

 35  71  70.939250s 21.4 s P
 35  72  71.936500 78.6 s P
 35  73  72.931790 3.4 m P
 35  74  73.929891 25.4 m P
 35  75  74.925776 96.7 m P
 35  76  75.924542 16.2 h P
 35  77  76.921380 57.036 h P
 35  78  77.921146 6.46 m P, b!

 35  79  78.918338 50.69%
 35  80  79.918530 17.68 m b!, P

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Bromine (Br)

 35  81  80.916291 49.31%
 35  82  81.916805 35.30 h b!

 35  83  82.915180 2.40 h b!

 35  84  83.916504 31.80 m b!

 35  85  84.915608 2.90 m b!

 35  86  85.918797 55.1 s b!

 35  87  86.920711 55.60 s b!, b!n
 35  88  87.924070 16.34 s b!, b!n

Krypton (Kr)

 36  72  71.941910 17.2 s P
 36  73  72.938930 27.0 s P, Pp
 36  74  73.933260 11.50 m P
 36  75  74.931034 4.3 m P
 36  76  75.925948 14.8 h P
 36  77  76.924668 74.4 m P
 36  78  77.920386 0.35%
 36  79  78.920083 35.04 h P
 36  80  79.916378 2.25%
 36  81  80.916592 2.29 " 105 y P
 36  82  81.913485 11.6%
 36  83  82.914136 11.5%
 36  84  83.911507 57.0%
 36  85  84.912527 10.756 y b!

 36  86  85.910610 17.3%
 36  87  86.913354 76.3 m b!

 36  88  87.914447 2.84 h b!

 36  89  88.917630 3.15 m b!

 36  90  89.919524 32.32 s b!

Rubidium (Rb)

 37  75  74.938569 19.0 s P
 37  76  75.935071 36.5 s P
 37  77  76.930407 3.78 m P
 37  78  77.928141 17.66 m P
 37  79  78.923997 22.9 m P
 37  80  79.922519 33.4 s P
 37  81  80.918994 4.576 h P
 37  82  81.918208 1.273 m P
 37  83  82.915112 86.2 d P
 37  84  83.914385 32.77 d P, b!

 37  85  84.911789 72.17%
 37  86  85.911167 18.631 d b!, P
 37  87  86.909184  4.75 " 1010 y b!

27.83%
 37  88  87.911319 17.78 m b!

 37  89  88.912280 15.15 m b!

 37  90  89.914809 158 s b!

 37  91  90.916534 58.4 s b!
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A-20 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Strontium (Sr)

 38  78  77.932179 2.5 m P
 38  79  78.929707 2.25 m P
 38  80  79.924525 106.3 m P
 38  81  80.923213 22.3 m P
 38  82  81.918401 25.55 d P
 38  83  82.917555 32.41 h P
 38  84  83.913425 0.56%
 38  85  84.912933 64.84 d P
 38  86  85.909262 9.86%
 38  87  86.908879 7.00%
 38  88  87.905614 82.58%
 38  89  88.907453 50.53 d b!

 38  90  89.907738 28.78 y b!

 38  91  90.910210 9.63 h b!

 38  92  92.911030 2.71 h b!

 38  93  92.914022 7.423 m b!

 38  94  93.915360 75.3 s b!

 38  95  94.919358 23.90 s b!

Yttrium (Y)

 39  80  79.934340s 35 s P
 39  81  80.929130 72.4 s P
 39  83  82.922350 7.08 m P
 39  85  84.916427 2.68 h P
 39  86  85.914888 14.74 h P
 39  87  86.910878 79.8 h P
 39  88  87.909503 106.65 d P
 39  89  88.905848 100%
 39  90  89.907151 64.1 h b!

 39  91  90.907303 58.51 d b!

 39  92  91.908947 3.54 h b!

 39  93  92.909582 10.18 h b!

 39  94  93.911594 18.7 m b!

 39  95  94.912824 10.3 m b!

Zirconium (Zr)

 40  81  80.936820 15 s P, Pp
 40  82  81.931090 32 s P
 40  83  82.928650 44 s P, Pp
 40  84  83.923250s 25.9 m P
 40  85  84.921470 7.86 m P
 40  86  85.916470 16.5 h P
 40  87  86.914817 1.68 h P
 40  88  87.910226 83.4 d P
 40  89  88.908889 78.41 h P
 40  90  89.904704 51.45%
 40  91  90.905645 11.22%
 40  92  91.905040 17.15%
 40  93  92.906476 1.53 " 106 y b!

 40  94  93.906316 17.38%
 40  95  94.908043 64.02 d b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Zirconium (Zr)

 40  96  95.908276  3.9 " 1019 y 2b!

2.80%
 40  97  96.910951 16.90 h b!

 40  98  97.912746 30.7 s b!

 40  99  98.916511 2.1 s b!

Niobium (Nb)

 41  84  83.933570s 12 s P, Pp
 41  85  84.927910 20.9 s P
 41  86  85.925040 88 s P
 41  87  86.920360 2.6 m P
 41  88  87.917960s 14.5 m P
 41  89  88.913500 1.18 h P
 41  90  89.911264 14.60 h P
 41  91  90.906991 6.8 " 102 y P
 41  92  91.907193 3.47 " 107 y P, b!

 41  93  92.906378 100%
 41  93m  92.906412 16.13 y IT
 41  94  93.907284 2.03 " 104 y b!

 41  95  94.906835 34.975 d b!

 41  96  95.908100 23.35 h b!

 41  97  96.908097 1.227 h b!

 41  99  98.911618 15.0 s b!

Molybdenum (Mo)

 42  86  85.930700 19.6 s P
 42  87  86.927330 14.5 s P, Pp
 42  88  87.921953 8.0 m P
 42  89  88.919481 2.04 m P
 42  90  89.913936 5.67 h P
 42  91  90.911751 15.49 m P
 42  92  91.906810 14.84%
 42  93  92.906812 4.0 " 103 y P
 42  94  93.905088 9.25%
 42  95  94.905842 15.92%
 42  96  95.904679 16.68%
 42  97  96.906021 9.55%
 42  98  97.905408 24.13%
 42  99  98.907712 65.94 h b!

 42 100  99.907477  1.2 " 1019 y 2b!

9.63%
 42 101 100.910347 14.61 m b!

 42 102 101.910297 11.3 m b!

 42 103 102.913200 67.5 s b!

 42 104 103.913760 60 s b!

 42 105 104.916970 35.6 s b!

Technetium (Tc)

 43  90 89.923560 8.7 s P
 43  91 90.918430 3.14 m P
 43  92 91.915260 4.23 m P
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   Appendix 8 Atomic Mass Table A-21

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Technetium (Tc)

 43  93 92.910248 2.75 h P
 43  94 93.909656 293 m P
 43  95 94.907656 20.0 h P
 43  96 95.907871 4.28 d P
 43  97 96.906365 2.6 " 106 y P
 43  98 97.907216 4.2 " 106 y b!

 43  99 98.906255 2.111 " 105 y b!

 43  99m 98.906408 6.01 h IT, b!

 43 100 99.907658 15.8 s b!

 43 101 100.907314 14.22 m b!

 43 103 102.909179 54.2 s b!

 43 104 103.911440 18.3 m b!

 43 105 104.911660 7.6 m b!

 43 106 105.914355 35.6 s b!

 43 107 106.915080 21.2 s b!

Ruthenium (Ru)

 44  92 91.920120s 3.65 m P
 44  93 92.917050 59.7 s P
 44  94 93.911360 51.8 m P
 44  95 94.910413 1.643 h P
 44  96 95.907598 5.52%
 44  97 96.907555 2.9 d P
 44  98 97.905287 1.88%
 44  99 98.905939 12.7%
 44 100 99.904220 12.6%
 44 101 100.905582 17.0%
 44 102 101.904350 31.6%
 44 103 102.906324 39.26 d b!

 44 104 103.905430 18.7%
 44 105 104.907750 4.44 h b!

 44 106 105.907327 373.59 d b!

 44 107 106.909910 3.75 m b!

 44 108 107.910190 4.55 m b!

 44 109 108.913200 34.5 s b!

 44 110 109.913970 14.6 s b!

Rhodium (Rh)

 45  95 94.915900 5.02 m P
 45  96 95.914518 9.90 m P
 45  97 96.911340 30.7 m P
 45  98 97.910716 8.7 m P
 45  99 98.908132 16.1 d P
 45 100 99.908117 20.8 h P
 45 101 100.906164 3.3 y P
 45 102 101.906843 207 d P, b!

 45 102m 101.906994 2.9 y P, IT
 45 103 102.905504 100%
 45 104 103.906655 42.3 s b!, P
 45 105 104.905692 35.36 h b!

 45 106 105.907285 29.80 s b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Rhodium (Rh)

 45 107 106.906751 21.7 m b!

 45 109 108.908736 80 s b!

 45 110 109.910950 3.2 s b!

 45 111 110.911660s 11 s b!

Palladium (Pd)

 46  96 95.918220 2.03 m P
 46  97 96.916480 3.1 m P
 46  98 97.912721 17.7 m P
 46  99 98.911768 21.4 m P
 46 100 99.908505 3.63 d P
 46 101 100.908289 8.47 h P
 46 102 101.905608 1.02%
 46 103 102.906087 16.991 d P
 46 104 103.904035 11.14%
 46 105 104.905084 22.33%
 46 106 105.903483 27.33%
 46 107 106.905128 6.5 " 106 y b!

 46 108 107.903894 26.46%
 46 109 108.905954 13.70 h b!

 46 110 109.905152 11.72%
 46 111 110.907640 23.4 m b!

 46 112 111.907313 21.03 h b!

 46 113 112.910150 93 s b!

 46 114 113.910365 2.42 m b!

 46 115 114.913680 25 s b!

 46 116 115.914160 11.8 s b!

Silver (Ag)

 47  97 96.924000s 19 s P
 47  98 97.921760 46.7 s P, Pp
 47  99 98.917600 124 s P
 47 100 99.916070 2.01 m P
 47 101 100.912800 11.1 m P
 47 102 101.912000 12.9 m P
 47 103 102.908972 65.7 m P
 47 104 103.908628 69.2 m P
 47 105 104.906528 41.29 d P
 47 106 105.906666 23.96 m P, b!

 47 107 106.905093 51.839%
 47 108 107.905954 2.37 m b!, P
 47 108m 107.906071 418 y P, IT
 47 109 108.904756 48.161%
 47 110 109.906110 24.6 s b!, P
 47 110m 109.906237 249.79 d b!, IT
 47 111 110.905295 7.45 d b!

 47 112 111.907004 3.130 h b!

 47 113 112.906566 5.37 h b!

 47 115 114.908760 20.0 m b!

 47 116 115.911360 2.68 m b!

 47 117 116.911680 72.8 s b!
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A-22 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Cadmium (Cd)

 48  99 98.925010s 16 s P, Pp, Pa
 48 100 99.920230 49.1 s P
 48 101 100.918680 1.2 m P
 48 102 101.914780 5.5 m P
 48 103 102.913419 7.3 m P
 48 104 103.909848 57.7 m P
 48 105 104.909468 55.5 m P
 48 106 105.906458 1.25%
 48 107 106.906614 6.50 h P
 48 108 107.904183 0.89%
 48 109 108.904986 462.6 d P
 48 110 109.903006 12.49%
 48 111 110.904182 12.80%
 48 112 111.902757 24.13%
 48 113 112.904401  9.3 " 1015 y b!

12.22%
 48 113m 112.904684 14.1 y b!, IT
 48 114 113.903358 28.73%
 48 115 114.905431 53.46 h b!

 48 116 115.904755 7.49%
 48 117 116.907218 2.49 h b!

 48 118 117.906914 50.3 m b!

 48 119 118.909920 2.69 m b!

 48 120 119.909851 50.80 s b!

 48 121 120.912980 13.5 s b!

Indium (In)

 49 101 100.926560s 16 s P, Pp
 49 102 101.924710 24 s P
 49 103 102.919914 65 s P
 49 104 103.918340 1.8 m P
 49 105 104.914673 5.07 m P
 49 106 105.913461 6.2 m P
 49 107 106.910292 32.4 m P
 49 108 107.909720 58.0 m P
 49 109 108.907154 4.2 h P
 49 110 109.907169 4.9 h P
 49 111 110.905111 2.8047 d P
 49 112 111.905533 14.97 m P, b!

 49 113 112.904061 4.29%
 49 114 113.904917 71.9 s b!, P
 49 115 114.903878  4.41 " 1014 y b!

95.71%
 49 116 115.905260 14.10 s b!, P
 49 117 116.904516 43.2 m b!

 49 119 118.905846 2.4 m b!

 49 120 119.907960  3.08 s, 46.2 s, b!

47.3 s
 49 121 120.907849 23.1 s b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Tin (Sn)

 50 104 103.923190 20.8 s P
 50 105 104.921390 31 s P, Pp
 50 106 105.916880 115 s P
 50 107 106.915670 2.90 m P
 50 108 107.911970 10.30 m P
 50 109 108.911287 18.0 m P
 50 110 109.907853 4.11 h P
 50 111 110.907735 35.3 m P
 50 112 111.904821 0.97%
 50 113 112.905173 115.09 d P
 50 114 113.902782 0.65%
 50 115 114.903346 0.34%
 50 116 115.901744 14.54%
 50 117 116.902954 7.68%
 50 118 117.901606 24.22%
 50 119 118.903309 8.58%
 50 119m 118.903406 293.1 d IT
 50 120 119.902197 32.59%
 50 121 120.904237 27.06 h b!

 50 121m 120.904243 55 y IT, b!

 50 122 121.903440 4.63%
 50 123 122.905722 129.2 d b!

 50 124 123.905275 5.79%
 50 125 124.907785 9.64 d b!

 50 126 125.907654 1.0 " 105 y b!

 50 127 126.910351 2.10 h b!

 50 128 127.910535 59.07 m b!

 50 129 128.913440 2.23 m b!

 50 130 129.913850 3.72 m b!

 50 131 130.916920 56.0 s b!

 50 132 131.917744 39.7 s b!

Antimony (Sb)

 51 109 108.918136 17.0 s P
 51 110 109.916760s 23.0 s P
 51 111 110.913210s 75 s P
 51 112 111.912395 51.4 s P
 51 113 112.909378 6.67 m P
 51 114 113.909100 3.49 m P
 51 115 114.906599 32.1 m P
 51 116 115.906797 15.8 m P
 51 117 116.904840 2.80 h P
 51 118 117.905532 3.6 m P
 51 119 118.903946 38.19 h P
 51 120 119.905074 15.89 m P
 51 121 120.903818 57.21%
 51 122 121.905175 2.7238 d b!, P
 51 123 122.904216 42.79%
 51 124 123.905938 60.20 d b!

 51 125 124.905248 2.7582 y b!

 51 126 125.907250 12.46 d b!

 51 127 126.906915 3.85 d b!
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   Appendix 8 Atomic Mass Table A-23

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Antimony (Sb)

 51 128 127.909167 9.01 h b!

 51 129 128.909150 4.40 h b!

 51 130 129.911546 39.5 m b!

 51 131 130.911950 23.03 m b!

 51 132 131.914413 2.79 m b!

 51 133 132.915240 2.5 m b!

 51 134 133.920550 10.22 s b!, b!n

Tellurium (Te)

 52 110 109.922410 18.6 s P, a
 52 111 110.921120 19.3 s P, Pp
 52 112 111.917060 2.0 m P
 52 113 112.915930s 1.7 m P
 52 114 113.912060s 15.2 m P
 52 115 114.911580 5.8 m P
 52 116 115.908420 2.49 h P
 52 117 116.908634 62 m P
 52 118 117.905825 6.00 d P
 52 119 118.906408 16.03 h P
 52 120 119.904020 0.096%
 52 121 120.904930 16.78 d P
 52 121m 120.905245 154 d IT, P
 52 122 121.903047 2.603%
 52 123 122.904273  1.3 " 1013 y P

0.908%
 52 123m 122.904538 119.7 d IT
 52 124 123.902820 4.816%
 52 125 124.904425 7.139%
 52 126 125.903306 18.952%
 52 127 126.905217 9.35 h b!

 52 127m 126.905312 109 d IT, b!

 52 128 127.904461  7.7 " 1024 y 2b!

31.687%
 52 129 128.906596 69.6 m b!

 52 130 129.906223  2.7 " 1021 y 2b!

33.799%
 52 131 130.908522 25.0 m b!

 52 132 131.908524 3.204 d b!

 52 133 132.910940 12.5 m b!

 52 134 133.911540 41.8 m b!

 52 135 134.916450 19.0 s b!

 52 136 135.920100 17.5 s b!, b!n

Iodine (I)

 53 115 114.917920s 1.3 m P
 53 117 116.913650 2.22 m P
 53 118 117.913380 13.7 m P
 53 119 118.910180 19.1 m P
 53 120 119.910048 81.0 m P
 53 121 120.907366 2.12 h P
 53 122 121.907592 3.63 m P
 53 123 122.905598 13.27 h P

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Iodine (I)

 53 124 123.906211 4.1760 d P
 53 125 124.904624 59.408 d P
 53 126 125.905619 13.11 d P, b!

 53 127 126.904468 100%
 53 128 127.905805 24.99 m b!, P
 53 129 128.904987 1.57 " 107 y b!

 53 130 129.906674 12.36 h b!

 53 131 130.906124 8.02070 d b!

 53 132 131.907995 2.295 h b!

 53 133 132.907806 20.8 h b!

 53 134 133.909877 52.5 m b!

 53 135 134.910050 6.57 h b!

 53 136 135.914660 83.4 s b!

 53 137 136.917873 24.5 s b!, b!n

Xenon (Xe)

 54 114 113.928150s 10.0 s P
 54 115 114.926540s 18 s Pa, P, Pp
 54 116 115.921740s 59 s P
 54 117 116.920560 61 s P, Pp
 54 118 117.916570 3.8 m P
 54 119 118.915550 5.8 m P
 54 120 119.912150 40 m P
 54 121 120.911386 40.1 m P
 54 122 121.908550 20.1 h P
 54 123 122.908471 2.08 h P
 54 124 123.905896 0.10%
 54 125 124.906398 16.9 h P
 54 126 125.904269 0.09%
 54 127 126.905180 36.3446 d P
 54 128 127.903530 1.91%
 54 129 128.904780 26.4%
 54 130 129.903508 4.1%
 54 131 130.905082 21.2%
 54 132 131.904154 26.9%
 54 133 132.905906 5.2475 d b!

 54 134 133.905394 10.4%
 54 135 134.907207 9.14 h b!

 54 136 135.907220  9.3 " 1019 y 2b!

8.9%
 54 137 136.911563 3.818 m b!

 54 138 137.913990 14.08 m b!, b!n
 54 139 138.918787 39.68 s b!

 54 140 139.921640 13.60 s b!

 54 142 141.929710 1.22 s b!

Cesium (Cs)

 55 118 117.926555 14 s P, Pp
 55 119 118.922371 43.0 s P
 55 120 119.920678 57 s P, Pp
    64 s P
 55 121 120.917184 128 s P
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A-24 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Cesium (Cs) (continued)

 55 122 121.916122 21.2 s P
 55 123 122.912990 5.87 m P
 55 124 123.912246 30.9 s P
 55 125 124.909725 45 m P
 55 126 125.909448 1.63 m P
 55 127 126.907418 6.25 h P
 55 128 127.907748 3.66 m P
 55 129 128.906063 32.06 h P
 55 130 129.906706 29.21 m P, b!

 55 131 130.905460 9.69 d P
 55 132 131.906430 6.479 d P, b!

 55 133 132.905447 100%
 55 134 133.906713 2.0648 y b!, P
 55 135 134.905972 2.3 " 106 y b!

 55 136 135.907306 19 s, 13.16 d b!

 55 137 136.907084 30.1 y b!

 55 138 137.911011 32.41 m b!

 55 139 138.913358 9.27 m b!

 55 140 139.917277 63.7 s b!

 55 141 140.920044 24.94 s b!, b!n

Barium (Ba)

 56 120 119.926050 32 s P
 56 121 120.924490 29.5 s P, Pp
 56 122 121.920260s 1.95 m P
 56 123 122.918850s 2.7 m P
 56 124 123.915088 11.9 m P
 56 125 124.914620 3.5 m P
 56 126 125.911244 100 m P
 56 127 126.911120 12.7 m P
 56 128 127.908309 2.43 d P
 56 129 128.908674 2.23 h P
 56 130 129.906310 0.106%
 56 131 130.906931 11.50 d P
 56 132 131.905056 0.101%
 56 133 132.906002 10.52 y P
 56 134 133.904503 2.417%
 56 135 134.905683 6.592%
 56 136 135.904570 7.854%
 56 137 136.905821 11.23%
 56 138 137.905241 71.70%
 56 139 138.908835 83.06 m b!

 56 140 139.910599 12.752 d b!

 56 141 140.914406 18.27 m b!

 56 142 141.916448 10.6 m b!

 56 143 142.920617 14.33 s b!

