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Calculations of the accuracy of wavefront reversal utilizing
pump radiation with one-dimensional transverse
modulation

B. Ya. Zel'dovich and T. V. Yakovleva

P. N. Lebedev Physics Institute, Academy of Sciences of the USSR, Moscow
(Submitted June 6, 1980)
Kvantovaya Elektron. (Moscow) 8, 314-321 (February 1981)

The problem of wavefront reversal in stimulated Brillouin backscattering in a pump field with one-
dimensional transverse modulation for the reversing mode of the scattered field is considered. Calculations
are made of corrections corresponding to "serpentine" distortions. The fraction of these distortions is
~x\n(\/x), where* =g/k$2 is the product of the gaing (in reciprocal centimeters) and of the Fresnel length
(k0)~' of a pump field with the divergence Θ. Specific differences between the one-dimensional and two-
dimensional problems are discussed.

PACS numbers: 42.65.Cq

1. INTRODUCTION

Wavefront reversal (WFR) in stimulated backscatter-
ing of light has been the subject of intensive experi-
mental and theoretical investigations (see, for example,
Refs. 1-3). A fairly detailed theory of WFR has been
developed in various investigations1 · 4 ' 1 2 and a detailed
study has also been made of the reversal accuracy, i.e.,
calculations have been made of the distortions of the
structure of the backscattered field compared with that
of the pump field.4·8 In particular, this problem has
been solved for the case of incomplete spatial modula-
tion of the pump wave.12 In all these investigations it
was assumed that the pump field is spatially modulated
along both coordinates of the transverse cross section
of the beam, i.e., a two-dimensional WFR problem was
analyzed.

However, also of interest may be experimental situa-
tions for which a one-dimensional WFR problem is
more adequate, i.e., the case when the pump field
varies only along one transverse coordinate. This
formulation of the WFR problem is examined in the
present quantitative theoretical study of the WFR accur-
acy for a pump beam with one-dimensional spatial
modulation. Calculations are made of "serpentine" dis-
tortions in a pump-wavefront-reversing field. It has
been established that these small-scale distortions are
caused by pulling of the scattered field into active ser-
pentine microwaveguides formed by the gain profile in
an inhomogeneous pump field.

2. BASIC EQUATIONS

In the approximation of scalar monochromatic fields
of the pump EL(x, z) and scattered waves Es(x,z), the
parabolic equations for the slow amplitudes [i.e., after
isolating rapidly oscillating factors exp(±tfe2)] in the one-
dimensional case take the following form:

3£r, i θ 2
 Ε. Λ ι -t\

r-sir£i. = 0; Wdz

dE, _J__Jl_
dz ~ 2k dx* ' (2)

We shall assume that the scattered wave propagates in
the + Z direction and the pump wave propagates in the

-Z direction. The X axis is taken to be the direction of
variation of the transverse structure of the two fields
whilst these fields are homogeneous along the F axis.
This implies in particular that the wave vectors kL and
k s are situated in the plane XZ. We shall neglect the
small frequency shift G \EL \2 ~{kL - k)JkL ~ 10"5 in scat-
tering of the stimulated Brillouin type. The quantity
G\EL | 2 characterizes the local intensity gain (in re-
ciprocal centimeters). In Eq. (1) we shall neglect the
influence of the scattered field on the pump field.

We shall express the solution of Eq. (1) as a Fourier
series (which corresponds to the problem of a one-
dimensional waveguide, i.e., bounded only with respect
to X, with periodic boundary conditions of the Born-
von Karman type):

Here, q is the modulus of the transverse component,
with respect to the Ζ axis, of the wave vector of the cor-
responding angular component of the pump field: k±

= q =qex. We shall assume that the amplitudes C(q) of
the various angular components of the pump field are
independent Gaussian random quantities:

<C*(<7,)C(?j>=r(?l) δ (<?!-?„), (4)

where 5(q1 -q2) is the discrete Kronecker δ function,
the angular brackets denote averaging over the ensemble
of fluctuations of the amplitudes C(q). The average
pump field intensity with respect to χ is given by

-±$\EL(x,z)\>dx. (5)

Here, I is the transverse dimension of the beam (optical
waveguide) along the X axis.

