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Abstract

A real-time guidance scheme for the problem of maximizing the pay-

load into orbit subject to the equations of motion for a rocket over a spheri-

cal, nonrotating Earth is presented. An approximate optimal launch guidance

law is developed based upon an asymptotic expansion of the Hamilton-Jacobi-

Bellman or dynamic programming equation. The expansion is performed in

terms of a small parameter, which is used to separate tile dynamics of the

problem into primary and perturbation dynamics. For the zeroth-order prob-

lem the small parameter is set to zero and a closed-form solution to the zeroth-

order expansion term of the Hamilton-Jacobi-Bellman equation is obtained.

Higher-order terms of the expansion include the effects of the neglected pertur-

bation dynamics. These higher-order terms are determined from the solution

of first-order linear partial differential equations requiring only the evaluation

of quadratures. This technique is preferred as a real-time on-line guidance

scheme to alternative numerical iterative optimization schemes because of the

unreliable convergence properties of these iterative guidance schemes and be-

cause the quadratures needed for the approximate optimal guidance law can

be performed rapidly and by parallel processing. Even if the approximate solu-

tion is not nearly optimal, when using this technique the zeroth-order solution
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always provides a path which satisfies the terminal constraints. Results for

two-degree-of-[reedom simulations arc presented for the simplified problem o[

flight in the equatorial plane and compared to the guidance scheme generated

by the shooting method which is an iterative second-order technique.

iv



Table of Contents

Abstract iii

Table of Contents V

List of Tables viii

List of Figures ix

List of Symbols xi

1. Introduction 1

o The Peturbed Hamilton-Jacobi-Bellman Equation

2.1

2.2

2.3

2.4

5

Expansion of the H-J-B Equation ................. 8

Solution by the Method of Characteristics ............ 10

Determination of the Optimal Control .............. 11

Determination of the Forcing Functions .............. 12

1 Modelling of the ALS Configuration

3.1

3.2

3.3

3.4

3.5

14

Equations of Motion for the Launch Problem ........... 16

Propulsion .............................. 18

Aerodynamics ............................ 18

Mass Characteristics ........................ 21

Gravitational and Atmospheric Models .............. 22

V



0

o

,

3.6 Expansion Dynamics ........................ 24

3.6.1 Two-Dimensional Flight .................. 25

Zeroth-Order Optimization Problem

4.1

4.2

4.3

4.4

27

Optimization Problem Statement ................. 27

Zeroth-Order Coordinate Transformation ............. 29

Zeroth-Order Analytic Solution in the Cartesian Frame ..... 31

Linking the First and Second Stage Subarcs ........... 36

First-Order Corrections

5.1

5.2

5.3

5.4

40

Correction to the Lag-range Multipliers .............. 41

The First-Order Forcing Function ................. 41

Relating the Partial Derivatives of the Wind Axis Frame to the

Partial Derivatives of the Cartesian Frame ............ 43

Partial Derivatives of the Analytic Solution ............ 44

5.4.1

5.4.2

5.4.3

Partial Derivatives of Some Common Terms ....... 44

Partial Derivatives of the Analytic States ......... 45

Solution to the Linear System of Unknown Partials . . 48

Aerodynamic Effect along the Zeroth-Order Trajectory

6.1 Inclusion of an Aerodynamic Effect in the Zeroth-Ordcr Problem

52

53

6.1.1 Zeroth-Order Aerodynamic Effect in the Rectangular Co-

ordinate System ....................... 56

6.1.2 First-Order Correction Terms ............... 59

Results for the Rectangular Pulse Punctions ........... 60

Aero Pulses in the Body-Axes Frame ............... 62

vi



7. Results 67

o The Relationship between Calculus of Variations and the HJB

equation 83

8.1 Correction Terms to the Lagrange Multipliers .......... 83

8.2 Expansion of the Euler-Lagrange Equations ........... 87

8.2.1 Expansion of the State Equations ............. 88

8.2.2 Expansion of the Lagrange Multiplier Equations ..... 89

8.3 Expansion of the Boundary Conditions .............. 91

8.3.1 Expansion of the Transversality Conditions ........ 92

8.4 Solution to the First-Order Problem ................ 93

8.5 Solutions to First-Order Linear Partial Differential Equations.. 95

8.6 Formulation of First-Order Correction Terms for the ALS Probleml00

8.7 Results ................................ 105

9. Conclusions 114

A. Zeroth-Order Solution for Three-Dimensional Flight 117

A.1 Zeroth-0rder Coordinate Transformation ............. 124

B. Canonical Transformations 129

C. Point Inequality Constraints 133

D. Analytic Partial Derivatives for Zeroth-Order Solution 137

BIBLIOGRAPHY 142

vii



List of Tables

3.1 Vehicle Mass Characteristics .................... 22

7.1 Comparison of Results ....................... 72

7.2 Comparison of computation time ................. 81

8.1 Comparison o[ open loop results .................. 106

8.2 Comparison of closed loop results ................. 106

°o,

VIII



List of Figures

3.1 ALS Vehicle Configuration ..................... 15

3.2 Coordinate Axis Definition ..................... 17

3.3 First Stage Drag Model ....................... 19

3.4 First Stage Lift Model ....................... 19

3.5 Second Stage Aerodynamic Model ................. 21

4.1 Transformation of Coordinal_e Systems .............. 30

6.1 Coordinate frames for the aerodynamic pulse functions ..... 55

6.2 Model for aerodynamic pulses in x-direction ........... 57

6.3 Model for aerodynamic pulses in z-direction ........... 57

6.4 Open loop zeroth-order path for body-axes aerodynamic pulses . 66

7.1 Hamiltonian versus Angle-of-Attack at continuous points of the

first stage .............................. 69

7.2 First stage model for the drag coefficient ............. 70

7.3 Comparison of the first stage and second stage aero models along

the vacuum path .......................... 71

7.4 Angle-0f-Attack vs. Time ..................... 74

7.5 Thrust Pitch Angle vs. Time ................... 75

7.6 Altitude vs. Time .......................... 76

7.7 Velocity vs. Time .......................... 76

7.8 Flight Path Angle vs. Time .................... 77

ix



7.9 Dynamic Pressure vs. Time .................... 78

7.10 Velocity Lagrange Multiplier vs. Time .............. 79

7.11 Flight Path Lag-range Multiplier vs. Time ............ 80

8.1 Geometric Interpretation of Integral Surface ........... 98

8.2 Open loop solution for Lagrange multipliers at staging conditions 108

8.3 Open loop solution for Lagrange multipliers at first stage initial

conditions .............................. 109

8.4 Closed loop solution for flight path angle Lagrange multipliers 110

8.5 Closed loop solution for velocity Lagrange multipliers ...... 111

8.6 Closed loop solution for angle-of-attack .............. 112



List of Symbols

English Symbols

a, b, c

CD

CD_

C Dc.2

CDa3

CL

CL_

C L_,2

cq

C_,,Cw

Cw

D

f(y,_,T)

f,

f_

constants of the quadratic mass equation

drag coefficient

linear coefficient in the drag model

quadratic coefficient in the drag model

cubic coefficient in the drag model

lift coefficient

linear coemcient in the lift model

quadratic coefficient in tile lift model

side force coefficient

constant terms associated with the Lagrange multipliers

for the velocity components u, w

constant term used to rewrite the Lagrange multipliers

in terms of mass, C_, = _--_,rmo+ C_

second stage value of Cw given first stage initial conditions

drag force

primary dynamics

the i th term of the asymptotic expansion of the

primary dynamics

partial derivative of the primary dynamics with

respect to the control u

xi



g

g_

C(y, u, t)

h

hi

hf.p_c

he

H

H Opt

[f w_nd

HLH

HI

H_,

Isp

J

K(Q,P,t)

L

perturbation or sccondary dynamics

the i th term of the asymptotic expansion of the

perturbation dynamics

partial derivative of the perturbation dynamics

with respect to the control u

gravity

sea-level gravity

scalar function of the augmented performance index

altitude

final attained altitude

specified final altitude

atmospheric density scale height

the Hamiltonian of the systcm

the optimal Hamiltonian

the Hamiltonian of the wind axis system

the Hamiltonian of the local horizon or Cartesian system

the Hamiltonian evaluated at the final time

first derivative of the Hamiltonian with respect to the

control u

second derivative of the Hamiltonian with respect to the

control u

specific impulse

performance index

Hamiltonian for a new set, of variables Q and P

lift force

xii



L_L

rnf

17_s_ge t

Yns_ge2

M

N(y,t)

p

P

P(x,t)

P=

P,

Ptt

Q

Lagrangians used in Appendix B

mass of the vehicle

final mass

specified mass at end of first stage before staging

specified mass at beginning of second stage after staging

Mach number; M = rE_
303

number of engines

dynamic pressure equality constraint appears in Appendix C

the partial of the dynamic pressure equality constraint

generalizcd coordinate of old system in Appendix B

generalized coordinate of new system in Appendix B

the optimal return function starting at the initial conditions

the partial derivative of the optimal return function

with respect to the initial state x

the partial derivative of the optimal return function

with respect to the initial time t

i th term of the asymptotic expansion of the primary dynamics

the partial derivative of the i Lh term of the expansion of

the optimal return function with respect to the initial state x

the partial derivativc of the i Lh term of the expansion of

the optimal return function with respect to the initial time t

dynamic pressure

generalized coordinate of old system in Appendix B

side force in Chapter 3 on ALS modelling

generalized coordinate of new system in Appendix B

.o0

XIU



T

Te

80S

S

S(q,Q,t)

t, to

tl

_s_ge

T

rl

T_

T_

U,

V

vl

/'f a pec

X

X

(x,Y,Z)

Y

radial position of the vehicle: re q- h

radius of the Earth

the forcing function associated with the i _a correction term

speed of sound

Cross-sectional area of the combined vehicle

generating function defined in Appendix B

initial time

final time

stage time

total thrust of the vehicle

value of the thrust for the first stage

value of the thrust for the second stage

vacuum thrust per engine

the i th term of the asymptotic expansion series of the control

velocity components associated with the inertial frame

velocity

final attained velocity

specified final velocity

initial states

downrange

Position coordinates for the right-handed inertial frame

state vector

xiv



Greek Symbols

angle-of-attack; control in the wind axis system

/3 vehicle sideslip angle; control in the wind axis system

X velocity heading angle

6(c, h) ratio of the atmospheric density to the small parameter

A discriminant associated with the quadratic mass equation

A = 4ac- b2

Amst,,ge discontinuity in the mass at staging

the small expansion parameter;

ratio of the atmospheric scale height to the radius of the Earth

the jth power of the small expansion parameter

flight path angle

final attained flight path angle

specified final flight path angle

Lagrange multiplier associated with the state y

Lagrange multipliers associated with the wind axis states

"/f. pec

Lag'range multipliers associated with the Cartesian states

Ah, Ax, Ay, A._

#

ft(y(tst_9e))

¢

¢2(q,p,t)

¢(yf, Ts)

velocity roll angle; control in the wind axis system

Lagrange multiplier associated with the terminal constraint on y

constraint imposed by the staging condition of the rocket

latitude

new generating function equal to S(q, Q, t)

scalar component of performance index

Xv



_(_)

P

p_

p_

O"

T

0

vector of terminal constraints

atmospheric density

sea-level atmospheric density

reference atmospheric density

specific fuel consumption

time

longitude

pitch angle; control in the Cartesian system

Miscellaneous Symbols

nm

sin

C08

tan

sinh -i

_(m)

a( )

_()

_()

_--()dT _

_()

_o(_)

nautical mile

sine function

cosine function

tangent function

inverse hypcrbolic sine function

argument of the inverse hyperbolic sine function

the differential of ( )

the time-varying variation of ( )

the variation of ( ) with time held fixed

denotes the time derivative of ( ) with respect to

the independent variable time

partial derivative of ( ) with respect to

the independent variable mass

partial derivative of ( ) with respect to the initial state x

xvi



_(ot )

),

0

)s

)o

),

lira

partial derivaLive of" ( ) with respect to the initial time t

prime superscript used for second stage values which are

linked to the initial conditions on the first stage subarc

subscript denotes the initial conditon of ( )

subscript denotes the final conditon of ( )

superscript denotes the optimal ( )

subscript denotes sea-level value;

subscript denotes the characteristic direction in Chapter 2

limit operation

xvii





Chapter 1

Introduction

An approach to real-time optimal launch guidance is suggested here

based upon an expansion of the Hamilton-Jacobi-Bellman or dynamic pro-

_amming equation. In the past, singular perturbation theory has been used

in expansion techniques used to solve optimization problems [1, 2, 3]. For

singular perturbation methods the states are split up into a set of 'fast' and

'slow' variables. The solution is then sought in two separate regions; one re-

gion where the fast states are dominant and an outer region where the slow

states are determined. A composite solution can then be determined by com-

bining the two solutions. Matching asymptotic expansions is one method for

obtaining the final solution. This research uses a regular asymptotic expansion

which is assumed valid over the entire trajectory of the launch optimization

problem. An example of a launch optimal control problem is to determine the

angle-of-attack profile which maximizes the payload into orbit subject to the

dynamic constraints of a point mass model over a rotating spherical Earth.

The solution of this type of optimization problem is obtained by an iterative

optimization technique. Since the convergence rate of iterative techniques is

difficult to quantify and convergence is difficult to prove, these schemes are not

suggested to be used as the basis for an on-line real-time guidance law.

In contrast, an approximation approach is developed which is based



2

upon the physicsof the problem. Thrust and gravity are assumedto be the

dominant forcesencounteredby the rocket while the angle-of-attackis usually

kept small in order to minimize the effect of the aerodynamic forcesacting

on the vehicle. Numerical optimization studies [4]havebeenperformed which

support this assumption. These results also indicate that ignoring the aero-

dynamic pitching moment has a negligible effect on the performanceof the

vehicle. Thus the launch problem would seemto lend itself to the useof per-

turbation theory. It is shownthat the forcesin the equationsof motion canbe

written as the sum of the dominant forcesand the perturbation forceswhich

aremultiplied by a small parameter c, where ¢ is the ratio of the atmospheric

scale height to the radius of the Earth. The motivation for this decomposition

is that for ¢ = 0, the problem of maximizing the payload into orbit subject to

the dynamics of a rocket in a vacuum over a fiat Earth, is an integrable opti-

mal control problem. The perturbation forcing terms in the dynamics producc

a nonintegrable optimal control problem. However, since these perturbation

forces enter in with a small parameter, an expansion technique is suggested

based upon the Hamilton-Jacobi-Bellman equation. The expansion is made

about the zeroth-order solution determined when c = 0. This zeroth-order

problem is now solved routinely in the generalized guidance law for the Space

Shuttle [5] with a predictor/corrcctor scheme employed to guide the vehicle

along the desired path.

The higher-order terms of the expansion are determined from the

solution of first-order linear partial differential equations which require only

integrations which are quadratures. Quadratures are integrals in which the in-

tegrand is only a function of the independent variable. Previous so]ution meth-
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ods applied to guidance problems have motivated the approach suggested here.

These include the explicit gnlidance laws, E-galidance, developed by George

Cherry [6] for the Apollo flight. By writing the dynamics strictly as functions

of the independent variable a solution was obtained by quadrature integra-

tions. Past applications [7, 8] of the proposed scheme, have shown that very

close agreement with the numerical optimal path is obtained by including only

the first-order term. Because no iterative technique is required, this scheme is

suggested as a guidance law since the quadratures can be performed rapidly.

Chapter 2 contains a general formulation of the perturbation prob-

lem associated with the Hamilton-Jacobi-Bellman partial differential equation

(HJB-PDE). The technique for determining the higher-order expansion terms

due to the perturbation forces caused by the atmosphere and the spherical

Earth model is discussed. Lastly, the recursive relationship for the control is

presented. In Chapter 3, the characteristics for the Advanced Launch System

(aka National Launch System) and the general equations of motion in terms of

the small parameter e, are given. For e = 0, a simplified optimal launch problem

in the equatorial plane is formulated, and its solution in terms of elementary

functions is given in Chapter 4. The coordinate system transformation used

to obtain the analytic solution is included. Also discussed is the linking of the

trajectory subarc for the first stage to the subarc of the second stage. In Chap-

ter ,5 the first-order correction term to the control is determined. Results are

presented in Chapter 6 and compared to the shooting method solution, which

is a numerical iterative second-order optimization technique. It was found that

during much of the first stage the aerodynamics are not small when flying the

optimal vacuum trajectory. Chapter 7 presents a method for reshaping the



zeroth-order trajectory by including an aerodynamiceffect. This effort cen-

ters on the useof constantaerodynamicpulsefunctions which are obtained by

averagingthe aerodynamicsalong the zeroth-orderpath during varioustime

intervals. Lastly, Chapter 8 relates perturbation theory and the Calculus of

Variations with the expansionof the Hamilton-Jacobi-Bellmanequation. Tile

equivalenceof the two solution methods is presented.



Chapter 2

The Peturbed Hamilton-Jacobi-Bellman Equation

The optimal control problem can be formulated as one which mini-

mizes a performance index subject to a set of nonlinear dynamics and a set of

terminal constraints; that is,

Minimize

with the dynamics

J = (2.:)

= f(y, u, r) + _9(y, u, r)

subject to the terminal constraints

(2.2)

qJ(yf, Tf) ----0 (2.3)

and the initial conditions

y(t) = x = given (2.4)

Note that Y is an n-dimensional state vector, u is an m-dimensional control

vector, _ is a small parameter, r is the independent variable, _) =a dy/d'r, t is

the initial value of the independent variable, and x is the initial state at t.

Eq. (2.2) is separated into two portions: primary and secondary dy-

namics. Note that the control appears in both parts. The primary dynamics

5



can be assumed to dominate over the secondary dynamics because the sec-

ondary dynamics are multiplied by the small parameter (e) and therefore have

a small perturbing effect on the system.

The Hamilton-Jacobi-Bellman (H-J-B) equation [9] is

- Pt = H °pt = min H = p_[/o_t + cgOpt] (2.5)
uEbt

where/4 is the class of piecewise continuous bounded controls and u_t(x, P_., t)

is obtained from the optimality condition H_ = 0 and from the assumption

that the Legendre-Clebsch condition is satisfied (H_,_, is positive definite). In

addition, fopt =_ f(x, uOpL, t) and gore _ g(x, uOpt,t). The Hamilton-Jacobi-

Bellman equation will be used to determine the optimal control policy which

minimizes the cost criterion J.