 56 144 143.922940 11.5 s b!, b!n

Lanthanum (La)

 57 123 122.926240s 17 s P
 57 124 123.924530s 29 s P

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Lanthanum (La)

 57 125 124.920670s 76 s P
 57 126 125.919370s 54 s P
 57 127 126.916160s 3.8 m P
 57 128 127.915450 5.0 m P
 57 129 128.912670 11.6 m P
 57 130 129.912320s 8.7 m P
 57 131 130.910110 59 m P
 57 132 131.910110 4.8 h P
 57 133 132.908400 3.912 h P
 57 134 133.908490 6.45 m P
 57 135 134.906971 19.5 h P
 57 136 135.907650 9.87 m P
 57 137 136.906470 6 " 104 y P
 57 138 137.907107  1.05 " 1011 y P, b!

0.0902%
 57 139 138.906348 99.9098%
 57 140 139.909473 1.6781 d b!

 57 141 140.910957 3.92 h b!

 57 142 141.914074 91.1 m b!

 57 143 142.916059 14.2 m b!

 57 144 143.919590 40.8 s b!

 57 145 144.921640 24.8 s b!

Cerium (Ce)

 58 125 124.928540s 9.0 s P, Pp
 58 126 125.924100s 50 s P
 58 127 126.922750s 32 s P
 58 128 127.918870s 3 m P
 58 129 128.918090s 3.5 m P
 58 130 129.914690s 25 m P
 58 131 130.914420 10.2 m P
 58 132 131.911490s 3.51 h P
 58 133 132.911550s 4.9 h P
 58 134 133.909030 75.9 h P
 58 135 134.909146 17.7 h P
 58 136 135.907140 0.19%
 58 137 136.907780 9.0 h P
 58 138 137.905986 0.25%
 58 139 138.906647 137.640 d P
 58 140 139.905434 88.48%
 58 141 140.908271 32.501 d b!

 58 142 141.909240  5 " 1016 y 2b!

11.08%
 58 143 142.912381 33.039 h b!

 58 144 143.913643 284.893 d b!

 58 146 144.917230 3.01 m b!

 58 146 145.918690 13.52 m b!

 58 147 146.922510 56.4 s b!

 58 148 147.924390 56 s b!
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   Appendix 8 Atomic Mass Table A-25

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Praseodymium (Pr)

 59 129 128.924860s 24 s P
 59 130 129.923380s 40.0 s P
 59 131 130.920060 1.53 m P
 59 132 131.919120s 1.6 m P
 59 133 132.916200s 6.5 m P
 59 134 133.915670s 17 m P
 59 135 134.913140 24 m P
 59 136 135.912650 13.1 m P
 59 137 136.910680 1.28 h P
 59 138 137.910749 1.45 m P
 59 139 138.908932 4.41 h P
 59 140 139.909071 3.39 m P
 59 141 140.907648 100%
 59 142 141.910040 19.12 h b!, P
 59 143 142.910812 13.57 d b!

 59 144 143.913301 17.28 m b!

 59 145 144.914507 5.984 h b!

 59 146 145.917590 24.15 m b!

 59 147 146.918980 13.4 m b!

 59 148 147.922180 2.27 m b!

 59 149 148.923791 2.26 m b!

 59 151 150.928230 18.90 s b!

Neodymium (Nd)

 60 130 129.928780s 28 s P
 60 131 130.927100 27 s P, Pp
 60 132 131.923120s 1.75 m P
 60 133 132.922210s 70 s P
 60 134 133.918650s 8.5 m P
 60 135 134.918240s 12.4 m P
 60 136 135.915020 50.65 m P
 60 137 136.914640 38.5 m P
 60 138 137.911930s 5.04 h P
 60 139 138.911920 29.7 m P
 60 140 139.909310 3.37 d P
 60 141 140.909605 2.49 h P
 60 142 141.907719 27.13%
 60 143 142.909810 12.18%
 60 144 143.910083  2.29 " 1015 y a

23.80%
 60 145 144.912569 8.30%
 60 146 145.913112 17.19%
 60 147 146.916096 10.98 d b!

 60 148 147.916889 5.76%
 60 149 148.920144 1.728 h b!

 60 150 149.920887  1.1 " 1019 y 2b!

5.64%
 60 151 150.923825 12.44 m b!

 60 152 151.924680 11.4 m b!

 60 153 152.927695 28.9 s b!

 60 154 153.929480 25.9 s b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Promethium (Pm)

 61 133 132.929720s 12 s P
 61 134 133.928490s 5 s P
 61 135 134.924620s 40 s P
 61 136 135.923450 47 s, 107 s P
 61 137 136.920710s 2.4 m P
 61 138 137.919450s 10 s P
 61 139 138.916760 4.15 m P
 61 141 140.913607 20.90 m P
 61 142 141.912950 40.5 s P
 61 143 142.910928 265 d P
 61 144 143.912586 363 d P
 61 145 144.912744 17.7 y P, a
 61 146 145.914692 5.53 y P, b!

 61 147 146.915134 2.6234 y b!

 61 148 147.917468 5.370 d b!

 61 149 148.918329 53.08 h b!

 61 150 149.920979 2.68 h b!

 61 151 150.921203 28.40 h b!

 61 152 151.923490 4.12 m b!

 61 153 152.924113 5.4 m b!

 61 154 153.926550 1.73 m b!

 61 155 154.928100 41.5 s b!

 61 156 155.931060 26.70 s b!

 61 157 156.933200s 10.56 s b!

Samarium (Sm)

 62 134 133.934020s 10 s P
 62 135 134.932350s 10 s P, Pp
 62 136 135.928300s 47 s P
 62 137 136.927050 45 s P
 62 138 137.923540s 3.1 m P
 62 139 138.922302 2.57 m P
 62 140 139.918991 14.82 m P
 62 141 140.918469 10.2 m P
 62 142 141.915193 72.49 m P
 62 143 142.914624 8.83 m P
 62 144 143.911995 3.1%
 62 145 144.913406 340 d P
 62 146 145.913037 10.3 " 107 y a
 62 147 146.914893  1.06 " 1011 y a

15.0%
 62 148 147.914818  7 " 1015 y a

11.3%
 62 149 148.917180  2 " 1015 y a

13.8%
 62 150 149.917271 7.4%
 62 151 150.919928 90 y b!

 62 152 151.919728 26.7%
 62 153 152.922094 46.27 h b!

 62 154 153.922205 22.7%
 62 155 154.924636 22.3 m b!

 62 156 155.925526 9.4 h b!
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A-26 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Samarium (Sm) (continued)

 62 157 156.928350 482 s b!

 62 158 157.929990 5.30 m b!

 62 159 158.933200s 11.37 s b!

Europium (Eu)

 63 137 136.935210s 11 s P
 63 138 137.933450s 12.1 s P
 63 139 138.929840s 17.9 s P
 63 141 140.924890 41.4 s P
 63 143 142.920287 2.57 m P
 63 144 143.918774 10.2 s P
 63 145 144.916261 5.93 d P
 63 146 145.917200 4.59 d P
 63 147 146.916741 24.1 d P, a
 63 148 147.918154 54.5 d P, a
 63 149 148.917926 93.1 d P
 63 150 149.919698 36.9 y P
 63 151 150.919846 47.8%
 63 152 151.921740 13.537 y P, b!

 63 153 152.921226 52.2%
 63 154 153.922975 8.593 y b!, P
 63 155 154.922889 4.7611 y b!

 63 156 155.924751 15.19 d b!

 63 157 156.925419 15.18 h b!

 63 158 157.927840 45.9 m b!

 63 159 158.929084 18.1 m b!

 63 160 159.931970s 38 s b!

 63 161 160.933680s 26 s b!

 63 162 161.937040s 10.6 s b!

Gadolinium (Gd)

 64 140 139.933950s 15.8 s P
 64 141 140.932210s 14 s P, Pp
 64 142 141.928230s 70.2 s P
 64 143 142.926740 39 s P
 64 144 143.922790s 4.5 m P
 64 145 144.921690 23.0 m P
 64 146 145.918305 48.27 d P
 64 147 146.919089 38.06 h P
 64 148 147.918110 74.6 y a
 64 149 148.919336 9.28 d P, a
 64 150 149.918655 1.79 " 106 y a
 64 151 150.920344 124 d P, a
 64 152 151.919788  1.08 " 1014 y a

0.20%
 64 153 152.921746 241.6 d P
 64 154 153.920862 2.18%
 64 155 154.922619 14.80%
 64 156 155.922120 20.47%
 64 157 156.923957 15.65%
 64 158 157.924101 24.84%
 64 159 158.926385 18.479 h b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Gadolinium (Gd)

 64 160 159.927051 21.86%
 64 161 160.929666 3.66 m b!

 64 162 161.930981 8.4 m b!

 64 163 162.933990s 68 s b!

 64 164 163.935860s 45 s b!

Terbium (Tb)

 65 143 142.934750s 12 s P
 65 145 144.928880s 31.6 s P
 65 147 146.924037 1.7 h P
 65 148 147.924300 60 m P
 65 149 148.923242 4.118 h P, a
 65 150 149.923654 3.48 h P, a
 65 151 150.923098 17.609 h P, a
 65 152 151.924070 17.5 h P, a
 65 153 152.923431 2.34 d P
 65 154 153.924690 21.5 h P, b!

 65 155 154.923500 5.32 d P
 65 156 155.924744 5.35 d P, b!

 65 157 156.924021 99 y P
 65 158 157.925410 180 y P, b!

 65 159 158.925343 100%
 65 160 159.927164 72.3 d b!

 65 161 160.927566 6.88 d b!

 65 162 161.929480 7.60 m b!

 65 163 162.930644 19.5 m b!

 65 164 163.933350 3.0 m b!

 65 165 164.934880s 2.11 m b!

Dysprosium (Dy)

 66 145 144.936950s 10.5 s P
 66 146 145.932720 33.2 s P
 66 147 146.930880 40 s P, Pp
 66 148 147.927180 3.1 m P
 66 149 148.927334 4.20 m P
 66 150 149.925580 7.17 m P, a
 66 151 150.926180 17.9 m P, a
 66 152 151.924714 2.38 h P, a
 66 153 152.925761 6.4 h P, a
 66 154 153.924422 3.0 " 106 y a
 66 155 154.925749 9.9 h P
 66 156 155.924278 0.06%
 66 157 156.925461 8.14 h P
 66 158 157.924405 0.10%
 66 159 158.925736 144.4 d P
 66 160 159.925194 2.34%
 66 161 160.926930 18.9%
 66 162 161.926795 25.5%
 66 163 162.928728 24.9%
 66 164 163.929171 28.2%
 66 165 164.931700 2.334 h b!

 66 166 165.932803 81.6 h b!
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   Appendix 8 Atomic Mass Table A-27

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Dysprosium (Dy)

 66 167 166.935650 6.20 m b!

 66 168 167.937230s 8.7 m b!

 66 169 168.940300 39 s b!

Holmium (Ho)

 67 149 148.933790 21.1 s P
 67 150 149.933350s 72 s P
 67 151 150.931681 35.2 s P, a
 67 152 151.931740 161.8 s P, a
 67 153 152.930195 2.02 m P, a
 67 154 153.930596 11.76 m P, a
 67 155 154.929079 48 m a, P
 67 156 155.929710s 56 m P
 67 157 156.928190 12.6 m P
 67 158 157.928950 11.3 m P
 67 159 158.927709 33.05 m P
 67 160 159.928726 25.6 m P
 67 161 160.927852 2.48 h P
 67 162 161.929092 150.0 m P
 67 163 162.928730 4570 y P
 67 164 163.930231 29 m P, b!

 67 165 164.930319 100%
 67 166 165.932281 26.763 h b!

 67 166m 165.932287 1.20 " 103 y b!

 67 167 166.933126 3.1 h b!

 67 168 167.935500 2.99 m b!

 67 169 168.936868 4.7 m b!

 67 170 169.939610 2.76 m b!

 67 171 170.941460 53 s b!

 67 172 171.944820s 25 s b!

Erbium (Er)

 68 149 148.942170s 4 s P, Pp
 68 150 149.937760s 18.5 s P
 68 151 150.937460s 23.5 s P
 68 152 151.935080 10.3 s a, P
 68 153 152.935093 37.1 s a, P
 68 154 153.932777 3.73 m P, a
 68 155 154.933200 5.3 m P, a
 68 156 155.931020 19.5 m P
 68 157 156.931950 18.65 m P, a
 68 158 157.929910s 2.29 h P
 68 159 158.930681 36 m P
 68 160 159.929080 28.58 h P
 68 161 160.930001 3.21 h P
 68 162 161.928775 0.14%
 68 163 162.930029 75.0 m P
 68 164 163.929197 1.61%
 68 165 164.930723 10.36 h P
 68 166 165.930290 33.6%
 68 167 166.932045 22.95%
 68 168 167.932368 26.8%

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Erbium (Er)

 68 169 168.934588 9.40 d b!

 68 170 169.935460 14.9%
 68 171 170.938026 7.516 h b!

 68 172 171.939352 49.3 h b!

 68 173 172.942400s 1.4 m b!

 68 174 173.944340s 3.3 m b!

Thulium (Tm)

 69 155 154.939192 21.6 s P, a
 69 156 155.939010 83.8 s P, a
 69 157 156.936760 3.63 m P
 69 158 157.937000s 3.98 m P
 69 159 158.934810 9.13 m P
 69 160 159.935090 9.4 m P
 69 161 160.933400 30.2 m P
 69 162 161.933970 21.70 m P
 69 163 162.932648 1.810 h P
 69 164 163.933451 2.0 m P
 69 164 163.933451 5.1 m IT, P
 69 165 164.932432 30.06 h P
 69 166 165.933553 7.70 h P
 69 167 166.932849 9.25 d P
 69 168 167.934170 93.1 d P, b!

 69 169 168.934211 100%
 69 170 169.935798 128.6 d b!, P
 69 171 170.936426 1.92 y b!

 69 172 171.938396 63.6 h b!

 69 173 172.939600 8.24 h b!

 69 174 173.942160 5.4 m b!

 69 175 174.943830 15.2 m b!

 69 176 175.946990 1.9 m b!

 69 177 176.949040s 85 s b!

Ytterbium (Yb)

 70 156 155.942850 26.1 s P, a
 70 157 156.942660 38.6 s P, a
 70 158 157.939858 1.49 m P, a
 70 159 158.940150 1.58 m P
 70 160 159.937560s 4.8 m P
 70 161 160.937850s 4.2 m P
 70 162 161.935750s 18.87 m P
 70 163 162.936270 11.05 m P
 70 164 163.934520s 75.8 m P
 70 165 164.935398 9.9 m P
 70 166 165.933880 56.7 h P
 70 167 166.934947 17.5 m P
 70 168 167.933894 0.13%
 70 169 168.935187 32.026 d P
 70 170 169.934759 3.05%
 70 171 170.936322 14.3%
 70 172 171.936378 21.9%
 70 173 172.938207 16.12%
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A-28 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Ytterbium (Yb) (continued)

 70 174 173.938858 31.8%
 70 175 174.941272 4.185 d b!

 70 176 175.942568 12.7%
 70 177 176.945257 1.911 h b!

 70 178 177.946643 74 m b!

 70 179 178.950170s 8.0 m b!

 70 180 179.952330s 2.4 m b!

Lutetium (Lu)

 71 158 157.949170s 10.4 s P, a
 71 159 158.946620 12.1 s P, a
 71 160 159.946020s 36.1 s P
 71 161 160.943540s 72 s P
 71 162 161.943220s 1.37 m P
 71 163 162.941200 238 s P
 71 164 163.941220s 3.14 m P
 71 165 164.939610 12 m P
 71 166 165.939760 2.65 m P
 71 167 166.938310 51.5 m P
 71 168 167.938700 5.5 m P
 71 169 168.937649 34.06 h P
 71 170 169.938472 2.00 d P
 71 171 170.937910 8.24 d P
 71 172 171.939082 6.70 d P
 71 173 172.938927 1.37 y P
 71 174 173.940334 3.31 y P
 71 174m 173.940517 142 d IT, P
 71 175 174.940768 97.41%
 71 176 175.942682  3.73 " 1010 y b!

2.59%
 71 177 176.943755 6.734 d b!

 71 177m 176.944796 160.4 d b!, IT
 71 178 177.945951 28.4 m b!

 71 179 178.947324 4.59 h b!

 71 180 179.949880 5.7 m b!

 71 181 180.951970s 3.5 m b!

 71 182 181.955210s 2.0 m b!

 71 183 182.957570s 58 s b!

 71 184 183.961170s 20 s b!

Hafnium (Hf)

 72 160 159.950710 13.0 s P, a
 72 161 160.950330 16.8 s a, P
 72 162 161.947203 37.6 s P, a
 72 163 162.947060s 40.0 s P
 72 164 163.944420s 111 s P
 72 165 164.944540s 76 s P
 72 166 165.942250s 6.77 m P
 72 167 166.942600s 2.05 m P
 72 168 167.940630s 25.95 m P
 72 169 168.941160 3.24 m P

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Hafnium (Hf)

 72 170 169.939650s 16.01 h P
 72 171 170.940490s 12.1 h P
 72 172 171.939460 1.87 y P
 72 173 172.940650s 23.6 h P
 72 174 173.940040  2.0 " 1015 y a

0.162%
 72 175 174.941503 70 d P
 72 176 175.941402 5.206%
 72 177 176.943220 18.606%
 72 178 177.943698 27.297%
 72 178m 177.946324 31 y IT
 72 179 178.945815 13.629%
 72 180 179.946549 35.100%
 72 181 180.949099 42.39 d b!

 72 182 181.950553 9 " 106 y b!

 72 183 182.953530 1.067 h b!

 72 184 183.955450 4.12 h b!

 72 185 184.958780s 3.5 m b!

Tantalum (Ta)

 73 163 162.954320 11.0 s P, a
 73 164 163.953570s 14.2 s P
 73 165 164.950820s 31.0 s P
 73 166 165.950470s 31.5 s P
 73 167 166.947970s 1.33 m P
 73 168 167.947790s 2.0 m P
 73 169 168.945920s 4.9 m P
 73 170 169.946090s 6.76 m P
 73 171 170.944460s 23.3 m P
 73 172 171.944740 36.8 m P
 73 173 172.943540s 3.14 h P
 73 174 173.944170 1.05 h P
 73 175 174.943650s 10.5 h P
 73 176 175.944740 8.09 h P
 73 177 176.944472 56.6 h P
 73 178 177.945750 9.31 m P
    2.36 h P
 73 179 178.945934 1.82 y P
 73 180 179.947466 8.152 h P, b!

 73 180m 179.947546  1.2 " 1015 y b!, P
0.012%

 73 181 180.947996 99.988%
 73 182 181.950152 114.43 d b!

 73 183 182.951373 5.1 d b!

 73 184 183.954009 8.7 h b!

 73 185 184.955559 49.4 m b!

 73 186 185.958550 10.5 m b!

Tungsten (W)

 74 166 165.955020 18.8 s P, a
 74 167 166.954670s 19.9 s a, P
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   Appendix 8 Atomic Mass Table A-29

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Tungsten (W)

 74 168 167.951860s 51 s P, a
 74 169 168.951760s 80 s P
 74 170 169.949290s 2.42 m P
 74 171 170.949460s 2.38 m P
 74 172 171.947420s 6.6 m P
 74 173 172.947830s 7.6 m P
 74 174 173.946160s 31 m P
 74 175 174.946770s 35.2 m P
 74 176 175.945590s 2.5 h P
 74 177 176.946620s 135 m P
 74 178 177.945850 21.6 d P
 74 179 178.947072 37.05 m P
 74 180 179.946706 0.12%
 74 181 180.948198 121.2 d P
 74 182 181.948206 26.498%
 74 183 182.950224  1.1 " 1017 y

14.314%
 74 184 183.950933  3 " 1017 y a?

30.642%
 74 185 184.953421 75.1 d b!

 74 186 185.954362 28.426%
 74 187 186.957158 23.72 h b!

 74 188 187.958487 69.4 d b!

 74 189 188.961910 11.5 m b!

 74 190 189.963180 30.0 m b!

Rhenium (Re)

 75 171 170.955550s 15.2 s P
 75 172m 171.955290s 15 s P
 75 173 172.953060s 1.98 m P
 75 174 173.953110s 2.40 m P
 75 175 174.951390s 5.89 m P
 75 176 175.951570s 5.3 m P
 75 177 176.950270s 14.0 m P
 75 178 177.950850 13.2 m P
 75 179 178.949980 19.5 m P
 75 180 179.950790 2.44 m P
 75 181 180.950065 19.9 h P
 75 182 181.951210 64.0 h P
 75 183 182.950821 70.0 d P
 75 184 183.952524 38.0 d P
 75 184m 183.952726 169 d IT, P
 75 185 184.952956 37.40%
 75 186 185.954987 90 h b!, P
 75 186m 185.955147 2.0 " 105 y IT, b!

 75 187 186.955751  4.35 " 1010 y b!, a
62.60%

 75 188 187.958112 17.021 h b!

 75 189 188.959228 24.3 h b!

 75 190 189.961820 3.1 m b!

 75 191 190.963124 9.8 m b!

