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Abstract. Using Mach’s principle, we will show that the observed diurnal and annual

motion of the Earth can just as well be accounted as the diurnal rotation and annual

revolution of the Universe around the fixed and centered Earth. This can be performed

by postulating the existence of vector and scalar potentials caused by the simultaneous

motion of the masses in the Universe, including the distant stars.
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1. Introduction

The modern day use of the word relativity in physics is usually connected with

Galilean and special relativity, i.e. the equivalence of the systems performing the

uniform rectlinear motion, so-called inertial frames. Nevertheless, the physicists and

philosophers never ceased to debate the various topics under the heading of Mach’s

principle, which essentially claims the equivalence of all co-moving frames, including

non-intertial frames as well.

Historically, this issue was first brought out by Sir Isaac Newton in his famous

rotating bucket argument. As Newton saw it, the bucket is rotating in the absolute

space and that motion produces the centrifugal forces manifested by the concave shape

of the surface of the water in the bucket. The motion of the water is therefore to be

considered as “true and absolute”, clearly distinguished from the relative motion of the

water with respect to the vessel [1].

Mach, on the other hand, called the concept of absolute space a “monstrous

conception” [2], and claimed that the centrifugal force in the bucket is the result only of

the relative motion of the water with respect to the masses in the Universe. Mach argued

that if one could rotate the whole Universe around the bucket, the centrifugal forces

would be generated, and the concave-shaped surface of the water in the bucket would

be identical as in the case of rotating bucket in the fixed Universe. Mach extended this

principle to the once famous debate between geocentrists and heliocenstrists, claiming

that both systems can equally be considered correct [3].

His arguments, however, remained of mostly philosophical nature. Since he was

convinced empiricist, he believed that science should be operating only with observable

facts, and the only thing we can observe are relative motions. Therefore, every notion

of absolute motion or a preferred inertial frame, whether inertial or non-inertial, is not

a scientific one but rather a mathematical or philosophical preference.

As Hartman and Nissim-Sabat [4] correctly point out, Mach never formulated the

mathematical model or an alternative set of physical laws which can explain the motions

of the stars, the planets, the Sun and the Moon in a Tychonian or Ptolemaic geocentric

systems. For that reason, some physicist in the modern days have tried to “Machianize”

the Newtonian mechanics in various ways [5, 6], or even try to construct new theories

of mechanics [7]. There have also been attempts to reconcile Mach’s principle with the

General Theory of Relativity, some of which were profoundly analyzed in the paper by

Raine [8].

In the recent paper [9] we have used the concept of the so-called pseudo-force and

derived the expression for the potential which is responsible for it. This potential can be

considered as a real potential (as shown by Zylbersztajn [10]), which can easily explain

the annual motion of the Sun and planets in the Neo-Tychonian system. In the same

manner, one can explain the annual motion of the stars and the observation of the stellar

parallax [11].

It is the aim of this paper to use the same approach to give the dynamical
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explanation of the diurnal motion of the celestial bodies as seen from the Earth, and

thus give the mathematical justification for the validity of Mach’s arguments regarding

the equivalence of the Copernican and geocentric systems.

The paper is organized as follows. In section the vector potential is introduces in

general terms. This formalism is then applied to analyze the motions of the celestial

bodies as seen from the Earth in section . Finally, the conclusion of the analysis is given.

2. Vector potential formalism

Following Mach’s line of thought, one can say that the simultaneously rotating Universe

generates some kind of gravito-magnetic vector potential, A. By the analogy with the

classical theory of fields [12] one can write down the Lagrangian which includes the

vector potential,

L =
1

2
mṙ2 +m ṙ·A+

1

2
mA2 −mUext , (2.1)

where m is the mass of the particle under consideration, and Uext is some external scalar

potential imposed on the particle, for example the gravitational interaction.

We know, as an observed fact, that every body in the rotational frame of reference

undergoes the equations of motion given by [13]

mr̈ = Fext − 2m(ωrel × ṙ)−m [ωrel × (ωrel × r)] , (2.2)

where ωrel is relative angular velocity between the given frame of reference and the

distant masses in the Universe, and Fext = −∇Uext some external force acting on a

particle.

It can be easily demonstrated that one can derive Equation (2.2) by applying the

Euler-Lagrange equations on the following “observed” Langrangian

Lobs =
1

2
mṙ2 +m ṙ · (ωrel × r) +

1

2
m(ωrel × r)2 −mUext . (2.3)

By comparison of the general Lagrangian (2.1) and the “observed” Lagrangian (2.3) one

can write down the expression for the vector potential A,

A = ωrel × r . (2.4)

It is important to notice that there is no notion of the absolute rotation in this

formalism. The observer sitting on the edge of the Newton’s rotating bucket can only

observe and measure the relative angular velocity between him or her and the distant

stars ωrel, incapable of determine whether it is the bucket or the stars that is rotating.