The function P(x, t) is called the optimal return function and is de-

fined as the optimal value of the performance index for a path starting at x and

t while satisfying the state equations (2.2) and the terminal constraints, i.e.,

P(x,t) = ¢(yl,r/) at the hypersurface _P(y/,'r/) = 0. The Hamilton-Jacobi-

Bellman partial differentional equation (2.5) can be interpretated [10] as the

derivative of the optimal return function P. The optimal return function is

a constant since it is dependent only on the terminal conditions and thus the

total derivative of the optimal return function along an extremal path must be

zero.

dP Pt + p_[fovt + cgOpt] 0
dt

Each point in space belonging to the optimal trajectory must give the same

value to the optimal return function as the optimal P(x, t) since the trajectory



is considered optimal from thc initial conditions (x, t) to the terminal manifold.

Now, if a non-optimal control is chosen at any point in the trajectory, then the

resulting terminal state, as generated by' the system equations, must produce a

value for the optimal return function equal to or greater than the optimal value.

Thus the control that minimizes the cost is the control which at each point of

the trajectory causes the derivative of the optimal return function to be zero.

This is the fundamental notion represented by the Hamilton-Jacobi-Bellman

equation. Note that x and t can be either the initial or the current state and

time, respectively. In this context, it will be used to represent the current state

and time. Also note that ew._ry admissible trajectory must satisfy the terminal

constraints qJ(Yl, rl) = O.

P(z, t) can be expanded ,as a series expansion in e as

,_'(_,t)= _ f',(_, t)_' (2.6)
i=O

and the optimal control can also be expanded in a series expansion as

oo

_°_(_, &,t)= _ _,(_,t)_' (2.7)
i=0

where u _t is obtained by substituting Eq. (2.6) into Eq. (2.7) and expanding

the function. Therefore, it is possible to obtain the control law in feedback

form.

The zeroth-order control, Uo, is the optimal control for the zeroth-

order problem where e = 0. If an analytic solution can be obtained for the

zeroth-order problem then higher-order solutions for the control can be ob-

tained by expanding the Hamilton-Jacobi-Bellman equation

P, = Z P,,(_, 0_'= - F,_(_,t)_' f,_' + _g,_' (9.8)
i----O i=O i= 1
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where the dynamics have been expressed as expansions of the form

OC

f°Pt(m, u °m, t) = _ f_(x, u, t)d (2.9)
i=0

f"(x, t)= (2.1o)
i=O

Expanding Eq. (2.8) and collecting terms of equal powers in e, produces the

following set of linear, first-order, partial differential equations

i-I

Pit + P_zf_ t = - _ Pjz(fi-j _- gi-j-l)

j=o

= R4(z,t, ei-l,...,Po)

i= i,2,... (2. ii)

The expansion of the Hamilton-Jacobi-Bellman equation will be detailed in the

next section.

2.1 Expansion of the H-J-B Equation

The solution to the optimal control problem requires the evaluation of

the Lag-range multiplicr, P_. Note that the quantity P_ is the partial derivative

of the optimal return function with respect to the state y at the initial time

or the current time (since at r = t, y = x). The function P= is expanded in

a series in the small paramcter e. The terms of this series expansion, P_=, are

evaluated in terms of quadrature integrals which are functions of P_. Recall that

the functions P_ require the previously evaluated terms Pj=, f,_j, and g__j_ l

for j = 1,...,i - 1. The coefficients f, and gi are the i it' term in the series

expansion of f and g given in Eqs. (2.9)-(2.10). Since f and g are assumed to

be sufficiently differentiable, they are expressible in a power series in e in terms
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of the conLrol. For a scalar control, this yields

, uje 3 (2.13)
g°Pt(x, It °pt t) = 0U i x,t,_=0 _

The above equations assume that the zeroth-order control, uo, is the dominant

term in the series (Eq. (2.7)). This implies that the higher-order correction

terms, 7zl, _z2, ..-, have a much smaller ef[cct on the optimal return flmction,

[_(x, l), than the zeroth-order term. rFhe first ['our terms of f and g are obtained

by use of [']qs. (2.12) _n(i (2.13).

fo -- f°m(x, Tzo,t)= f(x,_zo, t) (2.14)

fl = utf_(x, uo, t) (2.15)

zt 2

& - _f_(x, uo, t) +u2f_(x, uo,t) (2.16)
tt 3

f3 -- -j f_,_,_(x, Zto, t) + zt,Tz2f_,(:c, Uo, t)

+u_f_(_, _o,t) (2.17)

9o = 9°_(_, _,o,t) = 9(x,_o,t)

gl = ulg,,(:c,uo,t)

_ - 2 _""(_:'_o,t) + _9,,(x, uo,t)

g3 - 6 g,,_,(X, Uo, t) + Ulu2guu(X, Uo, t)

+u39,,(x, uo, t)

(2.1s)

(2.19)

(2.20)

(2.21)
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Note that in taking the partials with respect to u in Eqs. (2.12) and (2.13), the

partial is taken first and then the partial is evaluated at x, t with c set equal to

zero. In other words, the partials arc evaluated along the zeroth-order path.

2.2 Solution by the Method of Characteristics

The H-J-B equation (Eq. (2.5)) is a first-order partial differential

equation. The expansion of the H-J-B equation results in the first-order dif-

ferential equation for P_ stated in Eq. (2.11) with the boundary condition

P_(xl,tl) = 0, for i = 1,.... Recall that f_t denotes the dynamics of the

zeroth-order problem (e = 0) using the zeroth-order control u = u0. Recall also

that the forcing term /_ is only a function of expansion terms of P of order

less than i.

The method of charactcristics is used to solve a set of linear or quasi-

linear partial differential equations. This technique [11] requires the identifi-

cation and solution of characteristics curves. The characteristic direction ds is

defined by the equation

Pi,(dT)s + P_,(dy), = (dP_)., i= 1,o,, ..- (2.22)

Eqs. (2.11) along with (2.22) can be put in the form

(ayL = (aP, L

The characteristic directions for Eq. (2.23) are given by the solution of the

differential equation that is obt'ained by setting the determinant of the matrix

given in Eq. (2.23) equal to zero, such that

(dy)s- fo(d'r)s = 0 ==_ (dy/dv), = fo (2.24)
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The subscript s denotes tile characteristic direction. Therefore, the charac-

teristic curves of the equations, for any order term of P/, are given by the

zeroth-order optimal trajectory

90 = f0 (2.25)

whose solution is denoted as yo(r; x, t).

The solution for P/ is given by

P,(x, t) = - fit, R°dT (2.26)

where /_ is defined along the zeroth-order path as

R °= l_(yo,r, Pi__(yo,r),',Po(Yo, r)), i= 1,2,... (2.27)

Thercfore, having already dctermincd P terms of order less than i, a solution

for P, can be determined by integrating R4 from the current 'time' to the final

'time' along the zeroth-ordcr path.

2.3 Determination of the Optimal Control

Since the primary and secondary dynamics, f and g, are expanded

in terms of the control (Eqs. (2.12) and (2.13)), the control expansion terms

u0, ul, u2, ..-, need to bc determined. The optimality condition provides the

necessary tool to obtain these control tcrms. It can be stated as

Px[f_ + eg_] = P,= ei (fi_ + eg,.)e' = 0 (2.28)
-- i=0

By expanding and multiplying out the terms of the two power series and equat-

ing like powers of e, the following relations are obtained

e° : P0. £ = 0 (2.29)
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1 2

+&.[9,, + u:f..] + P2.f. =0

(2.30)

(2.31)

Note that uo, the optimal control for the zeroth-order problem, can

be solved using Eq. (2.29). Similarly, ul can be solved using Eq. (2.30) and u2

can be solved using Eq. (2.31).

2.4 Determination of the Forcing Functions

Eqs. (2.14)-(2.21) and (2.29)-(2.31) can be used to solve for the

forcing functions Ha where Eq. (2.11) can be restated as

i--I

Ha= - Z PJ_(f,-J + ._t,-,-,) i = 1,2,...
j=O

Using the above equations, RI is

R, = - &.(f, + o0) = -&.(u,L + g)

With the use of the optimality condition of Eq. (2.29), R_ becomes

(2.32)

Similarly, the equation for It2 is

(2.33)

R2 = -- Po.(f2 + gl) - Pl=(fl + go) (2.35)

R2 simplifies to the following equation when Eqs. (2.14)-(2.21) and (2.29)-(2.30)

are substituted into the previous equation.

u_ D
R2 = --_, o=L_, - Pl_go (2.36)

& = - &=go (2.34)
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Finally, R3 can be expressed as

R3 = -Po.(f3 +g2) - P,.(f2 +gl) - P2.(fL +go) (2.37)

This simplifies to

ULU 2 _ 1 U 1 Ul= ,,:.or':,-+ ,-,.[go+yI.](2.38)

Using the expression for Ri, the expression for the Lagrange multipli-

ers, Pi., can be expressed as

OP, fits OP_ dr Ot Ot I- Ox - -_z + _lt_- _1_, Ox (2.39)

Once these P,, are determincd, they can be used in the optimal control ex-

pansion (Eq. (2.7)). As made apparcnt in the above equations, the solution

becomes increasingly complex as thc higher-order correction terms rely on the

state information from the lower-order trajcctories.



Chapter 3

Modelling of the ALS Configuration

This chapter presents the modelling characteristics and the equations

of motion for the rocket. Included are sections on the properties of the propul-

sion, aerodynamics, masses, gravity, and the atmosphere. A small expansion

parameter, the ratio of the atmospheric scale hc'ight to the radius of the Earth,

is then used to separate the dynamics into the primary and perturbation ef-

fects. Lastly, the equations of motion for the zeroth-order problem of flight in

a vacuum over a flat Earth are presented.

The Advanced Launch System (ALS) is designed to be an all-weather,

unmanned, two-stage launch vehicle for placing medium payloads into a low

Earth orbit. The spacecraft (fig. 3.1) consists of a liquid rocket booster with

seven engines and a core vehicle that contains three engines. All ten liquid

hydrogen/liquid oxygen low cost engines are ignited at launch. Staging occurs

when the booster's seven engines have exhausted their propellant. The three

core engines burn continuously from launch until they are shut down at or-

bital insertion. Launched in the equatorial plane and ending at the perigee

of a 80nm by 150nm transfer orbit, the flight occurs in two-dimensions over a

nonrotating, spherical Earth. Note, the booster is assumed to ride on top of

the core throughout the first stage trajectory.

14
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Figure 3.1: ALS Vehicle Configuration
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3.1 Equations of Motion for the Launch Problem

The general equations of motion for a launch vehicle modelled as a

point mass over a spherical, nonrotating Earth are given for flight in three-

dimensions as

h

=

=

Vsin7 (3.1)

(T cos_ cos_ - D)
- g sin y (3.2)

m

[- (T cos a sin/3 - Q) sin # + (T sin a + L) cos/z]

mV

V g

+[(To+hi _]cos7
[(Tcos_sinB-Q)cosl_ + (T sin c_ + L) sin/_]

(3.3)

= (mV cos_)
V tan ¢ cos y cos X

4 (re+h) (3.4)

V cos "f cos X (3.5)= (re + h) cos¢

_) = V cos ")"sin X (3.6)
(re +h)

rh = -aT.,c (3.7)

The vehicle coordinate system is shown in figure 3.2. Note, the engines are not

gimbaled and the aerodynamic pitching moments are neglected. For a vertical

launch Eqs. (3.3)-(3.4) experience a singularity caused by the velocity being

zero and by a flight path angle of 90 degrees, respectively. Therefore, a pitch-

over maneuver must be made at launch and equations of motion written in a

different coordinate frame must be used.
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Figure 3.2: Coordinate Axis Definition
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3.2 Propulsion

Thrust is assumed to act along the centerline of the booster-core vehi-

cle configuration and to be the same constant value for each engine. The total

thrust of the rocket changes after staging as the seven engines of the booster

are discarded, leaving only the three engines of the core vehicle.

T = (T,_c - npA_) T,,_ = n x 580, 110. lbs.

where T,,,c is the total value of the thrust when acting in a vacuum and the

number of engines is n = l0 for the first stage and n - 3 for the second stage.

Notice the variation of the thrust due to the atmospheric pressure p is given

for an undcrcxpanded nozzle and thus a conservative value for thrust is used.

The value of the engine nozzle exit area is A_ = 5814.8/144. sq ft. The specific

fuel consumption of the rocket is

and the specific impulse I_p

after staging occurs.

l sea
= (3.8)

I_p g_ ft

= 430. seconds. The value of a remains the same

3.3 Aerodynamics

Since sideslip causes drag, the vehicle is assumed to fly at zero sideslip

angle, so that only the angle-of-attack gives the orientation of the vehicle rel-

ative to the free stream. The direction of the lift vector is then controlled

through the velocity roll angle. With no sideslip, the side force Q is identically

zero. Therefore,
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Figure 3.4: First Stage Lift Model
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L = Ct.qS, D = Ct)qS, Q = CQqS = O (3.9)

where CL, Co, CO. are the lift, drag, and side force coefficients, respectively, S is

1 2
the cross-sectional area of the combined vehicle (booster + core), and q = ipV

is the dynamic pressure. The cross-sectional area S is assumed to be the same

constant value before and after staging occurs.

The aerodynamic data has been provided in tabular form [4] and is

modelled by polynomials in a with Mach-number-dependent coefficients. For

the first stage, the aerodynamic coefficients arc written as

CD(M, ol) = Coo(M) + CD 2(M)ol 2 + CD 3(M)c_ 3

CL(M,o_) = CL_(M)c_ (3.10)

where the Mach-number-dependent terms have been obtained from cubic-spline

curve fits of the tabular data. Three-dimensional plots [12] of the first stage

drag and lift models are shown in Figmres 3.3 and 3.4. Note that the drag

coefficient of this vehicle at supersonic and hypersonic speeds has a minimum

at a positive angle of attack as shown in Figure 3.3. This is caused by the

aerodynamic shielding of the booster by the flow field of the core.

After staging, the vehicle operates in the hypersonic flow regime and

the aerodynamic force coefficients are modelled as

CD(OI) ----- CDo Jr- CD,_ Ol -t- CDc, 2

CL(a) = CL.a + CL _a 2

Ot 2

(3.11)

with constant coefficients CDo = .2011, CD,_ = 0.0, CD,_2 = .001811, CL_. =
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Figure 3.5: Second Stage Aerodynamic Model

.039962, and CL2 = .00100272. Tile aerodynamic plot of CL and CD is pro-

vided in figure 3.5.

3.4 Mass Characteristics

The inert weights of the booster and core, the weight of the propellant,

the payload and payload margin, and the weight of the payload fairing comprise

the ALS takeoff weight. The fairing encases the payload and is carried along by

the core vehicle until orbital insertion. The vehicle mass and sea-level weight

characteristics are shown in Table 3.1. The time at which staging is to occur is

obtained from the first stage mass flow rate and the propellant of the booster

rr_-o_tt,_,,t = 153.54 sec.
tstage _- 7aT,_c
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Vehicle Stage Vehicle Component Take-off Weight

(lbs.)
Inert Mass

Core

Booster

Core + Booster

176,130.00

Propellant 1,479,180.00

Payload 120,000.00

Payload Margin 12,000.00

Payload Faring 39,120.00

Total Core

Inert Mass

Propellanl:

1,826,430.00

216,880.00

1,449,980.00

Total Booster 1,666,860.00

Total at Take-off 3,493,290.00

Table 3.1: Vehicle Mass Characteristics

where the vacuum thrust per engine is T_o_ = 580110.

Once the stage time, tile total first stage mass flow rate, the takeoff

weight, and the inert weight of the booster are known, then the weight of the

vehicle at the end of tile first stage and the initial weight in the second stage

can be calculated. For this vehicle the values are

msao,1 = 1421890. lbs., mst_oc2 = 1250010. lbs., Amst_gc = 216880. lbs.

3.5 Gravitational and Atmospheric Models

The gravitational acceleration is modelled as an altitude-varying func-

tion by the inverse square law,

r 2
e

g = g"(re + h)2
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but will be assumed constant in the zeroth-order problem to facilitate obtaining

an analytic solution. The constant values for gravity at sea-level and for tile

radius of the Earth are

ft
g_ = 32.174 --

see 2
re = 2.09256725 x 10 r ft.

The atmospheric density is expressed by the exponential function,

p = pre-(r¢+h)/ho = pre-rJh, e-h/h, = pse-h/ho (3.12)

where he is the atmospheric scale height and ps is the sea-level reference density.

The values for these parameters are

p, = .002377 slugs h., = 23,800. ft.
ft 3

The form of the density is chosen to motivate the selection of a small

parameter to exclude the aerodynamics in the zeroth-order dynamics. If e is

chosen as

e = hs/rc (3.13)

and defining

_5(e,h) = p(e,h) (3.14)
e

then by atmospheric properties ¢5(e, h) > 0. Tile exponential density also sat-

isfies the requirement [3] that the perturbation term in the dynamics remains

small, i.e.,

lim 6(e, h) --+0 (3.15)
_---+0

Satisfaction of this property will allow more general atmospheric models to be

used in the launch problem.
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The atmospheric pressure is "also expressed as an exponential function,

p -- p_e -h/% (3.16)

where hp is the atmospheric pressure scale height and p_ is the sea-level reference

pressure. The values for these parameters are

lbs

Ps = 2116.24 f-_ hp = 23,200. ft.

The speed of sound can be obtained by thc relationship

SOS _ W_

with the specific heat ratio for air given as F = 1.4 .

The gravity can be rewritten as

gsh(2r_ + h)

g=g_- (r_+h) 2 =gs-

egsh(2r_ + h)r_

hs(r_ + h) 2
(3.17)

where the expansion parameter has formally been introduced and the second

term is clearly small in comparison to the first term which is the value for

gravity at sea-level, g_.