 75 192 191.965960s 16 s b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Osmium (Os)

 76 172 171.960080s 19.2 s P, a
 76 173 172.959790s 16 s P, a
 76 174 173.957120s 44 s P, a
 76 175 174.957080s 1.4 m P
 76 176 175.954950s 3.6 m P
 76 177 176.955050s 2.8 m P
 76 178 177.953350 5.0 m P
 76 179 178.953950s 6.5 m P
 76 180 179.952350s 21.5 m P
 76 181 180.953270 105 m P
 76 182 181.952186 22.10 h P
 76 183 182.953110s 13.0 h P
 76 184 183.952491  5.6 " 1013 y a

0.020%
 76 185 184.954043 93.6 d P
 76 186 185.953838  2.0 " 1015 y a

1.58%
 76 187 186.955748 1.6%
 76 188 187.955836 13.3%
 76 189 188.958145 16.1%
 76 190 189.958445 26.4%
 76 191 190.960928 15.4 d b!

 76 192 191.961479 41.0%
 76 193 192.964148 30.11 h b!

 76 194 193.965179 6.0 y b!

 76 195 194.968120 6.5 m b!

 76 196 195.969620 34.9 m b!

Iridium (Ir)

 77 177 176.961170s 30 s P, a
 77 178 177.961080s 12 s P
 77 179 178.959150s 79 s P
 77 180 179.959250s 1.5 m P
 77 181 180.957640 4.90 m P
 77 182 181.958130 15 m P
 77 183 182.956810s 57 m P
 77 184 183.957390 3.09 h P
 77 185 184.956590s 14.4 h P
 77 186 185.957951 16.64 h P
 77 187 186.957361 10.5 h P
 77 188 187.958852 41.5 h P
 77 189 188.958716 13.2 d P
 77 190 189.960590 11.78 d P
 77 191 190.960591 37.3%
 77 192 191.962602 73.830 d b!, P
 77 192m 191.962768 241 y IT
 77 193 192.962924 62.7%
 77 194 193.965076 19.15 h b!

 77 194m 193.965280 171 d b!

 77 195 194.965977 2.5 h b!

 77 196 195.968380 52 s b!

 77 197 196.969636 5.8 m b!
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A-30 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Platinum (Pt)

 78 177 176.968450s 11 s P, a
 78 178 177.965710s 21.1 s P, a
 78 179 178.965480s 21.2 s P, a
 78 180 179.963220s 52 s P, a
 78 181 180.963180s 51 s P, a
 78 182 181.961270 2.2 m P, a
 78 183 182.961730s 6.5 m P, a
 78 184 183.959900s 17.3 m P, a
 78 185 184.960750 70.9 m P
 78 186 185.959430 2.0 h P, a
 78 187 186.960560s 2.35 h P
 78 188 187.959396 10.2 d P, a
 78 189 188.960832 10.87 h P
 78 190 189.959930  6.5 " 1011 y a

0.01%
 78 191 190.961685 2.96 d P
 78 192 191.961035 0.79%
 78 193 192.962985 50 y P
 78 194 193.962664 32.9%
 78 195 194.964774 33.8%
 78 196 195.964935 25.3%
 78 197 196.967323 19.8915 h b!

 78 198 197.967876 7.2%
 78 199 198.970576 30.8 m b!

 78 200 199.971424 12.5 h b!

 78 201 200.974500 2.5 m b!

 78 202 201.975740s 44 h b!

Gold (Au)

 79 181 180.969950s 11.4 s P, a
 79 182 181.969620s 15.6 s P, a
 79 183 182.967620s 42.0 s P, a
 79 184 183.967470s 12.0 s P
 79 185 184.965810 4.25 m P, a
 79 186 185.966000 10.7 m P
 79 187 186.964560s 8.4 m P
 79 188 187.965090s 8.84 m P
 79 189 188.963890s 28.7 m P, a
 79 190 189.964699 42.8 m P, a
 79 191 190.963650 3.18 h P
 79 192 191.964810 4.94 h P
 79 193 192.964132 17.65 h P
 79 194 193.965339 38.02 h P
 79 195 194.965018 186.10 d P
 79 196 195.966551 6.183 d P, b!

 79 197 196.966552 100%
 79 198 197.968225 2.6952 d b!

 79 199 198.9687848 3.139 d b!

 79 200 199.970720 48.4 m b!

 79 201 200.971641 26 m b!

 79 202 201.973790 28.8 s b!

 79 203 202.975137 60 s b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Gold (Au)

 79 204 203.977710s 39.8 s b!

 79 205 204.979610s 31 s b!

Mercury (Hg)

 80 182 181.974750s 10.83 s P, a
 80 184 183.971900s 30.6 s P, a
 80 185 184.971980s 49.1 s P, a
 80 186 185.969460 1.38 m P, a
 80 187 186.969790s 2.4 m P, a
 80 188 187.967560s 3.25 m P, a
 80 189 188.968130s 7.6 m P, a
 80 190 189.966280s 20.0 m P, a
 80 191 190.967060 49 m P
 80 192 191.965570s 4.85 h P
 80 193 192.966644 3.80 h P
 80 194 193.965382 520 y P
 80 195 194.966640 9.9 h P
 80 196 195.965815 0.15%
 80 197 196.967195 64.14 h P
 80 198 197.966752 9.97%
 80 199 198.968262 16.87%
 80 200 199.968309 23.10%
 80 201 200.970285 13.18%
 80 202 201.970626 29.86%
 80 203 202.972857 46.612 d b!

 80 204 203.973476 6.87%
 80 205 204.976056 5.2 m b!

 80 206 205.977499 8.15 m b!

 80 207 206.982580 2.9 m b!

 80 208 207.985940s 42 m b!

Thallium (Tl)

 81 184 183.981760s 11 s P, a
 81 185 184.979100s 19.5 s P
 81 186 185.978550s 27.5 s P, a
 81 187 186.976170s 51 s P, a
 81 189 188.973690s 2.3 m P
 81 193 192.970550s 21.6 m P
 81 194 193.971050s 33.0 m P, a
 81 195 194.969650s 1.16 h P
 81 196 195.970520s 1.84 h P
 81 197 196.969540 2.84 h P
 81 198 197.970470 5.3 h P
 81 199 198.969810 7.42 h P
 81 200 199.970945 26.1 h P
 81 201 200.970804 72.912 h P
 81 202 201.972091 12.23 d P
 81 203 202.972329 29.524%
 81 204 203.973849 3.78 y b!, P
 81 205 204.974412 70.476%
 81 206 205.976095 4.199 m b!

 81 207 206.977408 4.77 m b!
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   Appendix 8 Atomic Mass Table A-31

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Thallium (Tl)

 81 208 207.982005 3.053 m b!

 81 209 208.985349 2.20 m b!

 81 210 209.990066 1.30 m b!, b!n

Lead (Pb)

 82 183 182.991930s 300 ms a, P
 82 184 183.988200s 0.55 s a
 82 185 184.987580s 4.1 s a
 82 186 185.984300s 4.7 s a
 82 188 187.981060s 25.5 s P, a
 82 189 188.980880s 51 s P, a
 82 190 189.978180 1.2 m P, a
 82 191 190.978200s 1.33 m P, a
 82 192 191.975760s 3.5 m P, a
 82 194 193.973970s 12.0 m P, a
 82 195 194.974470s 15 m P
 82 196 195.972710s 37 m P, a
 82 197 196.973380s 8 m P
 82 198 197.971980s 2.40 h P
 82 199 198.972910 90 m P
 82 200 199.971816 21.5 h P
 82 201 200.972850 9.33 h P
 82 202 201.972144 52.5 " 103 y P, a
 82 203 202.973375 51.873 h P
 82 204 203.973029  1.4 " 1017 y a

1.4%
 82 205 204.974467 1.52 " 107 y P
 82 206 205.974449 24.1%
 82 207 206.975881 22.1%
 82 208 207.976636 52.4%
 82 209 208.981075 3.253 h b!

 82 210 209.984173 22.3 y b!, a
 82 211 210.988731 36.1 m b!

 82 212 211.991888 10.64 h b!

 82 213 212.996500s 10.2 m b!

 82 214 213.999798 26.8 m b!

Bismuth (Bi)

 83 191 190.986050s 12 s a, P
 83 192 191.985370s 34.6 s P, a
 83 193 192.983060s 67 s P, a
 83 194 193.982750s 95 s P
 83 195 194.980750s 183 s P, a
 83 196 195.980610s 308 s P, a
 83 197 196.978930 9.33 m P, a
 83 198 197.979020 10.3 m P
 83 199 198.977580 27 m P
 83 200 199.978140 36.4 m P
 83 201 200.976970 108 m P, a
 83 202 201.977670 1.72 h P, a
 83 203 202.976868 11.76 h P, a
 83 204 203.977805 11.22 h P

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Bismuth (Bi)

 83 205 204.977375 15.31 d P
 83 206 205.978483 6.243 d P
 83 207 206.978455 31.55 y P
 83 208 207.979727 3.68 " 105 y P
 83 209 208.980383 100%
 83 210 209.984105 5.013 d b!, a
 83 210m 209.984396 3.04 " 106 y a
 83 211 210.987258 2.14 m a, b!

 83 212 211.991272 60.55 m b!, a, b!a
 83 213 212.994375 45.59 m b!, a
 83 214 213.998699 19.9 m b!, a
 83 215 215.001830 7.6 m b!

 83 216 216.006200s 3.6 m b!

Polonium (Po)

 84 194 193.988280 0.392 s a
 84 195 194.988050s 4.64 s a, P
 84 196 195.985510s 5.8 s a, P
 84 197 196.985570s 53.6 s P, a
 84 198 197.983340s 1.76 m a, P
 84 199 198.983600s 5.48 m P, a
 84 200 199.981740s 11.5 m P, a
 84 201 200.98210s 15.3 m P, a
 84 202 201.980700s 44.7 m P, a
 84 203 202.981410 36.7 m P, a
 84 204 203.980307 3.53 h P, a
 84 205 204.981170 1.66 h P, a
 84 206 205.980465 8.8 d P, a
 84 207 206.981578 5.80 h P, a
 84 208 207.981231 2.898 y a, P
 84 209 208.982416 102 y a, P
 84 210 209.982857 138.376 d a
 84 211 210.986637 0.516 s a
 84 212 211.988852 0.299 ms a
 84 213 212.992843 4.2 ms a
 84 214 213.995186 164.3 ms a
 84 215 214.999415 1.781 ms a, b!

 84 216 216.001905 0.145 s a
 84 217 217.006250s 10 s a, b!

 84 218 218.008966 3.10 m a, b!

Astatine (At)

 85 196 195.995700s 0.3 s a
 85 197 196.993290s 0.35 s a, P
 85 198 197.992750s 4.2 s a, P
 85 199 198.990630s 7.2 s a, P
 85 200 199.990290s 43 s a, P
 85 201 200.988490 89 s a, P
 85 202 201.988450 184 s P, a
 85 203 202.986850 7.4 m P, a
 85 204 203.987260 9.2 m P, a
 85 205 204.986040 26.2 m P, a
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A-32 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Astatine (At) (continued)

 85 206 205.986600 30.0 m P, a
 85 207 206.985776 1.80 h P, a
 85 208 207.986583 1.63 h P, a
 85 209 208.986159 5.41 h P, a
 85 210 209.987131 8.1 h P, a
 85 211 210.987481 7.214 h P, a
 85 212 211.990735 0.314 s a, P, b!

 85 213 212.992921 125 ns a
 85 214 213.996356 558 ns a
 85 215 214.998641 0.10 ms a
 85 216 216.002409 0.30 ms a, P, b!

 85 217 217.004710 32.3 ms a, b!

 85 218 218.008681 1.6 s a, b!

 85 219 219.011300 56 s a, b!

 85 220 220.015300s 3.71 m b!

 85 221 221.018140s 2.3 m b!

 85 222 222.022330s 54 s b!

 85 223 223.025340s 50 s b!

Radon (Rn)

 86 199 198.998310s 0.62 s a, P
 86 200 199.995680s 1.06 s a, P
 86 201 200.995540s 7.0 s a, P
 86 202 201.993220s 9.85 s P, a
 86 203 202.993320s 45 s a, P
 86 204 203.991370s 1.24 m a, P
 86 205 204.991670s 170 s P, a
 86 206 205.990160s 5.67 m a, P
 86 207 206.990730 9.25 m P, a
 86 208 207.989631 24.35 m a, P
 86 209 208.990380 28.5 m P, a
 86 210 209.989680 2.4 h a, P
 86 211 210.990585 14.6 h P, a
 86 212 211.990689 23.9 m a
 86 213 212.993868 25.0 ms a
 86 214 213.995346 0.27 ms a
 86 215 214.998729 2.30 ms a
 86 216 216.000258 45 ms a
 86 217 217.003915 0.54 ms a
 86 218 218.005586 35 ms a
 86 219 219.009475 3.96 s a
 86 220 220.011384 55.6 s a
 86 221 221.015460s 25 m b!, a
 86 222 222.017570 3.8235 d a
 86 223 223.021790s 23.2 m b!

 86 224 224.024090s 107 m b!

 86 225 225.028440s 4.5 m b!

 86 226 226.030890s 6.0 m b!

 86 227 227.035410s 22.5 s b!

 86 228 228.038080s 65 s b!

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Francium (Fr)

 87 201 201.003990s 48 ms a, P
 87 202 202.003290s 0.34 s a, P
 87 203 203.001050s 0.55 s a, P
 87 204 204.000590s 1.7 s a, P
 87 205 204.998660 3.85 s a, P
 87 206 205.998490 15.9 s a, P
 87 207 206.996860 14.8 s a, P
 87 208 207.997130 59.1 s a, P
 87 209 208.995920 50.0 s a, P
 87 210 209.996398 3.18 m a, P
 87 211 210.995529 3.10 m a, P
 87 212 211.996195 20.0 m P, a
 87 213 212.996175 34.6 s a, P
 87 214 213.998955 5.0 ms a
 87 215 215.000326 86 ns a
 87 216 216.003188 0.70 ms a, P
 87 217 217.004616 16 ms a
 87 218 218.007563 1.0 ms a
 87 219 219.009241 20 ms a
 87 220 220.012313 27.4 s a, b!

 87 221 221.014246 4.9 m a, b!

 87 222 222.017544 14.2 m b!

 87 223 223.019731 22.00 m b!, a
 87 224 224.023240 3.30 m b!

 87 225 225.025607 4.0 m b!

 87 226 226.029340 48 s b!

 87 227 227.031830 2.47 m b!

 87 228 228.035720s 39 s b!

 87 229 229.038430s 50 s b!

 87 230 230.042510s 19.1 s b!

 87 231 231.045410s 17.5 s b!

Radium (Ra)

 88 206 206.003780s 0.24 s a
 88 207 207.003730s 1.3 s a, P
 88 208 208.001780s 1.7 s a, P
 88 209 209.001940s 4.6 s a, P
 88 210 210.000450s 3.7 s a, P
 88 211 211.000890 13 s a, P
 88 212 211.999783 13.0 s a, P
 88 213 213.000350 2.74 m a, P
 88 214 214.000091 2.46 s a, P
 88 215 215.002704 1.59 ms a
 88 216 216.003518 182 ns a, P
 88 217 217.006306 1.7 ms a
 88 218 218.007124 15.6 ms a
 88 219 219.010069 10 ms a
 88 220 220.011015 17 ms a
 88 221 221.013908 28 s a, 14C
 88 222 222.015362 38.0 s a, 14C
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   Appendix 8 Atomic Mass Table A-33

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Radium (Ra)

 88 223 223.018497 11.435 d a, 14C
 88 224 224.020202 3.66 d a, 12C
 88 225 225.023604 14.9 d b!

 88 226 226.025403 1600 y a, 14C
 88 227 227.029171 42.2 m b!

 88 228 228.031064 5.75 y b!

 88 229 229.034820 4.0 m b!

 88 230 230.037080 93 m b!

 88 231 231.041220s 1.72 m b!

 88 232 232.043690s 250 s b!

 88 233 233.048000s 30 s b!

 88 234 234.050550s 30 s b!

Actinium (Ac)

 89 209 209.009570 0.10 s a, P
 89 210 210.009260 0.35 s a, P
 89 211 211.007650 0.25 s a
 89 212 212.007810 0.93 s a, P
 89 213 213.006570 0.80 s a
 89 214 214.006890 8.2 s a, P
 89 215 215.006450 0.17 s a, P
 89 216 216.008721 0.33 ms a
 89 217 217.009333 69 ns a, P
 89 218 218.011630 1.06 ms a
 89 219 219.012400 11.8 ms a
 89 220 220.014750 26.1 ms a, P
 89 221 221.015580 52 ms a
 89 222 222.017829 5.0 s a, P
 89 223 223.019126 2.10 m a, P
 89 224 224.021708 2.9 h P, a, b!

 89 225 225.023221 10.0 d a
 89 226 226.026090 29.4 h b!, P, a
 89 227 227.027747 21.773 y b!, a
 89 228 228.031015 6.15 h b!, a
 89 229 229.032930 62.7 m b!

 89 230 230.036030 122 s b!

 89 231 231.038550 7.5 m b!

 89 232 232.042020 119 s b!

 89 233 233.044550s 145 s b!

 89 234 234.048420s 44 s b!

Thorium (Th)

 90 212 212.012920s 30 ms a, P
 90 213 213.012960s 140 ms a
 90 214 214.011450s 100 ms a
 90 215 215.011730 1.2 s a
 90 216 216.011051 0.028 s a, P
 90 217 217.013070 0.252 ms a
 90 218 218.013268 109 ns a
 90 219 219.015520 1.05 ms a

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Thorium (Th)

 90 220 220.015733 9.7 ms a, P
 90 221 221.018171 1.68 ms a
 90 222 222.018454 2.2 ms a
 90 223 223.020795 0.60 s a
 90 224 224.021459 1.05 s a
 90 225 225.023941 8.72 m a, P
 90 226 226.024891 30.6 m a
 90 227 227.027699 18.72 d a
 90 228 228.028731 1.9131 y a
 90 229 229.031755 7880 y a
 90 230 230.033127 7.538 " 104 y a, SF
 90 231 231.036297 25.52 h b!, a
 90 232 232.038050  1.405 " 1010 y a, SF

100%
 90 233 233.041577 22.3 m b!

 90 234 234.043595 24.10 d b!

 90 235 235.047500 7.1 m b!

 90 236 236.049710s 37.5 m b!

 90 237 237.053890s 5.0 m b!

Protactinium (Pa)

 91 215 215.019100 15 ms a
 91 216 216.019110 105 ms a, P
 91 217 217.018290 3.4 ms a
 91 218 218.020010 0.11 ms a
 91 219 219.019880 53 ns a
 91 220 220.021880 0.78 ms a
 91 221 221.021860 5.9 ms a
 91 222 222.023730s 3.3 ms a
 91 223 223.023960 5 ms a
 91 224 224.025610 0.95 s a, P
 91 225 225.026120 1.7 s a
 91 226 226.027933 1.8 m a, P
 91 227 227.028793 38.3 m a, P
 91 228 228.031037 22 h P, a
 91 229 229.032089 1.50 d P, a
 91 230 230.034533 17.4 d P, b!, a
 91 231 231.035879 3.276 " 104 y a, SF
 91 232 232.038582 1.31 d b!, P
 91 233 233.040240 26.967 d b!

 91 234 234.043302 6.70 h b!

 91 235 235.045440 24.5 m b!

 91 236 236.048680 9.1 m b!

 91 237 237.051140 8.7 m b!

 91 238 238.054500 2.3 m b!

Uranium (U)

 92 225 225.029380 95 ms a
 92 226 226.029340 0.20 s a
 92 227 227.031140 1.1 m a
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A-34 Appendix 8 Atomic Mass Table

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Uranium (U) (continued)

 92 228 228.031366 9.1 m a, P
 92 229 229.033496 58 m P, a
 92 230 230.033927 20.8 d a
 92 231 231.036289 4.2 d P, a
 92 232 232.037146 68.9 y a
 92 233 233.039628 1.592 " 105 y a, SF
 92 234 234.040946  2.455 " 105 y a, SF

0.0055%
 92 235 235.043923  703.8 " 106 y a, SF

0.720%
 92 236 236.045562 2.342 " 107 y a, SF
 92 237 237.048724 6.75 d b!

 92 238 238.050783  4.468 " 109 y a, SF
99.2745%

 92 239 239.054288 23.45 m b!

 92 240 240.056586 14.1 h b!, a
 92 242 242.062930s 16.8 m b!

Neptunium (Np)

 93 227 227.034960 0.51 s a
 93 228 228.036180s 1.07 m P, PSF
 93 229 229.036250 3.85 m a, P
 93 230 230.037810 4.6 m P, a
 93 231 231.038230 48.8 m P, a
 93 232 232.040100s 14.7 m P
 93 233 233.040730 36.2 m P, a
 93 234 234.042889 4.4 d P
 93 235 235.044056 396.1 d P, a
 93 236 236.046560 154 " 103 y P, b!, a
 93 237 237.048167 2.144 " 106 y a, SF
 93 238 238.050940 2.117 d b!

 93 239 239.052931 2.3565 d b!

 93 240 240.056169 61.9 m b!