3. Trajectories of the celestial bodies around the fixed Earth

3.1. Diurnal motion

It is one thing to postulate that rotating masses in the Universe generate the vector

potential given by (2.4), but quite another to claim that this same potential can be
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used to explain and understand the very motion of these distant masses. We will now

demonstrate that this is indeed the case.

The observer sitting on the surface of the Earth makes several observations. First,

he or she notices that there is a preferred axes (say z) around which all Universe rotates

with the period of approximately 24 h. Then, according to the formalism given in

Section 2, he or she concludes that the Earth must be immersed in the vector potential

given by

A = Ω ẑ× r , (3.1)

where Ω ≈ (2π/24 h) is the observed angular velocity of the celestial bodies ‡.

One can now re-write the Lagrangian (2.1) together with the Equation (3.1) and

focus only on the contributions coming from the vector potential A,

Lrot =
1

2
mṙ2 +mΩ ṙ · (ẑ× r) +

1

2
mΩ2 (ẑ× r)2 . (3.2)

The Euler-Lagrange equations for this Lagrangian, written for each component of

the Cartesian coordinates, are given by

ẍ = − 2Ω ẏ + Ω2 x

ÿ = 2Ω ẋ+ Ω2 y (3.3)

z̈ = 0 .

The solution of this system of differential equations reads

x(t) = r cos Ωt

y(t) = r sin Ωt (3.4)

z(t) = 0 ,

where r is the initial distance of the star from the z axes. The observer can therefore

conclude that the celestial bodies perform real circular orbits around the static Earth

due to the existence of the vector potential A given by Equation (3.1). This conclusion

is equivalent to the one that claims that the Earth rotates around the z axes and the

celestial bodies don’t.

3.2. Annual motion

The second thing the observer on the Earth notices is the periodical annual motion of

the celestial bodies around the z′ axes which is inclined form the axes of diurnal rotation

z by the angle of approximately 23.5◦. This motion can be explained if one assumes

that the Earth is immersed in the so-called pseudo-potential

Ups(r) =
GMS

r2SE
r̂SE · r . (3.5)

‡ The period of the relative rotation between the Earth and the distant stars is called sidreal day and

it equals 23 h 56’ 4.0916”. Common time on a typical clock measures a slightly longer cycle, accounting

not only for the Sun’s diurnal rotation but also for the Sun’s annual revolution around the Earth (as

seen from the geocentric perspective) of slightly less than 1 degree per day [14].
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Here G stands for Newton’s constant, MS stands for the mass of the Sun and rSE(t)

describes the motion of the Sun as seen form the Earth. The Sun’s trajectory rSE(t)

is shown to be an ellipse in x′-y′ plane (defined by the z′ axes from the above). Using

this potential alone one can reproduce the observed retrograde motion of the Mars or

explain the effect of the stellar parallax as the real motion of the distant stars in the

x′-y′ plane. All this was demonstrated in the previous communications [9, 11].

3.3. Total account

One can finally conclude that all celestial bodies in the Universe perform the twofold

motion around the Earth:

(i) circular motion in the x-y plane due to the vector potential A (3.1) with the period

of approximately 24 hours and

(ii) elliptical orbital motion in the x′-y′ plane due to the scalar potential Ups (3.5) with

the period of approximately one year.

Using Equations (2.1), (3.1) and (3.5) one can write down the complete classical

Lagrangian of the geocentric Universe,

L =
1

2
mṙ2 +mΩ ṙ · (ẑ× r) +

1

2
mΩ2 (ẑ× r)2

−m
GMS

r2SE
r̂SE · r−mUloc , (3.6)

where Uloc describes some local interaction, e.g. between the planet and its moon.

It is a matter of trivial exercise to show that these potentials can easily account for

the popular “proofs” of Earth’s rotation like the Faucault’s pendulum or the existence

of the geostationary orbits.

4. Conclusion

We have presented the mathematical formalism which can justify Mach’s statement

that both geocentric and Copernican modes of view are “equally actual” and “equally

correct” [3]. This is performed by introducing two potentials, (1) vector potential that

accounts for the diurnal rotations and (2) scalar potential that accounts for the annual

revolutions of the celestial bodies around the fixed Earth. These motions can be seen

as real and self-sustained. If one could put the whole Universe in accelerated motion

around the Earth, the potentials (3.1) and (3.5) would immediately be generated and

would keep the Universe in that very same state of motion ad infinitum.
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