3.6 Expansion Dynamics

In terms of the small parameter c, the full-order equations of motion

are rewritten as

V sin 7

cos c_cos/3 - 9_ sin 7
m

npA.r_
+_ cos a cos f_ +

mh,

g_h(2r_ + h)r_ sin 3'

hs(r, + h) 2

(3.18)

(3.19)

P SV2CDre ]

2mhs ]
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_

T"V (cos o_sin L¢sin # - sin ol cos #)
.QsCOS-7

V

rzp Ae re

-- em--m--_.' (cos a sin ,g sin # - sin a cos #)

+ pSVr_.,,.,
e--t_Q sin # + Ct, cos #)

2ruh,

+e -- + .qs cos
re+h V(r_+h) _] g

Tvac
(cos c_ sin _ cos # + sin oesin #)

mV cos 7

npA_r_
(cos a sin/3 cos # + sin c_ sin #)

-emvh, cos I'

r pSVr_.
+e Lm-_z,T;-7os.y(c,. sin _ - CQcos ;_) +

V cos-Tcos _(1 - _/_)
re COS0

Vc°s-TsinX(lre - e/@.)

(3.20)

Vr_. tan 0 cos "7cos X]

h,(re + h) J (3.21)

(3.22)

(3.23)

Where the binomial formula has been used to rewrite (r_+h)-l for the longitude

and latitude since re >> h.

3.6.1 Two-Dimensional Flight

In this section the three-dimensional equations of motion are reduced

for flight in a great-circle plane (the X-Z plane) over a flat, nonrotating Earth.

If the vehicle is assumed to be restricted to fly in the equatorial plane then

the lift, thrust, and velocity vectors all lie in the same plane and the roll angle

(# = 0) is eliminated from the equations. Under the previously mentioned

assumptions of no side force (Q = 0) and no sideslip (_ = 0), the zeroth-order

equations of motion representing flight in a vacuum over a flat Earth become

h = Vsin'7 (3.24)
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9

rh

X

¢

TVQC

-- cos a - g_ sin 7 (3.25)
m

_ Tt, ac gs
mV sin a - _- cos 7 (3.26)

V cos 7
- (3.27)

re

= -aT,_ _ m = mo - aT,,,,c(7- - To) (3.28)

= Xo = 0.0

= ¢0 = 0.0

These are the system dynamics used to obtain an analytic solution to the

zeroth-order optimization problem presented in the next chapter.



Chapter 4

Zeroth-Order Optimization Problem

The solution to the zeroth-order optimization problem is derived by

a coordinate transformation. A canonical transformation from the wind axis

to the rectangular or local horizon coordinate frame allows the zeroth-order

problem to be solved analytically. The solution is in closed form up to some

constants that can be determincd numerically to solve the two-point boundary

value problem. The conditions for connecting the second stage subarc to the

first stage subarc are then prcsented.

4.1 Optimization Problem Statement

In this section the zeroth-order optimization problem is presented.

The problem is to maximize the payload into orbit

J = -rrt$

subject to terminal constraints on the altitude, velocity, and flight path angle,

h/ = hl,,,,o , Vf = Vfop,_, "),I ="tlo_,

subject to the state discontinuity in the mass at a interior point where staging

Occurs j

7_stage2 _ ?T_staqel -- /_sta9 e

27
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and subject to the equations of motion for flight in tile equatorial plane.

h. = Vsin7

= --cosa-9_sin'_

T 9_

- mvSina-_c°s'7

V cos 7O-
re

£n = -aT _ rrl = trio -- aT(T -- TO)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Note, in this section and when discussing the zeroth-order trajectory, the total

vacuum thrust will be represented by T and the subscript notation will be

dropped.

The Hamiltonian for this system can then be expressed as

T 9s
H= AhVsinT+Av(Tcosa-g.,sinT)+ A-r(_---_ sin a - K cosT) (4.6)

m

The zeroth-order control law determined by the optimality conditon is

T
H_, = -TAr sina + cosa 0 (4.7)m m-V'% =

By the strengthened Legendre-Clebesch condition H_,_ > 0 choose

tanol --
x,

VAv

VAv
COS _ ----

+
sin a = X'r (4.8)

+

Whereas the optimal control can be derived in terms of the states and Lagrange

multipliers, an analytic solution is not possible for the states and Lagrange
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multipliers written in the wind axis frame. Therefore, a coordinate transfor-

mation into the Cartesian reference frame is presented in the next section. In

section 4.3 an analytic solution is obtained using this transformation.

4.2 Zeroth-Order Coordinate Transformation

The analytic solution for the zeroth-order problem can be found in

the Cartesian coordinate system but the equations of motion of the full sys-

tem which include the aerodynamic forces are written in the wind axis system.

Therefore, to derive the zeroth-order control and the first-order correction to

the control the transformation of coordinates and especially the transformation

of the Lagrange multipliers must be known. This can be accomplished by a

canonical transformation [see appendix B] from the (0, ¢, h) coordinates to the

right-handed coordinate system (X, ]i, Z), where X is positive in an eastward

direction along the equator, Z is positive pointing towards the Earth, and Y

is orthogonal to the X - Z plane. The relationship between the two reference

frames (see figure 4.2) is X = re0, Y = re¢, and Z = -h. In two-dimensions,

the corresponding velocity coordinates (u,w) are considered positive in the pos-

itive X and Z directions, respectively. A necessary and sufficient condition [13]

for a canonical transformation is the equivalence of the Hamiltonians in the two

reference frames.

HLH = AxdX + AvdY + Ahdh + A,_du + A_,dw (4.9)

Hw_,_ = AodO + A,d¢ + Ahdh + AvdV + A._d'y (4.10)
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Figure 4.1: Transformation of Coordinate Systems
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This equivalence is obtained through the Jacobian of the transformation. There-

fore, the transformation

u = V cosT, w = -Vsin7 (4.11)

requires

and thus,

]A._ - V sin 7 - V cos 7 Aw

This produces the transformation of tile Lagrange multipliers,

Av = A_cosT-Awsin7

A-r = -V(A,,sinT+A_cosT)

Ao = T_Ax

Ae = reAy

(4.12)

(4.13)

(4.14)

(4.15)

and the transformation of the states,

V = v/u 2 +w 2 (4.16)

1//

sin7 - V (4.17)

4.3 Zeroth-Order Analytic Solution in the Cartesian

Frame

In this section an analytic solution will be derived for the zeroth-order

problem of maximum payload into orbit for flight in a vacuum over a fiat Earth.

This solution is made possible by the coordinate transformation presented in
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the previous section. The equations of motion in a Cartesian coordinate fraxne

are

.]( _- u

? = o_Y=Yo=O

(4.18)

h = -_ (4.19)
T

= -- cOS0p (4.20)
7?2

iJ = O_v=vo=O

T
_b - sin 0p + g_ (4.21)

Tt2

rh = -aT ==_ m =mo - aT(T -- TO) (4.22)

The Hamiltonian is

H = Axu - AhW + A,_T cos0p + A,_( -T sin0p + 9_)
m m

(4.23)

The zeroth-order control law is determined by the optimality conditon

Hop - T A,, sin 0p - T)% cos 0p = 0 (4.24)
m m

Therefore, using the strengthened Legendrc-Clebesch condition the control be-

comes

tan0p -
A,,

A_
COS _p

+
A,,

sin0p = (4.25)
+
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The Lagrange multipliers are obtained using J_y

£x = 0

i_ = 0

;(. = -,Xx

_" = X_

with the boundary conditions

where _x, r'h, _., v_ are unknown Lagrange multipliers associated with the ter-

minal constraints. For the unconstrained downrange problem, the solutions to

the adjoint differential equations are

-_x = tlX = 0

Ah = r'h (4.26)

A_ = v,,=C,, (4.27)

A_ = C,_ + kh(T-- T0) (4.28)

The equations of motion can be integrated by changing the independent vari-

able from time to mass and using the mass equation (Eq. (4.5)) to substitute

mass for 7-. As a consequence, the Lagrange multipliers are rewritten as

._,_ = C,, (4.29)

m (4.30)

_ + _ = c__+ _ + _ (4.a)
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where

c- (aT7
2

b - AhC_,
aT

a = C +VL
-- mo
c,,, = C,,,+ Ah-j-_

(4.32)

(4.33)

(4.34)

(4.35)

The derivatives of the states with respect to mass are

du C,,
- (4.36)

dm amx/cTr_ 2 +bm + a

dw _ A,_ 9s (4.37)
dm am_/cTn 2 +bm + a aT

dX u
- _ (4.38)

dm aT

dh w
- -- (4.39)

dm aT

Note that c > 0, a > 0, and the discriminant of the quadratic mass equation

A _=4ac-b 2>0since

4

A- (aT) 2 (AhC_) 2 (4.40)

From these differential equations the solution is found from standard integrals.

u = Uo av/'a sinh -l \ m_v/_ ] - sinh -l \ too v/._ ]J (4.41)

= ,_o- _T(m- too)

h

C--_ [sinh-' {2_a__+b_n] {2a+bmo]]a%/'a < m%/_ ]--sinh-I k _-no--_ ]J

gs (m- too)_ + (m- too)
ho 2(aT)2 aT Wo

(4.42)
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X

ma(af_,/- E sinh-l _ ,\ m_/_ _ ] sinh- \ 7-r__v_

C_' [sinh-' (2crn + b) - sinh-' (2_/_+

(_- _o)
No -- //,0

aT

C,, [sinh-'( 2a+bm] - sinh-' (2a+bm0'_]\ / \ 7 o /j

a(crT)v/-C \ _ sinh-I

(4.43)

The equation for the altitude can be manipulated further to eliminate some

common terms.

h

ho 2(efT) 2

-mG(_r)2v_ sinh-1

(m - too)
-k WO

aT

V_, [sinh-' (2_a 4- brn'_ (2a+bmoa(#-_v/-d L \ rav/-_ ) sinh-I \ 7-nov_ )]

A, [_/Cm2o+bmo+a_x/cm2+bm+a ]G(_T)2c

At the final time, H I = -1 by tile transversality condition. Using the tlamil-

tonian and the three state equations u,w, and h, which have prescribed initial

and final values, the four unknown constants associated with the two-point

boundary value problem can be solved. For the problem of flight restricted to

a plane, the unknowns are mj,, C_,, C_,, and Ah. The analytic state equations

(Eq. (4.41)-(4.43)) are nonlinear and thus no statement can be made about the
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existence or uniqueness of the set of constants found. Therefore, if multiple

solutions are found tile solution set which minimizes the Itamiltonian would

be chosen. At the very least, the Legendre-Clebesch condition, H,,,, _> 0, for a

weak relative minimum must be satisfied.

4.4 Linking the First and Second Stage Subarcs

Of interest in this section is the linking of the two subarcs of the

two-stage rocket. By the corner conditions, the Lagrange multipliers for all the

states must be continuous.

(4.44)

The analytic solution previously presented is still valid for either subarc but

only by using this relationship between the Lagrangc multipliers can the sec-

ond stage be connected to the first stage subarc. Recall that the constant C_,

is associated with the initial condition of the Lagq'ange multiplier for the ver-

tical velocity component. For a subarc with first stage initial conditions, the

equations become

A_,(t) = ),,o(t,t_g_)+ ,\a(t - t._t_g_) t _>t_t_v_+ (4.46)

Rewriting the Lagrange multipliers using the corner condition and with mass

replacing time as the independent variable, results in

Ah = r,h = constant to < t < tf (4.47)

A,, = u,, = C,, = constant to<t <t I (4.48)
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/\h (TYl0-
Am = C,_+c_7,--- _

Ah

x,o(t+) = c,o+ gT[(.,o -

fit) tO < t < tstag e (4.4!))

Ah

Tr_,.,) + ;-_ (,_,_,_,_- -0 (.t.5o)

where Tl and T2 represent tile thrust tbr tile first and second stages, respectively.

The equations of motion, written with rn_s as tile independent variable, which

were previously presented are still valid but the constant coefficients of the

quadratic equation are of a different form.

b !

a t

Cw

Therefore, the state equations become

du C_
dm crrnCdm '2 + b'm + a'

dw £,

dm amV'dm 2 + b'm + a'

dX u

dm _ T2

dh w

dm a 7"2

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

g.q

o-T2

The same standard integrals apply to the solut, ion of the problem because

a' > O, c' > 0 and the discriminant

A'=4a'c'-b a=4\aT2] C_>0. (4.56)
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The simplified form of the solution to the state equations (Eqs. (4.41)-(4.43))

is also still valid but with the first stage subarc used as the initial conditions

of the second stage subarc.

u uo-_---_ sinh-_ L _sinh -_

C_, Is {2a' + b'ms_g_2_ 1

0,11

h

(4._7)

/2a' + b'rnstaqe2

-_2T2x/'d k_---_)- sin},- k-- _ (4.58)

-- TrZsta_e2 )= _ m2o) 9,(m _ =

ho + 2(_T,)2 2(_T_) 2

T/%W m0"UJ0

e_ [sinh-' /2a+brn.,t,_v_,'_ {2a+bm°_l

Ah x/Urn = + b'm + a' - _/d _t,_'2 + [tm,L_,v_2 + a'
-_a(_T=)2d

- rLstagc i •

+-_(o:q)_c
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These are the equations that result from linking the first stage subarc to the

second stage subarc. These equations will be used to evaluate the states at a

time after staging occurs when the initial time is before staging. The first-order

correction terms will require the analytic solution for the states at any future

time along the zeroth-order trajectory.



Chapter 5

First-Order Corrections

The use of the asymptotic expansion of the dynamic programming

equation as discussed in Chapter 2 by the approximate optimal guidance scheme

is an improvement over past analytic techniques whose guidance laws were lim-

ited to operate in tile exoatmospheric region [6, 14]. The higher-order correc-

tion terms of the HJB expansion can bc used to compensate for tile effects of

the atmospheric forces neglected in tile exoatmospheric solution. The deter-

mination of the first-order correction to tile zeroth-order control is the subject

of this chapter. As noted before, tile solution to the first-order optimization

problem requires only the integration of quadratures, which can be evaluated

quickly enough to permit this method to be implemented as a real-time guid-

ance scheme. The correction to the I,agrange multipliers and thus tile cor-

rection to the control is constructed in the following sections. Also derived

are all the partial derivatives needed to evaluate the quadratures. The partial

derivative chain rule is employed since the analytic solution is found in the

Cartesian frame while the first-order forcing function, Rl, used to evaluate tile

quadratures is expressed in the wind axis frame. Recall that the angle-of-attack

is the control variable and tile aerodynarnic coefficients are modelled as func-

tions of the angle-of-attack. For this reason tile perturbation dynamics are left

expressed in the wind axes frame.

4o
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5.1 Correction to the Lagrange Multipliers

The higher-order terms of the optimal return fimction were presented

in Eq. (2.26).

P, (:r, t) = - _tl ROdr

By taking the partial derivative of this integTal the correction term to the

Lagrange multiplier can be caleulatcd. Recall,

ft 8t Ot:& 05 _ " OR<JT+ - R,I (2.39)
- Oz Oz R_ [,Ozz _i Oz

where the first-order forcing flmction was ]?,l = -Po,go.

The first-order correction term for tile Lagrange multipliers is used

to determine the first-order expansion term of the control. By the first-order

optimality condition, Eq. (2.30), the correction to the control is obtained.

u, = - (L_&.)-' [1_,.w+ Pl.L] (5.1)

5.2 The First-Order Forcing Function

For the launch problcrn as formulated in the wind axis frame, the

first-order forcing function is

r__ _' D r_.(2r_, + It) npA,..

+ ( + g, It) ) cos 3' sin a]
V rn r (r_ + h) 2 m

(5.2)

The Lagrange multiplier for the first-order term of the expansion series is found

by integrating the partial derivative of R_ with respect to the initial state. For

the launch problem, the optimal control depends on the Lagrange multipliers
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for the velocity and flight path angle, i.e., x = [Vo, %]. Tile partial derivative

of the first-order forcing function with respect to the initial state is

ORl

_x Ox \ 2mh_ (AvCD-

pSV2re Av + - CL
-t 2mh, Ox V Ox _

-g, + h) 2 Av cos _' - -_- sin'7 O-x

-g" h--2;-o+ h)2 [ 0x sin_ + _ cos

0( h(2ro+ h)ro) _Ox g_ h.,(r_+h) 2 (Ay sin _ + --_- cos 7)

-t mh_ [-O-xz cos c_ + _ sin a

mh,hp sin a + Au cos a _x

h,(r_ + h) \ Ox cos'y - X_ sin 7_ x

0( )o_ \h_(K;h) (a, cos_) (5.3)

where

0 (pSV2r_

Ox k, 2mh_ ]

°( v-5 )Ox \ h,(re + h)

OCD (M, a)

Oz

OCt.(M, a)

Ox

pSV2r_ 20V

2mh_ V Ox

2g_r a Oh

h,(r_ + h) 30x

Vr_ [vOVh_(r_ + h) Ox

(5.4)

(5.5)

(5.6)

• OCD OM C_CD (90/.

- OM Ox + O_ Oz (5.7)

OCL OM OCL Oc_

-- OM Ox + Oa Ox (5.8)
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Tile partials of the wind axis states and Lagrange multipliers are related to

the partials of the analytic Cartesian states and Lagrange multipliers by the

canonical coordinate transformation. These partial derivatives are presented

in subsequent sections.

5.3 Relating the Partial Derivatives of the Wind Axis

Frame to the Partial Derivatives of the Cartesian

Frame

The canonical transformation of section 4.2 provides all the infor-

rnation needed to relate the analytic solution of the zeroth-order states and

Lagrange multipliers to the states and Lagrange multipliers in the wind axis

frame. Thus, the variations in the analytic Cartesian coordinates due to varia-

tions in the initial wind axis states can be determined and it was for this very

reason the canonical transformation was necessary. Using the relationships

obtained in section 4.2, the partial derivatives of the wind axis coordinates

become

OV

Oz

O7

Oz

OAv

Ox

OA_

Ox

Ou &l"_V

tan 3` V 2 Ox V 2-_z (5.10)

0A,, 0A_, 03' (5.11 )
Ox cos 3' - 0--7- sin 7 - (A,, sin 3' + A_, cos 3`) _zz

(0 oV \-0-_x sin 3` + --0-_--zcos 3` + [A_,cos3` - A_, sin 7] _z

OV

Ox (A,_sin7 + A,o cos3`) (5.12)



44

and from the zeroth-order control law Eq. (4.8)

Oa ( 10Xv 10AV 10V) (5.13)Ox-C°sasina A_ Ox Av Ox V Ox

Now that the partial derivatives for the wind axis coordinates are expressed

in tcrms of the partial derivatives of the Cartesian coordinates, the partial

derivatives of the Cartesian coordinates with respect to the initial states are to

be derived along the analytic zcroth-order trajectory.