 93 240m 240.056169 7.22 m b!, IT
 93 241 241.058250 13.9 m b!

 93 242 242.061640s 2.2 m b!

    5.5 m b!

 93 243 243.064270s 1.8 m b!

 93 244 244.067850s 2.29 m

Plutonium (Pu)

 94 230 230.039646 200 s a
 94 232 232.041179 34.1 m P, a
 94 233 233.042990 20.9 m P, a
 94 234 234.043305 8.8 h P, a
 94 235 235.045282 25.3 m P, a
 94 236 236.046048 2.858 y a, SF
 94 237 237.048404 45.2 d P, a
 94 238 238.049553 87.7 y a, SF
 94 239 239.052156 24110 y a, SF
 94 240 240.053808 6564 y a, SF
 94 241 241.056845 14.35 y b!, a, SF

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Plutonium (Pu)

 94 242 242.058737 3.733 " 105 y a, SF
 94 243 243.061997 4.956 h b!

 94 244 244.064198 8.08 " 107 y a, SF
 94 245 245.067739 10.5 h b!

 94 246 246.070198 10.84 d b!

 94 247 247.074070s 2.27 d b!

Americium (Am)

 95 232 232.046590s 79 s P, a
 95 234 234.047790s 2.32 m a, P
 95 237 237.049970 73.0 m P, a
 95 238 238.051980 98 m P, a
 95 239 239.053018 11.9 h P, a
 95 240 240.055288 50.8 h P, a
 95 241 241.056823 432.7 y a, SF
 95 242 242.059543 16.02 h b!, P
 95 242m 242.059596 141 y IT, a, SF
 95 243 243.061373 7370 y a, SF
 95 244 244.064279 10.1 h b!

 95 245 245.066445 2.05 h b!

 95 246 246.069768 39 m b!

 95 247 247.072090s 23.0 m b!

Curium (Cm)

 96 238 238.053020 2.4 h P, a
 96 239 239.054950s 2.9 h P, a
 96 240 240.055519 27 d a, P, SF
 96 241 241.057647 32.8 d P, a
 96 242 242.058829 162.79 d a, SF
 96 243 243.061382 29.1 y a, P, SF
 96 244 244.062746 18.10 y a, SF
 96 245 245.065486 8500 y a, SF
 96 246 246.067218 4730 y a, SF
 96 247 247.070347 1.56 " 107 y a
 96 248 248.072342 3.40 " 105 y a, SF
 96 249 249.075947 64.15 m b!

 96 250 250.078351 9700 y SF, a, b!

 96 251 251.082278 16.8 m b!

 96 252 252.084870s 2 d b!

Berkelium (Bk)

 97 240 240.059750s 4.8 m P, PSF
 97 242 242.062050s 7.0 m P
 97 243 243.063002 4.5 h P, a
 97 244 244.065168 4.35 h P, a
 97 245 245.066355 4.94 d P, a
 97 246 246.068670 1.80 d P, a
 97 247 247.070299 1380 y a
 97 248 248.073080s 23.7 h b!, P, a
    #9 y a
 97 249 249.074980 320 d b!, a, SF
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   Appendix 8 Atomic Mass Table A-35

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Berkelium (Bk)

 97 250 250.078311 3.217 h b!

 97 251 251.080753 55.6 m b!, a

Californium (Cf)

 98 240 240.062300s 1.06 m a
 98 241 241.063720s 3.78 m P, a
 98 242 242.063690 3.49 m a
 98 243 243.065420s 10.7 m P, a
 98 244 244.065990 19.4 m a
 98 245 245.068040s 45.0 m P, a
 98 246 246.068799 35.7 h a, P, SF
 98 247 247.070992 3.11 h P, a
 98 248 248.072178 333.5 d a, SF
 98 249 249.074847 351 y a, SF
 98 250 250.076400 13.08 y a, SF
 98 251 251.079580 898 y a
 98 252 252.081620 2.645 y a, SF
 98 253 253.085127 17.81 d b!, a
 98 254 254.087316 60.5 d SF, a
 98 255 255.091040s 85 m b!

 98 256 256.093440s 12.3 m SF, b!, a

Einsteinium (Es)

 99 243 243.069630s 21 s P, a
 99 244 244.070970s 37 s P, a
 99 245 245.071320s 1.1 m P, a
 99 246 246.072970s 7.7 m P, a
 99 247 247.073650s 4.55 m P, a
 99 248 248.075460s 27 m P, a
 99 249 249.076410s 102.2 m P, a
 99 250 250.078650s 8.6 h P, a
 99 251 251.079984 33 h P, a
 99 252 252.082970 471.7 d a, P, b!

 99 253 253.084818 20.47 d a, SF
 99 254 254.088016 275.7 d a, P, SF, b!

 99 255 255.090266 39.8 d b!, a, SF
 99 256 256.093590s 25.4 m b!

Fermium (Fm)

100 242 242.073430s 0.8 ms SF
100 243 243.074510s 0.18 s a
100 244 244.074080s 3.3 ms SF
100 245 245.075380s 4.2 s a, SF
100 246 246.075280 1.1 s a, SF, P
100 248 248.077184 36 s a, P, SF
100 249 249.079020s 2.6 m P, a
100 250 250.079515 30 m a, P, SF
100 251 251.081566 5.30 h P, a
100 252 252.082460 25.39 h a, SF
100 253 253.085176 3.00 d P, a
100 254 254.086848 3.240 h a, SF

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Fermium (Fm)

100 255 255.089955 20.07 h a, SF
100 256 256.091767 157.6 m SF, a
100 257 257.095099 100.5 d a, SF
100 258 258.097070s 370 ms SF
100 259 259.100590s 1.5 s SF

Mendelevium (Md)

101 247 247.081800s 2.9 s a
101 248 248.082910s 7 s P, a, SF
101 249 249.083000s 24 s a, P
101 250 250.084490s 52 s P, a
101 251 251.084920s 4.0 m P, a
101 252 252.086630s 4.8 m P
101 253 253.087280s 6 m P
101 254 254.089730s 28 m P
101 255 255.091075 27 m P, a, SF
101 256 256.094050 78.1 m P, a, SF
101 257 257.095535 5.52 h P, a, SF
101 258 258.098425 51.5 d a, SF
101 258m 258.098425 60 m P
101 259 259.100500s 1.60 h SF, a
101 260 260.103650s 27.8 d SF, a, P, b!

Nobelium (No)

102 250 250.087490s 0.25 ms SF, a
102 251 251.088960s 0.8 s a, P, SF
102 252 252.088966 2.30 s a, SF
102 253 253.090650s 1.7 m a, P
102 254 254.090949 55 s a, P, SF
102 255 255.093232 3.1 m a, P
102 256 256.094276 2.91 s a, SF
102 257 257.096850 25 s a
102 258 258.098200s 1.2 ms SF, a
102 259 259.101020s 58 m a, P, SF
102 260 260.102640s 106 ms SF

Lawrencium (Lr)

103 252 252.095330s 1 s a, P, SF
103 253 253.095260s 1.3 s a, SF, P
103 254 254.096590s 13 s a, P, SF
103 255 255.096770s 22 s a, P
103 256 256.098760s 28 s a, P, SF
103 257 257.099610s 0.646 s a, SF
103 258 258.101880s 3.9 s a, P, SF
103 259 259.102990s 6.1 s a, SF, P
103 260 260.105570s 180 s a, P, SF
103 261 261.106940s 39 m SF
103 262 262.109690s 3.6 h P, SF
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   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Rutherfordium (Rf)

104 253 253.100680s 1.8 s a, SF
104 254 254.100170s 0.5 ms SF, a
104 255 255.101490s 1.5 s SF, a
104 256 256.101180 6.7 ms SF, a
104 257 257.103070s 4.7 s a, P, SF
104 258 258.103570s 12 ms SF, a
104 259 259.105630s 3.1 s a, SF, P
104 260 260.106430s 20.1 ms SF, a
104 261 261.108750s 65 s a, P, SF
104 262 262.109920s 1.2 s SF

Dubnium (Db)

105 255 255.107400s 1.6 s a, SF
105 256 256.108110s 2.6 s a, SF, P
105 257 257.107860s 1.3 s a, SF, P
105 258 258.109440s 4.4 s a, P, SF
105 258 258.109440s 20 s P
105 260 260.111430s 1.52 s a, SF, P
105 261 261.112110s 1.8 s a, SF
105 262 262.114150s 34 s a, SF, P
105 263 263.115080s 27 s SF, a

Seaborgium (Sg)

106 259 259.114650s 0.9 s a, SF
106 260 260.114440 3.6 ms a, SF
106 261 261.116200s 0.23 s a, SF
106 263 263.118310s 0.8 s SF, a

   Atomic t1/2 or Decay
 Z A Mass (u) Abundance Mode

Seaborgium (Sg)

106 265 265.121115s 16 s a, SF
106 266 266.121930s 20 s a, SF

Bohrium (Bh)

107 261 261.121800s 11.8 ms a, SF
107 262 262.123010s 102 ms a, SF

Hassium (Hs)

108 264 264.128410 0.08 ms a
108 265 265.130000s 1.8 ms a
108 267 267.131770s 60 ms a

Meitnerium (Mt)

109 266 266.137940s 3.4 ms a, SF
109 268 268.138820s 70 ms a

Darmstadtium (Ds)

110 269 269.145140s 0.17 ms a
110 271 271.146080s 1.1 ms a
110 272 272.146310s 8.6 ms SF

Roentgenium (Rg)

111 283? 283.168415s 10 m a

Copernicium (Cn)

112 285? 285.174105s 34 s a
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   Appendix 9 Nobel Laureates in Physics A-37

The following list gives the names and short descriptions of award citations* for 
all the physics laureates and a few chemistry laureates whose work was related to 
physics (denoted by C in front of their name).

A P P E N D I X

9

A-37

Nobel Laureates in Physics

Year Nobel Laureate Citation for

1901 Wilhelm Konrad Röntgen 1845– 1923 Discovery of x rays
1902 Hendrik Antoon Lorentz 1853– 1928 Their researches into the influence of 
 Pieter Zeeman 1865– 1943 magnetism upon radiation phenomena
1903 Antoine Henri Becquerel 1852– 1908 His discovery of spontaneous radioactivity
 Pierre Curie 1859– 1906 Their joint researches on the radiation 
 Marie Sklowdowska-Curie 1867– 1934  phenomena discovered by Prof. Henri 

Becquerel
1904 John William Strutt 1842– 1919 Investigations of the densities of the most 
 (Lord Rayleigh)  important gases and his discovery of argon
 C Sir William Ramsay 1851– 1939  His discovery of the inert gaseous elements in 

air and his determination of their place in the 
periodic system

1905 Philipp Eduard Anton von Lenard 1862– 1947 His work on cathode rays
1906 Joseph John Thomson 1856– 1940  His theoretical and experimental investigations 

on the conduction of electricity by gases
1907 Albert Abraham Michelson 1852– 1931  His optical precision instruments and the 

spectroscopic and metrological investigations 
carried out with their aid

1908 Gabriel Lippman 1845– 1921  His method of reproducing colors 
photographically based on the phenomena 
of interference

 C Ernest Rutherford 1871– 1937  His investigations into the disintegration of the 
elements and the chemistry of radioactive 
substances

1909 Guglielmo Marconi 1874– 1937 Their contributions to the development of 
 Carl Ferdinand Braun 1850– 1918 wireless telegraphy

*From the Nobel Foundation website: http://nobelprize.org/index.html
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A-38 Appendix 9 Nobel Laureates in Physics

Year Nobel Laureate Citation for

1910 Johannes Diderik van der Waals 1837– 1923  His work on the state of equations of gases 
and liquids

1911 Wilhelm Wien 1864– 1928  His discoveries regarding the laws governing 
the radiation of heat

 C Marie Curie 1867– 1934  Her services to the advancement of chemistry 
by the discovery of the elements radium and 
polonium, and by the isolation of radium and 
the study of its nature and compounds

1912 Nils Gustaf Dalén 1869– 1937  His invention of automatic regulators for use 
in conjunction with gas accumulators for 
illuminating lighthouses and buoys

1913 Heike Kamerlingh Onnes 1853– 1926  His investigations of the properties of matter 
at low temperatures, which led, inter alia, to 
the production of liquid helium

1914 Max von Laue 1879– 1960  His discovery of the diffraction of x rays by 
crystals

1915 William Henry Bragg 1862– 1942 Their analysis of crystal structure by means 
 William Lawrence Bragg 1890– 1971 of x rays
1917 Charles Glover Barkla 1877– 1944  His discovery of the characteristic x rays of the 

elements
1918 Max Planck 1858– 1947 His discovery of energy quanta
1919 Johannes Stark 1874– 1957  His discovery of the Doppler effect in canal 

rays and of the splitting of spectral lines in 
electric fields

1920 Charles-Édouard Guillaume 1861– 1938  The service he has rendered to precise 
measurement in physics by his discovery of 
anomalies in nickel steel alloys

1921 Albert Einstein 1879– 1955  His services to Theoretical Physics, and espe-
cially for his discovery of the law of the photo-
electric effect

 C Frederick Soddy 1877– 1956  His contributions to our knowledge of the 
chemistry of radioactive substances, and his 
investigations into the origin and nature of 
isotopes

1922 Niels Bohr 1885– 1962  His investigation of the structure of atoms and 
the radiation emanating from them

 C Francis W. Aston 1877– 1945  His discovery, by means of his mass spectro-
graph, of isotopes in a large number of nonra-
dioactive elements, and for his enunciation of 
the whole-number rule

1923 Robert Andrews Millikan 1868– 1953  His work on the elementary charge of electric-
ity and on the photoelectric effect

1924 Karl Manne Georg Siegbahn 1886– 1978  His discoveries and researches in the field of 
x-ray spectroscopy

1925 James Franck 1882– 1964 Their discovery of the laws governing the im
 Gustav Hertz 1887– 1975 pact of an electron upon an atom
1926 Jean-Baptiste Perrin 1870– 1942  His work on the discontinuous structure of 

matter, and especially for his discovery of sedi-
mentation equilibrium
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   Appendix 9 Nobel Laureates in Physics A-39

Year Nobel Laureate Citation for

1927 Arthur Holly Compton 1892– 1962  His discovery of the effect named after him
 Charles Thomson Rees Wilson 1869– 1959  His method of making the paths of electrically 

charged particles visible by condensation of 
vapor

1928 Owen Willans Richardson 1879– 1959  His work on the thermionic phenomenon, and 
especially for the discovery of the law named 
after him

1929 Prince Louis-Victor de Broglie 1892– 1987  His discovery of the wave nature of electrons
1930 Sir Chandrasekhara Venkata Raman 1888– 1970  His work on the scattering of light and for the 

discovery of the effect named after him
1932 Werner Heisenberg 1901– 1976  The creation of quantum mechanics, the 

application of which has, inter alia, led to the 
discovery of the allotropic forms of hydrogen

1933 Erwin Schrödinger 1887– 1961 Their discovery of new productive forms 
 Paul Adrien Maurice Dirac 1902– 1984 of atomic theory
1934 C Harold C. Urey 1893– 1981 His discovery of heavy hydrogen
1935 James Chadwick 1891– 1974 His discovery of the neutron
 C Frédéric Joliot 1900– 1958 In recognition of their synthesis of new 
 C Irène Joliot-Curie 1897– 1956 radioactive elements
1936 Victor Franz Hess 1883– 1964 His discovery of cosmic radiation
 Carl David Anderson 1905– 1991 His discovery of the positron
 C Peter Debye 1884– 1966  His contributions to our knowledge of molecu-

lar structure through his investigations on di-
pole moments and on the diffraction of x rays 
and electrons in gases

1937 Clinton Joseph Davisson 1881– 1958 Their experimental discovery of the diffraction 
 George Paget Thomson 1892– 1975 of electrons by crystals
1938 Enrico Fermi 1901– 1954  His demonstrations of the existence of new 

radioactive elements produced by neutron 
irradiation, and for his related discovery of 
nuclear reactions brought about by slow 
neutrons

1939 Ernest Orlando Lawrence 1901– 1958  The invention and development of the cyclo-
tron and for results obtained with it, especially 
with regard to artificial radioactive elements

1943 Otto Stern 1888– 1969  His contributions to the development of the 
molecular ray method and his discovery of the 
magnetic moment of the proton

1944 Isidor Isaac Rabi 1898– 1988  His resonance method for recording the mag-
netic properties of atomic nuclei

 C Otto Hahn 1879– 1968  His discovery of the fission of heavy nuclei
1945 Wolfgang Pauli 1900– 1958  His discovery of the Exclusion Principle, also 

called the Pauli Principle
1946 Percy Williams Bridgman 1882– 1961  The invention of an apparatus to produce 

extremely high pressures and for the discover-
ies he made in the field of high-pressure 
physics
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A-40 Appendix 9 Nobel Laureates in Physics

Year Nobel Laureate Citation for

1947 Sir Edward Victor Appleton 1892– 1965  His investigations of the physics of the upper 
atmosphere, especially for the discovery of the 
Appleton layer

1948 Patrick Maynard Stuart Blackett 1897– 1974  His development of the Wilson cloud chamber 
method and his discoveries therewith in nu-
clear physics and cosmic radiation

1949 Hideki Yukawa 1907– 1981  His prediction of the existence of mesons on 
the basis of theoretical work on nuclear forces

1950 Cecil Frank Powell 1903– 1969  His development of the photographic method 
of studying nuclear processes and his discover-
ies regarding mesons made with this method

1951 Sir John Douglas Cockcroft 1897– 1967 Their pioneer work on the transmutation of 
 Ernest Thomas Sinton Walton 1903– 1995 atomic nuclei by artificially accelerated 
   particles
 C Edwin M. McMillan 1907– 1991 Their discoveries in the chemistry of the 
 C Glenn T. Seaborg 1912– 1999 transuranium elements
1952 Felix Bloch 1905– 1983 The development of new methods for nuclear 
 Edward Mills Purcell 1912– 1997 magnetic precision measurements and 
   discoveries in connection therewith
1953 Frits Zernike 1888– 1966  His demonstration of the phase contrast 

method, especially for his invention of the 
phase contrast microscope

1954 Max Born 1882– 1970  His fundamental research in quantum me-
chanics, especially his statistical interpretation 
of the wave function

 Walter Bothe 1891– 1957  The coincidence method and his discoveries 
made therewith

1955 Willis Eugene Lamb, Jr. 1913– 2008  His discoveries concerning the fine structure 
of the hydrogen spectrum

 Polykarp Kusch 1911– 1993  His precision determination of the magnetic 
moment of the electron

1956 William Shockley 1910– 1989 Their investigations on semiconductors and 
 John Bardeen 1908– 1991 their discovery of the transistor effect
 Walter Houser Brattain 1902– 1987
1957 Chen Ning Yang 1922– Their penetrating investigation of the parity 
 Tsung Dao Lee  1926– laws, which led to important discoveries 
   regarding elementary particles
1958 Pavel Alekseyevich Cherenkov 1904– 1990 Their discovery and interpretation of the 
 Ilya Mikhaylovich Frank 1908– 1990 Cherenkov effect
 Igor Yevgenyevich Tamm 1895– 1971
1959 Emilio Gino Segrè 1905– 1989 Their discovery of the antiproton
 Owen Chamberlain 1920– 2006
1960 Donald Arthur Glaser 1926–   The invention of the bubble chamber
 C Willard F. Libby 1908– 1980  His method to use 14C for age determination 

in several branches of science
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   Appendix 9 Nobel Laureates in Physics A-41

Year Nobel Laureate Citation for

1961 Robert Hofstadter 1915– 1990  His pioneering studies of electron scattering in 
atomic nuclei and for his discoveries concerning 
the structure of the nucleons achieved thereby

 Rudolf Ludwig Mössbauer 1929–   His researches concerning the resonance 
absorption of g rays and his discovery in this 
connection of the effect that bears his name

1962 Lev Davidovich Landau 1908– 1968  His pioneering theories of condensed matter, 
especially liquid helium

1963 Eugene Paul Wigner 1902– 1995  His contributions to the theory of the atomic 
nucleus and the elementary particles, particu-
larly through the discovery and application of 
fundamental symmetry principles

 Maria Goeppert Mayer 1906– 1972 Their discoveries concerning nuclear shell 
 J. Hans D. Jensen 1907– 1973 structure
1964 Charles H. Townes 1915–  Fundamental work in the field of quantum
 Nikolai G. Basov 1922– 2001 electronics, which has led to the construction 
 Alexander M. Prokhorov 1916– 2002 of oscillators and amplifiers based on the 
   maser-laser principle
1965 Sin-Itiro Tomonaga 1906– 1979 Their fundamental work in quantum 
 Julian Schwinger 1918– 1994 electrodynamics, with profound consequences  
 Richard P. Feynman 1918– 1988 for the physics of elementary particles
1966 Alfred Kastler 1902– 1984  The discovery and development of optical 

methods for studying Hertzian resonance in 
atoms

1967 Hans Albrecht Bethe 1906– 2005  His contributions to the theory of nuclear 
reactions, especially his discoveries concerning 
the energy production in stars