We shall now analyze the solution of Eq. (2) for the
scattered wave field Es(x, z). Expanding the amplitude
Es(x, z) as a Fourier series

(6)

we obtain the following equations for the Fourier com-
ponents S(q,z):
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,-q)6'
r', (7a)

It can be seen from Eq. (7a) that the scattered field
component S(q,z) is formed as a result of scattering
of the component S(q3,z) of this field by a permittivity
perturbation 6t{x,z)~exp[i(q1 -q2)x+i(q\-q\)z/2k\ pro-
duced in the scattering medium as a result of inter-
ference of the angular components of the pump field Ciq
and C*(<72). By virtue of the Bragg condition for the χ
components of the wave vectors, the equality q =q3
+ ?i - % i s found [the second expression in Eq. (7b) was
obtained using this condition]. The quantity Γ char-
acterizes the deviation from the Bragg condition for the
ζ components of the wave vectors.

3. MODE APPROXIMATION

It has been established (see Refs. 4 and 5) that the
mode approximation to solve Eq. (7a) involves allowing
only for "automatic Bragg" or, in other words, co-
herent processes in all the processes involving scatter-
ing of the amplitude S{q3,z) by the gratings Sc—Ciq,)
C*(q2). This implies that in the triple sum over qlt q2,
q3 only the following two groups of terms are retained:
1) <2Ί -q-i, q3~q'> 2 ) 4Ί = -q3, q2 = -q2 (for further details
see Ref. 12).

Equation (7a) in the mode approximation takes the
form

. 4" GILS (?, r) + 4" GC* (-q) 2 S (?!• *) C (-?.)· (8)

In deriving Eq. (8) allowance was made for the condition
| C ( ? ) | 2 « / L , i.e., for the smallness of the intensity of
each individual angular component compared with the
total intensity IL. The solutions of Eq. (8), described
as modes, take the form

S(m) (q, z) = e"2 m (<?); £*"· (x, z) = e"z 2 m (?) e"*-*'"",

i.e., in the mode approximation the existence of an
inhomogeneous gain distribution in the medium is
only observed as the exponential factor βχρ(μ,,ε) and
the spatial structure of the scattered field satisfies the
free wave equation.

For modes uncorrelated with the pump field we have
E,1S ( u n c )(?i,2)C(-?1)=0, and the increment is μ0

= iGIL. As far as the mode correlated with the pump
field is concerned, expressing this in the form Sco\q,z)
=f(q>z)C*{-q), it is readily established that the function
f(q,z) is independent of q, i.e., the mode correlated
with the pump field accurately reverses the pump wave-
front:

/<z)=/(0)ef"; μ 1=σ (q, z) =C*(-<jr) f (0)e"». (9)

Thus, in the mode approximation, the scattered field
comprises the sum of the solution which accurately
reverses the pump wavefront and many solutions cor-
responding to uncorrelated waves. These are amplified
with respect to ζ with an increment half that for the
generating solution. Thus, we shall neglect these un-
correlated modes formed from the spontaneous noise in

the cross section ζ =0 as compared with the strong
pump-wavefront-reversing mode.

4. CALCULATIONS OF SERPENTINE DISTORTIONS
IN THE FIRST ORDER OF PERTURBATION THEORY

In order to determine the structure of the scattered
field more accurately, not only the automatic Bragg
scattering processes but all these processes should be
taken into account. Thus, we shall express Eq. (7a)
in the form

- 4 - GILS (q, z) --L GC* {-q)

4° 2'

,) S < ? 1 , z)

?»-?>e' rZ. (10)

The prime in the sum on the right-hand side of Eq.
(10) implies that all automatic Bragg terms are
eliminated, i.e., Σ' corresponds to random incoherent
scattering processes. These processes may distort the
wavefront of the scattered field compared with the pump
field (serpentine distortions) and may also change the
ζ dependence of the reversing solution. Thus, we shall
express the solution of Eq. (10) in the form

S (q, z)=e»*A (z) C*(—q)+F,(?, z), (11)

where F^q^) is the amplitude of the serpentine distor-
tions. We shall subject the field of these distortions to
the condition of orthogonality with respect to the con-
jugate pump field:

Possible corrections to the ζ dependence of the
reversing mode, i.e., to the coefficient at C*(-#), as
a result of incoherent processes will be included in the
factor A(z). We shall solve Eq. (10) considering its
right-hand side to be a perturbation. Substituting Eq.
(11) into Eq. (10) and allowing for the condition |C(<7)|2

« / i ( after various transformations we obtain the follow-
ing equation for Ρ^,ζ):

- μοΡ, = e"lZ-f Α (ζ) Σ C (9l) C*

(12)

Equation (12) is formulated in the first order of
perturbation theory. In deriving this equation, the un-
perturbed zeroth-order solution is substituted for S(q)
on the right-hand side of Eq. (10). When integrating
Eq. (12), we shall assume that the dependence A(z) is
slow and in this case, for fairly large ζ (i.e., for
GILz & 3) we obtain

f A <z') exp ̂ 4 GIL + IT} z'J dz'

« A (z) expi/4 GIL + if)ζ] 11±- GlL + if).