5.4 Partial Derivatives of the Analytic Solution

In this section, the partial derivatives of the Cartesian coordinates arc

derived. The zeroth-order analytic trajectory is used to evaluate the integral of

the partial of the forcing fimction/_q from the initial time to the final time. For

the sake of notational brevity, the following common terms and their partial

derivatives are defined.

5.4.1 Partial Derivatives of Some Common Terms

The partial derivatives of the constants a,b,c, and C,. used to express

the analytic state equations are

(5.14)
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8c 2At, OAh

Ox (_T) 2 az

8Cw OCw mo 8,\h
- +

Ox Oz aT 8x

(5.16)

(5.17)

Recall that the function A = 4ac- b2, so tile partial derivative is

OA _ 4a_x + Oa _ ob Obo-7- 4c_ _ (5.18)

Let the arguments of the inverse hyperbolic sine function be denoted

2crn + b 2a +bm

9,(m) -- _ 92(m) - mv/_ (5.19)

Thus the partial derivatives of the arguments arc

GgX

1 [ agt. Oc b(31_Ob ,.._l Oa]2(._ _)_ + (1+ v_'& - _c_j (5.20)

1 [ c9_)o_ bg,_ob 9_ 0c](5.21)m4/- _ 2(1-m_ -_x +m(1 + v"-A'+-_x max,/--AOzJ

and by the partial derivative chain nile for a trignometric function, the partials

of the inverse hyperbolic sine functions are

0 (sinh_tgt) = 1 0_,
Ox _+_lO_
0 (sin},-' 9_) = 1 0_2
o_ _ +_,_Ox

(5.22)

(5.23)

5.4.2 Partial Derivatives of the Analytic States

The general form of the state equations in Eqs. (4.41)-(4.43) is used

to derive the partial derivatives of the states with respect to the initial veloc-

ity or flight path angle. Using the terms defined in the previous section and
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simplifying the equations, the partial derivativesarc

Ou

OX

OW

Or,

Oh

Ox

DUOOx C_v_l [sinh- (._2(rrt) - sinh- _2(mo)] \ _ 2a

c_ [_/ 1 o_(._)_ _1 o_(._O)]ox (5.24)

, (o-c -C Oa)Owoox O'V_I [sinh- _2(rn) - sinh-' _2(rno)] _ Ox 5 _zz

_,_ v/_+ _(_) o:_ v/_+ _(._o) _ j
1

{ Oah a,, Oc)[]-sinh-l_l(rrt)-sinh-Ic_'(rrt°)-\-_z 2c_x

Owo(m - rno)
Ox aT

(c_T)_ V'_Ah [k/ 1 O_,(m) _Ox l 0_, (mo) ]Ox
_ m

(_.25)

aTv/- d [sinh-' _2(rn) - sinh- _2(rr_)] \ Ox

-IC_, 1 O_(m) _ 1

-m_ v/1+ -_(_) o_ vh + _(mo)
Oc

Ah [sinh-' _ (m) - sinh-' _,(mo)] Oz+m2a(aT)2C3/_

rn [sinh-' _,(rn) - sinh-' _,(mo)] OAa_(_T)_ z'-i Ox

[ 1(+_(_r)_c _/_ + V._+ _- V/_g + _._o+ a t, O_

m 2 oc m Ob rr_ Oc Ob ___]
_ ,-5¥+mo_57 + --

_ 2a(aT)_c [ '_2 +--_ + a v/crn_o + bmo +

I

C. Oa)2a -_z

Oc_2(mo)

Ox

X_ Oc )

(5.26)
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The initial velocity components expressed in terms of the wind axis states are

Uo = t{) cos %, u'o = - Vo sin 70 (_.27)

and therefore the partial derivatives with respect to the initial velocity and

flight path angle are

Gq?20

OVo - cos %

0710
- -Vo sin 70

07o

D?IJ o

- sin %
:)to
(_ llJ 0

- - Vo cos 70
07o

(5.28)

These partial derivatives are valid for a point during the first or second

stage of the trajectory with initial condition corresponding to that subarc. For a

point on the second subarc with first stage initial conditions, the state equations

which link the two subarcs must be used. Note also that these equations all

depend on the partial derivatives of the constants, At,,C_,, C,,, and m I which

are unknown. Tile partial derivatives of the constants are dependent on the

initial and final conditions of tile two-point boundary value problem. Using

the transversality condition

H z -Mwf+c_T2= --cos01 + A,_(tI)(-T2 sinOf + g,) = -1 (5.29)
mf mf

the partial derivative of tile Ilamiltonian at the final time is

O_ 0/_ h ((_C w (Tnf -- Trio) O_ h _h OT_f)Oz = 0 =-wf-_z + g, \ Ox c:T2 c3z c:T2 0z
I

T2 (bmf + a) oqmI
+

2m}V/.m :+ + ["7_2 0c -- Ob _ ]
T2 | :/:k_m/_+-- (5.30)
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These results produce a system of four equations (o___o=,_o=, -_-o=, o_____o=:linear

in the four unknown partial derivatives: 0_h _ 0C__%and 0-2/- The partial

derivatives of the four constants are determined by the solution of this linear

system.

5.4.3 Solution to the Linear System of Unknown Partials

For the second stage subarc, the solution to the linear system of four

unknown partial derivatives in the partial derivatives of the four transcendental

equations is determined by the matrix equation

0

_ owo ('hi-'no)
Ox aT

OuQ_
Oz.

Owo
Oz

O ,kh

O),h

O_h

ow
O),h

The eoeffiecients of the matrix are

oA_z o__ o_qz
OC. OC_ Orn y

°__b_L°___ °_b.Z_
OC,, OC,,, OrnI

OCt, OC,,, Ore/

OC,, OC,, OrnI

Ox

oc__G,
O:r

O:r

O:r

(5.31)

OH: (m: - too)
OAh w/- 9_ aT +

OH:
OC,,

OH:
OC,,,

OH:
Orni

OUf

Oz

(ms - _)[c_ + _(_o - "_s)]

crrn/_/c'm2/ + brn I + a

C_T

[C,_ + _-_T(rno - rn/)]T

- g"- + bin:+
T Ah

-

(oco
_ av_l [sinh_ 1 _2(rn/) - sinh -I _2(rno)] \ Ox

C, [ 1 O_2(mi) 1

ov_ [_/1 + _(m:) 0_ _/1 + a_(mo)

),h[C,.+ _(rn.o- m:)l

o'rn I _/crn} + bin: + a

C,, Oa)2a -_z

09_(mo)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)
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OWl
( OU_,I [sinh -t _2(ml) - sin},-' _2(rno)] Ox

-[C,_ . 1 0_2 (rrzf) 1

_,/-a v/, + __-_(_s) & v/: + _(,_o)

0Ah1 [sinh-' a,(my) - sinh-' _,(mo)] Ox
a=Tv _

-)C_, Oa

2a -Ox

O_(mO)]O:r.

Ohl

Ox

a2Tx/_ 1 -+- ..%:_(mf) 0x J1 -+-_(rr_)

.x,,[ , o.%(_s) , o_,(_o)]

( -)C,. Oa

o'Tv_ Ox 2a

-Cw [ I Oc.22(ml) I oq_2(mo)]

Oc
Ah [sinh-' _,(m/-) - sinh -I _,(mo)] _xx+mf 2a(crT)2Ca/2

<_(:T)2v/-_ _, (m/)- sinh-' Ox

-_ _} + v_ + _ - v/_o_+ b_ + a

F 20c -- Ob Oa _20c Ob Oa

Ah Iraf-_x -t- rrlf ;--_z + _ _ moT_z + moT_z + _ (5.38)+
2a(aT)2c

where the equations _ _ and °hl are the samc a.sderived forthe analytic' Oa: ' Ox

state partials but are derived with respect to the constant parameters, i.e.

x = {Ah, C,,, C_,}. All these terms thus depend on the partial derivatives of

the common terms a, b, c with respect to the constant parameters. So,
m -- m

OCt, mo OC,,, 0C_,

o_/, = 77 oc_ - : oc_

Oa - 2C_, + -- OU,_
OF,, _c_-£C7

-0
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0a

0C_
Oa

O_n

Ob
_=0
oC_

Ob

O_h
Oc

m

OC_

Ob 2 OC_

aT '_

2A_ Oc Oc-0 _=0
(aT) 2 OC_ OC_OAh

Remember that the variation of the terms with respect to the final

mass is also needed. For the arguments of the inverse hyperbolic sine functions,

the partial derivatives with respect to the final mass become

09,(ml) - 2c 092(mi) 2a

ore: - -_' Ore: ,_}v_

The partial derivatives of the analytic states with respect to the final mass are

Ou: C,, 1 0_32(m:)

Ows g, -C,. 1 092(ms)

Om S aT av/'d-_/1 + 9_(ms) /)ms

Ah 1 O_l(rns)

Oh/

Orn I

a2Tv/-C _(m/) Ore!

gs WO

(_)= (ml- too)+

Xa I 091(mI)
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Ah (2cvnI + b)
4

All these relationships are used to determine the coefficient terms of

the algebraic set of equations. The variations in the constant parameters of

the zeroth-order two-point boundary value problem with respect to variations

in the initial states can subscqucntly be determined. These variations are

embedded in the quadraturcs used to calculate the first-order correction to

the Lag-range multipliers and determine }low a change in the initial conditions

changes the path while flying along a path which will satisfy the terminal

boundary conditions.

For the situation where the vehicle has not yet staged, the partial

derivatives are similar to those shown above but the equations of section 4.4

which link the two subarcs of the trajectory are used.



Chapter 6

Aerodynamic Effect along the Zeroth-Order Trajectory

Previously the problem of minimizing the fuel into orbit for the flight

of a rocket in a vacuum over a fiat nonrotating Earth was the zeroth-order

problem, i.e., e = 0. It was found that this zeroth-order trajectory deviated

significantly from the optimal trajectory and the resulting correction terms were

not small as was assumed in deriving the expansion method. To compensate for

this problem the zeroth-order trajectory needs to be reshaped in order to keep

the assumed perturbing effects small. One method that might work is to include

a constraint on the control which will limit the zeroth-order angle-of-attack and

thus the aerodynamics generated along the zcroth-order path. The problem in

implementing such a constraint is that the zeroth-order solution must still be

analytic. Since the analytic solution was found in the local horizon coordinate

system the control was the pitch angle. From the standpoint of the physics

of the problem, there is no logical constraint which can be imposed on the

pitch angle. Limiting the angle-of-attack would create a mixed constraint in

the local horizon coordinate frame involving the state and the control and this

type of constraint is difficult to solve. A practical and necessary constraint for

launching a rocket is a dynamic pressure limit. How such a constraint may be

incorporated theoretically in the HJB-PDE expansion technique is presented

in appendix[C]. But a dynamic pressure constraint arc also does not allow

an analytic solution to the zeroth-order problem. Therefore, the zeroth-order

52
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trajectory was modulated by including aerodynamic terms in the zeroth-order

problem formulation. This process involved averaging the aerodynamics along

the vacuum trajectory and solving anew the zeroth-order two-point boundary

value problem. This technique was suggested by the successive approximation

method used in [15]. By modelling tile aerodynamics as constant terms, closed

form solutions are still available. This chapter presents the details of includ-

ing aerodynamic pulse functions averaged in the local horizon and body axes

coordinate systems.

6.1 Inclusion of an Aerodynamic Effect in the Zeroth-

Order Problem

Instead of assuming tlight in a vacuum, tile zeroth-order problem is

now formulated to include aerodynamic terms. Then if e = 0 the equations of

motion for the zeroth-ordcr problem, valid over both subarcs, become

h = V sin "7

_, T- cosa - g, siny + --
rr/ 77z

T g, Z2

":'/ -- rnV sin (_ - _ cos "_ rnV

V cos 7

7"e

rn = -aT_rn=m0-aT(r-r0) (6.1)

where

Z) = (A °cosy-A °siny)

Z: = (A°siny + A °cosy) (6.2)
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are the assumed lift and drag forces along the zeroth-order trajectory. The

constant terms A °, A ° are the averaged aerodynamic forces in the x- and

z-directions. For a vacuum zeroth-order trajectory these terms would be iden-

tically zero. Nonzero values will be used in order to improve the zeroth-order

trajectory and keep the perturbation effect due to the neglected aerodynamics

relatively small compared to tile effects due to thrust and gravity. Since these

terms are added to the zeroth-ordcr dynamics, identical terms of opposite sign

are included in the perturbation dynamics. Thus their effect is identically zero

in the full-order system of equations.

The variational Hamiltonian is altered by tile inclusion of these terms,

e.g.

H = -AhV sin7 + Av(T-- c.os cz - g_ sin 7 + _/9_)
m m

)_, (T /2
+--_- mSina- .q.,sin'y - m) (6.3)

Notice since the pulse functions used in the aerodynamic terms are constants,

the zeroth-order control law determined by the optimality condition is not

changed from the solution obtained for vacuum ttight.

tan c, - (6.4)
VAv

Once again the analytic solution to the zeroth-order problem will be

found in the Cartesian coordinate system.
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Figure 6.1: Coordinate frames for the aerodynamic pulse functions
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6.1.1 Zeroth-Order Aerodynamic Effect in the Rectangular Coor-

dinate System

The equations of motion in a Cartesian coordinate frame become

h _ m w

T
= --- sin 0), + gs + --

m

r A °
_i - cos 0p + --

m m

A0
771

(6.5)

where the control variable for this problem becomes the pitch attitude 0p =

+ 3`. The terms A ° and A ° represent the constant assumed aerodynamic

forces along the zeroth-order trajectory in the x- and z-directions, respectively.

Ao- ' /"+'A.e,- _ /"+'
ti -- ti+l Jti ti -- ti+l Jr(

Ao_ _ /"+'A,d-,= _ f"+'
ti -- ti+l J_ ti - ti+l Jt_

(6.6)

Figures (6.2-6.3) show the aerodynamics averaged over a different number of

intervals or subarcs.

The zeroth-order Hamiltonian is

H = - Ahw + A,,,(- -- 0 T A ° (6.7)Tsin0p+gs+,4°=)+A,_( cos0p+m)
m m

where Ah, A_, and A_ are Lagrange multipliers. These Lagrange multipliers are

propagated by the Euler-Lagrange differential equation Ay = -H T. Thus

L, = o, ;\,,=0, _,_= _ (6.8)

with boundary conditions

Ah(rt) = uh, A.(rl) = u,.,, A_(rl)= u_ (6.9)
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where vh, v_,, and u,_ are unknown Lagrange multipliers associated withthe

terminal constraints. Since the aerodynamic effect is added as a constant term

there is no change in the solution to the Lagrange multipliers or to the control

from the solution found for a vacuum zeroth-order trajectory. Therefore, the

zeroth-order analytic state equations become

u = Uo-_ln

C,, [sinh_, ( 2a, + b,m _ ( 2a, + birno

g (m-mo) AO,. In (m-_0)mw = wo- _T, aT`

C-"_, [sinh_, (2ai + b,m'_ f 2a, + b, mo

Ah [
• , -i,2cim+bi) _

a2T_x/_[smn t _4,_ sinh-l(2ci_+bi)]

(m- .%) (m- too)_
h = ho + Wo gs

(aT,) 2(GT,)2
Am

+ a(aT,)2c i [(cim 2 + bim + ai) '/2 - (airn_ + bimo + a,) '/2]

C%,m [sinh_l (2a,+b,m03]a(ar,)v_ L \ rnJ-N, )-sinh-' \ 7no_ ]]

sinh -I _ 1( 2cimo +
) sinh- _ )

(aT,)2 m In - m + mo
(6.10)

where

(6.11)

and the subscript i refers to the current subarc. More pulse functions could be
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usedto model the aerodynamicsin anattempt to capture the effectof the aero-

dynamicsin the closedform solutionand thus the path would bebrokenup into

smaller subarcs. Note that becausethe assumedaerodynamicsare only con-

stant terms their effect is an accumulativeone. The zeroth-order trajectory is

altered sincethe boundary conditions cannot besatisfied flying the samepath

as the path flown in a vacuum. The vehicledoesnot modified its orientation

instantaneouslyin order to reducethe aerodynamicsthat it will encounter, i.e.

the vehiclecannot predict the aerodynamiceffecton the vehicleby its choice

of angle-of-attack. Thus any changeis in the total energy of the system and

the vehicle is not penalized for flying at large angles-of-attackand for incur-

ring large drag forces. This can be seenin the new open loop zeroth-order

trajectory in that the vehicle initially pitches over more than in the vacuum

solution. Bui: over the entire courseof the trajectory the vehicle remains at

lowerangles-of-attackand doesnot lift up asmuch in the secondstage. If more

pulsesareaddedthe aerodynamicsbecomelargerovercertain intervals and the

vehiclereacts accordingly to theseregionsof large aerodynamicforces.

6.1.2 FIRST-ORDER CORRECTION TERMS

The correction terms to the zeroth-orderproblem can be calculated

by the quadratures representedin (2.39). Therefore, for the launch problem

r_{ [D+D h(2r_+h) npAeRi = h-_ Av 9, sin3,+_cosa (6.12)m (re + h) _ m

A_ L+/2 V 2 h(2r_+h), npAe ]1

+ ((re + h) + 9s (-_ _ )cos'), sin(_V rn m Jf
The first-order term of the optimal return function evaluated along the zeroth-

order trajectory with initial conditions before staging is written as in (2.26),
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but separatedinto two integrals. Only the velocity and flight path anglestate

equationscontain the control. Thus, the first-order terms in the expansionof

the Lagrangemultipliers associatedwith the velocity and flight path angleare

the only co-stateexpansionterms neededto construct the first-order correction

to the zeroth-order control. Tile partials of P_ with respect to the arbitrary

current conditions, x = (V0, 70), become

_ oP, r d,Pl_ - - / "'°'_
Ox .,t Oz

,,,°_,_ Oz Ox

Because aerodynamic pulses were added to the zeroth-order dynamics

the opposite terms are added to the perturbation dynamics such that the over-

all system equations are unaltered. If the zeroth-order trajectory is the vacuum

trajectory then the assumed aerodynamic terms (7?,/2) are zero. For nonzero

assumed aerodynamic forces the new perturbing aerodynamic effect is the dif-

ference between the actual drag and the assumed drag along the zeroth-order

path. It is necessary to keep this new perturbing aerodynamic effect small in

order to accurately approximate the optimal solution. That is the entire reason

for the inclusion of the aerodynamic pulse functions. The next sections present

the results for various assumed aerodynamic pulses.