1968 Luis W. Alvarez 1911– 1988  His decisive contribution to elementary parti-
cle physics, in particular the discovery of a 
large number of resonance states, made possi-
ble through his development of the technique 
of using the hydrogen bubble chamber and 
data analysis

1969 Murray Gell-Mann 1929–   His contributions and discoveries concerning 
the classification of elementary particles and 
their interactions

1970 Hannes Alfvén 1908– 1995  Fundamental work and discoveries in 
magnetohydrodynamics with fruitful applica-
tions in different parts of plasma physics

 Louis-Eugène-Félix Néel 1904– 2000  Fundamental work and discoveries concerning 
antiferromagnetism and ferrimagnetism, which 
have led to important applications in solid 
state physics

1971 Dennis Gabor 1900– 1979  His invention and development of the 
holographic method

1972 John Bardeen 1908– 1991 Their theory of superconductivity, usually  
 Leon N. Cooper 1930–  called the BCS theory
 J. Robert Schrieffer 1931–
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Year Nobel Laureate Citation for

1973 Leo Esaki 1925–   His discovery of tunneling in semiconductors
 Ivar Giaever 1929–   His discovery of tunneling in superconductors
 Brian D. Josephson 1940–   His theoretical predictions of the properties of 

a supercurrent through a tunnel barrier
1974 Antony Hewish 1924–  The discovery of pulsars
 Sir Martin Ryle 1918– 1984  His observations and inventions in radio 

astronomy
1975 Aage Bohr 1922–2009 The discovery of the connection between 
 Ben R. Mottelson 1926– collective motion and particle motion in  
 L. James Rainwater 1917– 1986   atomic nuclei and for the theory of the struc-

ture of the atomic nucleus based on this 
connection

1976 Burton Richter 1931– Their pioneering work in the discovery of a 
 Samuel Chao Chung Ting  1936–  heavy elementary particle of a new kind
1977 Philip Warren Anderson 1923– Their fundamental theoretical investigations 
 Nevill Francis Mott 1905– 1996 of the electronic structure of magnetic and 
 John Hasbrouck Van Vleck  1899– 1980 disordered systems
1978 Pyotr L. Kapitza 1894– 1984  His basic inventions and discoveries in the area 

of low-temperature physics
 Arno A. Penzias 1933–  Their discovery of cosmic microwave back
 Robert Woodrow Wilson 1936–  ground radiation
1979 Sheldon Lee Glashow 1932– Their contributions to the theory of the 
 Abdus Salam 1926– 1996 unifi ed weak and electromagnetic interaction 
 Steven Weinberg  1933–   between elementary particles, including, inter 

alia, the prediction of the weak neutral 
current

1980 James W. Cronin 1931–  The discovery of violations of fundamental 
 Val L. Fitch 1923–  symmetry principles in the decay of neutral 
   K-mesons
1981 Nicolaas Bloembergen 1920– Their contributions to the development of 
 Arthur L. Schawlow  1921– 1999 laser spectroscopy
 Kai M. Siegbahn 1918– 2007  His contribution to the development of high-

resolution electron spectroscopy
1982 Kenneth G. Wilson 1936–   His theory for critical phenomena in connec-

tion with phase transitions
1983 Subrahmanyan Chandrasekhar 1910– 1995  His theoretical studies of the physical pro-

cesses of importance to the structure and evo-
lution of the stars

 William A. Fowler 1911– 1995  His theoretical and experimental studies of the 
nuclear reactions of importance in the forma-
tion of the chemical elements in the universe

1984 Carlo Rubbia 1934– Their decisive contributions to the large 
 Simon van der Meer  1925–2011  project, which led to the discovery of the field 

particles W and Z, communicators of the weak 
interaction

1985 Klaus von Klitzing 1943–   The discovery of the quantized Hall effect
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   Appendix 9 Nobel Laureates in Physics A-43

Year Nobel Laureate Citation for

1986 Ernst Ruska 1906– 1988  His fundamental work in electron optics and 
for the design of the first electron microscope

 Gerd Binnig 1947–  Their design of the scanning tunneling 
 Heinrich Rohrer 1933–  microscope
1987 J. Georg Bednorz 1950–  Their important breakthrough in the discovery 
 Karl Alex Müller 1927–  of superconductivity in ceramic materials
1988 Leon M. Lederman 1922–  The neutrino beam method and the 
 Melvin Schwartz 1932– 2006 demonstration of the doublet structure of the 
 Jack Steinberger 1921–  leptons through the discovery of the muon 
   neutrino
1989 Hans G. Dehmelt 1922–  Their development of the ion-trap technique
 Wolfgang Paul 1913– 1993
 Norman F. Ramsey 1915–   The invention of the separated oscillatory 

fields method and its use in the hydrogen ma-
ser and other atomic clocks

1990 Jerome I. Friedman 1930– Their pioneering investigations concerning 
 Henry W. Kendall 1926– 1999 deep inelastic scattering of electrons on 
 Richard E. Taylor  1929–   protons and bound neutrons, which have been 

of essential importance for the development 
of the quark model in particle physics

1991 Pierre-Gilles de Gennes 1932– 2007  His discovering that methods developed for 
studying order phenomena in simple systems 
can be generalized to more complex forms of 
matter, in particular to liquid crystals and 
polymers

 C Richard R. Ernst 1933–   His contributions to the development of the 
methodology of high-resolution nuclear mag-
netic resonance (NMR) spectroscopy

1992 Georges Charpak 1924– 2010  His invention and development of particle 
detectors, particularly multi-wire proportional 
counters

1993 Russell A. Hulse 1950–  The discovery of a new type of pulsar
 Joseph H. Taylor Jr. 1941–
1994 Bertram N. Brockhouse 1918– 2003  The development of neutron scattering
 Clifford G. Shull 1915– 2001  The development of the neutron diffraction 

technique
1995 Martin L. Perl 1927–  The discovery of the tau lepton
 Frederick Reines 1918– 1998 The detection of the neutrino
1996 David M. Lee 1931– Their discovery of superfluidity in He-3
 Douglas D. Osheroff 1945– 
 Robert C. Richardson  1937– 
1997 Steven Chu 1948– Their development of methods to cool and 
 Claude Cohen-Tannoudji 1933– trap atoms with laser light
 William D. Phillips  1948– 
1998 Robert B. Laughlin 1950– Their discovery of a new form of quantum 
 Horst L. Störmer 1949–  fl uid with fractionally charged excitations
 Daniel C. Tsui  1939–
1999 Gerardus ’t Hooft 1946– Their elucidating the quantum structure of 
 Martinus J. G. Veltman  1931–  electroweak interactions in physics
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Year Nobel Laureate Citation for

2000 Zhores I. Alferov 1930– Their developing semiconductor heterostruc-
 Herbert Kroemer  1928– tures used in high-speed- and opto-electronics
 Jack S. Kilby 1923– 2005  His part in the invention of the integrated 

circuit
2001 Eric A. Cornell 1961–  Their achievement of Bose-Einstein condensa-
 Wolfgang Ketterle 1957–  tion in dilute gases of alkali atoms, and for 
 Carl E. Wieman 1951–  early fundamental studies of the properties of 

the condensates
2002 Raymond Davis Jr. 1914– 2006 Their pioneering contributions to astrophysics, 
 Masatoshi Koshiba 1926–   in particular for the detection of cosmic 

neutrinos
 Riccardo Giacconi 1931–   His pioneering contributions to astrophysics, 

which have led to the discovery of cosmic x-ray 
sources

2003 Alexei A. Abrikosov 1928–  Their pioneering contributions to the theory 
 Vitaly L. Ginzburg 1916–2009 of superconductors and superfluids
 Anthony J. Leggett 1938– 
2004 David Gross 1941–  Their discovery of asymptotic freedom in the 
 H. David Politzer 1949– theory of the strong interaction
 Frank Wilczek 1951–
2005 Roy J. Glauber 1925 – His contribution to the quantum theory of 
   optical coherence
 John L. Hall 1935– Their contributions to the development of laser-
 Theodor W. Hänsch 1941– based precision spectroscopy, including the 
   optical frequency comb technique
2006 John C. Mather 1946– Their discovery of the blackbody form and
 George F. Smoot 1945–  anisotropy of the cosmic microwave back-

ground radiation
2007 Albert Fert 1938– Their discovery of Giant Magnetoresistance
 Peter Grünberg 1939–
2008 Yoichiro Nambu 1921– His discovery of the mechanism of spontane-
   ous broken symmetry in subatomic physics
 Makoto Kobayashi 1944– Their discovery of the origin of the broken
 Toshihide Maskawa 1940– symmetry which predicts the existence of at 
   least three families of quarks in nature
2009 Charles Kuen Kao 1933–  His groundbreaking achievements concerning 

the  transmission of light in fi bers for optical 
communication

 Willard S. Boyle 1924–2011 Their invention of an imaging semiconductor 
 George E. Smith 1930– circuit
2010 Andre Geim 1958– Their groundbreaking experiments regarding 
 Konstantin Novoselov 1974– the two-dimensional material graphene
2011 Saul Perlmutter 1959– Their discovery of the accelerating expansion 
 Brian P. Schmidt 1967– of the Universe through observations of distant 
 Adam G. Riess 1969– supernovae
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A-45

Chapter 2

 3. ! ! sin"1 a v
c
b

 13. K# travels at a speed c/2 in the "x direction.
 15. (a) 1 $ 3.87 % 10"15 (b) 1 $ 3.2 % 10"13 

(c) 1 $ 3.1 % 10"12 (d) 1 $ 3.1 % 10"10 
(e) 1.10 (f) 3.20

 17. (a) 3.86 % 10"8 s (b) x # ! "10.4 m, y # ! 5 m,
  z# ! 10 m, t # ! 51.0 ns
 19. (a) 0.14c (b) 1.2 ms
 21. 1.4 %10"4c
 23. 4c/5
 25. ¢t ! 16.7 ns
 27. ¢t # ! 1.0 % 10"5s
 29. 22.1 m
 31. (a) 0.96c (b) 0.46c
 33. Each sees the other traveling at 62.1 m/s.
 35. 0.60c and 0.88c
 37. Classical: 15 muons; relativistic: 2710 muons
 39. Mary receives signals at a rate f # for t #1  and a rate f  – 

for t #2 .
  Frank receives signals at a rate f # for t1 and a rate f  – 

for t2.
 45. (b) b (d) The lines are not perpendicular.
 47. Two events simultaneous in K are not simultaneous in 

K#.
 51. 224 kHz
 53. Van 3 receives signals from van 2 at a rate 

  f # ! f0 B1 " b

1 $ b
, and van 3 receives signals from van 

  1 at a rate of f # !
f0

1 $ 22b
 59. 1.42 % 10"25 kg
 61. 1.57 T
 65. Electrons: 0.999 999 9984c; positrons 0.999 999 986c

 67. (a) p ! 10.22 keV/c, K ! 102 eV, E ! 511.1 keV
  (b) p ! 104.3 keV/c, K ! 10.5 keV, E ! 521.5 keV
  (c) p ! 1055 keV/c, K ! 661 keV, E ! 1172 keV
 69. 2.25 % 1017m
 71. (a) 0.417c (b) 0.866c (c) 0.996c
 75. 2.55 % 1014 J; 2.55 % 1016 J
 79. 28.3 MeV
 81. v ! 0.999 999 561c, p ! 1.000938 TeV/c, E ! 1 TeV $ 

938 MeV
 83. v ! 0.938c, p ! 287.05 MeV/c, E ! 306 MeV
 85. (a) &E ! 17.6 MeV (b) approximately 0.37% of the 

initial rest energy
 87. 2330 MeV
 89. (a) number ! fL/'v; time ! L/v $ L/c

  (b) number ! 
fL11"b 2

v
; time ! L/'v

  (c) L/v " L/c; fL/'v; 2fL/'v; Mary’s age 2L/'v

  (d) L/'v; 
f L
v

 11 $ b 2 ; 2fL/v; Frank’s age 2L/v

 91. (a) 56 (b) 9.68 years, 168 (c) Frank 336, Mary 559
  (d) Frank 10.75 years, Mary 6.45 years (e) each one 

agrees with (d)
 93. ux ! 0.8c ; uy ! 0.48c ; u ! 0.93c
 95. (a) (1 " 3.97 % 10"8)c (b) (1 " 8.85 % 10"8)c
 97. (a) v ! 0.36c (b) 53.6 years old
 99. (a) 7.24 % 107 m/s (b) 0.124 Hz
 101. v ! 2.47 % 107 m/s
 103. (a) 228 MeV (b) 209.23 MeV/c in opposite direc-

tions
 105. (a) 12.4 m/s (b) both redshift and blueshift magni-

tude 2.3 % 10"5 nm

Chapter 3
 3. Nonrelativistically V ! 921 V; relativistically V ! 924 V
 9. Lyman 91.2 nm; Balmer 364.7 nm
 11. 105 cm between the fi rst and second lines; 227 cm be-

tween the second and third lines

A N S W E R S

Answers to Selected 
Odd-Numbered Problems
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A-46 Answers to Selected Odd-Numbers Problems

 13. ¢l! 29 nm
 15. (a) Paschen series: k ! 4, " ! 1875.63 nm; 

k ! 5, " ! 1282.17 nm; k ! 6, " ! 1094.12 nm; 
k ! 7, " ! 1005.22 nm; k ! 8, " ! 954.86 nm

  (b) The observed spectral lines have been Doppler red-
shifted. (c) v ! 1.20 % 107 m/s

 17. (a) 0.69 mm (b) 9.89 (m (c) 1.16 (m 
(d) 0.322 (m

 19. (a) 42.7 (b) 1070 K
 21. 1.447 % 10"8 m
 23. 966 nm
 27. 9.35 (m
 33. (a) 2.47 % 1029 (b) 7.26 % 1018 (c) 2.81 % 1014

 35. " ! 267.2 nm K ! 4.64 eV
 37. 1.59 % 1015 Hz
 39. h ! 4.40 % 10"15 eV # s; # ! 4.1 eV
 41. 0.0413 nm
 43. 0.0496 nm
 45. 17.2 kV
 47. 5.41 keV
 49. Yes; 1.32 fm; 938 MeV
 53. 2.00243 nm, a change of 0.122%
 55. (a) 2.04 MeV (b) 1.02 MeV
 57. 6900
 59. r ! 3.68 km; 9 % 1012 nuclear arsenals
 63. (a) 0.015 photons/s (b) 6.45 % 103 photons/s
 65. 1.3 % 1023 photons/s
 67. (a) 301 nm (b) 7.51 % 1027 W, about 19 times the 

value for the sun
 69. 10 keV gamma ray: K ! 5 keV, v ! 4.2 % 107 m/s; 

300 MeV gamma ray: K ! 150 MeV, v ! 0.999994c

Chapter 4
 5. (a) 1.69 % 10"12 m (b) 1.48 %10"14 m
 7. 36.93
 9. (a) 2170 (b) 1347
 11. (a) Al: 6.04 MeV, Au: 23.7 MeV (b) Al: 3.82 MeV, 

Au: 13.7 MeV
 13. (a) 0.013° (b) The results are comparable.
 15. (a) 1.75 % 10"4c ! 5.25 % 104 m/s (b) "14.4 eV
 17. Gravitational: 3.6 % 10"47 N; 

Electrostatic: 8.2 % 10"8 N; ratio ! 2.3 % 1039

 21. hc ! 1239.8 eV # nm; !
e 

2

4pP0
 ! 1.4400 eV # nm; 

mc2 ! 511.00 keV;

  a0 ! 5.2918 % 10"2 nm; E0 ! 13.606 eV
 23. n ! 2 and n ! 6
 25. (a) 13.6 eV (b) 54.4 eV (c) 218 eV
 27. E1,D ! 13.602 eV; E1,T ! 13.603 eV
 29. 2.44 % 106

 31. (a) 2.84 % 10"13 m (b) 2535 eV (c) 0.49 nm, 
1.96 nm, 4.40 nm

 33. (a) 2a0 (b) 243 nm
 35. The lines nearly match for all even nu in the He$ series. 

Each “matching” pair actually differs by the ratio of the 
reduced masses, R He$/R H ! 1.0004, or about 0.04%.

 37. R ! 4.38889 % 107 m"1

 39. No, because the K $ lines for Pb and Bi are separated by 
less than 10"12 m.

 41. Helium: 122 nm for K $ and 103 nm for K%; lithium: 
30.4 nm for K $ and 25.6 nm for K%

 43. Molybdenum: " (K $) ! 72.3 pm; " (K%) ! 61.0 pm; 
" (K") ! 57.8 pm; the series limit is 54.2 pm

 45. 4.89 % 10"4 eV
 47. 4.13 % 10"15 eV # s
 49. Magnesium: 1.00 nm for K $ and 31.0 nm for L$;
  Iron: 0.194 nm for K $ and 1.90 nm for L$

 51. (a) 0.118 (b) 100.5 and 1.31 % 104

 57. 3.6 % 107 m/s
 61. (a) K $: 7.2 % 10"11 m; K%: 6.1 % 10"11 m (b) Its wave-

length 5.5 % 10"10 m does not appear on this graph.

Chapter 5
 1. 25.6° and 40.4°
 3. 8.92 keV; we can observe up through n ! 4
 5. 9.2 %10"35 m; no
 7. " ! 6.02 pm for the 40-keV electrons and " ! 3.70 pm 

for the 100-keV electrons
 9. 1.73 % 10"10 m
 11. (a) hc/2K  

2 $ 2Kmc 
2 (b) hc/22mc 

2K
 13. (a) 9.54 keV (b) 89.0 eV (c) 0.048 eV 

(d) 1.22 % 10"2 eV
 15. K ! 3.00 keV, E ! 514 keV, p ! 55.4 keV/c, 

" ! 22.4 pm
 17. (a) 2.60 % 10"11 m (b) 1.02 % 10"16 m
 19. d ! 0.063 nm, " ! 0.122 nm, p ! 10.2 keV/c, 

E ! 511.102 keV, K ! 102 eV
 21. 0.457 nm, 0.412 nm, 0.301 nm
 23. 1.67 s
 25. (a) 0.714 Hz (b) 2.5 cm
 27. (a)° ! 0.006 sin (6.5x " 275t) cos (0.5x $ 25t)
  (b) vph ! 42.3 m/s, ugr ! 50 m/s (c) 2p m (d) 2p
 29. vph is independent of the wavelength
 31. c(x, 0) ! " (2A0/x) sin (&kx/2) cos (k0x); 

width &x ! &/&k ; &k &x ! π
 33. The intensity is higher by a factor of 4 for the double 

slit.
 35. K ! 2.67 eV
 37. 21.3 MeV, 0.539 MeV
 39. ¢L ! 

U14p 2
 41. 2.1 % 105 Hz
 43. (a) 3.29 % 10"3 eV (b) 0.185 nm
 45. (a) 1.51 eV (b) 2.24 % 10"6 eV; yes
 47. 9.03 % 10"34 J

 53. 
E2

E1
! c 1 $ h2c 

2/L2E0
22

1 $ h2c 
2/4L2E0

2 2 d 1/2

  
E3

E1
! c 1 $ 9h2c 

2/4L2E0
22

1 $ h2c 
2/4L2E0

2 2 d 1/2

  
E4

E1
! c 1 $ 4h2c 

2/L2E0
22

1 $ h2c 
2/4L2E0

2 2 d 1/2
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   Answers to Selected Odd-Numberes Problems A-47

 57. (a) 2.1 % 10"16 m (b) gamma ray
 59. 3.36 % 10"3 eV
 61. (a) 2.43 pm (b) 2.31 pm
 63. &t ! 4.0 % 10"24 s; ¢E ! 82 MeV; m ! 82 MeV/c2, 

within a factor of 2 of the actual mass
 65. U) 0.081 J # s
 67. (b) The packet is centered about x ! 0 but extends to 

*q and repeats for every unit along the x axis.
 69. (a) &f ! 7.96 % 1012 Hz; &f/f ! 0.014 

(b) &" ! 7.5 nm (c) &"/" ! 0.014 and &"/L ! .0025

Chapter 6
 1. The function is not localized; it does not vanish at *q.
 5. A ! 2$"3/2

 7. (a) The wave function does not satisfy condition 3.
  (b) The wave function is not physically possible.
  (c) Alter the function near |x| ! 0 so that its derivative 

is continuous.
 11. A ! 22/p; (a) probability ! 0.091 

(b) probability ! 0.50
 13. 1/L (independent of n), in agreement with the classical 

result
 15. (a) E1 ! 9.40 % 10"8 eV; E2 ! 1.88 % 10"7 eV; 

E3 ! 2.82 %10"7 eV (b) n ! 134
 17. 0.1955; 0.6090; 0.1955
 19. 11.3 GeV
 21. 11.5 eV, 9.21 eV, 6.14 eV, 5.37 eV, 3.84 eV, 2.30 eV
 23. (a) + is longer for the fi nite well. (b) Larger + implies 

lower E. (c) When E , V0 there are no bound states.

 25. CeihL $ De"ikL ! Be"aL  
C
D

!
ik " a

ik $ a
 e"2ikL

 27. In general we have

  c1x 2 ! A sin a n1px
L
b sin a n2py

L
b sin a n3pz

L
b

  For '2(x) we can have (n1, n2, n3) ! (1, 1, 2) or (1, 2, 1) 
or (2, 1, 1).