From this it follows that the amplitude of the distor-
tions F^q, z) is

F < z) = — A V c ( ) |

(13)

Squaring Eq. (13) with respect to the modulus and
averaging over the ensemble of fluctuations of the pump
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amplitudes C(q) allowing for Eq. (4), assuming statisti-
cal independence of components with different q, we ob-
tain the intensity of an individual angular component of
the noise field:

field j(93) and, when integrating, this may be replaced
by a delta function with the appropriate normalization:

x<|C(i3)|2 (14)

The factor l/[(iG/ t)
2 + re(tf1,92>93>ϊ)] characterizes the

efficiency of excitation of the distortions F^qjZ) as a
result of a particular scattering process. Using Eqs.
(13) and (14), it is readily established that the main con-
tribution to the serpentine distortions is made by those
scattering processes for which the Bragg condition is
approximately satisfied: \r(q1,q2,qa,q)\%jGIL. These
processes may be termed "random Bragg" scattering
processes unlike the automatic Bragg processes allowed
for in the mode approximation.

Calculating the total intensity of the serpentine dis-
tortions averaged over the ensemble of fluctuations of
the pump amplitudes C{q), we obtain

/»=2<|F1(?, z) !»>=<?/» ^ V » fj/2*1; (15a)

/a=jjj αβ^άβ,ι (ΘΟ / (θ2) / (βύ/{(αΐι/2ν)'+&ι-%)*(βι-β»)Ί-
(15b)

Here, we have 9 =q/k; $fl) is the normalized angular
distribution function of the fluctuation components of the
pump field /_* j(0)d0 = 1; }(θ)=^1/2τιΙ^Γ^9). Introducing
the normalized angular distribution function of the noise
field j'\e,z)=kl/2iiIn{z){\F1{.q,z) | 2 ) , we obtain using Eqs.
(14) and (15)

(16a)/" (Θ)=

/ (θ,) / (Ql-Qi-

(16b)
Substituting the specific form of the function j{9) into

the expressions for f2 and/i(9) and calculating the cor-
responding integrals, using Eqs. (15) and (16), we can
find the total intensity and angular distribution of the
serpentine noise for various angular distributions j{6)
of the pump field. The quantitative characteristic of
the distortions R is the ratio of their intensity In to the
intensity of that part of the scattered field which ac-
curately reverses the pump wavefront / r e v = |A(e)| 2e 2 M l ' .
Allowing for Eq. (15), we obtain R =

We shall now analyze in greater detail the integrals
f2 and/^0) [Eqs. (15b) and (16b), respectively]. We
shall discuss calculations of the triple integral/2. It is
initially more convenient to integrate with respect to θ3.
In this case, the function in the integrand consists of
two cofactors: j(93) and [(GIL/2kf +{θ1 - 92f{91 - Θ3)

2]~'.
The characteristic width of the second cofactor as a
function of 93 for constant θ1 and θ2 is (GIL/k)/\91 - θ21.
We shall compare this with the width of the pump angular
spectrum A9L, i.e., with the width of the function j{93).

We shall first analyze the limits of integration with
respect to θ1 and θ2, where &&L <: GIL/k\6L- θ2 |, i.e.,
l#i - #2 I z GIi/kAeL. For these values of θι and 92 the
factor [(GIL/2kf +(9, - 92)

2(9, - θ^]'1 in the integral
with respect to 93 is an extremely narrow function com-
pared with the angular distribution function of the pump

\e,-e,\>aiLikML

f f d9i d92/ (9j) / (θ2)

(17)

We shall now analyze the range of variation of 91 and
92 in which \9X -92\%GIL/kA0L, when the width of the
function j(93) is small compared with the range of vari-
ation with respect to θ3 of the factor [{GIL/2kf +(6^ - 92f
(#i - Θ3ΥΥ1. In this case, j(93) may be replaced by 6(03)
with a coefficient of 1 (as a result of the normalizing
condition and also assuming that the central direction of
propagation of the pump beam is parallel to the Ζ axis).
As a result, we obtain the following expression for / 2 :

(18)

We shall analyze in greater detail the second term in
Eq. (18). Comparing the ranges of variation with re-
spect to 92 of the functions j{92) and [{GIL/2kf
+ (9l - θ^θ^]'1 and also allowing for the condition
Ιθι - Θ21sGIL/kA9L « Δθ£ (we shall assume that GIL/
kA92