6.2 Results for the Rectangular Pulse Functions

It was found that the more pulses used the closer the first-order cor-

rected solution came to the first-order solution obtained using a vacuum zeroth-

order trajectory. The best solution for the approximated control was obtained
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by using one pulse per stage. This seemedto keep the perturbing aerody-

namic effect small over a larger span of the trajectory. The convergenceof

the Lagrangemultipliers up to a first-order approximation using the onepulse

aerodynamicfunctions for the zeroth-order problem is demonstratedby the

plots presentedin the Resultschapter. Iteration of the zeroth-order trajectory

for the assumedpulse functions wasattempted but it was found that the first-

order correction terms alternated back and forth betweenthe optimal values

and the solution basedupon the vacuum zeroth-orderpath. This wasa conse-

quenceof the assumedaerodynamicsswitching betweenlargeand small values

on successiveiterations. If large forces were assumedon a particular itera-

tion than the actual aerodynamicforcesalong the new zeroth-order trajectory

would becomesmall and thus on the next iteration the assumedaerodynamic

pulseswould revert to smallervaluesand thereforethe first-order correctionsre-

sembledthe solutionsobtained usinga vacuumzeroth-orderpath. Attempts to

averagethe iterations alsoprovedunsatisfactory. For multiple pulsesperstage,

the averagediterations did not adequatebring the assumedaerodynamicpulse

functions closer to the actual forcesalong the new zeroth-order path. For a

one pulseper stagesolution the iterations could not improve on the solution

obtained from the first iteration and thus were not worth the computational

time and effort. In general,assumingmore than onepulse per stageand more

than one iteration causedthe first-order corrections to go towards the values

obtained assumingno aerodynamicforcesalong the zeroth-order trajectory. In

a final attempt to lift the vehicleup and keepthe vehicle from trying to pitch

over,aerodynamicpulsefunctions weremodelledasconstantsin the body-axes

frame. The next sectionbriefly describesthat effort and the results.



Aero Pulses in the Body-Axes Frame

Because the use of aerodynamic pulses modelled as constant terms in

the local horizon coordinate system the vehicle did not respond in an instan-

taneous fashion to the aerodynamics it encountered along a particular flight

path. To remedy this situation tile aerodynamic pulses were modelled as con-

stant terms in the body-axes frame. Thus there are aerodynamic components

tangent to and normal to the thrust. Rotation of these forces into the local

horizon coordinate frame still allows an analytic solution to the zeroth-order

problem but now the control law becomes a function of the aerodynamic ef-

fect assumed during a particular interval. This was not the case in using the

aerodynamic pulses in the local horizon system as presented in the previous

section. Because of the reliance of the zeroth-order control upon the aerody-

namic pulses used, the control becomes discontinuous along the zeroth-order

trajectory. Since the aerodynamic intervals are chosen as functions of a fixed

time interval the Hamiltonian is also discontinuous across these intervals. The

integrand used to derive the first-order correction to the Optimal Return Pune-

tion and to the Lagrange multipliers is thus discontinuous and the integration

of these terms along the zeroth-order path must be broken up according to the

aerodynamic intervals. The equations of motion in rectangular coordinates for

body-axes aerodynamic pulses are

h _ --W

T A ° A °
@ - sin0p+g_---sin0p-mcOS0p

m m m

/L T cos 0p + A_ A_- -- cos 0p - -- sin 0p
m m m

(6.14)
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Tile terms A_ and A,°v represent tile constant assumed aerodynamic forces

along the zeroth-order trajectory in the axial and normal body-axes directions,

respectively. Tile zeroth-order variational Hamiltonian is

H = -.Xhw+)_,o( -T- + A°a sin@+9, -A°a- cos @) +,_,_ ( r + A° cos Op-'A°xN sin 0p)
m 772 772 gr_

(6.15)

The solution for the Lagrange multipliers does not change from the solution

to the vacuum zeroth-order problem and the multipliers are continuous across

subare times, as are the states, since these times are considered fixed. The

first-order optimality condition produces the following result.

A_,(T + A °) + A,,A °

tan@ = AwAO _ A,,(T + A_) (6.16)

Using this new control relationship in the state equations the closed form so-

lution can still be obtained and the states are written as

_ ZL0

C,,¢ [sink-' /'2ai + birn (2ai + birnoaT-7----v/-a-7L \-_ )-sink-' \ mov_ )]

w = w0-g, c_7'/

C_,,T [sinh_l {2ai + b, rn (2a, + b, rnoariV/-d7 lv _-rt_/_ ) -sink-I IV _-nov/_ )]

(aT-75g-v/__ sink-'[ _ ) - sink-'( _ )

(m- too) - too)

Ah2? [(c_rn 2 + b, rn + ai) 112 - (cirn2o + bimo + ai) 112]+ <,(g-r-j)3q

e_'iern [sink-' (2ai +birn) (2ai +birno'_]
(aT_--_-_v/'fi]"[ IV m_"-_ ]-sink-' IV 7r_/'_- ]J
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AhTrn [ (2cam+bi 2cam0+bi ](aTz---_/-_ sinh-1 1, _ )-sinh- ( _ )
(6.17)

where

ca
2

= c_ =-2_e_,, =c_ +i2_,aTi J _ bi • ai

-C,,,, -- c,,, + a ,,_-_,, -C_,_= c,,, + ,xh(''° -''' ' '__, + ),h _

Ai = 4aica - b2 = 4 \ aTi ,,I i _- 1,2

(6.18)

and the effective thrust ¢ = _/(T + A°) 2 + (A°) 2 is the magnitude of the sum

of the thrust and assumed aerodynamic forces. A typical open loop zeroth-

order trajectory is shown in figalre (6.4). While the initial pitch over action

was curtailed compared to tile previous results, the trajectory still deviated

from the optimal trajectory sharply especially in the regions of high dynamic

pressure.

Corrections to the Lagrange Multipliers are made by the familiar

equation

_ Ot/ (6.19)
P'" -- OPlox i--_l JfQ+tQ 0_1 (y_pt)Ox dT -- ]_l (y_pt (if)) OX

for n aerodynamic intervals and where

r_ Av g, sin "y + -- cos a (6.20)
R1 = h-_ m (re+h) 2 m

- --+((r__h) +gs )cosy m sina

The assumed drag and lift terms are the transformation of the body-axes aero-

dynamic forces into the wind axes coordinate system, that is,

79b = (A_cosa-A_vsin@

£b = (A°sina+A°cos@ (6.21)
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Tile correction terms to tile LagTange multipliers based upon the

zeroth-order trajectory using body-axes aerodynamic pulses did not give any

improvement over tile use of local horizon aerodynamic pulses. If anything

the solutions obtained were worse since the trajectory was strongly influenced

(as were the pulse functions) by the regions of high dynamic pressure and thus

the perturbation aerodynamic effect remained large. Tile results from iterating

with the averaged aerodynamic pulses and from averaging the iterations of the

averaged pulses exhibited tile same pattern as the local horizon case. Thus

one pulse averaged over the first stage came closest to producing agreement

with the optimal solution. The one positive effect of the body-axes approach

when used in feedback to generate a trajectory was the elimination of the dis-

continuities in the control previously found when minimizing the ltamiltonian

using the first stage aerodynamic model. Unfortunately, the path generated

did not match as closely the optimal path as the results using the second stage

aerodynamic model matched.
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Figure 6.4: Open loop zeroth-order path for body-axes aerodynamic pulses



Chapter 7

Results

In this chapter the approximate optimal solution is compared to an

optimal solution for the launch of a vchicle in the equatorial plane. While

previous results for flight in the exoatmospheric regions [16] showed excellent

matching of the approximate solution with tile optimal, problems arose during

the first stage. First, even at high altitudes where the aerodynamics are indeed

perturbing effects to the vacuum trajectory, it was found that the linear control

law derived for the first-order correction to the control (5.1) was in greater error

than the error in the first-order corrected Lagrange multipliers. As a remedy

the control was calculated by minimizing the Hamiltonian of the entire system

using the Lagrange multipliers approximated to first-order. This produced the

desired effect and the control profile converged to the solution obtained by the

shooting method.

The next difficulty encountered was due to the first stage aerody-

namic model. This model seemed to produce an irregular Hamiltonian. The

Hamiltonian was badly behaved and exhibited discontinuities in the control

at various points along the trajcctory. The asymmetric configuration for the

rocket and the cubic spline functions used to fit the aerodynamic data caused

the Hamiltonian to take on almost identical values for different values of the

angle-of-attack. This can be seen in figure (7.1) which are plots of the Hamilto-

67
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nian versusthe angle-of-attackat two consecutivepoints in the trajectory. Tile

sequenceshowstile Hamiltonian exchangingthe location of the minimum be-

tweenpositive and negativeangles-of-attack.Part of the problem canbeseenif

the drag model is shownfor largerangles-of-attackthan waspresentedin chap-

ter 3.3. Figure (7.2)showsthe drag coefficientfor differentangles-of-attackand

Mach numbers than would be encounteredalong the optimal trajectory. Re-

member the first-order correction terms are basedon the aerodynamicsalong

the vacuum path but the aerodynamicsarenot modelledadequately for these

regions. The drag model of figure (7.2) showsthe peculiar nature of the aero-

dynamicsthat would be usedat the larger angles-of-attackof the zeroth-order

trajectory. The smoothcurveusedto model the secondstageaerodynamicswas

substituted into the algorithm to eliminate this strange behavior and remove

the discontinuities in the control. This would prove successful. Figure (7.3)

comparesthe drag and lift forcesalong the first stageof the open loop vacuum

trajectory using the first and tile secondstageaerodynamicmodels. Another

advantageof using the secondstage aerodynamicmodel can be seenin that

the drag hasbeen reducedwhile the lift along the trajectory remainsroughly

the same.

Overcomingthesedifficulties still left a problem. The first-order cor-

rection exhibited a boundary layer type effectnear the initial conditions. This

would occurevenif the problemwasstarted at variouspoints in the first stage.

When the approximation method wasused in feedback,this effect would di-

minish during the trajectory and the solution would convergeto the optimal

solution. In order to eliminate the initial over-correctionsof the first-order

approximation, the zeroth-orderproblem wasreformulated to include an aero-
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final time

(see.)Method

zeroth 371.50 322861.

order

first 369.91 329293.

order

first 369.59 330576.

pulse

shooting 369.57 330678.

final weight B.C. error

(lbs.) 7 deg I h ft

-0.24 35.

.03 -.002

.0001 .0007

Table 7.1: Comparison of Results

dynamic effect. This technique was presented in chapter 6. In this chapter the

results will be presented along with the results of the zeroth-order solution, the

first-order solution without the aerodynamic effect in the zeroth-order problem,

and the shooting method [17, 18].

Tile trajectories generated by the zeroth-order, the first-order with

and without zeroth-order aerodynamic pulse functions, and the shooting method

are shown in figures (7.4-7.9). Also plotted are the Lagrange multipliers for the

closed loop trajectory, figures (7.10-7.11). Each technique ran on a IBM 3090

mainframe computer. Integration w_ done by an eighth-order Runge-Kutta

method for the shooting method. The approximate optimal guidance schemes

employed a fourth-order Runge-Kutta integrator. The approximate method

used a fixed number of integration steps in the first and second stages with the

control held fixed over each step. Four hundred steps were used in both the

first and second stages. The gime-to-stage was fixed at 153.54 seconds.
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All tile methods were started at the sameinitial conditions: to = 35

see., ho = 660. ft., V0 = 9406. ft/s, % = 58. deg., rn0 = 3021107.44/bs.,

00 = -79.0 deg., and X = _b = 0.0 degrees. The terminal constraints to

be satisfied are h/ = 486080. ft., V/ = 25770. ft/s, and 7/ = 0.0 degrees.

The results are compared in Table (7.1). The solution shows the approximate

optimal guidance law using tile first-order correction term matches the control

and state trajectories of tile shooting method. Initially only the first-order

correction with the aerodynamic pulse generates a nearly optimal trajectory.

The cost obtained by tile two techniques is nearly identical. The final weight

using the shooting method was 330678. lbs. at a final time of 369.57 seconds.

The final weight was 3305r6. lbs at a final time of 369.59 seconds when using the

first-order approximation. The zeroth-order solution shows a greater variation

in the control from the optimal control. The final weight obtained was 322861.

lbs. at a final time of 371.5 seconds. The zeroth-order solution also does

not satisfy all the boundary conditions as closely as the optimal and first-

order solutions, with an error in the final flight path angle of -.24 degrees

and an error in the final altitude of +40 feet. Because of this error in the

terminal constraints, large angles-of-attack can be seen in fig. (7.4) for the

zeroth-order solution in attempting to meet the terminal constraints. The first-

order correction picked up most of the deviation of the zeroth-order trajectory

from the optimal trajectory and as a result the boundary conditions are met

more closely with a better behaved control. The most important aspect in

obtaining good results is the convergence of the Lagrange multipliers to the

optimal Lagrange multipliers. With the use of the aerodynamic pulses the

flight path angle Lagrange multiplier approximated to first-order shows good
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Method

CPU time
(see)

zeroth first

order vacuum

49. 304.

first shooting

pulse

344. 426.

Table 7.2: Comparison of computation time

agreement with the optimal solution. A last point about these result is that the

inclusion of the rotation of the Earth in the problem is expected to continue to

reduce the time of flight and consequently increase the final weight available at

orbital insertion.

The convergence of the asymptotic expansion is indicated by the re-

sult of the first-order solution in comparison with the shooting method so-

lution, thereby precluding the need to include higher-order correction terms.

This convergence is tentative since it took the inclusion of the aerodynamic

pulse functions in the zeroth-order problem to achieve the best results. Alas

the convergence properties when using these pulses cannot be guaranteed or

even quantified. Finally, since this algorithm is being proposed as a real-time

guidance scheme the computational time that was needed to generate the entire

trajectory by each method is presented in Table 7.2. While none of the codes

have been optimized for computational efficiency, the use of quadratures does

decrease the time needed to solve the launch problem in comparison to the

shooting method. It should be noted that the flight time is approximately the

same as the cpu time for the first-order approximation methods and that the

shooting method was given a good initial guess (nearly converged) of the un-

knowns. As expected, the zeroth-order analytic solution was found extremely
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quickly. The introduction of the aerodynamic pulse functions into the method

caused a modest increase in the computation time.



Chapter 8

The Relationship between Calculus of Variations and

the HJB equation

In this chapter the relationship between the Hamilton-Jacobi-Bellman

approach and the calculus of variations approach is presented. First, the HJB

expansion method is described in more detail in order to explicitly show the link

between it and the perturbation of the canonical form of the Euler-Lagrange

equations. The similarity of the terms involved and of the two solution tech-

niques is shown. Next the solution of linear, first-order, partial differential

equations is described. The significant result of the solution process is that

the solution to a partial differential equation is equivalent to the solution of

the characteristic curves represented by a set of ordinary differential equations.

A simple derivation of the Lagrange multiplier differential equation from the

HJB-PDE is also included. Lastly, the formulation of the ALS problem along

with the results obtained when using the expansion of the calculus of variations

method are presented.

8.1 Correction Terms to the Lagrange Multipliers

In Chapter 2 the equation for the Lagrange Multipliers (the change

in the cost due to a change in the initial state) was determined to be

I or I
OP,(x,t)Ox = _ .,fi OR_(Y'r'P°z) dr-oz R1 ,'I -_x

83
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where the terms are evaluated along the zeroth-order path and the higher-order

expansion terms Pi(Yl, tl) = 0 (i = 1,2,...) at the terminal boundary.

Now recall that the integrand terms were

n_(y,_-,Po.) = -P_ (g(y,u,T) + f,(y,u,T)) (8.1)

ORt(y,r, Poz) = O[Po T" (9(y,u,,) + f,(y,u,,))] (8.2)
Ox Ox

where the expansion term in the primary dynamics fl is

I1 (Y, u, r) - Of(y, u, T) _=0u, (8.3)

Along the zeroth-order path the optimality condition P_ f,, = 0 eliminates the

fl term in the integrand RI

n,(v, r, Po,)= -P_9(v, u, r)

Therefore, the first-order term in the Lagrange multiplier expansion

is

Ox -- ft "I gT(y'u'r)-'_X+ °'[-_y'_x+OuOx]

-R_ ,I Ox

dT

(8.4)

Now the equation for the zeroth-order control can be written as a

function of the independent variable, of the states, and of the partial derivative

of the zeroth-order Optimal Return Function with respect to the states.

_o(_)_ PoT.(0_(y,_, _) = o
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Thus the variation of the control with respect to the initial state is

ou Fo.(__)Of,.(y,_,T)Oy p[.(_) 0A(y, _, _) 0_ 0P0_(_)Ox =* Ov 0.: + O_ Ox + f'" (y' _' T)O--7--

Ox - - poT'('r) P_(T)C3f'_(Y'U"r)OY OPo_(T)Oy Oz.+ if(Y' u,-:) Oz.

=0

Substituting this equation into the first-order Lagrange multiplier

equation results in

OPl(x, t)
Ox

[ o.-- R1
r! OX

-- Oz _ aT

f_(y,u,7") dT

(8.5)

Note the notation used here is that the partial derivatives are taken with respect

to an individual initial state x not the initial state vector.

The integrations thus depend on the variation of the zeroth-order

states and the zeroth-ordcr Lagrange multipliers due to variations in the initial

state x, i.e. the terms _ and -_x reprcsent the state transition matrix. This

matrix can be obtained from the zeroth-order analytic solution.