  For '3(x) we can have (n1, n2, n3) ! (1, 2, 2) or (2, 2, 1) 
or (2, 1, 2).

  For '4(x) we can have (n1, n2, n3) ! (1, 1, 3) or (1, 3, 1) 
or (3, 1, 1).

  For '5(x) we can have (n1, n2, n3) ! (2, 2, 2).
 29. One quantum number is associated with each bound-

ary condition.

 31. Egs !
21p2U 2

32mL2
 E1 !

3p2U 2

4mL2  E2 !
29p2U 2

32mL2

  E3 !
33p2U 2

32mL2

  None of these states are degenerate.
 33. &E ! U( for all n
 35. k ! 91.6 N/m E ! 14.136 % 10"2 eV 2 an $

1
2
b

 37. 8p9 ! 0; 8p29 ! 1
2

mUv

 39. (a) E ! an $
1
2
b Uv ! an $

1
2
b 10.755 2  eV

  (b) 1640 nm, 821 nm, 549 nm

 41. (a) p ! 22m1E " V0 2 ; l ! h/22m1E " V0 2
  (b) p ! 22m1E $ V0 2 ; l ! h/22m1E $ V0 2
 45. (a) L ! 0.220 nm or any integer multiple thereof
  (b) L ! 0.110 nm or any odd integer multiple thereof
 51. Let E0 ! p2h2/ 12mL2 2 ; E1 ! 13E0/4; E2 ! 4E0; 

E3 ! 21E0/4; E4 ! 25E0/4; E5 ! 7E0; only E5 is 
degenerate.

 57. 33.6 eV, which is the same order of magnitude as the 
electron’s kinetic energy

 59. (a) 6.4 % 1031 (b) 8.9 % 10"18 m (c) 9.4 % 10"34 J
 61. (b) 8x9 ! 0;8x 

29 ! 5/ 12a 2
 63. V(r) ! Da2(r " re)2

 65. Let E0 ! &2h2/(2mL2);
  E1 ! E0112 $ 12 2 ! 2E0 with n1 ! 1, n2 ! 1;
  E2 ! E0122 $ 12 2 ! 5E0 with n1 ! 2, n2 ! 1 or vice versa;
  E3 ! E0122 $ 22 2 ! 8E0 with n1 ! 2, n2 ! 2;
  E4 ! E0132 $ 12 2 ! 10E0 with 

n1 ! 3, n2 ! 1 or vice versa;
  E5 ! E0132 $ 22 2 ! 13E0 with 

n1 ! 3, n2 ! 2 or vice versa;
  E6 ! E0142 $ 12 2 ! 17E0 with 

n1 ! 4, n2 ! 1 or vice versa.
 67. 6.51 %10"6

 69. (a) En !
13Anh 22/3

25/3m1/3

Chapter 7
 5. E ! "E0/4, as predicted by the Bohr model
 9. / ! 4: m/ ! 0, *1, *2, *3, *4 / ! 3: m/ ! 0, *1, 

*2, *3
  / ! 2: m/! 0, *1, *2 / ! 1: m/ ! 0, *1 / ! 0: m/! 0
 11. '310 ! R31Y10

 !
1
81

 B 2
p

a0
"3/2a6 "

r
a0
b a r

a0
b e"r/3a0cos u

  c31*1 ! R31Y1*1

 !
1

812pa0
"3/2a6 "

r
a0
b a r

a0
b e"r/3a0sin u e*if

 13. 36
 15. 33

 17. c21"1 ! R21Y1"1 !
1
8B 1
p

a0
"3/2a r

ao
b e"r/2a0 sin u e"if

  c210 ! R21Y10 !
1

422p
a0

"3/2a r
ao
b e"r/2a0 cos u

  c32"1 ! R32Y2"1 !
1

812pa0
"3/2a r

ao
b e"r/2a0 sin u cos u e"if

 19. 0, *h
 23. 30°

K ! E " V0

K ! E " V0
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A-48 Answers to Selected Odd-Numbers Problems

 25. Seven states: with B ! 0, E ! "E0/25 ! "0.544 eV; 
with the fi eld on, the levels are changed by &E ! 0 for 
m/ ! 0, &E ! *1.74 %10"4 eV for

  m/ ! *1, &E ! *3.47 % 10"4 eV for m/! *2, and 
&E ! *5.21 % 10"4 eV for m/! *3

 27. The magnet should be designed so that the product of 
its length squared and its vertical magnetic fi eld gradi-
ent is 57 T # m.

 29. n ! 4, O ! 3, m/ ! 0, *1, *2, *3, and ms ! *1/2, for a 
total degeneracy of 14

 31. T ! 0.0456 K
 35. r ! (3 * 25) a0

 37. r ! 2a0

 39. 0.056
 41. 2s: 1.9 % 10"15 2p: 5.0 % 10"26

 43. 0.999 9935
 45. 0.24c
 47. c100 !

12p a Z
a0
b 3/2

e"Zr/a0

 49. E0 ! 2.53 keV
 55. (a) 12.5a0, compared with the Bohr result 9a0 

(b) 0.820

Chapter 8
 1. The fi rst two electrons are in the 1 s subshell and have 

/ ! 0, with ms ! *1/2. The third electron (in the 2s 
subshell) has / ! 0, with either ms ! 1/2 or "1/2. 
With four particles, there are six possible interactions: 
the nucleus with electrons 1, 2, 3; electron 1 with elec-
tron 2; electron 1 with electron 3; or electron 2 with 
electron 3. In each case it is possible to have a Coulomb 
interaction and a magnetic moment interaction.

 3. 2, 4, 5
 5. K: [Ar]4s1, As: [Ar]4s23d104p3, Nb: [Kr]5s14d4, 

Pd: [Kr]4d10, Sm: [Xe]6s24f 6, Po: [Xe]6s24f 146s25d106p4, 
U: [Rn]7s26d15f 3 where the bracket represents a closed 
inner shell.

 7. 1.14e
 9. (a) F (b) Mg (c) Ar
 11. (a) Se (b) Ag (c) Er
 13. 52P1/2

 15. In the 4d state / ! 2 and s ! 1/2, so j ! 5/2 or 3/2. As 
usual mf ! 0, *1, *2. The value of mj ranges from "j to 
j, so its possible values are *1/2, *3/2, and *5/2. As 
always ms ! *1/2. The two possible term notations are 
4D5/2 and 4D3/2.

 17. * U/2,*3U/2,*5U/2,*7U/2
 21. 7.33 % 10"3 eV; 63.4 T
 23. The 2s to 1s transition is forbidden by the &L ! *1 

selection rule. The two lines result from the transition 
from the 2p level to the 1s level.

 25. He, Ca, and Sr have single ground states and may have 
a singlet or triplet excited states; Al has only a doublet.

 29. (a) 2.4 % 10"5 eV (b) 4.53 % 10"5 eV
 33. (a) 2 (b) 4/3 (c) 6/5
 37. 9.26 % 10"5 eV

 39. (a) Y": 1s22s22p63s23p64s23d104p65s24d2; 
Al": 1s22s22p63s23p2

  (b) Y": 5 
3F2; Al": 33P0

 41. 4F9/2

Chapter 9
 3. (a) f ! f0

  (b) Standard deviation ! 
f0

cBkT
m

  (c) 3.66 % 10"6 for H2 at 293 K; 2.25 % 10"5 for H at 
5500 K

 5. (a) !
q

e

F1v 2  dv ! 4pC!
q

e

v 
2 exp a"

1
2
bmv 

2bdv

  with T ! 293 K and C ! a bm
2p
b 3/2

 7. (a) v ! 2510 m/s, v* ! 2220 m/s  
(b) v ! 3640 m/s, v* ! 3220 m/s

 9. (a) 391 m/s (b) 428 m/s
 13. (a) vrms ! 1902 m/s for H2, vrms ! 511 m/s for N2

 15. (a) E !
3
2

kT  (b) 
1
2

mv2 ! E !
3
2

kT;
1
2

mv  
2 ! 1.27kT

 17. 9175 K
 23. (a) 5.86 % 1028 m"3 (b) 5.28 % 104 K 

(c) 5.28 % 106 K
 25. (a) 5.50 eV (b) 1.39 % 106 m/s
 27. 8.45 % 1028 m"3; one conduction electron per atom
 29. (a) 1.28 % 106 m/s (b) 2.24 % 106 m/s
 35. 147 MeV
 37. E " EF ! 0.032 eV
 39. (a) 0.87 K (b) Neon is not a liquid at that tempera-

ture.
 49. 1.20 % 104 m/s
 51. 3.0
 55. (b) protons 28.3 MeV; neutrons 38.7 MeV
 57. N/V ) 1.97 % 1031 m"3 for the Bose-Einstein conden-

sate; this is about 1 million times the number density of 
an ideal gas

 59. (a) 0.343 K (b) The temperature in (a) is far below 
the freezing point.

Chapter 10
 1. (a) 9.86 % 10"4 eV (b) 4.93 % 10"3 eV
 3. 1.1 % 10"11 m

 5. Erot !
n2U 2

2I
, which is similar to the quantum mechani-

cal result in the limit of large n
 7. 24
 9. (a) 1.46 % 10"46 kg # m2 (b) 1.13 % 10"10 m
 11. (a) 34.1 eV (b) no
 15. (a) 2.4 %10"47 kg # m2 (b) 478 N/m
 17. 0.277 eV, infrared
 19. (a) 1.00 W (b) 1.08 (m
 21. (a) 7.37 % 10"13 m (b) 1.06 % 10"19 m
 23. In a three-level system the population of the upper 

level must exceed the population of the ground state. 
This is not necessary in a four-level system.
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   Answers to Selected Odd-Numberes Problems A-49

 25. 0.315 nm

 27. a ! 4 "
422

" 2 $
825

"
428

$ p

 31. (c) 7.4 % 10"6 K"1

 33. 2.58 % 1010 N"1

 35. (b) 9.2 % 1013 N/m2

 41. )– ! )
 45.  0.87Tc; 0.71Tc; 0.50Tc

 47.  201Hg: Tc ! 4.171 K; 204Hg: Tc ! 4.140 K
 49.  130 K
 51.  4.9 % 10"6 m
 53. (a) 527 A (b) 527 A is more than a factor of 200 

greater
 55. 2.38 m/s2 ! g/4
 57. 17.4 TeV
 59. (a) 1.5 % 10"3 (b) 4.1 % 10"6 eV
 61. (a) 4.5 % 1014 W (b) 3.2 % 1023 photons
 63. 0.19 K
 65. 2.97 % 10"2 J/K

Chapter 11
 1. (a) 236 - (b) 610 - (c) 5.48 % 107 -
 3. The voltmeter reads positive because positive charges 

will drift to the right.
 5. 1.28 % 10"6 V/K
 7. 5 % 10"7 V
 9. (a) 1850 nm (b) 1130 nm (c) 3440 nm 

(d) 344 nm
 11. "6.0 % 1025

 13. (a) Spring 0.900, winter 0.656, summer 0.999
  (b) Spring 0.643, winter 0.292, summer 0.891
  (c) Spring 0.500, winter 0.122, summer 0.799
 15. (a) 1.99 A (b) 288 mA (c) 6.00 mA
 17. 2080 kg/m3

 19. (a) 0.619 nm (b) about 2.6 times higher
 23. (a) 52.5 mV (b) "30.4 mV
 25. 3.06 eV
 27. Si at T ! 0°C: FFD ! 5.67 % 10"11

  Si at T ! 75°C: FFD ! 9.16 % 10"9

  Ge at T ! 0°C: FFD ! 6.54 % 10"7

  Ge at T ! 75°C: FFD ! 1.41 % 10"5

 29. (a) At T ! 77 K: If /Ir ! "1.5 % 1098

  At T ! 273 K: If /Ir ! "4.9 % 1027

  At T ! 340 K: If /Ir ! "4.0 % 1021

  At T ! 500 K: If /Ir ! "4.0 % 1012

 31. 20,000
 33. 4.2 % 1012 bits/m2

 35. 7.3%

Chapter 12
 1. 54.9 MeV
 3. In each case the atomic number equals the number of 

protons (Z), and the atomic charge is Ze.
  3

2He: Z ! 2, N ! 1, A ! 3, m ! 3.02 u
  4

2He: Z ! 2, N ! 2, A ! 4, m ! 4.00 u
  18

8 O: Z ! 8, N !10, A ! 18, m ! 18.00 u

  44
20Ca: Z ! 20, N ! 24, A ! 44, m ! 43.96 u

  209
83 Bi: Z ! 83, N ! 126, A ! 209, m ! 208.98 u

  235
92 U: Z ! 92, N ! 143, A ! 235, m ! 235.04 u

 5. Isotopes: 38Ca through 52Ca; Isobars: 40S, 40Cl, 40Ar, 40K, 
and 40Ca; Isotones: 32Mg, 34Si, 35P, 36S, 37Cl, 38Ar, 39K, 
and 40Ca

 7. 39Ar(269 y), 41Ar(1.822 h), 42Ar(32.9 y), 43Ar(5.37 m), 
44Ar(11.87 m), 45Ar(21.48 s), 46Ar(8.4 s); 250No(0.25 ms), 
251No(0.8 s), 252No(2.30 s), 254No(55 s), 256No(2.91 s),

  258No(1.2 ms), 259No(58 m), 260No(106 ms)
 9. "1.52 % 10"3

 11. 7.25 % 10"9; yes
 15. Fg ! 6.24 % 10"35 N; Fe ! 77.1 N; the electrostatic force 

is 50 times weaker than the strong force. The gravita-
tional force is almost 1038 times weaker than the strong 
force.

 17. (b) 5.67 MeV; 15.7 MeV; 6.74 MeV
 19. 7.27 MeV
 21. The electron binding energy is less by a factor of 227.
 25. 47.9681 u; 4.468 % 104 MeV/c2

 27. 1.05 (g
 31. 5.6 % 103 Bq
 33. 51 kg
 35. Yes
 39. 0.09 MeV
 41. %", %$, and EC
 45. 1.99 atm for He; 0.337 atm for Rn
 49. 3.65 % 109 y for R ! 0.76 and 9.10 % 109 y for R ! 3.1; 

no
 51. 6.4 % 107y
 53. 7 alpha, 4 beta
 55. (a) 51.9 g of Fm and 41.1 g of Cf (b) 0 g of Fm and 

between 94 and 95 g of Cf
  (d) 240Pu (e) 2.34 % 107y
 57. (a) We expect 23Mg to be less stable. (b) Electron 

capture or positron emission
 67. (a) The chain that begins with 238U (c) Four days
 69. 4

2He, 16
8 O, 40

20Ca, 48
20Ca, 208

82 Pb

Chapter 13
 1. (a) 42He (b) 11H (c) 18

9 F (d) 76
34Se (e) 108

48 Cd 
(f) 32He

 3. 0.10
 5. 0.20
 7. (a) 16O(n, .)13C (b) 16O(d, n)17F (c) 16O(', p)15N
  (d) 16O(., p)19F (e) 16O(d, 3He)15N
  (f) 16O(7Li, p)22Ne
  All the products listed above are stable except the one 

in part (b).
 9. (b) 15.9 MeV (c) 2.34 MeV
 11. (a) 4.0 MeV (b) 4.0 MeV
 15. 10.3 MeV
 17. (a) 4.94 % 1017 (b) 2.06 % 109 Bq (c) Place 1.94 kg 

of 60Co into the reactor for one week.
 19. 9.62 MeV
 21. 6.98 MeV; 6.51 MeV; yes
 23. No
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A-50 Answers to Selected Odd-Numbers Problems

 25. d $ 21 Ne S 22Ne $ p d $ 22Ne S 22Ne $ d
  d $ 23Na S 22Ne $ 3He
  . $ 18O S 22Ne $ ' . $ 19F S 22Ne $ p
  . $ 21Ne S 22Ne $ 3He . $ 22Ne S 22Ne $ 4He
  d $ 25Mg S 22Ne$ 5Li d $ 26Mg S 22Ne $ 6Li
  d $ 27Al S 22Ne $ 7Be (and so on)
  . $ 23Ne S 22Ne $ 5Li . $ 24Mg S 22Ne $ 6Be
  . $ 27Al S 22Ne $ 9B 
  (and so on)
 27. (a) 550 kg (b) 1.4 % 1027 (c) 3700 Bq 

(d) 3.2 % 108

 29. 236U S 95Y $ 138I $ 3n 236U S 94Y $ 140I $ 2n
   236U S 97Y $ 136I $ 3n
 31. Uranium: 2.30 % 107 kWh; Coal: 8.33 kWh
 33. (a) 7.5 % 1021J (b) 15 y (c) 7.5 % 107kg
 35. 4.16 MeV, 7.55 MeV, 10.05 MeV, 4.97 MeV, total 

26.7 MeV
 37. (a) The high temperature is necessary so that the two 

oxygen nuclei can overcome the Coulomb barrier and 
be close enough for the nuclear force to be effective.

  (b) 16.5 MeV, including the energy of the ' ray
 39. (a) 1.5 % 1011 K (b) 13.9 MeV, including the energy 

of the ' ray

 41. (b) K !
3
2

kT  (c) 4.64 % 107 K

 43. 1.69 % 1010 K
 45. (a) 3.88 % 10"2 eV (b) 2720 m/s (c) 1.45 % 10"10 m
 47. (b) 1.46 Bq (c) 1.37 % 106 Bq
 49. (a) 2.40 % 10"14 A (b) 2.40 % 10"15 A
 51. 8.95 % 1011 Bq
 53. 11.6 W
 55. (b) 192Ir is a gamma emitter; 32P,90Sr, 90Y , 188Re, 99Tc, 

and 137Xe are all %" emitters
 57. (a) n $ 235

92 U S 101
42 Mo $ 132

50 Sn $ 3n (b) 185 MeV
 59. (a) "13.37 MeV (b) 33.979 u
 61. (a) 8620 eV (b) 0.607; 0.135; 0.0111
 63. 6300 Bq
 65. 5.4 % 10"7

Chapter 14
 1. 2.27 % 1023 Hz
 3. The range of values is 1.3 % 10"23 s to 5.0 % 10"23 s
 5. 1.24 TeV for both
 7. 6.58 % 10"19 m
 9. 3.57 % 1051

 11. J/Psi: 9.3 % 104eV; Upsilon: 5.5 % 104eV; The full-
width of the charged pion is more than 1012 times 
smaller than either of the previous two.

 13. In both (a) and (b), baryon number is not conserved.
 15. 74.5 MeV
 17. (a) n( (b) K$

 21. B$:  bu;  B":  bu;  B0: b d
 23. (a) The mean lifetimes indicate weak interactions.

(b) -" S ¶0 $ K 
", sss S uds $ us; 

¶0 S p $ p", uds S uud $ ud; K 
" S (" $ n(, us S no 

quarks

 25. 0.080
 27. 3.5 % 10"8

 31. (1" 9.0 % 10"9)c
 33. 5630 MeV
 37. (a) 2mc2 (b) 22Kmc2

 39. (a) 1.01 (b) 1.13 (c) 2.28
 41. 7.4 % 10"5 kg (of each)

 43. (a) 

 

  (b) 

 45. (a) 39.4 TeV (b) 0.99996c
 47. (a) Charge ! 0, baryon number ! 0, charm ! 0, 

strangeness ! 0, Le ! $1, spin ! ½
  (b) ve satisfi es all the requirements
 49. (a) 1585 MeV (b) 336 MeV
 51. (a) Allowed
  (b) ne should be ne to conserve electron lepton number
  (c) Strangeness is not conserved.
  (d) Strangeness is not conserved in a strong interac-

tion.
  (e) Allowed
 53. (a) Strangeness is not conserved.
  (b) Charge is not conserved.
  (c) Baryon number is not conserved.
  (d) Allowed (strangeness changes by 1 unit)
 55. (a) 114.5 GeV (b) For colliding beams the available 

energy is the sum of the two beam energies, or 14 TeV. 
This is an improvement over the fi xed-target result by a 
factor of 122.