L « 1, since otherwise, as will become apparent
subsequently, perturbation theory is not valid), it is
readily established that the second term in Eq. (18)
may be replaced by 4fe/G/LA0t Jd91j

2(,91), i.e.,

(19)
We note some characteristic features in the one-

dimensional case under study compared with the two-
dimensional case (see Refs. 7 and 12). In both cases,
the main contribution to the serpentine distortions is
made by random Bragg scattering processes with Γ-0.
When integrating with respect to θ3 in the two-dimen-
sional problem, the substitution

(20)

where

is only valid for moderately high values | θχ - θ21.
Nevertheless, it may be assumed that, in the two-di-
mensional case, the substitution (20) is valid over the
whole range of variation of the two-dimensional vectors
(?! and 92 since the condition Γ-0 merely implies that
Θ1-Θ2±θ1-θ3. The range where Θ1-θ2~0, makes a
negligible contribution to the appropriate integral with
respect to the two-dimensional vectors θγ and θ2.

In contrast, in the one-dimensional problem studied
in the present investigation, the condition Γ-0 nec-
essarily implies the condition 91 — 92 ~0 or θί - θ3 ~ 0
(the variables 92 and 93 are converted from one to the
other as a result of the simple permutation of the in-
dices 2 — 3 in the integrand). In the one-dimensional
case, the contribution made to the integral by the range
of variation of 9X and 92 where Θ1-Θ2~Ο cannot be
neglected and if this range is not analyzed separately,
we obtain a divergent integral. Thus, in the one-dimen-
sional case, the substitution (17) using a delta function
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cannot be considered to be valid throughout the limits of
integration. Thus, two terms with different limits of
integration appear in Eq. (18).

Similarly, analyzing the integral/χ(θ) [Eq. (16b)] and
comparing the characteristic ranges of variation with
respect to θ1 and 02 of the various cofactors in the func-
tion in the integrand, it is readily established that the
following expression is valid:

(21)

A distinguishing feature of Eq. (21) is that the inten-
sity of the distortions/^f?) is only nonzero for those
values of θ which (to within the trivial substitution
θ— -Θ since stimulated backscattering is being analyzed)
are found within the pump field. In contrast, for j(6) in
the form of a "circular stand" of radius θ0 in the two-
dimensional problem, the serpentine distortions are
nonzero within a circle of radius θο/2 in angular space
(although within this circle the distortions are distribu-
ted nonuniformly with a higher intensity at the center).

These two conclusions, applicable to one- and two-
dimensional problems respectively, are readily ob-
tained by analyzing the position, on a Ewald sphere,
of the wave vectors which approximately satisfy the
Bragg condition for scattering by the gratings δε

We shall give values of the relative intensity R and
angular distribution jn(0) of the serpentine noise cal-
culated using Eqs. (15)-(17), (19), and (21) for various
forms of the angular distribution of the pump field }(θ).
The expressions given below are valid assuming that

For a Gaussian angular distribution j(9)=e~e /θο/
πθ0, we obtain

Olr

}η(θ) !,rT 1

(22a)

(22b)

It can be seen from Eq. (22b) that the angular distribu-
tion function of the noise is narrower than the angular
distribution function of the pump field.

For a parabolic distribution

for | θ | > θ 0

calculations give

for θ^θ 0 . (23b)

For a rectangular angular distribution of the pump
field j(e)

for | θ | «ς θο/2;
for |θ|>θο/2

we have

; ( θ ) = ί 1 / (

I o

1π(ΐ/4-92/8§)

(24a)

(24b)

For 0/0 o «l , we have jB(fl)= j(-#); for θ/θ0* | , we ob-
tain ja{9)a ϊϋ-θ) [we note that all the results given
above, Eqs. (22)-(24), are valid for ln(fe0|/G/t)s 3].

If we have kB\/GIL slO, the integrals (15b) and (16b)
should be calculated numerically. Nevertheless, per-
turbation theory is still valid for calculating the
serpentine noise.

5. CONCLUSIONS

Thus, calculations have been made of serpentine dis-
tortions in the problem of WFR in stimulated scattering
of a pump beam with one-dimensional transverse inhomo-
geneity. The results differ significantly from the two-
dimensional case and are of interest for WFR waves
propagating over the surface (such as surface plasmons
and polaritons) and also for WFR waves in two-dimen-
sional waveguiding films.

The authors are grateful to V. V. Shkunov for useful
discussions.
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