Oy of Oy _(') - oz (t) + _--o.: + o_ d.-

Therefore the time derivative of _ is

dTOz (_-) = Oy O_ P["(_-) P'_"(_-)°A%_'_) OVo. Oy Ox

o:[ o:o]-' O:'o.o_ P_('-) o_ j f[(y,_,T) ox
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Similarly for thewhere the equation for the control variation has been used.

Lagrange Multipliers,

OPo, _ OPo_ p r of -- _ _-)-8-Zo_ (r) Ox (t)- o_ Oy dr
Ox 8u

{ . :.[ }d_ & (_) = - P_ O7- o.g p_(_)& J P_(') O:_(y,_,,) OyOy Ox

{ [ }o.O .x- fT(y,u,r)- poT=ou P,_(T) fT(y,u,V)

These coupled equations could be written in matrix notation ms

d o_ o_

Apo_ Apo=Po=

where A_,y, A_Po=,Apo._, A&=Po= are the coefficients of the differential equa-

tions presented above.

The change in the parameters associated with the zeroth-order two-

point boundary value problem due to a change in the initial states can be

determined by the variation with respect to the initial states of the terminal

boundary conditions and of the Hamiltonian at tile final time. For every change

in the initial state the transversality conditions must still be satisfied. So,

OCgo Oq_o Oy Oq2o Or/

Ox (y' r/) -- Oy Ox + Or/ Ox --0

OPo z O¢ov Oy C_¢oy OTf TalJ]ov Oy Ok_o_ (_Tf k_ T C_l] 0

Ox - Oy Ox + Or/ Ox + u° _ Oz + vr° Or: Ox + % 0x

Hamo = poT=f(y,u, r l) = --¢o.: -- vro q;o.:

Lastly,

Therefore the variation of the ttamiltonian at the terminal time is

OHarno (rl) = p T Of Oy pT Of Or/
-_x °'OyO--_ + °'Or/Ox + fr(Y'U'r:) Oy Oz + Or/ Ox J
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The w_riation in the parameters associated with the two-point bound-

ary value problem with respect to variations in the initial states can be found

from these sets of equations. Notice these equations are linear in the unknown

parameters o_ -_ andax _ Ox , Ox "

8.2 Expansion of the Euler-Lagrange Equations

This section attempts to relate the results of tile expansion of the

ttJB-PDE to the results derived from expanding the ordinary differential Euler-

Lagrange equations as was done in [19].

The states, control, and Lagrange multipliers are all expanded in an

asymptotic series with expansion parameter _. Thus,

y(T) = yo(T)+ eye(T) + O(e2) (8.6)

_(¢) = _0(_) + C_,(¢) + O(E_) (8.7)

_(_-) = _0_(_')+ e_,_(_) + 0(_ _) (8.8)

These expansion equations are used in a Taylor series expansion of

the dynamics:

fo = /(v, _, _) (8.9)

f_ = fi,(y,u,r)u_ + f_(y,u,r)y, (8.10)

:

go = g(y,_,,,-) (8.11)
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g, = g_,(y,u, T)Ul + 9_(Y,U, T)yl (8.12)

where the notation is the same as previously presented, i.e., the state and

dynamics y, f, and g are n-vectors and the control u and independent variable

r are scalars.

When expanded in the small parameter e, the optimality condition

AT \( Of (y ' u ' r )-ou+ e c)g (y ' u ' r ) )ou
=0

becomes

Ar OI(y, u, r)

AT Of(y, u, r)
% OU

+ AT[Ok (y_,_, ,) Og(y,_,,)
%L Ou + Ou

- 0

= 0

after the coefficient terms of like powers of _ have been collected•

Thus the first-order expansion term for the optimal control is

[1
T [f:(y,u,7")Al_ 4- %fuy(y,u,7)yl q-A%gu(y,u, 7")]

Ul

This result is substituted into the Euler-Lagrange ordinary differential equa-

tions.

8.2.1 Expansion of the State Equations

The differential state equations

dy

d--7 = f (y' u, r) + cg(y, u, r)
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with initial conditons y(r = t) = z, can be expanded in the small parameter :

as

Yo + eT)_ + :2_)2 + .... f0 + :(fL + go) + e2(f2 + 91) +...

Collecting like powers of : leads to

Y0

?)1 =

/(y,_,_) (8.13)

I_(y, _, _)_, + 5(> _, _)y,

+o(y,_,_) (8.14)

The initial conditions are yo(t) = Xo , yl (t) = xl = 0 .

Thus,

9o(_) =

y,(_) =

f(y,u,r)

_ T -1 W AT -I T{E:':"(<:") _o,:,,]_l-:.(o.:..) ::_,,
T -l+ ,.:,0.,..),o>.]}

when the expansion terms of the control law are inserted into the state equa-

tions.

8.2.2 Expansion of the Lagrange Multiplier Equations

Expanding the differential equation for the Lag-range Multipliers

produces the following set of equations

_o_ - f_(v,_,_)_o_ (8.:5)
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g_ (y, u,- f1,_% - T)_% (8.16)
• •

Therefore,

_o, = °f(Y'_'_)T
Oy A%

_, = of(v,u,_) _"
Oy A,, -

(8.17)

[ Of T(y'u'7-) OgT(y'u'w)] AO,, (8.18)"Oy + Oy

Consequently, the differential equations which describe the first-order expan-

sion terms are

where

T -!

T -lA,_.= -:o(,_o,:o_)i:

T T -1 z]

(8.19)

(8.20)

(8.21)

(8.22)

The solution to this set of coupled differential equations is

[.,.o.,] ] c'Al,('ro/) =OA(ro:,t) M,(t) + cI'A('ro:,r)G(r)dT

with G(r) representing the forcing terms.

I AT -1 T

g- :. (%:o.) g.Ao,
G(_-)

This is the same transition matrix as derived for the variations of the Optimal

Return Function. Notice that the forcing terms are also the same as those

derived for the variation of the Optimal Return Function.
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8.3 Expansion of the Boundary Conditions

In order to expand the terminal boundary conditions properly the

states must be expanded about the zeroth-order path and the zeroth-order

final time. Thus,

= rof+erb+O(e 2)

= yo(To,) + _ [yl (T0y) 21- y0(T0/.)TX/] + O(_ "2)

= YoI+eYo+O(e 2)

(8.23)

(8.24)

(8.25)

Next expand tile terminal boundary conditions with respect to tile

small parameter e:

(y:, _:)
oo

= _ _,(y:, :I):'= 0
i=0

= [*0(y:,_-:) + c,,(y:, ,:) + :*2(y:, ,:) + 0(:3)]

The Taylor series expansion of the terminal boundary conditions is

*(Y:'_:) = _;,=o• N J .=""': + :! o-,-) ,: ,=T,:,

= _O(y/, r/) ,=0+e 00--_d_I ,=oy b + e-_vl8_°,=o rb + O(e2 )

Collecting like terms in the expansion parameter e results in

8qJ OqJ

•

=0

(8.26)

(8.27)
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8.3.1 Expansion of the Transversality Conditions

Expanding the Hamiltonian ._(f+eg) in terms of the small parameter

e produces the following equations

Hamo /_T= %f(y,u,v)

Ham1 = ._r%g(y, u, r) + ._rl.f(y, u, v) + AT.f_(y, u, v)yl

• ,

(8.28)

with boundary conditions at the terminal time

O*(yo:, )
ifamo(TOl) = O¢(yo/, 7-o:) LZor 7-oI

OrI - Yr:

0%: (y0s,7-o1) 0%: (yos,7-o1)
Haml (71) -= -- 07-i ylf -- 07_i

_v[O%: (yo/, 7-o:)
Or/ Y_s

.rO_(yOy, ro/)
T1S -- 1

_ .[0%/(yo:, %)
07-! 7-1/

Equating the first-order expansion terms of these relationships, the

equation for the first-order Hamiltonian at the terminal boundary becomes

: [ .T ]%(ro/)g(yo/,Uos,To:)+ AT,,(7-Os)+ A% (7-os)7-I/f(yos,UOs,TO/)

+)_.(7-o/)f_(yol,Uos,ros)Yls = _ O¢y:(yo:,orI r°:)yl/- O¢_s(Y°:'OrI r°s) r,/

_.ro O%:(yo/, 7-0:) O_:.:(yos,7-os) _ ._O::(yo/, 7-o:)
Or/ Y's - Uro Ors r,/ Ors

Now proceeding in a similar fashion, the terminal Lagrange Multi-

pliers, determined by the relationship AT(TI) = ¢_:(YI, TI) + uTq2yI(Yl, TI) ,

become

0_ (yo/, ro/)
O¢(Yos, 7-o,) _ .2 (8.29)

_" (7-°:) = Oys -_yj
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%(-0f) + %(,0,)_,, =
Oyf Ylf -

__,_a_(yo,.-,-o,) _,4.a%,(yo,. _-o_.)
Oy.f Oy f

a¢,_(y0s,_0s)
Oyf qs

-- "T11

The expansion of the transversality conditions and the terminal bound-

ary conditions produces the boundary conditions for the first-order two-point

boundary value problem. As in the case of the variation of the Optimal Return

Function, the unknown parameters, (Ytl, ut, and rll), can be found by solving

a set of linear algebraic equations.

8.4 Solution to the First-Order Problem

The solution to the first-order two-point boundary value problem is

found by use of

Y'(%') ][ ,_l,(r0_) = di)A(701 t) [ yl(g) ] froi' ,\,_(0 + _, ¢'z('o_,T)C(_-)dT (8.30)

subject to the terminal boundary conditions given for yl(T0f) and Al_(r0I) in

Eqs. (8.27 - 8.30) and subject to the llamiltonian transversality condition

Eq. (8.29). Also recall that the initial states are considered known and are

zeroth-order terms. Thus the first-order initial states are set equal to zero,

yl(t) = 0. The unknowns which need to bc found are the initial and terminal

first-order Lagrange multiplier terms, i.e. Al_(t) and ul, and the first-order

term in the expansion of the final time r b.

For a trajectory that includes tile staging condition, the terminal

conditions remain the same but the form of the solution becomes

y,(-o,) = _A_(TO,,"_)C'A,('-,,,,_,t) ,%(t),h,(ro_)
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/ ÷+ , _A_ (_o_e, r)G(r)dr
J T m tagc

where the state transition matrices ¢I_A1and CFA_ represent the state transition

matrix over the first stage and second stage subarcs, respectively.

Notice that the form of the solution determined by expanding the

Euler-Lagrange equations and the terminal boundary conditions in terms of

the states, the control, and the LagTange multipliers is equivalent to the solu-

tion found by the expansion of the I lamilton-Jacobi-Bellman partial differential

equation. Tile forcing terms and the transition matrix used in the quadratures

are the same. The first-order boundary conditions derived in this section are

identical to the variation of the zeroth-order boundary conditions which are

used in the HJB expansion method to determine the change in the parameters

of the zeroth-order solution with respect to a change in the initial states. In

the HJB expansion the variations _ and _0 are dependent on the changes in

the constant parameters or the constants of the motion. Any admissible vari-

ation in the initial conditions must still generate a trajectory which satisfies

the terminal conditions. Thus the variations in the boundary conditions with

respect to changes in the initial states determine the change in the constants

of the motion. And these changes are embedded in the solution of the vari-

ations in the state and Lagrange multipliers, _ and _ which are used to
Oz O_ '

generate the first-order correction terms. In contrast, the first-order boundary

conditions derived from the Euler-Lagrange equations (which are equivalent to

the variation of the zeroth-order boundary conditions) are explicitly used in

solving the two-point boundary-value problem (8.30).

The similarity of the two techniques is not surprising since solving the
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tIJB-PDE is equivalent to solving the first-order Euler-Lagrangeequations.

The reason for this equivalency will be presentedmore clearly in the next

section.

8.5 Solutions to First-Order Linear Partial Differential

Equations

The solution to first-order partial differential equations is described

in [11, 20]. In this section it will be shown that the canonical system of Euler-

Lagrange differential equations is identical to the system of characteristic ordi-

nary differential equations used to solve the partial differential equation. This

is presented for the partial differential equation in two independent variables

but the case of n-independent variables is a straightforward extension. First

consider a partial differential equation of the form

F(z, t, &, ['_) = a(z, t)r', + b(z, t)& - c(z, t) = 0 (8.31)

where a, b, and c are given functions and are considered continuous, as are

their first derivatives, in the region of interest. The solution of this partial

differential equation is called the inte_at surface and is denoted as P(x, t).

Since the coefficient terms (a, b, c) are not exp]icitly dependent on the solution

P this is a linear rather than quasi-linear partial differential equation. The

tangent plane to the integral surface P at the point Q(x, t, P) is defined by

the relationship (8.31) and the normal to the tangent plane is given by the

directions P_, Pt, and -1. The partial differential equation implies that the

normal to the integral surface < P_, Pt, -1 > is perpendicular to a vector

< a, b, c > and so the vector < a, b, c > must be tangent to any integral
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surface at point Q. The vector < a,b,c > is called tile Monge vector. Tile

tangent planes to all integral surfaces through tile point Q(z, t, P) belong to a

family of planes which are described by the relation for the normal as

dt : d:c : dP= a: b" c

The direction of the Monge vector at the point Q forms a characteristic line

element ds. The directions of tile Monge vectors form a directional field in

the (z, t, P)-spaee. To solve tile partial differential equation (8.31) the surfaces

which fit the Monge vector must be found. Every surface whose tangent plane

is tangent to the Monge vector at tile point is a solution to the partial differen-

tial equation. Tile characteristic curves of tile partial differential equation are

the integral curves of the direction field and are defined by a set of ordinary

differential equations. If the characteristic curves are considered a function of

a parameter s then along the curves the characteristic equations become

dt dx dP
-- = a -- = b -- = c (8.32)
ds ds ds

Thus a general solution surface can bc generated independently of the initial

data as a one-parameter family, of characteristic curves.

For the initial value problem the manifold of possible integral surfaces

can be created and the unique solution depends on the initial conditions of the

problem, i.e. y(s = O) = x, r(s = O) = t, P(x, t) =constant. Starting with a

curve S in space the solution to the partial differential equation is sought. The

curve S is projected onto the (x, t)-space and an integral solution P(x, t) is to

be found, see figure (8.5). Through each point of the space curve a family of

characteristic curves can be generated according to the characteristic equations.
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Thesecurvesform asurfaceand all characteristiccurveslie within this integral

surface.

The solution is sought at a point off of the initial data curve and in

the direction of the characteristiccurve. Thus the solution becomesa function

of two variables,the initial state (y(s = 0) = z, r(s = O) = t) and the running

parameter s along the characteristic curve. As a consequence the solution to the

integral surface P(z, t) carl be written as a function of s only with z, t replaced

by their respective solutions along tile characteristic direction and with fixed

initial conditions at s = 0. This can be done if the characteristic solutions for

:c, t can be inverted to obtain functions dependent on y(s = O) = z, r(s = O) =

t. The transformation between tile two sets can only occur if the Jacobian is

nonzero. In this case a unique solution exists to the initial value problem.

If the characteristic curve and the projection onto the z, t plane of

the tangent to the curve S are identical then the curve S is a characteristic

curve. Mathematically this happens if the Jacobian is equal to zero for every

point along the curve. This is tile relationship that was obtained in chapter

2 for the Hamilton-Jacobi-Bellman equation where a = 1 and b = f(z, u,t).

The solution obtained along the characteristic by definition must stay along the

initial data curve. The implications of this result are that an infinite number

of solutions exist for the integral surfaces which solve the partial differential

equation and which pass through the curve S. Since the ordinary differential

equations for the characteristic curves require the integration of a,b, and c

which are known data along the the space curve S and since the projection of

S in the z, t plane is the curve S itself, the integral solution P(z, t) can be found

by integration of at, = c. The unique solution to the problem is determined
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ral Surface
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Figure 8.1: Geometric Interpretation of Integral Surface
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by tile initial conditions of the ordinary differential equations and the terminal

boundary conditions such that P can not be specified arbitrarily at the initial

point y(s = O) = x, T(S = O) = t.

In [10] the relationship to the calculus of variations approach is simply

derived. If a particular trajectory is the optimal trajectory then the Hamilton-

Jaeobi-Bellman equation must hold at each point and thus can be written with

respect to the states y and independent variable r. Tile fundamental equation

is

P£r(y,r)(f(y,u,r) + eg(y, u, r))+ [_(y,r)=0

and the optimal return function depends only on the cost at the terminal

manifold. Therefore, the optimal return function is constant and the total

time derivative must be zero at each point in the path. Tile partial derivative

with respect to y is

+p[ k(of(>_,,)&_Noy + _°_(y'_',)&)o_N

By the chain rule for differentiation

_ OPv 0P,

+ e Og(y, u, r)
Oy ]

(8.aa)

Optimal Return Function P(y, r).

dP_dr - pT k(Of(Y'u'r)-_Y +¢ Og(y,u,r))Oy

(of(v,__,,)o,, og(>_,,,-)&)-e[ t oy+ N

Oy

Thus a system of ordinary differential equations is obtained which is evaluated

along an optimal trajectory and is satisfied by the partial derivatives of the
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Now the optimality condition is

Of(y,tt, r)P[ au

Therefore,

+ eOg(p,u, r))Ou = 0

dPy . (Of(y,_u, 7") Og(y, u, 7-))
dr" = - P'f \ Oy + e Oy

(8.34)
/

which is the familiar Lagrange multiplier rule for the optimal trajectory.

The material presented is intended to clarify the relationship between

the solution to the first-order, linear, partial differential equation which is

the Hamilton-Jacobi-Bellman equation and the solution to the guler-Lagrange

equations. The point to remember is that the solution to the partial differential

equation is given by characteristics generated by ordinary differential equations

which are the equivalent to the canonical Euler-Lagrange equations.

8.6 Formulation of First-Order Correction Terms for

the ALS Problem

In this section the solution for the ALS problem using the new per-

turbation method , i.e. the perturbed Euler-Lagrange equations, is presented.