Chapter 15
 5. 1720 s; 1.16 % 10"5 %
 7. ¢l ! 8.49 % 10"4 nm for 400-nm light and 

¢l ! 1.49 % 10"3 nm for 700-nm light
 9. 8541 Hz; 2.45 % 10"13 %
 11. 460 nm
 13. 2.82 m
 15. 4.19 % 1020 kg; rs ! 6.22 % 10"7 m; 2.11 % 10-10 solar 

masses
 17. (a) 1.73 % 1011 kg (b) This mass is too small to be a 

black hole.
 19. 2.9 % 108 kg
 21. 0.834 Hz
 23. (a) 9.97 % 10"3 Hz (b) 9.45 % 10"3 Hz
 25. 2.18 % 10"8 kg; 1.22 % 1028 eV
 27. In both cases t ! 1.35 % 10"43 s
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   Answers to Selected Odd-Numberes Problems A-51

Chapter 16
 3. 1.57 % 1012 K; 10"4 s
 5. 5.93 % 109 K; 1.23 % 1012 K
 7. &$; 5.80 % 1010 K
 9. 1.58 % 105 K
 11. 7.14 % 1017 kg/m3, about three times as dense as a 

nucleon or a nucleus
 13. (a) 5.00 % 1013 N/m2 (b) 3.21 % 1033 N/m2

 15. 689 Mly
 17. 101 cm
 19. (a) 0.979c (b) 13.5 Gly

 21. (a) 0.18 nucleons/m3 (b) 4.41 % 106 nucleons/m3

 25. 7.7 % 10"27 kg/m3; 1.2 % 10"26 kg/m3

 29. t0 " t/2
 33. 8.4 % 10"25 kg/m3

 35. Redshift ! 3.77; v ! 0.92c
 39. Q ! 0.43 MeV; maximum neutrino energy ! 0.43 MeV
 41. (a) Deceleration for 0 ) n ) 1 (b) H ! n/t
 43. 640 ly, which is much larger than the distance between 

our sun and neighboring stars
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I-1

Index

A
Absorption spectrum, 144-145, 159, 345, 

387-388
Accelerators, 476, 546-551, 553-554
Acceptor levels, 400
Accretion disk, 569, 594
Actinides, 281
Active galactic nuclei, 594
Activity, 449-452
Addition of velocities, 38-41, 45-46, 79
Adleman, Leonard, 425
Adiabatic demagnetization, 378-379
Alkali metals, 278
Alkaline earths, 278
Alpha decay, 231, 234, 452-455
Alpher, Ralph, 581
Alvarez, Luis, 544-545
Ampere, André Marie, 4
Ampere’s law, 5
Anderson, Carl, 117, 520-522
Angular equation, 244-246
Angular momentum, 3, 161, 250-254, 270
 quantization of, 142-143, 250-252, 305, 341
 total, 281-292, 296
Antiferromagnetism, 367
Antimatter, 120, 542
Antineutrinos, 457
Antiparticle, 120, 520-521
Archeology, 507
Associated Laguerre equation, 244
Associated Legendre equation, 245
Aston, Francis, 171
Atomic bomb, 489, 518
Atomic clock, 43-45
Atomic force microscopes, 232-233
Atomic mass units, 69-71, 435
Atomic masses, 440
Atomic radii, 279
Atomic shells, 274-276
Atomic theory, 7, 241-297
Avogadro, Amedeo, 6, 13
Avogadro’s number 13
Azimuthal equation, 243, 246

B
Balmer, Johann, 92
Balmer series, 89, 92-95, 123, 145, 160, 269
Band gap, 393-397
Band spectrum, 344
Band theory of solids, 393-397, 428
Bardeen, John, 371-372, 392, 413
Barkla, Charles, 163
Barriers, 226-235, 238
Baryons, 528-529
Baryon acoustic oscillations, 608
Becker, Herbert, 433
Becquerel, Alexandre-Edmond, 410
Becquerel, Henri, 17, 469
Becquerel, unit of, 449

Bednorz, J. Georg, 376
Bell, J.S. 194, 355
Bell’s inequality 355
Bending of light (in a gravitational fi eld), 

558-560
BeppoSAT, 595
Bernoulli, Daniel, 6
Beta decay, 456-462
Bethe, Hans, 500, 521
Big Bang, 542, 565, 570, 577-611, 614
 problems, 599-602
Big Bounce, 611
Big Crunch, 610
Big Freeze, 610
Big Rip, 610
Binding energy, 70-72, 340, 442, 446-447
Binnig, Gerd, 232, 426
Biot-Savart law, 296
Black holes, 500, 565-572, 575, 592-593, 604
 candidates, 570-572
 event horizon, 567-568
 intermediate, 570
 primordial, 570
 singularity, 570
 stellar, 570
 supermassive, 570, 594, 601
Blackbody radiation, 16-18, 96-102, 123-124, 

323-325, 581
 Planck law for, 16-17, 100-102, 124, 324-

325
 Stefan-Boltzmann law, 97-98, 101, 124, 568
 ultraviolet catastrophe, 99
 Wien law, 97-98, 101, 124
Bloch, Felix, 384, 438
Blu-ray systems, 356, 418, 429-430
Bohr atom, 141-150, 159-160
Bohr, Niels, 127, 141-142, 149, 189, 201, 446, 

496
Bohr magneton, 254, 438
Bohr radius, 143
Bohr-Einstein discussions, 189
Bohr’s Correspondence Principle, see Corre-

spondence Principle.
Bohr’s Principle of Complementarity, see 

Principle of Complementarity.
Boltzmann, Ludwig, 6-7, 14, 298-299, 

314
Bonding, see Molecular bonding.
Born, Max, 162, 192, 201
Bose-Einstein condensation, 327-333
Bose, Satyendra Nath, 325
Bose-Einstein statistics, 313-314, 323-333, 337
Bosons, 313-314, 526-527, 541
 gauge, 525-527 
 Higgs, 525-526
 W and Z, 525-526
 wave functions, 331-332
Bothe, Walther, 433
Bottomness, 537-538

Boundary conditions, 206, 216-217
Boyle, Robert, 6, 13
Boyle’s law, 6
Brackett series, 94, 123
Bradley, James, 25
Bragg planes, 164
Bragg, William Henry, 163-165
Bragg, William Lawrence, 163-165
Bragg’s law, 165
Brattain, William, 413
Breeder reactors, 494-495
Bremsstrahlung, 110-111
Bridge rectifi ers, 408
Brillouin zones, 396
Bronowski, J., 272
Brown dwarfs, 612
Brown, Robert, 15
Brownian motion, 15, 18, 88
Bubble chamber, 533
Bulk modulus, 389

C
Carbon (CNO) cycle, 500
Carnot, Sadi, 5
Ceramics, 376-377
Cerenkov radiation, 68, 515
CERN, 384, 523, 547, 549-550, 553
Chadwick, James, 433-435, 520, 541 
Chain reaction, 489-490
 critical, 489
 self-sustaining, 489
 supercritical, 489
Chamberlain, O., 120, 547
Chandra x-ray observatory, 610
Chandrasekhar limit, 592
Characteristic spectra, 127
Charge, conservation of, 3
Charles, Jacques 6
Charles’s law, 6
Charpak, Georges, 545
Chauvet cave, 507
Chernobyl, 494
Chu, Paul, 376-377
Classical atomic model, 139-141, 159
Classical electron radius, 270
Classical physics 1-13
Classical statistics, see Maxwell-Boltzmann 

statistics.
Clausius, Rudolf, 5
Clement-Quinnell equation, 398-399
Closed universe, 588, 595
COBE, 600-601
Cocconi, Giuseppe, 261
Cockroft, John D., 476
Colliders, 549-550
Color, 539
Compound nucleus, 483-485
Compton, Arthur, 84, 113-116, 475
Compton effect, 113-117, 125
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Compton gamma ray observatory, 594-595, 
610

Compton scattering, 433
Compton wavelength, 116, 270
Conduction band, 397
Conductivity, see Electrical conductivity and 

Thermal conductivity.
Confi nement, 539-540
Conjugate variables, 188
Concordance model, 607
Conservation laws, 2-3, 10-12, 65, 452, 532-

535, 553
 baryon, 532-533
 lepton, 533-534
 strangeness, 534
Cooper, Leon, 371-372
Cooper pairs, 371-373
Copenhagen interpretation, 191-194, 199
Cornell, Eric, 332
Correspondence Principle, 146-147
Cosmic microwave background radiation, 

581, 587, 600-601, 606, 608
Cosmic rays, 42-43, 521
Cosmological constant, 584-585, 602
Cosmological principle, 583
Cosmological singularity, 585
Cosmology, 577-615
Coulomb, Charles, 4
Coulomb force 11-13, 443-446
Coulomb scattering, see Rutherford 

scattering.
Covalent bond, 341
Cowan, Clyde, 457-459
Crab Nebula, 592, 596
Crick, Francis, 166, 171
Crime detection, 507-508
Critical density (universe), 583-585, 599, 602, 

606
Critical fi eld, superconducting, 369-371
Cronin, James, 536
Cross sections, 135-136, 478-480
Crystal structures, 356-359, 388-389
Curie, Irène, 433-434, 449
Curie law, 365-366
Curie, Marie, 449
Curie, Pierre, 431
Curie temperature, 367
Curie, unit of, 449
Curl, Robert F., 380
Cyclotron, 477, 546
Cyclotron frequency, 546

D
Dalton, John, 6, 13
Dark energy, 602, 607
Dark matter, 601, 607
Daughter nucleus, 453
Davis, Raymond Jr., 458
Davisson, Clinton, 162, 171, 196
de Broglie, Louis, 162, 168, 172
de Broglie wavelength, 168-169, 197-198, 314
de Broglie waves, see Particle waves.
Deaver, Jr., B. S., 373-374
Debye, P., 378
Debye-Scherrer pattern, 166, 183
Decay constant, 450
Degenerate states, 220
Degrees of freedom, 303-306
Democritus, 13
Density of states, 312
Density parameter, 584-585, 605
Deuterium, 434
Deuteron, 440-441, 586

Dewar fl ask, 378
Dewar, James, 378
Diamagnetism, 363-365
Dicke, Robert, 581
Diffraction, see Light, diffraction of.
Diodes, 406-408
Dirac, Paul Adrien Maurice, 117, 192, 201, 

318, 520
Direct reactions, 482, 486
Discovery of the neutron, see Neutron, 

discovery of.
Disintegration energy, 453
Dissociation energy, 72, 358-359
Distinguishable particles, 312-314
Donor levels, 400
Doppler effect, 47, 52-58, 80
 applications of, 54-55
 longitudinal, 57
 transverse, 57
Doppler radar 54
Doublet states, 259
Drake, Frank, 261
Drude, Paul, 316-317, 322
Drude (classical) theory of electrical conduc-

tion, 316-318
Duane-Hunt rule, 112-113
Dyson, Freeman, 272

E
Earth, age and formation of, 468-469
Ehrenfest, Paul, 99, 298
Eightfold way, 536
Einstein, Albert, 14-15, 17-18, 19, 26-29, 88, 

107-108, 150, 189, 193, 300, 348, 520, 
544, 555-560, 562, 584

Einstein-Podolsky-Rosen paradox, 194, 354
Einstein’s postulates (of relativity), 26-29
Electric dipole transitions, 271
Electrical conductivity, 278, 281, 295, 316-

323, 392-394
Electromagnetic waves, 9-10, 17, 611
Electromagnetism, 4-5, 12-13, 17, 523-525
 and relativity, 73-75, 81
Electron
 charge on, 88-91, 123
 charge to mass ratio, 85-88
 discovery of, 85-88, 123
 mass of, 435
Electron capture, 460-462
Electron double-slit experiment, 183-185
Electron-phonon interaction, 371-372
Electron volts, 68-71
Electroweak era, 585
Electroweak interaction, 10-13, 457, 523-525
Elementary particles, 483, 519
Elements, 510-513
 discovery of new, 510-513
 transuranic, 510-513
Elsewhere, 49-50
Emission spectrum, 144
Emissivity, 97
Endoergic (endothermic) reactions, 481
Energy, conservation of, 2, 5, 65-66
Energy content, 491
ENIAC computer, 419
Entrance and exit channels, 477
Entropy, 379, 391, 576
Eötvös, Lorand, 557
Equipartition theorem, 6-7, 303-306, 335-336
Equivalence of mass and energy, 65-66
Equivalence principle, see Principle of equiva-

lence.
Esaki, Leo, 235

Ether, see Luminiferous ether.
Ether drag, 25
European Space Agency (ESA), 566
Event horizon, 567-568
Everett, Hugh, 194
Excitation function, 491
Exclusion principle, see Pauli exclusion prin-

ciple.
Exoergic (exothermic) reactions, 481
Extrasolar planets, 611-612
Expectation values, 209-211, 236-237, 265-

266
Experimental verifi cation (of special relativ-

ity), 42-46, 79

F
Fairbank, W. M., 373
Families of matter, 541
Faraday, Michael, 4, 17
Faraday’s law, 4
Fermi energy, 315, 318-322, 389
Fermi, Enrico, 316, 436, 492, 496-497, 519, 

521
Fermi Gamma-Ray Telescope, 611
Fermi speed, 321-322
Fermi temperature, 316
Fermi, unit of (femtometer), 436
Fermi-Dirac statistics, 313-323, 336-337
Fermions, 313, 526
 wave functions, 331-332
Ferrimagnetism, 367
Ferromagnetism, 366-367
Feynman diagram, 521-523
Feynman, Richard, 201, 420, 520-521, 577
Fine structure, 150, 253
Fine structure constant, 145
Finite square well potential, 216-218, 

237
Fission, 486-498, 516
 barrier, 486
 control rods, 490-492
 fragments, 486, 489
 induced, 487-488
 reactors, 490-498, 516
 spontaneous, 487
 thermal neutron, 487-488
Fitch, Val, 536
Fitzgerald, George F., 16, 27
Fizeau, H. L., 41
Flavor, 539
Forbidden transitions, 262, 271, 288
Forbidden zones, 396
Formation of elements, 499-501
 carbon (CNO) cycle, 500
 proton-proton chain, 499-500
Forward bias, 406-408
Fourier integral, 179
Fourier, Joseph, 299
Fourier series, 179
Fourier Transform Infrared Spectroscopy 

(FTIR), 346
Four-level system, 351
Four-vectors, 51-52
Frame dragging, 572-573
Franklin, Rosalind, 166
Franck, James, 154-156
Franck-Hertz experiment, 154-156, 158, 160
French, Anthony P., 47
Fresnel, Augustin, 9, 20, 41
Friedman, Alexander, 583-584
Friedman equation, 583-585
Friedman, Jerome, 539
Friedrich, Walter, 163
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Frisch, O. R., 496
Fukushima Daiichi, 494
Fuller, Buckminster, 380
Fundamental interactions, 10-12, 523-526, 

552
Fusion, 499-505, 516-517, 588
 conditions, 501-502
 controlled, 502-505
 inertial confi nement, 505
 ITER, 504
 magnetic confi nement, 503
 reactions, 501
 tokamak, 503

G
Galaxies, 592-598
 Andromeda, 593
Galilean invariance, 19-20, 73
Galilean transformation, 20, 29
Galileo, 3, 557
Gamma decay, 452, 462-464
Gamma ray bursts, 594-595
Gamma rays, 431, 433, 462-464, 594-595
Gamow, George, 581
Gaussian wave function, see Wave function, 

Gaussian.
Gauss’s law, 4
Gay-Lussac, Joseph Louie, 6
Gay-Lussac’s law, 6, 13
Gedanken experiments, 33, 36, 556
Geiger, Hans, 129-131, 158
Gell-Mann, Murray, 536-537
General relativity, 555-576
 bending of light, 560
 tests of, 560-564, 574-575
Geometrical optics, 8
Gerber, Christoph, 232
Germer, L. H., 162, 172, 196
Giauque, W.F., 379
Glaser, Donald, 544
Glashow, Sheldon, 11, 523-524
Global Positioning System (GPS), 573, 

575
Globular clusters, 603-604
Gluons, 523, 525, 527
Goodstein, Daniel, 298
Grand Unifying Theories (GUTs), 12, 543, 

585-586
 epoch, 585
Graphene, 423-424
Gravitation, 10-13, 524-525, 586-587
Gravitation pressure, 590
Gravitational lensing, 560
Gravitational mass, 557-558
Gravitational redshift, 561-562
Gravitational waves, 564-565
Gravitons, 524-525, 527
Gravity Probe B, 573
Gross, David, 539
Ground state, 213, 223-225
Group velocity, 178-182, 198
Groups, 276
Guth, Alan, 599-600
Gyromagnetic radio, 259

H
Hadrons, 524-525, 528-529
Hahn, Otto, 496
Half-life, 450
Hall effect, 401-404, 428
Halogens, 279
Harmonic oscillator, 220-225, 237-238
Hawking radiation, 570

Hawking, Stephen, 575-576
Heat capacity (molar), 7, 304-306, 321
 diatomic gas, 7, 304-306
 ideal gases, 7, 304-306
 solid, 306, 320-323
Hecht, Eugene, 351
Heisenberg, Werner, 162, 186-187, 192-193, 

201, 525
Heisenberg uncertainty principle, 186-190, 

199, 473, 522
Helium, discovery of, 93
Helium, liquid, 325-331, 378-379
Helmholtz, Hermann, 24
Henry, Joseph, 4
Herman, Robert, 581
Hermite polynomials, 223-225
Hertz, Gustav, 154-157
Hertz, Heinrich, 4, 9, 16, 85, 105
Hess, V.F., 521
Higgs particle, 526-527, 541
Higgs, Peter, 526
Hofstadter, Robert, 436
Holes, 400-404, 406-407
Holography, 353-354
Horizon problem, 599
Hosono, Hideo, 380
HR diagram, 603
Hubble constant, 579-581, 604
Hubble, Edwin, 578-581, 584
Hubble parameter, 579, 584, 604, 606
Hubble space telescope, 123, 562, 593, 604, 

610
Hubble time, 606
Hubble’s law, 579-581
Hulse, Russel, 565
Humason, Milton, 579
Hund’s rules, 285
Huygens, Christiaan, 8
Hydrogen atom, 241-271
 21-cm transition, 260, 270
Hydrogen bomb, 501
Hydrogen bond, 341
Hydrogen-like atoms, 149, 159, 242
Hypercharge, 535

I
Ideal gases, 5-8, 301-311, 335-336
Impact parameter, 131-135, 158
Independent-particle model, 448
Indistinguishable particles, 312-314
Inert gases, 278
Inertial confi nement, 505
Inertial frame, 19, 27
Inertial mass, 557
Infi nite square-well potential, 212-216, 

237
Infl ationary universe, 599-600, 606
 epoch, 599
Integrated circuits, 418-421
Intrinsic spin, see Spin, intrinsic.
Invariant quantities, 50
Inverse photoelectric effect, 112
Ionic bond, 340-341
Ionization energy, 278
Isobars, 434
Isobar, mirror, 473
Isomeric state, 464
Isomers, 464
Isotone, 434
Isotope, 434
Isotope effect, superconducting, 371
Isotope shift, 159
Isotopes, 434

J
Jeans, James, 16, 99
jj coupling, 289-292
Joliot, Frederick, 433-434
Joliot-Curie, Irène, see Curie, Irène.
Jönsson, C., 183, 196
Jordan, Pascal, 201
Josephson, Brian, 171, 381
Josephson effect, 381
Josephson junction, 381-382, 390
Joule, James P., 5, 299-300

K
Kapitsa, Peter, 171
Keck telescope, 595
Kelvin, Lord (William Thomson), 1-2, 5, 15-

16, 469
Kendall, Henry, 539
Ketterle, Wolfgang, 332-333
Kinetic theory of gases, 5-8, 301-311
Knipping, Paul, 163
Kobayashi, Makoto, 542
Kronig, R. de L., 395
Kronig-Penney model, 395-396
Kroto, Harold, 380

L
LambdaCDM model, 607-609
Landauer, Rolf, 426
Landé g factor, 293-294
Lanthanides, 279, 281
Laplace, Pierre Simon de, 299
Laplacian operator, 219
Large Magellenic Cloud, 597
Laser cooling, 55
Lasers, 55, 347-356, 388
 atom, 333
 free electron, 352
 helium-neon, 351
 in surgery, 355-356
 NOVA, 388
 semiconductor, 417-418
 tunable, 351
 ultrafast, 200
Laughlin, Robert, 402
Lauterbur, Paul, 384
Law of Atmospheres, 337
Lawrence, Ernest O., 476-477, 511
Lawson criterion, 501, 504
Lee, Tsung Dao, 535
Lemaître, George, 579, 584
Lenard, Phillip, 84,105
Length contraction, 35-38, 78-79
Lenz’s law, 371
LEP Collider, 526, 549-550
Leptons, 527-528, 533-534, 541, 585
Leucippus, 13
LHC (Large Hadron Collider), 384, 526, 542-

543, 547, 550, 552, 554
Libby, Willard, 467
Light
 speed of, 21, 27-29, 352-353
 Young’s double-slit experiment with, 182-

183, 191
Light cone, 50
Light emitting diode (LED), 409
Light sources, 547
Lightman, Alan, 516
LIGO, 566
Line of stability, 443-444
Line spectra, 91-95, 123, 145-146
 helium, 93
 hydrogen, 92, 94-95, 145-146
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Linear accelerators (LINACs), 547-548
Liquid drop model (of nucleus), 446-447
Liquid helium, see Helium, liquid.
Livingston, M. S., 476
London, Fritz, 327, 379
Lorentz force law, 4, 73-75
Lorentz, Henrik A., 16, 27, 73
Lorentz symmetry, 46
Lorentz transformations, 28-31, 39, 49-51, 

74, 78
Lorentz velocity transformation, see Addition 

of velocities.
Lorentz-Fitzgerald contraction, 26, 36, see also 

Length contraction.
Lorenz number, 362-363
Low-temperature methods, 378-379
LS coupling, see Russell-Saunders Coupling
Luminiferous ether, 20-26
Lyman series, 94, 144-145