The state transition matrix is determined by integrating

d(P(r't)= [ AvuA_v Ax_x,Au_'_ ](P(r,t), '.P(t,t)=l

where the A matrix was presented in Eq. (8.22)

For the ALS problerfi the primary and perturbation dynamics are

f(y, u, 7") = _ = r_ cos 0p
h rn W
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and

ho m (,-_+h) g, (,.,+h)2 + -_pA_ sin@

9(y,u,r)= r_ A__+ Np _cos0phs rn (re+h)

0

where A= and A_ represent the aerodynamic forces in the x- and z-directions,

respectively. Also n is the number of engines per stage and p and Ae are the

pressure and the engine exit area. Remember that the thrust was modelled as

T = T,_ - npAe.

The first-order partial derivatives of the primary dynamics are

[ 00]fy= 0 0 f_,= _sin0p
- 0 0 0

and all the second-order derivatives are identically zero except fi,_,,

rosin 0p

_ !__ cos Op
0

Therefore the matrix A in the differential equation defining the state transition

matrix becomes

with

A

0 0 0 al4 al5 0

0 0 0 a24 a25 0

-1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

a14 =
Tvac COS 20p

m (A_, cos Op - A,_ sin Op)

a15 = a24

Tvac sin _ Op
a25 --

m (A,, cos 0p - A_ sin 0p)

T,,_ cos 0p sin 0p

m (A_, cos 0p - Aw sin 0p)
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and

([)14

(I)15 _ (I)24

(I)16

(I)25

An analytic form for the state transition matrix can thus be obtained.

*(_-,t) =

t 0 0 q)14 <Pt5 q)16

0 1 0 q524 4)2s q)26

--(T--t) 0 1 (I)34 q_35 di)36

o o o 1 o (T - t)
0 0 0 0 1 0

0 0 0 0 0 1

C_2 sinh_, (2a -t- bm_ (2a_+_______o_]
aa3/2 \ my'% ]-sinh-' \ mov/_ ]J

2c_ (_ - 2_c+ _) _ (_,_, - 2_ +__]

edna3/2 \ mv_ ) sinh-I mov/--A

2C,ZC,_ r (bcm - 2ac + b2) (bcmi - 2ac + b2) 1
J

(2cm, + b) ]

J
fO.a+b._o_

2C&h [ (2cm+b)

ednA [ ff crn 2 + bm+ a

C'_2mi [sinh_ 1 (2a + bm'_

2C_ [ (2c'm + b) _ (2cm, + b) ]
edna x/'cm 2 +bm + a ic'm_ + bin, + a

_2 [sinh-' (2a-i-km_ (2a-t--bmo_}]aa3/2 \ my/- _ ,] -sinh-' \ mo_/-A )J

2c_ (_ - 2_ + v_)_ (_, -: 2_c_+__bb
_zx ,/_ + b_ + _ V//m_+ b_ + aJ

2b [ (2cm+b) (2crni+b) ]+JA v'_+b_+_ - V/_+b-_,+a
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¢I)26

¢I334

(I)35

(I)36

2c [ (2,_+ b,_,) (2_+ br_,)
o-ALJ_ __" -x/_,_+b_,,+ J

+_--_ c_' + "_' v'c_ + _._ + a - V/_ + b,_, +

2C_,/_h (2a + brn) (2a + bmi) ]

+o-Th_-----_.,/(:_-,_+ t.r, + a - f_7 + m_,+. J
-crrhaa/2 \ mV'-A - sinh-i \ m_v'_ ,_

orhaA

2C_ (m - m,) (be,n, - 2_c+/?)
+ _'_-------A _/_7 + b_, + a

_rr_u \ mv/A ) -sinh \ _)]

+_ + _ ((._ + b_ + _ - _ + b_ +

2c_ (b_, -?._+_?)+ -(2c_, +b)
o-mA _ V/_ + b_, +

arin_A 2 + ,,/cm 2 + brn + a - +

2< (bcm,_2ac+b_)+(2cm,+b) @ m_'+bm'+aa'rh,2A
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and

where

The first-order partial derivatives of tile perturbation dynamics are

rnh, Ow h, _rn On (r-_wh)l

g_ = _ ( l Oa__ + w ) 5__ (10 32_4. 0(,

0 0 0

OA_d__ npAe cos 0p/o0p +

oo, + npAe sin Or)
0

Oh - h, Oh + (re + t0 2 (% + h) a mhp sin0p (8.35)

Og re (IOAz uw npAe )Oh - h, .Oh (re + h) 2 + _ cos0p (8.36)

The forcing terms in tile quadratures pertaining to the first-order

correction terms can now be calculated. Recall

which becomes

T --1 T ]T_ T -1 T

Ar -i ]
9u Oy

--9_ %

The aerodynamic forces are considered positive in the x- and z-directions

respectively, and are

A_. - 0.5pS(u 2 + w 2) [Co(M,a) cos'), + CL(M,a)sin'_] (8.37)

Az = 0.5pS(u 2 + w 2) [Co(M,a)sinT- CL(M,a)cosT] (8.38)

The angle-of-attack is a function of the pitch angle and the flight path angle,

a = 0p -7. The atmospheric density and pressure are modelled as exponen-

tials, i.e. p = p, exp(-h/hs) and p = p_exp(-h/h_). The mach number is a
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flmction of velocity and altitude with M = (u 2 + w2)/sos. The speed-of-sound

is calculated by sos = l_p, where F is the specific heat ratio for air and is

assigned a value of 1.4. Lastly, the flight path angle is represented in the Carte-

sian coordinate system as tan 7 = -_. From these relationships all the partial

derivatives needed to calculate the forcing terms G(r) can be determined.

8.7 Results

The solution to the launch problem was first attempted for initial

conditions associated with staging. At these altitudes the aerodynamic forces

are small enough that they may correctly be consider perturbation terms. The

results of the new peturbation method (expansion of the Euler-Lagrange equa-

tions) show excellent agreement with the optimal solution. Note that the entire

first-order correction is available since this method is valid as an open loop solu-

tion as is shown in fignlre (8.2). The results also agree exactly at the initial point

of the path with the previous results using the old method (HJB). Table (8.1)

lists the relevent values.

Next, the solution for initial conditions at a time of 35 seconds was

sought. Once again the solution via the new method matched exactly the re-

sult obtained using the old method. To obtain agreement with the optimal

trajectory, the aerodynamic pulse flmctions were utilized in the same manner

as previously discussed. Consequently, the first-order solution closely approxi-

mated the optimal solution. The values at the initial point are also included in

Table (8.1) and plots of the open loop profiles are in figure (8.3). The solution

in a feedback configuration is presented in figures (8.-1-8.6). Presented are the
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7b = 35. To = 153.54

Method P, I_ P, P,_

new -2.2535 -843.12 -0.8547 -908.35

first

new -1.3925 -153.50 -

pulse

ItJB -2.2535 -843.12 -0.8547 -908.36

first

HJB -1.3954 -153.82 -

pulse

shooting -1.2752 -139A8 -0.8151 -860.63

Table 8.1: Comparison of open loop results

final time

Method (see.)

new 369.91

first

new 369.59

pulse

HJB 369.91

first

369.59HJB

pulse

final weight

(lbs.) _ deg I

329295. 0.0026

330578. .0014

329293. .03

330576. .0001

shooting 369.57 330678.

B.C. error

h ft

.219

-.144

-.002

.0007

Table 8.2: Comparison of closed loop results
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profiles of the flight path angle hagrange multipliers, tile velocity Lagrange

multipliers, and the control over the entire trajectory. In the closed loop solu-

tion the values are practically identical with a slight difference in the accuracy

upon which the terminal conditions are met. In order to be consistent with the

results chapter, the second stage aerodynamic model was used throughout the

flight. Table (8.2) verifies that the results are the same for the two perturbation

methods.

To summarize, the expansion of the Hamilton-Jacobi-Bellman equa-

tion is equivalent to the expansion of tile Euler-Lagrange canonical equations

with respect to the states, control, and the Lagrange multipliers. The theoreti-

cal and geometric concepts behind the solution of first-order partial differential

equations were also discussed. The reason for the equivalency of the two meth-

ods is that the result obtained by solving the partial differential equation and

differentiating with respect to the initial states is identical to the result ob-

tained by the solution of the ordinary differential equations that represent the

characteristic equations for the partial differential equation. For the Hamilton-

Jacobi-Bellman equation the characteristic equations are the Euler-Lagrange

equations. As expected, the solutions obtained using the two perturbation tech-

niques are identical. While the calculus of variations approach took a longer

amount of computation time, the entire open loop trajectory can be generated.

Because of this fact the update to the feedback solution need not be com-

puted as often and thus the overall computational time can be reduced. At the

expense of this speed comes the additional burden of integrating a state tran-

sition matrix rather than calculating the partial derivatives of the zeroth-order

solution. While the state transition matrix approach is easier to understand
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Figure 8.2: Open loop solution for Lagrange multipliers at sta_ng conditions
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than the embedded nature of the HJB solution, the state transition matrix can

be more difficult to obtain than the corresponding partial derivatives needed

by the HJB expansion method. Also note that the Hamilton-Jacobi-Bellman

equation can be written as a stochastic equation and can thus handle random

disturbances.



Chapter 9

Conclusions

The technique for applying the expansion of the Harnilton-Jacobi-

Bellman partial differential equation to derive a real-time guidance scheme has

been presented. The problem of launching a vehicle into orbit was simulated

for flight restricted to the equatorial plane. Difficulties arose at low altitudes

due to the large and highly nonlinear aerodynamic forces. While the expan-

sion method gave reasonable results, the use of aerodynamic pulse functions

in order to reshape the zeroth-order trajectory was vital to matching the opti-

mal trajectory. Thus it is essential that the zeroth-order path, upon which the

higher-order corrections are based, resembles the optimal solution such that the

assumed perturbing effects are indeed small. Based on the difficulties caused

by the aerodynamics and the modelling of these aerodynamics a few sugges-

tions are offered. First, the modelling of atmospheric and aerodynamic terms

should be adequate well beyond the domain of the optimal solution. This is

especially necessary if in some manner the zeroth-order trajectory significantly

deviates from the optimal trajectory. It is also suggested that this technique

would work better with a symmetric version of the ALS vehicle configuration

by eliminating the irregular behavior of the Hamiltonian. The results of this

research showed that the idea of using perturbation theory to perform real-time

on-line guidance is a valid one. The improvement in computational speed and

effort over the generation of optimal solutions is evident. Still, the technique as
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presented here was not designed for computational eIficiency. To that end, use

of parallel processing in tile integ-ration of tile quadratures is proposed. This

has the potential of decreasing the computational time even further. Lastly,

one of the goals for deriving an on-line guidance scheme is to provide abort op-

portunities or instantaneous changes in the terminal destination. It should be

remembered that this method always provides a nominal path which satisfies

the terminal constraints while an improvement in the performance is obtained

by the first-order correction terms. Because of the robustness of the solution

to ttle zeroth-order analytic two-point boundary problem, in-flight aborts can

be easily included.

More sophisticated modelling, such as including an oblate Earth model

and wind profiles, can easily be done since these effects can be considered per-

turbations and included in the problem in the higher-order correction terms.

The result would be to integrate some additional quadratures. The technique

can also be extended in a straightforward manner to flight in three-dimensions

in order to reach a point in space. See appendix[A] for the zeroth-order ana-

lytic solution. This is done through the addition of the out-of-plane equations

but with an accompanying increase in the complexity of the problem. It is ex-

pected that the three-dimensional solution will increase the payload available

at orbital insertion due to the benefits of the rotational effects of the Earth.

The inclusion of a dynamic pressure point inequality constraint is also feasible.

In other ALS studies [4, 12] it has been shown that since the rocket cannot be

throttled, the vehicle only touches the dynamic pressure constraint at a point.

It is suggested here that this point inequality constraint can be included in the

analytic solution of the zeroth-order problem as an interior point constraint
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[see appendix C]. This new zeroth-order trajectory would avoid the large aero-

dynamic correction terms found in the unconstrained optimization problem.

These large correction terms are due to the aerodynamic forces encountered

when flying through the region of high dynamic pressure. The solution to a

zeroth-order trajectory including a dynamic pressure constraint represents the

most important step in the evolution of this method for implementation as a

real-time, on-line guidance scheme for the launch problem.

Research is in order, on the inclusion of variable state and control in-

equality constraints in the expansion of the Hamilton-Jaeobi-Bellman equation,

so as to generalize the class of optimization problems amenable to expansion

techniques. Future studies are required on the general properties of the validity

of the asymptotic expansion of the I IJB equation. For example, the question

of whether or not the asymptotic expansion is uniformly convergent remains

to be answered. This is especially true in light of the use of the ad hoe aerody-

namic pulse functions. Also, the approximate optimal guidance scheme must be

made robust with respect to parameter variations and stochastic disturbances

in order to be implemented as a real-time on-line guidance scheme. Possible

solution methods [21, 22, 23] have been proposed to handle the more realistic

situation of a nondeterministic environment. The use of the Hamilton-Jaeobi-

Bellman equation is particular advantageous under these circumstances since

a stochastic version of the equation exists. With the zeroth-order trajectory

providing full state information, the best solution in the presence of random

disturbances should be obtainable.



Appendix A

Zeroth-Order Solution for Three-Dimensional Flight

The analytic zeroth-order solution is derived once again by a transfor-

mation of coordinate system. A canonical transformation from the wind axis

to the rectangular or local horizon coordinate frame allows the zeroth-order

problem to bc solved analytically. The solution is in closcd form up to some

constants that can be determined numerically. By making the transformation

u = VcosTcosx (A.1)

v = Vcos-rsinx (A.2)

w = -Vsin7 (A.3)

the zeroth-order equations of motion in a cartesian coordinate frame become

)f = u (A.4)

Y = v (A.5)

h = -w (A.6)

T
_i = -- cos Opcos ¢ (A.7)

m

T
_) = -- cos@sinu_ (A.8)

772

T
_b = ---sin0p + g_ (A.9)

rrt

rh = -aT
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where the Thrust pitch attitude, @ = {__+ ?, and the Thrust yaw angle, _ =

X + _q, become the control variables for the zcroth-ordcr solution.

Tile optimization problem to zeroth-order is solved by the Hamilto-

nian

H = kxU + )_y_) -- Ah'U3 Jr- ,_u T COS0p COS 1/) +

m

T 7'
Av-- cos 0p sin v3'+ A,,(--- sin 0p + 9_)

73'Z rrt
(A.X0)

The zeroth-order control laws determined by the optimality conditons are:

tlv,= -- cos Op(A_ cos >' - A,, sin W) = 0 (A. ii)

T
flo, = - (.k_,cos w + .\,, sin W)T sin 0_,- -- ,\,_ cos 0p = 0

Tli TIt
(A. i2)

Thus,

(A.I3)

and using these forms for the cosine and sine of _0, 0p is

tan 0_,

COS Op

sin 0p (A.14)
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Propagation of the Lagrangc rrmldpiicrs by _\_ = -Ill _ves

A'x = 0

Ay = 0

,(_, = 0

A_ = -Ax

,(,, = _,\y

,\',, = ,\h (A.15)

with boundary conditiorls giver: by Af -= Cxf

Ax(rl) = _'x, ,\tO?) = z,y,

where _'x, t/y, //h, //u, /2v, lJw are ur:kr_own ImgTange multipliers _ssociated with

the terminal constraints. The solutions to the adjoint diit'erential equations are

-_X ---_ b'X

/\y _- gy

_h _ Ph

M = C.-_x(r-_o)

_. = C. - _v(r- _o)

,X_ = Cw + ,X,,(r - r0) (A.I6)

The equations of motion can be integrated by' changing the independent vari-

able from time to mass and using the mass equation to substitute mass for r.
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Therefore, the Lagrange multipliers becorne

A,,,, = C,,+Axm
aT

-- TO,

,_ = C,o - ,xh ---m
aT

e)_ + _2v+ _ = c=- + bm+ a

(A.17)

(A.18)

(A.19)

(A.20)

where

C
(aT) 2

b = a--_

--2 --2 --_
a = C,,+C,,+C'_

7TlO

-4",,= G- ,_x-g7

-C,, = G,- Av m---2
aT

-C_, = C_+ Ah m-2-°
o'T

and the state equations become

hu

5rmx/cm 2 -I- brn, -t- a

A_

amx/cm 2 +bm + a

du

dm

dv

dm

dw

dm amx/crn 2 + brn + a

dX u

dm aT
dY v

dm aT
dh w

dm aT

s

aT

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)
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Note that c > 0, a > 0 and A ___n4ac- b2 > 0 since

4 [(AxC,, - ,,kyC,,) 2 + (AxCw + ,XhC,_)2 + (,,kyC, o + XhCv) 2] (A.33)
A- (aT) 2

Therefore, the integrations can be obtained from standard integrals. After some

manipulation, solutions for the states are obtained in terms of the unknown

constants as

U

V

W "_--

X

+ [sinh, sinh-'
C_ [sinh_ l (2a +bm (2a + bnoav/-a \ 7-nTv/_ )-sinh-I \ 7nov/_ )]

_y , (2cm+b) (2_s_+ b)1v0 + a2Tv/- _ sinh- v_ - sinh-I ___

vo [sinh__(2__2__ (2__+_bmeav/-d L \ nv/-A )-sinh-'\ noV_ )]

9* (n- no)
too aT

av/- d sinh -I \ n_ ,] sinh-' \ mov_ ,/]

(n- me)
X 0 "u,0

aT

)_x b) sink-
a(aT)2v_ (n + 2c

U_ [sinh-, (2_a + bn_ _ ,+rna(a-T--_vrd rnv/__ ,] sinh- (2aTnov_+ bn0 )]

+ C,, [sinh_, (2cn + b) _ (2%+

(n -- me)
Y = Yo- v0

aT

, (2_+b) _ (2c__+t Tg sinh-' t ,/'a b)]

(A.34)

(A.35)

(A.36)

+ brno + a - v/c'm 2 + brn + a] (A.37)
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h

+mo.(aT)v/_ _ sinh-' mv/-_ ,]-sinh-I \ _nox/_ /

+a(aT)v,_ [sinh-l ( 2_/-_ b ) - sinh-l ( 2_-_+ b ) ]

(m- too)
gs (m-too) 2+ wo

ho 2(aT)2 aT

1
(m + --- sinh- \ v_ j/

-rna(o.T)v/_ d sinh-' k m7¢_ ,]-sinh-' k _no_

)- ]

a(aT)2 c crr_ + bmo + a - ,,/crrt 2 + bm + a (A.39)

There are seven unknown constants that arc to be determined

rnl, C,,, C,, Co, Ax, Av, Ah. These unknown constants can be found using the

initial and final states which are known, the six state equations above, and the

transversality condition for tile I lamiltonian.