M
M-theory, 546
Mach, Ernst, 14-15
Madelung constant, 357-358
Maglev, 382-383
Magnetic moment
 deuteron, 441
 electron, 438
 hydrogen atom, 253-259 
 neutron, 438
 proton, 438
Magnetic monopoles, 543, 599
Magnetic properties of solids, 363-367, 389
Magnetic resonance imaging, 384-385, 439, 

506
Magnetic susceptibility, 363-366, 368-370
Magnetization, 363-366
Maiman, Theodore, 349
Mansfi eld, Peter, 384
Many Worlds interpretation, 194
Marsden, Ernest, 129-131, 158
Masers, 349
Maskawa, Toshihide, 542
Mass excess, 431
Mass spectrograph, 434
Massless particles, 67
Matrix formulation of quantum theory, 201
Matter-antimatter, 542
Matter waves, see Particle waves.
Matthias, Berndt, 375
Maxwell, James Clerk, 3, 7-9, 16, 20, 73, 170-

171, 299-301, 311, 544
Maxwell speed distribution, 8, 307-311, 336
Maxwell velocity distribution, 301-303, 335
Maxwell-Boltzmann (classical) statistics, 7, 

311-315, 336
Maxwell’s demon, 334-335
Maxwell’s equations, 1, 4-5, 20-21, 26, 73-75
Mean free path, 317
Mean lifetime, 450
Medium-energy physics, 483
Meissner effect, 368
Meissner, W., 368, 375
Meitner, Lise, 496
Mendeleev, Dmitri, 272
Mesons, 521-523, 528-529
 B, 529
 K, 528-529, 542
 pi (pion), 45-46, 523, 528-529
Metallic bond, 341
Metastable states, 289, 350
Michelson, Albert A., 1-2, 16, 19, 21-26, 88, 91
Michelson interferometer, 21-24, 554

Michelson-Morley experiment, 21-26, 78
Milky Way, 592-593
Millikan oil drop experiment, 88-91, 123
Millikan, Robert A., 84, 88
Minkowski diagrams, see Spacetime diagrams.
Minkowski, H. A., 48
Missing mass problem, 601
Moderator, 491
Molecular bonding and spectra, 340-347, 

387-388
 fractional ionic character, 388
Momentum, conservation of, 3, 58-62, 81
Momentum-energy relation, in relativity, 67
Moore’s law, 420, 426
Morley, Edward, 24-26
Morrison, Philip, 261
Morse potential, 239
Moseley, H. G. J., 151-154, 160
Moseley plot, 152-153
MOSFET, 416
Mössbauer effect, 561
Mössbauer, R. L., 473, 561
Müller, Karl Alex, 376
Muon, 159, 522, 528
Muon decay, 42-43
Muonic atom, 159-160, 271

N
Nanotechnology, 421-426, 428
Nanotransistors, 423
Nanotubes, 421-422, 428
Nanowires, 239, 422
NASA, 563, 565, 572, 600-601, 610-612
Ne’eman, Yuval, 536
Nebula, 593
Neutrino, 456-462, 528, 542, 597-598
 astronomy, 597
 detection, 458-459
Neutrino oscillations, 542
Neutron
 discovery of, 431-434, 471
 magnetic moment, 438
 prompt, 489-490
Neutron activation, 485-486, 507
Neutron irradiation, 508-509
Neutron star, 500, 565, 590-592, 604
Newton, Isaac, 3-4, 8, 13, 19-20, 299, 544, 557
Newton’s laws of motion, 1, 3-4, 6, 19-20
Newton’s Opticks, 8
Normalization, 192, 204-205
Novae, 595
Nuclear applications, 505-511
Nuclear binding energy, 440-449
Nuclear by-product materials, 506
Nuclear force, see Strong force.
Nuclear fusion, see Fusion.
Nuclear magnetic resonance, 384, 438-439
Nuclear magneton, 438
Nuclear medicine, 505-506
Nuclear models, 448-449
Nuclear properties, 434-439, 471
 magnetic moment, 432, 437
 mass, 435, 440
 radius, 435-436
 size (charge radius, force radius, matter 

radius), 432, 435
 spin, 432, 437
Nuclear reactions, 475-478, 515
Nuclear reactors, 490-498, 516
 boiling water, 492
 breeder, 494-495
 early, 496-497
 future, 495-497

 power, 492-493
 pressurized water, 492-493
 problems, 493-494
 research, 493
Nuclear resonances, 485
Nuclear separation energy, 442
Nuclear shell, 473-474
Nuclear stability, 442-449
Nuclear state
 energy width, 485
 lifetime, 485
Nuclear trace elements, 505
Nucleons, 435
Nucleus, hard core, 441
Nucleus, symbol for, 434
Nucleosynthesis, 581-583, 586
Nuclides, 434
 even-even, 445
 even-odd, 445
 odd-odd, 445

O
Occhialini, G. P., 523
Oersted, Christian, 4
Ohmic contact, 417
Olbers’ paradox, 583
Onnes, Heike Kamerlingh, 325-326, 339, 

367, 375
Oort, Jan, 260
Open universe, 605
Operators, 210-211
 energy, 210-211
 momentum, 210
Oppenheimer, J. Robert, 565
Oschenfeld, R., 368
Ostwald, Wilhelm, 14

P
Pair production and annihilation, 117-120, 

125
Paramagnetism, 365-366
Parent nucleus, 452
Parsec, 580-581
Particle, defi nition of, 530
Particle detectors, 458-459
Particle, fundamental, 530
Particle in a box, 194-195, 199
Particle physics, 519-551
Particle waves, 8-9, 172-175
Paschen series, 94-95, 123, 144-146
Pauli exclusion principle, 273-274, 445
Pauli, Wolfgang, 273, 456, 519, 524-525
Peebles, P. James E., 581
Peierls, Rudolf, 431
Peltier effect, 405
Penney, W. P., 395
Penzias, Arno, 578, 581
Perihelion shift of Mercury, 562
Periodic table, 276-281
Periods, 276
Perrin, Jean, 15
PET scan, see Positron Emission Tomography.
Pfund series, 94, 123
Phase space, 301
Phase velocity, 180-181
Phonons, 371
Photodisintegration, 441, 477
Photoelectric effect, 102-110, 124
Photons, 67, 102-120, 182, 191-192
Photonuclear reaction, see Photodisintegra-

tion
Photovoltaic cells, 409-413
Physical observables, 185, 209
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Pi meson, see Meson, Pi.
Pierels, Rudolf, 431
Planck law, see Blackbody radiation, Planck 

law for.
Planck energy, 575
Planck epoch, 585
Planck length, 575-576, 591
Planck mass, 575, 591
Planck, Max, 16-17, 18, 84, 100
Planck time, 575, 591
Planck’s constant, 88, 100-102, 107-109, 142-

145, 159
Plasma, 315
Plum pudding model, 128, 158-159
pn-junction diode, 406
Politzer, H. David, 539
Population inversion, 350
Positron Emission Tomography (PET), 119-

120, 506
Positronium, 118, 160
Positrons, 117-120, 457, 520-521
Potential barriers, see Barriers. 
Pount-Rebka experiment, 561, 575
Powder pattern (x-ray), 166
Powell, C. P., 523
Principle of Complementarity, 168-169, 185
Principle of Equivalence, 555-558
Probability, 204-206, 260-267, 270
 radial, 264-267
Probability density, 192, 204-206, 263-267, 

270
Proper length, 35-38
Proper time, 31-35
Proton decay, 543
Proton magnetic moment, 438
Proton mass, 435
Proton-proton chain, 499
Proton-proton cycle, 582
Pulsar, 591-592
Purcell, Edward, 260, 384, 438

Q
Q value, 480-481
Quantization, 95-96
Quantized energy levels, 142-157, 194-195, 

213-225, 246
Quantum chromodynamics (QCD), 539-541
Quantum computers, 426
Quantum dots, 424-425
Quantum electrodynamics (QED), 46, 520-

521
Quantum entanglement, 354
Quantum fl uxoid, 373
Quantum Hall effect, 402-403
Quantum numbers, 142-143, 147, 194-195, 

213, 219-224, 245-252, 258, 269-270, 
281-292, 537

 intrinsic spin quantum number, 259
 magnetic quantum number, 251-252
 magnetic spin quantum number, 258
 orbital angular momentum quantum num-

ber, 248-250
 principal quantum number, 143, 147, 246, 

249
 total angular momentum, 281-292
Quantum statistics, 312-333
Quantum teleportation, 355
Quark confi nement, 539-540
Quarks, 12, 95, 435, 519, 523, 536-541, 553, 

585-586
 era, 586
Quark-electron soup, 585-586
Quasars, 593

Quate, Calvin, 232
Quintessence, 602

R
Rabi, I.I., 438
Radar, 54, 563-564
Radial equation, 244-246
Radiation-dominated universe, 587
Radiative capture, 477, 485
Radioactive dating, 466-469, 603
Radioactive decay law, 450-452
Radioactivity, 449-469, 472-473
 artifi cial and natural, 464
Radioisotope, 505
 generators, 505
 radiopharmaceuticals, 506
Radon gas, 473
Raman scattering, 346-347
Range parameter, see Repulsive range param-

eter.
Rayleigh, Lord (John William Strutt), 16, 99, 

166-167, 171
Rayleigh scattering, 347
Rayleigh-Jeans law, 99, 123
Rayleigh’s criterion, 199
Reaction kinematics (nuclear), 480-482, 

515-516
Reaction mechanisms (nuclear), 482-486, 516
 compound nucleus, 482-485
 direct reactions, 482, 486
Recession velocity, 578-579
Red giant, 609
Redshifts, 54, 56, 109, 578-580, 598
Reduced mass, 148, 161, 242
Refl ection and transmission, 226-231, 234
Reines, Frederick, 457-459
Relativistic energy, 62-68, 80-81
Relativistic force, 62, 80
Relativistic Heavy Ion Collider (RHIC), 554
Relativistic kinetic energy, 62-66, 80-81
Relativistic mass, 61
Relativistic momentum, 58-61, 80
Repulsive range parameter, 358-359
Resistivity, electrical, 392-394
Resonances, 485, 530-531
Rest energy, 64-67
Rest mass, 61
Reverse bias, 406-408
Richter, Burton, 531, 537
Rigid rotator, 341-342
Ritz combination rules, 159
Robertson-Walker metric, 584
Rohrer, Horst, 232
Röntgen, Wilhelm, 17, 85-86, 163
Rowland, Henry, 91
Rotational (molecular) states and spectra, 

342-346
Rubbia, Carlo, 523, 545
Rumford, Count (Benjamin Thompson), 299
Russell-Saunders coupling, 286-289
Rutherford, Ernest (Lord), 127-139, 170-171, 

431-432, 475, 481
Rutherford scattering, 131-139, 158-160
Rydberg atoms, 160-161, 220, 280
Rydberg constant, 94, 144, 149, 160
Rydberg equation, 94, 144, 149

S
Sagan, Carl, 261
Salam, Abdus, 11, 523-524
Scanning tunneling microscope,14, 232-233
Scattering (elastic, inelastic), 477
Schawlow, Arthur, 349, 355

Schmidt, Maarten, 160
Schottky barrier, 416-417
Schrieffer, J. Robert, 371-372
Schrödinger, Erwin, 192, 201-202, 520
Schrödinger wave equation 
 in spherical coordinates, 242
 three-dimensional, 218-220
 time dependent, 202-204, 236
 time independent, 206-208, 236
Schrödinger’s cat, 193
Schroeder, Daniel, 301
Schwarzschild, Karl, 565
Schwarzschild radius, 567
Schwinger, Julian, 520
Seaborg, Glenn, 511-512
Secondary emission (of electrons), 103
Secular equilibrium, 473
Seebeck effect, 405
Segre, E.G., 120, 547
Selection rules, 262-263
Semiconductor devices, 406-421, 428
Semiconductors, 392-430
 electrical conductivity and resistivity, 393, 

397
 impurity, 400
 intrinsic, 400
 n-type, 400-401
 p-type, 400-401
 theory of, 397-406, 428
Semi-empirical mass formula, 446
Semi-infi nite potential well, 239
Semimetals, 397
Separation energy, 442
Separation of variables, 243-245
Shapiro, Irwin, 563-564
Shell model, 449
Shockley, William, 413
Simple harmonic oscillator, see Harmonic 

oscillator.
Simultaneity, 27-28
Singlet states, 286-288
SLAC, 531, 539, 542
Slipher, V. M., 578
Sloan Digital Sky Survey, 605
Smalley, Richard, 380
Solar cells, see Photovoltaic cells.
Solar constant, 409
Solar thermal facilities, 412
Sommerfeld, Arnold, 150, 163, 321
Space Telescope, Future, 610-611
Space quantization, 251
Spacetime curvature, 555, 558-560
Spacetime diagram, 48-52, 80
Spacetime intervals, 50-51
Spacetime invariant, 50-51
Speed of light, see Light, speed of.
Spherical harmonics, 246-248
Spin, intrinsic, 258-259, 270
Spin-orbit coupling, 282-283
Spitzer Space Telescope, 123, 610-611
Spontaneous emission, 347
Square well potential
 fi nite, 216-218
 one-dimensional infi nite, 194-196, 212-216
 three dimensional infi nite, 218-220
SQUID, 381-382
Standard model, 524-525, 541-546, 553, 607-

609
Standing waves, 169, 214
Stark effect, 150, 220, 280
Stark, Johannes, 241, 280
Stationary states, 142, 207
Steady state theory, 578
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I-6 Index

Stefan-Boltzmann law, see Blackbody Radia-
tion, Stefan-Boltzman law.

Stellar aberration, 25-26
Stellar evolution, 588-592, 614
Stern-Gerlach experiment, 241, 256-258, 

270, 438
Stern, Otto, 256
Stimulated emission, 348-350, 388
Stokes’s law, 88-89, 123
Stopping potential, 104-109, 124
Störmer, Horst, 402
Strangeness, 534-538
Strassman, Fritz, 496
String theory, 543
Strong-interaction model, 448
Strong (nuclear) force, 10-13, 435, 442, 523-

525
Subshells (atomic), 274-281
Sun, 588, 609
 demise, 609
 temperature of, 98
Superconductivity, 367-385, 390-391
 applications of, 380-385, 391
 BCS, theory of, 371-374
 energy gap, 373-374
 high temperature, 374-377, 380
 superconducting fullerenes, 380
 transition temperatures and critical fi elds, 

table, 369
 type I and type II, 370
Superfl uidity, 325-331
 Superfl uid 3He, 328-329
Supergiant star, 500
Supernovae, 500, 595-599
 1987A, 596-598
 Cosmology Project, 607
Superpartners, 543
Superposition principle, see Principle of Su-

perposition.
Superstrings, 543
Supersymmetry, 543
Symmetries, 535-536, 542
 charge conjugation, 535-536
 CP violation, 542
 parity, 535-536, 542
 time reversal, 536
Symmetry of boson wave functions, 331-332, 

337
Synchronization of clocks, 28
Synchrotron radiation, 547
Synchrotrons, 547
Szilard, Leo, 496

T
Tachyons, 67-68
Taylor, Joseph, 565
Taylor, Richard, 539
Taylor series, 221, 360
Tevatron, 526, 547-549, 554
Theory of everything, 546, 585-586
Thermal conductivity, 361-363
Thermal expansion, 359-361
Thermionic emission (of electrons), 103
Thermocouple, 405-406
Thermodynamics, laws of, 5-8
 First Law of, 5
 Second Law of, 5, 335, 379, 387
 Third Law of, 5
 Zeroth Law of, 5
Thermoelectric effect, 404-406
Thomas factor, 296

Thomas Jefferson National Accelerator Facil-
ity (JLAB), 384

Thomson, George P., 171, 174
Thomson, J. J., 17, 84-88, 128-129, 158-159, 

170-171, 174, 520
Thomson effect, 405
Thomson scattering, 113
Thomson, William, see Kelvin
Three-dimensional infi nite potential well, 

218-220, 237
Three-level system, 350
Three Mile Island, 494
Threshold energy, 481-482
Threshold frequency, 104-109
Tidal forces, 557
Time dating, 466
Time dilation, 31-35, 78-79
Ting, Samuel, 537
Tinkham, Michael, 373
Tokamak, 503
Tomography, 506
Tomonaga, Sin-itiro, 520
Topness, 537
Townes, Charles, 349, 355
Transistors, 413-421
 bipolar, 415
 fi eld-effect (FET), 415-416
Transition metals, 279
Transition probabilities, 262-263
Transitions, allowed and forbidden, 262-263, 

271
Transmission, see Refl ection and 

transmission.
Transuranic elements, 511-513
Triplet states, 286-288
Tritium, 149, 434, 472
Triton, 434, 471
Tsui, Daniel, 402
Tunnel diodes, 235
Tunneling, 226-235, 238
Twin paradox, 46-48, 80

U
Ultraviolet catastrophe, 16, 99
Uncertainty principle, see Heisenberg uncer-

tainty principle.
Unifi ed fi eld theory, 12, 543
Universe,
 accelerating, 601-602
 age, 603-607
 closed, 599, 605
 curvature, 585, 605
 expansion, 608
 fl at, 599, 606
 future, 609-612
 open, 599, 605
 scale determination, 605
Uranium enrichment (gaseous diffusion and 

ultracentrifuge), 491

V
Vacuum energy density, 585
Valence, 128, 278
Valence band, 397
Van de Hulst, H.C., 260
Van de Graaff accelerator, 476
Van de Graaff, Robert, 476
Van der Meer, Simon, 545
Van der Waals bond, 341
Velocity addition, see Addition of velocities.

Vibrational (molecular) states and spectra, 
342-346

von Klitzing constant, 402
von Klitzing, Klaus, 402-403
von Laue, Max, 162, 356
von Weizäcker, Carl, 446

W
Walton, E. T. S., 171, 476
Watson, James, 166
Watt balance, 381
Wave equation, Schrödinger, see Schrödinger 

wave equation.
Wave equations, 175-179
 classical, 175-179
Wave function, 175-179, 200-233, 244-248, 

263-266
 boson and fermion, 331-332
 Gaussian, 179
 radial, 244-247, 263-266
Wave mechanics, 10, 185 
Wave motion, 175-181, 198
Wave number, 176-181, 395-396
Wave packet, 177-181, 198-199, 203
Wave vector, 396
Wave-particle duality, 182-185, 198-199
Weak interaction, 11-13, 523-525
Webb (James) Space Telescope, 611
Weber, Joseph, 565
Weightlessness, 557, 575
Weinberg, Steven, 11, 523-525
Wheeler, John, 496 
White dwarf, 338, 500, 565, 592, 604
Wiedemann-Franz law, 362-363, 389
Wieman, Carl, 332
Wien law, see Blackbody Radiation, Wien law.
Wien, Wilhelm, 16, 97, 163
Wilczek, Frank, 539
Wilson, C. T. R., 171
Wilson, Robert, 578, 581
WKB approximation, 240
WMAP, 600-601, 603, 605, 607
Work function, 103-109
Worldlines, 48-50
Wu, C. S., 535

X
X rays, 84-86, 110-113, 122, 124-125, 151-154, 

163-167, 197
 Bragg method, 164-165
 characteristic, 151-154, 160
 Laue method, 163-166
 scattering, 163-167

Y
Yang, Chen Ning, 535
Young, Thomas, 9, 20
Young’s double-slit experiment, see Light, 

Young’s double-slit experiment with. 
Yukawa, Hideki, 521-523

Z
Z-pinch, 505
Zeeman effect, 17, 150, 220, 253-258, 269-

270, 292-294, 296-297, 438
 anomalous, 292-294, 296-297
 normal, 253-258, 269-270
Zeeman, Pieter, 17, 253
Zener diodes, 408-409
Zero-point energy, 223, 372
Zweig, George, 536
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Alpha ! a Iota " i Rho # r

Beta $ b Kappa % k Sigma & s

Gamma ' g Lambda ( l Tau ) t

Delta * d Mu + m Upsilon , y

Epsilon - P Nu . n Phi / f

Zeta 0 z Xi 1 j Chi 2 x

Eta 3 h Omicron 4 o Psi 5 c

Theta 6 u Pi 7 p Omega 8 v

The Greek Alphabet

Power Prefix Abbreviation Power Prefix Abbreviation

10918 atto a 101 deka da
10915 femto f 102 hecto h
10912 pico p 103 kilo k
1099 nano n 106 mega M
1096 micro : 109 giga G
1093 milli m 1012 tera T
1092 centi c 1015 peta P
1091 deci d 1018 exa E

Some Prefixes for Powers of Ten
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Sodium

Mercury

Atomic emission line spectra

750 700 650 600 550 500 450 400  nm
Incandescent lampContinuous spectrum

Emission Spectra

Atomic emission line spectra like those shown for mercury, sodium, helium, and 
hydrogen are obtained when photons are emitted from a low-pressure gas sam-
ple that is electrically excited. The name line spectra comes from the bright lines 
that are characteristic of each element. The study of these atomic spectra proved 
invaluable in the development of atomic physics. The continuous spectrum, with 
all the colors making up white light, is from an incandescent lamp and is pro-
duced by a white-hot sample (solid, liquid, or high-pressure gas).

03721_ES_EP5-EP8.indd   EP703721_ES_EP5-EP8.indd   EP7 9/27/11   12:00 PM9/27/11   12:00 PM