These equations are valid for arcs before and after staging occurs. To

determine a point on the trajectory after staging, given initial conditions before

staging, the Weierstrass-Erdmann corner conditions can be used to relate the

Lagrange multipliers before and after staging and thus link the two subarcs.

Since the states are assumed continuous across the stage time and the change

in mass is a known fixed quantity, all the Lagrange multipliers are continuous

in time. The Return Function is thus continuous and constant across the stage
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time. But since tile analytic state c(tuations are derived using mass as the

independent variable, the equations for tile states and Lagrange multipliers

change across tile stage. Tile form of the equations is the same but the initial

values for the states in the equations are now replaced by the values of the

states at staging before tile discontinuity in mass. Tile mass flow rate, aT, will

change and the initial time associated with tile Lagrange multipliers becomes

the stage time. Therefore,

,x_(L)

,x,o(L)

?TZsg2 "_ re_(L_L) - Ax c_%L2/ + .\x c_%,-----72
'rrl

= C_+Ax--
tiT;L2

re._12 "_ rr_= +.xY
re

= C,,+.Xy--
dI;t2

= reo"7,_2./- .Xho%_2

= C,,,-_h re

Thus the constants a,b,and c in the analytic solution have the same form but

the term C after staging becomes related to C before staging.

-- ( re._t2 re_t, )Cu = -Cu - /_X \O'_t.2 orstl

-_v = -_v _ _y ( re.,t2 re,tl)

'-,,)
Through a coordinate transformation back into the wind axis the an-

gle of attack can be determined. Higher-order terms in the Lagrange multipliers

can be found from expansion of the dynamic programming equation. The Opti-

mal Return Function can be determined by integrating the perturbation terms
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along the zeroth-order trajectory while taking into account variations in the

final time due to changes in the initial states. Taking the partial derivative of

the Return Function with respect to the initial states determines the Lagrange

multipliers. Expanding to first-order thc control and Lag-range multipliers in

the control law determines the first-order approximation for the controls.

A.1 Zeroth-Order Coordinate Transformation

The analytic solution for the zeroth-order problem has been found

in the Cartesian coordinate systcm but the cquations of motion of the full

system which includes the aerodynamic forces arc written in the wind axes

system. To derive the zeroth-ordcr control and the first-order correction to the

controls the transformation of coordinates and especially the transformation of

the Lagrange multipliers must bc known. The rotation from the wind axcs to

the local horizon frame is done by a canonical transformation.

u = VcosTcosx

v = VcosTsinx

w = -Vsin7 (A.40)

A necessary and sufficient condition for the transformation to be canonical is

that the Hamiltonians be equivalent.

HLH

Hw._

= )_xdX + AvdY + Ahdh + A,,du + .k,,dv + A_dw

= AodO + .k,d¢ + Ahdh + AvdV + A.yd7 + )_xdx
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For tile two reference frames, h and m are tile same. Also, for the model

x = rco and Y = r,¢. Thus,

Ao = rcAx, A¢ = r_Ay, and Ahisthesame

In order to equate the llamiltonians, the Jacobian of the transforma-

tion from the wind axes to the local horizon axes is computed.

A,,du + A_dv + Awdw = ,\vdV + A-ydq, + Axd X

So,

and thus

Ax

Therefore,

Av

A.,

A×

Ao

A,

and

Ou Ov Ow

Ou av Ow
Ox Ox Ox

Av

cos'vcosx
= - V sin "/cos X

- V cos 2_sin X

cos 7 sin g - sin 7

-VsinTsinx -Vcos7

V cos q, cos X 0

Av

A_,

= A`` cos q, cos X + A,, cos 7 sin X - A,. sin 7

= -V(A`` sin 7cos X + A,, sin 7sin X + A,_ cosT)

= V cos 'y(-.k,, sin X + A_ cos X)

= re)iX

= "¢'e_y

V = x/u 2 + v 2 + w 2

7J
tan X -

U
W

sin 7 -
V

(A.41)

(A.42)

(A.43)
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Plots are prcsentcd to show 121c characteristics of the solution for flight

in at vacuum using the opc'n loop atrmlytic solution.
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Appendix B

Canonical Transformations

The use of the canonical transformation of section 4.2 is essential in

finding the dosed-form solution to the zeroth-order problem because canoni-

cal transformations preserve tile I Iamiltonian form of the equations of motion

in the new set of variables. A more thorough discussion of canonical trans-

formations than what is presented here is in I2dl. To transform between the

generalized coordinates and generalized momenta or Lagrange multipliers (q, p)

of one system to new variables (Q, P) of a new system, a set of transformation

equations linking the two systems must be known. This link between the two

systems can be derived from the generating function Co(q, Q, t).

d

d-_tS(q,O,t) = L(q,/l,t)- L(Q,Q,t) (B.1)

where L = T- V is Lhe [,agrang-ian of the respective system. I,et tile Lransfor-

rnation equations be of tile form

Q = Q(q, p, t) P = P(q, p, t) (B.2)

with Hamiltonians associated with each set of variables such that the ttamil-

tonian equations are satisfied, i.e.,

H(q,p,t) = __,p_q_- L(q,o,t) (B.3)

OL
p_ - (B.4)

0q
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OH

_i, - Op, (B.5)

K(Q,p,t) = Z P,Q,- L(Q,©,t) (B.6)
OL

P' = o_ (B.7)
0K

(_' = a+_ (B.8)

By solving Eqs. (B.3)-(B.6) for the ImgTangians and substituting into Eq. (B.I),

the difference between two differential forms can be obtained as an exact dif-

Ferential.

p, dq_ - l/dt - _ P_dQ, + Kdt = dS (B.9)

This is the sufficient condition for a canoni<:al transformation between the old

variables (q, p) and tile new variables (Q, P).

The generating hmetion can be written as a total differential of the

form

OS OS OS dt
d S = _ -_q d q, + _ -_ d O , + --_

Equating like terms of the differential dS yields

(B.10)

OS OS OS

P'- Oq,' P_ - OQ,' K= II + 0-_ (B.11)

A simplified form of these equations can be obtained. Assume that

time is not changed in the transformation from one system to the other system.

Therefore, t is an independent parameter and the value of dt is set to zero. Also,

define a new function equal in value to the generating flmction but expressed

in a different form

_b(q,p,t) = S(q,Q,t) (B.12)
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[herefore, the wmation of l'.q. (1_.1) is rewritten as

The equations

00 0Q; (B.14)
aq, - _9,- _ & Oq,

J

0_9 _ OQi (B. 15)Op, _ G Op,
g

are obtained by expressing the variations &) and I_6Q, in terrns of the old

variables. The new llamiltonian is determined by integrating the expressions

presented above to obtain _b, anti then calculating

O_b OQ, (B.16)K = n + _ + Z :" 0--7
l

For a homogeneous canonic.a] Lransh)rrrmtion the generating fimction

S or 0 is identically zero and thus do is an exact differential and equal to zero.

For a point canonical transformation _m used in section 4.2, the transformation

equations Q, = Q,(q) are fimctions only of the generalized coordinates of the

old system. The functions Q,(q) rcpresc'nt a full set of independent flmctions,

therefore, the old variables q can be expressed in terms of the new variables Q

using these same functions. This implies that the Jacobian determinant is not

zero,

I_1 = o(Q_,Q_,..., O,,)O(ql,q'e,...,%) 7_ 0 (B. 17)

Since the transformation equations (Q, O) do not contain time, the Hamiltoni-

re'is of the two systems are equal (K = H). This result is obtained by the use
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of Eq. (B.16). The relationshipsexpressedin Eqs. (B.14)-(B. 15)become

oQ, (B.18)
o = _,,- _. % oq,

.1

oQj (B.19)
3

The Jacobian determinant of the new variables Q in terms of the old set of La-

grange multipliers p must be zero for a set of P's not all identically zero and is

also required since the point transformation Q = Q(q) was independent of the

oQ
Lagrange multipliers p. The matrix -N-qis used to determine the relationship

(gq. (13.18)) between the Lagrange multipliers of the two systems. The trans-

formation between the wind axis coordinates and the Cartesian coordinates of

section 4.2 is a canonical transformation as ('.an be verified by the use of the

canonical transformation equation (gq. (B.13)).



Appendix C

Point Inequality Constraints

The inclusion of the a point inequality constraint on the dynamic

pressure is discussed in this section. Due to structural load limits imposed

on the ALS vehicle, the optimization probh'.m must include a dynamic pres-

sure inequality constraint. For the unconstrained optimization problem that

is presented in this research, the correction terms to the zeroth-order solution

become too large near the region of maximum dynamic pressure. For a rocket

incapable of throttling, the optimal trajectory will not include a subarc on the

boundary of the dynamic pressure constraint but instead will only touch the

constraint at a point [4, 12]. This result would seem to indicate that the dy-

namic pressure inequality constraint carl be handled in the same manner as

an interior point constraint. Therefore, the I lamilton-,lacobi-Bellman equation

can be split into subarcs before and after satisfying the interior point constraint.

Let the optimal return function be

P(x, t

oo

= _ e'I_(z, t) (c.1)
t=(]

The point interior equality constraint is

N(y(t,)) =o (c.2)

where the constraint is a function of the states y at the time tl and the states

are assumed continuous at the constraint. The system dynamics are defined

133
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by

i0 = f(Y,u,t) (C.3)

and therefore the IIamiltonian is II = l?_f. Across the equality constraint

&(v,t,-) = &(v,t,+) + nNx(y,t,) (C.4)

P=(y,t,-)f(y,u,t,-) = P_(y,t,+)f(y,u,t,+) (C.5)

where H is the Lag-range multiplier used to adjoin the constraint to the per-

formance index. These equations are the comer conditions derived using the

calculus of variations [9]. From the solution of the ltamilton-Jacobi-l_ellman

first-order partial differential equation, the higher-order terms of the expansion

of the optimal return function are

ftt- ft,a(z, t) = - t_,d_ - I¢,d_- i = 1,9,... (C.6)
i+

Recall that the integration is performed along the zeroth-order trajectory. The

partial of the return fimction with respect to the initial state x is

/,,- )ot _t:',,(z, t) - o--Td,-- &(>, t,- Ox

Oil Otl f,, OR, dr
--[¢,i(TJf, tf) (-_X "Jr- [_i(Vl,tlnt'-)-'_X -- ,-at" _ (C.7)

This equation determines the correction terms to the Lagrange multipliers.

Notice that the variation in the time at which the equality constraint is satisfied

is explicitly taken into account in the correction terms. Substituting the partial

of the expansion of the return fimction (Eq. (C.1)) into the corner condition of

Eq. (C.4) produces

oc oo

e'P,=(y,t,-) = _ e_P_.(y,t,+) + llN,:(y,t,) (C.8)
i=0 i=O
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The solution for the La_,n-ange multipliers is then determined by collecting the

coefficients of like powers of the expansion p_rameter, c. Therefore, for the

zeroth-order term of i = 0,

&.(>Z,-) = I_.(V, t,+) + 1I,%(> t,) (C.9)

and for higher-order correction terms

P,.(v,t,-) = P,.(V,g,+) i _> 1 (C.10)

This result implies that the higher-order correction terms for the l,agrange mul-

tipliers are continuous across the eqlmlity constraint. The jump discontinuity

in the Lagrange multipliers is completely taken into account by, the zeroth-

order term. The higher-order terms of the expansic' of the return flmction

are thereby continuous across the corner. The continuity of the l lamiltonian is

ensured by substitution of the partial of Eq. (C. 1) into Eq. (C.5), which results

in
oo

5-_e'P,.(y,t,-)f(v,u,l,-) = _-_ e_'P,=(y, g, +)f(y, ,,, _,+) (C.11)
i=O _=0

Thus, by collecting terms in like powers of _, the equation

f',. (_, t,-)f(> ,_, _,-) = /',. (z, t_ +)f(v, 'z, *,+) (C. 12)

is obtained. This condition is just the continuity of the expansion terms of the

Hamiltonian, i.e., tI, (y, u, P_, t,-) = t[: (y, u, P_ , t l + ).

The dynamics of the systcrn are the same after meeting the point

constraint as they were before the constraint. Thus, the analytic solution of

the states as derived previously is still valid but with a change in the La-

grange multipliers at the dynamic pressure constraint. The relationship be-

tween the Lagrange multipliers across the constraint given by Eq. (C.9) can be
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used to link the subarc of the ze.roth-ordcr trajectory that occurs before the

constraint equality is met to the subarc that occurs after the constraint equal-

ity is met. These equations are additional conditions that are used to solve the

constants associated with the two-point boundary wflue problem. Since the

zeroth-order problem totally accounts for the dynamic pressure equality con-

straint N(y, t_) = O, the first-order correction term to the zeroth-order term

should be small and tile asymptotic expansion should remain valid near the con-

straint. Therefore according to the method of characteristics, the zeroth-order

trajectory can be used as the characteristic curw_ to determine the higher-order

correction terms. In contrast to the unconstrained optimization problem, this

zeroth-order trajectory should be close enough to the optimal solution such

that only small corrections to the zeroth-ordcr gmidance law are necessary.



Appendix D

Analytic Partial Derivatives for Zeroth-Order Solution

The partial derivatives with respect to the general initial state 3: de-

rived in Chapter 5 for the [irst-order correction terms are presented here in

their explicit form for the initial states, Y0 arid %. The equations derived are

for the second stag(.' subarc. Tim initial v('locitv c_)mponents expressed in terms

of the wind axis states are

7*0= t{) cos 7o, _1_'o= -V0 sin % (O._)

and therefore the partial derivatives with respect to tile initial velocity and

flight path angle, are

(_?Z0

- cos %
0v0
()'/10

- I/{_sin 70
0%

01L'O

-- sin %
OVo
_11) 0

- Vocos % (D.2)

The partials of the analytic zeroth-order state equations are then expressed as

OVo 2a OVo]

(D.3)

-- cos% - --

c_

1 [sinh-' ._:2(m) - sinh-' _2(mo)] _, _oo

1 092 1 Og_(mo)]

v/t + _(_10Vo vq + _(_ol aVo J
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0%

Oh

OVo

---Vosin% Crv'a'l [sinh-' _2(m) - sinh-I _2(rrzo)](OC,.,_,

(D.4)

sin% -

(D.5)

2a

(D.6)

sin % (m - too)
aT

_ _m [sinh_, _2 (m) - sinh- ' _(mo)] t(O-C'_o 0%2a_ooOa)

-[
+m 2_(_T)_C_/_ [_i_h-' _, (,_) - sinh -_ _, (mo)J &Wo
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Oh

07o

Mc O_vo)

(D.7)

r_2 0c _ rrl ob Oa m 20c Ob Oa ]

4 2a(aT)2c L -_72 +t----_m+ a ¢crn2o + bmo + a J

The partial derivatives of the constants a,b,c, and Cw used to express

the analytic state equations are

Oa _ OC,, 2-- OCt,
OVo - 2G3-Eo+ c_3-Voo

Oa _ 2C OC_ -- bC_
8_o 8_--_+ 2C_ 8_o

Ob 2 r: o-O,_l

aVo- o-r[u_o+A_-_o]

0% - aT L_ 0--_o + 0% J

(D.9)

(D.IO)

(D.11)

(D.12)
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Oc 2 c)Ah
- (D.13)

OVo (crT) 2 0Vo

OC_o OC,_ mo OAh
-- + (D.14)

OVo OVo aT OVo

Oc 2 cgAh
- (D.15)

070 (aT) 2 0"70

0C_, OC_ mo O),h
- + (D.16)

OVo OVo c_T OVo

OC,,, OC,o mo OAh
-- + (D.I7)

07o 070 c_T 070

Also, the derivatives of the discriminant flmction A = 4ac - b2 are

OA cOc Oa Ob

OVo - 4 a -_o + 4 C-_o - 2bo--Vo (D.18)

OA Oc Oa Ob
- 4a-_--- + 4c_--- - 2b (D.19)

0_'o 07oUTo (r'/o

The arguments of the inverse hyperbolic sine function are defined in

Eq. (5.19) as

2cm + b 2a + brn

9,(m)- v_ 92(m)- r_v_

The resulting partial derivatives of the arguments are

091 1 [ ag, ) Oc bg, _ Ob _ 2c 9, OaOVo - _ 2(_ v_ OVo+ (1+ v_' OVo ,/X OVo

0m]+2C_o ° (D.20)

09, 1 [2(m a9,) Oc bg,) Ob _.. 9, OaO_o - -_ ,/-S o_,o+(1 + ,IS O_o _c-_-N4

092

0Vo

+2C o]
1 [2(1- c92,0a +m(l+bgl_Obmv_ _ m-_ J-SVoo ,/_ ' OVo

92 Oc 2 Ore]

-ma-_ a-5-_o°]OVo m

(D.21)

(D.22)
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1 [2(1- _20a b_,_Ob

c32 Oc 2 Om ]

- ma v_ a-_7 oJ070 m
(D.23)

(D.24)

Note that unless the partial deriviatives are evaluated at the terminal manifold

the partials o,_ and o,__ are zero. Using the partial derivative chain rule for a

trignometrie function, the partials of the inverse hyperbolic sine function are

obtained.

0 (sinh__ _,) = 1 0_1
OVo _ +_ OVo

Oq (sinh -1 32) = 1 0_;2

O_o ]i +_ O_o

(D.25)

(D.26)

Therefore, all the partials derivatives needed to evaluate the partial derivatives

of the analytic state equations along the zeroth-order trajectory depend on the

eight constant partial derivatives _, _Vo , _Vo , _yo , _, _, o__%c_o' _o-to" These

partial derivatives are functions of the solution to the two point-boundary value

problem. Therefore, they are constant when integrating the forcing function Rn

from the initial to the final conditions but they change as new initial conditions

are given when the guidance scheme is used in feedback.
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